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B1 INHOMOGENEITY COMPENSATION IN MAGNETIC RESONANCE IMAGING (MRI) 

 
Suwit Saekho, PhD 

 
University of Pittsburgh, 2004 

 
 

This thesis concentrates on the reduction of RF field (or B1) inhomogeneity in high magnetic 

field MRI. B1 inhomogeneity is one of the major drawbacks in high field MRI. The non-

uniformity causes regions of increased and decreased signal intensity in the images. None of 

existing methods can perfectly correct the non uniformity. This thesis aims to develop new 

methods that are practical, safe, and required no additional devices.  

 

Specifically, three-dimensional (3D) tailored RF (TRF) pulse were designed and validated in 

human MRI experiments at 3 Tesla. Two novel designs of 3D TRF pulses for B1 inhomogeneity 

reduction are presented in this thesis. Both designs are based on the small flip angle 

approximation. The first design is for a thick slab 3D acquisition. These pulses employ a 3D 

stack of spirals k-space trajectory simultaneously with B1 inhomogeneity compensated RF pulse 

waveforms during excitation. Another pulse design uses analytical functions as a compensated 

B1 inhomogeneity pulse weighting function. The k-space is modeled in the manner such that kx-

ky provides compensated spatial weighting function for quadratically varying B1 inhomogeneity 

patterns. The kz-direction is controlled by fast switching gradients in the fashion similar to Echo 

planar imaging (EPI). This design is more appropriate for 2D high resolution acquisition images.  

 

The two pulse designs show equal improvement of signal loss of approximately 30%. Long pulse 

length, 22 ms, and limited peak B1 are the major concern of the first design.  The second design, 
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the compensated fast kz pulses provide relatively shot pulse length only 3-5 ms.  The primary 

limitation of this design is that it can be used for only a quadratic pattern of B1 inhomogeneity 

and may cause resonance shift. 
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1.0    INTRODUCTION 

 
 
 
 

1.1    THE USES OF HIGH FIELD MAGNETIC RESONANCE IMAGING 

 

 

In recent years, the use of high field magnetic resonance imaging (MRI) technologies has rapidly 

increased. The great advantages of a high field MR system include increased signal-to-noise ratio 

(SNR) [1-3], increased contrast-to-noise ratio (CNR) [4] and improved chemical selectivity [5, 

6]. Several applications have exploited the benefits of the higher field strength MRIs [7, 8], 

including functional MRI (fMRI), magnetic resonance angiography (MRA), magnetic resonance 

spectroscopy (MRS). Functional MRI is the area that high magnetic fields have had the most 

impact by virtue of the increased magnetic susceptibility, which enhances the blood oxygenation 

level dependent (BOLD) contrast [8-11]. This effect is of advantage to the increase of spatial 

resolution after neural activity. Magnetic Resonance Angiography (MRA) demonstrates 

improved visualization of small vessels in high field MRI [7, 12]. The improved resolution 

results from the increased SNR of high field.  Christoforidis et al [13, 14] have identified venous 

structures below 100 microns in brains, using 8T MRI.   In MR spectroscopy, the higher 

magnetic field provides better peak separation [6, 8].  Additional advantage of high field MRI is 
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to facilitate tissue segmentation which many studies such as those exploring Alzheimer’s 

disease1 and schizophrenia2 have relied on.    

1.2    PROBLEMS OF HIGH FIELD MRI 

 
 
A number of benefits exist as advance to higher field strength; however, the increased field 

strength is also associated with many technical challenges leading to problems that need to be 

solved. Higher field strength causes increasing of B1 inhomogeneity, increasing the amount of 

RF energy deposited in tissue, and increasing of susceptibility artifacts. Details will be discussed 

in the chapter 3.  

 
 
 
 

1.3    SIGNIFICANCE OF THIS THESIS 

 
 
B1 inhomogeneity is a significant issue for high field MRI and will be addressed throughout this 

thesis.  Inhomogeneity causes an imbalance of signal intensity across an image. This effect can 

result in the loss of details in one or more particular areas of the image.  This problem is of 

greater concern when high field imaging is employed. In high field MRI, the lack of uniformity 

is more severe than in low field MRI since the B1 propagating through the object has shorter 

wavelengths and greater attenuation. The interference of the waves from all directions in the 

object can cause signal cancellation and addition, producing areas of decreased and increased 

intensities inside the image.  This thesis aims to develop a new method for reducing the B1 
                                                 
1 Progressive brain disorder that causes a gradual and irreversible decline in memory 
2 Severe mental illness characterized by a variety of symptoms, including loss of contact with reality, disorganized 
thinking and speech  
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inhomogeneity using 3D TRF pulses. This approach does not require any additional hardware, it 

is easy to implement, and it is practical.   

1.4    THE AIMS OF THIS THESIS 

 
 
 (a) To develop B1 inhomogeneity compensated 3D TRF pulses for routine use in a commercial 

3T scanner. The desired pulse needs to provide an acceptable pulse width of approximately 3-5 

ms, and it must be safe for use with humans.  The pulse sequence will be modified to allow for 

single-shot or multi-shot excitation to be used with a multi-shot spiral acquisition so that high-

resolution images (1mm) can be acquired.   

 

(b) To validate the effectiveness of artifact reduction of the pulses. 

The images acquired from a standard sinc pulse will be compared with the images acquired from 

the compensated 3D TRF pulse. Image magnitude profiles, percentage of non-uniform reduction, 

SNR, and SAR will be considered.  

 

(c) To explore the feasibility of using 3D TRF pulses to reduce the B1 inhomogeneity at the field 

beyond 3T. The pulses will be tested using Bloch equation simulations and a doped phantom of 

large diameter constructed to simulate wave effects in higher field MRI. The experiments will be 

performed in the approach similar to that used for 3T.    

 



 

4 

 
 
 
 

2.0    BACKGROUND 

 
 
 
 

2.1    INTRODUCTION 

 
 
This chapter will provide general background information about MRI. This information will 

serve as the building blocks for chapters 3 through 6. Major topics of this chapter include physics 

of MRI, MR excitation, imaging principles, fast imaging techniques, and multi-dimensional 

selective excitation. The section on the physics of MRI will detail the nuclear spin systems, the 

interaction of spins with magnetic fields, the behavior of spins after they are excited, and the 

Bloch equation which describes time dependence of magnetization in a magnetic field. MR 

excitation section will confer the basic excitation, the rotating frame of reference which eases the 

concept of excitation effect on a Radio frequency (RF) pulse, the selective excitation as well as 

the small tip angle approximation which facilitates the RF pulse design. Imaging principles will 

be discussed with regard to the derivation of signal equation, as well as the relationship between 

magnetization, Fourier interpretation and sampling requirements. The section on fast imaging 

techniques will discuss about two best known imaging techniques including spiral imaging and 

Echo-planar imaging. The chapter will conclude with information about multi-dimensional 

selective excitation, which is the main focus of the thesis.  Examples of applications related to 

the designs in the later chapters will also be discussed  
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2.2    PHYSICS OF MRI 

 
 
2.2.1    Nuclear Spin Systems 
 
 
The phenomenon of nuclear magnetic resonance arises in nuclei of atoms with an odd number of 

protons and/or an odd number of neutrons.  These nuclei have a property known as spin angular 

momentum, S.  Spin angular momentum is a vector quantity expressed as  

 =S I  (2.1) 

where  is Plank’s constant (divided by 2π) and I is the spin operator in quantum mechanics.  

Associated with S is a magnetic dipole moment µ, where  

 µ γ γ= − =S I  (2.2) 

and γ is the gyromagnetic ratio, a known constant unique for different nuclear species. From a 

classical point of view, one can imagine a charged sphere spinning about its axis, thereby giving 

rise to a current loop that creates the magnetic dipole moment. Generally, to obtain the MR 

signal, the nuclei need to interact with three types of magnetic fields: 1) static main magnetic 

fields (B0), 2) RF fields (B1) and 3) linear gradient fields (G).  

 
 
2.2.2    Interaction with external magnetic fields 
 
 
Three major types of magnetic fields including main magnetic field B0 field, Radio frequency 

field or B1 field and gradient fields, G interact with the nuclei to generate the MR signal. 

      From a classical viewpoint, at the presence of Main Field, B0, µ aligns in the direction of the 

applied field; therefore, per unit volume, magnetization ∑= µM , and the torque that M 

experiences from the external B0 results in nuclear precession with an angular frequency of 
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 0 0Bω γ=  (2.3) 

This is known as the Larmor frequency.  For 1H , 
π
γ

2
=42.58 MHz/Tesla; therefore, for the 

magnetic field strength of 3.0T, the Larmor frequency is 127.74 MHz. Macroscopically, the B0 

field polarizes the sample, including a net magnetization vector pointed in the z-direction with a  

strength of M0 [15]. 

      Magnetization is excited as the B1 field or the RF field is applied at the Larmor frequency 

(resonance frequency) in the transverse direction.  Classically, excitation implies a rotation of M 

by some degree angle.  The rotating magnetic field B1 induces a torque on the magnetization, 

causing M to rotate away from its position of equilibrium along z, while proceeding about the z 

axis. However, M eventually returns to its state of equilibrium along z as a result of the regrowth 

of the longitudinal component, Mz. The time constant characterizing the return of the 

magnetization vector along the z direction is called T1. Another phenomenon occurs 

simultaneously with the regrowth of Mz is the decaying of the transverse component, Mxy. The 

time constant characterizing the decay of the vector component in the transverse (x-y plane) is 

called T2. 

      If all spins experience only B0 and are excited by B1 fields, the signals generated after 

excitation at different locations are typically indistinguishable.  In MRI, spatial localization is 

achieved by applying linear gradient magnetic fields in addition to B1 and B0. Therefore, the 

frequency of the spins becomes a function of spatial location.  In general, the gradients are time-

varying gradients.  

      For the following equation, let G(t) be a gradient oriented in 3D. This gradient consists of 

three vector components: Gxi, Gyj and Gzk.  When all three gradients are turned on, the total 

magnetic field can be calculated as 
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 0( , ) ( ( ) )t B t= + ⋅B r G r k  (2.4) 

Thus, the general solution for the transverse component derived from the Bloch equation 

becomes 

 0 02

( , )
/ ( )

0( , ) ( )

t

i t d
i tt TM t M e e e

ω τ
ω

− ∆
−−

∫
=

r
rr r  (2.5) 

where ( , ) ( , )t B tω γ∆ = ∆r r . 

Further details of the Bloch equation are described in section 2.2.4.  

 
 
2.2.3    Relaxation  
 
 
Following an excitation, Mz returns to its equilibrium state, called longitudinal relaxation. At the 

same time, the transverse component, Mxy, decays away, and this state is called transverse 

relaxation.  

      The longitudinal magnetization behaves according to  

 0

1
zz M MdM

dt T
−

= −  (2.6) 

The solution of this equation is  

 / 1
0 0( (0) ) t T

z zM M M M e−= + −  (2.7) 

 

Following a 90 o RF pulse, Mz(0) = 0; hence, 

 / 1
0 (1 )t T

zM M e−= −  (2.8) 

,where T1 is the spin–lattice time constant, characterizing the recovery to equilibrium along the 

B0 direction, and M0 is magnetization along z at thermal equilibrium.  Note that T1 is dependent 

upon the field strength because a greater energy exchange is required at higher frequencies than 
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at lower frequencies and the relaxation effect takes longer at higher fields than lower ones.  The 

behavior of longitudinal relaxation shows in Figure 2.1. 

      The behavior of the destructive transverse magnetization can be described by 

 
2

xy xydM M
dt T

= −  (2.9) 

The solution after 90o pulse is  

 / 2
0

t T
xyM M e−=  (2.10) 

where T2 is the spin-spin time constant, characterizing the decay of the transverse magnetization.  

The decay is caused by loss of phase coherence; thus, T2 is independent of field strength. The 

behavior of the transverse component decay shows in Figure 2.2. 

 

 

Figure 2.1 Longitudinal relaxation characterized by time constant T1 

 
 

Mz 

M0 

t 
T1 
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Figure 2.2 Transverse relaxation characterized by time constant T2 

 
 
2.2.4    The Bloch Equation 
 
 
The time-dependent phenomenon of magnetization in the presence of an applied magnetic field 

B1(t) is described quantitatively by the Bloch equation: 

 0( )
2 1

x y zM M M Md
dt T T

γ ′+ −
= × − −

i j kM M B  (2.11) 

i, j , k are unit vectors in x, y, z directions, respectively.  

B consists of three types of magnetic field: a. B0, the main magnetic field; b. B1(t), RF fields; and 

c. G(t), gradient fields. 

      The Bloch equation describes the precessional behavior of magnetization with regard to the 

cross product term and the exponential manners of both the longitudinal and transverse 

components with the relaxation terms. 

 
 
 
 

T2 Relaxation 
Mxy 

M0 

t 
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2.3    EXCITATION 

 
 
The external force of magnetization in the presence of the B0 field comes from an oscillating 

magnetic field denoted as B1(t).  A classical model suggests that B1(t) rotates with the Larmor 

frequency. However, based on a quantum mechanic model, the electromagnetic radiation of 

frequency ωrf carries energy (Planck’s law): 

 rf rfE ω=  (2.12) 

To induce a coherent transition of spins from one energy state to another, the radiation energy 

must be equal to the energy difference, ∆E, between the adjacent spin states.  That is, 

 0rf E Bω γ= ∆ =  (2.13) 

or  

 0rfω ω=  (2.14) 

Equation (2.14) defines what is known as the resonance condition.  In the most basic case, the 

RF field is turned on with only the B0 present, exciting all spins in the volume in the same way. 

This type of excitation is referred to as non-selective excitation.  Generally, the RF pulse is 

turned on with a gradient, exciting spins in only an specific region of the volume, typically a 

plane. Such an excitation is called selective excitation.   

 
 
2.3.1    Basic excitation principles 
 
 
The simplest form of excitation is to excite the magnetization with B1 field tuned to Larmor 

frequency at the presence of only B0 field as a whole volume excitation.  This type of excitation 

has no restricted region of excitation. 
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      The general formulation of excitation to be considered here is an amplitude-modulated RF 

pulse, B1(t), applied in the transverse direction. A typical B1(t) is in a linear polarized magnetic 

field [16]: 

 1 1( ) 2 ( ) cos rft Β t tω=B i  (2.15) 

B1(t) is an amplitude modulation function, also known as a pulse envelop function, and ωrf is the 

carrier frequency of the excitation.  This linearly polarized field decomposes into two circularly 

polarized fields. One is a clockwise rotating field, and the other is a counterclockwise rotating 

field.  Mathematically, the B1(t) field can be rewritten as: 

 1 1 1( ) ( )[cos sin ] ( )[cos sin ]rf rf rf rft B t t t B t t tω ω ω ω= − + +B i j i j  (2.16) 

where the first bracketed term represents the clockwise rotating field and the second bracketed 

term represents the counterclockwise rotating field.  Hoult and Yang have named each of the two 

fields after their rotating directions, 1 ( )B t+  and 1 ( )B t− , for the counterclockwise and clockwise 

rotating fields, respectively. Since the counterclockwise component has a negligible effect on the 

spins [15, 16] , the effective B1(t) field becomes 

 1 1( ) ( )[cos sin ]rf rft B t t tω ω= −B i j  (2.17) 

The x-component is 

 1, 1( ) ( ) cos( )x rfB t B t tω=  (2.18) 

and the y-component is 

 1, 1( ) ( )sin( )y rfB t B t tω= −  (2.19) 

Thus, in a complex notation, the B1(t) is: 

 1 1( ) ( ) rfi tt B t e ω−=B  (2.20) 
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In summary, an RF pulse generates an oscillating B1(t) field perpendicular to the B0 field. 

