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GENERALIZED ADDITIVE MODELS FOR DATA WITH CONCURVITY:

STATISTICAL ISSUES AND A NOVEL MODEL FITTING APPROACH

Shui He, PhD

University of Pittsburgh, 2004

The Generalized Additive model (GAM) has been used as a standard tool for epidemiologic

analysis exploring the effect of air pollution on population health during the last decade

as it allows nonparametric relationships between the independent predictors and response.

One major concern to the use of the GAM is the presence of concurvity in the data. The

standard statistical software, such as S-plus, can seriously overestimate the GAM model

parameters and underestimate their variances in the presence of concurvity. We explore an

alternate class of models, generalized linear models with natural cubic splines (GLM+NS),

that may not be affected as much by concurvity. We make systematic comparisons between

GLM+NS and GAMs with smoothing splines (GAM+S) in the presence of varying degrees

of concurvity using simulated data. Our results suggest that GLM+NS perform better than

GAM+S when medium-to-high concurvity exists in the data. Since GLM+NS result in loss

in flexibility, we also investigate an alternative approach to fit a GAM. This approach, which

is based on partial residuals, gives regression coefficients and variance estimates with less bias

in the presence of concurvity, compared to the estimates obtained by the standard approach.

It can accommodate asymmetric smoothers and is more robust with respect to the choice of

smoothing parameters. Illustrative examples are provided. The public health significance of

this study is that the proposed approach improves the estimate of adverse health effect of air

pollution, which is important for public and governmental agencies to revise health-based

regulatory standards for ambient air pollution.
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1.0 OVERVIEW

1.1 BACKGROUND OF AIR POLLUTION STUDIES

The possibility of a significant relationship between short-term or long-term effects of air pol-

lution and mortality is of concern to public and governmental agencies responsible for setting

health-based regulatory standards for ambient air pollution. In the history, there were a se-

ries of air pollution ”disasters” in the US and Europe, three most dramatic episodes of

which happened in the Meuse Valley in Belgium in 1930, Donora, Pennsylvania in 1948, and

London in 1952. During these episodes, there were evidence of increases in mortality and

morbidity, coinciding with the increases in air pollution. Those disasters prompted investiga-

tion of the relationship between the air pollution and health. Numerous analyses have been

performed to determine whether there is an increased relationship between air pollution level

and mortality/morbidity. Many of the results from these studies have been considered by

the United States Environmental Protection Agency (USEPA) when developing the air pol-

lution regulations in the United Stated, National Ambient Air Quality Standard (NAAQS).

Base on the design of studies, the air pollution studies can be divided into two groups: time

series studies and prospective cohort studies. Cohorte studies, such as the Harvard six cities

study [Dockery et al, 1993], the American Cancer Society study [Pope et al, 1995] and the

Adventist Health Study [Abbey et al, 1995], followed a fixed group of people over a period

of time, modeling health indicators as a function of air pollution measures after adjusting

for some lifestyle confounding factors such as smoking and usual diet. A time series study is

more like a population study and does not take the personal variation (life style factor) into

account. It associates the daily indicators of health such as daily mortality and/or morbid-

ity with the daily level of air pollutant after controlling for the confounding factor such as
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long-term trend, seasonality and daily weather variations. Because of the availability of the

data, there have been many more studies using the time series data.

1.2 STATE OF THE ART METHOD

In time series studies, the importance of removing the effects of long-term trends and

seasonality, meteorological variability, and serial autocorrelation has been well recognized

[Schwartz, 1994; Schwartz, 1999]. In the past decade, many epidemiological studies have

shown an association between measurement of the ambient concentration of particulate mat-

ters less than 10 µm in aerodynamic diameter (PM10) and non-accidental daily mortality

[Schwartz and Marcus 1990; Pope et al., 1995; Schwartz, 1995]. Some of these studies have

applied generalized additive models (GAMs) [Hastie and Tibshirani, 1990] in time series data

of air pollution and mortality/morbidity because of the flexibility of these models. A GAM

can be thought of as an extension of the family of generalized linear models. In a generalized

linear model, a link function links the random component and the systematic component.

Let Y to be the response variable and having exponential family density

ρY (Y ; θ; φ) = exp(
Yθ − b(θ)

a(φ)
+ c(Y ; φ))

where θ is the natural parameter, and φ is the dispersion parameter. This is the random

component. It is assumed that expectation of Y, denoted by µ, is related to the set of

covariates T1, ..., Tp by

g(µ) = η = α + T1β1 + · · ·+ Tpβp.

The parameter η is the systematic component, called the linear predictor, and g(·)is the

link function. When an additive predictor (such as smoothing function) replaces the linear

predictor in a generalized linear model, the model is called a generalized additive model.

The mean µ = E(Y |T1, ..., Tp) is linked to the predictor via the function

g(µ) = α + f1(T1) + · · ·+ fp(Tp).
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In a generalized additive model, fis are nonparametric smoothing functions that can be

smoothing splines, kernels or local regression smoothing function (loess). These smoothing

functions can be viewed as an extension of moving averages. Conceptually, for an individual

smoothing function, the estimate of Yi at point Ti is obtained by local average, i.e., averaging

all of the Yi, in a neighborhood about Ti. How to average the response values in each

neighborhood and how to size the neighborhood become two important decisions and issues

in the modeling endeavor. The way to average the response values in each neighborhood

depends on which type of smoother one chooses. The closeness of neighborhood, reflected

in terms of an adjustable smoothing parameter, e.g., span in loess, degrees of freedom in

smoothing spline, determines the degree of smoothing [Hastie and Tibshirani, 1990]. For

multiple smoothing functions, f1, ..., fp , these estimates can only be obtained by solving

an iterative procedure. GAM uses the backfitting algorithm to sequentially smooth one

smoother at a time, iterating until convergence occurs. The details of this fitting procedure

can be seen in book: Generalized Additive Model [Hastie and Tibshirani, 1990]. GAMs are

very flexible and there is no need for any assumption about the form for the dependence

of Y on T. In air pollution study, the seasonality, long-term trend and weather variation

are difficult to parameterize, as such GAMs became a standard analytic tool in time-series

studies of air pollution and health [Schwartz, 1994; Dominici, et al, 2002a]. In order to

quantify the health effect of air pollution, an air pollution measure is usually assumed to be

linearly related to the indicators of health such as daily mortality and morbidity, but the

relation to the calendar time and weather variables is not assumed to be parameterized. The

model takes the form

E(Y |X, T ) = g(µ) = η = α + Xβ +
∑

fi(Ti), (1.1)

where X is a vector, representing air pollution measure and dummy variables for days of

week. Ti represents calendar time and weather variables, etc. In model 1.1, we are most

interested in estimating β and the smooth function, fi(Ti)s, that can be regarded as nuisance

parameters. There have been several approaches for estimating β. Backfitting [Hastie, et

al., 1990] is a standard method and the GAM function of S-plus is widely used to perform

the model fitting.
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1.3 STATISTICAL ISSUES AND POSSIBLE SOLUTIONS

