
1

DESIGN AND DEVELOPMENT OF A STATE TRANSITION TABLE

FOR THE EPCGLOBAL UHF CLASS1 GEN2 RFID STANDARD

by

Akram Kamrani

B.S., Sharif University of Technology, 2007

Submitted to the Graduate Faculty of

Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2009

 ii

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Akram Kamrani

It was defended on

December 1, 2009

and approved by

Marlin Mickle, Professor, Electrical and Computer Engineering

 Thesis Co-Advisor: Bryan A. Norman, Associate Professor, Industrial Engineering

Thesis Co-Advisor Jayant Rajgopal, Associate Professor, Industrial Engineering

 iii

Copyright © by Akram Kamrani

2009

 iv

A Radio Frequency Identification (RFID) system is a wireless network composed of a reader

which tries to communicate with and read (identify) a subset of tags from among a larger

population. There are several standards defined for this type of network including the EPCGlobal

UHF Class1 Gen 2 RFID standard which is the focus of this work. The increasing number of tag

and reader manufacturers necessitates the design of standard conformity tests. To create

conformity tests one needs to know the possible states and transitions between states that the tags

may experience. In this work a tag is modeled as a state transition machine where the tag

transitions from one state to another upon receiving commands from the reader. The model is

Markovian; i.e., each transition only depends on the current state and the received command and

is independent of the previous transitions, states and commands. The contribution of this work is

to fully define the transitions of this model such that it conforms to the specification of the

EPCGlobal standard. This, in turn, is necessary for the design of a conformity testing

methodology.

Considering all the configurations of the internal tag parameters and command parameters yields

a state transition machine with 449 unique states and 141 unique commands. For each unique

command there is one unique transition out of each state; thus, there are 63,309 unique

transitions that need to be considered. The transition machine has been expressed as a table

which has states as rows, commands as columns and the future states as the table entries. This

DESIGN AND DEVELOPMENT OF A STATE TRANSITION TABLE

FOR THE EPCGLOBAL UHF CLASS1 GEN2 RFID STANDARD

Akram Kamrani, M.S.

University of Pittsburgh, 2009

 v

table has been automatically filled using roughly 3000 lines of MATLAB code. A Graphical

User Interface (GUI) has also been developed to test and verify the transitions

 vi

TABLE OF CONTENTS

1.0 INTRODUCTION .. 1

1.1 EPCGLOBAL CLASS1 GEN2 ... 3

1.2 TERMS AND DEFINITIONS .. 6

2.0 PROBLEM STATEMENT ... 10

3.0 METHODOLOGY ... 12

3.1 MARKOVIAN MODEL FOR TAG TRANSTIONS 21

3.2 ROWS (NODES) .. 25

3.3 COLUMNS (INPUTS)... 28

3.4 TRANSITION TABLE STRUCTURE .. 33

3.5 ASSUMPTIONS .. 36

4.0 RESULTS ... 38

4.1 TRANSITION TABLE ... 38

4.2 AUTOMATIC TABLE GENERATION (USING MATLAB) 39

4.3 GRAPHICAL USER INTERFACE (GUI WITH MATLAB)....................... 42

4.4 CONCLUSION AND FUTURE WORK ... 44

APPENDIX A .. 46

APPENDIX B .. 47

BIBLIOGRAPHY ... 71

 vii

 LIST OF TABLES

Table 1 - Arbitrate state transition table (EPCglobal Inc., 2008) ... 19

Table 2 - Query Command response table (EPCglobal Inc., 2008).. 20

Table 3 - A sample transition table ... 22

Table 4 - Req_RN command-response table (EPCglobal Inc., 2008) .. 25

Table 5 - Node parameters .. 27

Table 6 - An example of one row (node) .. 27

Table 7 - Acknowledged state-transition table (EPCglobal Inc., 2008) 29

Table 8 – A sample node in the acknowledged state .. 30

Table 9 – A sample node in the secured state ... 30

Table 10 – A sample node in the acknowledged state with access password not zero................. 31

Table 11 – A sample node in the open state ... 31

Table 12 - Req_RN command .. 31

Table 13 – List of commands and their parameters .. 32

Table 14 - State Transition table ... 33

 viii

LIST OF FIGURES

Figure 1- Logical memory map (EPCglobal Inc., 2008) .. 4

Figure 2 - Session diagram (EPCglobal Inc., 2008) ... 14

Figure 3 - Interrogator/Tag operations and tag state (EPCglobal Inc., 2008) 15

Figure 4 - Tag state diagram (EPCglobal Inc., 2008) ... 16

Figure 5 - State transition diagram.. 23

Figure 6 - Filled state transition table ... 39

Figure 7 - Snapshot of the GUI ... 43

Figure 8 - Finite transition table.. 45

1

1.0 INTRODUCTION

The purpose of the work described in this document is to develop a state transition machine

model of EPCGlobal UHF Class 1 Gen 2 RFID tags as a basis for the development of standard

conformity tests. It is important to know all of the possible tag states and transitions between

states in order to develop a conformity test to verify that the tag responds appropriately in all

contexts. First, some background is presented on RFID systems and the EPCGlobal standard.

An RFID (Radio Frequency Identification) system is a wireless network composed of a

reader (interrogator) which tries to identify a tag (transponder)
1
 from among a population of tags

and read the information stored on the tag's chip. Such systems are used generally for

identification purposes; e.g. to detect the presence or absence of a tag with a certain serial

number in some area of interest. A series of radio-frequency signals will be transmitted between

the reader and the tag until the tag is “singulated” by the reader and the reader can read the

unique codes stored in the tag's memory. In this context, singulation of a tag means uniquely

identifying one specific tag from a larger population of tags.

In any RFID standard there is a section regulating the tag-reader interaction, which

specifies what types of commands the reader can send to the tag and how the tag should react.

Henceforth, this section will be known as the tag identification protocol (tag protocol). The

1
 The terms reader/interrogator and tag/transponder will be used interchangeably throughout the text and are

equivalent.

 2

purposes of this section are to determine when tags can transmit their signals to the reader along

with what they should transmit, and to give the reader a set of commands which to control the

tags’ behavior. In a layered protocol stack view (Tanenbaum, 2003) of the RFID system, the tag

identification protocol is part of the data link layer. This work focuses solely on this part of the

protocol.

A number of different RFID system designs have been proposed, implemented and even

deployed and standardized; these systems differ in many areas, such as:

 Frequency Band: RFID systems operate in many different frequency bands using many

different bandwidths. As with other short-range communication systems like WiFi and

Zigbee, many of these systems operate in unlicensed frequency bands.

 Active or Passive Tags: Active tags carry their own power sources, while passive tags

must be energized off the signal that they receive from the reader. Passive tags are

cheaper but generally operate at shorter range and slower speeds than active tags.

 Data link layer: Each of the standards could use a different method for interference

avoidance, tag identification, etc.

For the remainder of this work the discussion will focus on the EPCglobal Class1

Generation2 standard which operates in the 860 MHz – 960 MHz range using passive tags. The

tag protocol of the standard will be described briefly in the following section and in more detail

later.

 3

1.1 EPCGLOBAL CLASS1 GEN2

The latest, and most widely used, of the EPCglobal tag protocols is Class 1 Generation 2; hence,

it will be the focus of the remainder of this work. The EPCglobal Class 1 Gen 2 protocol

improves upon previous protocol versions in the following areas:

i. Speed and Flexibility

ii. Reliability

iii. Robustness (improved by the following features):

1. Q protocol: Designed to manage a large population of tags

2. Dual-state symmetry (A/B): Allows each inventory cycle to be independent from

inventory cycles previously undergone by the tags

3. Mitigating reader interference

4. Sessions: Allows multiple readers to access the same population of tags

simultaneously

v. Security: Kill, access and lock passwords and the ability to control reader access to tags.

vi. Extensibility: The commands and responses are structured such that new commands can

be added without fundamental changes to the standard.

The focus of this work is the data link layer of this standard. Specifically, the inventory

cycle, which describes the series of commands and responses traded between the reader and tags,

is of interest. In the EPCglobal Class1 Gen2 protocol, the inventory cycle starts with the

transmission of a command from the reader, then there is a transition of tags between several

states and changes in the tags’ status bits, until each tag is singulated by, and its EPC sent to, the

reader. The process can be continued leading to other stages for accessing, writing or otherwise

 4

manipulating the information stored in the tag's memory. The details of this process will be

discussed in section 3.0 .

Another aspect of interest is the structure of a tag’s memory, which contains all the

registers and variables that determine a tag’s states. Tag memory is logically separated into four

distinct banks, each of which may comprise zero or more memory words. A logical memory

map is shown in Figure 1 (EPCglobal Inc., 2008).