Assuming the initial phase is zero, the RF pulse is characterized by two parameters: the envelope 

function, B1(t), and the carrier frequency, ωrf . The excitation frequency, ωrf, is generally constant 

and is determined by the resonance condition. The most important part of an RF pulse is the 

resulting envelope function. It uniquely specifies the shape and duration of an RF pulse, thus 

determining its excitation property. 

 
 
2.3.2    Rotating frame of reference 
 
 
The rotating frame of reference is used for conceptual simplicity in describing the excitation 

effect on an RF pulse. A rotating frame is a coordinate system in which the transverse plane 

typically rotates clockwise about the z axis at an angular frequency, ω.  Let zyx ′′′ ,,  represent a 

rotating coordinate system and kji ′′′ ,,  be the corresponding unit vectors along the three axes.   

A rotating frame is related to a lab frame or stationary frame by the following transformation: 

 
cos( ) sin( )
sin( ) cos( )

t t
t t

ω ω
ω ω

′ = −
′ = +
′ =

i i j
j i j
k k

 (2.21) 

Let M be a magnetization in the lab frame denoted by: 

 x y zM M M= + +M i j k  (2.22) 

and Mrot be a magnetization in the rotating frame described by: 

 rot x y yM M M′ ′ ′′ ′ ′= + +M i j k  (2.23) 

Setting M=Mrot yields 

 
cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1

x x

y y

z z

M t t M
M t t M
M M

ω ω
ω ω

′

′

′

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.24) 
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Likewise, for B1 and B1, rot 

 1 1, 1,,x yB B=B i j  (2.25) 

and 

 1, 1, 1,,rot x yB B′ ′′ ′=B i j  (2.26) 

Then  

 1, 1,

1, 1,

cos sin
sin

x x

y y

B Bt t
B Bt coa t

ω ω
ω ω

′

′

−⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2.27) 

Equations (2.24) and (2.27) are used to convert a magnetization vector and B1 between the lab 

frame and the rotating frame.  The transformation can also be expressed in a complex notation 

as: 

 i t
x y xyM M e ω
′ ′ =  (2.28) 

where Mxy = Mx+iMy  and yxyx iMMM ′′′′ +=  and 

 1, 1( ) i t
rotB B t e ω=  (2.29) 

where B1=B1,x+iB1,y and 
yxrot iBBB
′′

+= ,1,1,1 .  

Ignoring the relaxation terms, the Bloch equation in the rotating frame can be rewritten as: 

 rot
rot effdt

γ∂
= ×

M M B  (2.30) 

where 

 eff rot γ
= +

ωB B  (2.31) 

This derivation is in Appendix A. 
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Beff is the effective magnetic field that the bulk magnetization experiences in the rotating frame.  

Following the same analysis, the general Bloch equation can be expressed in the rotating frame 

as: 

 0( )
2 1

x yrot z
rot eff

M M M M
dt T T

γ ′+ ′∂ −
= × − −

i jM kM B  (2.32) 

 
 
2.3.3    On resonance excitation 
 
 
The condition that B1(t) is tuned to the Larmor frequency is known as an on resonance 

excitation.  Given that the far smaller magnetic field of RF pulse is able to tip the magnetization 

in the much higher magnetic field, B0.  This can be explained by the following mathematic 

equations.  

Equation (2.17) can be expressed as: 

 1, 1

1, 1

cos
sin

x rf

y rf

B B t
B B t

ω
ω

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (2.33) 

Substituting Equation (2.33) into Equation (2.27) when B1 is in the rotating frame yields 

 [ ]1, 1 1
1, 1

1, 1

cos sin cos
sin sin 0

x rf rf rf
rot

y rf rf rf

B t t B t B
B B

B t coa t B t
ω ω ω
ω ω ω

′

′

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ′= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
i  (2.34) 

Therefore, the effective field (Equation(2.31)) in the rotating frame becomes 

 0 1( )rf
eff B B

ω
γ

′ ′= − +B k i  (2.35) 

If ωrf = ω0 is an on resonance excitation condition, then iB ′= 1Beff .   

For a general B1(t), the angular rotation becomes ω1(t) = γB1(t). If the B1(t) is on for time τ, then 

the tip angle derived from the solution of the Bloch equation is 
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 1
0

( )s ds
τ

α ω= ∫  (2.36) 

and, for a constant B1, 

1α ωτ=  

 
 
2.3.4    Selective excitation 
 
 
In the stated above of excitation, the RF pulse tuned to the Larmor frequency excites all spins at 

the presence of B0 for the entire volume.  However, in the selective excitation approach, only the 

selected region is excited. This can be accomplished by applying the RF pulse with the 

modulation function B1(t) in the presence of a gradient magnetic field [17], typically Gz, 

Therefore, only those spins lying in the z location with resonance frequencies that match the 

temporal frequencies of the B1(t) will be excited. Spins which have resonance frequencies 

outside the excitation bandwidth will be unaffected. 

      The general formulation of the selective excitation is similar to those of the basic excitation 

as described in the previous section. The additional feature of the magnetic gradient field 

typically Gz, a term added to the z component. As a result, Beff  from Equation (2.35) becomes 

 0 1( )rf
eff zB G z B

ω
γ

γ
′ ′= − + +B k i  (2.37) 

Now, the Bloch equations in the rotating frame, ignoring relaxation terms, in a matrix form are 

 
0

0 1

1

0 ( ) 0
( ( )) 0 ( )

0 ( ) 0

rf x
rot

rf y

z

z M
M z t M
dt

t M

ω ω ω
ω ω ω ω

ω

′

′

′

− +⎡ ⎤ ⎡ ⎤
∂ ⎢ ⎥ ⎢ ⎥= − − +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (2.38) 

where ω(z)=γGzz. If the excitation frequency is tuned to the central Larmor frequency, such 

that 0ωω =rf , then the Bloch equation becomes 
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 1

1

0 ( ) 0
( )) 0 ( )
0 ( ) 0

x
rot

y

z

z M
M z t M
dt

t M

ω
ω ω

ω

′

′

′

⎡ ⎤ ⎡ ⎤
∂ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (2.39) 

Here, the Bloch equation is a function of ω(z) and the magnitude of each ω(z) is determined by 

its corresponding location along z. In principle, the selective excitation case can be solved for 

different z positions, each corresponding to a different offset frequency. 

 
 
2.3.5    Small tip angle approximation 
 
 
Small tip angle approximation has been employed in many applications in order to separate the 

B1 field calculation from the magnetization. Since Equation (2.39) has no closed-form solution, a 

numerical calculation is required to solve this equation.  A few assumptions, such as initial 

condition and flip angle, need to be made in order to solve for the equation [18, 19]. 

Assumptions: 

1. The initial condition is 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0

0
0

M
rotM at equilibrium. 

2. The RF flip angle is small, generally less than 30 degree.    

With these assumptions, the magnetization along z, Mz, can be approximated as equal to the 

magnetizations at thermal equilibrium M0, ( 0MM z ≅ ),and 
0≅

dt
dM zrot

.  Therefore, the Bloch 

equation from Equation (2.39) has only transverse components remaining and can be rewritten as 

[15] 

 1 0( ) ( )r
r

dM i z M i t M
dt

ω ω= − +  (2.40) 
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where Mr=Mrot. 

The solution of Equation (2.40) is detailed in Appendix B. 

 ( ) ( )
0 1

0

( , ) ( )
t

i z t i z
rM t z iM e e dω ω τω τ τ−= ∫  (2.41) 

If B1(t) is on from t=0 to τ, then at t = τ, (derivation from Equation (2.41) to Equation (2.42) can 

be found from reference [15]) 

 
( )

2
0 1 1 ( )

2

( , ) FT { ( )}
2 z

i z

r D f f z G z
M z iM e t

τω

γ
π

ττ ω
−

=− =−
= +  (2.42) 

It is clear that with the small tip angle, the slice profile at a particular z location has a Fourier 

Transform relationship with B1(t).  This relationship is very useful in that it facilitates the design 

of B1(t). 

      If the signal immediately after the selective excitation pulse were to be sampled, it would be 

relatively weak due to the signal loss caused by phase dispersion across the finite slice width 

represented by the phase factor exp(-iω(z)τ/2), as shown in Equation (2.42).  To obtain a higher 

signal, the magnetization needs to be refocused. To refocus, the phase factor term needs to be in 

the opposite sign as exp(+iω(z)τ/2), and the area under the refocusing lobe should be one-half of 

the area under the selective excitation lobe [20]. 

 
 
 
 

2.4    IMAGING PRINCIPLES 

 
 
This section will discuss the derivation of the signal equation. The solution of the Bloch equation 

in the presence of the gradient field will be exploited for the derivation.  This section also will 
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describe the basic principles of MR imaging.  The elegant Fourier interpretation of the signal will 

provide the structure of MR imaging.  The ramifications of this signal on parameters such as 

spatial resolution and image field of view will also be discussed. 

 
 
2.4.1    Signal detection and reciprocity law 
 
 
According to Faraday’s Law, if a source is producing a magnetic field, then we can measure how 

much flux it will generate through a coil by measuring the voltage across the coil.  In magnetic 

resonance imaging, we measure the voltage or signal from the coil and determine the magnetic 

fields (in our case, spin distribution) producing such a signal. According to the principle of 

reciprocity, if there are two identical coils, A and B, if coil A can produce flux through coil B, 

then coil B can also produce an identical amount of flux through coil A [21] and the flux,Φ is 

defined as  

dΦ = ⋅∫B a , 

where B is the magnetic field perpendicular to the coil, and a is the surface area of the coil.  In 

MRI, generally the same RF coil is used for excitation and detection; therefore, the flux detected 

by the receiving coil can be determined through the principle of reciprocity [21] as: 

 

 ( ) ( ) ( , )rt t dΦ = ⋅∫B r M r r  (2.43) 

where Br(r) is the laboratory frame magnetic field at location r per unit of direct current flowing 

in the coil and M(r,t) is the magnetization that produces the magnetic flux through the coil.  

Since the Mz component of Mz(r,t) is a slowly varying function compared to the free precession 

of the Mx and My components, the Mz component can be ignored. Therefore, after the 
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demodulation of the high frequency term, the signal equation in rotating frame with Gradient 

Echo sequence becomes [16] 

 0

( )

0( ) ( ) ( , ) sin( ( ))

t

i d

s t i C t e d
γ τ τ

ω γ α
− ⋅∫

= ⋅ ⋅ ⋅∫
G r

r M r r r  (2.44) 

where C(r)is spatial coil sensitivity, and α(r) = γ B(r, t)
0

τ

∫ dt  is the flip angle. 

Mansfield [22] introduces the concept of a reciprocal space vector, k, given that  

 
0

( ) ( )
2

t

t dγ τ τ
π

= ∫k G  (2.45) 

Thus Equation (2.44)becomes 

 2 ( )
0( ) ( ) ( , ) sin( ( )) i ts t i C t e dπω γ α − ⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅∫ k rr M r r r  (2.46) 

The k-vector has a unit of the reciprocal space or spatial frequency. Therefore the signal equation 

in Equation (2.46) can be written in the k-space or Fourier domain as 

 2
0( ) ( ) ( , ) sin( ( )) iS i C t e dπω γ α − ⋅ ⋅ ⋅ ⋅= ⋅ ⋅ ⋅∫ k rk r M r r r  (2.47) 

and  

 2( ) ( ) ( ) iM C S e dπ⋅ ⋅ ⋅ ⋅′= ⋅∫ k rr r k r  (2.48) 

where  
0( ) 1/ ( )sin( ( ))C i Cω γ α′ =r r r  

and 

 
0

( ) ( ( )) ( ( ) )
2

t

s t S k t S G dγ τ τ
π

= = ∫  (2.49) 

Note that the magnetization, M(r) and the signal, S(t) are mutually conjugate. This relationship is 

of critical importance to MR imaging. 
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2.4.2    Fourier interpretation of the signal equation 
 
 
Equation(2.46) shows that at any given time t, s(t) equals the Fourier transformation of the 

magnetization at a particular spatial frequency. Equation(2.49) demonstrates that the total 

recorded signal s(t) maps directly to a trajectory through spatial frequency space, as determined 

by the time integrals of the applied gradient waveform G(t).  To form an image, the trajectories 

corresponding to a set of s(t) are required to cover a sufficient part of k-space to allow 

reconstruction of M(r). Figures 2.3 and 2.4 illustrate examples of 2D Fourier Transform 

sequences.  Figure 2.3(a) displays the timing diagram of the basic 2D Fourier Transform (2DFT) 

sequence.  Figure 2.3(b) shows the corresponding k-space trajectory from a          b          c.   

Figure 2.4 illustrates the timing diagram and the k-space trajectory which cover full 2D k-space.  