Recently, concerns were raised in the air pollution research community related to the use

of GAMs in the assessment of pollution-health outcome associations by time series method-

ologies [Samet, et al 2003; Lumley, 2003]. GAMs are usually fitted by the S-plus software

package. It has been demonstrated that the default convergence criteria of the gam func-

tion in S-plus do not assure convergence of the iterative estimation procedure and may

result in biased estimates of regression coefficients and standard errors [Dominici et al.,

2002b]. Studies conducted before May, 2002 using the gam function in S-plus with de-

fault convergence criteria may have overestimated the health effect of air pollution and

underestimated its variance. For example, in National Morbidity, mortality, and Air Pol-

lution Study (NMMAPS), the estimate of the average particulate pollution effect across

the 90 largest U.S. cities changed from a 0.41% increase to a 0.27% increase in daily

mortality per 10 µg/m3 of PM10 when the more stringent convergence criteria were used

[http://www.biostat.jhsph.edu/biostat/research/nmmapsfaq.htm]. NMMAPS has reported

its reanalyzed results and concluded that there is strong evidence of an association between

acute exposure to particulate air pollution (PM10) and daily mortality occurring one day

later, that the convergence issue has impact on the quantitative estimates, but the major

conclusions do not change. The assurance of the convergence of the iterative procedure can

be easily achieved by using more stringent convergence criteria when executing the software.

However, the underestimation of the standard error and the presence of bias in the estimate of

the regression coefficient due to concurvity, the nonparametric analogue of multicollinearity,

still remained. It has been shown that this overestimation of parameters and underestima-

tion of their variance might lead to significance tests with inflated type 1 error [Ramsay, et

al., 2003a and 2003b], which may result in erroneously declaring a statistically significant

effect when none exists. These researchers argue that some degree of concurvity between

the transformed smooth functions and air pollutant levels is likely to be present in all epi-

demiological time series data, especially when time is used as an independent confounding

variable. It has been suggested that other parametric approaches, such as generalized linear

models with natural splines as smoothers (GLM+NS), may be used in place of nonpara-
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metric GAMs [Ramsay et al., 2003a; Dominici, et al., 2002b; Samet, et al., 2003]. In the

present dissertation, we make systematic comparisons between GLM+NS and GAM with

smoothing splines as smoothers (GAM+S) in the presence of varying degrees of concurvity.

The details of this comparison are given in chapter 2. Since GLM with natural splines is

a parametric model, it has a few disadvantages. It has less flexibility in estimating smooth

curves resulting in a slightly worse predictor error. Chapter 3 concentrates on the use of

GAMs only allowing examination of the possibility of nonparametric association between

factors. S-plus uses an ad hoc method to approximate the standard error of the parameter

estimators, avoiding the expensive computation of the exact asymptotic standard error. It

has been shown that this approximation underestimates the standard error [Ramsay, et al.,

2003a]. Recently, the package called gam.exact, which is an extended S-plus function, has

been developed to implement the expensive computation of the exact asymptotic standard

error [Dominici, et al., 2004]. The use of this package allows a more robust assessment of

uncertainty of air pollution effects. However, the bias due to concurvity, the nonparametric

analogue of multicollinearity, still remains and needs to be corrected since the bias of the

estimator of can asymptotically dominate the variance where T and X in model 1.1 are

correlated [Rice, 1986] and some degree of correlation is likely to be present in majority of

time series data in the air pollution studies. In chapter 3, we present an alternate way, using

the partial residual regression approach, to fit the GAM. This method was first applied in

the additive model with one smooth term, kernel [Speckman, 1988]. We extended it to the

setting of time series analysis of air pollution and mortality data.
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2.0 SYSTEMATIC COMPARISON BETWEEN GAMS AND GLMS

2.1 INTRODUCTION

As discussed in the previous chapter, if the concurvity is present in the data,which is usu-

ally the case in the air pollution data, the estimate of parameter is biased upwardly and

the standard error of parameter is underestimated. This approximation underestimates the

standard errors, leads to significance tests with inflated type 1 errors, and results in erro-

neously declaring a statistically significant effect when none exists [Ramsay et al., 2003].

Even when more stringent convergence criteria were used, it was shown that the parameter

estimates are affected by concurvity, with larger bias when the size of true coefficient is small

and concurvity is high, [Dominic et al., 2002b]. Given the fact that the effect of air pollution

on health indicator is usually very small and concurvity is always present, the impact of

concurvity on the parameter estimate could be very serious.

The statistical issues regarding the underestimation of the standard error and the pres-

ence of bias in the estimate of the regression coefficient in the presence of concurvity, are not

totally resolved. Moreover, due to readily availability of the data, there are more time series

studies than prospective cohort studies. Results from these time series studies are being

considered by the United States Environmental Protection Agency (USEPA) for developing

the air pollution regulations in the United States, National Ambient Air Quality Standard

(NAAQS). Therefore, it is important to adequately address the statistical issues related to

concurvity either by methodological adjustments or by alternative methods.

Samet and his colleague (2003) discussed the obligation of the air pollution researchers

for repeating analyses that have used the gam function and for considering further method-

ological issues via alternate strategies. An alternate strategy for estimating the variance of
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the estimates through simulations suggested that the variance estimates produced by the

parametric bootstrap, although less biased than those produced by S-plus, remain biased

downwards [Ramsay et al., 2003]. A recently developed S-plus package, gam.exact, allows

a more robust assessment of uncertainty of air pollution effects [Dominici et al., 2003].

However this package only works for symmetric smoothers and therefore is limited in its

usefulness. A parametric smoother such as natural cubic splines appears to be a better

approach. Hence,GAM can be effectively turned into a fully parametric model, generalized

linear model with parametric natural cubic splines (GLM+NS), and iteratively reweighted

least square (IRLS) algorithm can be used for inference. The backfitting, which is known to

be slow to converge in the presence of concurvity and to contribute those bias and variance

problems, is not required in GLM fitting as all the smooth terms are estimated in one step

[Schwartz et al., 2003].

The inferential problems related to the use of GAMs in the presence of concurvity are

discussed in several recent papers (Ramsay et al., 2003; Figueiras et al., 2003; Lumley and

Sheppard, 2003). The problems are primarily related to unstable and correlated estimates

and standard errors not reflecting the instabilities of the parameter estimates, due to the way

in which the variances are estimated. These issues prompted the researchers to the use of

alternate models, such as GLMs, for air pollution health effect studies with time series data.

Moreover, when the association is weak, correct estimation of parameters and the associated

standard errors become essential. Lumley and Sheppard (2003) noted that these problems

with GAMs may be due to the uncertainty in the shape of the smooth seasonal function that

are included to control for temporal confounding. The approximation used to compute the

standard errors ignores the effect of correlation between the fitted smooth function and the

temperature and pollution effects.

In the light of this, the use of GLMs with natural splines comes into play. We can note

here that in GLMs, collinearity is taken into account in the calculation of standard errors (the

greater the collinearity, the greater the standard error). For a fixed number of knots, natural

spline models are parametric. This avoids reliance on the iteration and tuning parameters

needed in the GAMs. The flexibility of GAMs is an attractive feature but the associated

inferential issues also should not be ignored. A systematic comparison of the performance
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of GAMs with GLMs over a range of degrees of concurvity is important to suggest a change

in the strategy in the modeling of air pollution data.

