
 
 

THE MECHANICAL PROPERTIES OF NATIVE PORCINE AORTIC AND 
PULMONARY HEART VALVE LEAFLETS 

 
 
 
 
 
 
 

by 
 

Thanh Vi Lam 
 

B.S., The Johns Hopkins University, 2001 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 
 

School of Engineering in partial fulfillment 
 

of the requirements for the degree of 
 
 

Master of Science 
 
 
 
 
 
 
 

University of Pittsburgh 
 

2004 

 



 
 

UNIVERSITY OF PITTSBURGH 
 
 

SCHOOL OF ENGINEERING 
 
 
 
 
 
 
 

This thesis was presented  
 

by 
 
 

Thanh Vi Lam 
 
 

It was defended on 
 
 
 

December 3, 2004 
 

and approved by 
 
 

Richard Debski, Ph. D., Assistant Professor 
Department of Bioengineering 

 
Hai Lin, Ph. D., Assistant Professor 

Department of Bioengineering 
 

Thesis Advisor: Michael Sacks, Ph. D., Professor 
Department of Bioengineering  

 
 

ii 



 
 
 
 
 

MACRO- AND MICROMECHANICAL BEHAVIOR OF THE AORTIC AND 
PULMONARY HEART VALVE LEAFLETS 

 
 

Thanh Vi Lam, MS 
 
 

University of Pittsburgh, 2004 
 
 
 
Aortic heart valves and their replacements fail in vivo for reasons that are not fully understood.  

Mechanical evaluation and simulations of the function of native aortic valves and their 

replacements have been limited to tensile and biaxial tests that seek to quantify the behavior of 

leaflet tissues as a homogenous whole.  However, it is widely understood that valvular tissues are 

multi-layered structures composed of collagen, elastin, and glycosaminoglycans.  The 

mechanical behavior of these layers within intact valve leaflet tissues and their interactions are 

unknown.  In addition, pulmonary valves have been used as substitutes for diseased aortic valves 

without any real understanding of the mechanical differences between the aortic and pulmonary 

valves.  The pulmonary valve operates in an environment significantly different than that of the 

aortic valve and, thus, mechanical behavioral differences between the two valve leaflets may 

exist.  In this study, we sought to determine the mechanical properties of the porcine aortic and 

pulmonary valves in flexure, and to determine the mechanical relationship between the leaflet 

layers: the fibrosa, spongiosa, and ventricularis.  This was accomplished by developing a novel 

flexure mechanical testing device that allowed for the determination of the flexural stiffness of 

the leaflet tissue was determined using Bernoulli-Euler bending.  Moreover, transmural strains 
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were quantified and used to determine the location of the neutral axis to determine if differences 

existed in the layer properties of the fibrosa and ventricularis.  To contrast the flexural studies, 

biaxial experiments were also performed on the aortic and pulmonary valves to determine the 

mechanical differences in the tensile behavior between the two leaflets. 

 Results indicated that the pulmonary valve is stiffer than the aortic valve in flexure but 

less compliant than the aortic valve in biaxial tensile tests.  The interactions between the layers 

of the leaflets suggest an isotropic mechanical response in flexure, but do so through 

mechanisms that are not fully understood.  For heart valve leaflet replacement therapy, this study 

illustrates the biomechanical differences between the aortic and pulmonary valve leaflets and 

emphasizes the need to fully characterize the two as separate but related entities.  Understanding 

the interactions of microscopic structures such as collagen and elastin fibers is critical to 

understanding the response of the tissue as a whole and how all these elements combine to 

provide a functioning component of the organ system. 
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1.0 INTRODUCTION 
 
 
 
 
 In cardiovascular surgery and regenerative medicine, the search for innovations and 

improvements in the field is fueled by the 61.8 million adult Americans who suffer from some 

cardiovascular disease.  Of these adults, 19,737 have died from heart valve diseases [1].  To 

prevent such deaths, research and development has been conducted to treat heart valve disease in 

adults yielding promising valve substitutes such as bioprosthetic and mechanical valves. 

 Currently, the treatment of aortic valve disease is usually complete valve replacement.  