Figure 1- Logical memory map (EPCglobal Inc., 2008)

 Reserved Memory contains the kill and access passwords. If a tag does not

implement the kill and/or access password, the tag shall act as though it had zero-

valued password(s) that are permanently read/write locked and the corresponding

memory location in Reserved memory need not exist.

 EPC memory contains a CRC-16, Protocol-Control (PC) and a code (such as an

EPC) that identifies the object to which the tag is or will be attached.

 5

 TID memory contains an 8-bit ISO/IEC allocation class identifier. It contains

sufficient identifying information for an interrogator to uniquely identify the

custom commands and/or optional features that a tag supports.

 User memory allows user-specific data storage. They memory organization is

user-defined.

 6

1.2 TERMS AND DEFINITIONS

Command set:

 A set of commands used to explore and modify a tag

Operating Procedure:

 Collectively, the set of functions and commands used by an interrogator to identify and

modify tags (also known as the tag-identification layer)

Query:

 Query is a mandatory command that initiates and specifies an inventory round. It includes

Sel, Session, Target and Q fields.

 Inventory Round:

 A period initiated by a Query command and terminated by either a subsequent Query

command or a Select command

Q:

 A parameter that an interrogator uses to regulate the probability of tag response. An

interrogator commands tags in an inventory round to load a Q-bit random (or pseudo-

random) number into their slot counters; the interrogator may also command tags to

decrements their slot counters. Tags reply when the value in their slot counter is zero. Q

 7

is an integer in the range [0, 15]; the corresponding tag-response probabilities lie in the

interval [1, 0.000031= 2
-15

]

Query Rep:

 Query Rep is a mandatory commands that instructs tags to decrement their slot counter

and if slot=0 after decrementing, to backscatter an RN16 to the interrogator. Query Rep

includes session fields.

Query Adjust:

 Query Adjust is a mandatory command that adjusts Q without changing any other round

parameters.

Session:

 An inventory process comprising an interrogator and an associated tag population. An

interrogator chooses one of four sessions and inventories tags within that session. The

interrogator and associated tag population operate in one and only one session for the

duration of an inventory round. For each session, tags maintain a corresponding

inventoried flag. Sessions allow tags to keep track of their inventoried status separately

for each of four possible time-interleaved inventory processes, using an independent

inventoried flag for each process.

 8

Random-slotted collision arbitration

 A collision-arbitration algorithm where tags load a random number into their slot counter;

decrement this slot counter based on interrogator commands, and reply to the interrogator

when their slot counter reaches zero.

Single-Interrogator Environment:

 An operating environment within which there is a single active interrogator at any given

time.

Singulating:

 Identifying an individual tag in a multiple-tag environment

Slot:

 Slot corresponds to the point in an inventory round at which a tag may respond. Slot is

the output value of a tag’s slot counter; tags reply when their slot value equals zero.

Ack:

 Ack is a mandatory command. An Interrogator sends an ACK to acknowledge a single

tag. Ack echoes the tag’s backscattered RN16

 9

NAK:

 NAK is a mandatory command and returns all tags to the arbitrate state unless they are in

the ready or killed state, in which case the tags ignore the NAK and remain in their

current state.

 10

2.0 PROBLEM STATEMENT

As demand for RFID systems increases, various issues have led to an increasing number of

manufacturers producing readers and tags; these issues include the amount of data needed to be

saved on tags, new applications, specific features needed for specific functions, high demand for

low-cost tags and readers, etc. Of course, the tags (and readers) produced must conform to the

existing standard; as such, a method of testing said conformity is of paramount importance.

The rest of this work deals specifically with how tags transition from “state” to “state” in

response to various “commands” from the reader. Whenever a reader tries to communicate with

tags it transmits a signal containing some parameters which is called a command. There are 14

commands described in the standard that a reader can send to the tag to read or access data

registered in the tag’s memory. In this work any possible parameter configuration for each of the

commands is considered an individual command. Each tag has a set of parameters (internal bits)

that control a tag’s behavior in any given situation (for example a tag’s response to a specific

command depends on these bits). Any unique combination of these parameters is considered a

state. For each successful read, each tag needs to transition through several states.

In response to a specific prompt, the tag behavior that needs to be checked includes:

whether the tag moves to the appropriate states, whether it follows the expected path of states,

whether it sends the appropriate response(s) to the reader, whether it reacts suitably to

unexpected prompts, noise, incomplete and erroneous signals, etc.

 11

In order to test the conformity of the tag structure and design to the standard, one

approach is to enumerate all of the possible combinations of states and commands and to check

the tag’s reaction in all of the situations and compare it with the expected behavior from the

standard. This would be achieved by programming a reader to issue a certain series of

commands to a tag while monitoring the tag’s responses. Ideally the sequence of commands

would subject the tag to every possible state-command combination and do so in as few steps as

possible.

So a model of a tag as a state transition machine based on the standard is required,

containing all of the tag’s possible states and all of the possible reader commands and the

appropriate transition and response in each situation (state/command combination). This model is

necessary to design the optimal sequence of commands and also allows the reader to check the

tag’s responses at each stage. This state transition machine can be uniquely described by a state

transition table which has states as rows and commands as columns, and the entry in row i and

column j represents the next state of the tag when it is in state i and receives command j from the

interrogator.

 12

3.0 METHODOLOGY

Certain specifications and requirements have been defined by EPCglobal for the UHF Class 1

Gen 2 RFID protocols (EPCglobal Inc., 2008) (Alien Technology, 2005). There are conformity

requirements expected from readers and tags that must be addressed by all of the RFID reader

and tag manufacturers in order to be certified by EPCglobal.

RFID system architecture is that of a layered wireless communication network

(Tanenbaum, 2003). EPCglobal defines certain requirements for different layers of the RFID

system, including the physical and data link layers. In this analogy, tag identification would be

the lowest sub-layer in the data link layer of an RFID network. As such, the focus of this work is

on the data link layer protocols. A discussion and understanding of the physical layer and

transmission schemes is beyond the scope of this work.

The tag identification layer consists of the operations through which a population of tags

is addressed, identified and modified by one or more readers (also referred to as interrogators)

(EPCglobal Inc., 2008; Alien Technology, 2005). In the tag identification layer a reader uses the

three basic operations of Select, Inventory and Access to manage a population of tags. In Select

operations, the reader sends one or more Select commands with different parameters to address a

specific set of tags. In Inventory operations, the reader attempts to read (acknowledge and

receive the EPC of) all of the tags in that particular set. During the Inventory operations, Query,

Query Adjust, Query Rep, Ack and NAK commands will be sent by the reader; these are called

 13

Inventory commands (See Section 1.2: "Terms and Definitions” for the definitions of the

command names and acronyms used here and throughout this chapter). These commands are

used to singulate tags in the Inventory operation. Access operations follow the Inventory

operations, after each tag is uniquely identified and is ready for the reader’s access. Through

Access operations, the reader can read from and/or write to any tag’s memory.

Through these three basic operations, a population of tags can be managed by one or

more readers. In any of these operations, upon receiving a particular command a specific reaction

is expected from the tag. Before discussing this reaction any further, the tag’s structure and

parameters must be detailed.

In the EPCglobal, some minimum requirements for the physical structure of Class 1 Gen

2 tags are specified as follows:

 An Electronic Product Code (EPC) identifier

 A tag identifier (tag ID)

 A Kill function which permanently disables the tag

 Access control (optional password-protection)

A tag’s Electronic Product Code (EPC) will be sent to the reader during the inventory

operations; if the reader receives this code successfully, the tag is singulated (i.e., uniquely

identified).

Sessions: Another concept introduced in Class 1 Gen 2 tags is that of sessions. Four

sessions, S0, S1, S2, S3 have been defined in this standard. The main purpose of these sessions

is to allow more than one reader, independent of others, to manage the same population of tags at

the same time. To make this possible, each tag should maintain four different sessions and for

 14

each session a two-status inventoried flag, with possible values A or B. When the tags are read

by the reader their inventoried flag switches from A to B or vice versa.

Figure 2 - Session diagram (EPCglobal Inc., 2008)

Selected flag: There is another binary flag associated with each tag, known as the

“Selected flag”. The possible values for the selected flag are SL (selected) or ~SL (not selected).

This flag is used in the select operations, where the reader is trying to address a particular set of

tags. The status of the Selected flag and/or Inventoried flag can be changed through commands.

States: According to EPCglobal Class 1 Gen 2, tags shall implement seven states. A tag

goes through these seven states during the Select, Inventory and Access operations (Figure 3).

These seven states are Ready, Arbitrate, Reply, Acknowledged, Open, Secured and Killed

(Figure 4).

 15

Figure 3 - Interrogator/Tag operations and tag state (EPCglobal Inc., 2008)

 16

Figure 4 - Tag state diagram (EPCglobal Inc., 2008)

 17

Killed is a hole or a dead-end state. A tag that enters the killed state will stay there

forever and is permanently disabled. There is no transition from the killed state to any other state.

