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ABSTRACT

ORTHONORMAL-BASIS PARTITIONING AND TIME-FREQUENCY

REPRESENTATION OF NON-STATIONARY SIGNALS

Benhur Aysin, Ph.D.

University of Pittsburgh, 2002

Spectral analysis is important in many fields, such as speech, radar and biomedicine. Many

signals encountered in these areas possess time-varying spectral characteristics. The power spectrum

indicates what frequencies exist in the signal but it does not show when those frequencies occur.

Time-frequency analysis provides this missing information. A time-frequency representation of the

signal shows the intensities of the frequencies in the signal at the times they occur, and thus reveals

if and how the frequencies of a signal are changing over time.

Time-dependent spectral analysis of beat-to-beat variations of cardiac rhythm, or heart rate

variability (HRV), represents a major challenge due to the structure of the signal. A number of

time-frequency representations have been proposed for the estimation of the time-dependent spectra.

However, time-frequency analysis of multicomponent physiological signals such as cardiac rhythm is

complicated by the presence of numerous, ill-structured frequency elements. We sought to develop a

simple method for 1) detecting changes in the structure of the HRV signal, 2) segmenting the signal

into pseudo-stationary portions, and 3) exposing characteristic patterns of the changes in the time-

frequency plane. The method, referred to as Orthonormal-Basis Partitioning and Time-Frequency

Representation (OPTR), is validated on simulated signals and HRV data. Unlike the traditional

time-frequency HRV representations, which are usually applied to short segments of signals recorded
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in controlled conditions, OPTR can be applied to long and “content-rich” ambulatory signals to

obtain the signal representation along with its time-varying spectrum. Thus, the proposed approach

extends the scope of applications of the time-frequency analysis to all types of HRV signals and to

other physiological data.

DESCRIPTORS

Discrete Evolutionary Transform Eigenvalue

Heart Rate Variability Karhunen-Loeve Expansion

Non-stationary signal Analysis Signal Reconstruction

Signal Segmentation Time-Frequency Representation
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1.0 INTRODUCTION

1.1 Motivation

Most of the signals in life such as speech, radar, biomedical and communication are non-

stationary. Standard frequency analysis techniques will not be enough to analyze those signals.

The power spectrum indicates what frequencies exist in the signal but it does not show when those

frequencies occur. Recently, there has been an interest in time-frequency representation of non-

stationary signals [1–3]∗. Time-frequency representation gives energy distribution of the signal along

the time.

Time-frequency representations of biological signals especially of heart rate variability (HRV)

signals have been of great interest recently. Beat-to-beat variations of cardiac rhythm, referred to as

the HRV, provide a noninvasive probe of the autonomic nervous system regulation, which is widely

used in cardiovascular research[4]. Analysis of these variations in the frequency domain revealed

three major periodic components in the low-frequency ( 0.04 Hz), mid-frequency ( 0.12 Hz), and

high-frequency ( 0.25 Hz) parts of the power spectrum [5]. Pharmacological tests have shown that

the high frequency component is modulated by parasympathetic branch of the autonomic nervous

system (ANS), whereas the low-frequency component is modulated by combined sympathetic and

parasympathetic effects.

Standard spectral analysis techniques require signals to be stationary which is not the case with

most of the biological signals. Processing of these signals during transition phases of experiments such

as moment of tilt or the instant of fainting, is not possible with standard techniques. Standard spectral

analysis smears the time variations of the spectral component over the entire duration. Therefore,

to overcome the stationarity and analyze the signal even during transition periods, researchers have

∗Bracketed references placed superior to the line of text refer to the bibliography.
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tried to utilize new techniques [6, 7]. All these lead to time-frequency distributions which show the

spectral components as a function of time.

A number of time-frequency representations, including the Wigner distribution [8] and the evo-

lutionary spectrum [9], have been proposed for the estimation of time-dependent spectrum of the

nonstationary signals [1]. These methods provide the tools for tracking the changes in relatively

simple signals. However, time-frequency analysis of multicomponent physiological signals as cardiac

rhythm is complicated by the presence of numerous, ill-structured frequency elements.

We sought to develop a simple method for 1) detecting changes in the structure of the HRV sig-

nal, 2) segmenting the signal into pseudo-stationary portions, and 3) exposing characteristic patterns

of the changes in the time-frequency plane. We show how an orthogonal decomposition can be used

first, for compressing the information and selecting the sections of interest and second, for tracking

time-dependent changes in the spectral energy distribution. We also obtained a representation of a

non-stationary signal to which a time-dependent spectrum can be associated. In developing a repre-

sentation for non-stationary signals, it is important to select appropriate basis to represent signal and

its time-frequency representation. The method, referred to as Orthonormal-Basis Partitioning and

Time-Frequency Representation (OPTR), was validated on simulated signals and HRV data obtained

in humans undergoing physiological tests.

1.2 Background

1.2.1 Heart Rate Variability

Heart rate variability (HRV) refers to the beat-to-beat alterations in heart rate. Under resting

conditions, the electrocardiogram (ECG) of healthy individuals exhibits periodic variation in R-R

intervals. Heart rate changes in response to physiological manipulations or circumstances has been

known since man has been able to express himself. However, the ability to study these relationships

has been limited by our ability to quantify physiological data. The study of heart rate changes in
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response to psychological demands is the focus of research. Additional information can be obtained

by describing the variability of heart rate. The measurements of HRV provides important information

regarding both metabolic and central nervous system activity.

Interest in monitoring cardiac variables has changed historically. Early studies focused on the

use of these variables as indicator of viability. Cessation of heart beat has been used in clinical defini-

tions of death. Furthermore, medical evaluation of health have always emphasized the quality of the

rhythm of the heart beat. Recent studies have focused on the neural control of the cardiac responses,

how the neural system interacts with cardiac responses and how these variables are influenced by

mental states, physiological stress, health status and drugs. Clinical monitoring of heart rate and

respiration variables have been used in critical settings to evaluate both health status and response

to various medical treatments [10]. The clinical relevance of HRV was first appreciated in 1965 when

Hon and Lee [11] noted that fetal distress was preceded by alterations in interbeat intervals before

any important change occurred in heart rate itself [12]. More than two decades ago, Sayers [13] and

others[14–16] focused attention on the existence of physiological rhythms imbedded in the beat-to-beat

heart rate signal. In 1981, Akselrod et al [4] introduced power spectral analysis of heart rate variations

to quantitatively evaluate beat-to-beat cardiovascular control. Frequency domain analysis helped to

understand autonomic nervous system activity on RR interval fluctuations [17]. The clinical impor-

tance of HRV became clear when it was shown that HRV was a strong and independent predictor

of mortality. With the availability of current technology such as 24 hour digital multichannel ECG

recorders, HRV has the potential to provide additional insight into physiological and pathological

conditions.

1.2.2 Neural Control of the Heart

Since heart rate is neurally mediated, it has been proposed that the monitoring of heart rate

will provide a good indicator of central nervous system status. Many studies have suggested that the
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neurally mediated oscillations in the heart rate pattern reflect a variety of mental states such as stress,

emotion, alertness and attention. Therefore, the measurement of heart rate patterns may provide a

tool to understand brain activities and may be used as an index of general central nervous system

status. Autonomic response systems are regulated by complex feedback. Feedback loops produce a

rhythmic pattern characterized by increase and decrease in neural efferent output to organs such as

the heart. In the case of the heart, there are numerous feedback influences and, thus, the response is

composed of the sum of numerous rhythmic components [18]. In many physiological systems, efficient

neural control is manifested as rhythmic physiological variability. Within normal parameters, greater

amplitude of oscillation is associated with health.

Heart rate in the healthy adult is not constant. The pattern of heart rate reflects the continuous

feedback between the central nervous system and autonomic receptors. The feedback system between

the central control of autonomic processes and the heart produces phasic increase and decrease in

neural efferent output via vagus. The higher the range of increases and decreases, the healthier the

individual.

The vagal tone index is one measure of the nervous system modulation of heart rate activity

via vagus. Heart rate patterns are dependent on the status of the nervous system and quality of

the neural feedback. Therefore, measures of cardiac vagal tone provide an important window into

central control of autonomic processes. Vagal tone is reflected in the amplitude of a heart rate rhythm

associated with frequency of spontaneous breathing.

1.2.3 Quantification of Heart Rate

HRV is a complex and ambiguous process. It has had many definitions as well as quantification

methods. The beat-to-beat pattern is continuously affected by the changing neural influence from the

brainstem to the heart. Although slow shifts in heart rate may be influenced by sympathetic systems,

the rapid oscillations reflecting direct neural feedback from the respiratory system are mediated via

4



direct vagal output. Thus, procedures to quantify HRV are critical in both extracting physiological

meaningful components and in building a biopsychological model relating individual differences in

physiological activity to behavior [12, 18].

1.2.3.1 Time Domain Methods. The variations in the heart rate can be evaluated by many

methods. The simplest to perform can be the time domain measures. In these methods, either the

heart rate or the intervals between successive normal beats are determined. In a continuous ECG

record, each QRS complex is detected, and normal-to-normal (NN) intervals (all intervals between

adjacent QRS complexes) or the instantaneous heart rate is determined. Time intervals between

abnormal beats are not included. Simple time domain variables that can be calculated include the

mean NN interval, the mean heart rate, the difference between the longest and shortest NN interval,

the difference between night and day and so forth. These differences can be described as either

differences in heart or cycle length.

1.2.3.2 Statistical Methods. From a series of instantaneous heart rates or cycle intervals, espe-

cially those recorded over longer periods, such as 24 hours, more complex statistical time domain

measures can be calculated. These may be divided into two classes: (1) those derived from direct

measurements of the NN intervals or instantaneous heart rate (2) those derived from the differences

between NN intervals. These variables may be derived from analysis of the total ECG recording or

may be calculated using smaller segments of the recording period. The simplest variable to calculate

is the standard deviation of the NN intervals (SDNN). In many studies SDNN is calculated over

a 24-hour period. Other frequently used statistical variables calculated from segments of the total

monitoring period include SDANN, the standard deviation of the average NN intervals calculated

over short periods, usually 5 minutes, which is an estimate of the changes in heart rate due to cy-

cles longer than 5 minutes. The most commonly used measures derived from interval differences
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include RMSSD, the square root of the mean squared differences of successive NN intervals, NN50,

the number of interval differences of successive NN intervals greater than 50 ms.

1.2.3.3 Frequency Domain Methods. Many spectral methods for the analysis of the HRV have

been applied since the late 1960s. Power spectral density (PSD) analysis provides the basic informa-

tion of how power distributes as a function of frequency. Independent of the method used, only an

estimate of the true PSD of the signal can be obtained by proper mathematical algorithms. Methods

for calculation of PSD may be generally classified as nonparametric and parametric. In most cases,

both methods provide comparable results. The advantages of nonparametric methods are (1) the

simplicity of the algorithm used (fast Fourier transform (FFT) in most of the cases) and (2) the high

processing speed, while the advantages of parametric methods are (1) smoother spectral components

(2) easy postprocessing of the spectrum with an automatic calculation of low-and-high-frequency

power components with an easy identification of the central frequency of each component, and (3)

an accurate estimation of PSD even on a small number of samples. The basic disadvantage of para-

metric methods is the need of verification of the suitability of the chosen model and its order. These

frequency analysis techniques show what frequencies exist in the signal at a certain time but not over

a period of time.

1.3 Organization of Thesis

In Chapter 2, we discuss the Karhunen-Loeve (KL) expansion and its two important properties

which are minimum representation error and minimum entropy. The expansion is described for two

cases: 1) Global KL (GKL) expansion, 2) Local KL expansion.

In Chapter 3, we show how local and global KL expansion can be used for partitioning non-

stationary signals. Two orthogonal-basis partitioning techniques are introduced: 1) a computation-
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ally efficient low-resolution partitioning for long signals, and 2) a high resolution, computationally

intensive partitioning for short signals.

In Chapter 4, a new time-frequency representation which employs the segmentation algorithm

introduced in the Chapter 3 is described. The algorithm exposes characteristic patterns of the

changes in the time-frequency plane. It provides the signal representation, along with its time-

varying spectrum.

Application to HRV signals follows in Chapter 5. First, it is shown how GKL expansion and its

coefficients can be used for the prediction of life threatening cardiac arrhythmias, then time-frequency

representation is applied to HRV signal obtained during several physical experiments and compared

with other techniques. Conclusions is given in Chapter 6. Appendix A and Appendix B conclude the

thesis. Appendix A reviews the orthonormality of the basis functions used in orthonormal expansion

of the partitioned signal. Appendix B gives a brief explanation about why we used 90% energy

threshold for signal segmentation.
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2.0 KARHUNEN-LOEVE EXPANSION

Stationary and nonstationary random processes can be represented by general orthogonal ex-

pansions as proposed by Priestley [19]. This general orthogonal expansion representation provides

different ways to represent random processes. If the random signal is stationary, Fourier basis {ejωt}

are valid. But if the signal is nonstationary, exponential functions can no longer be used. One choice

can be At(ω)ejωt for a nonstationary signal.

The Fourier transform is the ideal method for analyzing stationary signal. It represents the

signal as linear combinations of exponentials. However actual signals are mostly nonstationary and

we need a different approach to deal with the nonstationarities. There is always the question of which

basis functions should be used. Which one represent the signal best? The answer usually is that it

depends on the signal features.