The most common image reconstruction in MRI is 2DIFT which performs 2DFT of the 2D k-

space to obtain an image. 
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Figure 2.3(a) Timing diagram, (b) k-space 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4(a) Timing diagram, (b) k-space 

 
 

RF 

GZ 

Gx 

Gy 
a b 

c

Ky 

Kx
a

b c 

(a) (b) from Nishimura’s Principles of 
Magnetic Resonance Imaging [48] 

RF 

GZ 

Gx 

Gy 
Ky 

Kx

(a) (b) 



 

22 

2.4.3    Sampling requirements in 2DFT imaging 
 
 
The sampling requirements here address only the case of uniform sampling in 2D imaging with a 

Cartesian grid. The sampling in each dimension can be treated separately.  This concept can be 

easily extended to higher dimensional cases.  This assumes that the object being imaged has 

fields of view (FOV) along the x and y directions denoted by FOVx and FOVy, respectively, and 

the x direction is used for frequency encoding while y direction is used for phase encoding.  To 

meet the Nyquist criteria,  

 1   and x y
1k k

FOVx FOVy
∆ ≤ ∆ ≤  (2.50) 

and  

 x x

y p

k G t

ky G

γ

γ τ

∆ = ∆

∆ = ∆
 (2.51) 

where 

∆kx and ∆ky are step sizes of the k-space along x and y directions, respectively 

Gx         is frequency-encoding gradient 

∆Gy      is phase-encoding gradient step size 

∆t         is readout sampling time interval 

τp          is phase-encoding interval 

Substituting Equation (2.51)into Equation (2.50) sets the following requirements for the data 

acquisition parameters: 

 

2

2
x

y
p

t
G FOVx

G
FOVy

π
γ

π
γτ

∆ ≤

∆ ≤
 (2.52) 
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2.5    FAST IMAGING 

 
 
The basic imaging sequence discussed in section 2.3 requires relatively long scan time to cover 

the full k-space because the readout performs on one single line in k-space at a time and the 

interval (TR) between readouts is long.  However, many applications require fast scanning to 

overcome motion effects such as cardiac MRI or to capture dynamic events. To achieve this 

goal, a greater portion of k-space per readout is required and /or to shorten the interval between 

signal generation [15].  This can be done by having an appropriate modulation of the gradient 

waveforms to control the k-space trajectory.  The most common trajectories used in fast imaging 

are spiral trajectory [23, 24] and Echo-Planar proposed by Mansfield [25].   

 
 
2.5.1    Spiral trajectory 
 
 
Figure 2.5 shows a type of radial scan known as a spiral trajectory.  The trajectory starts at the 

origin of the k-space and spirals outward (Figure2.5(a)).  The corresponding gradients 

(Figure2.5(b)) are a pair of increasing sinusoidal gradients.  This trajectory provides the entire k-

space in a single readout.    

 
 
2.5.2    Echo-planar trajectory 
 
 
Figure 2.6 shows a Cartesian scan called the Echo-planar with its gradient waveforms.  This 

trajectory is characterized by the acquisition of multiple raster lines per excitation.  Initial 

movement is to the bottom of the k-space, then the scan traverses each line along kx before 

blipping upwards in the ky direction. 
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Figure 2.5 (a) Spiral k-space trajectory, (b) Gr
space 

 
 
                                                                             
                                                                             
                                  
 
                                                                             
 

                                                                             
 
 
 
 
 
 
 

Figure 2.6 (a) Echo-planar trajectory, (b) Gradie
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2.6    MULTI-DIMENSIONAL SELECTIVE EXCITATION 

 
 
The concept of this excitation involves the limited area to be excited or refocused not only in the 

z direction but also in the transverse direction [20, 26-29].  The spatial selectivity of the multi-

dimensional RF pulse is achieved by the application of appropriate gradients simultaneously with 

the RF waveform.  An example of the gradient waveform which is generally employed in most 

applications is the spiral gradient [28].  A couple of examples of multi-dimensional selective 

excitation and their applications will be presented in the following sections. 

 
 
2.6.1    2D Curved-slice excitation 
 
 
Bornert [27, 28, 30] applies the 2D RF pulse to excite curvature objects in 3D space.  The pulses 

have two major components, 2D gradients such as spiral or Echo-planar trajectories and RF 

pulse waveforms.  The two components must be applied simultaneously in order for 2D selective 

excitation to occur.  The 2D RF pulse aims to excite the anatomical structures often embedded in 

curved surfaces.  By using this pulse, the curved structure can be excited and measured as a 

projection on a selected imaging plane.  In 3D space, the curved structure excited by the 2D RF 

pulse is considered to be a chain of N voxels, restricted by conventional frequency encoding in 

the third spatial direction.  

 
 
2.6.2    3D Slice-select Tailored RF (TRF) pulses 
 
 
Stenger, et al. [31, 32] present another application of multidimensional excitation.  The design of 

the 3D slice-select tailored RF (TRF) pulses is based on small tip angle approximation [20].  In 

3D space, the pulse selectively excites when the 3D stacked spiral k-space is applied at the same 
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time as the 3D TRF pulse waveform.  The long pulse length problem due to sampling resolution 

constraint is overcome by breaking up the pulse into orthogonal components, called multi-shot 

3D TRF pulse that excites the slice in separate acquisitions.  The final image is obtained by the 

summation of the complex image data.  This pulse can be used for T2*-weighted functional MRI 

in brain regions corrupted by intravoxel dephasing artifacts due to susceptibility variations.  

 
 
2.6.3    Stacked spiral k-space 
 
 
The stacked spiral k-space is one of the fastest known trajectories through 3D k-space [33].  The 

trajectory is created from 2D spiral trajectories in kx-ky and gradient “blips” along kz such that a 

cylindrical k-space volume is covered.  The 2D spiral trajectories design uses the analytical 

algorithm developed by Glover [34].  In creating his algorithm, Glover modified the slew rate-

limited algorithm of Duyn and Yang [35], which has a singularity problem at origin, with a 

smoother transition function near the origin.  However, at a particular time when it is determined 

that the gradient magnitude will exceed the maximum allowed, the algorithm switches to an 

amplitude-limited function.  In brief, this algorithm includes a modified slew rate-limited case 

for the trajectories near origin and switches to an amplitude-limited case when the maximum 

allowed gradient is being reached.  The 2D spiral k-space can also be split into several 

interleaves for multi-shot excitation and/or interleaves acquisition.  Figure 2.7 shows examples 

of stacked spiral k-space.  Figures 2.7(a) and (b) show single shot and a two shot spiral k-spaces 

respectively.  Figures 2.7(c) and (d) show top views of the corresponding spiral k-spaces.  
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Figure 2.7 (a) Single shot stacked spiral k-space, (b) Two shot stacked spiral k-space, (c) Top 
view of a single shot 2D spiral k-space, (d) Top view of a two shot stacked spiral k-space 

 
 
      Stenger et al applies the 3D slice-selective TRF pulse waveform for B0 field inhomogeneity 

reduction [31, 32]. An example of the desired 3D magnetization profile that matches the stacked 

spiral k-space is a Circ function in the x-y direction and a Gaussian function in the z direction. 

Mathematically, this description can be expressed as: 

 . ( ).
1( ) ( ( )) ( ){ ( ) }i t

xyB t t t M e d∝ ∆ ∫ k rk G r r  (2.53) 

(b) 

(c) 

(a) 

(d) 
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where                                                   ∫−=
T

t

dsst )()( Gk γ  

Above, )(tk∆ is a sample density correction term, and G(t) represents the gradients that are 

applied simultaneously to B1(t). Mxy(r) is the desired complex transverse magnetization.  The k-

space vector k(t) is determined by the area remaining of the of the gradients at time t.  Any 

arbitrary analytical or numerical form for Mxy(r) can be used as long as the sampling 

requirements are satisfied for the resolution of Mxy(r) and for the 3D FOV of the area being 

imaged.  An example of the Circ function for Mxy(r) at a particular z location in the cylindrical 

coordinate can be written as: 

 2
0 0( , ) exp ( / ) ( / )xyM z z z circρ π ρ ρ⎡ ⎤= −⎣ ⎦  (2.54) 

where z0 and ρ0 are the slice thickness and the in-plane radius of the disk respectively.  The Circ 

function is defined as being 0 when 0ρρ >  and 1 when 0ρρ ≤ .  
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3.0    MAGNETIC RESONANCE IMAGING CONSIDERATION IN HIGH FIELD MRI 

 
 
 
 
 

3.1    INTRODUCTON 

 
 
This chapter will be discussed about the technical impacts on high field MR imaging and focused 

more on B1 inhomogeneity problem. The currently available methods for B1 inhomogeneity 

reduction will also be discussed as a comparison for the proposed methods in the next following 

chapters. 

 
 
 
 

3.2    TECHNICAL IMPACTS ON HIGH FIELD MRI 

 
 
The technical impacts on high field MRI lead to both benefits and problems in MRI. The 

technical benefits gained from high field MRI involve increase of SNR, improving of spatial 

resolution, and reduction of total acquisition time. However, there are a few technical challenges 

associated with the increased magnetic field strength that need to be resolved such as B1 

inhomogeneity, susceptibility artifacts and high specific absorption rate (SAR). This thesis will 

be focused on technical development of RF pulse designs which aim to reduce B1 inhomogeneity 
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in 3T MRI. The RF pulse design encompasses safety issue which is characterized by SAR as a 

constraint of the design. 

 
 
3.2.1    Signal-to-Noise Ratio 
 
 
One of the major advantages of high field over low field MRIs is the improvement of SNR [1, 2, 

36, 37].  This is explained by the relationship of signal equation [7] below: 

 
3 2

0

4
BS V

kT
γρ∝  (3.1) 

As equation (3.1) shows, the MR signal (S) is quadratically dependent on the static magnetic 

field (B0) and is directly proportional to the spin density (ρ) and voxel size (V), 

where Tandk,,,γ are gyromagnetic ratio, Planck’s constant, Boltzmann’s constant, and 

absolute temperature, respectively.  Therefore, if the field strength increases by a factor of two, 

the signal can be expected to be four times higher.  Unfortunately, noise, which is frequency 

dependent, also increases by a factor of approximately two [38]; therefore, the signal’s increase 

is just twofold. 

 
 
3.2.2    Improving spatial resolution 
 
 
The increased SNR associated with increased field strength can improve spatial resolution while 

maintaining constant SNR and acquisition time.  Consequently, the partial volume effect may be 

reduced [39].  The relationship between SNR and spatial resolution [7, 40] can be written as: 

 
3

2

D

D

SNR x y z

SNR s x y

= ∆ ∆ ∆

= ∆ ∆

 (3.2) 
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where SNR3D and SNR2D correspond to SNR of 2D and 3D acquisitions, ∆x, ∆y, and ∆z are 

voxel-dimensions along x, y and z plane, respectively, and s is slice thickness.  Note that SNR 

depends on slice thickness differently for 2D and 3D approaches.  If the field strength increases 

by a factor of two, the in-plane resolution promisingly reduces by half with no loss of SNR.  

Along the z-direction, when SNR is constant, the slice thickness can be reduced by a factor of 

two in 2D and four in 3D cases as the field strength increases by a factor of two.  Thus, thin slice 

and high-resolution images can be achieved with reasonable SNR in high field and ultra-high 

field MRI. 

 
 
3.2.3    Shortening data acquisition times 
 
 
SNR is roughly proportional to the square root of the total data acquisition time [7, 41].  

Therefore, reducing the total data acquisition time by a factor of four while maintaining the SNR 

requires twice as much field strength. Therefore at higher field the reduction in total acquisition 

time could reduce significant amount of time in the applications which requires numerous signal 

averages.  

 
 
3.2.4    B1 inhomogeneity 
 
 
As the B0 field increases, the frequency of B1 (Radiofrequency) required to excite the 

magnetization increases linearly. Consequently, the effective wavelength of the B1 field becomes 

comparable to or less than the dimensions of the human body being studied, due to the body’s 

dielectric and conductive properties [42-44]. Standing waves can be created inside the sample, 
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along with wave propagation. The resulting images would have regions of increased and 

decreased magnitudes. 

Dielectric resonance and B1 inhomogeneity  

For 3T and 7T MRI scanners, the RF frequencies required to oscillate at resonance are 

approximately 128 MHz and 300 MHz, respectively. At these frequencies, when the B1 

propagates through mediums, the wavelengths are shorter than their free space wavelengths and 

their amplitudes are attenuated. This result can be understood by the complex wave number and 

the plane-wave equations shown below. The complex wave number [45] is calculated using the 

following equation:  

 

1/ 2
2

1 1
2

i εµ σκ κ κ κ ω
εω+ − ±

⎡ ⎤⎛ ⎞⎢ ⎥= + = + ±⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (3.3) 

The plane-wave solutions derived from Maxwell’s equation (3.3) are 

 ( ) ( )
0 0( , ) ,i kx t i kx tE x t E e B B eω ω− −= =  (3.4) 

As shown in these equations, if the complex wave number k is substituted in the plane-wave 

solutions, the imaginary part of k becomes a negative real number and the wave-amplitude 

decays exponentially as the wave travels into a medium.  On the other hand, the real part of k is 

found to be an imaginary number, and this part determines the wavelength, the propagation 

speed, and the index of refraction [45]. The wavelength is defined as       

 2 ,πλ
κ+

=  (3.5) 

For a “poor” conductor 

σ << ωε 
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 ,
2
σ µκ ω εµ κ

ε+ −≅ ≅  (3.6) 

where σ = Conductivity 

ω = RF frequency 

ε = Permittivity 

µ = Permeability 

As shown in the equation above, wave penetration through this medium is independent of 

frequency, and the B1 inhomogeneity typically depends on the standing waves created inside the 

medium.    

 

For a “good” conductorσ >> ωε 

 
2

ωσµκ κ+ −≅ ≅  (3.7) 

For a substance which has the conductivity in between good and poor, the calculation of the 

complex wave number refers to the original equation(3.3). For distilled water, which has a high 

dielectric constant and zero conductivity, the wavelength of the B1 field is reduced to 27 cm at 

128 MHz [44] and becomes comparable to the dimension of a human head.  If the experiment 

were conducted in a distilled-water phantom of this size, a standing wave would be produced 

inside the phantom, and it would cause an inhomogeneous RF distribution.  However, for human 

brain tissue, in which the dielectric properties are somewhere between good and poor 

conductivity [42], the standing wave is not sustained due to strong decay of the RF caused by 

sample conductivity (the κ– term).  The amplitude distribution of the fields in the head results 

from both the interference of decayed traveling waves in a given coil configuration and 

contributions from dielectrically induced standing waves.  This effect causes increased signal 
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intensity in the middle of the image and decreased signal intensity near its edge.  This effect is 

even more severe during ultra-high field imaging [37, 43]. 

 
 
3.2.5    Specific Absorption Rate (SAR)  
 
 
Transmitted RF energy can be deposited in the body as heat. When the field strength is up to 

1.5T, the wavelength of the RF is considerably long, resulting in only a small amount of energy 

absorption by the body. However, as the field strength moves towards higher fields, the RF 

frequency increases, as does the amount of RF power deposited in the body, and safety becomes 

a concern. Human body tissue can tolerate only a few watts per kilogram before its temperature 

begins to rise. According to Food and Drug Administration (FDA) safety guidelines, the specific 

absorption rates (SARs) for heads and bodies should be limited to 2W/kg and 8W/kg, 

respectively. Numerous factors affect the SAR value of a scan. The number and type of RF 

pulses in the pulse sequence, the type of coil, the position of the patient, and the static magnetic 

field strength are among the most pertinent factors affecting the calculated SAR. The more slices 

per TR, the higher the SAR.  The more RF pulses per slice, the higher the SAR. A higher flip 

angle requires more energy and, thus, a higher SAR. The larger the volume of the transmitted 

coil, the higher the SAR.  Therefore, body coils generally have higher SARs than do smaller 

volume, transmit/receive head coils. Patients positioned nearer the iso-centers and centered 

within the coils have lower SAR values than those positioned off-center, since the latter coil has 

a higher loading factor (i.e., less RF energy is reflected by the coil during transmission and 

energy is transferred into the patient more efficiently). Lower magnetic field strengths have 

lower SAR values than do higher field strengths [46, 47] because less energy is required by each 

RF pulse to accomplish the desired flip angle.  
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3.2.6    Susceptibility artifacts  
 
 
Susceptibility artifacts result from variations in the local field gradients that occur near the 

interfaces of substances with differing magnetic susceptibilities. In other words, objects with 

magnetic susceptibility cause distortion and signal loss. An example of a large susceptibility 

artifact in the human brain is the region closed sinuses in T2* contrast images. At higher field 

strengths, the effects of susceptibility-induced geometric distortion and signal loss are even more 

aggravated, [5, 48, 49] since the strength and size of the local gradients are proportional to the 

field strength, B0.  