Ready, as can be inferred from the title, is a state where the tag is ready, hears the signals

from the reader, and either goes through Inventory operations by receiving appropriate Query

commands or stays in the Select procedure, depending on the received commands and other

status bits of the tag.

Tags go into Arbitrate, Reply and Acknowledged states during Inventory operations.

Inventory operations start with a query command; all the tags which are in the ready state

and receive this command will enter the inventory cycle. The Query commands send a number

between 0 and 15 (called Q) to the tags, instructing them to generate a random integer in the

interval 0, 2Q − 1 and initialize their slot counter’s value to that number. If this random

number is 0 (with a probability of 1
2Q) for a tag, that tag enters the Reply state and sends an

RN16 number to the reader. If the tag receives a correct acknowledgement from the reader, it

transits into the Acknowledged state, which means the tag has been singulated and the reader can

start to read from and/or write to the tag’s memory through Access operations.

In case a tag’s slot counter is not zero (with probability of 1 − 1
2Q), it enters the

Arbitrate state. Upon receiving each Query Rep command a tag in Arbitrate state decrements its

slot counter value by one, until it reaches 0 where it transits into the Reply state and backscatters

a RN16 number to the reader and follows the same procedure explained above.

There are various ways a tag can enter the Arbitrate state, one of which is by receiving a

Query command when its slot counter is non-zero as explained above. The other situations and

 18

conditions in which a tag will enter the Arbitrate state are detailed in Appendix B and Appendix

C of the standard (EPCglobal Inc., 2008).

A Tag enters the Secured or Open state after passing through Inventory operations and

being uniquely identified by the reader. There are several transition tables (table 1) in the

standard, designed for each of the seven states. These tables, which are provided in Appendix B

of the EPCglobal UHF Class1 Gen2 protocol, list the potential state transitions and their

conditions.

 19

Table 1 - Arbitrate state transition table (EPCglobal Inc., 2008)

Appendix C of the same standard describes the appropriate reaction of the tags for each

specific command (Table 2). It also shows what the condition for that reaction would be based

on parameters associated with the tag and the command.

 20

Table 2 - Query Command response table (EPCglobal Inc., 2008)

As demonstrated, the state transition information is all contained in the standard;

however, different transitions and responses are detailed in various sections, and thus, are not

gathered in one reference area. As such, building a complete picture of the state transition

machine requires extracting these relationships from the complicated, scattered and occasionally

ambiguous text.

In order to meet the expectations and requirement of the standard for many different

applications a complete transition table is devised in this thesis which considers all of the

situations that can cause transitions between states. The basic and most important idea in this

work is the Markovian behavior of the transitions, which will be discussed now.

 21

3.1 MARKOVIAN MODEL FOR TAG TRANSTIONS

For the purpose of design and development of a state transition machine and also standard

conformity testing, a thorough, complete and clear state transition diagram, understandable by

both humans and machines, is needed. The basic objective is putting a tag in every possible

situation, by applying different inputs (expected or unexpected) from the reader, observing its

reaction and comparing it to the standard’s requirements. In order to organize and capture all of

the standard’s requirements for the transitions, a set of nodes (or rows) and also a set of inputs

(or column) are defined.

Each node (row) is basically representative of a unique situation (or state) in which a tag

can be, while each column is representative of an input (a command with a specific set of

parameters) that a tag may receive. Thus, a tag's transition between states is modeled based on a

Markovian process, where the current state of the system essentially contains all information of

the past behavior that is pertinent to predicting future behavior (Puterman, 2005). Then, the

future state of a tag can be uniquely identified by knowing the current state of the tag and the

command received from the reader. In other words, for each element of the table (say row i and

column j) the next node should be deterministic (based on the standard).

Hence, the transition table will be the backbone of the state transition machine which

specifies what the different possible states are and what commands the reader may send that

could change the state of the tag. It is also possible to predict what state a tag must transition to

when it is in a specific state and receives a specific command.

In order to build this machine, all possible states through which a tag transits in a tag

singulating cycle must be identified. In addition, all the commands that may change the state of

a tag must be recognized in order to complete the transition table.

 22

A transition table would look like Table 3 (Figure 5) shown below. Each element i,j

represents the future state of the tag when the current state is i and it receives input j. In the

element (1,1) of the table (row one, column one), the entry “Row2” means that if a tag in state 1

receives input 1, it shall transition to state 2. After transitioning to Row2, if it receives the

command in Col3, it shall transition to Row3 and so on. It is important to note that if the tag is

in Row3 and receives the command in Col3, no transition will occur and the tag will stay in state

3. In this example, this case is similar to Row2 Col2 where the tag stays in Row2 and doesn’t

transit.

Table 3 - A sample transition table

 Command

Current State

Col1 Col 2 Col 3

Row1 Row 2 Row 3 Row 1

Row2 Row 1 Row 2 Row 3

Row3 Row 3 Row 2 -

 23

Figure 5 - State transition diagram

Now that the structure of the table is clear, the rows and columns will be discussed. As can be

extracted from the standard, if the current situation of a tag (any of the seven states, the status of

its flags, slot counter, and several other parameters), and also the received command and its

associated parameters are known, the next situation of the tag will be determined. In other words,

it is clear that the future state of the tag is solely determined by the current state and the received

commands and, given that knowledge, is independent of the previous states. Preserving this

independence from the past is important for defining the rows and also the columns.

Each row of the table represents a possible current situation of a tag; e.g., a tag in the

Reply state, with its Selected flag set to SL, session flag set to S1, etc. Each column represents a

possible input command received from the reader; e.g., a Query command, with Session set to S1

and Sel parameter set to SL.

The set of rows is defined such that each row is unique. The parameters included in each

row are the minimum set of parameters that contain the important information from the tag’s

 24

history which is critical to the transition from one row to another. Therefore, each row

corresponds not only to a state, as defined in the standard, but to a state and a set of values for

parameters that affect the transition. Similarly, each column is also defined in a way to include

the minimum parameters associated with each command that are critical for the tag’s transition

from one row to another.

In the following sections more details about the rows and columns are provided.

 25

3.2 ROWS (NODES)

A Class 1 Gen2 tag is basically a small chip which consists of several banks of memory.

Whenever a reader sends a command some changes may happen in the tag’s status bits and the

tag may backscatter a response to the reader. The parameters that play roles in this transition

vary from situation to situation. For example, the following table extracted from the EPCglobal

standard shows a command response:

Table 4 - Req_RN command-response table (EPCglobal Inc., 2008)

This table corresponds to the tag’s responses when it receives a Req_RN command (the

Req_RN command is one of the Inventory commands). The first row shows that if the tag is in

the Ready state and receives a Req_RN command, no matter what, it should stay in the Ready

state and nothing should happen. If the tag is currently in the Acknowledged state then the tag

should verify the 16-bit random number (RN 16) sent by the reader and if it is valid (and the tag

access password is nonzero), the tag should backscatter a handle and change its state to the Open

 26

state. If the access password is zero, then the tag should change its state to Secured while

backscattering the handle. In case the RN 16 sent by the reader is not valid then the tag should

ignore the command completely.

Therefore, as shown in this example, there are some parameters associated with a tag that

affect its reaction. Considering all different possible scenarios, a minimum list of parameters

related to a tag that is required (at some point, not always) for determining a tag’s reaction is

now prepared.

These parameters include

 The state of the tag,

 The values of the select flag (SL or ~SL),

 Inventoried flag (A or B),

 The session in which the tag is operating (S0, S1, S2 or S3)

 The information showing whether or not the kill and access passwords are zero.

Sessions are important when a tag is participating in an inventory cycle or sometimes in

select operations, but do not play any role in access operations. However, in order to build a

Markovian transition table, nodes must be defined in a way that holds all the information needed

at some point in the table.

For the cases where a parameter does not play any role in the transitions, for all the rows

that have the same value for other parameters but different values for this parameter, the reaction

to the same input would be exactly the same. This may seem like a wasteful addition to the set of

rows in the table, but it is the only way that all standard requirements for transitions can be

mapped into one single transition table. On the other hand, it is important to keep the table as

 27

small as possible by eliminating the parameters that are not affecting the transitions or whose

effects are considered by other parameters.

The columns of Table 5 show the parameters considered in each row and their possible

values.

Table 5 - Node parameters

The set of rows in the transition table is basically all the possible combinations of values

of these 6 parameters, except for the Killed state.

Table 6 shows one of the nodes (rows) of the table. This node shows that the tag is in the

ready state, its select flag is set to “SL” or it is selected, its inventoried flag is set to A, it is

operating in session S0, its kill password is zero and its access password is also zero. For further

information please refer to EPCglobal Inc., 2008, Section 6.2.

