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ABSTRACT 

 

INTRAMODALITY AND INTERMODALITY REGISTRATION OF THE LIVER 

 

Wen-Chi Christina Lee, M.S. 

University of Pittsburgh, 2003 

 

 Radiological imaging of the liver is an important medical problem. The ever increasing 

amount of data acquired when imaging the liver makes integration of information desirable and 

crucial in building up a comprehensive diagnostic picture of the patient. The foundation of all 

such image integration is image registration. 

    Image registration is the process of aligning images so that corresponding features can 

easily be related, including: (1) landmark-driven methods, (2) surface-based methods, and (3) 

voxel similarity-based methods. 

 A challenge with registering the liver is that the liver moves within the abdomen with 

respiration. Therefore any effective alignment of the liver must first separate the liver from the 

remainder of the image. With this as a constraint, the goal of this research effort was to 

determine the feasibility and efficacy of surface-based and voxel similarity-based schemes in 

registering abdominal CT and MR images with and without contrast. 

A multi-scale surface fitting technique was implemented based on the Head and Hat 

algorithm. Equivalent surfaces from the in vivo images were extracted manually. The hand 

segmentation approach was validated by ensuring the volume of the liver of each image from the 
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same patient was consistently within ±7% of one another. The registration transformation was 

determined by iteratively transforming the hat with respect to the head surface, until the closest 

fit of the hat onto the head was found.  

In addition, registration of in vivo CT and MR images was performed using a multi-

resolution mutual information scheme distributed with the ITK Insight software package 

(National Library of Medicine, Bethesda, MD). As an independent measure of registration 

accuracy, the mean displacement of automatically selected point landmarks was evaluated. For 

the multi-resolution mutual information approach, mean misregistrations were in the range of 

7.7-8.4mm for CT-CT intramodality registration, 8.2mm for MR-MR intramodality registration, 

and 14.0-18.9mm for CT-MR intermodality registration. For the Head and Hat surface 

registration scheme, mean misregistrations were in the range of 9.6-11.1mm for CT-CT 

intramodality registration, 9.2-12.4mm for MR-MR intramodality registration, and 15.2-19.0mm 

for MR-CT intermodality registration. 
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1.0 INTRODUCTION 

 To visualize non-invasively human internal organs in their true form and shape has 

intrigued mankind for centuries. When Wilhelm Roentgen discovered what he called “a new 

kind of light” more than a century ago, he never anticipated that medical imaging would make 

such a vast impact on science, engineering, and medicine. Today, medical imaging has advanced 

to a stage that was inconceivable 100 years ago, with X-rays, fluoroscopy, ultrasound (US), 

computed tomography (CT), magnetic resonance imaging (MRI), single photon emission 

computed tomography (SPECT), and positron emission tomography (PET) scans becoming an 

integral part of modern healthcare. The introduction of these new technologies has increased the 

amount of information available to the clinicians, making computational techniques used to 

assist in the analysis of medical images desirable. The work of this thesis takes steps towards 

making the integration of useful data obtained from multiple imaging modalities beneficial to the 

diagnosis of hepatocellular carcinoma (HCC). 

1.1 GOALS AND CLINICAL MOTIVATION 

 Hepatocellular carcinoma (HCC) is the most common intra-abdominal malignancy 

worldwide with devastating mortality rates. HCC is most common in East Asia and Africa, 

however, the incidence of HCC is on the rise in the United States and Europe. Patients with 

clinical presentation of HCC have a five year survival rate of only 5%. HCCs commonly occur in 

the cirrhotic liver, secondary to liver injury due to hepatitis C virus (HVC), hepatitis B virus 

(HBV) and alcohol abuse [11]. Early detection is crucial for the treatment of HCC. If detected 
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early, before the onset of metastasis, HCCs can be successfully cured with liver resection or 

orthotopic liver transplantation.  

Current techniques used to screen HCCs include tri-phasic contrast enhanced CT and 

contrast enhanced MR, whereas contrast enhanced CT imaging is the standard technique for 

working up cirrhotic liver, even though contrast enhanced MR has been reported to have 

improved sensitivity for the detection of HCCs.  

A typical CT screening protocol includes high resolution imaging of the chest and 

abdomen without contrast, with contrast in the hepatic arterial phase, and with contrast in the 

portal venous phase. Even at a moderate slice of 5mm, the exams can include over 200 images. 

The large number of images makes clinical review tedious, and observer fatigue can reduce the 

detection rate of these tumors. We believe, therefore, that computer aided detection (CAD) will 

have a positive impact on the detection of HCC. For accurate identification of the tumors, the 

liver images must have accurate geometric correspondence. Accurate and robust registration is 

crucial in establishing this correspondence.   

1.2 THESIS OVERVIEW 

 
 i. The goal of this research effort was to evaluate the performance of surface-based and 

voxel similarity-based registration schemes in intrasubject CT-CT intramodality registration, 

intrasubject MR-MR intramodality registration, and intrasubject MR-CT intermodality 

registration. 
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 ii. A multi-scale surface fitting technique was implemented based on the Head and Hat 

algorithm proposed by Pelizzari and colleagues that included a manual segmentation approach to 

delineate the corresponding surfaces. 

 iii. Global registration of in vivo abdominal CT and MR images was performed using a 

multi-resolution mutual information scheme distributed with the ITK Insight software package 

(National Library of Medicine, Bethesda, MD). 

 iv. As an independent measure of registration accuracy, the mean displacement of 

automatically selected point landmarks was evaluated. 

1.3 GUIDE TO REMAINING CHAPTERS 

Chapter 2: Background information on liver imaging and the detection of HCC, the state of 

medical imaging, image segmentation, image registration, methods used for intramodality and 

intermodality registration. 

Chapter 3: Methods used to register liver images are described in detail, including the logic 

behind hand segmentation, the algorithm used to perform the head-and-hat surface registration 

and a voxel similarity scheme based a measure known as mutual information, and the algorithm 

behind the automatic detection of control point pairs used to evaluate the goodness of 

registration. 

Chapter 4: Results obtained from intrasubject CT-CT intramodality registration, intrasubject 

MR-MR intramodality registration, and intrasubject MR-CT intermodality registration using the 

surface fitting technique and ITK’s MultiResMIRegistration software are presented in this 

chapter. 
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Chapter 5: Discussion of registration results and factors contributing to misregistration; 

conclusion and work to be done in the future to improve liver registration.  
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2.0 BACKGROUND 

2.1 HISTORY OF MEDICAL IMAGING 

 In 1895, Wilhelm Roentgen, a German physicist working in his laboratory at the 

University of Wurzburg, made the “great discovery of the invisible ray” as he was making 

observations of fluorescence using cathode ray tubes [16]. The potential applications of 

“Roentgen’s ray” (subsequently nicknamed X-rays) in medicine and biology were quickly 

recognized. In a remarkably short time, scientist and physicians began exploiting this exciting 

new capability to “see into the body” in a painless, nondestructive way. 

 Nuclear medicine tomographic imaging and ultrasonography were important 

developments of the 1950’s and 1960’s. However, not until the 1970’s did the field again witness 

an “epoch-making” development of similar magnitude to that of Roentgen’s discovery when the 

development of X-ray computed tomography (CT) was witnessed [16]. Transaxial scanning, 

with a highly collimated rotating X-ray source, coupled with computer-based image 

reconstruction techniques, provides unambiguous discrimination of soft tissue differences, 

enabling physicians to examine internal structures of the body with a sensitivity and specificity 

never available to them before. 

   When computed tomography (CT) and its powerful cross-sectional images of any 

selected region of the body were introduced in the mid 1970’s, there seemed little need for 

another imaging technique in addition to this excellent tool. It is not surprising that when the 

magnetic resonance imaging (MR) technique first entered this remarkable arena, its initial 

modest efforts were regarded with much skepticism. However, developments over the last 

twenty-five years have prompted MRI to emerge as a powerful diagnostic imaging technique that 
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has become the method of choice for many applications. Its ability to provide information about 

the state of health of organs and tissue in addition to details of their shape and appearance offers 

major advantages over other methods. MRI can detect differences between normal and diseased 

tissue in images showing exquisite detail [2]. If the discovery of X-rays gave birth to radiology, 

the invention of computerized tomography has revolutionized radiology. Magnetic resonance 

imaging is perhaps what has brought us closer to fulfilling the age-old quest of non-invasive 

visualization. 

2.2 MEDICAL IMAGE ANALYSIS AND PROCESSING 

 The role of medical imaging has expanded beyond the simple visualization and 

inspection of anatomic structures. It has become a tool for surgical planning and simulation, 

intra-operative navigation, radiotherapy planning, and tracking the progress of disease [2]. In 

many cases, multiple images are acquired from subjects at different times, and often with 

different imaging modalities, leading to an increase in the amount of imaging data that needs to 

be processed and analyzed.  