First performed successfully in 1960, surgical replacement of diseased human heart valves by 

valve prostheses is now commonplace and enhances survival and quality of life for the estimated 

75,000 US and 275,000 patients worldwide done annually [2].  However, treatment for children 

has not received the same attention and most treatments are derived from adult treatments that 

cannot compensate for factors specific to children such as growth and remodeling.   Children 

under the age of fifteen account for approximately 50% of the 4100 deaths attributed to 

congenital heart defects in 2001 [1] and of those approximately 3-8% of deaths can be attributed 

to aortic insufficiency or stenosis [3].  Pediatric cases of heart valve disease are treated through 

medication and surgical repair before replacement therapy is sought because of the lack of a 

suitable replacement [4] 

 The vast majority of prosthetic valve designs are either mechanical prosthesis and 

bioprosthetic heart valves (BHV).  Mechanical prostheses are fabricated from synthetic 
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materials, mainly pyrolytic carbon leaflets mounted in a titanium frame.  BHV are fabricated 

from either porcine aortic valve or bovine pericardium, chemically treated with glutaraldehyde to 

remove immunogenicity and improve durability, and usually mounted onto a flexible metal 

frame (stent) which is covered with Dacron to facilitate surgical implementation.  BHVs are 

subject to calcification and long-term durability issues and mechanical valves require chronic 

anti-coagulant therapy that severely affects the quality of life of the patient and both valves 

require frequent re-operation to account for patient growth, introducing further complications 

and morbidity.  Improvements in either form of treatment addressing failure issues fails to 

compensate for a lack of remodeling and growth of the valve with the patient.  Thus, most 

pediatric aortic valve replacements performed are done so using the Ross procedure where the 

deficient aortic valve is replaced by the patient’s pulmonary valve which is usually then replaced 

with a bioprosthetic valve.  Current results with the procedure show good results, however, more 

research should be conducted to confirm the feasibility of using the pulmonary valve in the aortic 

position. 

 The underlying issue with treating valve disease in the pediatric patient is a lack of 

understanding of the physiology and function of the pulmonary and aortic valves resulting in the 

absence of a truly acceptable valve replacement.  Current replacement strategies that rely upon 

mechanical or BHV prosthesis technology is insufficient in fulfilling the needs of a growing 

patient.  By expanding knowledge about the pulmonary valve, functional endpoints for new 

pulmonary valve replacements can be defined.  Concurrently, these endpoints can then be 

compared and contrasted to current knowledge about aortic valves elucidating further their 

anatomical and physiological differences.  Though the two valves share a common function, they 

do so under vastly different operating environments and this difference alludes to some unknown 
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differences that may explain the success of the Ross procedure.  By understanding the 

physiology of the valves, other treatment alternatives such as tissue engineered heart valves will 

also benefit by having a known archetype as a design endpoint. 

 
 
 
 

1.1 BASIC CARDIAC ANATOMY 
 
 
 The circulatory system provides the body with a means of moving nutrients and wastes in 

an efficient manner through the system.  The centerpiece of the circulatory system is the heart.  

The human heart is divided into four chambers whose walls are primarily composed of cardiac 

muscle.  The upper chambers are referred to as atriums and the lower two chambers are referred 

to as the ventricles.  They are further differentiated by what side of the heart they are located 

upon (i.e. right atrium, left atrium, right ventricle, left ventricle) as seen in Fig. 1.  The atrium 

and ventricle of each side of the heart are divided by one-way valves.  The valve between the 

atrium and ventricle on the right side is termed the tricuspid valve and on the left side the mitral 

valve.  The aortic valve is located at the intersection of the aorta and the left ventricle and the 

pulmonary valve is located where the pulmonary artery attaches to the right ventricle. 

 Electrical stimulation.  The heart is partially auto-regulated by the sequential firing of a 

network of nervous fibers.  The sino-atrial (SA) node is located in the wall separating the two 

atriums.  The SA node then stimulates the atrio-ventricular (AV) node located at the intersection 

of the atriums and ventricles.  The AV node propagates the action potentials downwards through 

the wall separating the ventricles in the bundle of His.  At the apex of the heart, the activation 

then spreads outwards through the walls of the ventricles through the Purkinje fibers.  Activation 
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of the SA node occurs through slow leak Ca2++ channels.  When the activation threshold is 

reached, an action potential is triggered and propagated throughout the cardiac muscle of the 

heart. 

 Cardiac muscle.  Cardiac muscle is unique for its auto-excitatory abilities, intercalated 

discs, and the presence of gap junctions.  Upon electrical stimulation, cardiac muscle is capable 

of maintaining its own rhythmic contractions.  The intercalated discs are structures located 

between individual cardiac muscle cells which assist in binding the cells together and 

transmitting force amongst them.  Gap junctions are pores that connect individual cardiac muscle 

cells and enhance the propagation of action potentials [5]. 