In here we will focus on representing the process with Karhunen-Loeve (KL) bases which are

completely obtained from the signal. No specification of the basis functions is needed. The KL

expansion is a well known method [20–26] which employs weighted combination of several basis func-

tions to represent a stochastic process. Basis functions of the KL expansion is signal dependent while

other orthogonal transformations use fixed basis functions. Advantage of using signal dependent

basis functions is that we can represent the process with fewer number of the basis functions. These

basis functions reflect the signal features better than any other bases. The KL expansion has been

mostly used in pattern recognition, feature extraction. [27–29]. It has two important features:

• It minimizes the mean-square error when only a finite number of basis functions are used in

the expansion,

• It minimizes the entropy function defined in terms of the averaged squared coefficients used in

the expansion, i.e., it carries more information regarding the discrimination of different classes.
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The first property is important because it guarantees that no other expansion will yield a lower

approximation error in mean square sense. The significance of the second property is that it associates

with the coefficients of the expansion a measure of minimum entropy or dispersion [20].

Although the KL expansion is the best orthogonal representation to represent the signals with

a limited number of bases functions, it has a drawback which is the computational cost. Correlation

matrix of the signal has to be estimated to obtain basis functions. The KL bases have no specific

mathematical structure that leads to ’fast’ implementations. The KL expansion in this study is

used for signal representation, signal compression and feature extraction. Another application of the

expansion is denoising of noisy signals which was explained in one of our previous study [30]. In this

chapter, we will describe the basic principles of the KL expansion.

2.1 Local Karhunen-Loeve Expansion

A nonstationary stochastic process xi(t) in an interval [a, b] can be represented as [20]

xi(t) =
∞∑

j=1

cijφij(t) (2-1)

where {cij} are uncorrelated random coefficients which can be real or complex and {φij} are a set of

orthonormal functions on [a, b], namely,

∫ b

a
φij(t)φ

∗
il(t)dt =




1 if j = l (2-2a)

0 if j �= l (2-2b)

where ∗ stands for complex conjugate. Equation (2-1) is an orthogonal expansion of the random

process x(t) in the given interval. For a stationary process, φj(t)s are exponentials and {cij}s are the

Fourier coefficients.

In general, basis functions φij(t) and the coefficients cij can be obtained as follows. The corre-

lation function of xi(t) is given by

Ri(t, s) = E {xi(t)x
∗
i (s)} (2-3)
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then by replacing Equation (2-1) into the last equation, we get

Ri(t, s) = E




∑
j

cijφij(t)
∑

l

c∗ilφ
∗
il(s)




= E




∑
j

∑
l

cijc
∗
ilφij(t)φ

∗
il(s)


 (2-4)

Since expansion coefficients are uncorrelated, i.e.,

E{cijc
∗
il} =




λi if j = l (2-5a)

0 if j �= l (2-5b)

Equation (2-4) becomes

Ri(t, s) =
∑
j

λiφij(t)φ
∗
ij(s) (2-6)

Using Equation (2-6), we have

∫ b

a
Ri(t, s)φil(s)ds =

∫ b

a

∑
j

λiφij(t)φ
∗
ij(s)φil(s)ds

=
∑
j

λiφij(t)
∫ b

a
φ∗

ij(s)φil(s)ds (2-7)

Because of Equation (2-2), the last equation reduces to

∫ b

a
Ri(t, s)φil(s)ds = |cil|2φil(t) (2-8)

Determination of cil and φil(t) requires the solution of this integral equation. From this integral

equation, we conclude that λi are the eigenvalues and φil(t) are the eigenvectors of Ri(t, s). Then,

the basis functions of the KL expansion are actually the eigenvectors of Ri(t, s).

The expansion coefficients cil are obtained as follows. By multiplying both sides of Equation

(2-1) by φ∗
il(t) we get

x(t)φ∗
il(t) =

∑
j

cijφij(t)φ
∗
il(t) (2-9)
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Taking the integral of the both sides over interval [a, b] in Equation (2-9) results in

∫ b

a
x(t)φ∗

il(t)dt =
∫ b

a

∑
j

cijφij(t)φ
∗
il(t)dt

=
∑
j

cij

∫ b

a
φij(t)φ

∗
il(t)dt (2-10)

Considering Equation (2-2), the last equation can be written as

∫ b

a
x(t)φ∗

il(t)dt = cil (2-11)

2.1.1 The Discrete Case

The discrete equivalent of the KL expansion is given by

xi(n) =
∞∑

j=1

cijφij(n) 0 < n ≤ N − 1 (2-12)

where cij are random coefficients and {φij(n}’s are orthonormal basis functions which are the eigen-

vectors of the correlation matrix R(n,m) = E{x(n)x∗(m)}. The expansion coefficients cij are given

by

cij =
N−1∑
n=0

x(n)φij(n) (2-13)

2.2 Global Karhunen-Loeve Expansion

The KL expansion is also applied to an array of functions derived from random processes [20, 27].

This is usually the case in pattern recognition applications where the functions are the observations

from different pattern classes. Chien and Fu [25] called the expansion a generalized KL expansion. We

will describe the expansion for the discrete case where the functions are vectors and call it the global

KL expansion. Although the expansion is not applied to pattern recognition problem directly, we

will use the same concept to analyze non-stationary signals. The expansion is described as follows.

Suppose we have the functions xi(t), 0 ≤ i ≤ M − 1, defined on a time interval Ti ≤ t ≤ Ti+1

(Ti+1 − Ti is the same for every i). Each function can be written as a linear combination of basis
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functions {φk(t)} as follows: [20]

xi(t) =
∞∑

k=1

cikφk(t) Ti ≤ t ≤ Ti+1 0 ≤ i ≤ M − 1 (2-14)

where {cik} are random uncorrelated coefficients and {φk(t)} are orthonormal functions. An average

autocorrelation function over all observations xi(t) is defined as [20]

R(t, s) =
M∑
i=1

piE{xi(t)x
∗
i (s)} (2-15)

where ∗ stands for complex conjugate and pi is the probability of the occurrence of xi(t). Note that

the autocorrelation function is defined over all functions xi(t). It means that we will have only one

covariance function for all the functions and therefore there will be only one set of basis functions

{φk(t)}. The term “global” emphasizes the point that a single set of basis functions is used to

represent each of the functions xi(t). These basis functions {φk(t)} are different from the ones used

in local KL expansion. Local basis functions reflect the properties of the local signal. However, global

basis functions carry information about all xi(t)s. On the other hand, the GKL coefficients will be

unique for each function xi(t); i.e., the projection of the corresponding function onto the global basis

functions.

Substituting Equation (2-14) into Equation (2-15) yields

R(t, s) =
M∑
i=1

piE

{ ∞∑
k=1

cikφk(t)
∞∑
l=1

c∗ilφ
∗
l (s)

}

=
∞∑

k=1

∞∑
l=1

φk(t)φ
∗
l (s)

M∑
i=1

piE{cikc
∗
il} (2-16)

Since the random coefficients are uncorrelated, we have

M∑
i=1

piE{cikc
∗
il} =




λk if k = l (2-17a)

0 if k �= l (2-17b)

then Equation (2-16) becomes

R(t, s) =
∞∑

k=1

λkφk(t)φ
∗
k(s) (2-18)
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Multiplying both sides of Equation (2-18) by φk(s) and integrating over the time interval [Ti, Ti+1],

we get

∫ Ti+1

Ti

R(t, s)φk(s)ds =
∫ Ti+1

Ti

∞∑
l=1

λlφl(t)φ
∗
l (s)φk(s)ds

=
∞∑
l=1

λlφl(t)
∫ Ti+1

Ti

φ∗
l (s)φk(s)ds (2-19)

Since the basis functions are orthonormal

∫ Ti+1

Ti

R(t, s)φk(s)ds = λkφk(t) (2-20)

From this integral equation, one can conclude that the basis functions φk(t) are the eigenvectors and

λk’s are the eigenvalues.

2.2.1 The Discrete Case

Suppose we have an array of vectors {xi} where every vector is non-periodic random process,

given by

xi =




xi(0)
xi(1)

...
xi(L − 1)


 1 ≤ i ≤ M (2-21)

where L is the length of the vector. Then, the GKL expansion of the vector xi is given by

xi =
L∑

j=1

cijφj (2-22)

where cij are uncorrelated random coefficients and φj is the basis vector

φj =




φj(0)
φj(1)

...
φj(L − 1)


 (2-23)

Equation (2-22) can be represented in matrix notation

xi = Φci (2-24)
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where Φ is the matrix whose columns are basis vectors

Φ =
(

φ1 φ2 · · · φL

)
(2-25)

and

ci =




ci1

ci2
...

ciL


 (2-26)

The discrete case of the covariance function of Equation (2-15) is the covariance matrix,

R =
M∑
i=1

E{xix
H
i } (2-27)

Replacing Equation (2-24) in Equation (2-27) for xi results in

R =
M∑
i=1

E{Φcic
H
i ΦH}

= Φ

(
M∑
i=1

E{cic
H
i }

)
ΦH (2-28)

Since coefficients are uncorrelated, we have

M∑
i=1

E{cic
H
i } = Dλ (2-29)

where Dλ is a diagonal matrix

Dλ =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λL


 (2-30)

Then Equation (2-28) can be written as

R = ΦDλΦ
H (2-31)

Post-multiplying above equation by the matrix Φ yields

RΦ = ΦDλΦ
HΦ

= ΦDλ (2-32)

since ΦΦH = I, i.e., the basis vectors composing Φ are orthonormal.
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By looking at the Equation (2-32), we have that

Rφj = λjφj (2-33)

Above equation is the discrete analog of Equation (2-20). From the Equation (2-33) and the definition

of eigenvalues and eigenvectors, we see that the jth basis vector used in the expansion given in

Equation (2-22) is simply the eigenvector of the covariance matrix corresponding to the eigenvalue

λj
[20]. Because the covariance matrix is a symmetric, the eigenvalues of a positive definite matrix

are positive and its eigenvectors, consequently the basis vectors, are orthonormal.

φH
j φk =




1 if i = k (2-34a)

0 if i �= k (2-34b)

The expansion coefficients are obtained as follow: Pre-multiplying Equation (2-24) by ΦH we

have

ΦHxi = ΦHΦci (2-35)

= ci

2.3 Properties of KL Expansion

2.3.1 Minimum Representation Error Property

The KL expansion minimizes the mean-square error in representing the signal due to the use of

a finite number of basis functions in the expansion given in Equation (2-1), i.e., a minimum number of

basis functions is needed to obtain a fixed reconstruction error as compared to any other orthogonal

expansion. The reason for this is that the basis functions are derived from the statistics of the signal.

Sub-optimal expansions such as Fourier or Walsh use fixed-form basis functions. For the Fourier

expansions, basis functions are sinusoidal. For the Walsh expansion, the basis functions are square
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waves. To get the same residual error in the case of Walsh or Fourier expansions, a larger number of

basis functions are required.

A theoretical derivation of the property is as follows [25, 27]:

Let {ϕk(t)} be a set of arbitrary orthonormal functions and let Equation (2-1) be written as

x(t) =
N∑

k=1

ckϕk(t) + eN(t) (2-36)

where eN(t) is the residual error when the expansion uses any N basis functions. Let us consider the

expected value of the magnitude square of residual error E{|eN(t)|2}. We want to get orthonormal

functions which give the best approximation of the random process x(t). From Equation (2-36),

E{|eN(t)|2} can be written as

E{|eN(t)|2} = E

{[
x(t) −

N∑
k=1

ckϕk(t)

] [
x∗(t) −

N∑
k=1

c∗kϕ
∗
k(t)

]}

= E

{
x(t)x∗(t) − x(t)

N∑
k=1

c∗kϕ
∗
k(t) −

N∑
k=1

ckϕk(t)x
∗(t)

}

+E

{
N∑

k=1

ckϕk(t)
N∑

k=1

c∗kϕ
∗
k(t)

}

= E{|x(t)|2} −
N∑

k=1

E{x(t)c∗k}ϕ∗
k(t) +

N∑
k=1

E{x∗(t)ck}ϕk(t)

+
N∑

k=1

N∑
l=1

E{ckc
∗
l }ϕk(t)ϕ

∗
l (t) (2-37)

KL expansion of x(t) is given by x(t) =
∑∞

l=1 cφ
l
(
l t), then E{x∗(t)ck} can be written as

E{x∗(t)ck} = E

{ ∞∑
l=1

c∗l φ
∗
l (t)ck

}

=
∞∑
l=1

E{c∗l ck}φ∗
l (t)

= |ck|2φ∗
k (2-38)

Similarly,

E{x(t)c∗k} = |ck|2φ∗
k (2-39)

Then replacing Equation (2-38) and (2-39) in Equation (2-37), we have

E{|eN(t)|2} = E{|x(t)|2} +
N∑

k=1

N∑
l=1

E{ckc
∗
l }ϕk(t)ϕ

∗
l (t)
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+
N∑

k=1

|ck|2{|ϕk(t)|2 − ϕk(t)φ
∗
k(t) − ϕ∗

k(t)φk(t)} (2-40)

The last equation can also be written in the following form

E{|eN(t)|2} = E{|x(t)|2} +
N∑

k=1

N∑
l=1

E{ckc
∗
l }ϕk(t)ϕ

∗
l (t)

−
N∑

k=1

|ck|2|φk(t)|2 +
N∑

k=1

|ck|2|ϕk(t) − φk(t)|2 (2-41)

From Equation (2-41), we can realize that the minimum is achieved at ϕk(t) = φk(t) where φk(t) is

a basis function of the KL expansion given in Equation (2-1).