However, to date, the impact of concurvity on the parameter estimates has not been fully

investigated. For example, a comparison of the performance of GLM+NS with GAM+S,

using mild and stringent convergence criteria, was carried out for a single level of concurvity

(correlation=0.6) [Dominici, et al., 2002b]. Although this was a reasonable beginning, a

more thorough evaluation is warranted the statistical concerns discussed earlier. This is

the motivation behind the present work. This chapter presents a systematic comparison

of GLM +NS and GAM +S for a range of degrees of concurvity, including low degrees,

using simulated datasets for several 8-year (2882-day) time series mimicking a real life air

pollution study. Bias and variances estimates, from simulated datasets, were used to measure

the performance of these two methods.

GLM+NS provides a straightforward parametric modeling approach that can be used

effectively with count or categorical data with different link functions if necessary. Flexibility

and the ability to accommodate nonlinear functions are the main advantage for GAMs.

Though GLMs may not be as flexible as GAM, it can be used for the final modeling task

after an exploratory analysis performed by GAM.

2.2 SIMULATION STUDY

Our simulated time series was based on a real data analysis of air pollution PM10 on

health effects in Pittsburgh, PA over the period 1987-1994. Data were downloaded from the

NMMAPS website (http://ihapss.biostat.jhsph.edu/data/data.htm). The variables used in

the model consisted of total number of deaths among people older than 75 years, daily aver-

age temperature, daily average PM10, calendar time of the series and day of week. Following

earlier work [Dominici et al., 2002b], we fitted the following GAM to the data:

Yt = Poisson(µt)

log(µt) = α + βPM10 + S(time, 7/year) + S(temp, 6) + ηIdow (2.1)
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where Yt denotes the daily number of death among people older than 75 years and follows a

Poisson distribution with mean µt, β denotes the log relative rate of Yt associated with a 1

µg/m3 increase in M10, S(time, 7/year) is the smoothing splines function of calendar time

with 7 degrees of freedom per year, S(temp, 6) is the smoothing splines function of average

temperature with 6 degrees of freedom, Idow is the indicator variables for days of the week

and α, β and η are the parameters to be estimated. Figure 2-1 shows empirical seasonality

and long-term trend effect on mortality and Figure 2-2 shows empirical temperature effect

on mortality for this data.

Next, an 8-year (2882-day) series was constructed using the model given in Equation

(2.2):

Yt = Poisson(µt)

log(µt) = log(µ0) + βPM10 + 0.2 ∗ Trend + Newtemp. (2.2)

We assume that the number of deaths per day followed a Poisson distribution. The range

of β for the simulations is selected based on the observed health effects of PM10 reported

in the literature. The NMMAP Pittsburgh data analysis described earlier showed that the

increase in mortality is approximately 0.00053 (using mild convergence criteria) and 0.00035

(using stringent criteria) for 1 µg/m3 increase in PM10. We generated the time series data

using β parameters of 0.00035, 0.00055 and 0.00075.The higher value 0.00075 is added to

broaden the range of β values as we note that the increase in mortality is approximately

0.0007 in some other studies [Schwartz, 1994b]. The average daily mortality count, µ0, over

the period 1987-1994 was found to be 21.

The degree of concurvity in the simulated data was introduced in the following man-

ner. We use an additive model PM10 = S(Time, 7/year) + S(Temp, 6) + error and ob-

tain the fitted values of the response variable, FITTEDPM10. We define a new variable,

NEWPM10, by NEWPM10 = FITTEDPM10+N(0, σ2) [Dominici et al, 2002], which is the

fitted values plus noise. We chose different σ2 so that the correlations between NEWPM10

and FITTEDPM10 were equal to 0.01, 0.15, 0.29, 0.40, 0.50, 0.60, 0.69,0.80, 0.86 and

0.96. We note that as σ2 increases, the concurvity between PM10 and the smooth function

9



S(Time, 7/year) and S(Temp, 6) decreases. If σ2 is chosen to be zero and we have exact

concurvity in the data.

The Trend, an unobserved confounding variable, consisting of a seasonal and a long-term

trend component is simulated using the following formula [Bateson et al., 1999; Figueiras et

al., 2003]:

Trend = (1 + Time/2882)[1 + 0.6cos(2ptime/365.25)].

We multiplied the derived Trend value by 0.2 to rescale the trend effect. We note that

the purpose of rescaling is to bring the empirical and simulated trend effects closer. This

simulated trend effect is displayed in Figure 2-3. In Figure 2-1, we see that the empirical

effect of seasonality and trend is in the range of -0.2 - 0.35. The simulated effect of seasonality

and trend after being rescaled by 0.2 lies in the same range of -0.2 - 0.35 (Figure 2-3). We

should note here that without the rescaling, the range would have been 1-1.75. The simulated

time trend was made to be associated with daily count of outcomes to induce time varying

confounding effect into simulated time series [Bateson et al., 1999]. This simulated effect of

seasonality and trend shares the important features with the empirical effect of seasonality

and trend (Figures 2-3 and 2-1). Both have the same period and reach the peak and trough

at the same points in time, with amplitudes being different in every cycle. The only difference

is that the real data show more irregularity. The curves are adjusted to mean zero.

The variable Newtemp represents the functional form of the temperature effect on mor-

tality in Pittsburgh, PA. This variable is generated by fitting the GLM model given in

Equation (2.3), where NS(time, 7/yr) and NS(temp, 6) represent natural cubic splines with

appropriate degrees of freedom and other quantities as defined earlier.

Yt = Poisson(µt)

log(µt) = α + βPM10 + NS(time, 7/year) + NS(temp, 6) + ηIdow (2.3)

NS(temp, 6) generates a basis matrix A of dimension 2882*6 that represents the family of

piecewise-cubic spline. The model also reports 6 coefficients (beta.Temp) for each column

of matrix A. Thus, we can reproduce the effect of temperature, Newtemp, by the following

formula Newtemp = A × beta.Temp This simulated effect of temperature (Newtemp) is

10



displayed in Figure 2-4. It shares the same pattern with the empirical effect shown in Figure

2-2. The effect first increases then goes down, then goes up as the temperature rises, and

the two curves turn at the same points. The curves are adjusted to mean zero.
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Figure 2.1: Empirical effect of seasonality and trend
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Figure 2.2: Empirical effect of temperature

For each level of concurvity, we generate 1000 mortality time series from Equation (2.2)

by replacing PM10 with NEWPM10. Each of the 1000 simulated datasets was fitted by the

two models using S-plus software with the following specifications.

1) GAM(Yt − NEWPM10 + S(time, 7/year) + S(temp, 6), family = Poisson) where S is
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Figure 2.3: Simulated effect of seasonality and trend
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the smoothing spline function. We used stringent convergence criteria with the parameters

taking the values of epsilon:1e-15, bf.epsilon:1e-15, maxit :5000, bf.maxit:5000),

and

2) GLM(Yt−NEWPM10 +NS(time, 7/year)+NS(temp, 6), family = poisson) where NS

is the natural cubic spline function using the default convergence criteria.