 
 
 
 

3.3    EXISTING METHODS OF REDUCING THE B1 INHOMOGENEITY 

 
 
As mentioned in the above section, this thesis will be addressed the B1 inhomogeneity problem. 

To date, three major approaches have been developed to address this problem. They are 

improved RF coil designs [38, 50, 51],  compensated RF pulse designs [52-55] , and post- 

processing image correction [56-64]. 

 
 
3.3.1    Improved RF coil designs 
 
 
In high field or ultra-high field MRI, designing RF coils is particularly challenging since coils 

must be sufficiently large for practical use, but there is the constraint of high resonance 

frequency. At high frequencies, the wavelengths of high-frequency electromagnetic waves in the 

human body approach the RF coil’s dimensions, and non-uniformity becomes an issue, as does 
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radiation loss [65]. These problems could result in the severe degradation of the coil quality 

factor (Q) and, ultimately, coil sensitivity. They could also limit the design of large-size RF 

volume coils with high-operating frequencies [65]. Several coil designs [38, 50, 65] have been 

proposed to solve these problems. Three examples are selected to discuss in this thesis. 

      The first example is Spiral volume coil. The spiral coil [50] uses angled conductors instead of 

straight axial conductors.  The coil produces sinusoidal current distribution similar to a birdcage 

coil by preserving the discrete rotational symmetry around the axis. The difference between the 

traditional birdcage coil and the spiral coil is the variation of the current phase with distance 

along the axis.  The rotation of the spiral coil conductors as a function of axial distance leads to a 

phase rotation of the RF field.  The amount of phase rotation is determined by the tightness of 

the spiral.  Experiments show that the spiral volume coil can improve spatial uniformity in 

images with a linear variation of phase along the axis. 

      The second example is the Detunable Transverse Electromagnetic (TEM) coil.  Vaughan, et 

al. [38] introduces TEM coil for 4T MRI which exploits the uniformity of the body coil as a 

transmitter and utilizes the high SNR of the surface coil as a receiver.  Both coils are detunable 

when operated.  For a static magnetic field strength lower than 3T, this technique is generally 

used to acquire high resolution images [38].  However, at higher field strength, the design is 

much more challenging than it is at lower field strength due to signal loss.  Studies of this coil 

design are promising for both functional MRI and spectroscopy images.  

Microstrip transmission line (MTL) volume coil  

      The last example is Microstrip transmission line (MTL) volume coil [65].  The design is 

based on the concepts of using the miscrostrip transmission line (MTL), which consists of a thin 

strip conductor and a ground plane separated by a low-loss dielectric material, as a resonator. 
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With its semi-open transmission line structure, substantial electromagnetic energy can be stored 

in the area near the strip conductor. This reduces both the amount of radiation that is lost and the 

perturbation of sample loading to the RF coil at high fields.  Compensation for B1 inhomogeneity 

is made through adjustment of the depth of RF penetration which corresponds to the thickness to 

the dielectric material layer.  Results of experiments conducted with human brains show 

improved SNR and slightly flatter images in MTL than in lower field images. 

Although improving the RF coil performance is clearly a necessary step for homogeneous 

transmission and reception, it may be unlikely that coils alone will be able to remove all 

inhomogeneity because the effect also depends on the sample’s geometry and its physical 

properties.   

 
 
3.3.2     Compensated RF pulse design 
 
 
This technique relies on shaping profiles, varying flip angles or adjusting the transmitting power 

of the RF pulse to compensate for the B1 inhomogeneity inside the objects.  

      One of the best known compensated pulses used for B1 inhomogeneity is adiabatic pulse. The 

adiabatic pulse [66] and slice-selective adiabatic pulse [67-69] are special RF pulses that can be 

used when the RF field is inhomogeneous.  In general, the flip angles produced by conventional 

RF pulses use a constant, Larmor frequency and are sensitive to B1 or RF field homogeneity.  In 

contrast, those produced by adiabatic pulses are relatively insensitive to B1 or RF field 

homogeneity. These special pulses are produced by sweeping the frequency of an irradiating RF 

pulse through the Larmor frequency. The disadvantages of adiabatic pulses are that they are 

difficult to produce and more time is required in order for the desired flip angle which causes 
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high SAR to be produced.  Consequently, rapid multi-slice imaging of humans is not currently 

practical with adiabatic pulses [38]. 

      Deichmann, et al. [53, 54] propose that impulse 1D and 2D pulses compensate for the B1 

inhomogeneity correction of T1-weighted images. In their study, compensated RF pulses were 

used with the magnetization-prepared rapid gradient-echo (MP-RAGE) sequence [70] and the 

centric phase encoding (PE) technique [71].  When the gradients are applied during the 

excitation, the compensated pulse profiles have a parabolic shape which corresponds to the 

maximum flip angles near the edge and the minimum flip angle at the center.  In the centric PE, 

the central k-space lines, which determine the image intensity, are acquired first. Therefore, their 

contribution to the image is proportional to the flip angle, since only the transverse 

magnetization component contributes to the signal at t=0.  The loss of signal in the periphery was 

compensated by using these pulses.  For the 1D pulse method, the correction is only in the z 

direction, and the B1 map can be calculated using the equation below 

 5 2
1 1 5.2.10 ( )B z−≈ −  (3.8) 

where B1 has arbitrary units in z direction. For 2D pulses, additional y direction was 

compensated beside the z direction. Thus, the pulses consist of 2 RF pulses simultaneously 

excited with the gradients Gz and Gy to provide an inhomogeneity correction in both directions.   

Impulse1D and 2D pulses have very short pulse widths (1.3 ms). However, they are not a slice-

slab selective, and thus, they require a high sampling rate in the readout direction to avoid 

aliasing. 

      Clare, et al. [55] present a method of compensating for B1 inhomogeneity that combines both 

correction during excitation and reception.  The method is based on calibration of the B1 

distribution in a particular coil, calculation and application of appropriate transmitter power 
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levels for each slice and compensation for receiver gain in post-processing.  This method works 

well if the effect of coil geometry is the primary source of B1 inhomogeneity, but it is less 

successful if the problem is caused by the sample’s dielectric or conductive properties. For fields 

higher than 3T or sequences that have a high number of spin echo pulses such as Fast Spin Echo, 

increasing the transmitted power may cause the SAR to exceed its limits. 

 
 
3.3.3    Post-processing image correction 
 
 
These techniques are based on the practice of correcting the intensity of problematic image 

pixels.  Artifact pixels are replaced by reference pixels derived using a particular algorithm.  In 

addition, filters are typically applied to smooth the images.  A variety of methods have been used 

with some success. Guillemand and Brady [59] used an expectation-maximization algorithm to 

iteratively classify and correct the images based upon a set of initial probability estimates. 

Decarli, et al. [60] compared local and composite medians of specific tissue classes. Lee and 

Vannier [61] applied the fuzzy “c-means-clustering” algorithm to estimate bias in MR images. 

Koivula, et al. [62] employed the compensating function to small variations within homogenous 

areas through extensive averaging. Wang, et al. [63] matched histograms in order to correct 

variations in scanner sensitivity. Sled, et al. [64] developed an iterative deconvolution approach, 

which they combined with polynomial filtering to estimate the distribution of true tissue 

intensities. Zhou, et al. [72] used both low and high frequency components of an image’s 

intensity variation to correct for RF inhomogeneity.  The results of these methods are sensitive to 

original signals and could lead to the reduction of image contrast between two tissues after 

correction. 

 



 

40 

 
 
 
 

4.0    3D TAILORED RF FOR B1 INHOMOGENEITY COMPENSATION AT 3T 

 
 
 
 

4.1    INTRODUCTION 

 
 
4.1.1    Overview 
 
 
The design of 3D TRF pulses for B1 inhomogeneity compensation discussed in this chapter is 

based on the design of 3D slice-select TRF pulses for B0 field inhomogeneity proposed by 

Stenger, et al. [31, 32].  With the small tip angle approximation [20], an RF pulse and the desired 

magnetization profile have a mutually Fourier relationship as in Equation (2.42) and 

Equation.(2.53).  Thus, if the magnetization is known, an RF pulse can be estimated using the 

inverse Fourier transform of a magnetization profile described by Equation(2.53).  This concept 

can be modified for building 3D TRF pulses which incorporate B1 inhomogeneity compensation.  

The proposed method aims to reduce the B1 inhomogeneity at 3T as well as, possibly, higher 

magnetic field strengths. The pulses use a 3D map of the B1 inhomogeneity acquired in-vivo as 

pre-scan images and are implemented as slab-select pulses for 3D imaging. Compared to the 3D 

TRF slice-select pulses for susceptibility artifact reduction [31, 32], the slab-select 3D TRF 

implementation is more practical because it allows for relatively short pulse lengths. 

Furthermore, the spatial variation of the B1 inhomogeneity is slow enough that only a low-

resolution map is required, further reducing the length of the pulse.  Imaging experiments using a 
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NiCl2 doped phantom and a normal human brain in vivo at 3T are discussed in the following 

sections. 

 
 
4.1.2    Theory 
 
 
Ignoring relaxation and off-resonance, the MR signal derived from reciprocity law at time t for 

one pulse with small tip angles approximation, α(r) can be written as 

 0

( )

( ) ( ) ( ) ( ) ( )

t

acqi G s ds

V

s t W C e d
γ

ρ α
− ∫

∝ ∫
r

r r r r r  (4.1) 

In the above equation, V is the volume of the coil, Gacq(s) represents the acquisition gradients, 

W(r) is spatial weighting due to selective excitation, and C(r) is the receive sensitivity. The 

spatial dependencies of α(r) and C(r) reflect the effects of an inhomogeneous B1 field. These 

dependencies are present in the reconstructed image I(r) of the spin density ρ(r): 

 ( ) ( ) ( ) ( )I Cα ρ=r r r r  (4.2) 

Although the exact form of each of the above equations is dependent upon the specific details of 

acquisition, hardware, and reconstruction, the equations are generally applicable to methods 

described here. The B1 inhomogeneity artifacts in I(r) can be reduced by designing 3D TRF 

pulses using the small tip angle approximation [20]. The small tip angle approximation equates 

the pulse waveform P(t) to the Fourier transform of the desired slice profile W(k(t)), weighted by 

the k-space velocity produced by the gradients G(t) that are applied during excitation: 

 ( ) ( ( )) ( ) ( ( ))P t t t W t∝ ∆ k G k  (4.3) 

This equation is technically valid for tip angles less than 300, and it has been found to hold well 

for angles on the order of 900 [26].  In the above equation, W(k(t)) is defined as 
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 ( )( ( )) ( ) , where ( ) ( )
T

i t

t

W t W e d t s dsγ= = −∫ ∫k rk r r k G  (4.4) 

The excitation k-space trajectory k(t) is equal to the area remaining under the gradients at time t 

and at the end of pulse T.  Any arbitrary W(r) can be tailored provided that sampling 

requirements are met by k(t).  However, one practical concern is that a pulse of unreasonable 

length often is needed to excite a profile W(r) with the desired resolution and no aliasing. As a 

result, the implementation of the 3D TRF pulses often requires a multi-shot modality [32]. It can 

be seen from Equation (4.2) that B1 inhomogeneity can be removed if the excitation profile is 

tailored to have the following spatial distribution: 

 0 ( )( )
( ) ( )
WW

C α
=

rr
r r

 (4.5) 

In this equation, W0(r) is the desired uniform 3D slice profile. Either in vivo measurements or 

theoretical calculations of α(r) and C(r) can be used. 

 
 
 
 

4.2    METHODS 

 
 
The algorithm for building the 3D compensated TRF pulse encompasses three major steps: 1) 

building the uniform excitation 3D TRF pulses to excite the desired slice volume and acquiring a 

set of pre-scan images for generating 3D maps 2) generating 3D maps from the pre-scan images, 

and 3) building the 3D compensated TRF pulses from the 3D maps and acquiring images for the 

same slice location, FOV and slice thickness as the first step.    
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4.2.1    The uniform 3D TRF pulses construction 
 
 
The 3D TRF pulses were designed for a General Electric (GE Medical Systems, Waukesha, WI) 

3T imaging system with a standard head coil and a body gradient with a 150 T/m/sec slew rate 

and a 40 mT/m peak. A two-shot interleaved stacked-spiral k-space trajectory was used for the 

excitation. Each 2D trajectory spirally traverses from outside into the center, then blips along z at 

the center. Figure 4.1 shows a two-shot stacked-spiral trajectory in which the solid and dashed 

lines represent each shot. Exploiting the Fourier transform relationship which exists between the 

magnetization and the B1, a uniform pulse profile or pulse envelope was built in the spatial 

domain. Construction of the pulse profile relied on several analytical functions, including a 

Fermi function along the in plane coordinate and the Fourier transform of the product of a sinc 

function with a Hamming filter along the through plane direction.  Mathematical clarification is 

provided below.  

 
 

 
 
 

Figure 4.1 Diagram of the two-shot 3D stacked spiral k-space trajectory used for the 3D TRF 
pulses. The solid and dashed lines represent each shot. 
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The uniform slice profile W0(r) was the Fourier transform of a Hamming-filtered sinc function 

along z and a Fermi function along the in-plane coordinate ρ: 

 { }0 0
0

0

sinc( ) ( )
( ) .