 Processing and analyzing medical images includes a broad topic of areas, such as image 

enhancement, image compression and storage, image segmentation and matching or registration, 

and image-based visualization [41]. Automatic interpretation of medical images is a desirable, 

albeit very difficult long-term goal, since it can potentially increase the speed, accuracy, 

consistency, and reproducibility of the analysis. 
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2.3 IMAGE SEGMENTATION 

 Segmentation plays an important role in medical image processing. It is a fundamental 

task in image processing, providing the basis for any kind of further high level image analysis, 

such as image registration. In many cases, the segmentation process often dictates the outcome of 

the entire analysis, which further reinforces its significance. 

 Segmentation can be defined as the identification of “meaningful” image components 

[26]. It delineates structures of interest and discriminates them from the background and each 

other. This separation, which is generally effortless and swift for the human visual system, can 

become a considerable challenge in algorithm development. 

 A wide variety of automatic segmentation algorithms has been proposed. The most 

commonly used segmentation techniques fall into two broad categories: (1) region segmentation 

techniques that look for regions satisfying a given homogeneity criterion, and (2) edge-based 

techniques that look for an edge between regions with different characteristics. 

 Automatic segmentation algorithms are desirable since they can drastically decrease the 

labor intensiveness of manual approaches. However, they tend to produce unsatisfactory results 

and are unreliable, hence, the interactive or semi-automatic methodology is likely to remain 

dominant in practice for some time to come [2]. Manual methods yield excellent results because 

human operators not only apply the existing image data information, but also utilize additional 

model-based knowledge such as anatomical skills as well as complex psychological cognitive 

abilities with respect to orientation in space.        
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2.4 IMAGE REGISTRATION 

 Image registration is the process of aligning images so that corresponding features can 

easily be related. Since the mid 1980’s medical image registration has evolved from being 

perceived as a rather minor precursor to some medical imaging applications to a significant sub-

discipline in itself. Image registration has also become one of the more successful areas of image 

processing, with fully automated algorithms available in a number of applications [19]. 

 Why has registration become so important? Medical imaging is about establishing shape, 

structure, size, and spatial relationships of anatomical structures within the patient, together with 

spatial information about function and any pathology or other abnormality. Establishing the 

correspondence of spatial information in medical images and equivalent structures in the body is 

fundamental to medical image interpretation and analysis. 

 In many clinical scenarios, images from several modalities may be acquired and the 

diagnostician’s task is to mentally combine or “fuse” this information to draw useful clinical 

conclusions. This generally requires mental compensation for changes in subject position. Image 

registration aligns the images and so establishes correspondence between different features seen 

on different modalities, allows monitoring of subtle changes in size or intensity over time or 

across population, and establishes correspondence between images and physical space in image 

guided interventions. Registration of an atlas or computer model aids in the delineation of 

anatomical and pathological structures in medical images and is an important precursor to 

detailed analysis [16, 19]. 

 It is common for patients to be imaged multiple times, either by repeated imaging with a 

single modality, or by imaging with different modalities. It is also common for patients to be 

imaged dynamically, that is, to have sequences of images acquired, often at many frames per 
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second. The ever increasing amount of image data required makes it more and more desirable to 

relate one image to another to assist in extracting relevant clinical information [28]. Image 

registration can help in this task: inter-modality registration enables the combination of 

complementary information from different modalities, and intra-modality registration enables 

accurate comparisons between images from the same modality. 

 International concern about escalating healthcare costs drives development of methods 

that makes the best possible use of medical imaging and, once again, image registration can help 

[16, 19]. However, medical image registration does not just enable better use of images, it also 

opens up new applications for medical images. These include serial imaging to monitor subtle 

changes due to disease progression or treatment; perfusion or other functional studies when the 

subject cannot be relied upon to remain in a fixed position during the dynamic acquisition; and 

image-guided interventions, in which images acquired prior to the intervention are registered 

with the treatment device, enabling the surgeon or interventionalist to use the pre-intervention 

images to guide his or her work [1]. 

2.4.1 General Scheme 

 Registration is achieved by applying a spatial transformation to one image set (which we 

will refer to as the floating/moving/source image) so that it matches the second image set 

(reference/target image). Most algorithms proceed by iteratively adjusting the transformation so 

as to maximize some similarity measure (or minimize a cost function) computed between the 

transformed floating image and the corresponding reference image. Finding a suitable 

transformation usually involves the use of an optimization algorithm. The registration problem 
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can be further categorized as those that can assume a rigid transformation, as opposed to those 

where rigidity cannot be assumed, where non-rigid transformation is required. 

2.4.2 Transformation Models 

 The transformation that maps the coordinate system of one image onto the coordinate 

system of the other image can be either global or local. A transformation model is called global 

when a change in any one of the parameters influences the transformation of the image as a 

whole. In a local transformation such a change influences only part of the image. 

 The transformation can be rigid, affine, projective, or curved. These categories indicate 

the degree of elasticity of the transformation. A transformation is called rigid if the distance 

between any two points in one image is preserved when these two points are mapped onto the 

other image. Rigid transformation is limited to translation and rotation. Rigid-body 

transformation is generally sufficient for intra-subject and intra-modality registration 

applications for organs that do not experience significant shape change such as the brain [16, 19, 

22]. 

 Scaling is added in affine transformations, which causes a straight line in one image to be 

mapped onto a straight line in the other image preserving parallelism, but without preserving the 

angles between these lines.  

 Projective or perspective transformations map any straight line in one image onto a 

straight line in the other image, but parallelism between these straight lines is in general not 

preserved. Projective transformations are used to register projection (X-ray) images to 3D 

tomographic images. 



 

11 

 A curved transformation maps a straight line in one image onto a curve in the other 

image. Transformations that are curved may be used when one of the images has to be deformed 

to fit the other image, as in matching images from different patients with an atlas [2]. Using 

curved transformation when fusing functional images with anatomical images or when 

deformations sustained by the anatomy are not negligible can provide more accurate registration 

results. 

2.4.3 Optimization 

 Most registration algorithms require some form of optimizer to determine the “best” 

solution based on maximizing the relevant similarity measure [4, 5]. Popular optimization 

techniques include general gradient descent methods and Powell’s Direction Set Method. Most 

of these algorithms are based on an iterative approach, in which an initial estimate of the 

transformation is used to calculate a similarity measure. The optimization algorithm then makes 

another (hopefully better) estimate of the transformation, evaluates the similarity measure again, 

and continues until the algorithm converges, at which point no transformation can be found that 

results in a better value of the similarity measure, to within a preset tolerance. A common 

stopping criterion for optimization techniques is the maximum number of function evaluations 

set by the user. Evaluations halt once the value specified has been reached, and not when 

convergence criteria have been met.       

 One of the difficulties with optimization algorithms is that they can converge to an 

incorrect solution called a “local optimum”. There are often multiple optima within the 

parameter space, and registration can fail if the optimization algorithm converges to the wrong 

optimum. Various manipulations in the registration procedure, such as interpolation and image 



 

12 

subsampling, generally introduce ripples to the similarity function. Some of these optima can be 

removed from the parameter space by blurring the images prior to registration (via a hierarchical 

approach to registration). However, even these strategies do not guarantee against trapping in 

local optima. 

2.4.3.1 Gradient Descent Gradient descent is a function optimization method that utilizes the 

derivative of the function and the idea of steepest descent [32]. The derivative of a function is 

simply the slope, and given the slope of a function, one can move the function in the negative 

direction of the slope to reduce its value. Gradient descent is an attractive optimization method in 

that it is conceptually straightforward and often converges quickly. Its drawbacks include the fact 

that the derivative of the function must be available, and it often converges to a local minimum 

rather than a global minimum. 

2.4.3.2 Powell’s Direction Set Method Powell’s direction set method finds the minimum 

function value in an N-dimensional parameter space by a succession of one-dimensional 

optimizations [29, 32]. The advantage of this approach is that one-dimensional optimization is a 

relatively easy problem to solve numerically. Each iteration involves carrying out N one-

dimensional optimizations. For 3D rigid body registration, there are six degrees of freedom 

(three translations and three rotations) giving a six-dimensional parameter space. It is common to 

start by carrying out the one-dimensional optimizations along directions defined by the axes of 

the parameter space. For example, the method might start by searching in the lateral translation 

direction, then the anterior-posterio translation direction, then the cranial-caudal translation 

direction, then rotations about each of these axes in turn. This example only gives one of the 

6!=720 different orders in which the axes can be searched at the first iteration [29]. The choice of 
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ordering can influence the success of the optimization, and a heuristic approach is often adopted 

to select the order of the search [16]. The optimization algorithm halts when an iteration fails to 

improve the similarity measure evaluation by more than some predefined tolerance. The speed of 

registration can be increased by applying the Powell optimization algorithm at multiple 

resolutions [39]. The resolution of the data is reduced by blurring and subsampling the images. 

The algorithm is run at a lower resolution; then when it terminates, it is started again at a higher 

resolution, using the solution obtained at the lower resolution as the starting estimate. This 

increases the speed of the algorithm substantially both because the blurred and subsampled 

images have fewer voxels than the original, making the similarity measure quicker to calculate at 

each iteration, and also helps avoid local minima. 