2.3 RESULTS

Table 2-1 summarizes the percent biases of the regression coefficient estimates β for PM10 in

GAM+S and GLM+NS for different degree of concurvity in the data. Percent bias is a term

well used in the air pollution community to reflect, on a percentage scale, how the biased

estimate β̂ increases or decreases relative to the true value of β [Dominici et al., 2002b] and is

defined as 100(β̂−β)/β. The first column in the table is the correlation between NEWPM10

and FITTEDPM10, indicating the degree of concurvity. The second column represents the

true regression coefficient β, used in the simulation. The third and fourth columns present

the averages of β estimates and corresponding percent biases from 1000 simulated datasets

using GAM+S. The fifth and sixth columns summarize the averages and percent biases of

the β estimates using GLM+NS. Table 2-1 and the solid line in Figure 2-5 show that percent

bias increases dramatically in GAM+S as concurvity increases and is maximum at 149%. In

contrast, percent bias remains relatively constant and small (e.g. ≤ 3%) for GLM+NS over

the range of concurvity. At lower concurvity (≤ 0.5), both GLM+NS and GAM+S provide

comparable results.

Table 2-2 summarizes the percent discrepancy in variances for the regression coeffi-

cient β in GAM+S or GLM+NS in the presence of various degree of concurvity. We

construct a measure to reflect the discrepancy between the two variances, the average of

variances of β esimates from the simulated datasets (V ARaverage) and the sample vari-

ance of β estimates from the simulated datasets (V ARsample). This measure is defined

as 100(V ARaverage−V ARsample)/V ARsample. It represents a measure of bias in the variance

estimate if we can say that with a large number of simulated datasets, V ARsample represents

13



Table 2.1: Effect of concurvity on percent bias of the regression coefficient estimates

GAM+S GLM+NS
Concurvity β β̂ Percent Bias(%) β̂ Percent Bias(%)

0.96 0.00055 0.001370 149.1 0.000545 -0.9
0.86 0.00055 0.000803 46.0 0.000561 2.0
0.80 0.00055 0.000714 29.8 0.000554 0.7
0.69 0.00055 0.000619 12.6 0.000537 -2.4
0.60 0.00055 0.000600 9.1 0.000547 -0.6
0.50 0.00055 0.000581 5.6 0.000550 0.0
0.40 0.00055 0.000560 1.8 0.000542 -1.5
0.29 0.00055 0.000560 1.8 0.000551 0.2
0.15 0.00055 0.000551 0.1 0.000549 -0.2
0.01 0.00055 0.000550 0.0 0.000550 0.0

* Percent bias is defined as 100(β̂ - β)/ β, where β is the true regression coefficient and β̂ is the
average of the thousand β estimates using GAM+S or GLM+NS.

Table 2.2: Effect of concurvity on percent discrepancy in variances

GAM+S GLM+NS
Concurvity Sample Average Percent discrepancy Sample Average Percent discrepancy

Variance Variance in Variances (%) Variance Variance in Variances (%)
0.96 7.01E-07 1.96E-07 -72.0 1.00E-06 9.98E-07 -0.2
0.86 2.20E-07 1.23E-07 -42.4 2.43E-07 2.62E-07 7.9
0.80 1.67E-07 9.99E-08 -40.3 1.79E-07 1.69E-07 -5.6
0.69 8.76E-08 6.40E-08 -26.9 9.06E-08 8.64E-08 -4.6
0.60 5.52E-08 4.49E-08 -18.6 5.66E-08 5.57E-08 -1.7
0.50 3.28E-08 2.92E-08 -10.7 3.31E-08 3.39E-08 2.2
0.40 1.96E-08 1.74E-08 -11.1 1.96E-08 1.90E-08 -2.8
0.29 1.00E-08 9.22E-09 -7.8 1.02E-08 9.60E-09 -5.9
0.15 2.70E-09 2.60E-09 -3.8 2.81E-09 2.67E-09 -4.9
0.01 6.24E-11 6.40E-11 2.6 6.40E-11 6.72E-11 5.1

* Percent discrepancy in variances is defined as 100(V araverage -V arsample / V arsample, where V arsample is
the sample variance of the one thousand β estimates. V araverage is the average of the one thousand S-plus

variances.
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the ”true” variance of the estimate. Similar measure was used by Ramsay (2003). Compar-

ison of these two sets of variance estimates, V ARaverage and V ARsample, can also be seen in

statistical literature (Hu et al., 1998). In Table 2-2, the first column indicates the degree

of concurvity. The second, third and fourth columns represent V ARsample, V ARaverage and

the percent discrepancy in variances using GAM+S. The fifth, sixth and seventh columns

represent V ARsample, V ARaverage and the percent discrepancy in variances using GLM+NS.

Table 2-2 and the solid line Figure 2-6 show that for GAM+S the percent discrepancy in

variances increase as concurvity increases; on the other hand, in GLM+NS, the percent

discrepancy in variances remains constant and small even in the presence of high concurvity.

Table 2.3: Average Mean Square Errors of regression coefficient estimates

Concurvity GAM+S GLM+NS

0.96 1370 1000

0.86 284 243

0.80 194 179

0.69 92.2 90.4

0.60 57.5 56.5

0.50 33.5 33.2

0.40 19.5 19.7

0.29 10.2 10.2

0.15 2.73 2.75

0.01 0.06 0.06

* Average Mean Square Errors (10−9) is obtained for simulation when β=0.00055

Table 2-3 presents the average of the 1000 mean square errors for regression coefficient

estimates. The first column indicates the degree of concurvity. The second column represents

the AMSE using GAM+S; the third column represents the AMSE using GLM+NS. From

this table, we see that in general the estimates of GLM+NS have smaller AMSE than those of

GAM+S. This suggests that GLM+NS have better performance than GAM+S, even under

the circumstance that the variance by using GAM is not underestimated.
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We also investigated whether the percent bias and the percent discrepancy in variances

depend on the size of the true regression coefficient β by repeating the simulations using βs

equal to 0.00035 and 0.00075. Figure 2-5 and 2-6, discussed earlier, summarize the results. In

Figure 2-5, we see that the percent bias increases as the size of the true regression coefficient

decreases. In Figure 2-6, we see that the percent discrepancy in variances did not depend

on the ”true” regression coefficient in both models
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2.4 DISCUSSION

In this chapter, we made systematic comparisons between GLM+NS and GAM+S in the

context of time series analysis of air pollution and mortality using simulated data. The

simulated mortality data were constructed from a linear model using pollution measures, a

trend/seasonality component and a nonlinear temperature component. We simulated the

temperature component with the aid of natural splines. In the Pittsburgh data analysis,

that served as the framework for the simulation study, the empirical temperature effect on

mortality using GAM+S was comparable with the simulated effect using GLM+NS (Figures

2-2 and 2-4). Hence, we believe that the results from our simulation study do not extremely

favor towards the use of GLM+NS. The relationship between trend/seasonality and mor-

tality is considered to be very important in assessing the mortality and PM10 relationship.

Sometimes, it is believed that this relationship is more important than the PM10 and tem-

perature relationship, as seasonality accounts for the temperature effect to a large extent.