1 exp[( ) / ]
z zFT z k z H k

W
wρ ρ

=
+ −

r  (4.6) 

In this equation, z0 and 2ρ0 are the effective slice thicknesses along z and ρ, respectively, while w 

is a parameter that controls the steepness of the edges of the Fermi function and H(kz) is a 

Hamming filter.  The sample density 1/∆(k(t)) was determined in a manner consistent with that 

proposed by Hardy et al. [73].  Equation (4.6) shows a profile that is essentially a cylinder.  The 

sinc function was smoothed with a Hamming filter to reduce the presence of a ripple along the z-

direction.  The slab thickness z0 was 10 cm, and the in-plane radius ρ0 was 12 cm.  It is 

convenient to describe 3D TRF pulses in terms of “excitation resolution” and “excitation FOV” 

in the xyz-directions.  These were 2.0x2.0x1.25 (xyz) cm3 and 24x24x20 cm3, respectively.  The 

excitation resolution determines the degree to which small changes in the slice profile can be 

tailored, and the excitation FOV determines the separation between the slice aliases.  The 

resultant pulse length was approximately 11 ms for each shot.  Figure 4.2 shows Bloch equation 

simulations of the profile W0(r) plotted versus x-y and x-z using the 3D TRF pulse at a 200 flip 

angle. The 3D TRF pulses were inserted into a standard 3D stacked-spiral [33] pulse sequence 

for use on the scanner.   
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Figure 4.2 Mesh plots of the excited magnetization W0(r) in the (a) x-y and (b) x-z directions 
generated from Bloch equation simulations using 3D TRF pulse as input. 

 
 
4.2.2    Generating 3D maps 
 
 
Maps of the B1 inhomogeneity were acquired as part of the pre-scan procedure using the uniform 

pulse profile for 3D TRF pulse excitation.  The maps were generated from 3D images acquired 

(a) 

(b) 
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over the same FOV as the pulse and smoothed down to match the pulse resolution of 12x12x16 

matrix size over a 24x24x20 cm3 FOV.  The optimal resolution of the maps was determined 

based on two parameters, pulse width and image details.  The optimal resolution was the 

resolution such that the minor details of structure on the images were eliminated at the shortest 

pulse width.  This implies that the spin density becomes uniform and leaves only the B1 

inhomogeneity as expressed in Equation(4.7).  The effect of the smoothing process can be 

understood from Equation(4.2). When the resolution of I(r) is reduced, the spin density becomes 

approximately uniform and the resultant image ∆M(r) is a map of the coil sensitivity multiplied 

by the flip angle: 

 ( ) ( ) ( )M Cα α∆ r r r  (4.7) 

 
 
4.2.3    3D compensated TRF pulse construction 
 
 
The excited slice profile was assumed to be uniform (W(r) = W0(r)).  The 3D image was 

smoothed using a Gaussian filter with the full width at half maximum matched to the excitation 

resolution of the pulse.  Equations(4.3), (4.5), and (4.6) were then used to determine the 

compensated 3D TRF pulse profile.  However, the division required by Equation (4.5) produced 

singularities and errors which were amplified by noise in the measurement of W(r).  Therefore, it 

was determined that a simple proof of concept would be more convenient if the mean of M(r) 

was either windowed or subtracted out such that 

 ( ) ( )M M M= + ∆r r  (4.8) 

In this case, the desired profile was determined by 
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0
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 (4.9) 



 

47 

The approximation in Equation (4.9) holds true if ∆M(r) is small compared to M .  Figure 4.3 (a) 

shows an example of a 3D image of a 20 cm NiCl2 phantom displayed as slices.  The images 

were excited by the 3D TRF pulse with the uniform profile, and B1 maps were subsequently 

generated.  Figure 4.3 (b) shows ∆M(r) generated from (a) when the resolution was reduced to 

the optimal resolution such that the spin density became uniform.  Figure 4.3 (c) shows the 

uniform profile W0(r) that was built from the analytical function in Equation(4.6), and (d) shows 

the compensated profile W(r) that was obtained from Equation(4.9).  Figure 4.3 (e) illustrates 

plots along the L-R direction through the center slices in (a) through (d). Figure 4.4 shows an 

example of one shot from a two-shot 3D TRF pulse with the B1 inhomogeneity compensated 

profile (W(r)) as input.  Rows (a) and (b) are real and imaginary parts of the pulse envelope 

function of the compensated 3D TRF pulse, respectively. Rows (c) and (d) are spiral gradient 

wave forms with two interleaves along x and y directions. Row (e) is the blip along z at the 

origin of each of the (c) and (d) spirals.  
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Figure 4.3 Three-dimensional images of a NiCl2 phantom and example 3D TRF slice profiles. (a) 
initial images acquired for input into the pulse algorithm. (b) Same images smoothed with a 3D 
Gaussian filter and windowed between the mean and the maximum magnitude. These were used 
as the inhomogeneity maps ∆M(r). (c) Desired uniform slice profie W0(r). (d) Modified slice 
profile W(r) that was generated from ∆M(r) and used to excited a uniform slice. The images (c) 
and (d) were windowed to the peak magnitude of (a) and (b), to half of this value. (e) Plots along 
L-R direction through the center slices of (a) through (d) 

 
 
 

(b) 

(c) 

(a) 

(d) 
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Figure 4.4 Diagram of one shot from a two-shot B1 inhomogeneity-compensating 3D TRF pulse. 
Rows (a) to (e) show, in order, the real and imaginary parts of the RF, followed by the x-,y-,and 
z-gradients. 

 
 
Figure 4.5 shows Bloch equation simulations of the compensated profile W(r) plotted versus x-y 

and x-z using the 3D TRF pulse at a 200 flip angle.  Compared to Figure 4.2, these profiles excite 

the inverse of the spatial variation due to B1 inhomogeneity. All of the image processing and 

pulse construction programs were written using Matlab, a software program produced by The 

Mathworks, Inc. and were run on the scanner console. 

 

(a) 

(b) 

(c) 

(d) 

(e) 



 

50 

−0.5

0

0.5 −0.5

0

0.5
0

0.1

0.2

0.3

0.4

0.5

y (units of FOV)
x (units of FOV)

W
(r

) 
(n

or
m

al
iz

ed
)

 

−0.5

0

0.5 −0.5

0

0.5
0

0.1

0.2

0.3

0.4

0.5

x (units of FOV)
z (units of FOV)

W
(r

) 
(n

or
m

al
iz

ed
)

 
 

Figure 4.5 Mesh plots of the excited magnetization of W(r) in the (a) x-y and (b) x-z directions 
generated from Bloch equation simulation using a 3D TRF pulse as input. 

 
 
4.2.4    Imaging experiments 
 
 
Phantom and human imaging experiments were performed to test the method in vivo.  The 3D 

TRF pulse parameters and construction methods used were as described above, except for 

(a) 

(b) 
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variation in the flip angle.  The phantom experiments used a 20 cm NiCl2 doped TLT phantom in 

which a substantial amount of B1 inhomogeneity was observed at 3T.  The 3D stacked spiral 

acquisition had a 64x64x16 (xyz) matrix size, TR = 50 ms, TE = 8 ms, and FOV = 24 cm. 

Phantom images were acquired using a standard 10 cm (minimum phase SLR) slab-select pulse 

and a 3D TRF slab-select pulse with B1 inhomogeneity compensation.  A flip angle of 250 was 

used.  The amplitude P(t) of the 3D TRF pulses was adjusted manually during pre-scan to obtain 

the correct flip angle.  Experiments were also performed on three normal human volunteers in 

different scan sessions.  As in the phantom experiments, a standard slab-select pulse and a 3D 

TRF pulse with B1 inhomogeneity compensation, both with a 250 flip angle, were used.  The 3D 

stacked spiral acquisition had a 128x128x64 resolution using four spiral interleaves, TR = 50 ms, 

TE = 8 ms, and FOV = 24 cm. 

 
 
 
 

4.3    RESULTS 

 
 
Figure 4.6 (a) shows a 3D image of the NiCl2 phantom displayed as a series of 2D slices 

acquired using the standard slab-select pulse.  Note that the images show decreased magnitude 

near the outer edges due to inhomogeneity in the B1 field.  Figure 4.6 (b) shows images of the 

same phantom that were acquired after being excited by a 3D TRF pulse with B1 inhomogeneity 

compensation.  The resultant images have a more uniform magnitude.  A 1 cm3 ROI was taken 

near the edge of the phantom where a large degree of B1 inhomogeneity was present.  From the 

images excited by the 3D TRF and standard slab-select pulses, the SNR in the ROI was 

measured to be 88.4 and 55.6, respectively.  Figure 4.6 (c) shows the difference between (a) and 
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(b). The images were first normalized to the maximum magnitude of (a), then they were 

windowed between 0.0 and 0.5.  

 

Plots of the image magnitude profile through the center of the phantom along the L-R direction 

are shown in Figure. 4.7 (a). The solid and dashed lines are the profiles through the center of the 

phantom when the compensated 3D TRF pulse is and is not used, respectively.  The profile when 

the compensated 3D TRF pulse was used is flatter, with recovered image magnitude near the 

edges.  A plot of the difference between the solid and dashed lines in (a), normalized to the 

maximum of the image acquired without the compensated 3D TRF pulse, is shown in (b).  

 

Figure 4.8 (a) shows a representative 3D image from one of the human subjects displayed as a 

series of 2D slices that were acquired using the standard slab-select pulse.  The images are 

brighter in the center than they are at the edges due to the effect of B1 inhomogeneity.  Figure 4.8 

(b) shows the same 3D image from the same subject acquired using the compensated 3D TRF 

slab-select pulse. The images show a more uniform image magnitude than those acquired with 

the standard slab-select pulse.   

 

Figure 4.9 shows a 3D image from a human brain displayed as axial, sagittal, and coronal slices 

through the volume center. Rows (a) and (b) were windowed to the same minimum and 

maximum magnitudes. They were acquired with a standard 3D slice selective pulse (a) and the 

compensated 3D TRF pulse (b).  Row (c) shows the difference between (a) and (b), normalized 

to the maximum magnitude of the image shown in (a), windowed between 0.0 and 0.30. 
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Figure 4.6 Three-dimensional images at 3T of a uniform NiCl2 phantom displayed as slices (a) 
image excited with a standard slab-select pulse. (b) Images excited with the 3D TRF pulse. The 
images in (a) and (b) were windowed identically. (c) Images of the normalized difference 
between (a) and (b) (windowed between 0.0 and 0.5) 

(b) 

(c) 

(a) 
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Figure 4.7 (a) Plot of the profile along the L-R direction through the middle of the volume. The 
dashed line is of with a uniform profile pulse and the solid line is of the pulse for B1 
inhomogeneity compensation. (b) Plot of the normalized difference between the profiles shown 
in (a).  

 

(a) 

(b) 
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Figure 4.8 Three-dimensional images at 3T of a human brain in vivo displayed as slices. (a) 
Image excited with a standard slab-select pulse. (b) Image excited with a 3D TRF B1 
inhomogeneity compensated slab-select pulse. The image excited with the 3D TRF pulse shows 
a more uniform image magnitude between the edges and the center. 

(a) 

(b) 
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Figure 4.9 Center slices through a 3D image of a brain at 3T. The slice are displayed as 
axial(left), sagittal (middle)and coronal (right) 2D images. The images in row (a) and (b) were 
acquired with a standard slab-select pulse and a compensated 3D TRF pulse, respectively. They 
were windowed identically. (c) Images of the normalized difference between (a) and (b), 
windowed between 0.0 and 0.3. 

(a) 

(b) 

(c) 
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4.4    DISCUSSION 

 
 
This work shows that anatomically accurate maps of the flip angle and coil receive sensitivity 

can be used to construct small tip angle, slab-select 3D TRF pulses that compensate for B1 

inhomogeneity in all three spatial directions.  The compensated 3D TRF pulses used in this 

research promisingly reduce B1 inhomogeneity by approximately 30% of the peak image 

magnitude of the human brain over a 24x24x20 cm3 FOV at 3T.  This method was implemented 

on a standard scanner and required no special hardware.  The flip angle and receive sensitivity 

maps were approximated using a smoothed low-resolution anatomical image.  The smoothing 

removed differences in image intensity caused by anatomical features, leaving only the variation 

due to B1 inhomogeneity.  Although more precise measurements are desirable [74], the results 

seem to indicate that this process was adequate for 3T. In addition, this method has the added 

advantage of accounting for both the flip angle and received sensitivity variations.  

Compensating for the receive inhomogeneity with the RF is feasible for small tip angles.  

However, this leads to angles larger than optimal at different locations.  This can cause the 

technique to break down, and it can create a spatial variation in tissue contrast.  The results 

reported in this chapter indicate that the study methodology is adequate at 3T and has the added 

advantage that both the flip angle and receive sensitivity variations are present in the image and 

do not need to be acquired separately.  A higher field implementation, however, may require the 

explicit measurement of the two maps, due to their potentially unique spatial distributions [75, 

76]  and larger flip angles.  Equation (4.9) was employed where the fraction of inhomogeneity 

present in the image was subtracted to obtain the desired excitation profile instead of dividing.  

This approach was adequate for a proof of concept, but it required that the amplitude of the pulse 

be increased to match the peak image magnitude of the uncorrected image in order to maintain 
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SNR.  This can be seen in the plot of Figure4.7 (a) where the center magnitudes of the phantom 

images were matched by increasing the amplitude of the 3D TRF pulse.  Due to scanner time 

constraints, this was not done in the human experiments where the images acquired with the 3D 

TRF pulses were more uniform but had decreased SNR.  This loss of SNR can be easily 

remedied by increasing the pulse amplitude, as was done with the phantoms.  There are no 

known safety concerns using this method.  The SAR is not to an issue with these pulses, despite 

their length, because the majority of the peak B1 occurs only for short intervals at the spiral k-

space centers along the length of the pulse.  These sharp peaks in B1 can be seen in Figure 4.4, 

rows (a) and (b).  However, a potential problem is that the scanner may be unable to achieve the 

peak B1 necessary for obtaining the desired flip angle in a region with very large inhomogeneity.   

 

The major limitation of the 3D TRF method remains that pulse lengths are often impractically 

long due to sampling requirements.  One possible approach to alleviating this problem is to 

decompose the pulses into multi-shot excitations. However, this approach causes increased 

image acquisition time.  Still, when correcting the B1 inhomogeneity in a 10 cm slab at 3T, the 

pulse sampling requirements are not as severe, due to B1’s slower spatial variations.  It was found 

that a single shot pulse on the order of 22 ms which excited the slab with 2.0x2.0x1.25 cm3 

resolution over 24x24x20 cm3 FOV was more than sufficient.  Implementation in the stacked 

spiral acquisition required that the pulse be decomposed into two 11 ms long excitations in order 

to reduce off-resonance effects.  In spite of the two-shot implementation, the acquisition obtained 

nearly whole brain coverage with a 2 mm3 isotropic resolution in 51 seconds. Increasing the 

resolution to 1 mm3 would bring the acquisition time to just less than 7 minutes, an approximate 

increase of eight times.  A factor of two in acquisition speed could be obtained by developing a 
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single-shot implementation of the 3D TRF pulse.  It is likely that an excitation with a lower map 

resolution would have worked adequately, requiring a 3D TRF pulse shorter than 22 ms.  