2.4.4 Similarity Measures 

 A measure of similarity between images is central to the registration algorithm. It 

determines the robustness and flexibility of the algorithm [40]. A number of similarity measures 

have been suggested, generally falling into three categories: (1) landmark-based measures, (2) 

surface measures, and (2) voxel intensity measures. 

 
2.4.4.1 Landmark Measures  Registration can be achieved by identifying unique landmarks, 

either anatomically defined or fixed externally to the patient, that appear in the two images to be 

aligned. Relatively simple and well-developed algorithms can then be used to find the 

transformation that minimizes the average distance between the corresponding imaged 

landmarks. Many images, such as nuclear medicine images, lack sufficient anatomical detail to 

identify specific anatomical landmarks [23]. The use of external fiducial markers is not always 

applicable, and is generally inconvenient and impractical for routine use. 
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2.4.4.2 Surface Measures Two images can be aligned by minimizing the average distance 

between corresponding surfaces, identified by preprocessing the images. An alternative is to 

match surface points in one image to the identified surface in the second image. This particular 

technique was among the first to be successfully applied in matching nuclear medicine data to 

other modalities. 

The “Head-and-Hat” Algorithm: 

 The first investigators to apply surface registration to a medical problem were Pelizzari, 

Chen, and colleagues. The “head-and-hat” algorithm was originally designed for use in brain 

studies, for registering CT, MR, and PET images of the brain, but has since been adapted for 

many other applications. Pelizzari et al. made the assumption that given two 3D models of an 

object, a unique coordinate transformation can be found which, when applied to one of the 

models, gives the best possible alignment of the two models [24, 31]. The analogy of finding the 

optimum placement of a custom fitted rigid hat onto a head seems appropriate and is widely 

accepted. However, for a highly symmetric object such as a sphere or cylinder, clearly a unique 

transformation could not be found based only on matching the surfaces [1]. Fortunately, such 

perfect symmetry seems sufficiently lacking in most human organs. 

 To begin the surface registration process, 3D models of the surface to be matched are 

produced by outlining contours on the serial slices of each scan. The model taken from the scan 

covering a large volume of the patient, or from the scan having higher resolution if volume 

coverage is comparable, takes the role of the “head” in the “head-and-hat” analogy. The “head” 

model is a stack of disks or “prisms”, each of which has cross section determined by one of the 

contours, with thickness and vertical position appropriate to the slice in which the contour was 

made [31]. The second or “hat” model is represented as a set of independent points. 
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 A standard algorithm for minimization of a non-linear function of several variables is 

used to find the geometric transformation that, when applied to the “hat” coordinates, minimizes 

the residual mean squared distance between “hat” points and “head” surface. The contribution to 

the residual for each “hat” point is evaluated by finding the intersection of a ray from the 

transformed “hat” point to the centroid of the “head” model [16, 19, 24].  

The Iterative Closest Point Algorithm: 

 Iterative closet point (ICP) registration algorithm is another surface-based technique that 

is now widely used. It represents one surface as a set of points and the other as triangular 

patches. This algorithm proceeds by finding the closest point on the appropriate triangular patch 

to each of the points in turn. These close points form a set and are registered using the 

corresponding landmark-based registration algorithm, and the residual error is computed [28]. 

New closest points are found and the process continues until the residual error drops by a preset 

value.  

2.4.4.3 Voxel Similarity Measures Voxel similarity-based registration algorithm uses intensities 

in the two images alone without segmenting or delineating corresponding structures. This 

method uses all or a large proportion of the data in each image, which tends to average out the 

error caused by noise and random fluctuations of image intensity. If a linear relationship is exists 

between voxel intensities in the two images, then the correlation coefficient (CC) is a good major 

of alignment. Basically, CC involves multiplication of corresponding image intensities. One 

image is moved with respect to the other until the largest value of the CC is found. Similar 

measures are sum of squared intensity differences (SSD) where alignment is adjusted until the 

smallest SSD is found, and ratio image uniformity (RIU) where the variance of the ratio is 

calculated and alignment is adjusted until the smallest variance is found [12, 16, 19, 22, 23]. 
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When voxel intensities do not differ linearly entropy may be used as a measure of alignment. 

Entropy (disorder), which is calculated directly from the joint probability distribution, increases 

with increasing misregistration in both the joint probability distribution and visual appearance of 

images when overlaid with one another [19]. Minimizing the joint entropy (as calculated from 

the joint intensity histogram) has been proposed as a basis for registration. However, joint 

entropy alone does not provide robust measure of image alignment. It is possible to find 

alternative misalignments that result in a much lower joint entropy. 

Entropy: 

 Image registration can be described as maximizing the amount of shared information in 

the two images or minimizing the amount of information in the combined image, which suggests 

the measure of information as a registration metric. The most commonly used measure of 

information in signal and image processing is the Shannon-Wiener entropy measure H, originally 

developed as part of the communication theory in the 1940’s [19, 27].  

log ii
i

H p p= −∑  

 H is the average information supplied by a set of i symbols whose probabilities are given 

by p1, p2, p3,…, pi. This formula satisfies the following three conditions: 

(1) The functional should be continuous in pi; 

(2) If all pi equal 1/n, where n is the number of symbols, then H should be monotonically 

increasing in n; 

(3) If a choice is broken down into a sequence of choices, then the original value of H should 

be the weighted sum of the constituent H.  
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 Entropy will have a maximum value if all symbols have equal probability of occurring 

and a minimum value of zero if the probability of one symbol occurring is one and the 

probability of all the others occurring is zero. Any change in the data that tends to equalize the 

probabilities of the symbols p1, p2, p3,…, pi increases the entropy [19]. Blurring the data reduces 

noise, and so sharpens the histogram and results in reduced entropy. 

Joint Entropy: 

  In image registration we have two images, A and B, to align. We therefore have two 

symbols at each voxel location for any estimate of the transformation T. Joint entropy measures 

the amount of information we have in the combined image. If A and B are totally unrelated, then 

the joint entropy will be the sum of the entropies of the individual images. The more similar or 

less independent the image are, the lower the joint entropy compared to the sum of the individual 

entropies [16, 19]. 

)()(),( BHAHBAH +≤  

( , ) ( , ) log ( , )T TAB AB
a b

H A B p a b p a b= −∑ ∑  

 Joint entropy can be visualized using the joint histogram computed from the two images 

(A, B). It can be normalized and regarded as the joint probability distribution function (PDF). 

The number of elements in the PDF is determined by the range of intensity values in the images. 

As misregistration increases, the brightest regions of the histogram get less bright and the 

number of dark regions is reduced. In other words, misregistration reduces the highest values in 

the PDF and increases the number of zeros in the PDF. So when registering images we want to 

find a transformation that will produce small number of PDF elements with very high 

probabilities and give us as many zero probability elements in the PDF as possible, which will 
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minimize joint entropy [16, 19]. Estimations of probability distributions are usually obtained by 

simple normalization of the joint histogram, although other schemes are also used. 

Mutual Information: 

 Unfortunately, joint entropy suffers from the overlap problem. One solution to this 

problem is to consider information contributed to the overlapping volume by each image as well 

as with the joint information. The information contributed by the images is simply the entropy 

portion of the image that overlaps with the other image volume [27]: 

( ) ( ) log ( )T TA A
a

H A p a p a= −∑  

( ) ( ) log ( )T TB B
b

H B p b p b= −∑  

where TAp  and TBp  are the marginal probability distributions (i.e. projection of the joint PDF 

onto the axes corresponding to intensities in images A and B). 

 Marginal entropies are not constant during the registration process. They are dependent 

on the transformation T. While the information content of images being registered is constant, 

the information content of the portion of each image that overlaps with the other image will 

change with each change in the estimated registration transformation T [16, 19, 27]. 

 Communication theory provides a technique for measuring the joint entropy with respect 

to the marginal entropies. This technique is based on the concept of mutual information, which in 

general terms is a measure of how well one image explains the other. It is based on the 

assumption that the statistical dependence between corresponding voxel intensities is maximal 

when the images are geometrically aligned (i.e. when joint entropy is minimized while marginal 

entropies are maximized). Therefore, one seeks a transformation that transforms one image to a 



 

19 

position where the uncertainty of the other image is minimized or where the amount of 

information one image contains about the other is maximal [27]. 

 Mutual information I(A,B) varies more smoothly with misregistration than joint entropy 

H(A,B). 

( , ) ( , ) log( ( , ) / ( )* ( ))T T T TAB AB A B
a b

I A B p a b p a b p a p b=∑ ∑  

 To maximize I(A,B), there needs to be a balance between marginal entropies and the joint 

entropy. The joint entropy is minimal when the joint distribution is minimally dispersed (crisp) 

and this corresponds to registration. Misalignment will introduce new combinations of gray 

values and decrease probabilities of the correct combination [16, 19, 27]. 