The nonlinear function necessary to generate the trend/seasonality component was similar

for both the methods. Based on these observations, we are confident about the correctness

of our simulation study.

Our results suggest GLM+NS perform better than GAM+S when medium-to-high con-

curvity is present in the data. At low concurvity, GLM+NS and GAM+S are comparable.

Since some degree of concurvity is likely to be present in air pollution time series data, the

use of GAM+S may give erroneous results. The results also show that there is more ben-

efit from using GLM+NS than using GAM+S in the presence of smaller effects, which is

typically the case in U.S. It can be argued that using GLM+NS will result in some loss in

flexibility, as it needs a parametric model. We suggest a strategy with a two-stage approach.

First, GAM would be used for the exploratory analysis because of the flexibility of GAM

will make the exploratory analysis easy and less time consuming. Then the fully parametric

models (GLM+NS) would be fitted for the final parameter estimates.

In a specific study, nonparametric models (GAM with smoothing splines or loess) would

be used to explore the data, then, after the appropriate variables and smoothing parameters

are identified, a fully parametric model (GLM+NS) with the same predictors and the same
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degree of smoothness can be used. For example, the NMMAP Pittsburgh data had been

analyzed using the GAM and 56 degrees of freedom were chosen for the smoothing spline

of time and 6 degrees of freedom were chosen for temperature [Dominici et al., 2002b]. In

our work, we re-fitted the GAM+S with the same smoothing parameters. This step can be

thought as the first stage of the analysis. The β was found to be 0.00033 with a corresponding

variance of 3.74E-08. Next, we used the same degrees of freedom to fit the GLM model. The

β from GLM was found to be 0.00030 with a variance of 4.54E-08. This was a 10% difference

from the GAM estimate of β with an increase in variance. The concurvity in the Pittsburgh

data is approximately 0.6 and based on our simulation study we would expect a 9.1% bias

in the GAM estimate of β and -0.5% in GLM β estimate. Furthermore, we would expect an

underestimation of 18% in the variance from GAM and 1.7% from GLM. Thus, our results

for the Pittsburgh data are consistent with our findings from the simulations. Figure 2-7

presents the two fitted models imposed on the observed data along with the plots of the

residuals. The residual plots did not show any seasonality or long term trend and the values

are scattered evenly around ’0’ value. Figure 2-8 shows similar patterns in residuals when

plotted against temperature. Formal tests of goodness of fit were made with the null model

and the tests were found to be highly significant.

In conclusion, we recommend more GLM modeling with natural splines in time series

analysis of air pollution studies with substantial concurvity in the data.
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3.0 PARTIAL REGRESSION APPROACH

3.1 INTRODUCTION

In chapter 2, we show that the GLM with NS perform better than GAM+S and because of

the difficulty to select the number and locations of knots, especially with missing data and

we recommended a two-stage strategy. But a two-stage strategy is time and labor intensive,

and moreover the use of GLM in the second stage may result in some loss in flexibility.

Hence, we are interested in fitting the GAM by an alternate approach.

We explored an alternate way, using the partial residual regression approach, to fit the

GAM. This method was first applied in the additive model with one smooth term, kernel

[Speckman, 1988]. We extended it to the setting of time series analysis of air pollution and

mortality data. We developed the package gam.partial.residual, an extension of gam for its

ready use.

3.2 METHODS

3.2.1 The Standard Backfitting Algorithm to Fit a GAM

Consider a very simple additive model

Y = f(T ) + ε, (3.1)

where Y is the vector of observed values of (Y1, ...Yn), the error term ε is assumed a vector

of independent identically distributed random variables with mean zero and variance σ2 and
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f(T ) represents a smooth nonparametric function that can be a smoothing spline, kernel or

local regression smoothing (loess). S is defined as a smoother matrix (Hastie and Tibshirani,

1990), which transforms Y = (Y1, ...Yn)′ to fitted value Ŷ , where Ŷ = ˆf(T ) = SY .

For the semiparametric additive model

Y = Xβ + f(T ) + ε (3.2)

we can consider two smoothers S1 and S2. S1 = X(X ′X)−1X ′ produces a least square fit Xβ̂

for the parametric part, and S2, another smoother for the nonparametric part, produces an

estimate f̂(T ). The backfitting steps (Hastie and Tibshirani, 1990) can be given as follows:

f0 = S1(Y − f1) = X(X ′X)−1X ′(Y − f1) = Xβ,

f1 = S2(Y −Xβ).

β̂ and f̂1 can be solved by following the above iterative procedure and an explicit expres-

sion for the value of β̂ can also be derived.

β̂ = {X ′(I − S2)X}−1X ′(I − S2)Y = HY,

f̂1 = S2(Y −Xβ̂) (3.3)

The covariance matrix of is estimated by,

V̂ ar(β̂) = H ′V ar(Y )H (3.4)

where H = {X ′(I − S2)X}−1X ′(I − S2)

If a model has two and more nonparametric terms such as

Y = Xβ +
∑

fi(Ti) + ε, (3.5)

the same expressions for β̂ and covariance matrix of β̂ as in equations (3.3) and (3.4 ) could

be obtained. In the expression, S2 produces an estimate ̂∑
fi(Ti). We have to put all the

additive smooth terms fi(Ti) together, and S2 represents the operator for computing the

additive fit of the nonparametric part. As such, S2 represents the smoothing matrix in the
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last iteration of backfitting procedure on these terms (Durban et al., 1999). We can note

here that with a nonidentity link function, model (3.5) becomes a generalized additive model

E(Y |X, T ) = g(µ) = η = Xβ +
∑

fi(Ti) (3.6)

This model can be fitted by using local scoring procedure (Hastie and Tibshirani, 1990),

which iteratively fits weighted additive models by backfitting. This iterative procedure is

quite similar to iteratively reweighted least square algorithm in generalized linear model

(McCullagh and Nelder, 1989). A GAM differs from a generalized linear model (GLM) in

that an additive predictor replaces the linear predictor. An explicit expression for β̂ can be

derived as

β̂ = {X ′W (I − S2)X}−1X ′W (I − S2)Z,

where l is the likelihood function, Z is the working response from the final iteration of the

iteratively reweighted least square (IRLS) algorithm Z = η + (Y − µ) dη
dµ

, W is diagonal in

the final IRLS weights, W = − d2l
dηη′ and S2, as previous defined, is the smoothing matrix

producing the estimate ̂∑
fi(Ti). The variance estimate for β̂ is

V̂ ar(β̂) = {X ′W (I − S2)X}−1X ′W (I − S2) = H ′W−1H.

In S-plus package, when the backfitting algorithm is used to fit the standard GAMs, the

standard errors are approximated by an ad hoc method. The calculation of the standard

errors depends on S2 (n × n matrix) described in the earlier section. The calculation of

S2 is computationally expensive when n is large. Moreover, in the current version of gam

function in S-plus, the ad hoc method approximates the standard errors by assuming that

the smoother, fi(Ti), is linear. In air pollution studies, as the time effect has a cyclic

effect, this assumption of linearity is often inadequate. A shortcut has been developed to

calculate the exact asymptotic standard error without the expensive computations (Durban

et al.; 1999). Also, a package, gam.exact, is available (Dominici et al., 2003). A few issues
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regarding gam.exact can be noted here. If S2 is a symmetric smooth matrix and as W is

always symmetric, we have

WS2 = S ′2W,

H = {X ′W (I − S2)X}−1X ′W (I − S2)

= {X ′(WX −WS2X)}−1(WX −WS2X)′.