However, the chosen resolution was based on the sampling needs of the uniform slice profile 

function M0(r).  Although using smoother functions for M0(r) would reduce the pulse length, the 

edges of the slice profile would be less steep.  The slice profile along the slab-select direction of 

the 3D TRF pulse used in this work was already not as sharp as the minimum phase SLR slab-

select pulse, and 25% over-sampling was required to remove aliasing. Poor slice profiles are a 

limitation of this technique.  

 
 
 
 

4.5    CONCLUSIONS 

 
 
This work presents a novel 3D tailored RF pulse method that uses anatomical maps of the flip 

angle and coil receive sensitivity to compensate for B1 inhomogeneity in all three spatial 

directions.  Compensated 3D TRF slab-select pulses were able to be designed that performed at 

10 cm thickness and reduced B1 inhomogeneity by as much as 30% of the peak image magnitude 

over a 24x24x20 cm3 FOV at 3T.  This method was implemented on a standard scanner and 

required no special hardware.  A 10 cm thick slab with 2 mm3 isotropic resolution could be 

acquired in under a minute using the pulse with a four-shot stacked spiral sequence. 
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5.0    EXPLORATION OF THE USE OF 3D TRF PULSE FOR B1 INHOMOGENEITY 
COMPENSATION IN ULTRA-HIGH FIELD MRI 

 
 
 
 

5.1    INTRODUCTION 

 
 
The previous chapter discusses the promising potential of compensating for B1 inhomogeneity by 

using 3D TRF slab-select pulses.  This chapter addresses the feasibility of using this technique 

for ultra-high magnetic field strength.  However, the problem of B1 inhomogeneity at ultra-high 

field is complicated since the wavelength of the RF excitation further decreases as the field 

strength increases.  Accordingly, the image intensity distribution acquired during ultra-high field 

imaging exhibits a significant amount of B1 inhomogeneity [42, 43, 51, 76].  This effect is caused 

by the phenomenon known as field polarization [21, 76].  Under this condition, the phase of the 

RF field is a function of its position inside the sample.  At ultra-high field, both components of 

the B1 field, clockwise and counterclockwise rotating fields discussed in section 2.4.1.1, need to 

be considered during the RF field calculation [76].  The transmission field and the reception field 

need to be calculated separately [76].  To explore the possibility of using compensated 3D TRF 

pulses to reduce B1 inhomogeneity, the pulses were first tested in a Bloch equation simulation 

and then with a doped phantom of large diameter which was constructed to simulate the 

wavelike effects at ultra-high field. 
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5.2    METHODS 

 
 
5.2.1    Bloch equation simulation testing 
 
 
Maps3 of B1 inhomogeneity at 8T in Figure 4.1 (a) were generated from a spherical phantom of 

18.5 cm diameter filled with 0.125 M NaCl.  The phantom was loaded into a 16-strut TEM 

resonator operating under linear excitation, and the maps were numerically simulated using the 

Finite Difference Time Domain method tuned to the frequency of 340 MHz (8T).  Pulse profiles 

for B1 inhomogeneity compensation were designed for sixteen-shot 3D TRF pulses to excite a 10 

cm thick slice after the complex summation of all images acquired with each shot.  Multiple 

shots were used to minimize pulse lengths.  The flip angle was 300, and the gradients were 

assumed to be those of a commercial scanner: a peak gradient of 40 mT/m and a slew rate of 

150T/m/sec.  The sampling requirements of the pulses were such that a 24x24x20cm (xyz) FOV 

was excited with a 16x16x8 (xyz) resolution.  The numerically simulated B1 inhomogeneity was 

re-sampled to that of the pulse and used in Equation (4.9) for W(r).  The length of each shot was 

approximately 3.8 ms.  

 

Figure 5.1 (b) shows the compensated maps for 3D TRF slab-select pulses.  The Bloch equations 

were numerically integrated to determine the effectiveness of the pulse at replicating the desired 

slice profile shown Figure 5.1 (c).  The compensated 3D TRF slab-select pulse of one shot of 16-

shot pulses is shown in Figure 5.2. 

                                                 
3 Provided by Dr. Petra Schmalbrock and Dr. Tamer Ibrahim of Ohio State University 
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Figure 5.1 (a) Maps of the B1 inhomogeneity at 8T, (b) Maps for compensated 3D TRF pulses, 
(c) Maps of the compensated 3D TRF pulse profiles from Bloch equation simulation.  

 

 
 

Figure 5.2 One shot of a sixteen shot 3D tailored RF pulse with a B1 non-uniform compensation 
slice profile built into the 3D TRF slab-select pulses. 

(a) 

(b) 

(c) 
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5.2.2    Imaging experiments 
 
 
The pulse profiles shown in Figure 5.1 (c) from Bloch equation simulation demonstrate the 

possibility of using the 3D TRF pulses for B1 inhomogeneity compensation. In this image, the 

region of decreased intensity near the center was compensated by the pulses.  Then, the pulses 

were tested on the 3T MR scanner using a phantom that simulated the B1 artifact at ultra-high 

field strength.   

The imaging experiments were performed using a body coil as a source of B1 excitation.   The 

phantom that simulated a B1 artifact at ultra-high field strength was a plastic sphere 36 cm in 

diameter filled with Manganese Chloride.  It was found that the pulses generated using the same 

approach as discussed in chapter 3 failed in this experiment because the spatial content is high 

which violates the assumption made by Equation (4.9) that assumes the fraction of B1 

inhomogeneity is small.  Thus, for the compensated B1 maps, W(r) needed to be based on 

Equation (4.5) instead.  The background noise amplification and singularity problems were 

resolved by having a noise threshold set for each pixel of the maps.  Specifically, any pixel in 

which the intensity was equal to or less than the threshold would remain unchanged; otherwise, 

the pixel would follow Equation(4.5).  The compensated B1 maps were designed for the 

following pulse parameters: the FOV was 40x40x40 cm, the slice thickness was 20 cm, the 

resolution was 4x4x2 cm (xyz), and the pulse 2-shot.  The compensated 3D TRF pulse for a 

simulated B1 artifact phantom at ultra-high field strength is shown in Figure 5.3 below.  
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Figure 5.3 The compensated 3D TRF pulse for simulated B1 inhomogeneity of ultra-high field at 
3T MRI. 

 
 
 
 

5.3    RESULTS  

 
 
Figure 5.4 (a) shows the phantom images excited by a standard sinc pulse with gradient echo 

sequence that were acquired from the 3D spirals acquisition with resolution of 64x64x16 (xyz). 

For these images, the phase encoding was in z direction, the FOV was 40 cm, the slice thickness 

was 20 cm, TE=8 ms, TR=100ms, the flip angle was 20 degrees, and the slice thickness was 20 

cm.  All of the phantom images show an extremely bright spot located near the center.  Figure 

5.4 (b) shows the B1 inhomogeneity maps acquired from a uniform slice profile, W(r)=W0(r) of 



 

65 

the 3D TRF pulses.  Figure 5.4 (c) shows the resultant images from the same phantom excited by 

the compensated 3D TRF pulses.  All images from Figure 5.4 were acquired with identical 

imaging parameters and pulse sequences. The images in Figure 5.4 (c) were taken after an 

application of the compensated 3D TRF pulse, and they show improvement in the B1 uniformity.  

The edges of the images have greater intensity than images without compensation.  However, the 

compensation near the center of the images is still insufficient.  This experiment showed that 

there exist limitations in the current implementation of the method, and the causes of these 

limitations were explored.  The relationships of intensities at different pixel locations and flip 

angles were compared between different scales of inhomogeneity.  The scales of inhomogeneity 

inside phantoms represented by 3 different sizes of phantoms of diameter 10 cm, 20 cm, and 36 

cm.  The smallest phantom had a relatively uniform intensity throughout the volume.  The 

inhomogeneity in the medium phantom was at 3T, and the largest phantom represented the effect 

of inhomogeneity at ultra-high field.  All three phantoms were excited with identical standard 

sinc pulse, and their images were acquired at identical imaging acquisition parameters.  The 

phantoms were excited with different flip angles, which varied from 0.05π to π in steps of 0.05π.  

The imaging acquisition parameters were slice thickness 5 mm, TE=6 ms, and TR=5 s.  The 

magnitudes of the pixels located from the edge to the center of the phantoms for varying flip 

angles were plotted.  Figures 5.5 (a), (b), and (c) show plot diagrams for the phantoms with 

diameters of 10, 20, and 36 cm, respectively.  The dashed lines represent the pixels near the 

edge, and the solid lines represent the pixels near the center.   
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Figure 5.4 (a) Iages acquired from Manganese Chloride phantom using standard sinc pulse and 
3D spiral sequence acquisition. (b) B1 maps from two-shot 3D TRF pulses with a uniform slice 
profile. (c) Images from 3D TRF pulse with B1 inhomogeneity compensation. 

 
 

 

(a) (b) 

(c) 
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Figure 5.5 Plots of magnitudes of pixels located near the edges (dashed lines) and near the center 
(solid lines) versus flip angles for phantoms with diameters of (a) 10 cm, (b) 20 cm and (c) 30 
cm 
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5.4    DISCUSSION 

 
 
Figure 5.4 (c) shows phantom images after an application of the compensated 3D slab-select 

pulses. The images demonstrate insufficient power deposits in the loss signal area. An 

explanation of this problem was evident after experiments involving three different-sized 

phantoms.  In the low flip angle regions (before reaching the peaks), the imaging intensity of 

phantoms with diameters of 10 and 20 cm show only minor differences in the magnitude of 

pixels located near the centers and those located near the edges.  This implies that an increase in 

the flip angles of low flip-angle regions can compensate for the loss of signal near the edge due 

to a low level of B1 inhomogeneity.  However, the diagram of the imaging intensity from the 

phantom with a diameter of 36 cm, which represented inhomogeneity at ultra-high field, shows a 

significant difference in the magnitude of the pixels located near the edges and those located near 

the centers.  In this situation, to compensate for the loss of signal near the edges, the flip angles 

must be greater than those allowed by the low flip angle approximation; the pixels which are 

close to the edge can never be compensated in this way.  In addition, the loss of SNR after 

compensation is more severe in the larger phantom.  To reduce inhomogeneity at ultra-high field 

strength by applying the low flip angle approximation, the limited peak B1 may need to be 

addressed first.  One possible cause for the limited peak B1 is that the transmitter reaches the 

maximum allowance for the peak B1. A new design of k-space trajectories to lower the peak B1 

which would result in allowing a larger flip angle for the 3D slice-select excitation may be 

necessary.  Due to the polarization effect at ultra-high field, C(r) and α(r)from Equation [3.5] 

may need to be calculated separately, as done by  Mihara, et al. [58] and Wang, et al. [77].  The 
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3D TRF pulses may need to be compensated only for transmission, and the reception field may 

compensate offline in the reconstruction routine. See Appendix C for more details.    

 
 
 
 

5.5    CONCLUSIONS 

 
 
The 3D TRF slab-select pulses may be employed for B1 inhomogeneity compensation at 3T, and 

the compensated B1 maps are simply calculated by subtracting the uniform slice profile from the 

inhomogeneity slice profile, as demonstrated in Equation(4.9).  However, at ultra-high field 

strength, polarization exerts a dominant effect on the B1 inhomogeneity and causes a substantial 

amount of non-uniformity in the B1 field.  The 3D TRF slab-select pulses provide some degree 

of compensation.  The 3D TRF slab-select pulses have a very high peak in the middle lobe, 

which limits the pulse to only small flip angles.  This problem may be resolved in any of the 

ways mentioned throughout this chapter, or it may require a combination of several approaches.   
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6.0    3D SLICE-SELECT TAILORED RF WITH FAST KZ PULES FOR REDUCED B1 
INHOMOGENEITY AT 3T 

 
 
 
 

6.1    INTRODUCTION 

 
 
As discussed in earlier chapters, the limitations, the limitations of using 3D TRF slab-select 

pulses to compensate for B1 inhomogeneity include limited peak B1 and long pulse length.  To 

overcome these limitations, this chapter will present a new pulse design associated with a new k-

space.  The 3D TRF slab-select pulses employ stacked spiral k-space as their trajectories to cover 

the slab volume in a one-shot pulse.  Although the stacked spiral k-space is one of the fastest 

known trajectories through 3D k-space, it requires a significant number of sampling points, 

which results in a long pulse length.  The new pulse design exploits results of the previous study 

which demonstrated that the B1 inhomogeneity profile at 3T is likely a quadratic function.  This 

is confirmed by many other studies, such as those conducted by Deichmann, et al. [53, 54] and 

Alecci [44].  The new pulse design does not require a B1 map.  Instead, appropriate analytical 

functions are employed as B1 compensation profiles. These profiles are incorporated into the 

pulses.  In addition, the k-space in the x-y direction is designed such that it is a quadratically 

compensated weighting function for the varying RF inhomogeneity.  In the z direction, the k-

space has a fast switching Gz with continuous gradients in a manner similar to EPI.  Phase 

encoding is along the kx-ky direction.  To ease the difficulties of pulse implementation, 2D 

separable pulse design was employed and each 2D pulse is weighted along the z direction by a 
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Gaussian function. The varying rate selective excitation (VERSE) was adopted to modify the 

middle lobe of the z gradients. VERSE has the greatest contribution to the pulse, allowing higher 

flip angles associated with higher energy deposits.  Applying VERSE to the pulse also reduces 

SAR [78].  This pulse could be useful for cases in which thinner slices are desired (e.g., higher 

resolution images) 

 
 
 
 

6.2    BASIC PRINCIPLES OF BUILDING THE 3D COMPENSATED FAST Kz PULSES 

 
 
The general formulation of the 3D slice profile is: 

 ( , , ) ( , ) ( )sl x y z w x y w z=  (6.1) 

where 

   w(x,y) is the desired in-plane excitation profile (x-y direction) 

   w(z)  is the desired slice profile (z direction)  

   W(kz) is the Fourier transform of w(z) 

   W(kx,ky) is the Fourier transform of w(x,y) 

 

The 3D TRF pulse will be derived from the 3D Fourier transformation of this function.  The first 

step is to take the Fourier transformation in the z direction. This yields: 

 ( )( , , ) ( , )z zsl x y k w x y W k=  (6.2) 

To produce the final RF pulse, this function will be created based on the desired W(kz), the 

desired w(x,y).  Then the 2D Fourier transformation in the x-y domain is used and this function is 

sampled for each kz plane along the excitation trajectory in kx-ky.  
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6.2.1    Fast Gz Switching 
 
 
In this case, inhomogeneity is less important along kz, but is more important along kx-ky.  