 The conditional probability (p(b|a)) is the probability B will take the value b given that A 

has the value a. Given this definition, conditional entropy is therefore the average of the entropy 

of B for each value of A, weighted according to the probability of getting that value of A [27]. 

,

( | ) ( , ) log ( | ) ( , ) ( )T TAB

a b

H B A p a b p b a H A B H A= − = −∑  

 Using the equation above, the equation for mutual information can be rewritten as: 

)|()()|()(),( BAHBHABHAHBAI −=−=  

 The conditional entropy term will be small when the image is predictable by the other, 

but it will also be small if the image itself is predictable. 

Mutual Information and Misregistration: 

 Mutual information-based matching is also prone to misregistation. The mutual 

information registration function can be ill-defined containing local maxima when images are of 

low resolution, when images contain little information, when only a small region of overlap is 

present, or as a result of interpolation methods. The search for maxima in the mutual information 
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function may not necessarily lead to absolute maxima. For example, if two image volumes 

overlap for 5% and if the intensity distributions in the volume of overlap happened to be nearly 

identical, mutual information would be extremely high [16]. However, this would not be the 

desired solution since the two volumes virtually do not overlap. 

2.5 CLINICAL APPLICATION OF REGISTRATION 

2.5.1 Liver Anatomy 

 The liver is a mobile organ that sits within the abdominal cavity, and its position is 

variable depending on the position of the patient. It has a variety of ligamentous attachments to 

the diaphragm, and therefore its physical space position is also dependent on the point in the 

respiratory cycle. The liver has a dual blood supply: normal parenchyma is primarily fed by the 

portal venous system, tumors in their early stages of progression also primarily rely on the portal 

venous system for blood supply; as tumors develop, their blood supply switches from portal to 

hepatic. 

2.5.2 HCC 

 Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver 

worldwide, particularly in Asia. It is an infrequent cancer in developed countries, however, its 

incidence has been on the rise in the United States, and has almost doubled over the past 20 years 

[11]. There are three main risks for HCC: infection with hepatitis C virus (HCV), infection with 

hepatitis B virus (HBV), and alcoholic cirrhosis. HCC is a devastating cancer, with an overall 5-

year survival rate below 5%. The high mortality rate is due in part to late clinical presentation of 
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the disease. Therefore, early detection of HCC is important because the disease is curable with 

liver surgical resection or orthotopic liver transplantation before the onset of metastasis. 

2.5.3 Early Detection of HCC and the Need for Image Registration 

 The detection of small HCC (less than 20mm) using standard clinical imaging protocols 

is poor. Early radiological detection is problematic. Peterson et al. at the University of Pittsburgh 

studied a cohort of 430 liver transplant patients and found that pre-transplant CT prospectively 

detected only 37% of the HCC nodules detected by pathology after transplantation. The 

visualization and prompt detection of dysplastic nodules and small HCC’s is essential. Early 

staging and accurate surveillance of patients at risk is important for timely interventions or 

therapeutic decisions. It is believed that computer aided detection (CAD) can have a positive 

impact on the detection of early stage HCC. Accurate and robust registration is crucial for a 

functional CAD system.  
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3.0 MATERIALS AND METHODS 

 
3.1 CT AND MR DATA 

 The retrospective data used in this project were obtained from patients (mostly liver 

transplantation candidates) at the University of Pittsburgh Medical Center who were screened for 

Hepatocellular Carcinoma (HCC) in 2001. Most of the livers were cirrhotic and infected with the 

hepatitis C virus (HCV). A CT protocol consisted of pre-contrast and post-contrast biphasic 

(hepatic phase & portal phase) imaging of the liver was performed. The CT images were 

reconstructed and stored in the radiology PACS system with 5mm slice thickness and in-plane 

resolution of 0.7mm - 0.9mm. An MR protocol consisted of multiple T2 weighted, and pre-T1 

and post-contrast T1 images of the abdomen was also performed on a number of patients to 

establish correlation with complementary CT scans. The MR images had slice thicknesses of 

10mm and in-plane resolution of 1.1mm - 1.5mm. While contrast enhanced MR has been 

reported to have improved sensitivity for the detection of HCCs, the low cost, rapid imaging time 

and high spatial and temporal resolution achievable with multi-slice helical CT makes tri-phasic 

contrast enhanced CT the standard technique for working up cirrhotic livers [13, 21]. Figure 1 

shows an example of tri-phasic CT and contrast enhanced hepatic phase MR image set.  
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Figure 1: Example CT/MR image set: (upper left) hepatic phase, (upper right) portal phase, 
(lower left): pre-contrast, (lower right) MR hepatic phase.  
 

3.2 PRE-PROCESSING 

 DICOM images were retrieved from the radiology PACS system, identified and marked 

as pre-contrast and contrast enhanced (i.e. hepatic, portal, etc.). Using the hepatic phase volume 

as the target, the pre and portal volumes were cut to match as nearly as possible the coverage of 

the hepatic phase volume.  
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3.3 LIVER SEGMENTATION 

Surface-based registration algorithms require identification and delineation of 

corresponding surfaces in the two images to be aligned. Automatic liver segmentation is 

difficult, mainly due to the similarity in intensity values between the liver and many contiguous 

organs.  

Because the focus of this project was on image registration, we did not seek to use a fully 

automated segmentation algorithm. After attempts to automate extraction of the liver from CT 

images using level sets, histogram methods similar to Gao [15] and Soler [38] and morphology 

approaches similar to Kaneko et al.[20] drew inclusive results, we resorted to an interactive, 

manual approach where outlines of the liver were drawn, reviewed and edited.   

In preparation for surface registration, liver surfaces from each of the in vivo images 

were delineated by outlining the liver by hand in a slice by slice manner. The hand segmentation 

consisted of the user placing control points around the border of the liver and using cubic splines 

to interpolate a complete border (as shown in Figure 2). The software used for manual 

segmentation was implemented in IDL (Research Systems, Boulder, CO). Major hepatic vessels 

such as hepatic artery proper and hepatic portal vein were included in the outlines whereas the 

aorta and inferior vena cava were excluded.  

Masks were constructed from the control points and the volume of liver or the number of 

voxels within each mask was computed as a measure of the consistency of these outlines. The 

volume percentage error between a chosen reference image (usually the hepatic phase image) 

and any image of the same patient from the same study was calculated and kept under 7%. Liver 

outlines that did not satisfy this requirement were reviewed and edited. An abdominal radiologist 

was consulted to ensure accurate identification and delineation of the liver.        
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Figure 2: Hand segmentation software with user-placed control points around  
the border of the liver. 
 

 

26 CT cases and 13 MR cases were processed and outlined, from which 18 CT cases and 

5 MR cases with satisfactory volume percentage errors were selected for registration. A number 

of CT and MR cases had notable liver volume differences, typically associated with large 

discrepancy in voxel size of pre-contrast and post-contrast images. The CT images were all of 

high resolution, whereas only one MR case contained high resolution images.  
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3.4 HEAD AND HAT SURFACE REGISTRATION 

 Pelizzari and colleagues proposed a surface fitting technique for intermodality 

registration of images of the head that became known as the “head-and-hat” algorithm [18, 24, 

31]. A multi-resolution version of this surface-based registration technique was implemented in 

C++ and Python (ActiveState Corp., Melbourne, Australia) to register images of the liver. The 

multi-resolution behavior was achieved by subsampling the surfaces by decreasingly smaller 

amounts. The head and hat error measure was implemented in C++ for speed, while the 

parameter optimization was done in Python using the implementation of Powell’s method in the 

SciPy package. 

Two equivalent surfaces were identified in the images to be aligned using the manual 

segmentation approach described in the previous section. The first, from the pre-contrast CT 

image in CT-CT intramodality registration, contrast enhanced MR hepatic phase image in MR-

MR intramodality registration and MR-CT intermodality registration, was represented as a list of 

unconnected 3D points and denoted as the “head.” The second surface, the “hat,” was an 

equivalent list of unconnected 3D points from the contrast enhanced portal and hepatic phase CT 

images in CT-CT intramodality registration, each of the pre-contrast and post-contrast MR 

images in MR-MR intramodality registration and pre-contrast CT, contrast enhanced hepatic and 

portal phase CT images in MR-CT intermodality registration. Figure 3 shows the fitting of the 

hat onto the head. The top figure shows aligned contours of a sample intrasubject CT-CT 

intramodality registration in progress. The bottom figure shows misaligned contours of sample 

MR and CT volumes.  
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Figure 3: Surface fitting of the hat onto the head: (top) aligned contours vs. (bottom)  
misaligned contours. 
 

 

The registration transformation was determined by iteratively transforming the rigid hat 

surface with respect to the head surface, until the closest fit of the hat onto the head was found. 

The measure of closeness of fit used was the square of the distance between a point on the hat 

and the nearest point on the head, in the direction of the centroid of the head. The Powell 

optimization algorithm performed a succession of one dimensional optimizations, finding in turn 

the best solution along each of the six degrees of freedom.  
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Since quantitative validation was difficult to implement because the ground truth was not 

known, we took a self-validation approach to determine the accuracy of the surface fitting 

program by transforming the secondary volume in an otherwise registered image pair to simulate 

a pair of misaligned volumes. The goal of registration was then to overcome the user-introduced 

transformation by applying an exactly opposite transformation to the secondary volume. 