2.3.2 Minimum Entropy Property

The KL expansion minimizes the entropy function defined in terms of average squared coeffi-

cients used in the expansion. The significance of this property is that it associates with the coefficients

of the expansion a measure of minimum entropy. A theoretical proof of the property can be found

in [25, 27]. Let xi(t) be square integrable and normalized so that

∫ Ti+1

Ti

|xi(t)|2dt = 1 (2-42)

Then,

|xi(t)|2 = xi(t)x
∗
i (t)

=
∞∑

k=1

cikφk(t)
∞∑
l=1

c∗ilφ
∗
l (t)

=
∞∑

k=1

∞∑
l=1

cikc
∗
ilφk(t)φ

∗
l (t) (2-43)

By integrating both sides of Equation (2-43) in the interval [Ti, Ti+1], we get

∫ Ti+1

Ti

|xi(t)|2dt =
∞∑

k=1

∞∑
l=1

cikc
∗
il

∫ Ti+1

Ti

φk(t)φ
∗
l (t)dt (2-44)

17



Since basis functions φk(t) are orthonormal, the last equation becomes

∫ Ti+1

Ti

|xi(t)|2dt =
∞∑

k=1

|cik|2

= 1

Define ρk =
∑M

i=1 piE(|cik|2) 1 ≤ k < ∞, where pi is the probability that xi(t) occurs and
∑M

i=1 pi = 1.

Note that the ρk’s are the eigenvalues of the integral equation (2-20). Since ρk ≥ 0 and

∞∑
k=1

ρk =
∞∑

k=1

M∑
i=1

piE{|cik|2}

=
M∑
i=1

pi

∞∑
k=1

E{|cik|2}

=
∞∑
i=1

pi

= 1

Therefore, ρk 1 ≤ k < ∞ form a probability distribution on the KL coordinate functions {φk(t)}.

Define an entropy function for the ρk’s of the {φk(t)}

H({φk(t)}) = −
∞∑

k=1

ρk log ρk (2-45)

If ρk’s are ordered such that

ρ1 ≥ ρ2 ≥ ... ≥ ρk ≥ ρk+1

then for any other γk’s associated with any other set of coordinate functions {ϕk} we have

n∑
k=1

ρk ≥
n∑

k=1

γk (2-46)

Hence

−
∞∑

k=1

ρk log ρk ≤ −
∞∑

k=1

γk log γk (2-47)

and

H({φk(t)}) = min H({ϕk(t)}) (2-48)
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The proof from Equation (2-45) through (2-47) is given in Watanabe [26].

Although the KL expansion is considered as the most efficient way to represent signals, it has a

few drawbacks. First, its computational cost since it is a solution to an eigenvalue problem. Cost can

be reduced if we deal with shorter signals rather than the long ones since in this case, we will need to

estimate smaller covariance matrices. Then partitioning of the large signal can be useful for reducing

computational cost. Second, it is difficult to capture signal features localized in the time-frequency

plane due to the global eigenvectors [31]. Therefore to be able to get the localized features of a signal

we need to establish “localized KL bases”. To get localized KL bases, the signal first needs to be

partitioned into almost stationary segments. Although segments can be considered almost stationary

we will still assume non-stationarity in the calculations as shown in the following chapters. Getting

these segments will be explained in the next section.
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3.0 ORTHONORMAL-BASIS PARTITIONING OF
NONSTATIONARY SIGNALS

Detection of changes in a non-stationary signal is an important problem that has been studied

by many researchers [32–40]. The problem of partitioning a non-stationary signal into non-overlapping

semi-stationary ones arises in many areas such as speech, communication and biomedical signal

analysis. Partitioning the signal into almost stationary segments makes it easier to deal with it since

data in segments will be shorter and less non-stationary. Lovell and Boashash partitioned the signal

into near stationary segments using a modified Appel and Brandit algorithm [35]. Their algorithm

uses two spectral distance measures and is insensitive to the changes in the energy of the signal. An

entropy based algorithm [37, 38] is proposed by Coiffman and Wickerhauser for optimal segmentation.

Their method looks for the most significant coefficients of the Malvar expansion to achieve the most

parsimonious representation possible. But the algorithm does not consider other important signal

characteristics such as frequencies of the signal and the number of sinusoidal components. For

example this algorithm does not give an acceptable segmentation for signals composed of multiple,

superimposed gated sinusoids.

Because accurate time-dependent analysis of multicomponent nonstationary signals requires

segmentation [35], in this section, we consider methods for partitioning nonstationary signals into

segments that approximately behave as stationary signals. We introduce two orthogonal-basis parti-

tioning techniques: 1) a computationally efficient low-resolution partitioning for long signals, and 2)

a high-resolution partitioning for short signals or segments of particular interest [41].

The low resolution partitioning is based on the projection of consecutive time segments onto

a small set of global basis vectors, compressing the information into a few projection coefficients.

Since these basis vectors are fixed for all the time segments, the time series formed by the projection

coefficients represents the gross structure of the signal. Changes in this series could be used for
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tracking major changes in the signal and for selecting the segments of interest [42, 43], which can be

subsequently analyzed in-depth using high-resolution partitioning and time-frequency representation.

In the high-resolution partitioning, the basis vectors are segment-specific or local. Changes in

frequency content that occur between two consecutive time segments may be detected by compar-

ing the number of eigenvalues and the local energy in two overlapping windows of different lengths.

Although this technique is computationally demanding, it has a low sensitivity to artifacts which is

desirable for accurate partitioning. The idea of using eigenvalues for segmentation of a nonstation-

ary, multidimensional signal is not new. Basseville et al. [44] analyzed changes in the eigenvalues

and eigenvectors of the state transition matrix to detect small changes in the characteristics of a

vibrating mechanical system. The proposed method can be considered a simplified implementation

of a more general eigenstructure analysis that allows partitioning nonstationary, multidimensional

signals into pseudo-stationary segments. A combined application of a long-term and a short-term

window, corresponding to the periods before and after a possible change, has been described in [45].

3.1 Low Resolution Partitioning

Detection of transients in a long non-stationary signal is a challenging problem. In this section,

we propose to partition such a signal into arbitrarily small segments and obtain a global orthogonal

representation by projecting each segment onto a fixed set of basis vectors. Then we use a much more

parsimonious time series, formed by the coefficients of the orthogonal representation, to characterize

the gross structure of the signal. Changes in this time series relate to transients, which can be

marked for further study. The Karhunen-Loeve (KL) orthogonal representation has long been used

in pattern recognition applications for feature selection and ordering [20] . An extended version of the

KL representation, which we call the Global Karhunen-Loeve (GKL) expansion, will be used here

as an efficient way of finding where transients occur. The GKL expansion is applied to an array of

random vectors yi = [y(iL) y(1 + iL) ... y(L − 1 + iL)]T , i = 0, 1, ...,M − 1, obtained from dividing
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a long non-stationary signal y(n) into short non-overlapping segments of equal length L. Then the

GKL expansion of a vector yi is given by

yi =
L∑

j=1

cijφ
g
j , (3-1)

where cij are the GKL coefficients and {φg
j} are the global basis vectors or the eigenvectors [20] of the

correlation matrix

Ry =
1

M

M−1∑
i=0

yiy
T
i . (3-2)

The existence of one LxL covariance matrix, and one set of basis vectors used for representing

{yi} explains the “global” nature of the GKL expansion. The GKL coefficients are unique for each

time segment and given by

ci = ΦHyi, (3-3)

where ci = [ci1 ci2 ... ciL]T , i = 0, 1, ...,M − 1, and Φ is a LxL matrix whose columns are the

eigenvectors φg
j of the covariance matrix Ry. Thus, changes in the signal y(n) that occur from one

segment yi to another yi+1 are reflected in these coefficients. Constructing time series of the most

significant GKL coefficients (for example, the time series of the first GKL coefficients is given by

T1 = [c01 c11.... cM−1,1]) and tracking the changes in their amplitudes and local variances allows

detection of the segments in which the transients occur [42, 43]. In such segments, we perform further

in-depth analysis as described in the next section.

3.2 High Resolution Partitioning

Suppose that x(n), 0 ≤ n ≤ N − 1, is one of the non-stationary segments identified by the

low resolution segmentation and needs to be partitioned into approximately stationary segments.

Initial partitioning of x(n) is performed using Malvar windows [46, 47]. A typical segmentation Malvar

window wj(n) is shown in Figure 1. The segmentation window does not have to be Malvar window
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but since we used Malvar windows in signal reconstruction (Chapter 4) we decided to use Malvar

windows for segmentation to be consistent.

0
a

j
 a

j+1
 

w
j
(n) 

ε
j
 ε

j+1
 

L 

Figure 1 Segmentation window

The window displayed in Figure 1 is composed of three sections. The first one is an attack section

with a duration of 2εj; the next section is a stationary section with a duration of L − εj − εj+1; and

a decay section with a duration of 2εj+1.

For segmentation purposes, we are only interested in the windowed signal xj(n). The windowed

signal is given by xj(n) = x(n)wj(n), aj − ε < n ≤ aj+1 + ε, and its KL expansion is

xj(n) =
L−1∑
l=0

bjlθjl(n) (3-4)

where bjl are the uncorrelated random KL coefficients and {θjl(n)} are the orthonormal basis vectors

obtained from the covariance matrix of the windowed signal xj(n) and L = aj+1 − aj + 2ε. In

fact, they are the eigenvectors of the covariance matrix. Therefore, these basis functions are signal

dependent. Since the signal is non-stationary, every {xj(n)}N−L−1
j=0 will be different and thus {θjl(n)}

will be different for every {xj(n)}. They do not have a standard form that could be used for all
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{xj(n)}. Furthermore, basis functions of a windowed signal cannot be used to represent the basis

functions of another windowed signal. This could be impossible to do it in some cases. All these

properties come from the fact that KL basis functions do not form a complete set.

To obtain a generalized representation of the KL bases in different time windows, one can use

a complete set of exponentials, so that:

θjl(n) =
1

L

L−1∑
k=0

djl(k)ejωkn (3-5)

where ωk = 2πk
L

and {djl(k)} are the corresponding coefficients. By replacing equation (3-5) in

Equation (3-4), we get

xj(n) =
1

L

L−1∑
l=0

bjl

L−1∑
k=0

djl(k)ejωkn

=
1

L

L−1∑
k=0

L−1∑
l=0

bjldjl(k)ejωkn (3-6)

Let us define

αj(k) ≡ 1

L

L−1∑
l=0

bjldjl(k) (3-7)

then

xj(n) =
L−1∑
k=0

αj(k)ejωkn 0 < n ≤ L − 1 (3-8)

We seek to adapt the initial partition using the eigenvalues of the covariance matrix of a windowed

signal and the local energy. The connection between the signal representation, eigenvalues and local

energy is presented here. The eigenvalues of each segment can be obtained as follows.

Equation (3-8) can also be written in matrix form as

xj = Qαj (3-9)

where

xj =




xj(0)
xj(1)

...
xj(L − 1)


 =




x(aj + 1)
x(aj + 2)

...
x(aj + L)


 (3-10)
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and

Q =




1 1 . . . 1
1 ejω11 . . . ejωL−11

...
...

. . .
...

1 ejω1(L−1) . . . ejωL−1(L−1)


 (3-11)

and

αj =




αj(0)
αj(1)

...
αj(L − 1)


 (3-12)

Assuming non-stationarity of windowed signal xj(n), the correlation matrix is given by

Rxj
= E{xjx

H
j } =




rxj
(0, 0) rxj

(0, 1) . . . rxj
(0, L − 1)

rxj
(1, 0) rxj

(1, 1) . . . rxj
(1, L − 1)

...
...

. . .
...

rxj
(L − 1, 0) rxj

(L − 1, 1) . . . rxj
(L − 1, L − 1)


 (3-13)

where H stands for conjugate transpose. Estimation of the correlation matrix is given in the next

section. By replacing equation (3-9) in the last equation we have

Rxj
= E{Qαjα

H
j QH}

= QE{αjα
H
j }QH (3-14)

Since Q is deterministic, it can be taken out of the expected value operator E in the last equation.

αj(k) is given by equation (3-7) and it can also be written in matrix form as

αj = ∆jbj (3-15)

where

∆j =




dj0(0) dj1(0) . . . dj(L−1)(0)
dj0(1) dj1(1) . . . dj(L−1)(1)

...
...

. . .
...

dj0(L − 1) dj1(L − 1) . . . dj(L−1)(L − 1)


 (3-16)

and

bj =




bj0

bj1
...

bj(L−1)


 (3-17)

Then, E{αH
j αH

j } in Equation (3-14) becomes
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E{αjα
H
j } = E{∆jbjb

H
j ∆H

j }

= ∆jE{bjb
H
j }∆H

j (3-18)

Then, substituting Equation (3-18) in Equation (3-14) results in

Rxj
= Q∆jE{bjb

H
j }∆H

j QH (3-19)

By defining Γj ≡ Q∆j Equation (3-19) becomes

Rxj
= ΓjE{bjb

H
j }ΓH

j (3-20)

From the description of Γj, one can realize that columns of Γj are the eigenvectors of the covariance

matrix of xj(n) which is Rxj
. Since Rxj

is a symmetric and positive semidefinite matrix, its eigenvalues

are positive and its eigenvectors are orthonormal [48]. Since the columns of Γj are the eigenvectors of

Rxj
and they are linearly independent, Rxj

can be diagonalizable and E{bjb
H
j } is a diagonal matrix,

with the eigenvalues of Rxj
along its diagonal [49]

However, not all matrices possess n linearly independent eigenvectors and therefore not all

matrices are diagonalizable[49]. Diagonalization can fail only if there are repeated eigenvalues. If

there are repeated eigenvalues, there will not be enough independent eigenvectors to construct matrix

Γj.

Since basis functions are the columns of Γj in Equation (3-20) and they are orthonormal, we

have that

ΓH
j Γj = I (3-21)
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where I is identity matrix. Then Equation (3-20) can also be written as

Γ−1
j Rxj

Γj = E{bjb
H
j } (3-22)

=




λ
j0

0 . . . 0
0 λj1 . . . 0
...

...
. . .