Table 6 - An example of one row (node)

 28

3.3 COLUMNS (INPUTS)

The process of determining the set of columns is slightly more complicated. As mentioned

before, all of the parameters that are important in the tag transitions and reactions need to be

considered. On the other hand, the set of parameters should be kept as small as possible to avoid

having a large and unmanageable table.

As mentioned briefly in the previous section, the mandatory and optional commands sent

by the reader and executed by the tag are specified in the standard. There are 14 main different

commands referenced in the EPCglobal UHF Class1 Gen2 standard. Two of these commands,

namely the BlockWrite and BlockErase commands, are optional and the remainder are

mandatory; all of these are covered in the transition table. For each command a different set of

parameters affects the tag transition. All of the parameters in a command that may change the

tag’s state, selected flag, inventoried flag and session and may affect the tag’s response signal

will be considered in the columns.

In Appendix B of the standard, several tables describing different transitions from a

specific state, for every possible command received by a tag, are shown. One of these tables

(pertaining to the Acknowledged state) is shown below (Table 7). As shown in the table, when a

tag is in the Acknowledged state and receives a Query command (first row of the table), if the

tag’s slot counter is zero and the inventoried flag and the select flag of the command and tag

match then the tag should transition to the Reply state. It should also backscatter a new random

variable and, only in the case that the command’s session and the tag’s session match, it inverts

the inventoried flag from A to B or vice versa. This shows that the command’s session, select

flag and inventory flag are important and should be considered in the transition table. The tag’s

inventoried and SL flags as well as Session are being tracked, and therefore all these conditions

 29

are covered in the table. The only thing left is the slot counter which will be discussed in detail

later.

Table 7 - Acknowledged state-transition table (EPCglobal Inc., 2008)

Let us consider another situation. In the acknowledged state, if a tag with a zero access

password receives a Req_RN command, and the random number (RN16) sent by the reader with

 30

this command is valid, the future node (row) is determined. In this case none of the parameters

in the tag, with the exception of its state, will change. Therefore, if the tag is in row k (with

specifications shown in Table 8) and receives Req_RN with a valid RN16, it will transit into row

j as shown in Table 9. Conversely, if the Req_RN command arrives with an invalid RN-16,

nothing will change and the tag will stay in the same state (Table 8). If the RN_16 is valid but

the tag access password is not zero (as shown in Table 10), the tag will transition to the open

state and send a handle to the reader (Table 11).

Table 8 – A sample node in the acknowledged state

Table 9 – A sample node in the secured state

State Session Select Flag

Inventoried

flag

Kill

password

Access

Password

k Acknowledged S0 SL A 0 0

State Session Select Flag
Inventoried

flag

Kill

password

Access

Password

j Secured S0 SL A 0 0

 31

Table 10 – A sample node in the acknowledged state with access password not zero

Table 11 – A sample node in the open state

For the Req_RN command, the validity of the RN 16 determines all possible

combinations of parameters. Thus, the Req_RN command comes with two columns of valid and

invalid RN numbers.

Table 12 - Req_RN command

Req_RN

Invalid RN 16 Valid RN 16

State Session Select Flag

Inventoried

flag

Kill

password

Access

Password

 Acknowledged S0 SL A 0 ~0

State Session Select Flag

Inventoried

flag

Kill

password

Access

Password

 Open S0 SL A 0 ~0

 32

As a result of the complexities detailed above, the columns of the transition table do not

end up being as straightforward as the rows. Table 13 is a complete list of the different

commands and their associated parameters.

Table 13 – List of commands and their parameters

For each command, any combination of parameters is shown in a new column of the

table. For example, the Select Command has 5 different values for Target, 8 different values for

Actions and 2 for memory matching; therefore there will be 80 (5 x 8 x 2)columns assigned to

the 80 different flavors of the Select command.

 33

3.4 TRANSITION TABLE STRUCTURE

Table 14 - State Transition table

Table 14 demonstrates a section of the transition table. The rows represent different situations of

a tag. Each node represents a unique combination of the state and status bits of a tag. Each tag

can be in 7 different states (Ready, Reply, Arbitrate, Acknowledged, Open, Secured, Killed). In

 34

each of these states it reacts differently to a command based on its status bits (Session, Select

flag, Inventory flag, Access password, Kill password), except when it is in the killed state. A tag

in the killed state stays there no matter what command it receives or what its status bits are.

Therefore, enumerating all of the possible unique combinations yields 449 unique rows.

Including the intermediate states, the standard defines 8 states. 7 of these 8 states share the same

parameter set. The exception is the Kill state. The Kill state is a terminating point; no matter

what values the other parameters take the tag will never leave it, therefore it can be represented

by a single row. For the 7 states, each has a select flag with 2 cases, an inventory flag with 2

cases, a sessions flag with 4 cases, a kill and an access password each with 2 cases, totaling

2x2x4x2x2 = 64 rows for each of the 7 states, plus one row for the Kill state, which adds up to

64x7+1 = 449 unique rows.

The columns represent different inputs (commands) a tag can receive from the reader.

There are 14 different commands and each of them has a different set of parameters that affect

the transition from one node to another. Enumerating these commands with their parameters

yields 139 columns.

On the table there are series of intermediate states marked with a “*” and two columns

(the first two columns) “No Input, Slot counter = 0” and “No Input, Slot counter <>0” that do not

correspond to actual states or commands. These were added in order to model the behavior of the

tag when receiving a Query or Query Rep command. In reality, when a tag receives a Query

command with a Q parameter it sets its slot counter value to a random number between 0 and 2
Q-

1
. When a tag receives a Query Rep command it decrements its slot counter by one. In both of

these situations, if the slot counter equals zero after the operation, the tag transits into the Reply

state and if it is nonzero it transits into the Arbitrate state. In order to model these transitions in

 35

the table, it is necessary to consider the value of the slot counter as one of the rows’ parameters;

clearly this is not desirable as it would increase the number of rows by a factor of 2
Q
. As a less

costly solution some intermediate states (marked with “*”) and two columns (“No. Input Slot

counter = 0” and “No. Input Slot counter <>0”) have been added to the table. This is based on

the assumption that the state transition machine can check the value of the slot counter and see if

it is zero or nonzero. In this setting, whenever a tag receives a Query or Query Rep command, it

transits into the corresponding intermediate state which has the same set of parameters. In this

state when the receiving command is “No Input Slot counter = 0” it transitions to the Reply state

and if it is “No Input Slot counter <>0” it transitions to the Arbitrate state. Remember that the

choice between the last two commands does not actually come from the reader at all but is

dependent on the value of the slot counter.

The entries of the table (the vacant, purple slots in Table 14) are the numbers of the future

states (rows). Later on a snapshot of the completed table will be shown.

 36

3.5 ASSUMPTIONS

Several assumptions are made for the tag transitions, including:

If a tag is in session S0 and receives a Query command with parameter S1, it starts the

new inventory round in S1. If the tag is in session S1 and receives a Query command with

session S1 it starts the new round with S1 but in this case it changes its inventory flag from A to

B or vice versa.

In the case where a tag is in the Reply state and receives an ACK command with an

invalid handle the standard says it transitions into the arbitrate state but it doesn’t mention what

would be the new value of the slot counter. In this work, when a tag in the Reply state receives

an ACK command with an invalid handle, it transitions into an intermediate state (specified with

a star (*)). When there is no input, its slot counter will be checked; if it is nonzero, it will go to

Arbitrate and if it is zero it goes to the Reply state.

If a tag is in the Arbitrate or Reply states and receives a Query command, the new session

would be what the Query command says and the tag will not change its inventory flag. If the tag

is in the Acknowledge, Secured or Open state, and receives a Query command the new session is

what the Query says and if it is the same as the current session, the tag changes its inventory flag

(from A to B or vice versa):

 A tag in the Reply state with inventory flag set to A and session S0 receives a

Query command with session S0; then the new state would be an intermediate state with flag A

and session S0

 A tag in the Reply state with inventory flag set to A and session S1 receives a

Query command with session S0; then the new state would be an intermediate state with flag A

and session S0

 37

 A tag in the Reply state with inventory flag set to A and session S1 receives a

Query command with session S1; then the new state would be an intermediate state with flag A

and session S1

 A tag in the Acknowledged state with inventory flag set to A and session S0

receives a Query command with session S0; then the new state would be an intermediate state

with flag B and session S0

 A tag in the Acknowledged state with inventory flag set to A and session S1

receives a Query command with session S0; then the new state would be an intermediate state

with flag A and session S0

 A tag in the Acknowledged state with inventory flag set to A and session S0

receives a Query command with session S1; then the new state would be an intermediate state

with flag A and session S1

 A tag in the Acknowledged state with inventory flag set to A and session S1

receives a Query command with session S1; then the new state would be an intermediate state

with flag B and session S1

In Appendix B4 of the Standard (EPCglobal Inc., 2008) it is stated that if the tag is in the

Acknowledge state and receives a Query Adjust command it should toggle its inventory flag and

transition into the Ready state. However, on page 50 of the same standard it is stated that “If a

tag receives a Query Adjust whose session number is different from the session number in the

Query that initiated the round it shall ignore the command.” This is assumed to override the

behavior described in Appendix B4. In other words only if the session number of the Query

Adjust command matches the current session of the tag will the tag react and transition into the

Ready state.