Comparing the known transformation with the solution of the registration allowed us to 

determine the accuracy of our registration software. 

Armed with the lessons learned from the validation approach described above, we carried 

out intrasubject CT-CT intramodality registration, intrasubject MR-MR intramodality 

registration and intrasubject MR-CT intermodality registration using a deterministic multi-

resolution approach that subsampled each surface by factors of 128, 64, 32, 16, 8, and also using 

a stochastic multi-resolution approach that subsampled surfaces by 128, 64 and 32 with 17, 14 

and 11 randomly chosen starting points for parameter optimization. A selected number of cases 

were also subsampled at 128, 64, 32, 16, 8 with 17, 14, 11, 8, 5 starting points. Each contrast 

enhanced CT image was registered to the pre-contrast CT image, whereas each MR image was 

registered to the contrast enhanced hepatic phase MR image. For MR-CT intermodality 

registration, each CT image (pre-contrast or post-contrast) was registered to the MR contrast 

enhanced hepatic phase image. The MR target surface and each of the moving CT surfaces were 

subsampled by different factors to ensure that the number of surface points was consistent. Also, 

the final transformation parameters found by the surface fitting program was modified to 

compensate for the difference in resolution and field of view in the MR target and CT moving 

images. 
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 The overall registration accuracy of the surface fitting technique was measured using the 

mean displacement of automatically selected landmarks proposed by Wang et al [43]. The 

landmarks were selected based on the similarity in intensity values between a given set images. 

20 landmarks were selected from the target image and the moving image, and based on visual 

inspection and the mean displacement between corresponding landmarks, we were able to 

determine the nature of misregistration both qualitatively and quantitatively. 

3.5 MUTUAL INFORMATION 

 Mutual information is a measure from the field of information theory of how much 

information one random variable tells about another. It was introduced as a measure for 

matching medical images in 1995 by both Viola and Wells and by Collignon [16, 19, 27]. For 

two images, mutual information is computed from the joint probability distribution of the 

images’ intensity or gray-values. When two images are aligned, corresponding areas overlap, and 

the resulting joint histogram or probability distribution is “peaky” resulting in a high mutual 

information value. When the images are misregistered, non-corresponding areas also overlap, 

resulting in additional gray value combinations in the joint histogram, causing the distribution to 

disperse and resulting in a low mutual information value [37]. This approach to registration is 

accepted by many as one of the most accurate and robust registration measures. 

3.5.1 ITK 

 ITK is an abbreviation for the National Library of Medicine Insight Segmentation and 

Registration Toolkit. ITK is an open-source software system for performing segmentation and 
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registration of data in two, three and more dimensions, with primary focus on medical 

applications. The toolkit is implemented using templated C++. It is organized around an object-

oriented data flow architecture. Data is presented using data objects (e.g. images). These data 

objects are processed by process objects (filters). Data objects and process objects are connected 

together into pipelines. Pipelines can process data in pieces according to a user-specified 

memory-limit set on the pipeline.  

ITK was developed by six principal organizations: three academic (University of North 

Carolina at Chapel Hill, University of Utah and University of Pennsylvania) and three 

commercial (GE Research & Development, Kitware and Insightful). Several other small team 

members and individual users also contribute actively. 

ITK has been developed to support the Visible Human Project and to be a repository of 

fundamental algorithms for image segmentation and registration, saving the medical image 

community from reinventing the wheel over and over again. The open-source nature of ITK 

allows developers around the world to freely contribute to the software’s further extension and 

development. 

ITK comes in the form of a set of libraries. Pre-compiled version of the libraries are not 

provided, as a source code archive needs to be downloaded form the ITK website, configured 

and compiled. With ITK being in a state of relative infancy and without any substantial 

documentation, getting comfortable with the APT and the ITK programming style was a very 

challenging task. 
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3.5.2 Image Registration Using ITK  

The registration framework in ITK is modular. Thus, when composing a registration 

method, each component is relatively independent of the others. Registration methods in ITK are 

implemented by combining basic components, allowing for great flexibility. When creating a 

registration filter, the following components are used as defined in ITK:  

Fixed image: this is the image onto which we map the moving image.  

Moving image: this is the image that will be transformed into the coordinate system of 

 the fixed image.  

Transform: a mapping that associates a point in the fixed image space with a point in the 

 moving image space.  

Interpolator: a technique used to interpolate intensity values when images are r

 esampled through the transformed.  

Metric: a measure of how well the fixed image matches the moving image after 

 transformation.  

Optimizer: a method used to find the transformation parameters that optimize the 

 metric. The most critical components are the metric and the optimizer.  

 

 The registration process begins by first applying the initial offset transformation. This 

initial transform is applied once, after which the registration method takes over to further refine 

the image alignment. The voxels in the moving image are mapped onto the fixed image using the 

selected registration transform (rigid transform). As the voxel values are mapped to the fixed 

image their spatial position will generally be mapped to non-grid positions. The interpolator 

helps determine what the voxel intensity should be on the grid. The metric (i.e. mutual 
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information) evaluates how well features in the two images match each other. This is done by 

comparing the fixed image with the transformed moving image. The role of the optimizer is to 

keep changing the parameters of the registration transform, searching for a combination that 

gives the best value of the metric. Thus, the execution of the registration method is ultimately 

driven by the optimizer.  

 Recent published works for registration indicate that mutual information-based methods 

work very well, especially when combined with multi-resolution calculations [27, 37]. To save 

processing time, the images to be registered may be downsampled to a lower resolution before 

the registration procedure begins. Registration is performed on the downsampled images for a 

number of iterations before it continues on the full-resolution images. When registration is 

complete on one level, it steps up to the next level and the images are registered again, and so on, 

until the full-resolution images are registered. This increases the performance considerably 

compared to working with the full-resolution images the entire time. 

3.5.3 ITK’s MultiResMIRegistration Software    

 ITK’s MultiResMIRegistration software reads in two 3D raw image volumes: the fixed 

(target) volume and the moving (source) volume. The application then iteratively estimates the 

rigid transform that will align the moving onto the fixed volume and terminates after completing 

a user-defined number of iterations. The estimated rigid transform is applied to the 

moving/source image. Each 2D slice from the fixed, moving and registered image volume is 

written out as PGM files, facilitating viewing with simple 2D image viewers. The application 

makes use of the ITK registration framework and ITK multi-resolution framework. The part of 

the registration framework used by this application are the itk:: 
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QuaternionRigidRegistrationTransform, the itk::LinearInterpolateImageFunction, the itk:: 

MutualInformationImageToImageMetric and the itk:: GradientDescentOptimizer. Performing 

image registration using a multi-resolution strategy has been widely shown to improve speed, 

accuracy and robustness. The ITK multi-resolution registration framework is a generic 

framework for defining a multi-resolution registration scheme. 

 The application takes one argument: the name of a parameter file. A valid parameter files 

contains filename, endian-ness, size, voxel spacing of the raw 3D fixed (target) and moving 

(source) volumes; axes permutation order; number of multi-resolution levels to be used; starting 

level shrink factor for the fixed and moving volumes; the number of iterations to be performed at 

each resolution level; the learning rate at each resolution level; the scale applied to the translation 

parameters during optimization; and the output directory where the PGM files are to be written 

to. Both the fixed and moving volumes are assumed to be in binary (signed short) format.  

3.5.4 Validating ITK’s MultiResMIRegistration Software 

 In order to evaluate the performance of ITK’s MultiResMIRegistration software, a 

number of digital phantoms (image size=256x256x40, object size=84x84x18, voxel 

spacing=1mmx1mmx1mm) were created and registered with its identical counterparts subjected 

to various known amounts of translations and rotations (as shown in figure 4).  
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Figure 4: Example digital phantom set. 

 

 After extensive correspondence with the ITK developers and lengthy sleepless sessions 

of trial and error, a set of heuristics for fine tuning the parameters was used to register the 

phantoms. The one parameter that had the most impact on the “goodness” of registration was the 

translation scale. The translation scale addresses the difference in scale between the parameters 

that represent rotation (ranging from 0 to 1 in radians) and the parameters that represent 

translation (ranging from 0 to the size of the image in mm). The heuristic is to set the translation 

scale to the maximum dimension in mm. It was found that the MultiResMiRegistration software 

was unable to recover rotations greater than 18 degrees, and the performance of the program 

began to decline when the complexity of the transformation grew (four degrees of freedom). 

 Creation of 3D binary masks, one corresponding to the primary volume and the other to 

the secondary volume, preceded registration. The masks distinguished image voxels from the 

background & the surrounding organs & isolated the organ of interest (i.e. the liver). 