 Circulation.  Blood leaving from the heart is pumped through a system of arteries and 

veins before it returns to the heart and lungs for oxygenation and further circulation.  Nutrients 

are found in high concentration in the blood and diffuse out into the tissue whereas wastes 

undergo the opposite gradient.  Erythrocytes carry oxygen molecules bound to hemoglobin to 

oxygen deficient tissue where conditions favor the release of the bound oxygen from the heme 

groups.  Arteries are the main oxygen carrying vessels that emanate from the heart.  They are 

relatively thick-walled and are capable of expanding and contracting because of the presence of 

smooth muscle in their walls.  Arteries subdivide into arterioles and then further into capillaries.  

Arterioles are responsible for the resistance to flow in the circulatory system.  Exchange of 

nutrients and wastes occur solely in the capillaries because only they possess the single cell thick 

walls required for exchange.  The capillary beds drain into venules and then into veins which are 

then responsible for returning the deoxygenated blood to the heart.  Veins are relatively thin 

walled and do not possess the same degree of smooth muscle control as the arteries do.  

Movement of blood through the veins is accomplished primarily through the contraction of 
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surrounding skeletal muscle.  Retrograde blood flow is prevented in the veins by the presence of 

one-way valves [5]. 

 Cardiac cycle.  Blood from the vena cava initially enters the heart in the right atrium.  

The right atrium then contracts and pushes blood through the tricuspid valves into the right 

ventricle.  From the right ventricle, the blood is pumped through the pulmonary valve into the 

pulmonary arteries that lead to the lungs where the blood is oxygenated.  The blood returns 

through the pulmonary veins into the left atrium and then through the mitral valve into the left 

ventricle.  The left ventricle contracts and pumps the blood through the aortic valve and into the 

aorta where it is then distributed throughout the systemic circulation.  During the cardiac cycle, a 

healthy aortic valve withstands pressures that ranges between 80 and 120 mmHg and does so 

approximately 3 billion times throughout its lifetime (Fig. 2).  The pulmonary valve is also a tri-

leaflet valve that performs the same function in the right ventricular outflow tract.  Because of 

the decreased pressure gradient across the pulmonary valve, about a seventh of that in the aorta, 

the structure of the pulmonary leaflet differs from that of the aortic valve.  The pressure within 

the pulmonary artery circulation varies between 25 and 8 mmHg at systole and diastole with an 

average of about 15 mmHg [5]. 
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Figure 1, Schematic depicting major features of the heart.  Reproduced from Netter, Atlas of Human 
Physiology, 1997[6]. 
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Figure 2, Diagram showing the pressures, flow, ventricular volume, and electrical stimulation experienced by 
the heart during the cardiac cycle.  Reproduced from Berne and Levy, Physiology, 1998 [5]. 
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1.2 HEART VALVE ANATOMY 
 
 
 
 
 Atrioventricular valves.  The tricuspid and mitral valves are referred to as atrioventricular 

valves because they serve to separate the atrium and ventricle of the right and left sides of the 

heart.  The tricuspid has three leaflets and the mitral or bicuspid valve has two leaflets.  The 

leaflets are attached via chordae tendanae to the papillary muscles located within the interior of 

the ventricle wall and serve to stabilize the valves. 

 Semi-lunar valves:  The aortic valve and pulmonary valve, also known as semi-lunar 

valves, are both composed of three approximately equal sized leaflets that close to form an 

effective barrier against the retrograde flow of blood.  The aortic valve is located within the left 

ventricular outflow tract between the aorta and the left ventricle.  The pulmonary valve is located 

within the right ventricular outflow tract between the left ventricle and the pulmonary arteries.  

The leaflets are enclosed within a sinus that bulges out at the center of each leaflet (Fig. 3).  The 

attachment between the leaflet and the sinus wall is referred to as the basal region and it is where 

the leaflet is thickest.  On the aortic valve, the transition between the valve sinus and the aorta is 

referred to as the sinotubular junction.  Similarly, the border between the valve sinus and the left 

ventricle is referred to as the aortic annulus.  When the valve closes, the lip along the edge of 

each leaflet overlaps with the lip of each of the adjacent leaflets.  This area is called the 

coaptation surface or free edge and provides an area for the leaflets to seal against each other to 

prevent regurgitation.  It has also been hypothesized that this surface alleviates and supports 

some of the stress associated with the closing of the valve.  The commissure refers to the section 

of the leaflet that borders along with its neighboring leaflets so thus every leaflet has a 

8 



commissure on its side.  The commissures also define the borders between the sinus bulges 

surrounding the leaflet. 

 

 
Figure 3, (A) is a schematic of the major features of the aortic valve.  (B) is photo of an intact porcine aortic 
valve.  Each of the three leaflets of the valve is located within its own sinus which is essentially a large bulb.  
The sinotubular junction is located where the sinuses terminate and the aorta begins.  Likewise, the aortic 
annulus is located between the left ventricular opening and the beginning of the sinuses.  The basal region is 
the thickened portion of the leaflet closest to its attachment edge on the sinus wall.  