 38

4.0 RESULTS

4.1 TRANSITION TABLE

Below is a snapshot of the filled transition table. As explained before, each row is also called a

node and considers a unique situation of the tag’s status bits. Each column corresponds to inputs

from the state transition machine which is basically playing the role of a reader and exposes the

tag to different scenarios that may occur for a tag during a singulation procedure. The numbers

in the entries with a pink background are the future states that the tag will transition to in each

scenario.

 39

Figure 6 - Filled state transition table

4.2 AUTOMATIC TABLE GENERATION (USING MATLAB)

Extracting the logic from the standard for all of the possible combinations of states and inputs is

a very intricate and time consuming process; as explained in the previous sections there is a good

deal of ambiguity in the current standard that might be interpreted differently by different

readers. Therefore several reasonable assumptions have been made; some of these are listed in

Section 3.5.

 40

There are several reasons for automating the process of filling the table:

1. Scale of the table – time consuming

2. Human errors when dealing with a large number of states

3. Documenting the extracted logic

4. Validation purposes

5. Modification purposes

6. Flexibility with respect to possible changes in the standard

7. Repeatability

Brief description of the simulation procedure:

 All of the code is written in MATLAB. There is a main file which accepts the current

state and received command as inputs, and returns the future state as output. There is another

function that receives a state, locates that state in the transition table and returns the associated

row number.

Another file consists mainly of two loops that go through the entire set of rows and also

the set of commands, and for each combination, uses the two other functions described above to

generate the appropriate future state for that specific combination.

Using these three main functions and a few other functions the table described in the

previous section was developed. In case any changes should happen to any command or row, or

in case new commands or states need to be added, one only needs to update the list of columns or

rows that are subject to change and rerun the program to generate the updated table.

The main function, essentially the brain of the MATLAB simulation, is the transition

function. It basically encompasses the rules behind the transition of a tag through different states

 41

based on the EPCglobal RFID Protocols for UHF Class 1 Gen 2 passive tags. Inputting a

specific state and a specific command, this function will give the future state the tags must transit

into as its output. The logic behind state transitions, which are extracted from EPCglobal

standard version 1.0.9, is saved in this function for all of the possible cases. All of the possible

combinations of the states and commands are enumerated via other functions of the simulation

package, and appropriate changes in the status bits of the tag are implemented and the new state

that the tags will transit into are identified.

Given a list of possible states and possible commands, this simulation package generates

the transition table, which consists of states as rows and commands as columns and the element

(i,j) of the table contains the future state the tags will transit into when it’s currently in state i and

receives command j.

Since all of the logic is incorporated into the transition function, whenever a modification

of the standard happens, or some rules change in the standard, the transition can easily be

modified and updated by only modifying the transition function. Modification of the transition

function is easy since it basically comprises all of the possible combinations of rows and

columns. For example, if the standard were to add some commands, or change some parameters

of the commands, extra lines should be added to the transition function to take care of the extra

columns that are added. Rules for the transition from all of the states where only these

commands are received must be inserted, and the results of these new combinations must be

added to the table.

 42

4.3 GRAPHICAL USER INTERFACE (GUI WITH MATLAB)

A graphical user interface is also created for use with this simulation package. This is

independent from the state transition machine, and is basically a user-friendly interface for

verification purposes. This interface has access to other functions, including the transition

function. There are basically three main sections in the interface (see Figure 7). In the top panel

to the right, the user enters the type of the command and other parameters specific to that type of

command. In the middle panel, the user enters the parameters of each state and each unique

combination of these parameters corresponds to one row of the transition table or equivalently, to

one state of the state space of our Markovian transition model. In the third section, which is the

bottom panel, the user can verify the receiving command and the current state that was entered in

the previous sections. If they are different from what was expected, the parameters can be

reentered. Once the user verifies the state and the commands the user can click on “Do the

transition” and see the future state in front of the “Next State” field in the same section. In some

cases where the slot counter values of the tags are chosen randomly by the RN16 generator, the

user will be asked to choose either zero or non-zero values (represented by the number 1) for the

slot counter. The reasoning behind this is related to the approach taken to resolve the problem

associated with the probabilistic nature of how the slot counter value is selected. As stated

before, other than the command received from the reader, there are two other inputs (or columns

in the context of the transition table) that need to be incorporated into the table in order to

maintain the Markovian properties of these transitions and also to avoid the table becoming

excessively large. These two columns are basically the slot counter being either zero or non-

zero.

 43

Figure 7 - Snapshot of the GUI

 44

4.4 CONCLUSION AND FUTURE WORK

In summary, a simple simulator for the behavior of a tag has been built and used to obtain a

complete transition table representing the tag as a state machine. Each row of this table

represents a node
2
 of the state transition diagram while each column represents a commands

received by a tag which would trigger one of the possible transitions. The entry in each cell of

the table is the destination node of the corresponding transition. Using this table one can

determine the correct behavior of a tag in response to any sequence of commands, along with the

final state.

As stated in Section 2.0 , the overall goal is to create a standard conformity test for tags,

and more specifically, to design a sequence of commands which can be used by a reader to test

the response of a tag. The first, and perhaps the most important, step in this process is the

creation of the transition table herein as a reference for the machines involved (for example, the

reader can compare a tag’s response to the correct response from the table). A GUI was created

as a user-friendly visual aid for the designer of such a system.

The next step would be to convert the table to a machine readable format such as the

finite transition table format in Figure 8. Then an optimal algorithm must be designed for the

reader that is being used to test tag conformity. This algorithm will transmit to the tag being

tested a series of commands designed to start the tag from a specific state and cycle it through a

series of states, all the while monitoring its behavior for conformity. It will do so using the

fewest number of commands possible. Whether or not this cycle contains all possible states (and

if not, what states are omitted) will depend on the particular application. For example, an

2
 An individual node represents a combination of states as defined in the standard, with some other internal tag

parameters.

 45

algorithm might be designed to test the most common states, while another might focus on

getting from state A to state B in the fewest number of steps.

Figure 8 - Finite transition table

Of course, another future task is maintaining the accuracy of this table. The code - and as a result

- the structure of the table are directly dependent on many relatively small details from the

standard. In order to keep the code and table relevant, any updates, clarifications or

modifications of the standard must be reflected in the code and a new table must be generated.

Therefore, the code is structured so that detailed, individual modifications are simple.

1 2 A B C D E F G H I J K

State

R1 R1 R1 I1 I2

R1* R1 R1 R1* R1* R1* R1* R1*

R2 R2 R2 I1 I2

R2* R2 R2 R2* R2* R2* R2*

R3 R3 R3 I3 I4

R3* R3 R3 R3* R3* R3* R3* R3*

R4 R4 R4 I3 I4

R4* R4 R4 R4* R4* R4* R4*

I1 Rep1 A1 I1 I1 I1 I1

I2 Rep2 A2 I2 I2 I2

I3 Rep3 A3 I3 I3 I3 I3

I4 Rep4 A4 I4 I4 I4

Rep1 Rep1 I1 I2 R1* R1* R1* A1* I1 C1* A1* I1

Rep2 Rep2 I1 I2 R2* R2* R2* I2 C2* A2* I2

Rep3 Rep3 R3* R3* I3 I4 R3* A3* I3 C3* A3* I3

Rep4 Rep4 R4* R4* I3 I4 R4* I4 C4* A4* I4

A1 A1 I1 I2 R1* R1* R1* I1 I1 A1*

A1* A1* A1* A1*

A2 A2 I1 I2 R2* R2* R2* I2 A2*

A2* A2* A2*

A3 A3 R3* R3* I3 I4 R3* I3 I3 A3*

A3* A3* A3* A3*
A4 A4 R4* R4* I3 I4 R4* I4 A4*

A4* A4* A4*

C1 C1 C1 R3* I2 I3 R2* R3* R3* R3* C1* A1* A1*
C1* C1 C1 C1*

C2 C2 C2 I1 R4* R1* I4 R1* R4* C2* A2* A2*
C2* C2 C2 C2*

C3 C3 C3 I1 R4* R1* I4 R1* R1* R1* C3* A3* A3*
C3* C3 C3 C3*

C4 C4 C4 R3* I2 I3 R2* R3* R2* C4* A4* A4*

C4* C4 C4 C4*

 46

APPENDIX A

MATLAB CODE OF THE TABLE GENERATION FUNCTION

The following code uses the transition function form Appendix B to generate the table.