The knowledge of S2X is sufficient to calculate V̂ ar(β̂) . To calculate S2X, we can fit a

model and extract W from S-plus output. We note that S2X is the corresponding fitted

values of the assumed model. Only p additive models (where p is the rank of X) instead of

n need to be fitted to calculate the required standard errors.

The gam.exact works well for symmetric smoothers, such as smoothing splines, but does

not work well for smoother that are not symmetric such as ”loess” (Dominici et al., 2003).

3.2.2 Partial Regression Approach to Fit a GAM

This approach was described by Speckman (1988) with kernel smoothing. For the semipara-

metric model given in equation(3.3),

Y = Xβ + f(T ) + ε.

The partial residuals could be defined as the variable Y and X after ’adjustment’ for the

dependence on T . The partial residuals of Y could be defined as the residuals of the partial

additive model, E(Y ) = f(T ), and take the form of Ỹ = (I − S2) = Y − Ypartial fitted.

Similarly, the partial residuals of X could be defined as the residuals of the partial additive

model E(X) = f(T ), and take the form of X̃ = (I−S2) = X−Xpartial fitted. A simple linear

regression of Ỹ on X̃ provides new estimates:

β̂r = (X̃ ′X̃)−1X̃ ′Y

= {X ′(I − S2)
2X}−1X ′(I − S2)

2Y, (3.7)
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β̂r is a new estimator. Compared to β̂ from equation (3.3), the bias of β̂r is of lower order

and asymptotically (at least) negligible, which suggests that β̂r is more appropriate if main

interest is inference on β (Speckman, 1988).

Even though Speckman only focused on the kernel smoothing and a simple additive

model, this method can be extended to model (3.5). In this model, g can be non-identity

link, fi(Ti)s are any smoothing function(s) for two and more nonparametric terms. The new

estimate of β̂r can be obtained and takes the form:

β̂r = {X ′W (I − S2)
2X}−1X ′W (I − S2)

2Z,

where l is the likelihood function, Z is the working response from the final iteration of the

iteratively reweighted least square (IRLS) algorithm Z = η + (Y − µ) dη
dµ

, W is diagonal in

the final IRLS weights, W = − d2l
dηη′ and S2 is the smoothing matrix producing the estimate

̂∑
fi(Ti). The details were described later. From the close form solution for β̂r, the variance

estimate can be calculated as

V̂ ar(β̂r) = H ′
1W

−1H1 = {X ′W (I − S2)
2X}−1X ′W (I − S2)

2.

When the smooth matrix S2 is not symmetric, the partial regression approach does not pose

any problem.

We should also note that the fitting of the model (3.5),

E(Y |X, T ) = g(µ) = η = Xβ +
∑

fi(Ti)

is actually implemented by fitting the model

E(Z|X, T ) = Xβ +
∑

fi(Ti)

with weight W , where Z = η+(Y −µ) dη
dµ

and W = − d2l
dηη′ . As Z is the new dependent variable,

we can obtain partial residuals of Z by fitting the partial additive model, E(Z|T ) =
∑

fi(Ti)

with weightW , and obtained the partial residuals Zres. Similarly, we can obtain partial

residuals of X by fitting the partial additive model, E(X|T ) =
∑

fi(Ti) with weight W , and

obtained the partial residuals Xres. Then, a linear regression of Zres on Xres with the weight

W provides β̂r.

The above model fitting and calculation are implemented in an S-plus function gam.partial.

residual. It is applicable to the entire class of link functions for GAM.
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3.3 SIMULATION STUDY

Our simulated time series was based on a real data analysis of air pollution PM10 on health

effects in Pittsburgh, PA over the period 1987-1994. We refer to Section 2.3 for the details.

For each level of concurvity, we generate 500 mortality time series from the equation in

previous section by replacing PM10 by NEWPM10. Each of the 500 simulated datasets was

fitted by the two models, standard approach (gam.exact) and partial regression approach

(gam.partial.residual), using S-plus software with the following specifications.

GAM(Yt − S(time) + S(Temp, df = 6) + NewPM10, family = Poisson)

where S is the smoothing spline function. We assign different degrees of freedom for time,

ranging from 4 df/yrs to 8 df/yrs.

Table 3-1 summarizes the comparison of these two approaches under different concurvity

and degrees of freedom when the true β=0.00055. The first column indicates the degree of

concurvity. The second column indicates the degrees of freedom for time. The third column

gives the approaches used to obtain the β estimates. The fourth column is β̂, the average

of 500 β estimates ; the fifth and the sixth columns represent the empirical standard error

of the five hundreds β estimates and the average of the five hundreds standard errors. We

can see that, as the concurvity increases, the bias increases both in the standard approach

(using gam.exact) and the partial regression approach (using gam.partil.residual). However

the magnitudes of the bias in the partial regression approach are always smaller than the

magnitudes in the standard approach. Results from df=7/year, df=5/year and β=0.00055

are reported here, similar results are found with other degrees of freedom and other values of

β. We note that the average standard errors are very close to the empirical standard errors

in both approaches and that empirical standard errors in the partial regression approach are

slightly larger than those in the standard approach. However, the inflation in standard error

is negligible, compared to the bias reduction.

Table 3-2 gives more details about the comparison between the standard approach and the

partial regression approach for different degree of concurvity in the data. Similar results are

found with other degrees of freedom and other values of β. We use percent bias to reflect, on a
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Table 3.1: Comparison of the approaches under different concurvity and degrees of freedom

Concurvity Df/Yr Approaches β̂ Sample SE Average SE

0.8 7 standard 0.000685 0.000381 0.000385

partial 0.000546 0.000396 0.000396

5 standard 0.000981 0.000364 0.000370

partial 0.000619 0.000385 0.000391

0.6 7 standard 0.000600 0.000231 0.000226

partial 0.000555 0.000234 0.000227

5 standard 0.000705 0.000228 0.000222

partial 0.000578 0.000232 0.000226

0.4 7 standard 0.000572 0.000137 0.000133

partial 0.000556 0.000138 0.000133

5 standard 0.000609 0.000137 0.000132

partial 0.000565 0.000137 0.000132

0.0 7 standard 0.000550 0.000008 0.000008

partial 0.000550 0.000008 0.000008

5 standard 0.000550 0.000008 0.000008

partial 0.000550 0.000008 0.000008

*β=0.00055

*Standard: standard approach, using gam.exact

*Partial: partial regression approach, using gam.partil.residual
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Table 3.2: Point estimates under different degree of concurvity

GAM+S (Standard) GAM+S (Partial)

Concurvity β̂ Percent Bias*(%) β̂ Percent Bias (%)