 

 The sinuses are differentiated from each other by coronary arteries that originate from 

two of the sinuses.  Thus one sinus is referred to as the noncoronary or posterior sinus and the 

other two are the right and left coronary sinuses.  The leaflets are also differentiated by these 

references as the left, right, and posterior leaflets (Fig. 4).  The coronary arteries provide the 

blood flow required by the heart itself to function [7].  The pulmonary valve does not benefit 

from the same level of study as the aortic valve but structural definitions such as the sinuses, 

commisures, basal region, and free edge are applicable. 
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Figure 4, Schematic of a cross-section of the leaflet cut through the right coronary sinus and leaflet showing 
the relative positions of the other sinuses and the presence of the coronary arteries. 

 
 The center of the leaflet is referred to as the belly region (Fig. 5).  In the middle of the 

leaflet where the belly meets the coaptation surface or free edge is located the nodulus of Arantii, 

a thick knot of tissue.  The coaptation surface, as discussed above, is the area of the leaflet that 

overlaps with its neighboring leaflets to seal the valve closed.  In fig. 4 the fibrous nature of the 

leaflet is evident.  The attachment edge is the thickest portion of the leaflet and, along with the 

commissures, demarks the end of the leaflet and the beginning of the sinus.  Compared to the 

length of the free edge, the attachment edge (including the commissures) is approximately 1.5 

times longer.  The noncoronary or posterior leaflet is very slightly larger than the right and left 

coronary leaflets [7]. 
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Figure 5, Schematic of a single valve leaflet and its major components.  The circumferential and radial 
directions coincide with the circumference and radius of the aorta, respectively.  The free edge is the part of 
the leaflet that meets with the other two leaflets to form a seal against blood flow.  The Corpus Arantii or 
nodulus of Arantii is located in the middle of the leaflet at the free edge where it meets the noduli of the other 
leaflets.  The commissures are located at the sides of the leaflet where the leaflet is joined with the adjacent 
leaflet. 

 

11 



1.3 SEMI-LUNAR VALVE LEAFLET MICROSTRUCTURE 
 
 
 
 
 Both the aortic and pulmonary valve leaflets are composed of three distinct layers: the 

fibrosa, spongiosa, and ventricularis [7].   Each of these three layers has different compositions 

that contribute to functional differences between them for valve function.  The three primary 

components of each of the leaflet layers are collagen, elastin, and glycosaminoglycans (GAGs). 

 

 
Figure 6, Schematics showing the detail of the layers of the aortic valve.  2A is a H&E histology section 
showing the relative thicknesses of the three layers (F, S, V for fibrosa, spongiosa, and ventricularis 
respectively).  2B is a 3D reconstruction of a section of aortic valve showing the three layers.  Human aortic 
valves consist of primarily 43-55% collagen and 11-13% elastin (dry weight ratio) [8]. 
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 Collagen.  Collagen fibers are common fibrous proteins composed of a triplet of α chains 

wound around each other in a super helix (Fig. 7).  This helical structure relies upon the 

abundance of proline and glycine for stabilization and compactness, respectively.  Some proline 

and lysine residues are hydroxylated with some hydroxylysines undergoing further glycosylation 

to form stabilizing hydrogen bonding sites.  Collagen molecules are assembled into nanometer 

diameter fibrils which are then organized further into micrometer diameter fibers.  Although an 

abundance of collagen fibers types are present in the body, leaflets are composed mainly of type 

I collagen with some type III collagen.  Collagen excels as a tensile stress bearing relatively 

inelastic fiber (1-2% strain) [9]. 

 

13 



 
A B

Figure 7, Schematic showing the hydrogen bonding between strands that is responsible for collagen’s 
strength (A) and the tri-helical structure that the three collagen strands take when they assemble into a 
collagen fiber (B).  Reproduced from Voet, Biochemistry, 1995. [10] 

 

 Elastin.  Elastin fibers are composed of proline and glycine rich hydrophobic proteins 

that, unlike collagen, do not possess hydroxylated or glycosylated residues.  These hydrophobic 

elements are cross-linked with alanine and lysine rich alpha helixes to form the elastin protein.  

As another contrast to collagen, elastin specializes as a fiber possessing elastic properties, 

permitting large extensions of the molecule as a rubber band would.  The structure of elastin is 

highly branched and coiled and is hypothesized to be the mechanism which endows elastin fibers 

with their elasticity (Figs. 8 & 9) [9]. 