%load states
global states

for i=1:449
 i
 for j=1:141
 [future_state , signal, action] = transition(states(i) , cmds(j));
 future_states(i,j) =future_state;
 signals(i,j) = cellstr(signal);
 actions(i,j) = cellstr(action) ;
 index_of_future_state(i,j) = locate_state(future_state);
 end
 save table future_states signals actions index_of_future_state
end

 47

APPENDIX B

MATLAB CODE OF THE TRANSITION FUNCTION

This code receives a state and a command as input and returns the signal that the tag backscatters

and the future state the tag transitions to.

function [future_state , signal, action]= transition(state,cmd)

% state is a structure with these fields:
% state=
% state:

{'Ready','Intermediate','Reply','arbitrate','Acknowledged','Open','Secured','

Killed', 'invalid'}
% sl_flag: {'SL','~SL'}
% inv_flag: {'A','B'}
% session: {'S0','S1', 'S2', 'S3'}
% kill_pass: {'0', '1'}
% access_pass: {'0', '1'}
% ** slot_counter: {0:2^16}
% ** Q: {1:15

% cmd is a structure with these fields:
% cmd=
% type: {'Select' , 'Query' , 'QueryRep' , 'QueryAdjust' , 'Ack' ,

'NAK' , 'Req_RN' , 'Read', 'Write' , 'Kill' , 'Lock', 'Access' , 'BlockWrite'

, 'BlockErase' , 'No_Input', 'invalid'}
% session: {'S0','S1', 'S2', 'S3'} % active only for 'Query',

'QueryRep', 'QueryAdjust'
% sl_flag: {'all' , 'SL' , '~SL' } % active only for 'Query'
% inv_flag: {'A','B'} % active only for 'Query'
% ** Q: {1:15} % active only for 'Query'
% ** UpDn: {'Up','Down','Same'} % active only for

'QueryAdjust'

 48

% handle: {'valid', 'invalid'} % active for 'ACK', 'Req_RN'

, 'Read', 'Write' , 'Kill' , 'Lock', 'Access' , 'BlockWrite' , 'BlockErase'
% memory_access: {'valid', 'invalid'} % active for 'Read', 'Write'

, 'Lock', 'BlockWrite' , 'BlockErase'
% slot_counter: {'0' , '~0'} % active only for 'No_Input'
% access_pass: {'valid', 'invalid'} % active only for 'Access'
% kill_pass: {'valid', 'invalid'} % active only for 'Kill'
% lock_payload: {'valid', 'invalid'} % active only for 'Lock'
% ** these parameters don't play role in state transitions and they'll be

used only if the "tracking tag's slot counter" option has been enabled to

keep track of the tag's slot counter random values for demonstration

purposes.

future_state = state;
signal='No signal';
action='No transition';

Killed_state =

struct('state','Killed','sl_flag','','inv_flag','','session','','kill_pass','

','access_pass','');

switch state.state

 case { 'Ready' , 'ready'}
 switch cmd.type
 case { 'Select' , 'select'}
 state.state= 'Ready';
 switch cmd.action
 case '000'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is deasserted';
 end
 end
 case '001'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';

 49

 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '010'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is deasserted';
 end
 end
 case '011'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 if strcmpi(future_state.inv_flag,'A') % invert

inventory flag
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 action = 'Transition to Ready and Invert

Invetory flag';
 elseif strcmpi(cmd.target,'SL')

%negate sl flag
 if strcmpi(future_state.sl_flag,'SL')
 future_state.sl_flag = '~SL';
 else
 future_state.sl_flag = 'SL';
 end
 action = 'Transition to Ready and negate Select

flag';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '100'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is desserted';
 end

 50

 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 end
 case '101'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is desserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '110'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 end
 case '111'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 if strcmpi(future_state.inv_flag,'A') % invert

inventory flag
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 action = 'Transition to Ready and Invert

Invetory flag';
 elseif strcmpi(cmd.target,'SL')

%negate sl flag
 if strcmpi(future_state.sl_flag,'SL')
 future_state.sl_flag = '~SL';
 else

 51

 future_state.sl_flag = 'SL';
 end
 action = 'Transition to Ready and negate Select

flag';
 end
 end
 end
 case { 'Query' , 'query'}
 if strcmpi(future_state.inv_flag,cmd.inv_flag) && (

strcmpi(future_state.sl_flag,cmd.sl_flag) || strcmpi(cmd.sl_flag ,'all'))
 future_state.state='Intermediate';
 future_state.session = cmd.session;
 action='Transition is done';
 end
 case { 'No_Input' , 'No_input' , 'no_input'}
 end

 case { 'Intermediate' , 'intermediate'} % When there is No_Input

based on the value of tag's slotcounter it transits either to 'Reply' or

"Arbitrate'
 switch cmd.type
 case { 'No_Input' , 'No_input' , 'no_input'}
 if cmd.slot_counter == '0'
 future_state.state='Reply';
 signal = 'Backscatter new RN16'
 action='Transition is done' ;
 else
 future_state.state='Arbitrate';
 action='Transition is done' ;
 end
 end

 case { 'Reply' , 'reply'}
 switch cmd.type
 case { 'Select' , 'select'}
 future_state.state= 'Ready';
 switch cmd.action
 case '000'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';

 52

 action = 'Transition to Ready and Select flag

is deasserted';
 end
 end
 case '001'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '010'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is deasserted';
 end
 end
 case '011'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 if strcmpi(future_state.inv_flag,'A') % invert

inventory flag
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 action = 'Transition to Ready and Invert

Invetory flag';
 elseif strcmpi(cmd.target,'SL')

%negate sl flag
 if strcmpi(future_state.sl_flag,'SL')
 future_state.sl_flag = '~SL';
 else
 future_state.sl_flag = 'SL';
 end
 action = 'Transition to Ready and negate Select

flag';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '100'

 53

 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is desserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 end
 case '101'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is desserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '110'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 end
 case '111'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 if strcmpi(future_state.inv_flag,'A') % invert

inventory flag
 future_state.inv_flag = 'B';

 54

 else
 future_state.inv_flag = 'A';
 end
 action = 'Transition to Ready and Invert

Invetory flag';
 elseif strcmpi(cmd.target,'SL')

%negate sl flag
 if strcmpi(future_state.sl_flag,'SL')
 future_state.sl_flag = '~SL';
 else
 future_state.sl_flag = 'SL';
 end
 action = 'Transition to Ready and negate Select

flag';
 end
 end
 end
 case { 'Query' , 'query'}
 if strcmpi(future_state.inv_flag,cmd.inv_flag) && (

strcmpi(future_state.sl_flag,cmd.sl_flag) || strcmpi(cmd.sl_flag ,'all'))
 future_state.state='Intermediate';
 future_state.session = cmd.session;
 action='Transition is done' ;
 else
 future_state.state='Ready';
 action='Transition is done' ;
 end
 case { 'QueryRep' , 'queryRep', 'queryrep'} % slot counter

changes from 0000 to 7FFF and tranists into Arbitrate
 if strcmpi(future_state.session,cmd.session)
 future_state.state='Arbitrate';
 signal= 'slot counter has been rolled over';
 action='Transition is done' ;
 end
 case { 'QueryAdjust' , 'queryAdjust', 'queryadjust'} %if the new

session matches the prior one, tag transits into Intermediate future_state.
 if strcmpi(future_state.session,cmd.session)
 future_state.state='Intermediate';
 action='Transition is done' ;
 end
 case { 'ACK' , 'Ack', 'ack'} % if ACK command has a valid

handle tag backscatters its EPC and transits into Acknowledged state

otherwise transits into Arbitrate.
 if strcmpi(cmd.handle,'valid')
 future_state.state='Acknowledged';
 signal='Backscatter {Pc,EPC, CRC-16} or {00000, truncated

EPC, CRC-16}';
 action='Transition is done' ;
 elseif strcmpi(cmd.handle,'invalid')
 future_state.state='Arbitrate';
 action='Transition is done' ;
 end
 case { 'Invalid' , 'invalid' }
 future_state.state='Reply';
 case { 'No_Input' , 'No_input' , 'no_input'}
 otherwise
 future_state.state='Arbitrate';

 55

 action='Transition is done' ;
 end

 case { 'Arbitrate' , 'arbitrate'}
 switch cmd.type
 case { 'Select' , 'select'}
 future_state.state= 'Ready';
 switch cmd.action
 case '000'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is deasserted';
 end
 end
 case '001'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '010'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is deasserted';
 end

 56

 end
 case '011'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 if strcmpi(future_state.inv_flag,'A') % invert

inventory flag
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 action = 'Transition to Ready and Invert