...
0 0 . . . λj(L−1)


 (3-23)

where λjl are the eigenvalues of Rxj
and also

Dλj
(i, k) = E{bjib

∗
jk} =




λ
ji

if i = k (3-24a)

0 if i �= k (3-24b)

Diagonal matrix Dλj
is a function of j and any changes along the signal in consideration will be

reflected by Dλj
and consequently by the eigenvalues since main diagonals of Dλj

are the eigenvalues

λjl. For each block we will have new set of eigenvalues and number of the eigenvalues required to

capture certain amount of the energy of xj(n) will be different in each block. For each basis function

there is a corresponding eigenvalue. For example for a signal of one sinusoid one will only need one

eigenvector (basis function) and consequently one eigenvalue to represent the signal. But for a signal

of two sinusoids one will need two basis functions and consequently two eigenvalues. So if the signal

gets more complex, the number of the required basis functions will increase to represent the signal.

As a consequence there will be larger number of eigenvalues corresponding to those basis functions

(eigenvectors).

Another feature related to the eigenvalues is that the summation of the eigenvalues of a covari-

ance matrix obtained from a signal equals the expected value of the energy of that signal. Proof of

this property is as follows. The KL expansion of xj(n) is given by Equation (3-4). Then energy of

xj(n) is

∑
n

x2
j(n) =

∑
n

∑
l

bjlθjl(n)
∑
k

b∗jkθ
∗
jk(n)

=
∑

l

∑
k

bjlb
∗
jk

∑
n

θjl(n)θ∗jk(n) (3-25)
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Since basis functions are orthonormal, we have

∑
n

θjl(n)θ∗jk(n) =




1 if l = k (3-26a)

0 if l �= k (3-26b)

Then,

∑
n

x2
j(n) =

∑
l

b2
jl (3-27)

Expected value of the energy is

E

{∑
n

x2
j(n)

}
=

∑
l

E{bjlb
∗
jl} (3-28)

From Equation (3-24), we have E{bjlb
∗
jl} = λjl. Then

E

{∑
n

x2
j(n)

}
=

∑
l

λjl (3-29)

Then energy changes between windowed segments can also be found by comparing the summation

of the eigenvalues in each segment. Therefore the number of the eigenvalues and their sum can be

used as tools to detect changes along a non-stationary signal and to segment it.

3.2.1 Estimation of the Autocorrelation Matrix

Due to assumption of non-stationarity of the windowed signal xj(n), the autocorrelation matrix

Rxj
in (3-13) has entries rxj

(n,m) = E{xj(n)x∗
j(m)} that depend on both n and m rather than

on their difference. The estimation of these entries can be implemented by means of evolutionary

periodogram [9, 50, 51] and it is given by

r̂xj
(n,m) =

L

M

K2∑
k=K1

Vn(k)xj(k)V ∗
m(k + m − n)x∗

j(k + m − n) (3-30)

where

K1 = n − m,K2 = L − 1, if n − m ≥ 0

K1 = 0, K2 = L − 1 − (n − m), if n − m < 0
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and Vn(k) are the time-varying windows defined using M orthonormal functions {βi(n)} such as

Legendre functions:

Vn(k) =
M−1∑
i=0

β∗
i (n)βi(k) (3-31)

The window Vn(k) used in estimation is shown in the Figure 2. The resulting autocorrelation

matrix is positive semi-definite Hermitian symmetric. Please note that the window Vn(k) has nothing

to do with segmentation window wj(n). Vn(k) is only used in estimation of the autocorrelation matrix.

0

k

n

L 

Figure 2 Windows Vn(k) used in autocorrelation estimation

3.2.2 Local Segmentation Algorithm

In this section, we will describe the algorithm for high resolution partitioning. Partitioning is

performed by using two short windows ws
j(n) and ws

j+1(n) of equal length Ls and a long window

wl
j(n) of length Ll where j is the window number, and s, l stand for short and long, respectively

(Figure 3(a),(b)). The proposed algorithm first compares the eigenvalues of the covariance matrix in
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the first and the second short window with those in the long window to detect any changes in the

frequencies, and then analyzes energy changes between two consecutive short windows.
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Figure 3 The Malvar windows used for the segmentation (a),(b). Boundary optimization is per-
formed when the second criterion (c) and the first criterion (d) is satisfied in the boundary detection
algorithm.

Eigenvalues of the covariance matrices of the corresponding windowed signals are used to detect

frequency changes in the signal. If such a change occurs between two consecutive short windows, then

the long window would display more frequencies than the first or the second short window. Thus

complexity of the signal in the long window would be greater than that in each short windows (ws
j(n)

and ws
j+1(n)). The number of the eigenvalues required to represent a fixed proportion of energy

of the signal in wl
j(n) would be greater than that in ws

j(n) and ws
j+1(n). The algorithm compares

the number of eigenvalues in the long window wl
j(n) with the number of eigenvalues in the short

windows ws
j(n) and ws

j+1(n). Note that in the algorithm below, we describe the comparison between

the eigenvalues in the long window and the first short window ws
j(n). Comparison between the long

window and the second short window ws
j+1(n) can be done in a similar way. Next, the energies Ej
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and Ej+1 of the windowed signals corresponding to ws
j(n) and ws

j+1(n) are computed as in (3-29) and

compared.

The segmentation algorithm consists of two parts: (1) boundary detection, and (2) boundary

optimization. In the first part, the location of the boundary is determined approximately. In the

second part, this location is adjusted to obtain an optimal boundary.

3.2.2.1 Boundary Detection.

Step 1: Find the covariance matrix of the windowed signal xs
j(n) = x(n)ws

j(n) aj−ε ≤ n ≤ aj+1+ε

(see Figure 3(a)) by using Equation (3-30), calculate the eigenvalues of the covariance matrix Rs
xj

and order them so that λj0 > λj1 > ..... > λj(Ls−1). Next, determine the number of eigenvalues N s
j

that contain 90% of the total energy of xs
j(n). (The 90% energy threshold has been found to be

appropriate experimentally. See Appendix B for a brief explanation). Find the total energy Ej of

the signal xs
j(n).

Estimate the following threshold values:

Nup
j = (1 + α1)N

s
j : Upper threshold for the number of the eigenvalues

Elw
j = (1 − α2)Ej : Lower threshold for the energy

Eup
j = (1 + α3)Ej : Upper threshold for the energy

where constants 0 < α1, α2, α3 ≤ 1 are defined a-priori.

Step 2: Repeat step 1 for the windowed signal xl
j(n) = x(n)wl

j(n), aj − ε ≤ n ≤ aj+2 + ε (see

Figure 3(b)) to find the number of eigenvalues N l
j required for representing 90% of the energy of the

signal xl
j(n). Next, find the total energy Ej+1 of the signal xs

j+1(n) = x(n)ws
j+1(n), aj+1 − ε ≤ n ≤

aj+2 +ε. Then compare the number of the eigenvalues and energy according to the following criteria:

1. If N l
j > Nup

j , then there is a change in the frequencies of the signal, do the boundary optimiza-

tion, otherwise check condition 2,
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2. If Ej+1 < Elw
j or Ej+1 > Eup

j , then there is a change in the energy of the signal, do the boundary

optimization,

If none of the above criteria is met, then xs
j(n) and xl

j(n) are approximately the same, and there

is no need for partitioning or boundary optimization. In this case, move all segmentation windows

by the length of the short window and repeat the first two steps.

If either criterion is met, xs
j(n) and xl

j(n) are different, in other words, a change in frequencies

(criterion 1) and/or energy (criterion 2) occurred between aj+1 and aj+2 (see Figure 3). Then, we

perform the boundary optimization.

3.2.2.2 Boundary Optimization. By using boundary detection we have already determined that

a change from xs
j(n) to xl

j(n) has occurred at some point between aj+1 and aj+2. Now, we would like

to find the exact location of this point of the change as described below:

(a) If the first criterion in boundary detection is met:

Shrink the long window wl
j(n) by reducing its length as shown in Figure 3(d). We will denote this

new window by w̃l
k(n), the windowed signal is given by x̃l

k(n) = w̃l
k(n)x(n), aj −ε ≤ n ≤ aj+2 +ε−k,

where k = 1, 2, .., L− ε. Find the covariance matrix of x̃l
k(n) and calculate the number of eigenvalues

Ñk required for representing 90% of the energy of x̃l
k(n) as described previously in the boundary

detection section. Then check the condition Ñk ≤ N s
j for k = 1, 2, ..L− ε. If the condition is satisfied

for k = p, then the location of the boundary is aj+2 − p and stop.

(b) If the second criterion in boundary detection is met:

Shift the second short window ws
j+1(n) backwards by one point as shown in Figure 3(c). We

will denote this new window by w̃s
k(n) and the windowed signal is given by x̃s

k(n) = w̃s
k(n)x(n),

aj+1 − ε − k ≤ n ≤ aj+2 + ε − k where k = 1, 2, .., L − ε. Calculate the energy Ẽk of x̃s
k(n). Then

check the condition Elw
j < Ẽk < Eup

j for k = 1, 2, ..L − ε. If the condition is satisfied for k = p, then
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the location of the boundary is aj+2 − p and stop. Once we find the optimal boundary location, we

repeat the procedure starting from that point.

The performance of the local segmentation algorithm will be tested on simulated signals as

shown in the examples below. Signals in examples 1 and 2 are very simple since the purpose of

those examples is to demonstrate how the local energy and the number of the eigenvalues change

according to signal features. The algorithm is also tested on noisy signals and compared with another

segmentation algorithm.

Example 1: The signal shown in Figure 4(a) is a sinusoid with a time-varying amplitude. It is

given by

x(n) =




sin(ω0n) 0 ≤ n < 113

3 sin(ω0n) 113 ≤ n < 225

where ω0 = 2πf0 and f0 = .12 Hz. The signal used here is very simple and it is used to show the use

of eigenvalues and energy for segmentation. Normalized energy in first and second short windows

are shown in Figure 4(b) and (c) respectively. It is clear that in the first part of the signal energy in

both windows are the same but when signal amplitude changes, the energy in windows also change

(6th sample on the x axis of Figure 4(b) and (c) corresponds to the location of the change in the

signal). Not only the energy but also the number of eigenvalues changed as seen from Figure 4(d)

and (e). Figure 4(d) corresponds to number of the eigenvalues required from the short window and

Figure 4(e) corresponds to number of the eigenvalues required from long window. (Long window

used in segmentation is shown in Figure 3(b)). Since amount of changes in the energy or number

of the eigenvalues exceeded a pre-selected threshold, the windows were separated and final segments

are given in Figure 4(f).
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Figure 4 (a) The signal (b) Normalized energy in short window (c) Normalized energy in second
short window (d) Number eigenvalues in first short window (e) Number of eigenvalues in long window
(f) Segments.

Example 2: Contrary to example 1, in this example we keep the amplitude same during the

whole signal but changed the frequency. Signal consists of two concatenated sinusoids as shown in

Figure 5(a). It is given by

x(n) =




sin(ω1n) 0 ≤ n < 113

sin(ω2n) 113 ≤ n < 225

where ω1 = .24π and ω2 = .7π. As it is seen from Figure 5(b) and (c), energy between windows did

not change much. On the other hand, if we compare the number of the eigenvalues between short

and long window ( Figure 5(d) and (e) respectively), we see a difference at 6th sample on x axis.

The number of the eigenvalues are 2 in short window but it is 6 in longer window at that point. This

difference corresponds to the change in the signal and final segments are shown in Figure 5(f). Since
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we can compare the segments with the simulated signal,we can see that the segmentation is very

accurate.
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Figure 5 (a) The signal (b) Normalized energy in short window (c) Normalized energy in second
short window (d) Number eigenvalues in first short window (e) Number of eigenvalues in long window
(f) Segments.

Example 3: The signal consists of sinusoids, concatenated sinusoids, chirp and sinusoidal FM and

is displayed in Figure 6(a). Amplitude of the signal also changes along time. The signal is given by
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x(n) =




sin(.7πn) 0 ≤ n < 56

3 sin(.7πn) 57 ≤ n < 79

2 cos(
πn2

186
) 80 ≤ n < 173

sin(.24πn) 174 ≤ n < 211

sin(.24πn) + sin(.7πn) 212 ≤ n < 256

3 sin(.54πn) 257 ≤ n < 329

cos(.5πn − 2.5π cos(
2πn

64
)) 330 ≤ n < 393

2 cos(.5πn − 2.5π cos(
2πn

64
)) 394 ≤ n < 457

Although the signal is very complex, the method was able to separate the signal very accurately. We

used the first method not the alternative one here. Three different window length (45, 33 and 22

points) were tried to see the effects of window length in segmentation. The shortest window gave the

best segmentation, i.e., points where the signal changed (marked with thick solid lines in Figure 6(a))

were detected correctly except for the linear and sinusoidal FM signals where the method created

some artificial boundaries. On the other hand, segments obtained using windows of length 45 and

33 did not always correspond to the original segments in the signal and furthermore there were still

some artificial boundaries for linear and sinusoidal FM signals. The shorter the window the higher

the resolution to recognize changes in the signal. But we cannot chose the window length too small

either. One way to choose is to select the minimum window length as the max period which exists

in the signal. Using longer windows resulted in fewer but longer segments. The longer the window

the less sensitive the method gets towards the changes. As mentioned before, a long window is also

used in segmentation and its length is twice the size of the short one. For sinusoidal signals, the

method performed very well separating the different sinusoidals very accurately. On the other hand,

as mentioned above, for signals like linear or sinusoidal FM, the method gave many small blocks
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(smallest block can be the size of the short window) rather than one block for the whole signal. This

is expected since the frequency of these signals change with time and number of the eigenvalues will

be higher in longer window than short window. An alternative local segmentation algorithm was

suggested in section 3.2.3 to obtain only one block for these kind of signals. Note that the alternative

algorithm is not very usable for large data sets since it is computationally very expensive. Therefore

it was not used for simulated and real signals in this thesis.
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Figure 6 (a) Original Signal to be segmented (b) Segments obtained using 45 point window (c)
Segments obtained using 33 point window (d) Segments obtained using 22 point window.