 Each of the CT or MR masked images was registered with a self-derived image subjected 

to the following transformations using the parameters determined from previous studies on the 
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phantoms: (1) z-rotation in 15 degrees, (2) x, y, z translations in 15, 10, 5 pixels, respectively, 

and (3) z-rotation in 15 degrees in addition to shifts in x, y, z of 15, 10, 5 pixels.  

 For intrasubject CT-CT intramodality registration, the hepatic phase and portal phase 

images were registered with the pre-contrast image. For intrasubject MR-MR intramodality 

registration, each MR image, non-contrast enhanced or contrast enhanced, was registered with 

the contrast enhanced hepatic phase image. For intrasubject MR-CT intermodality registration, 

each CT image was registered to the contrast enhanced hepatic phase MR image. Initially, each 

MR image was registered to the hepatic phase CT image but yielded horrendous results. The 

desired transformation (3 translations and 3 rotations) were computed from the final parameters, 

overall transform matrix, and overall transform offset outputted by ITK’s application. 

Landmarks or control points were selected from the PGM files for the registered and fixed image 

volumes to measure the accuracy of the registration scheme.   

3.6 MEASURING REGISTRATION ACCURACY 

A very important consideration in registration work is the validation of the methods. The 

variety of parameters used to express “goodness” of registration has led to some confusion in 

their interpretation [28]. Direct proof of the validity of registration techniques is not easy, and 

extensive validation is quite demanding in terms of time and effort.  

In validating a registration method one needs to demonstrate that the technique is 

accurate and precise, but also robust (i.e. provides consistent results independent of the starting 

conditions) and reliable (i.e. adaptable to different data sets). 
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Because the set of features that can be identified across the different CT phase images is 

scarce, validation techniques based on the identification of corresponding anatomical landmarks 

is difficult [18, 37]. As a result, we have resorted to a technique developed by Wang et al. [43] 

that automatically identifies corresponding landmarks based on image gradients. Most of the 

control points selected coincided with edges, edge corners and contour ridges. We assessed the 

accuracy of each image registration algorithm by measuring the mean displacement between 

these corresponding landmarks.  Figure 5 displays a control point pair found using the automatic 

control point detection algorithm. The points seem to correspond to the same anatomical feature 

in the two images. The mean displacement between the points is roughly 4.3. 

 

Figure 5: Control point pair (in green) found using the automatic control point 
 detection algorithm. The mean displacement between these points is the mean 
 misregistration value.  

 

3.6.1 Automatic Control Point Detection 

The automatic control point detection algorithm (ACPD) was implemented in IDL 

(Research Systems, Boulder, CO) as follows. The gradient Gt for the reference/target image and 
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the source/moving image were computed and denoted as IGtr & IGts. For each point in IGtr, the 

average gradient avgGr was computed [43]. An initial point list for the reference image was 

created containing points with Gtr > avgGr. The list was sorted in decreasing order of avgGr, 

and for each current point p, all points appearing further on in the list which belong to the 

neighborhood Np (search window) of p were deleted. The result was a list of control points in the 

reference image, whose neighborhoods did not overlap.  

For each point p in the list, all corresponding candidate points p’ in IGts were found, and 

for each corresponding pair, the correlation between the local windows centered on p and p’ was 

calculated individually. The point in the source/moving image around p with optimal correlation 

value, either from the original window or rotated window, was used to determine the best 

matched point p’ and was added to the matched point list 2.       
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4.0 RESULTS 

4.1 HEAD AND HAT SURFACE REGISTRATION 

4.1.1 Self-Validation Results 

 A self-validation approach was used to determine the accuracy of the “head-and-hat” 

surface registration program by applying a known transformation to an image to simulate a pair 

of misaligned volumes. Small randomly induced x-, y-, z-translations between -15mm and 15mm 

were used. 

Each CT surface was subsampled by a factor of 64. Ten out of 48 surfaces (21%) that 

were registered found reverse transformations that were many times greater than the induced 

translations (i.e. the optimizer converged to the wrong optimum in a bumpy parameter search 

space and led to inaccurate transformation parameters). As an attempt to minimize this 

divergence, the surfaces were registered using multiple (10, 15, 20) starting points. With 10 

starting points, 6 out of 48 cases diverged (12.5%). With 15 starting points, 4 out of 48 cases 

diverged (8.3%). With 20 starting points, only 2 out of 48 cases showed divergence (4.2%). 

From the trend observed (shown in figure 6a), we can conclude that the stochastic surface fitting 

approach based on a “multi-start” optimization scheme performs better when multiple optima 

exist, and when subsampled by 64, 15 or more starting points are needed to suppress the 

tendency of the optimizer to diverge.          

 



 

39 

HH Self-Validation Random Search Results: CT-CT 
(randomly induced translations in x, y, z) 
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Figure 6a: Self-validation results for the Head & Hat based on a “multi-start” 
 optimization scheme for CT-CT validation using randomly induced x, y, z 
 translations. Note the correspondence between the percentage of cases that diverged and 
 the number of starting points used. 

 

 

The same validation tests were performed on misaligned image pairs to generate 

randomly induced z-rotation between -0.3 and 0.3 radians, in addition to the induced shifts 

described above. The surfaces were subsampled by 64, with 5, 10, 15 and 20 randomly selected 

starting points. With only 5 starting points, 23 our 54 cases diverged (42.6%). With 10 starting 

points, 17 out of 54 cases diverged (31.5%). With 15 starting points, 8 out of 54 cases diverged 

(14.8%). With 20 starting points, 4 out of 54 cases diverged (7.4%). The results are shown in 

figure 6b. Therefore, it is evident that more “multi-start” points are required to suppress 

divergence as the complexity of the transformation grows. 
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HH Self-Validation Random Search Results: CT-CT 
(randomly induced translations in x, y, z & z-rotation)
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Figure 6b: Self-validation results for the Head & Hat based on a “multi-start” 
 optimization scheme for CT-CT validation using randomly induced x, y, z translations 
 plus z-rotation. Note the drop in the number of cases that diverged and the number of 
 starting points used. 

 

 

Each MR image was also subjected to the same validation tests. Because the MR data had 

lower resolutions than the CT data, they were subsampled by a lower amount than the CT data. 

When the MR data were subsampled by a factor of 16, mean misregistration and percentage/rate 

of divergence for the MR data sets were significantly larger than that for the CT data. With 5 

starting points, 13 out of 30 cases showed divergence (43.3%), with 10 starting points, 12 out of 

30 cases diverged (40%), with 15 starting points, 9 out of 30 cases diverged (30%), and with 20 

starting points, 6 out of 30 cases diverged (20%). The results are shown in figure 6c. Therefore, 

the subsampling rate and the number of starting points play an important role in the performance 

of stochastic surface fitting.  
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HH Self-Validation Random Search Results: MR-MR 
(randomly induced translations in x, y, z, & z-rotation)
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Figure 6c: Self-validation results for the Head & Hat based on a “multi-start” 
 optimization scheme for MR-MR validation using randomly induced x, y, z translations 
 plus z-rotation. 

 

 

The tendency of the optimizer to converge to the wrong optimum in an ill-behaved 

parameter space has been observed in the self-validation study. Our solution to the problem of 

multiple optima was to start the optimization algorithm with multiple starting estimates which 

result in multiple solutions, and choose the solution with the best value of the similarity measure. 

This sort of approach, called “multi-start” optimization has been shown to be effective for 

surface matching algorithms. However, even this “multi-start” strategy could not completely 

solve the problem of divergence 
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4.1.2 Results for Intrasubject CT-CT Intramodality Registration 

For intrasubject CT-CT intramodality registration, with the pre-contrast CT image as the 

target and the contrast enhanced hepatic phase image as the source, the mean displacements 

between the selected landmarks or control points were 10.3mm and 11.1mm for the stochastic 

approach with 20 initial random starting points. For contrast enhanced portal image as the 

moving image, the mean displacements by subject were 10.4mm and 9.6mm for the stochastic 

approach. Figures 7a and 7b are plots of the mean in-plane (dxy) and through-plane (dz) 

displacements for the deterministic approach and the stochastic approach. The two different 

schemes produced similar in-plane and through-plane displacement errors for intrasubject CT-

CT intramodality registration.       
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Figure 7a: Plot of in-plane displacement error (dxy) by subject. The “multi-start” 
 (stochastic) optimization scheme failed to show superiority over the deterministic 
 approach in intrasubject CT-CT intramodality registration. 
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Figure 7b: Plot of through-plane displacement error (dz) by subject. Mean 
 displacements of zero are not plotted.  

 
 
 

4.1.3 Results for Intrasubject MR-MR Intramodality Registration and Intrasubject MR-

CT Intermodality Registration 

 For intrasubject MR-MR intramodality registration, the mean displacements by subject 

were 9.2mm for the deterministic approach and 12.4mm for the stochastic approach. A 

breakdown of displacement errors (in-plane and through-plane components) is shown in figure 

8a and 8b.  