Invetory flag';
 elseif strcmpi(cmd.target,'SL')

%negate sl flag
 if strcmpi(future_state.sl_flag,'SL')
 future_state.sl_flag = '~SL';
 else
 future_state.sl_flag = 'SL';
 end
 action = 'Transition to Ready and negate Select

flag';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '100'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is desserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 end
 case '101'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is desserted';

 57

 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '110'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 end
 case '111'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 if strcmpi(future_state.inv_flag,'A') % invert

inventory flag
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 action = 'Transition to Ready and Invert

Invetory flag';
 elseif strcmpi(cmd.target,'SL')

%negate sl flag
 if strcmpi(future_state.sl_flag,'SL')
 future_state.sl_flag = '~SL';
 else
 future_state.sl_flag = 'SL';
 end
 action = 'Transition to Ready and negate Select

flag';
 end
 end
 end
 case { 'Query' , 'query'} %if inventory and sl_flag matches

transit to Intermediate state and the new session would be whatever command

says otherwise transit into Ready.
 if strcmpi(future_state.inv_flag,cmd.inv_flag) && (

strcmpi(future_state.sl_flag,cmd.sl_flag) || strcmpi(cmd.sl_flag ,'all'))
 future_state.state='Intermediate';
 future_state.session = cmd.session;
 action='Transition is done' ;
 else
 future_state.state='Ready';
 action='Transition is done' ;
 end
 case { 'QueryRep' , 'queryRep', 'queryrep'} %if sessions matches

transmit into Intermediate state where the value of slot counter will be

 58

determined and the final transition will happen appropriately (trasit to

Reply if the new slotcounter is 0 and into Arbitrate in case of nonzero

slotcounter)
 if strcmpi(future_state.session,cmd.session)
 future_state.state='Intermediate';
 signal = 'slot counter is decremented by one';
 action='Transition is done' ;
 end
 case { 'QueryAdjust' , 'queryAdjust', 'queryadjust'}
 if strcmpi(future_state.session,cmd.session)
 future_state.state='Intermediate';
 action='Transition is done' ;
 end
 case { 'No_Input' , 'No_input' , 'no_input'}
 otherwise
 future_state.state='Arbitrate';
 end

 case { 'Acknowledged' , 'acknowledged'}
 switch cmd.type
 case { 'Select' , 'select'}
 future_state.state= 'Ready';
 switch cmd.action
 case '000'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is deasserted';
 end
 end
 case '001'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 elseif strcmpi(cmd.match,'Not Match')

 59

 action = 'Transition to Ready and do nothing';
 end
 case '010'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is deasserted';
 end
 end
 case '011'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 if strcmpi(future_state.inv_flag,'A') % invert

inventory flag
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 action = 'Transition to Ready and Invert

Invetory flag';
 elseif strcmpi(cmd.target,'SL')

%negate sl flag
 if strcmpi(future_state.sl_flag,'SL')
 future_state.sl_flag = '~SL';
 else
 future_state.sl_flag = 'SL';
 end
 action = 'Transition to Ready and negate Select

flag';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '100'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is desserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')

 60

 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 end
 case '101'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is desserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '110'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 end
 case '111'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 if strcmpi(future_state.inv_flag,'A') % invert

inventory flag
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 action = 'Transition to Ready and Invert

Invetory flag';
 elseif strcmpi(cmd.target,'SL')

%negate sl flag
 if strcmpi(future_state.sl_flag,'SL')
 future_state.sl_flag = '~SL';
 else
 future_state.sl_flag = 'SL';
 end
 action = 'Transition to Ready and negate Select

flag';
 end
 end

 61

 end
 case { 'Query' , 'query'} % if new sessions matches invert

inv_flag then check inventory and sl_flags.
 if strcmpi(future_state.session,cmd.session) % invert Falg if

and only if sessions mathches
 if strcmpi(future_state.inv_flag,'A')
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 end
 if strcmpi(future_state.inv_flag,cmd.inv_flag) && (

strcmpi(future_state.sl_flag,cmd.sl_flag) || strcmpi(cmd.sl_flag ,'all'))
 future_state.state='Intermediate';
 future_state.session = cmd.session;
 action='Transition is done' ;
 else
 future_state.state='Ready';
 action='Transition is done' ;
 end
 case { 'QueryRep' , 'queryRep', 'queryrep', 'QueryAdjust' ,

'queryAdjust', 'queryadjust'} % if new session matches invert the

inv_flag and transit into Ready
 if strcmpi(future_state.session,cmd.session)
 if strcmpi(future_state.inv_flag,'A') % invert inventory

flag
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 future_state.state='Ready'; % transition into Ready
 action='Transition is done' ;
 end
 case { 'ACK' , 'Ack', 'ack'} % if ACK command has a valid handle

send EPC otherwise transit into Arbitrate
 if strcmpi(cmd.handle,'valid')
 future_state.state='Acknowledged';
 signal='Backscatter {Pc,EPC, CRC-16} or {00000, truncated

EPC, CRC-16}';
 elseif strcmpi(cmd.handle,'invalid')
 future_state.state='Arbitrate';
 action='Transition is done' ;
 end
 case { 'Req_RN' , 'Req_rn', 'req_rn'} % if command has a valid

handle and tag's access_pass is 0, transit into Secured and if access_pass is

not zero transit into Open. In case of invalid handle ignore the command.
 if strcmpi(cmd.handle,'valid')
 if strcmpi(future_state.access_pass,'1')
 future_state.state='Open';
 signal='Backscatter handle';
 action='Transition is done' ;
 else
 future_state.state='Secured';
 signal='Backscatter handle' ;
 action='Transition is done' ;
 end
 end

 62

 case { 'Invalid' , 'invalid' }
 future_state.state='Acknowledged';
 case { 'No_Input' , 'No_input' , 'no_input'}
 otherwise % in cases of 'NAK', 'Read', 'Write', 'Kill' , 'Lock',

'Access', 'BlockWrite' , 'BlockErase'
 future_state.state='Arbitrate';
 action='Transition is done' ;
 end

 case { 'Open' , 'open'}
 switch cmd.type
 case { 'Select' , 'select'}
 future_state.state= 'Ready';
 switch cmd.action
 case '000'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is deasserted';
 end
 end
 case '001'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '010'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';

 63

 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is deasserted';
 end
 end
 case '011'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 if strcmpi(future_state.inv_flag,'A') % invert

inventory flag
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 action = 'Transition to Ready and Invert

Invetory flag';
 elseif strcmpi(cmd.target,'SL')

%negate sl flag
 if strcmpi(future_state.sl_flag,'SL')
 future_state.sl_flag = '~SL';
 else
 future_state.sl_flag = 'SL';
 end
 action = 'Transition to Ready and negate Select

flag';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '100'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is desserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 end
 case '101'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)

 64

 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is desserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '110'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 end
 case '111'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 if strcmpi(future_state.inv_flag,'A') % invert

inventory flag
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 action = 'Transition to Ready and Invert

Invetory flag';
 elseif strcmpi(cmd.target,'SL')

%negate sl flag
 if strcmpi(future_state.sl_flag,'SL')
 future_state.sl_flag = '~SL';
 else
 future_state.sl_flag = 'SL';
 end
 action = 'Transition to Ready and negate Select

flag';
 end
 end
 end
 case { 'Query' , 'query'} % if new sessions matches invert

inv_flag then check inventory and sl_flags.
 if strcmpi(future_state.session,cmd.session) % invert Falg if

and only if sessions mathches
 if strcmpi(future_state.inv_flag,'A')
 future_state.inv_flag = 'B';
 else

 65

 future_state.inv_flag = 'A';
 end
 end
 if strcmpi(future_state.inv_flag,cmd.inv_flag) && (

strcmpi(future_state.sl_flag,cmd.sl_flag) || strcmpi(cmd.sl_flag ,'all'))
 future_state.state='Intermediate';
 future_state.session = cmd.session;
 action='Transition is done' ;
 else
 future_state.state='Ready';
 action='Transition is done' ;
 end
 case { 'QueryRep' , 'queryRep', 'queryrep', 'QueryAdjust' ,

'queryAdjust', 'queryadjust'} % if new session matches invert the

inv_flag and transit into Ready
 if strcmpi(future_state.session,cmd.session)
 if strcmpi(future_state.inv_flag,'A') % invert inventory

flag
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 future_state.state='Ready'; % transition into Ready
 action='Transition is done' ;
 end
 case { 'ACK' , 'Ack', 'ack'} % if ACK command has a valid handle

send EPC otherwise transit into Arbitrate
 if strcmpi(cmd.handle,'valid')
 future_state.state='Open';
 signal='Backscatter {PC,EPC, CRC-16} or {00000, truncated