3.2.2.3 Comparison With Other Techniques. The local segmentation algorithm (algorithm

I) has been compared with another segmentation algorithm (algorithm II) which is described by

Andersson[52]. Andersson’s algorithm builds AR or ARMA models assuming that the model parame-

ters are piece-wise constant over time and splits the data record into segments over which the model

remains constant. The model order and the noise variance need to be chosen a-priori.

Performance of these two segmentation algorithms is demonstrated using a simulated signal with

two different SNRs (Figure 7 and 8). The signals consists of concatenated sinusoids with different

amplitudes and frequencies embedded in white noise (SNR=10.2dB (Figure 7) and SNR=3.1 dB

(Figure 8)). Solid vertical lines correspond to the actual segments. Figures 7(b) and 8(a) shows

the segments (vertical dotted lines) obtained using the algorithm I. Figures 7(c) and 8(b) shows the

results obtained from algorithm II. Algorithm I performed reasonably well, giving the segments that
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were close to the original ones. Although the algorithm II produced similar results, it could not

detect changes around sample 225 (Figure 8(b)) and sample 300 (Figure 7(c)).
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Figure 7 Performance of the two segmentation algorithms. The simulated signal (SNR=10.2 dB)
(a). Solid vertical lines indicate the actual segments. Segments obtained by using Algorithm I (the
segmentation window length is 16) (b) and Algorithm II (model order is 5) (c). Dotted lines represent
the boundaries obtained by the corresponding algorithms.
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Figure 8 Performance of the two segmentation algorithms. Algorithm I (the segmentation window
length is 16) (a), Algorithm II (model order is 7) (b) are compared by using a simulated signal
(SNR=3.1 dB). Solid vertical lines indicate the actual segments. Dotted lines represent the boundaries
obtained by the corresponding algorithms.

3.2.3 Alternative Local Segmentation Algorithm

This algorithm is an extension of the local segmentation algorithm described in Section 3.2.2.

Note that this algorithm was not used in any studies of HRV data. The difference here is that we use

only one segmentation window and shift the window by one point along the signal. The window used

in segmentation is the same as in Figure 1. The reason that we propose this alternative algorithm

is that the first algorithm ( the one using multiple windows) gives very accurate segmentation for

signals such as sinusoids. It separates a signal consisting of different sinusoids into blocks where each

block corresponds to a different sinusoid. But in the case of signals such as linear or sinusoidal FM,

the method breaks up the signal into many small blocks rather than one (Figure 9(c)). Although this

is not wrong, we can still suggest another algorithm which will give only one block for these type of

signals. Following are the steps of the algorithm:
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Step 1 Window the signal starting from the beginning and find the covariance matrix of the

windowed signal xj(n). Then calculate the eigenvalues of the covariance matrix Rxj
and order them

from largest to smallest. Determine the number of the eigenvalues Nj required to include 90% of the

total energy of xj(n).

Step 2 Once the number of the eigenvalues Nj is found in the current window, shift the window

by one point and repeat the same procedure in step 1 to find the number of the eigenvalues Nj+1

required in this new window. Then, compare the number of the eigenvalues and energy of the two

windowed signal. Depending on the differences in Nj and Nj+1 or Ej and Ej+1, windows will be

combined or not.

The segmentation criterion is given by:

1. If Nj+1 < N l
j or Nj+1 > Nu

j do not combine windows and go to next window, otherwise check

2

2. If Ej+1 < El
j or Ej+1 > Eu

j do not combine windows and go to next window

3. Otherwise combine windows

where

N l
j : Lower threshold for the number of the eigenvalues

Nu
j : Upper threshold for the number of the eigenvalues

El
j : Lower threshold for energy

Eu
j : Upper threshold for energy
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Example: In this example, we compared the alternative algorithm with the the local segmentation

algorithm described in Section 3.4. The signal is shown on Figure 9(a) and is given by

x(n) =




sin(.24πn) 0 ≤ n < 50

sin(.4πn) 51 ≤ n < 93

cos(
πn2

186
) 93 ≤ n < 236

The segments shown in Figure 9(b) is obtained with alternative algorithm described above. One

sliding window is used. As it can be seen from the picture that we have one block for the chirp signal.

On the other hand, the local segmentation algorithm gives one block for sinusoids but many small

blocks for the chirp signal.

Actually the second result shown in Figure 9(c) is useful for the time-frequency representation

which will be described in the next section. Each block nicely corresponds to changing frequencies

in the signal. Furthermore, alternative algorithm is computationally very expensive compared the

local segmentation algorithm and therefore it is not suitable for large data sets.
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Figure 9 (a) The signal (b) Segments obtained using alternative algorithm (c) Segments obtained
using the local segmentation algorithm.

So far we explained how to obtain optimal segments, in the next section we will now utilize

those optimal segments to estimate the evolutionary spectrum of a non-stationary signal.
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4.0 PARTITIONED TIME-FREQUENCY REPRESENTATION

The spectrum allows us to determine which frequencies exist but it does not say anything about

when those frequencies occur. Time-frequency analysis allows us to determine which frequencies exist

at a particular time.

One of the most common time-frequency analysis method is the spectrogram. It is ideal in

many respects. The spectrogram is well defined and for many signals and situations it gives excellent

time-frequency structure. However, if we want a good time localization we have to pick a narrow

window in time domain, if we want a good frequency localization we need to pick a narrow window

in the frequency domain. But both cannot be made arbitrarily narrow; therefore there is a trade-off

between time and frequency localization in the spectrogram. For certain situations it may not be

the best method available in the sense that it does not give us the clearest possible picture of what

is going on. Thus other methods have been developed. One advantage of the spectrogram is that it

is a proper distribution in the sense that it is positive [1].

Wigner distribution [8] is another method for time-frequency analysis. One of the advantages

of the Wigner distribution over the spectrogram is that we do not have to bother with the choosing

the window. The Wigner distribution gives a clear picture of the instantaneous frequency for single

chirp. This is not the case with spectrogram. On the other hand, the Wigner distribution is not

always positive which sometimes leads to results that cannot be interpreted. Furthermore it suffers

from the fact that for multicomponent signals we get confusing artifacts which are called as cross

terms.

There are also other approaches called Kernel methods for time-frequency analysis. These

approaches characterize time-frequency distribution by the kernel functions. The properties of a

distribution are reflected by simple constraints on the kernel, and by examining the kernel one

44



readily can ascertain the properties of the distribution [1]. We used the Choi-Williams distribution

here as one of the Kernel methods to compare with our method.

Here, we propose a new method which we will call orthonormal-basis partitioning and time-

frequency representation (OPTR). OPTR is a general name of the method which is the combination

of the segmentation algorithm described in Chapter 3 and evolutionary spectrum which will be

described in this chapter. The proposed algorithm provides the signal representation along with its

time-varying spectrum [41].

One very important advantage of this method over the other methods is that its ability to

detect most dominant components of a complex signal without dealing with less important ones.

Since most of the physiological signals are very complex, direct time-frequency representations exhibit

simultaneous, wide range changes in multiple frequency elements producing smeared time-frequency

representations. Our method can be applied directly to relatively simple signals. But for complex

signals, the method allows us to extract the most important components and obtain time-frequency

representation of those components.

4.1 Orthonormal Expansion of the Partitioned Signal

Let us assume that we have a non-stationary signal x(n) and it is already partitioned into I

overlapping segments {xj(n)} by using the segmentation method introduced in the previous chapter.

Then x(n) can be written as

x(n) =
I−1∑
i=0

xi(n) (4-1)

If xi(n) is represented as a linear combination of some basis functions uil(n), i.e.,

xi(n) =
li−1∑
l=0

ciluil(n) (4-2)

then Equation (4-1) becomes

x(n) =
I−1∑
i=0

li−1∑
l=0

ciluil(n) 0 ≤ n ≤ N − 1 (4-3)
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where cil are uncorrelated random KL expansion coefficients, uil(n) are the basis functions, and li

corresponds to the length of the ith segment. Equation (4-3) is a time varying Karhunen-Loeve

expansion since basis functions uil(n) are derived from different basis functions in each segment.

The functions {uil(n)} are the product of {φ̃il(n)} ( which are the extension of some orthonormal

functions {φil(n)} defined on the ith time interval (ai, ai+1]) and a smooth window wi(n) shown in the

Figure 1. Properties of the window are given in the previous chapter. Orthonormal basis functions

{φil(n)} are the KL basis functions of the signal xi(n) defined on n ∈ (ai, ai+1]. If we pad zeros to

{φil(n)} when n /∈ (ai, ai+1] , it is obvious that {φil(n)} i ∈ Z, 0 ≤ l ≤ li−1 form orthonormal bases. Z

corresponds to integer numbers. However, since there are no overlaps between adjacent time intervals

(ai, ai+1], a blocking effect may occur in signal reconstructions [46]. Lapped orthogonal transform is

used[53–56] to eliminate these blocking effect. The basic idea is to allow overlaps between adjacent time

intervals. A method has been introduced by Xia [57] to extend basis functions. Extension is done by

constructing the even reflection at ai on [ai−εi, ai] and the odd reflection at ai+1 on [ai+1, ai+1 +εi+1]

in the following way

φ̃il(n) =




0 −∞ < n ≤ ai − εi (4-4a)

φil(2ai − n + 1) ai − εi < n ≤ ai (4-4b)

φil(n) ai < n ≤ ai+1 (4-4c)

−φil(2ai+1 − n + 1) ai+1 < n ≤ ai+1 + εi+1 (4-4d)

0 ai+1 + εi+1 < n ≤ ∞ (4-4e)

Then, uil(n) is formed as

uil(n) ≡ wi(n)φ̃il(n) i ∈ Z, 0 ≤ l ≤ li − 1 (4-5)

The window w(n) is a Malvar window and shown in Figure 1. Because arbitrary partitioning

of a signal introduces artifacts at the boundaries, here we consider techniques to eliminate these

blocking effects and achieve an accurate signal representation. Malvar windows are used to remove
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the blocking effects caused by non-overlapping adjacent time intervals in the signal reconstruction.

The Malvar window is given by

wj(n) =




w(
n − aj

εj

) n ∈ [aj − εj, aj + εj] (4-6a)

1 n ∈ [aj + εj, aj+1 + εj+1] (4-6b)

w(
aj+1 − n

εj+1

) n ∈ [aj+1 − εj+1, aj+1 + εj+1] (4-6c)

0 n ∈ (∞, aj − εj]
⋃

[aj+1 + εj+1,∞) (4-6d)

where w(n) = sin(π
4
(1 + sin(πn

2
))) and it has the following properties [46, 53–55]:

1. 0 ≤ wj(n) ≤ 1 for all n ∈ Z

2. wj(n) = 1 n ∈ (aj + εj, aj+1 − εj+1]

3. wj(n) = 0 n /∈ (aj − εj, aj+1 + εj+1]

4. wj(aj + τ) = wj−1(aj − τ + 1) τ ∈ (−εj, εj]

5. w2
j(n) + w2

j−1(n) = 1 n ∈ (aj − εj, aj + εj]

where Z corresponds to the integer numbers. The fourth condition permits adjacent windows to have

symmetric overlaps at aj for any j. Furthermore, 1-3 and 5 result in
∑

j w2
j(n) = 1 for all n.

Expansion coefficients cil are obtained as follows. If we compare Equation (4-1) and (4-3), we

can write that

xi(n) =
li−1∑
l=0

ciluil(n) (4-7)

The last equation in matrix form can be given by

xi = Uici (4-8)
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where

xi =




xi(0)
xi(1)

...
xi(N − 1)


 (4-9)

and

Ui =




ui0(0) ui1(0) . . . ui(li−1)(0)
ui0(1) ui1(1) . . . ui(li−1)(0)

...
...

. . .
...

ui0(N − 1) ui1(N − 1) . . . ui(li−1)(N − 1)


 (4-10)

and

ci =




ci0

ci1
...

ci(li−1)


 (4-11)

Since basis functions {uil(n)} are orthonormal (see Appendix), we have

UT
i Ui = I (4-12)

where T stands for transpose. Then, multiplying both sides of Equation (4-8) by UT
i , we get

ci = UT
i xi (4-13)

The last equation is given in open form as

cil =
N−1∑
n=0

xi(n)uil(n) i ∈ Z, 0 ≤ l ≤ li − 1 (4-14)

Since {uil(n)} is zero when n /∈ (ai − εi, ai+1 + εi+1], the last equation can also be given by

cil =
N−1∑
n=0

x(n)uil(n) (4-15)

=
ai+1+εi+1∑
n=ai−εi+1

x(n)uil(n)

4.2 Time-Frequency Representation of the Partitioned Signal

Contrary to other orthogonal representations, where the basis functions are fixed and ordered

such as Fourier or discrete cosine transformation, the basis functions used in our representation are

not fixed and ordered according to their frequency content. They do not have a standard form
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and are signal dependent. For example, the first basis function does not necessarily correspond to

the lowest frequencies present in the signal. The basis functions in a KL expansion are ordered

according to their corresponding eigenvalues. As a result, the expansion coefficients cjl do not carry

any information about frequency. But if basis functions are represented by Fourier bases, one can

obtain the coefficients giving the frequency information we need.