 For intrasubject MR-CT intermodality registration, with the contrast enhanced MR 

hepatic phase image as the target and the CT contrast enhanced hepatic phase image as the 

source, mean displacements between the selected landmarks were 17.2mm and 19mm for the 

stochastic approach. Plots of the in-plane and through-plane displacement errors are shown in 

figures 9a and 9b. With the contrast enhanced portal phase CT image as the moving image, the 
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mean displacements by subject were 15.2mm and 16.4mm for the stochastic approach. With the 

pre-contrast CT image as the moving image, the mean displacements were 17.9mm and 17.7mm 

for the stochastic approach. Surprisingly, the deterministic approach performed better than the 

stochastic approach. As a general observation, the degree of misregistration was significantly 

larger in MR-CT intermodality registration. 
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 Figure 8a: Plot of in-plane displacement error (dxy) for intrasubject MR-MR 
 intramodality registration. Note the “multi-start” (stochastic) scheme yielded greater in-
 plane displacements than the deterministic approach.  
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 Figure 8b: Plot of through-plane displacement error (dz) for MR-MR registration. Note 
 that mean displacements of zero are not plotted.  
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 Figure 9a: Plot of in-plane displacement error (dxy) for sample intrasubject MR-CT 
 intermodality registration by subject. The two optimization schemes produced similar 
 results. 
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 Figure 9b: Plot of through-plane displacement (dz) for sample MR-CT intermodality 
 registration. Both the deterministic approach and the stochastic approach yielded the 
 same through-plane displacement errors across subjects. 
 

4.1.4 Visual Assessment Results    

The mean displacement errors (both in-plane and through-plane) between the registered 

images were found using 20 automatically selected point landmarks. These control point pairs 

were chosen based on their image gradients. Simple visual inspection was performed to ensure 

that the points corresponded to the same anatomical feature in the two images. It was found that 

the control point pairs of the cases that were processed using the deterministic optimization 

scheme consistently demonstrated good correspondence whereas in contrast, the “multi-starts” 

approach often demonstrated poor correspondence.  
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4.2 ITK’S  MULTIRESMIREGISTRATION SOFTWARE 

4.2.1 Self-Validation Results 

 Similar to the self-validation tests performed on the head-and-hat surface fitting program, 

each image volume was registered using ITK’s MultiResMIRegistration software to a second 

volume derived from the first with a known transformation. Out of the 162 CT image sets that 

were registered, 4 cases (2.5%) showed large divergence, whereas 2 cases (1.2%) showed slight 

divergence, all of which were subjected to a rotation in z plus translations in x, y, z. Out of the 

720 MR image sets that were registered, 16 (2.2%) cases showed slight divergence, whereas 86 

(11.9%) cases showed large divergence. The gradient descent optimizer used by the 

MultiResMIRegistration program seemed less prone to converging to the wrong optimum (i.e. 

diverging) than the optimizer based on Powell’s method for the head-and-hat surface 

registration. 

4.2.2 Intrasubject CT-CT Intramodality Registration Results 

 For intrasubject CT-CT intramodality registration, with the pre-contrast image as the 

target image and the contrast enhanced hepatic phase image as the moving image, the mean 

displacement between the control points was found to be 8.4mm. With the portal phase image as 

the moving image, the mean displacement was 7.7mm. Figures 10a and 10b are plots showing 

the breakdown of the displacement errors (in-plane and through plane) by subject. Displacement 

errors were slightly less for pre-contrast vs. portal phase cases. 
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 Figure 10a: Plot of in-plane displacement error (dxy) for two different combinations of 
 intrasubject CT-CT intramodality registration (i.e. pre-contrast vs. hepatic phase & pre-
 contrast vs. portal phase). Note that the displacements were slightly less for pre-contrast 
 vs. portal phase cases. 
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 Figure 10b: Plot of through-plane displacement error (dz) for CT-CT intramodality 
 registration. Note that zero placements are not plotted in the figure. 
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4.2.3 Intrasubject MR-MR Intramodality Registration and Intrasubject MR-CT 

Intermodality Registration Results 

 

 For MR-MR intramodality registration, with the contrast enhanced hepatic image as the 

target, the mean displacement between the landmarks was 8.2mm. Plots of the in-plane and 

through-plane displacement errors are shown in figures 11a and 11b. For MR-CT intermodality 

registration, with the contrast enhanced hepatic phase MR image as the target and the contrast 

enhanced hepatic phase CT image as the source, the mean displacement was 18.9mm. With the 

portal phase CT image as the source, the mean displacement was found to be 14.0mm. Finally, 

with the pre-contrast CT image as the source, the mean displacement was 17.0mm. A breakdown 

of the displacement errors are shown in figures 12a and 12b. As a general observation, MR-CT 

intermodality registration produced the greatest amount of misregistration overall. 
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 Figure 11a: Plot of in-plane displacement error (dxy) for intrasubject MR-MR 
 intramodality registration by case. 
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 Figure 11b: Plot of through-plane displacement error (dz) of intrasubject MR-MR 
 intramodality registration by case. Note that zero displacement errors are not plotted. 
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 Figure 12a: Plot of in-plane displacement error (dxy) for intrasubject MR-CT 
 intermodality registration (with the CT hepatic phase image, CT portal phase image, and 
 CT pre-contrast image as the source). 
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 Figure 12b: Plot of through-plane displacement error (dz). Zero displacement errors are 
 not plotted.  
 

4.2.4 Visual Assessment Results 

 Similar to the head-and-hat surface registration technique, the amount of misregistration 

was quantified by measuring the displacements between automatically selected control point 

pairs. Visual inspection of the point pairs revealed that the majority of them corresponded to the 

same anatomical structure (or physical position in space) for different combinations of 

intramodality and intermodality registration.  

4.3 HEAD AND HAT VS. MUTUAL INFORMATION REGISTRATION RESULTS  

 Here we report the results of a retrospective study on the efficacy of a surface-based 

(head-and-hat) scheme and a voxel similarity-based (mutual information) scheme in registering 

abdominal CT images without contrast, with contrast in the hepatic arterial phase, with contrast 
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in the portal venous phase, and contrast enhanced abdominal MR images. In particular, we report 

the amount of misregistration by subject, in-plane and through-plane displacement errors for 

intrasubject CT-CT intramodality registration (results are shown in figures 13a-c), intrasubject 

MR-MR intramodality registration (figures 14a-c), and intrasubject MR-CT intermodality 

registration (figures 15a-c) using a surface fitting strategy based on the technique proposed by 

Pelizzari et al. and voxel-based mutual information scheme distributed with the ITK Insight 

software package. 
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   Figure 13a    Figure 13b 
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      Figure 13c 
 
 
 Figures 13a-c: Plots of the amount of misregistration (top left), in-plane displacement 
 error dxy (top right) and through-plane displacement error dz (bottom) for CT-CT 
 intramodality registration based on the mutual information voxel similarity method (in 
 blue) and the head-and-hat algorithm (red). Note the difference in performance of the 
 two methods: the mutual information approach has consistently yielded smaller 
 displacement  errors than the surface-based approach. 
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   Figure 14a     Figure 14b 
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      Figure 14c 
 
 Figures 14a-c: Plots of misregistration by subject (top left), in-plane displacement 
 (top right) and through-plane displacement (bottom) for MR-MR intramodality 
 registration based on the mutual information voxel similarity method (in blue) and the 
 head-and-hat algorithm (red). Zero displacements are not plotted. Except for two cases, 
 the two techniques produced similar results for registering intrasubject, intramodality MR 
 images.   
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   Figure 15a     Figure 15b 
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      Figure 15c 
 
 Figures 15a-c: Plots of misregistration by subject, in-plane displacement and through-
 plane displacement (bottom) for MR-CT intermodality registration based on the mutual 
 information voxel similarity method (in blue) and the head-and-hat algorithm (red). 
 Similar displacement errors for the two techniques were observed. 
 
     

 The following figures are example images showing registration effect for CT-CT 

intramodality registration (figure 16), MR-MR intramodality registration (figure 17), and for 

MR-CT intermodality registration (figure 18).  

  

 Figure 16: Example images showing registration effect for CT hepatic phase image 
 registered to CT pre-contrast image. On the left we have the registered source image 
 (head-and-hat) multiplied by the target mask. On the right we have the registered source 
 image (mutual information) source image multiplied by the target mask. Note the 
 increased amount of non-hepatic structures within the masked region of the head-and-hat 
 image (ribs).  
 



 

55 

  

 Figure 17: Example images showing registration effect for MR portal phase image 
 registered to MR hepatic image. On the left we have the registered source image (head-
 and-hat) multiplied by the target mask. On the right we have the registered source  image 
 (mutual information) source image multiplied by the target mask. Note the  
 increased amount of non-hepatic structures within the masked region of the head-and-hat 
 image (tip of the liver in the image on the left).  
 