Therefore, the pulse design needs to be incorporated with inhomogeneity compensation in a 

manner similar to that described by Bornert, et al. [27, 28, 30]: 

 ( ) ( )( )1
,

( ) ( ) ( , ) exp 2 ( ) ( )z z x y
x y

B t G t w x y W k i xk t yk tπ= +∑  (6.3) 

In order to assume of no phase change along the through plane, dwell time along kz must be 

short.  This can be achieved by traversing Gz first with a thin slice and phase encoding along the 

x-y direction.  Thus, Equation (6.3) in the Fourier domain becomes 

 ( )1
,

( ) ( ) ( , )
x y

z x y z
k k

B t G t W k k W k= ∑  (6.4) 

Based on the work discussed in chapter 4 and earlier studies by Deichmann [53, 54], the B1 

inhomogeneity profile at 3T exhibits traits similar to a quadratic function in spatial domain.  

Therefore, it is possible to model the corresponding k space of a compensated slice selective 

pulse weighting function in the following manner. 

 
 
6.2.2    Correction of quadratically varying RF inhomogeneity patterns 
 
 
Consider that the five lines were traversed in the kz direction and were positioned in (kx,ky) at: 

1: position (-k0,0), RF: A1exp(-iφ0) 

2: position (0,-k0), RF: A2exp(-iφ0) 

3: position (k0,0), RF: A1exp(iφ0) 

4: position (0,k0), RF: A2exp(iφ0) 

5: position (0,0), RF: A0 
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The kz direction was weighted by a Gaussian function to yield the desired slice profile, and the 

kx-ky spatial frequency weighting was modeled by 

 
0 0

0 0

0 1 0 1 0

1 0 1 0

( , ) ( , ) ( , ) ( , )

( , ) ( , )

i i
x y x y x y x y

i i
x y x y

W k k A k k A e k k k A e k k k

A e k k k A e k k k

φ φ

φ φ

δ δ δ

δ δ

−

−

= + − + +

+ − + −
 (6.5) 

This produced a spatial weighting function 

 0 1 0 0 1 0 0( , ) 2 cos(2 ( )) 2 cos(2 ( ))w x y A A k x x A k y yπ π= + + + +  (6.6) 

Here, x0 = y0 = φ0 /2πk0 . If k0 is sufficiently small (i.e., < 1/(2FOV)), then the cosine functions 

can be approximated using the first two terms in their power series expansion to yield 

 2 2 2
0 1 1 0 0 0( , ) ( 4 ) (2 ) (( ) ( ) )w x y A A A k x x y yπ= + − + + +  (6.7) 

Here, A1(2πk0)2 is the curvature of the profile, and (x0, y0) is the center of the RF bulge.  At the 

edge of the FOV, the RF intensity varies by a fraction of
2

1 0

0 1

( )
( 4 )

A k FOV
A A
πε −

=
+

.  In order to reduce 

excitation in the center, A1 can be made a negative value.  With only five traverses of k-space, 

this pulse can be played in 3-5 ms, depending on the desired sharpness of the z profile and the 

slice thickness.  Figure 6.1 shows the k-space trajectory of the pulse along kx, ky and kz.   
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Figure 6.1 Diagram of the k-space trajectory for the fast-kz pulse design. 
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6.3    METHODS 

 
 
6.3.1    Pulse Construction 
 
 
The compensated fast-kz pulses were designed for a General Electric 3T system that was 

developed by GE Medical Systems. The system had a standard head coil, a 150 T/m/sec slew 

rate and a 40 mT/m peak body gradient.  Essentially, the pulses were built from Equation(6.4). 

Gaussian function was chosen as a slice-select profile, W(kz) and its full width at half maximum 

(FWHM) characterizes the thickness of the slice.  The in-plane excitation profiles, W(kx,ky), 

were built from Equation(6.5).  Equation(6.4) demonstrates that the pulses can be implemented 

separately, and the final pulse is the composite of the five sub-pulses.  The z gradient waveform 

was determined by resolution along z axis, gradient slew rate, and peak gradient.  It can either be 

triangular or trapezoid in shape, depending on the three parameters, and it was blipped along the 

x-y plane.  The kz traversed along five lines at five corresponding positions in (kx, ky), including 

(-0.5, 0), (0, -0.5), (0.5, 0), (0, 0.5), and (0, 0) in units of cm.  Each of the five lines of kz 

trajectories was then weighted using the W(kx,ky) and W(kz).  Although the resultant RF pulse 

function provides a relatively short duration pulse (e.g., 3.4 ms. for 2 mm of pulse resolution 

along z, 150 T/m/sec slew rate, and a 40 mT/m peak gradient), it is still impractical due to the 

peak B1 limitation on the RF amplifier.  Thus, the pulses were re-fabricated using the variable 

rate selective excitation technique (VERSE) [78, 79] to allow more flexible magnitudes for the 

flip angles.  This was achieved by slowing down the gradient slew rate and lowering the peak B1 

at the central portion of the gradient.  This modification has the expense of a longer pulse width.  

Figure 6.2 shows an example of the pulse.  The pulse encompasses the real and imaginary parts 
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of the RF pulse along with the gradients, Gx, Gy, and Gz.  The VERSE technique has been 

proven to cause no change to the selective excitation profile [78].   
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Figure 6.2 Fast kz pulse. The rows (top to bottom) are the real and imaginary parts of the RF and 
the x-,y-, and z-gradients respectively.   

 
 
The modified compensated fast-kz pulse and the modified gradient waveform are compared to 

those of the original designs in Figures 6.3(a) and (b), respectively.  As shown in Figure 6.3(a),  

the original design of the pulse in (dashed lines) has a peak amplitude that is approximately 

eightfold greater than that of the modified pulse with VERSE (solid line); however, the pulse 

width of the modified pulse is approximately 26 % longer than that the original design.  
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Therefore, it is clear that the specific absorption rate (SAR) is reduced, as shown in the equation 

stated by Connolly, et al. [78]. 

 
2

1( )
T

o

SAR B t dt∝ ∫  (6.8) 

Equation (6.8) demonstrates that the magnitude of B1(t) is quadratically proportional to the SAR, 

while the pulse width is linearly proportional.  Therefore, reducing the magnitude by eightfold as 

the pulse width increases by approximately 26 % results in pulses still offer relatively lower SAR 

than those in the original design. As shown in Figure 6.3(b), the gradient waveform of the 

modified pulse was slowed down and dipped in the middle to provide the variable rate excitation.    

Equation (6.7) illustrates that A1 determines the curvature of the profile (i.e., its spatial weighting 

function) and that the ratio of the signal intensity at the edge to the center of the profile is 

denoted by a fraction, ε.  Since ε is a function of A0 and A1, the different curvature of the pulse 

profiles can be simply built by varying the amount of ε.  Figure 6.4 shows examples of three 

different spatial weighting functions for the RF pulses from the Bloch equation simulation. These 

functions have ε =0.1, 0.5 and 1.0, respectively.  Figure 6.5 shows an example of two interleaves 

spiral pulse sequences with the 3D compensated fast kz pulse. 
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Figure 6.3 (a) Comparison of two RF pulse designs. The dashed line is the pulse from the 
original design. The solid line is the modified pulse using VERSE technique to decrease the peak 
amplitude. (b) Gradient waveforms of the original design (dashed line) and the modified gradient 
waveform (solid line) by VERSE. 
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Figure 6.4 Slice profiles, w(x,y) from Bloch equation simulation of three different spatial 
weighting functions (ε=0.1,0.5, and 1.0) pulses. 

Mesh plots of three different fractions of the 
compensated pulse fast kz pulses 
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Figure 6.5 Time diagram of two interleaves spiral pulse sequence. 

 
 
6.3.2    Flip angles calibration 
 
 
The different slice profiles (e.g., sinc function and Gaussian function) may each provide a 

different amount of energy deposits to the pulses at the same flip angle.  In order to more 

accurately compare images acquired from sinc pulse with those obtained from compensated fast 

kz pulse, the same amount of energy deposit must be used.  Thus, the flip angles acquired from 

the two pulses need to be calibrated.  The calibration was performed with a NiCl2 doped 

spherical phantom 20 cm in diameter.  The phantom was excited with a sinc pulse at 

progressively increasing angles in steps of 5 o, from 5 o until the signal amplitude passed the peak 

amplitude.  These procedures were repeated with the compensated fast kz pulses.  The flip angles 
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were plotted versus the image intensity, as shown in Appendix D.  To calculate the flip angle of 

the compensated fast kz pulse which would provide the same amount of energy deposit as the 

sinc pulse at 450, a search was made for the flip angle on the x axis of the plot of the 

compensated fast kz pulse at the same image intensity of the sinc pulse at 45 o.    

 
 
6.3.3    Imaging experiments 
 
 
The imaging experiments began with Bloch equation simulation tests of the designed pulses at 

fractions (ε) which started at 0.5 and increased to 3.0 in steps of 0.5. The pulses which provided 

overcompensated profiles were eliminated for the phantom and human experiments.  The 

protocol for the phantom experiments was used as a guideline for the human studies.  The pulses 

with ε greater than 2.0 were found to result from overcompensation from the Bloch equation 

simulation, and they were not selected in phantom and human studies.  For the phantom 

experiments, a NiCl2 doped spherical phantom was excited by the four compensated fast kz (ε 

=0.5, 1, 1.5, 2) pulses and one standard sinc pulse.  The images obtained from the five pulses are 

shown in Appendix E.  Pulse resolutions were 2 mm and 2 cm along z and x-y plane, 

respectively.  Each pulse had one shot.  The image acquisitions were 2D and had a 64x64 (xy) 

matrix size for 15 slices, a TR = 1 s, a TE = 3 ms, a thickness = 5 mm, a FOV= 20 cm, and a flip 

angle of 450.  The experiments in vivo were done in three human subjects.  Brain images were 

excited with a standard sinc pulse, as well as with the compensated fast kz pulses with different 

fractions.  The experiment on the first subject provided an opportunity to explore the optimal 

fraction of the compensated fast kz pulses. The experiments with the other two subjects were 

used to verify the method.  The first volunteer subject was scanned with the 3D compensated fast 

kz pulses of fractions (ε) 0.5 to 2.0 in steps of 0.2, and with a standard sinc pulse.  The optimal ε 
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was determined by both the quantitative approach and inspection.  The quantitative evaluation 

relies on the measurements of SNR and the uniformity of the image profiles. The uniformity of 

the image profiles was determined by the differences between the image intensity at the edges, 

represented by areas 2 to 5 in Figure 6.6, and at the centers, represented by area 1, in percentage.  

The optimal fraction of the compensated fast kz pulse was chosen from the pulses which offered 

the best compromise of high SNR and low percentage in difference between edge and center 

intensity.  The ideal fraction is the fraction with the highest SNR and lowest percentage of the 

difference.  All plots of the SNRs and the percentage of the differences used for the evaluation 

are in Appendix F.  Since the quantitative measurements were calculated only for small, 

representative areas, a demand for greater accuracy required an inspection to be made as a 

conclusive step. Due to the fact that the B1 inhomogeneity at 3T occurs at the center of the 

volume, only those slices 2 cm above and 2 cm below the center were compared.  The calculated 

voxel size was 1.4x1.4x0.5 cm3.  Figure 6.6 demonstrates the five different locations used for 

SNR and uniformity measurements.  Following the optimal fraction evaluation, two subjects 

were imaged both with the standard sinc pulse and with the compensated fast kz pulse at the 

optimal fraction. The percentage of the signal differences between the edges and the center of the 

images was calculated, as were the SNRs. The SNRs and the percentage of the difference were 

compared between the standard sinc pulse and the optimal compensated fast kz pulse at five 

locations. The acquisition had a 256x256 resolution (24 interleaves spirals), a 450 flip angle, a 

TR = 1500 ms, a TE = 8 ms, and a FOV = 25 cm.  The pulse construction programs were written 

in Matlab, a program developed by The Mathworks, Inc., and inserted into the spiral pulse 

sequence in order to be run on the scanner.   
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Figure 6.6 Five measured locations with sizes of 1.4x1.4x0.5 cm3. 

 
 
 
 

6.4    RESULTS 

 
 
Figure 6.7(a) shows the phantom images excited using a standard sinc pulse and displays only 

selected slices near the center from top to bottom.  The images excited by the standard sinc pulse 

have a higher magnitude at the center, due to the B1 inhomogeneity.  The compensated fast kz 

pulse with ε of 1.5 promisingly compensates for the B1 inhomogeneity at the slices near the 

center of the phantom by about 60 percent.  Both Figures 6.7(a) and 6.7(b) were displayed at the 

1 
2 

3 

5 
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same window.  Figure 6.7(c) shows the results of the images in row (b) subtracted from the 

results of the row (a) images, normalized by the maximum of row (b) then windowed from zero 

to approximately 80 percent of the maximum value.  The images of slices near the center show 

improved signal intensity at their edges while the images of the slices located farther away from 

the center show improved B1 imhomogeneity compensation of within 10 percent. These are not 

able to be observed in the same window.   

 
 

    

    

    
 
 

Figure 6.7 (a) Phantom images excited by a standard sinc pulse, (b) Phantom images excited by 
compensated fast-kz pulse with a fraction of 1.5, (c) The difference between 6.7(b) and 6.7(a) 
windowed from zero to 80 % of the maximum value. 

 

b

c
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According to both the plots shown in Appendix F and to visual inspection of the images, the 

optimal fraction for brain images of the first volunteer was 1.0.  Figure 6.8(a) shows images from 

a human brain excited with the standard sinc pulse.  Images of slices near the center have 

decreased intensity at their outer edges.  Figure 6.8(b) shows more uniform images excited with 

a compensated fast-kz pulse at the fraction of 1.0.  It was found that there was no significant 

variation of B1 inhomogeneity for the three human volunteers.  Figure 6.8(c) shows the 

difference between row (b) and row (a) calculated in of the same manner as was described for 

Figure 6.7(c).  The images were windowed from zero to 80 % of the maximum value. The 

images show compensation at the outer edges of approximately 30 percent, depending on the 

slice’s level of inhomogeneity. Figure 6.9 shows the plots of SNRs calculated from five locations 

of the images from Figure 6.8. One of these locations was in the center of the images, while the 

other four were at the edges.  The solid lines were calculated based on images shown in Figure 

6.8(a) that were excited by the standard sinc pulses.  The dashed lines were calculated based on 

images shown in Figure 6.8(b) that were excited by the compensated fast kz with a fraction of 

1.0.  Figure 6.9(a) illustrates that the compensated fast kz pulses result in better SNRs of slice 

number 8 in all five locations than do those of the standard sinc pulses. However, for slices 9 

through 12, the use of compensated fast kz pulses improved the SNRs only in the peripheral 

areas, as shown in Figures 6.9 (b) through (e).        
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           Slice#8                       Slice #9                 Slice #10               Slice #11                Slice #12     

 

 

 
 

Figure 6.8 T2 weighted human brain imaged. (a) Images acquired from the standard sinc pulse, 
(b) Images acquired from the 3D compensated fast kz pulse with a fraction of 1.0., (c) The 
difference between row (b) and row (a) normalized by the maximum intensity and windowed to 
approximately 80 % of the maximum value. 