Let us represent {φ̃il(n)} in terms of exponentials

φ̃il(n) =
N−1∑
k=0

dil(k)ejωkn (4-16)

where ωk = 2πk
N

. By substituting the last equation in Equation (4-5), we get

uil(n) = wi(n)
N−1∑
k=0

dil(k)ejwkn (4-17)

Then replacing uil(n) in Equation (4-3) results in the following representation of x(n)

x(n) =
I−1∑
i=0

li−1∑
l=0

cilwi(n)
N−1∑
k=0

dil(k)ejwkn

=
N−1∑
k=0




I−1∑
i=0

li−1∑
l=0

cilwi(n)dil(k)


 ejwkn (4-18)

Equation (4-18) is similar to the Wold-Cramer representation[19]. According to the Wold-Cramer

representation , a non-stationary signal x(n) can be expressed as

x(n) =
∫ π

−π
A(n, ω)ejωndZ(ω) (4-19)

Z(ω) is an orthogonal process with E{dZ(ω} = 0 ∀ω and

E{dZ(ω1)dZ(ω2)} =
1

2π
δ(ω1 − ω2)dω1dω2

where E is the expected value operator. The evolutionary spectrum is then defined as

S(n, ω) = |A(n, ω)|2 (4-20)

For a non-stationary deterministic signal an analogous Wold-Cramer representation of x(n) is

possible and can be given in its discrete form as

x(n) =
K∑

k=0

X(n, k)ejωkn (4-21)

49



A discrete evolutionary transformation (DET) is obtained by expressing the kernel X(n, k) directly

from the signal [58]. In the next section, we will show how orthonormal extension of partitioned

signal can be used to obtain the kernel. The evolutionary spectrum is then defined in terms of the

kernel. Unlike STFT, the windows turn out to be dependent on time and frequency and the KL

bases functions. We will give the definition of the DET which uses sinusoidal basis.

Then, in the discrete frequency case shown in Equation (4-18), the time-frequency kernel can

be defined as

X(n, k) =
I−1∑
i=0

li−1∑
l=0

cilwi(n)dil(k) (4-22)

Thus, the evolutionary spectrum of x(n) will be given as

S(n, k) = |X(n, k)|2 (4-23)

where n corresponds to time and k corresponds to frequency.

The method takes advantage of the local characteristics of the KL bases and uses partitioning

to find an optimal representation of the signal. The proposed method has better time and frequency

resolution compared to spectrogram and Choi-Williams distribution as demonstrated by the examples

at the end of this chapter. Furthermore it does not suffer from cross terms as Wigner and Choi-

Williams distributions do.

4.3 Sinusoidal DET

In this case, we wish to associate the sinusoidal representation in Equation (4-21) with an inverse

discrete form that provides the evolutionary kernel X(n, k) in terms of signal, more specifically in a

form such as

X(n, k) =
N−1∑
m=0

x(m)Wm(n, k)e−jωkm (4-24)

where Wm(n, k) is in general a time and frequency dependent window. The sinusoidal DET and its

inverse will then be given by Equation (4-21)and (4-24). The evolutionary spectrum will then be
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defined as

S(n, k) = |X(n, k)|2 (4-25)

The DET is a generalization of the STFT and S(n, k) is a generalization of the spectrogram. Equation

(4-24) corresponds to the STFT of x(n) when window Wm(n, k) is a function of m.

4.4 KL Based Sinusoidal DET

Let x(n) can be represented as

x(n) =
I−1∑
i=0

xi(n) (4-26)

The discrete evolutionary transform (DET) X(n, k) can be derived from the KL representation of

the segmented signal xi(n) given by

xi(n) =
li−1∑
l=0

ciluil(n) (4-27)

Replacing Equation (4-5) in the last equation gives

xi(n) =
li−1∑
l=0

cilwi(n)φ̃il(n) (4-28)

Then, replacing Equation (4-16) in Equation (4-28) results in

xi(n) =
li−1∑
l=0

cilwi(n)
N−1∑
k=0

dil(k)ejωkn

=
N−1∑
k=0

li−1∑
l=0

cilwi(n)dil(k)ejωkn (4-29)

By replacing the coefficients ( Equation (4-15)) in the last equation, we obtain the segmented

signal representation from the whole signal

xi(n) =
N−1∑
k=0

li−1∑
l=0

N−1∑
m=0

x(m)uil(m)wi(n)dil(k)ejωkn

=
N−1∑
k=0

[
N−1∑
m=0

x(m)Wi
m(n, k)e−jωkm

]
ejωkn (4-30)
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where window Wi
m(n, k) is defined as

Wi
m(n, k) =

li−1∑
l=0

uil(m)wi(n)dil(k)ejωkm (4-31)

Comparing Equation (4-30) with Equation (4-21) yields the evolutionary kernel Xi(n, k) of xi(n)

as

Xi(n, k) =
N−1∑
m=0

x(m)Wi
m(n, k)e−jωkm (4-32)

The KL based discrete evolutionary transform X(n, k) of x(n) is then given by

X(n, k) =
I−1∑
i=0

Xi(n, k)

=
N−1∑
m=0

x(m)
I−1∑
i=0

Wi
m(n, k)e−jωkm (4-33)

Then defining Wm(n, k) =
∑I−1

i=0 Wi
m(n, k), we have

X(n, k) =
N−1∑
m=0

x(m)Wm(n, k)e−jωkm (4-34)

Then, evolutionary spectrum is given by

S(n, k) = |X(n, k)|2 (4-35)

The evolutionary kernel X(n, k) is a generalization of the STFT with a window Wm(n, k) varying

in time and frequency. If the window has the property that
∑

k Wm(n, k)ejωk(n−m) = δ(n − m), the

original signal can be recovered as

∑
k

X(n, k)ejωkn =
∑
k

[
N−1∑
m=0

x(m)Wm(n, k)e−jωkm

]
ejωkn

=
N−1∑
m=0

x(m)
∑
k

Wm(n, k)ejωk(n−m)

=
N−1∑
m=0

x(m)δ(n − m)

= x(n) (4-36)
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Once the windows {Wm(n, k)} are obtained and satisfy the above condition, the DET and its

inverse are obtained as

X(n, k) =
N−1∑
m=0

x(m)Wm(n, k)e−jωkm (4-37)

x(n) =
∑
k

X(n, k)ejωkn (4-38)

4.5 Properties of The Evolutionary Spectrum

4.5.1 Energy

According to Parseval’s theorem, the energy of a signal is the same whether it is calculated in

time domain or in the frequency domain. We need to show that S(n, k) is an energy density. Energy

of the signal is given by

N−1∑
n=0

|x(n)|2 =
N−1∑
n=0

x(n)x∗(n) (4-39)

Replacing Equation (4-3) in the last equation we get

N−1∑
n=0

|x(n)|2 =
N−1∑
n=0

li−1∑
l=0

I−1∑
i=0

ciluil(n)
li−1∑
p=0

I−1∑
r=0

c∗pru
∗
pr(n)

=
li−1∑
l=0

I−1∑
i=0

cil

li−1∑
p=0

I−1∑
r=0

c∗pr

N−1∑
n=0

uil(n)u∗
pr(n)

=
li−1∑
l=0

I−1∑
i=0

cil

li−1∑
p=0

I−1∑
r=0

c∗prδiplr

=
li−1∑
l=0

I−1∑
i=0

|cil|2 (4-40)

Energy can also obtained from S(n, k), i.e.,

∑
n

∑
k

S(n, k) =
∑
n

∑
k

|x(n, k)|2

=
∑
n

∑
k

N−1∑
m=0

x(m)Wm(n, k)e−jωkm
N−1∑
p=0

x∗(p)W∗
p(n, k)ejωkp

=
N−1∑
m=0

x(m)
N−1∑
p=0

x∗(p)
∑
n

∑
k

Wm(n, k)W∗
p(n, k)ejωk(p−m) (4-41)

If

Wm(n, k)W∗
p(n, k)ejωk(p−m) = δ(p − m) 0 ≤ m, p ≤ N − 1 (4-42)
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we have that

∑
n

∑
k

S(n, k) =
N−1∑
n=0

|x(n)|2 (4-43)

The energy is the same in both time and frequency domain.

4.5.2 Time Marginal

Time marginal is satisfied if TM(n) =
∑

k S(n, k) = |x(n)|2. Similarly, by imposing a condition

on windows, one can satisfy the time marginal.

TM(n) = =
∑
k

S(n, k)

=
∑
k

N−1∑
m=0

x(m)Wm(n, k)e−jωkm
N−1∑
p=0

x∗(p)W∗
p(n, k)ejωkp

=
N−1∑
m=0

x(m)
N−1∑
p=0

x∗(p)
∑
k

Wm(n, k)W∗
p(n, k)ejωk(p−m) (4-44)

If
∑

k Wm(n, k)W∗
p(n, k)ejωk(p−m) = δ(m−p)δ(m−n) for 0 ≤ m,n, p ≤ N −1, then the time marginal

will be satisfied.

4.5.3 Frequency Marginal

Frequency marginal of the evolutionary spectrum is satisfied if

|X(ejwk)|2 =
∑
n

S(n, k) = FM(k) (4-45)

where X(ejwk) is the discrete Fourier transform of x(n).

Frequency marginal of the evolutionary spectrum can be calculated as

FM(k) =
N−1∑
n=0

S(n, k)

=
N−1∑
n=0

A(n, k)A∗(n, k)

=
N−1∑
n=0

N−1∑
m=0

x(m)Wm(n, k)e−jωkm
N−1∑
p=0

x∗(p)W∗
p(n, k)ejωkp

=
N−1∑
m=0

x(m)e−jωkm
N−1∑
p=0

x∗(p)ejωkp
N−1∑
n=0

Wm(n, k)W∗
p(n, k) (4-46)
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If
∑N−1

n=0 Wm(n, k)W∗
p(n, k) in Equation (4-46) is equal to a constant for 0 ≤ m, p ≤ N − 1 then

the frequency marginal is satisfied.

Example 1: The signal used in this example is given by

x =




sin(.6πn) 0 ≤ n < 74

sin(.2πn) + sin(.4πn) 75 ≤ n < 115

sin(.2πn) 115 ≤ n < 174

and shown in Figure 10(a). Reconstructed signal and magnitude squared reconstruction error dis-

played in Figures 10(b) and (c). It is clear that we have a very small reconstruction error which

exists between different segments. The error at the beginning and at the end of the signal also

comes from using windows. Time-frequency representations of the signal using OPTR, spectrogram,

Wigner-Ville and Choi-Williams (σ = 1) distribution are shown in Figures 11(a)-(d). It is clear from

the figure that OPTR showed a better time frequency resolution compared to all other methods.

Furthermore the sudden changes in the frequency of the signal detected clearly in OPTR while in

the other representations it was blurred. OPTR and Spectrogram did not suffer from cross terms

in contrast to Choi-Williams and Wigner distributions. Time and frequency marginals of the same

signal obtained from OPTR are displayed in Figures 12 and 13. The length of the segmentation

window is 16. 64-point Hanning window was used for spectrogram analysis. All representations are

given in logarithmic scale.
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Figure 10 (a) Original signal (b) Reconstructed signal (c) Mean squared reconstruction error.
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Figure 11 Power spectra of the simulated signal obtained using OPTR (segmentation window
length L is 16 points) (a), Spectrogram using a 64-point Hanning window (b), the Wigner-Ville
distribution (c) and the Choi-Williams distribution (σ = 1) (d). All power spectra are shown on a
logarithmic scale.
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Figure 13 (a) Frequency marginal (b) Power spectrum of x(n).
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Example 2: The OPTR is tested on a chirp signal in this example. The signal, reconstructed

signal and reconstruction error are shown in Figures 14(a)-(c). Time-frequency representations of

the signal using OPTR, spectrogram, Wigner-Ville and Choi-Williams (σ = 1) distribution are

shown in Figures 15(a)-(d). Although OPTR was able to follow the changing frequencies in the

signal correctly, it did put some artificial boundaries which was not the case with other methods.

On the other hand resolution of OPTR was better than spectrograms and it did not suffer from

the cross terms in contrast to Wigner-Ville and Choi-Williams distributions. Time and frequency

marginals of OPTR are displayed in Figures 16 and 17. The length of the segmentation window is

16. A 32-point Hanning window was used for spectrogram analysis. All representations are given in

logarithmic scale.
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Figure 14 (a) Original signal (b) Reconstructed signal (c) Mean squared reconstruction error.
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Figure 15 Power spectra of the chirp signal obtained using OPTR (segmentation window length
L is 16 points) (a), Spectrogram using a 32-point Hanning window (b), the Wigner-Ville distribution
(c) and the Choi-Williams distribution (σ = 1) (d). All power spectra are shown on a logarithmic
scale.

60



0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2
Time marginal

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1
Magnitude squared signal

Samples

Figure 16 (a) Time-marginal (b) Magnitude square of x(n).

0 0.1 0.2 0.3 0.4 0.5
20

40

60

80

100

120

140
Spectrum of the signal

Frequency

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25
Frequency marginal

Figure 17 (a) Frequency marginal (b) Power spectrum of x(n).

61



Example 3: In this example the method is tested on a more complex signal comprised of sinusoidal

and linear FM signals and sinusoids of different frequencies. The signal, reconstructed signal and

reconstruction error are shown in Figures 18(a)-(c).The power spectrum obtained using OPTR (Fig-

ure 19(b)) is compared with the one obtained using spectrogram, Wigner-Ville and Choi-Williams

distributions. (Figures 19(c)-(e)).