0.96 0.001303 136.91 0.000595 8.1

0.85 0.000790 43.69 0.000579 5.31

0.80 0.000685 24.51 0.000546 -0.65

0.68 0.000632 14.98 0.000561 2.07

0.60 0.000600 9.13 0.000555 0.82

0.50 0.000581 5.55 0.000553 0.53

0.40 0.000572 3.91 0.000556 1.15

0.30 0.000560 1.75 0.000552 0.35

0.21 0.000554 0.73 0.000551 0.09

0.16 0.000550 -0.04 0.000548 -0.42

0.03 0.000550 -0.04 0.000550 -0.04

*β=0.00055

*Degrees of freedom: 7/year for time, 6 for temperature

*Percent bias: defined as 100( β̂ - β )/ β, where β is the true regression coefficient and β̂ is

the average of the five hundred regression coefficient estimates.
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percentage scale, how the bias increases or decreases relative to the true value of β (Dominici

et al., 2002). The percent bias is defined as 100( hatβ - β )/ β. The first column indicates

the degree of concurvity. The second and third columns present the averages of regression

coefficient estimates and corresponding percent biases from 500 simulated datasets using the

standard approach. The fourth and fifth columns summarize the averages and percent biases

of the regression coefficient estimates using the partial regression approach. Table 3-2 shows

that percent bias increases dramatically in the standard approach as concurvity increases

and is maximum at 137%. In contrast, percent bias remains relatively constant and small

for partial regression approach over the range of concurvity.

Table 3.3: Standard error estimates under different degree of concurvity

Standard Approach Partial Regression Approach

Concurvity Sample Average Percent* Sample Average Percent

SE SE discrepancy SE SE discrepancy

0.96 0.000800 0.000812 1.58 0.000947 0.000963 1.70

0.85 0.000471 0.000472 0.13 0.000496 0.000493 -0.46

0.80 0.000381 0.000385 1.08 0.000396 0.000396 -0.03

0.68 0.000292 0.000280 -3.94 0.000297 0.000284 -4.67

0.60 0.000231 0.000226 -2.17 0.000234 0.000227 -3.03

0.50 0.000177 0.000177 0 0.000178 0.000177 -0.67

0.40 0.000137 0.000133 -3.20 0.000138 0.000133 -3.84

0.30 0.000096 0.000095 -1.20 0.000097 0.000095 -2.27

0.21 0.000067 0.000067 -0.61 0.000068 0.000066 -1.72

0.16 0.000049 0.000050 2.42 0.000049 0.000050 1.55

0.03 0.000008 0.000008 -2.03 0.000008 0.000008 -2.82

*β=0.00055

*Degrees of freedom: 7/year for time, 6 for temperature

*Percent discrepancy in standard error, is defined as 100(SEaverage − SEsample)/SEsample.
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Table 3-3 summarizes the estimates of standard errors for the regression coefficient es-

timates obtained by the two approaches in the presence of various degree of concurvity.

The first column indicates the degree of concurvity. The second and third columns rep-

resent the sample standard error of the five hundreds regression coefficient estimates and

the average of the five hundreds standard errors obtained by the standard approach (using

gam.exact). The fourth represents the percent discrepancy in standard errors to reflect the

discrepancy between the two standard errors, the average standard error (SEaverage) and the

sample standard error (SEsample), on the premise that the sample standard error reflects the

true standard error of the regression coefficient. This measure is defined as 100(SEaverage

-SEsample) / SEsample. The fifth and sixth columns represent the sample standard error

and the average of the standard errors obtained by the partial regression approach (using

gam.partial.residual). The seventh column represents the percent discrepancy in standard

errors using partial regression approach. From the table, we can see that the estimates of the

standard error, reflected by average standard errors, are close to their corresponding ”true”

standard errors, reflected by sample standard errors, which suggests that no underestima-

tion exists. We also note that the sample standard errors in the partial regression approach

are a little larger than the sample standard errors in the standard approach. However, the

inflation in standard errors is negligible, compared to the magnitude of the bias reduction.

Figure 3-1 presents the 95% confidence interval coverage for a range of regression coef-

ficients, concurvity levels and degrees of freedom per year for time for the two approaches.

The horizontal lines represent the 95% CI coverage. We can see that the partial regression

approach has a better confidence interval coverage than the standard approach in most of

the situation and is never worse. Figure 3-2 presents the 95% confidence interval coverage

against temperature for the two approaches. The horizontal lines represent the 95% CI cov-

erage. We can see that the 95% confidence interval coverages are stable over the range of

degrees of freedom in both approaches.
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Figure 3.1: Confidence interval coverage against time
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Figure 3.2: Confidence interval coverage against temperature
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3.4 DISCUSSION

In GAM fitting by S-plus, the default statement underestimates the standard error of the

regression coefficients because of the use of the ad hoc approximation. The gam.exact pack-

age provides better estimate of standard error, but the package works well only when the

smoother matrices are symmetric. One of the widely used smoothers, loess, which is not

symmetric, is unable to benefit from this package. And the package only improves the esti-

mation of the standard errors but bias due to the concurvity remains. The partial regression

approach in this chapter is aimed at this issue. This approach was first used by Speckman

[Speckman, 1988] and we have extended it to the setting of air pollution studies with time

series data. Our results show that this approach performs better than standard GAM fitting

when concurvity is present and also can handle asymmetric smoothers.

Our sensitivity analyses with varying degrees of freedom for the time component of the

model also demonstrate that this approach performs better than the standard approach.
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4.0 ILLUSTRATIVE EXAMPLES

4.1 DATA

The illustrative examples used the NMMAPS database which is comprised of daily time

series of air pollution levels, weather variables, and mortality counts for the largest 90 cities

in the US from 1987 to 2000. A full description of the NMMAPS database is detailed by

Samet (2000) and data can be downloaded from the web site http://www.ihapss.jhsph.edu.

To analyze effectively the association, we chose the data with daily PM10 measurements and

few missing values. Most U.S. cities only measured PM10 for 1 of 6 days, but a number of

locations had daily measures available. Four cities with roughly daily PM10 were selected

These cities were Pittsburgh, Chicago, Detroit, and Minneapolis. Table 4-1 describes the

time periods for which data were available. Among all the four cites, Pittsburgh had PM10

data only from 1/1/1987 to 12/31/1998 and the analysis was based on the 12-year series

data covering this period. Detroit had PM10 data from 1/1/1987 to 4/30/2000. It is more

convenient to assign the degrees of freedom for the smoothing purpose to time with complete

year data and we decided to discard the period of 1/1/2000-4/30/2000 and retained the

13-year time-series data. For the other two cities, we had complete data from 1/1/1987-

12/31/2000 and the analyses covered this period.

4.2 METHODS

Both the standard approach and the partial regression approach were used to analyze the

data for these four cities. We modeled the association between the non-accidental mortality
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for the people 75 years of age and older and the same day PM10 level. The modeling of

the association between the mortality and the lag of air pollution could have been done.

However, the purpose of this analysis is to illustrate the use of the standard approach and

partial regression approach with some real examples.