(a) 

(b) 

(c) 
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Figure 6.9 SNR of five different locations on human brain images excited by the standard sinc 
pulses (solid lines) and excited by the compensated fast kz pulses (dashed lines).  All five plots 
are of locations near the center. 
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Figure 6.10 plots the different intensities of the center and four peripheral areas in percentages. 

Difference number 1 is the difference between the center and point number 2. Difference number 

2 is the difference between the center and point number 3. This pattern continues for each 

difference number and point number until the last peripheral point, number 5.  The plots were 

calculated from the five slices of the images with the standard sinc pulses and compensated fast 

kz pulses displayed in Figures 6.8(a) and (b), respectively. Figures 6.10 (a) through (e) represent 

the calculations from slices numbered8 through 12.  The solid lines were calculated from the 

images excited with the standard sinc pulses.  The dashed lines were calculated from the images 

excited by the compensated fast kz at a fraction of 1.0.  Figures 6.10(a) through (e) have lower 

differences in image intensity between the area at the center and all four peripheral areas of all 

sles than do the images excited by the compensated fast kz pulse.  This implies that the 

compensated fast kz pulse provides more uniform image profiles than the standard sinc pulse.     
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Figure 6.10 Differences in percentage of five different locations on human brain images excited 
by the standard sinc pulses (solid lines) and excited by the compensated fast kz pulses (dashed 
lines).  Plots of (a) through (e) are for five different slice locations of Figure 6.6 near the center 

(a) (b) 

(c) (d) 

(e) 
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6.5    DISCUSSION 

 
 
According to this study, the SNR plots (in Appendix F) illustrate an inverse relationship to the 

fractions of compensated fast kz pulses. The higher the fraction applied to the compensated fast 

kz pulse, the lower the SNR that will be obtained from the image. The uniformity of the profiles 

is determined by the percentage differences of image intensities between average intensity at the 

center and average intensity at the edges.  The uniformity is directly proportional to the fraction 

of the compensated fast kz pulses when the fraction is in the range of 0.5-1.5. A fraction of 

greater than 1.5 shows overcompensation on the images. Application of the compensated fast kz 

pulses improves uniformity, but this occurs at the expense of the SNRs. The compensated fast kz 

pulse with a fraction of 1.5 was found to be most appropriate for the compensation of slices near 

the center on phantom experiments in this study. For human brains, however, inhomogeneity is 

less than it is for the phantom; B1 compensation is approximately 30 percent, and the pulse with 

a fraction of 1.0 was found to be the most appropriate pulse. In both the phantom and human 

experiments, the optimal compensated fast kz pulses were found to potentially compensate for 

the loss of the signal at the edges in the region of the center of the volume.  However, the slices 

of those locations away the center have less inhomogeneity; therefore, the use of a constant 

fraction for the compensated fast kz pulses throughout the volume of excitation may not be 

appropriate since it may cause unnecessarily higher energy deposits or an excessive amount of 

compensation in some slices.  This problem may be resolved by incorporating varying flip angles 

and/or varying pulse fractions for particular slice locations into the pulse sequence on the 

scanner. This modification may utilize the power deposition of the pulses at each slice location in 

a more efficient way.  SAR was not an issue for this pulse because the design was based on low 

flip angles and limited the B1 to, at most, a 90 degree sinc pulse at 3.2 ms pulse width. This pulse 
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is considered to be safe in general use. The pulse could possibly be optimized to obtain a shorter 

pulse width and sharper pulse profile with the compromise of peak B1 and SAR.  The limitation 

of this pulse design is the slice thickness.  The larger slice thickness causes the higher peak B1, 

thus limiting the flip angle to a very small angle.  Another possible limitation is resonance shifts.  

The pulse is probably more sensitive to resonance shifts due to the dipping of the central lobe 

gradient that is the major contribution to the pulse [78, 79] .    

 
 
 
 

6.6    CONCLUSIONS 

 
 
This work presents a new 3D TRF pulse design using fast switching gradients along the z 

direction and blipping along the x-y direction. It requires only five traverses of k-space.  The 

VERSE technique was adopted to reduce the peak B1 of the central portion of the pulses, thus 

allowing more flexible magnitudes of the flip angles.  The pulse width is 4.29 ms for a 1-shot 

pulse, which compares favorably to earlier work which used 3D TRF slab-select pulses of 11 ms 

for 2-shot pulses. Images excited by the compensated fast kz pulses are better than those excited 

by the standard sinc pulse in terms of the signal loss. The loss was found to be 60 percent better 

in experiments with phantoms and 30 percent better in experiments with human brains.  The 

pulse fraction of 1.5 was found to be the most suitable for the phantom experiment in this study 

and 1.0 was determined the optimal weighting for the compensated pulse in human brains.  

Gains in SNR were not compromised by the improvement of uniformity in the image profiles. 
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7.0    CONCLUSIONS 

 
 
 
 
B1 inhomogeneity is one of the major technical concerns in MRI higher magnetic field strengths 

are used. This thesis presents two novel RF pulse designs and examines their limitations for B1 

inhomogeneity reduction in 3T MRI. The feasibility of using these methods for ultra-high field 

strength imaging was also discussed.  

 
 
 
 

7.1    KEY CONTRIBUTIONS 

 
 
This thesis makes three major contributions. The first is the development of the 3D TRF slab-

select pulses for B1 inhomogeneity reduction.  These RF pulses compensate for signal loss and 

result in an approximate 30% improvement in the uniformity on the brain images.  The images 

from the 3D TRF slab-select pulses demonstrated significantly more uniform profiles than the 

standard 3D RF pulses. The design of the compensated 3D TRF slab-select pulse was able to 

perform on an object that was 10 cm thick for a single-shot pulse of approximately 22 ms, which 

excited a slab with 2.0x2.0x1.25 cm3 resolution and a 24x24x20 cm3 field of view (FOV).  In the 

experiment, the pulses were decomposed into two 11 ms excitations. The acquisition could 

obtain whole brain coverage with a 2 mm isotropic resolution in 51.2 seconds with two shot 

pulses, four interleaves spirals, 128 z phase encodes, and 50 ms TR.  Increasing the resolution to 
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1 mm would produce an acquisition time slightly less than seven minutes with two shot pulses, 

16 interleaves spirals, 256 z phase encodes, and 50 ms TR. This amount of time is approximately 

half that of the general 2D pulse method.   

  

    The second major contribution of this work is the exploration of the feasibility of using the 

compensated 3D TRF slab-select pulses for B1 inhomogeneity reduction in ultra-high field MRI.  

The study shows some degree of improvement in image uniformity. The inhomogeneity may be 

caused by the depositing of insufficient energy into the pulse which, in turn, may be caused by 

the use of low flip angles or transmitted coils. If this latter attribute is the cause, this pulse may 

possibly be used for B1 inhomogeneity reduction at ultra-high field strength. The study serves as 

a stepping stone for the actual experiment using of these pulses at ultra-high field strength.    

 
    The third major contribution is the development of the 3D TRF slice-select pulse design using 

fast switching of z gradients for B1 inhomogeneity reduction. This design employs a new k-space 

design requiring only five traversal lines along the z direction and blips along the x-y direction.  

The inhomogeneity compensation profiles were built from appropriate analytical functions and 

incorporated into the pulses.  These pulses provide a practical pulse-width of 3-5 ms for 5 mm 

slice thickness with a single-shot pulse. Inhomogeneity is reduced by 10-60 %, depending on the 

slice location and spatial location of the images.  With the advantage of short pulse length, the 

3D fast kz slice-select pulse is able to acquire high resolution images in a reasonable amount of 

time.  
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7.2    FUTURE DIRECTIONS 

 
 
Although the two new 3D TRF pulse designs demonstrate significant improvement with regard 

to the uniformity of the images, they still have room for development.  Three areas of potential 

development will be discussed.  First, due to the  polarization effect, [76] the transmission field 

and reception field need to be calculated separately.  In order to improve accuracy, compensation 

for B1 inhomogeneity of 3D TRF slab-select pulses may need to be done only for the 

transmission field. Compensation for the reception field may need to be performed as part of the 

post processing scheme.   

 

Second, with the design of the fast kz pulses, sparse kz sampling by trajectories is no longer a 

concern; therefore, Gaussian functions were employed as a slice profile without the problem of 

aliasing slices. Though the Gaussian function is a smooth function which causes no ripple at the 

edges, it does not provide a sharp profile. Exploiting the advantage of the pulse design in 

sampling rate allowance, the sharper slice profile such as the Shinnar–Le Roux (SLR) algorithm4 

[80] may be applied instead. The designed pulse ultimately should be optimized for the 

constraints of sampling rate, slice profiles and SAR.   

 

Finally, the 3D TRF fast kz pulses designed for this experiment can be used only for 

inhomogeneity at 3T in which the inhomogeneity profile can be assumed to be quadratic.  In 

order to extend this concept to the building of a compensated B1 inhomogeneity pulse at a higher 

field, the k-space needs to be redesigned to correspond to the spatial compensated profile for B1 
                                                 
4 The Shinnar–Le Roux algorithm is based on a numerical solution of the Bloch equations.  It was invented by Pauly 
et al in 1991 
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inhomogeneity.  This may be accomplished by optimizing the location and numbers of the 

blipping in the kx-ky direction. 
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APPENDIX A 
 
 
 
 

DERIVATION OF THE BLOCH EQUATION IN THE ROTATING FRAME  
 
 
 
 
If pulse duration is short compared to T1 and T2, the last two terms of the Bloch equation can be 

dropped, and the Bloch equation becomes: 

 d
dt

γ= ×
M M B  (A.1) 

Since the magnetization observed in the lab or in the rotating frame is the same, it can be 

expressed as  

 rot x y yM M M′ ′ ′′ ′ ′= = + +M M i j k  (A.2) 

Taking the first order derivative on both sides of the Equation (A.2) yields  

 ( ) ( )yrot x z
x y z

dMd dM dM d d dM M M
dt dt dt dt dt dt dt

′′ ′
′ ′

′ ′ ′
= + + + + +

M i j ki j k  (A.3) 

Let  

 yrot x z
dMdM dM

dt dt dt dt
′′ ′∂

= + +
M i j k  (A.4) 

The unit vectors in the rotating frame which rotates in a clockwise direction relates to the lab 

frame as follows:    

 
cos( ) sin( )
sin( ) cos( )

t t
t t

ω ω
ω ω

′ = −
′ = +
′ =

i i j
j i j
k k

 (A.5) 
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Note that the time derivative of Equation(A.5) followed by coordinate transform is: 

 , ,   d d d
dt dt dt
′ ′ ′

′ ′ ′= × = × = ×
i j kω i ω j ω k  (A.6) 

Substituting Equations(A.4) and (A.6) into Equation yields 

 rot rot
rot

d
dt dt

∂
= + ×

M M ω M  (A.7) 

Thus, the Bloch equation from Equation(A.1) in the rotating frame can be written as 

 rot
rot rot

d
dt

γ= ×
M M B  (A.8) 

Substituting Equation (A.8) into Equation (A.7) yields 

 
( )rot

rot rot rot rot rotdt
γ γ

γ
∂

= × − × = × +
M ωM B ω M M B

 (A.9) 

Equation (A.9) can be rewritten as: 

 rot
rot effdt

γ∂
= ×

M M B  (A.10) 

where 

 eff rot γ
= +

ωB B  (A.11) 
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APPENDIX B 
 
 
 
 

DERIVATION OF SOLUTION FROM THE BLOCH EQUATION WITH SMALL TIP 
ANGEL APPROXIMATION 

 
 
 
 

From Equation(2.40), 

 1 0( ) ( )r
r

dM i z M i t M
dt

ω ω= − +  (B.1) 

The integration factor is  tzidtzi
ee )()( ωω

=∫  
 
Multiplying Equation(B.1) by the integration factor yields 
 

 ( ) ( ) ( )
1 0( ) ( )i z t i z t i z tr

r
dMe e i z M e i t M
dt

ω ω ωω ω⋅ + ⋅ = ⋅  (B.2) 

Equation (B.2)can be rewritten as 
 

 ( )( ) ( )
1 0( ) ( )i z t i z t

re M t e i t Mω ω ω
′

⋅ = ⋅  (B.3) 

 
Integration can occur on both sides of Equation(B.3), given 
 

 ( ) ( )
1 0

0

( ) ( )
t

i z t i z
re M t i t M e d Cω ω τω τ⋅ = +∫  (B.4) 

Initial condition: Mr(0)=0 implies that C=0, and (B.4) becomes  

 ( ) ( )
0 1

0

( ) ( )
t

i z t i z
rM t iM e e dω ω τω τ τ−= ∫  (B.5) 
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APPENDIX C 
 
 
 
 

CALCULATION OF TRANSMISSION FIELD AND RECEPTION FIELD 
 
 
 
 

The techniques for using two flip-angles to solve for a transmission field, α(r), and reception 

field, C(r), were proposed by Mihara, et al. [58] and Wang, et al. [77].  The Fourier Transform 

of signal equation (GE) from Equation (2.46) gives the MR imaging equation, I(r), as: 

 

 0( ) ( ) ( )sin( ( ))I i C Mω γ α=r r r r  (C.1) 

 
If two flip angles, one of them with a value double the other, were employed to acquire two 

images, I1(r) and I2(r), α(r) could be solved in the following manner:  

 1 0 1( ) ( ) ( )sin( ( ))I i C Mω γ α=r r r r  (C.2) 

 2 0 2( ) ( ) ( )sin( ( ))I i C Mω γ α=r r r r  (C.3) 

 1 1 1

2 1 1 1

( ) sin( ( )) sin( ( ))
( ) sin(2 ( )) 2sin( ( ))cos( ( ))

I
I

α α
α α α

= =
r r r
r r r r

 (C.4) 

 
Thus, the transmission field: 

 1 2
1

1

( )( ) cos ( )
2 ( )
I
I

α −=
rr
r

 (C.5) 

To solve for the reception field, Wang et al [77] introduced an elegant approach to eliminate the 

third unknown, M(r), by optimizing TE and TR to minimize the contrast among tissues. The 

reception field becomes 

 1

0 1

( )( )
sin( ( ))
IC

iω γ α
=

rr
r

 (C.6) 
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APPENDIX D 
 
 
 
 

CALIBRATION OF FLIP ANGLES BETWEEN SINC PULSE AND FAST KZ PULSE AT 
DIFFERENT FRACTIONS.  
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APPENDIX E 
 
 
 
 

PHANTOM DATA FROM ONE SINC PULSE AND FOUR 3D COMPENSATED FAST KZ 
PULSES  
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APPENDIX F 
 
 
 
 

PULSE OPTIMIZATION 
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