 

  

 Figure 18: Example images showing registration effect for CT hepatic phase image 
 registered to MR hepatic image. On the left we have the registered source image (head-
 and-hat) multiplied by the target MR mask. On the right we have the registered source 
 image  (mutual information) source image multiplied by the target mask. Note the 
 increased amount of non-hepatic structures within the masked region of the head-and-hat 
 image (ribs). 
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 Below are sets of pre- and post-registration images obtained using the mutual information 

voxel similarity registration framework. Figures 19a and 19b are two different intrasubject CT-

CT intramodality registration cases (left image is the pre-registration image, whereas the post-

registration image is on the right). Note the decreased amount of non-hepatic structures (ribs) 

within the masked region of the post-registration image (right).       

 
Figure 19a 

 

 
Figure 19b 

 
  Figure 19a-b: Pre- and post-registration images obtained using the mutual  
  information voxel similarity registration framework. Note the decreased amount  
  of non-hepatic structures (ribs) within the masked region of the post-registration  
  image (right). 
 

 
 

 Figures 20a and 20b (shown below) are sets of pre- and post-registration images obtained 

using the head-and-hat surface registration scheme. The two figures represent two different 



 

57 

intrasubject CT-CT intramodality registration cases. Note that the amount of non-hepatic 

structures (ribs) within the masked region of the pre-registration image (left) is similar to the 

amount of the same non-hepatic structures within the masked region of the post-registration 

image (right).  

     

        

 
Figure 20a 

 

 
Figure 20b 

 
  Figure 20a-b: Pre- and post-registration images obtained using the head-and-hat  
  surface registration scheme. Note that the amount of non-hepatic structures (ribs)  
  within the masked region of the pre-registration image (left) is similar to the  
  amount of the same non-hepatic structures within the masked region of the post- 
  registration image (right).  
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5.0 DISCUSSION AND CONCLUSION 

 
 Image registration has been an area of active research and the state-of-the-art brain image 

registration solves many difficult clinical tasks. However, there is a relative shortage of image 

registration work outside the brain anatomy, and a dearth of literature on registration techniques 

devoted to registering images of the liver. 

5.1 CHALLENGES WITH REGISTERING THE LIVER 

 Liver registration is challenging, the anatomy and inherent motion of the organ within the 

abdominal cavity with respiration place special constraints on the registration approach that can 

be used. The liver is essentially featureless and lacks visible surface landmarks on tomographic 

images, although a limited number of internal landmarks can be identified in MR images. Vessel 

branch points (for e.g. branch points between the inferior vena cava and the hepatic vein) are a 

good possibility, but they are hard to identify and difficult to centralize to a point.  

 As commonly applied to brain image registration, frame-based techniques or techniques 

that rely on the placement of external markers on the patient’s body assume a rigid underlying 

anatomy and a fixed spatial relationship of this anatomy with respect to the outside markers. The 

liver can move significantly within the abdominal cavity, rendering such approaches 

inappropriate. These prospective techniques are obtrusive, and in general, have little clinical 

acceptability because they involve time-consuming acquisition protocols. Retrospective image 

registration, on the other hand, is non-obtrusive to the existing clinical practice and perhaps the 

only alternative in the case of abdominal organs.      
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5.2 REGISTRATION RESULTS 

 The superiority of a voxel-similarity-based over a surface-based approach for 

intramodality CT-CT registration, intramodality MR-MR registration, and intermodality MR-CT 

registration has been shown in this study. For the multi-resolution mutual information approach, 

mean misalignments were in the range of 7.7mm-8.4mm for CT-CT intramodality registration, 

8.2mm for MR-MR intramodality registration, and 14.0mm-18.9mm for MR-CT intermodality 

registration. For the head and hat surface registration methods, mean misregistrations were in the 

range of 9.6mm-11.1mm for CT-CT intramodality registration, 9.2-12.4mm for MR-MR 

intramodality registration, and 15.2mm-19.0mm for MR-CT intermodality registration.   

5.3 FACTORS RESPONSIBLE FOR MISREGISTRATION 

5.3.1 Limitations of Surface-Based Registration Techniques 

 Retrospective registration approaches rely on anatomical point landmarks, contours or 

surface landmarks, or voxel similarity. Not many point landmarks can be reliably identified and 

used for liver registration. Contour or surface-based approaches rely on accurate segmentation of 

one or many anatomical structures in the images to be registered. As we have demonstrated in 

this study, segmentation of liver images is a difficult problem that usually requires manual 

intervention for optimal robustness and accuracy. If manual steps are involved, the accuracy of 

segmentation becomes user-dependent [22]. Segmentation-based registration is limited by the 

accuracy and reliability of segmentation (suffers from surface segmentation errors), lacks 

information about internal structures, and is restricted to a radial correspondence. Since we 

registered unmasked images of the liver to the masked image of the target volume when we 
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applied the voxel similarity-based registration technique, only segmentation of contours from the 

target image volume was required (thereby removing a significant amount of the extrinsic limits 

placed by manual segmentation on the registration accuracy). Therefore, the voxel-similarity-

based approach appeared to be a better framework for liver registration.  

5.3.2 Optimization Schemes   

 A requirement for successful registration is that the similarity function must be quasi-

convex or well-behaved with as few local maxima/minima or ripples as possible [34]. This 

requirement has not been met in this study. Many of the cases that were registered using the 

head-and-hat method had large displacement errors because the optimizer failed to converge to 

the global minimum. A common stopping criterion for an optimizer is the maximum number of 

iterations allowed set by the user. It was suspected that for many of the cases that failed to 

converge, the optimization routine was terminated because the maximum number of iterations 

was met and not because the convergence criteria were satisfied.  

 Various manipulations in the registration procedure, such as interpolation and image 

subsampling, typically introduce local optima to the similarity function [17, 18]. The multi-

resolution approach employed by ITK’s mutual information scheme intended to improve 

computational efficiency could partially solve the problem of optimization in a search space of 

multiple optima.  

5.3.3 Validation of Registration Accuracy  

 From the user’s perspective, accuracy is one of the most important properties of a 

registration method. Validation of registration accuracy is generally not an easy task, because the 



 

61 

true answers (i.e. a set of gold standard answers that can serve as a basis for measuring accuracy) 

are usually not available. In the case of abdominal organs, registration accuracy is difficult to 

assess. As discussed earlier, many methods in the literature for brain registration are not 

applicable. Unlike the head, we cannot fix fiducial markers and obtain a gold standard, subvoxel 

measurement of the registration parameters. Instead, we are limited to anatomical landmarks. 

Due to the relative featurelessness of the liver and the small set of features identifiable across 

different CT phase images and MR images, we were forced to resort to using point landmarks 

selected based on image gradients. The automatic control point detection algorithm is a gradient-

based approach where landmarks in the target image are identified from locations with strong 

gradients, matching locations in the source image are identified by examining the correlation 

between the gradient shape in a pre-defined search range of the target image landmarks. 20 point 

sets with the highest matching criteria were used to quantify the amount of misregistration. 

Unfortunately, errors can occur in the identification of the control point pairs and limit the ability 

of this validation approach to assess the registration accuracy. 

5.3.4 Nature of Acquired Data 

 The data used in this study were acquired retrospectively, without steps taken 

prospectively to facilitate the evaluation of registration techniques. The images were not 

obtained in a controlled setting with triggering from respiratory bellows, intended to suppress 

inherent motion of the liver. The quality of the registration results was also limited by resolution 

(slice thickness) imposed by clinical constraints. Consequently, since the images had 10mm thick 

slices (MR) and 5mm thick slices (CT), we did not anticipate much lower displacements. For 
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almost all the cases examined, both registration techniques had a mean through-plane 

displacement equal to the slice thickness.      

5.4 CONCLUSION 

 We have demonstrated that mutual information-based registration, originally applied to 

multimodality registration of brain images, is generally more effective than surface-based 

registration scheme for liver registration. Liver registration is extremely challenging because it 

lacks visible surface landmarks and that it moves within the abdomen with respiration. With 

these constraints, well-established registration techniques commonly used to register brain 

images, and validation methods based on point landmarks are not applicable. Our preliminary 

study assumed that the liver is a rigid body because the images used in our experiments were 

images of the stiff cirrhotic liver. Because the data was acquired retrospectively, without steps 

taken to facilitate the evaluation of registration techniques, and with rather thick slices of 5-

10mm, mean displacements were 7.7-8.4mm (CT-CT), 8.2mm for intrasubject MR-MR 

intramodality registration, and 14.0-18.9mm for MR-CT intermodality registration for the multi-

resolution mutual information registration scheme; and the mean displacements were 9.6-

11.1mm (CT-CT), 9.2-12.4mm (MR-MR) and 15.2-19.0mm (MR-CT) for the head-and-hat 

surface fitting technique. Unlike registration for diagnosis and treatment in the brain, accuracy 

requirements are reduced for applications in the liver. Liver tumors are usually large, ranging in 

diameter from 1.2 to 18.8cm in clinical trials [7]. The liver is very resilient and often a tumor can 

be over-treated with little danger of serious complications. This is fortunate, since motion and 

deformation in the liver likely degrade the accuracy of rigid body registration (as we have seen in 
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this study). Prospective steps need to be taken to acquire images in a controlled setting to ensure 

the success of future studies in liver registration. 
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