The time-frequency representation of this simulated signal is sufficiently clear obviating the

need for time-frequency analysis of the most significant basis vectors. However, this “direct” time-

frequency approach may not be effective when applied to the actual multicomponent physiological

signals as will be shown later. OPTR has a higher time and frequency resolution than the spectrogram

and Choi-Williams distribution. OPTR produces sharp inter-segment boundaries that coincide with

the boundaries of the time segments, whereas in the other two methods, the boundaries between

adjacent time segments are blurred. On the other hand, OPTR gives artificial boundaries for linear

and sinusoidal FM signals which was not the case with other methods. The frequency resolution

of OPTR reveals the sharp dominant frequency content of each time segment better than the other

methods. Choi-Williams and Wigner-Ville distributions also suffered from cross terms in contrast to

OPTR and spectrogram.
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Figure 18 (a) Original signal (b) Reconstructed signal (c) Mean squared reconstruction error.
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Figure 19 A simulated signal obtained by concatenating segments with different properties (a), and
its power spectra obtained using OPTR (segmentation window length L is 30 points) (b), Spectro-
gram using a 64-point Hanning window (c), the Wigner-Ville distribution (d) and the Choi-Williams
distribution (σ = 1) (e). All power spectra are shown on a logarithmic scale.

For relatively simple signals that exhibit few changes in a few frequency components, such

as the simulated signals used in above examples, direct time-frequency representation without pre-

processing is applied (i.e., the method is applied directly to the signal). However, for the complex

signals, to avoid the smearing caused by direct time-frequency representation, pre-processing and

exposure of the most significant features is required in each time segment. Although partitioning

facilitates the analysis of the time-dependent variations in the structure of multicomponent signals,

direct representation of signals that exhibit simultaneous, wide-range (complex) changes in multiple
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frequency elements produces smeared time-frequency representations. This is usually the case with

real signals. Therefore, getting a clear picture of changes in time-frequency plane for real signals is

achieved by 1) extracting the most significant eigenvectors in each time segment, 2) representing each

eigenvector in each time segment in the time-frequency plane (decomposed time-frequency represen-

tation), and 3) constructing the time series of the corresponding representations by concatenating all

segments together. This will be illustrated in the next chapter.
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5.0 APPLICATION TO HEART RATE VARIABILITY DATA

The relationship between autonomic nervous system and cardiovascular mortality caused the

development of quantitative markers of the autonomic nervous system. Heart rate variability (HRV)

became one of the most widely used indicators to describe variations of both instantaneous heart

rate and RR intervals. An RR interval is shown in Figure 20 and it is described as the time distance

between two consecutive heart beats. To describe oscillation in consecutive cardiac cycles, other

terms such as cycle length variability, RR variability, heart period variability have been used in

literature but none of them has been accepted as widely as HRV.
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Figure 20 A typical ECG signal and RR-interval.

5.1 Extraction of HRV Data

HRV signals used here are obtained as follows: Electrocardiographic signals were recorded

continuously using ambulatory (Holter) recorders. ECG data were digitized at 400 Hz, and QRS

complexes were detected using a commercial scanning system and custom software, and verified by

a cardiologist. The RR-intervals between normal QRS complexes were extracted, and a regularly

spaced time series was sampled at 1 Hz using a boxcar low-pass filter [59]. Gaps in the time series

66



resulting from noise or ectopic beats were filled in with linear splines, which can cause a small

reduction in high-frequency power but do not affect other components of the power spectrum.

5.2 Frequency Domain Analysis

Spectral analysis of HRV represents a major challenge because the structure of the signal in-

cludes multiple periodic, pseudo-periodic, and a-periodic components [42]. Frequency domain analysis

contributed to the understanding of autonomic background of RR interval fluctuations [12]. Spectral

analysis of HRV signals is a non-invasive method to study autonomic influences. In many cases,

[59, 60] this analysis is carried out using standard Fourier analysis, which allows the decomposition of

a signal into individual frequency components and establishes the relative intensity of each compo-

nent. Alternatively, to provide average spectral estimates, long-term (24-hour or longer) recordings

accumulating multiple cycles of the studied periodicities are used [61]. The power spectrum indicates

what frequencies exist in the signal, and their intensity, but it does not reveal when these frequencies

occur. In other words, the analysis is carried out assuming that the HRV signal is stationary. The

HRV signal considered for such studies is typically in the range of a few minutes. However, there

can be physiological phenomena such as physical stress, emotional stress and response to postural

changes that can occur in this span of time [62] causing the statistics of the HRV signal to change. In

such cases, the study of HRV signal density jointly in time and frequency is of great interest.

Time-frequency analysis of HRV signals has been performed with methods such as the spectro-

gram [63], the Wigner distribution [6] and the evolutionary periodogram [64]. While the time-frequency

resolution of the spectrogram is badly affected by the windowing, the Wigner distribution cannot

guarantee positivity of the estimates and shows cross terms. On the other hand, time-frequency anal-

ysis of multicomponent physiological signals such as cardiac rhythm is complicated by the presence

of numerous overlapping frequency elements.
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5.2.1 Physiological Experiments

The proposed method was tested on the heart rate variability (HRV) signals obtained in humans

during physiological experiments and ambulatory conditions. Series of RR-intervals were separated

into 15-min intervals, and a mean value in each interval was subtracted from the data. The starting

window length was 60 sec for the short window and 120 sec for the long window. Threshold values

are estimated as described in the boundary detection algorithm in Chapter 3 and α1, α2, α3 were 1,

.75, .75 respectively.

5.2.1.1 Controlled Respiration. HRV is modulated by respiration, and the HRV power spec-

trum exhibits a clear peak at the frequency of respiration [5]. Temporal variations in the frequency of

breathing shift the location of the respiratory peak in HRV. Thus, respiration whose frequency is syn-

chronized with external stimuli provides an “input” physiological signal with known time-frequency

characteristics, and changes in HRV give the respective “output” signal whose time-frequency repre-

sentation is being investigated. In our experiments, the frequency of respiration was controlled using

computer-generated audio-signals. After 10 min of rest in a sitting position, the subjects were asked

to breath synchronously with the sequence of audio-stimuli, whose frequency increased in 0.05 Hz

increments from 0.015 to 0.4 Hz.

As shown in Figure 21, controlled respiration markedly changes the structure of the HRV signal.

Using the variance of the most significant KL coefficients as the basis for a reliable and computation-

ally efficient low-resolution partitioning, the onset and offset of the controlled respiration are readily

identified. Figure 21(b) through 21(d) displays the first, second and third KL coefficients time se-

ries respectively. By selecting the section of the time series with low variance (section between two

vertical lines in Figure 21) the segment corresponding to controlled respiration is determined. Next,

the time-frequency representation obtained using OPTR (which includes the high-resolution parti-

tioning), short-time Fourier transform, and evolutionary periodogram during the selected segment of
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controlled respiration is shown in Figure 22. In these controlled conditions, the frequency content of

the signal is relatively simple. Therefore, direct time-frequency representation of the raw signal and

representations of the most significant eigenvectors would provide essentially the same information.

This shows that the time-frequency representation of relatively simple physiological signals could be

obtained directly and so that the time-frequency analysis of the basis vectors would be redundant.

OPTR accurately reproduced the incremental increase in the frequency of HRV, which followed

the changes in the respiratory frequency. By contrast, STFT and EP representations required post

processing (such as taking power of the spectrum) to reveal the dominant frequency content.
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Figure 21 A representative example of a 1-hr long HRV signal (a), Time series of the first (b) the
second (c) and the third (d) KL coefficients. The segment between two vertical lines represents a
period of controlled respiration (see section 4.2.1 for details).
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Figure 22 The HRV signal (mean was subtracted) that corresponds to the selected segment of
controlled respiration (a), and its time-frequency representation obtained using OPTR (b), EP (c),
and STFT (d).

5.2.1.2 Valsalva Maneuver. After sitting quietly for 10 min, subjects were asked to blow against

pneumatic resistance during 30 sec, while maintaining a predetermined pressure [65]. Changes in

the venous return to the heart and the stroke volume lead to changes in autonomic nervous system

activity reflected in the modifications of cardiac rhythm. Initial short-time HR decrease is usually

followed by a HR increase reflecting an increase in sympathetic activity [65]. Changes in the autonomic

nervous system activity also produce changes in the spectral energy distribution during the test [63].

In agreement with previous reports [63], changes in the cardiac rhythm during Valsalva maneuver

included several stages. A short period of faster, sympathetically mediated HR response was followed

by a longer period of slower HR (Figure 23(a)). Changes in the frequency content of the signal were

also similar to the previous observations by Pola et al [63]. An initial increase in the low frequency
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power was followed by an increase in the higher frequency power, and then again by an increase in

the low frequency power. These distinct spectral energy variations were clearly exposed by OPTR

but blurred by the other studied time-frequency representations (Figure 23(b)-(d)).
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Figure 23 An example of the HRV signal obtained during Valsalva maneuver (a), and its time-
frequency representations obtained using OPTR (b),EP (c), and STFT (d).

5.2.1.3 Headup Tilt. Fast change from supine to vertical body position causes an increase in

blood volume below the diaphragm and a decrease in the blood flow in the organs above the level

of the heart [5]. Because steady blood flow is critical for normal brain functioning, changes in body

position cause an immediate increase in the sympathetic nervous system activity, which maintains

normal level of blood flow to the brain by contracting peripheral blood vessels and increasing cardiac

output. A typical response to headup tilt includes an increase in heart rate and a decrease in the

high frequency spectral power of HRV.

The experiment consisted of 3 phases, baseline in a supine position during 10 min, passive,
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headup 70 tilt during approximately 45 min followed by 10-min rest in a supine position. The protocol

was approved by the Institutional Review Board of the University of Pittsburgh. Each subject was

asked to sign an informed consent prior to the study. OPTR was applied to the HRV signals obtained

from 34 subjects undergoing headup tilt. The subjects were divided into asymptomatic (Group 1:

20 subjects, age: 50.1±19.5 years, 9 male) and symptomatic (Group 2: 14 subjects, age: 45.1±20.4

years, 4 male). The symptoms included dizziness, lightheadedness, nausea and vomiting. None of

the subjects had structural heart disease.

Note, that due to the multicomponent structure of this signal, a direct time-frequency rep-

resentation is obscured and difficult to comprehend (Figure 24 (c),(d),(e)). For such signals, the

time-frequency representation of the most significant basis vectors provides effective filtering of the

information from the least significant eigenvectors to reveal the dominant changes in the signal prop-

erties (Figure 25).

To analyze the differences in the time-varying energy distributions between the two groups,

we used the low-order conditional time-frequency moments, which effectively compress the informa-

tion by tracking the changes in important physical properties of the signal. Energy distribution is

compared by looking at the frequency band where most of the energy (70% of the total energy) is

concentrated. Frequency band is estimated at each time in time-frequency plane before, during and

after the tilt. Then taking the average of all frequency bands, we came up with a single number

before, during and after tilt for every single subject. Then the frequency band is compared between

two groups using nonparametric Mann-Whitney U-test.

At the beginning of the tilt, RR-intervals decrease in most patients and remain short until return

to the supine position (Figure 24(a)). In asymptomatic patients (Figures 25-31, right column),

the spectral energy is stable during the tilt and concentrated near 0.1 Hz, the frequency of the

sympathetically modulated vasomotor tone. It has long been known that efficient adjustment to

the vertical body position is accompanied by an increase in vascular activity [5]. However, due to
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the multicomponent structure of the HRV signal, it has been difficult to detect the above-described

pattern of the energy concentration without applying OPTR to the basis vectors. OPTR has also

showed that symptomatic subjects had unstable and widely spread energy distribution (Figure 25-31,

left column).

The frequency band where most of the energy is concantrated is compared in symptomatic and

asymptomatic subjects for the five most significant basis vectors. Frequency band was smaller for

asymptomatic patients compared to symptomatic ones for all eigenvectors (Figure 32).
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Figure 24 A representative example of the HRV signal obtained from asymptomatic subject during
head up tilt (a), mean subtracted signal (mean is subtracted in each 15-min interval) (b), time-
frequency representations of mean subtracted signal obtained using OPTR (c), Spectrogram using a
128-point Hanning window (d)), the Choi-Williams distribution (σ = 1) (e).
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Figure 25 Time-frequency representations of the HRV basis vectors during head-up tilt in a symp-
tomatic subjects (left column) and an asymptomatic subjects (right column).TS stands for tilt start
and TE stands for tilt end.

74



0 20 40 60

500

1000

1500

F
re

q
u

e
n

c
y

0 20 40 60
0

0.1

0.2

F
re

q
u

e
n

c
y

0 20 40 60
0

0.1

0.2

Time(min)

F
re

q
u

e
n

c
y

0 20 40 60
0

0.1

0.2

0 20 40 60

500

1000

1500

F
re

q
u

e
n

c
y

0 20 40 60
0

0.1

0.2

F
re

q
u

e
n

c
y

0 20 40 60
0

0.1

0.2

Time(min)

F
re

q
u

e
n

c
y

0 20 40 60
0

0.1

0.2

TS TE TS TE 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

Figure 26 Time-frequency representations of the HRV basis vectors during head-up tilt in a symp-
tomatic subjects (left column) and an asymptomatic subjects (right column).TS stands for tilt start
and TE stands for tilt end.
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Figure 27 Time-frequency representations of the HRV basis vectors during head-up tilt in a symp-
tomatic subjects (left column) and an asymptomatic subjects (right column).TS stands for tilt start
and TE stands for tilt end.
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Figure 28 Time-frequency representations of the HRV basis vectors during head-up tilt in a symp-
tomatic subjects (left column) and an asymptomatic subjects (right column).TS stands for tilt start
and TE stands for tilt end.