EPC, CRC-16}';
 elseif strcmpi(cmd.handle,'invalid')
 future_state.state='Arbitrate';
 action='Transition is done' ;
 end
 case { 'NAK' , 'Nak', 'nak'}
 future_state.state='Arbitrate';
 action='Transition is done' ;
 case { 'Req_RN' , 'Req_rn', 'req_rn'}
 if strcmpi(cmd.handle,'valid')
 signal='Backscatter new RN16';
 end
 case { 'Read' , 'read', 'Write' , 'write', 'BlockWrite' ,

'Blockwrite' , 'blockwrite', 'BlockErase' , 'Blockerase' , 'blockerase'}
 if strcmpi(cmd.handle,'valid')
 if strcmpi(cmd.memory_access,'valid')
 signal='Backscatter data and handle';
 else
 signal='Backscatter error code';
 end
 end
 case { 'Kill' , 'kill' }
 if strcmpi(cmd.handle,'valid')
 if strcmpi(future_state.kill_pass,'0')
 signal='Backscatter error code';
 elseif strcmpi(cmd.kill_pass,'valid')
 signal='Backscatter handle';

 66

 future_state=Killed_state;
 action='Transition is done' ;
 else
 future_state.state='Arbitrate';
 action='Transition is done' ;
 end
 end

 case { 'Access' , 'access' }
 if strcmpi(cmd.handle,'valid')
 if strcmpi(cmd.access_pass,'valid')
 signal='Backscatter handle';
 future_state.state='Secured';
 action='Transition is done' ;
 else
 future_state.state='Arbitrate';
 action='Transition is done' ;
 end
 end
 case { 'No_Input' , 'No_input' , 'no_input'}
 case { 'Lock' , 'lock' }
 case { 'Invalid' , 'invalid' } % this part should be modified

based on the table B.5 of standard.
 end

 case { 'Secured' , 'secured'}
 switch cmd.type
 case { 'Select' , 'select'}
 future_state.state= 'Ready';
 switch cmd.action
 case '000'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is deasserted';
 end
 end
 case '001'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';

 67

 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '010'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is deasserted';
 end
 end
 case '011'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 if strcmpi(future_state.inv_flag,'A') % invert

inventory flag
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 action = 'Transition to Ready and Invert

Invetory flag';
 elseif strcmpi(cmd.target,'SL')

%negate sl flag
 if strcmpi(future_state.sl_flag,'SL')
 future_state.sl_flag = '~SL';
 else
 future_state.sl_flag = 'SL';
 end
 action = 'Transition to Ready and negate Select

flag';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '100'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';

 68

 action = 'Transition to Ready and Select flag

is desserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 end
 case '101'
 if strcmpi(cmd.match,'Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'B';
 action = 'Transition to Ready and Invetory flag

is set to B';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = '~SL';
 action = 'Transition to Ready and Select flag

is desserted';
 end
 elseif strcmpi(cmd.match,'Not Match')
 action = 'Transition to Ready and do nothing';
 end
 case '110'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 future_state.inv_flag = 'A';
 action = 'Transition to Ready and Invetory flag

is set to A';
 elseif strcmpi(cmd.target,'SL')
 future_state.sl_flag = 'SL';
 action = 'Transition to Ready and Select flag

is asserted';
 end
 end
 case '111'
 if strcmpi(cmd.match,'Match')
 action = 'Transition to Ready and do nothing';
 elseif strcmpi(cmd.match,'Not Match')
 if strcmpi(cmd.target,future_state.session)
 if strcmpi(future_state.inv_flag,'A') % invert

inventory flag
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 action = 'Transition to Ready and Invert

Invetory flag';
 elseif strcmpi(cmd.target,'SL')

%negate sl flag

 69

 if strcmpi(future_state.sl_flag,'SL')
 future_state.sl_flag = '~SL';
 else
 future_state.sl_flag = 'SL';
 end
 action = 'Transition to Ready and negate Select

flag';
 end
 end
 end
 case { 'Query' , 'query'} % if new sessions matches invert

inv_flag then check inventory and sl_flags.
 if strcmpi(future_state.session,cmd.session) % invert Falg if

and only if sessions mathches
 if strcmpi(future_state.inv_flag,'A')
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 end
 if strcmpi(future_state.inv_flag,cmd.inv_flag) && (

strcmpi(future_state.sl_flag,cmd.sl_flag) || strcmpi(cmd.sl_flag ,'all'))
 future_state.state='Intermediate';
 future_state.session = cmd.session;
 action='Transition is done' ;
 else
 future_state.state='Ready';
 action='Transition is done' ;
 end
 case { 'QueryRep' , 'queryRep', 'queryrep', 'QueryAdjust' ,

'queryAdjust', 'queryadjust'} % if new session matches invert the

inv_flag and transit into Ready
 if strcmpi(future_state.session,cmd.session)
 if strcmpi(future_state.inv_flag,'A') % invert inventory

flag
 future_state.inv_flag = 'B';
 else
 future_state.inv_flag = 'A';
 end
 future_state.state='Ready'; % transition into Ready
 action='Transition is done' ;
 end
 case { 'ACK' , 'Ack', 'ack'} % if ACK command has a valid handle

send EPC otherwise transit into Arbitrate
 if strcmpi(cmd.handle,'valid')
 future_state.state='Secured';
 signal='Backscatter {PC,EPC, CRC-16} or {00000, truncated

EPC, CRC-16}';
 elseif strcmpi(cmd.handle,'invalid')
 future_state.state='Arbitrate';
 action='Transition is done' ;
 end
 case { 'NAK' , 'Nak', 'nak'}
 future_state.state='Arbitrate';
 action='Transition is done' ;
 case { 'Req_RN' , 'Req_rn', 'req_rn'}
 if strcmpi(cmd.handle,'valid')

 70

 signal='Backscatter new RN16';
 end
 case { 'Read' , 'read', 'Write' , 'write', 'BlockWrite' ,

'Blockwrite' , 'blockwrite', 'BlockErase' , 'Blockerase' , 'blockerase'}
 if strcmpi(cmd.handle,'valid')
 if strcmpi(cmd.memory_access,'valid')
 signal='Backscatter data and handle';
 else
 signal='Backscatter error code';
 end
 end
 case { 'Kill' , 'kill' }
 if strcmpi(cmd.handle,'valid')
 if strcmpi(future_state.kill_pass,'0')
 signal='Backscatter error code';
 elseif strcmpi(cmd.kill_pass,'valid')
 signal='Backscatter handle';
 future_state=Killed_state;
 action='Transition is done' ;
 else
 future_state.state='Arbitrate';
 action='Transition is done' ;
 end
 end
 case { 'Access' , 'access' }
 if strcmpi(cmd.handle,'valid')
 if strcmpi(cmd.access_pass,'valid')
 signal='Backscatter handle';
 else
 future_state.state='Arbitrate';
 action='Transition is done' ;
 end
 end
 case { 'Lock' , 'lock' }
 if strcmpi(cmd.handle,'valid')
 if strcmpi(cmd.lock_payload,'valid')
 signal='Backscatter handle';
 else
 signal='Backscatter error code';
 end
 end
 case { 'No_Input' , 'No_input' , 'no_input'}
 case { 'Invalid' , 'invalid' } % this part should be modified

based on the table B.5 of standard.
 end

 case { 'Killed' , 'killed'}
 future_state=Killed_state;

end

 71

BIBLIOGRAPHY

Alien Technology. (2005). EPCglobal Class 1 Gen 2 RFID Specification.

EPCglobal Inc. (2008). EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF

RFID Protocol for Communications at 860 MHz - 960 MHz, version 1.2.0.

Puterman, M. L. (2005). Markov Decision Processes: Descrete Stochastic Dynamic

programming. Hoboken, New Jersey: John Wiley & Sons, Inc.

Tanenbaum, A. S. (2003). Computer Networks. Upper Saddle River, NJ: Prentice Hall.

	TITLE
	COMMITTEE MEMBERSHIP
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1.0 INTRODUCTION
	1.1 EPCGLOBAL CLASS1 GEN2
	1.2 TERMS AND DEFINITION

	2.0 PROBLEM STATEMENT
	3.0 METHODOLOGY
	3.1 MARKOVIAN MODEL FOR TAG TRANSITIONS
	3.2 ROWS (NODES)
	3.3 COLUMNS (INPUTS)
	3.4 TRANSITION TABLE STRUCTURE
	3.5 ASSUMPTIONS

	4.0 RESULTS
	4.1 TRANSITION TABLE
	4.2 AUTOMATIC TABLE GENERATION (USING MATLAB)
	4.3 GRAPHICAL USER INTERFACE (GUI WITH MATLAB)
	4.4 CONCLUSION AND FUTURE WORK

	APPENDIX A
	APPENDIX B
	BIBLIOGRAPHY