We used a smoothing spline with 7 degrees of freedom per year as the smoothing function

for the calendar time. The total degrees of freedom changed for the four cities, since we had

Table 4.1: Time period for available data

Variable Pittsburgh Chicago Minneapolis Detroit

Deaths 1/1/87-12/31/00 1/1/87-12/31/00 1/1/87-12/31/00 1/1/87-12/31/00

Daily PM10 1/1/87-12/31/98 1/1/87-12/31/00 1/1/87-12/31/00 1/1/87-04/30/00

Dptp 1/1/87-12/31/00 1/1/87-12/31/00 1/1/87-12/31/00 1/1/87-12/31/00

Tmpd 1/1/87-12/31/00 1/1/87-12/31/00 1/1/87-12/31/00 1/1/87-12/31/00

Time frame 1/1/87-12/31/98 1/1/87-12/31/00 1/1/87-12/31/00 1/1/87-12/31/99

# of Years 12 14 14 13

* Death: Daily death of person 75 years of age and older, all cause excluding accident; PM10:

24 hourly mean PM10 (µg/m3); Dptp: Dew point temperature (0F ); Tmpd: Average of

Tmax and Tmin.

Table 4.2: Descriptive statistics for the selected variables

City Deaths PM10 Temperature Dew point Days of PM10

(ages 75+) (µg/m3) (0F ) temperature (0F ) Measured

Pittsburgh 21 35.5 52.0 41.1 4358

Chicago 58 37.1 50.2 40.4 4863

Minneapolis 18 28.2 48.0 35.2 4449

Detroit 22 41.0 50.0 39.8 4324

* For the time period given in Table 4-1.
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different number of years of data. The average of 24-hour maximum and 24-hour minimal

temperature was used to represent the daily temperature measure. We were unable to use

the 24-hour average temperature as this measure was not always available during the whole

time period. We used a smoothing spline with 6 degrees of freedom for the temperature. The

dew point temperature was included in the model and a smoothing spline with 3 degrees of

freedom was assigned for this variable. We also included the day of week variables and PM10

measure. The inclusion of the variables and assignment of degrees of freedom described above

were in accordance with the NMMAP study [Dominici et al., 2002]. In the NMMAP study,

a variable, agacat, was included to indicate the age group of the people and an interaction of

agacat and dew point temperature was also included. Since we were modeling the mortality

for the people 75 years of age and older, it was not necessary for us to include these variables.

Table 2 lists some descriptive statistics from the data used in the present study.

We also performed sensitive analyses with respect to the smoothing parameter, degrees

of freedom, choosing variables one at a time. First, we fixed the degrees of freedom for

temperature at 6 and the degrees of freedom for dew point temperature at 3, and then

assigned the following degrees of freedom: 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5 and 9 df/year

for time. Second, we fixed the degrees of freedom for time at 7/year and the degrees of

freedom for dew point temperature at 3, and then assigned the following degrees of freedom:

4, 5, 6, 7, and 8 for temperature. Finally, we fixed the degrees of freedom for time at 7/year

and the degrees of freedom for temperature at 6, and then assigned the following degrees of

freedom: 1, 2, 3, 4, 5 and 6.

4.3 RESULTS

Table 4-3 summarizes the result of the analyses of the four chosen cities. The first column

gives the name of the city. The second column indicates the concurvity in the β. The

third and fourth columns represent the estimate of β using the standard approach and

partial regression approach. The fifth column is the default standard given by S-plus, the

sixth column is the exact standard error given by gam.exact and the seventh column is the
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standard error given by gam.partial.residual. Form the table, we find that the concurvity

does ubiquitously exist in air pollution data, which is around 0.55 in all the four cities. Thus

it is very important to adjust for the influence of concurvity. We note that the estimates

using the partial regression approach are always lower than the estimates using the standard

approach. From our simulation study and the other study [Ramsay et al., 2003b], the

estimate of β using the standard approach was shown to have upward bias. The estimate of β

by using the partial regression can also have upward bias. However, the magnitude o the bias

in the partial regression is smaller than that in the standard approach over the whole range

of concurvity level, seen in Section 3. We note that there are some discrepancies between

the estimates of β from these two approaches in all the four cities and those discrepancies

are not negligible. The default standard errors are smaller than the standard errors given

by the gam.exact and gam.partial.residual, which is just as we expected. We also find

that the standard errors given by gam.exact are very close to the standard errors given by

gam.partial.residual, which suggest that, compared the magnitude of bias reduction, the

inflation in standard error is negligible.

Figure 4-1, 4-2 and 4-3 show the results from our sensitivity analyses. In figure 4-1, we

change the degrees of freedom for time with fixed degrees of freedom for temperature and

dew point temperature. The plots show that the standard approach always has a larger

estimate of β than the partial regression approach, which are consistent with our simulation

Table 4.3: Results of the real data analyses

β Standard error

City Concurvity Standard Partial Default Standard Partial

Pittsburgh 0.56 0.0004595 0.0004253 0.0001613 0.0001744 0.0001737

Chicago 0.57 0.0004729 0.0004153 0.0001066 0.0001185 0.0001298

Minneapolis 0.51 0.0003769 0.0002897 0.0002684 0.0002947 0.0002983

Detroit 0.58 0.0004812 0.0003922 0.0001669 0.0001907 0.0001973

*Degrees of freedom: 7/year for time, 6 for temperature and 3 for dew point temperature.

38



Pittsburgh data

Degrees of freedom for time

B
et

a

4 5 6 7 8 9

0.
00

02
0.

00
06

Standard
Partial

Chicago data

Degrees of freedom for time

B
et

a

4 5 6 7 8 9

0.
00

02
0.

00
06

Standard
Partial

Detroit data

Degrees of freedom for time

B
et

a

4 5 6 7 8 9

0.
00

02
0.

00
06

Standard
Partial

Minneapolis data

Degrees of freedom for time

B
et

a

4 5 6 7 8 9

0.
00

02
0.

00
06

Standard
Partial

Figure 4.1: Sensitive analyses with difference degrees of freedom for time
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Figure 4.2: Sensitive analyses with difference degrees of freedom for temperature
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Figure 4.3: Sensitive analyses with difference degrees of freedom for dew point temperature
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results, in which the standard approach always has a larger upward bias than the partial

regression approach. Also the estimates of β change quicker in the standard approach than

the partial regression approach and the partial regression approach curves are more flat that

the standard approach curve. This confirms that the results from the partial regression

approach are less sensitive to choice of the degree of smoothing, which is a critical concern

in air pollution study. In figure 4-2, we changed the degrees of freedom for temperature with

fixed degrees of freedom for time and dew point temperature. In figure 4-3, we change the

degrees of dew point freedom for temperature with fixed degrees of freedom for time and

temperature. We find that there is no big difference between the standard approach and the

partial regression approach. The estimates from both approaches are relatively insensitive to

how much to smooth the temperature and dew point freedom, which is just as we expected

- the time effect play a much more important role than the temperature effect.
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5.0 CONCLUSION

The result from the simulation study and real data analyses show that the partial regression

approach performs better than the standard approach (using gam.exac) when concurvity

is present in the data. Even without concurvity, the partial regression approach performs

as well as the standard approach. Given the fact that some degree of concurvity is alway

present in the air poluution data, we recommend more use of the partial regression approach.
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