77



F
re

q
u

e
n

c
y

0 20 40 60 80
0

0.1

0.2

F
re

q
u

e
n

c
y

0 20 40 60 80
0

0.1

0.2

Time(min)

F
re

q
u

e
n

c
y

0 20 40 60 80
0

0.1

0.2

0 20 40 60 80
500

1000

1500

F
re

q
u

e
n

c
y

0 10 20 30 40 50
0

0.1

0.2
0 10 20 30 40 50

500

1000

1500

2000

F
re

q
u

e
n

c
y

0 10 20 30 40 50
0

0.1

0.2

Time(min)

F
re

q
u

e
n

c
y

0 10 20 30 40 50
0

0.1

0.2

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

Figure 29 Time-frequency representations of the HRV basis vectors during head-up tilt in a symp-
tomatic subjects (left column) and an asymptomatic subjects (right column).TS stands for tilt start
and TE stands for tilt end.
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Figure 30 Time-frequency representations of the HRV basis vectors during head-up tilt in a symp-
tomatic subjects (left column) and an asymptomatic subjects (right column).TS stands for tilt start
and TE stands for tilt end.
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Figure 31 Time-frequency representations of the HRV basis vectors during head-up tilt in a symp-
tomatic subjects (left column) and an asymptomatic subjects (right column).TS stands for tilt start
and TE stands for tilt end.
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Figure 32 Frequency bands obtained from OPTR of five eigenvectors during tilt for symptomatic
and asymptomatic subjects. p numbers were obtained using Mann-Whitney U test. (p < .05 indicates
the significant differences between groups).

Since the tilt data is relatively long (approximately 1.5 hour) estimation of the T-F represen-

tation by using OPTR takes some time. To make the process faster we suggest another way of

analyzing the tilt data. In here, we first perform low resolution partitioning on tilt data then we

select segments of the tilt data according to low resolution partitioning. By doing so we reduce the

amount of data dramatically. Now instead of performing OPTR on the whole tilt data, we only

perform on the section of the data which is selected with the help of low resolution partitioning.

This kind of an application is illustrated in the following two examples. Please note that this is just

an illustration of using low resolution partitioning and OPTR together to reduce the computational

cost.

Figure 33(a) shows the tilt data of an asymptomatic subject. Figures 33(a)-(b) correspond to

global KL coefficient time series of the same data. As we can see the standard deviation(SD) of the

coefficients increase around 130 sample indicating a change in the structure of the tilt data. Actually
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the time of the increase in SD of coefficients correspond to approximate time of tilt ending and start

of the supine position. Then we selected two 5 min intervals of the tilt data before and after that

time. Since signal structure changed at that time, choosing short intervals of the data before and

after the change and performing OPTR on those intervals can give us an idea of how the signal

properties changed. Selected short intervals and their corresponding T-F representations are shown

in Figures 34(b)-(e). It is clear from the Figures 34(c) and (e) that signal energy concentrated in a

small frequency band in prior short interval. On the other hand, signal energy was spread wide in

time-frequency plane in posterior short interval.

We performed the same procedure in another tilt data shown in Figure 35(a). This time the

data came from a symptomatic subject. Similarly to previous example, KL coefficients indicated

the approximate time of tilt ending. In this case the energy of signals in both short intervals did

not differ much (Figures 36(c),(e))indicating that contrary to asymptomatic patients, symptomatic

patients may not react to changes in the body position appropriately.

82



0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

1000

2000

0 50 100 150
0

5000

10000

0 50 100 150
−2000

0

2000

0 50 100 150
−1000

0

1000

0 50 100 150
−1000

0

1000

0 50 100 150
−1000

0

1000

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 33 HRV data of an asymptomatic subject during tilt test (a). First (b), second (c), third
(d), fourth (e), fifth (f) global KL expansion coefficients series.
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Figure 34 HRV data (a), a section of HRV data during tilt (b) and its time-frequency representation
using OPTR (c), a section of HRV data after tilt (d) and its time-frequency representation using
OPTR (e).
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Figure 35 HRV data of a symptomatic subject during tilt test (a). First (b), second (c), third (d),
fourth (e), fifth (f) global KL expansion coefficients series.
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Figure 36 HRV data (a), a section of HRV data during tilt (b) and its time-frequency representation
using OPTR (c), a section of HRV data after tilt (d) and its time-frequency representation using
OPTR (e).
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5.2.2 24-Hour Ambulatory Recording

The 24-hour ambulatory ECG was recorded from a 62 year-old man without a prior history of

structural heart disease. The data were obtained in sinus rhythm, but at the end of the recording,

the patient suffered an episode of paroxymal atrial fibrillation.

The 24-hour HRV signal (Figure 37(a)) has been processed using GKL expansion to obtain time

series of the projection coefficients (Figures 37(b-g)). An increase in the variance of the time series

allows selecting a 1-hr segment at the end of the recording, in which the signal becomes unstable

(Figure 37(h)). In this segment, changes in the structure of the signal were further investigated

using OPTR (Fig. 28(i)), spectrogram with a 128 point Hanning window (Figure 37(j)) and the

Choi-Williams (Figure 37(k)) TFR. OPTR of the 1-hr signal shows transients at 30-40 and 50-60

min more clearly than the other TFR. However, because the structure of the signal is complex, the

“direct” TFR is difficult to comprehend. OPTR of the 3 most significant eigenvectors (Figure 37(l-h))

reveals the underlying patterns of changes in the signal.
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Figure 37 The 24-hour HRV signal obtained from an ambulatory Holter recording (a), time series
of the GKL coefficients (b-g), a 1-hour segment of the HRV signal selected by using the changes in
variance of the time series of the GKL coefficients (h), OPTR (i), Spectrogram using a 128-point
Hanning window (j) and the Choi-Williams (k) TFR of 1-hour data. OPTR of the 3 most significant
basis functions of the 1 hour data (l-n).
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6.0 CONCLUSIONS

In this study, we first developed a new segmentation algorithm for nonstationary signals. The

algorithm consists of two parts which can be applied together or independently: a low resolution

algorithm which uses global features of the signal and high resolution algorithm which uses local

features of the signal for partitioning. The low resolution partitioning is based on the projection of

time series onto a small set of global basis vectors, compressing the information into a few projection

coefficients. In the high resolution partitioning, the basis vectors are local. Changes in the structure

of a signal may be detected by comparing the number of the eigenvalues of a covariance matrix of

short intervals in the signal.

Then, we came up with a new TF representation which uses high resolution partitioning and lo-

cal KL bases. The method is compared with other TF representations such as spectrogram, Wigner-

Ville and Choi-Williams distributions. Proposed method accurately tracked the time-varying fre-

quency content of the signals and showed better time and frequency resolution than the other meth-

ods. Unlike other time-frequency analysis methods, it also provides simultaneously a representation

of the signal and its time-varying spectrum. Furthermore, the proposed method did not suffer from

the cross terms as Choi-Williams and Wigner-Ville distributions did. On the other, it generated

some artificial boundaries for signals such as linear and sinusoidal FM. The method is referred to

as orthonormal basis partitioning and time-frequency representation (OPTR) and applied to HRV

signals.

Time-frequency representations of nonstationary HRV signals have been extensively studied pre-

viously, and several alternative approaches have been proposed [4, 5, 63]. The traditional time-frequency

representations, including the short-time Fourier transform, the exponential and the Wigner distri-

butions have been used to demonstrate HRV changes during controlled physiological and pharmaco-

logical experiments. In these controlled conditions, changes in the signal structure usually involve a
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few, distinct frequency elements, which could be readily detected by visual inspection and quantified

by the spectral energy integration over the range of interest [63]. In uncontrolled, real-life conditions,

however, the number of overlapping frequency elements that exhibit simultaneous changes often

makes “direct” time-frequency representations incomprehensible.

OPTR obviates this problem and can be applied to all types of the HRV signals both in con-

trolled and in ambulatory conditions. First, the signal is partitioned into the segments with distinct

properties and then each segment is represented in the time-frequency plane using the basis functions

that are derived from the signal itself.

We also describe different applications of this approach for various types of HRV signals. For

hours-long signals with multicomponent structure, first we apply an efficient low-resolution partition-

ing to select the transients and short segments of interest. For short segments, we apply a more com-

putationally demanding high-resolution partitioning with subsequent time-frequency representation.

Finally, for such “content-rich” multicomponent signals, we use the time-frequency representation of

the most significant basis vectors, which provides an effective compression of the information and

reveals the underlying dominant pattern. This was the case for HRV data obtained during a tilt test.

OPTR allowed us to differ a symptomatic subject from an asymptomatic subjects during a tilt test

therefore it can be used as a tool for diagnosis.

The effects of the window size on the time and frequency resolution have been described previ-

ously [5]. Note, that although the window lengths in OPTR are determined adaptively, by tracking

the changes in the signal structure, the size of the initial window used in partitioning can affect the

results. In particular, if the initial window size is too small, some of the frequency content of the

signal could be lost. On the other hand, long initial windows can diminish the time resolution and

lead to inaccurate partition. Thus, care and some a-priori knowledge are required for choosing the
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initial window length. In general, shorter physiological maneuvers, such as Valsalva maneuver, require

higher time resolution and shorter window length than more gradual orthostatic or pharmacological

tests.
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Orthonormality of the basis functions uil(n)

Since
∑

n uik(n)ujl(n) = 0 if |i − j| ≥ 2 for all i, j ∈ Z; therefore to have orthonormality we need to

prove that [46]

1.
∑

n uik(n)uil(n) = δkl for 0 ≤ k, l ≤ (li − 1)

2.
∑

n u(i−1)k(n)uil(n) = 0 for 0 ≤ k ≤ (l(i−1) − 1), 0 ≤ l ≤ (li − 1)

under the condition the Malvar windows have symmetric overlaps at the partition points.

Case 1 For i = j

∑
n

ujk(n)ujl(n) =
aj+1+εj+1∑
n=aj−εj+1

w2
j(n)φ̃jk(n)φ̃jl(n)

=
aj∑

n=aj−εj+1

w2
j(n)φjk(2aj − n + 1)φjl(2aj − n + 1)

+
aj+εj∑

n=aj+1

(w2
j(n) − 1)φjk(n)φjl(n)

+
aj+1∑

n=aj+1

φjk(n)φjl(n)

+
aj+1∑

n=aj+1−εj+1+1

(w2
j(n) − 1)φjk(n)φjl(n)

+
aj+1+εj+1∑
n=aj+1+1

w2
jφjk(2aj+1 − n + 1)φjl(2aj+1 − n + 1)

Since w2
j(n) + w2

j−1(n) = 1 which is the property of the Malvar windows, we get
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∑
n

ujk(n)ujl(n) =
aj∑

n=aj−εj+1

w2
j(n)φjk(2aj − n + 1)φjl(2aj − n + 1) (1)

+
aj+εj∑

n=aj+1

−w2
j−1(n)φjk(n)φjl(n) (2)

+
aj+1∑

n=aj+1

φjk(n)φjl(n) (3)

+
aj+1∑

n=aj+1−εj+1+1

−w2
j+1(n)φjk(n)φjl(n) (4)

+
aj+1+εj+1∑
n=aj+1+1

w2
jφjk(2aj+1 − n + 1)φjl(2aj+1 − n + 1) (5)

Equation 1 cancels Equation 2 and Equation 4 cancels Equation 5 due to property that wj(aj + τ) =

wj−1(aj − τ + 1) for τ ∈ (−εj, εj]. Then, the fact that
∑

n φjk(n)φjl(n) = δkl from Equation 3 so

∑
n ujk(n)ujl(n) = δkl.

Case 2 For i = j − 1

∑
n

uik(n)ujl(n) =
aj+εj∑

n=aj−εj+1

wj−1(n)wj(n)φ̃(j−1)k(n)φ̃jl(n)

=
aj∑

n=aj−εj+1

wj−1(n)wj(n)φ(j−1)k(n)φjl(2aj − n + 1) (6)

−
aj+εj∑

n=aj+1

wj−1(n)wj(n)φ(j−1)k(2aj − n + 1)φjl(n) (7)

The difference is cancelled for the same reason as case 1, so
∑

n u(j−1)k(n)ujl(n) = 0. This is also true

for the case i = j+1. Therefore, the basis functions {ujk(n)|j ∈ Z, 0 ≤ k ≤ lj−1} are orthonormal set.
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APPENDIX B

The 90% energy threshold

As we mentioned Chapter 3, we are looking at the differences in the number of the eigenvalues

of the covariance matrices of the windowed signals xs
j(n) = x(n)ws

j(n) aj − ε ≤ n ≤ aj+1 + ε and

xl
j(n) = x(n)wl

j(n), aj − ε ≤ n ≤ aj+2 + ε. Eigenvalues correspond to the eigenvectors which are

used to represent the local signals xs
j(n) and xl

j(n). The number of the eigenvectors used in signal

representation determines how good the representation is. Having a good representation without

using all the eigenvectors will allow us to distinguish between xs
j(n) and xl

j(n). In our algorithm we

chose the representation which will correspond to 90% of the energy of the local signal which results

in only 10% representation error. Since the eigenvalues are ordered from largest to smallest, 90%

will correspond to most significant ones. Least significant ones will be ignored. We could not use the

100% threshold (which is perfect representation) since, in this case, the number of the eigenvalues

N s
j and N l

j would be equal to length of the local signals. Since the length of the xs
j and xl

j are

always different, N s
j and N l

j would also be different all the time. Therefore the algorithm would give

many small segments even though the signal does not change. On the other hand, choosing a lower

threshold would results in a poor representation of the local signal and therefore the algorithm may

not detect the changes in the signal correctly.

We tested different threshold values and an example is shown in the following figure. Fig-

ure 38(a) shows the simulated signal needs to be segmented. The signal consists of two concatenated

sinusoids with different frequencies. Figure 38(b) through (d) displays the segments obtained by

using the local segmentation algorithm when 90%, 100% and 75% thresholds are chosen. It is clear
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from the figure that 90% threshold gave the best segmentation. On the other hand 100% threshold

gave so many small segments as expected. Although 75% threshold was good enough identify the

second sinusoid as one segment, it did not give one block for the first sinusoid.
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Figure 38 The simulated signal (a) Segments obtained by using the local segmentation algorithm
when thresholds were 90% (b), 100% (c) and 75% (d).
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