 

14 



A B  

Figure 8, (A) shows a macro-scopic view of a canine aorta and (B) shows a microscopic view of the same aorta 
after all other components excepting elastin have been digested and removed.  Reproduced from Alberts, 
Molecular Biology of the Cell, 1994. [9] 

 

 

Figure 9, SEM pictures of elastin structures obtained from aortic valves after being digested with NaOH.  (A) 
shows fibers forming a sheet and (B) details an elastin tube.  Reproduced from Vesely, 1998 [11]. 

 

 Glycosaminoglycans (GAGS).  The third component, GAGs, are negatively charged 

unbranched polysaccharides formed from repeating units of disaccharides (Fig. 10).  The 

negative charge of the GAG promotes the accumulation of cations and the subsequent osmotic 
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attraction of water.  The hydrophilicity of GAGs accounts for their relatively large volume given 

their molecular weight.  This property also enables them to provide resistance to compressive 

forces due to the incompressibility of water [9]. 

 

 
BA 

Figure 10, Picture in (A) shows an electron micrograph of a typical GAG molecule.  (B) illustrates the 
extensive branching characteristic of GAG molecules which account for their ability to attract and retain 
water molecules to enhance their molecular volume.  Reproduced from Alberts, Molecular Biology of the 
Cell, 1994. [9] 

 
 
 Lamina fibrosa.  The fibrosa lies along the surface facing towards the aorta.  Its surface is 

uneven in contrast to the ventricularis because it does not contact blood flow during ventricular 

ejection (Fig. 6).  The fibrosa can be considered the strongest of the three layers.  Its structure 

consists mainly of dense collagenous fibers woven circumferentially.  As mentioned before, 

ridges and a generally uneven surface characterize the surface of the fibrosa.  The belly of the 

leaflet does not have as tightly a woven fibrous structure as the base and free edges of the fibrosa 
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layer [7].  Elastin fibers are randomly found within the fibrosa but do not form any sort of 

organized structure such as that found in the ventricularis [12]. 

 Lamina spongiosa.  The spongiosa is located between the fibrosa and the ventricularis. 

This structure has been postulated to be responsible for the plasticity of the leaflet and for 

dampening vibrations caused by leaflet opening and closing.  The spongiosa layer contrasts the 

other two layers and has a relatively watery unorganized structure.  Some collagenous fibers are 

present in a radial orientation and have been observed to be attached to the fibers in the fibrosa.  

Otherwise, the spongiosa consists mainly of water and glycosaminoglycans or GAGs [7].  Its 

spongy nature may act as a transition between the stiff fibrosa layer and the elastic ventricularis 

layer [13].  The GAG has also been described as viscoelastic and responsible for some level of 

energy absorption during deformations of the valve cusp [14].   

 Lamina ventricularis.  The ventricularis lies along the surface of the leaflet facing the left 

ventricle.  This surface is smooth, attributing to the necessity of maintaining laminar blood flow.  

The ventricularis is made of an elastic sheet over a collagenous sheet that apparently is a 

continuation of the exit orifice of the left ventricle.  The elastin fibers in the elastic sheet are 

oriented radially in contrast to the circumferentially orientated collagenous fibers.  The 

ventricularis thickens towards the leaflet nodule where the leaflets meet each other to close [7]. 
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1.4 CURRENT STUDIES REGARDING THE AORTIC AND PULMONARY 
VALVES 

 
 
 
 
 There have been a very limited number of studies performed examining the pulmonary 

valve with intentions of studying its structure and mechanical properties.  There have been an 

even lesser number of studies directly comparing the pulmonary and aortic valves.  Testing 

methods are also usually limited to tensile testing or biaxial testing which do not accurately 

capture the range of motion possible for a leaflet in vivo. 

 Broom performed an examination of the structure of porcine aortic and pulmonary 

leaflets using Nomarski differential-contrast imaging to avoid the altering effects of scanning 

electron microscopy and histology.  His results demonstrated that the structure and makeup of 

the pulmonary valve was similar to that of the aortic valve and possessed the same elastin rich 

ventricularis and collagen dense fibrosa.  Collagen crimp was observed to permit the gross 

extension of the tissue to the limit where the crimp was straightened.  Elastin was shown to form 

convoluted networks that defied efforts to visualize them under stress but seemed to abide by 

Poisson’s ratio.  The tissues were fixated with glutaraldehyde for preservation purposes, 

however, resulting in the cross-linking known to alter the natural behavior of the tissue [15].  The 

use of innovative imaging techniques is an essential step in determining mechanical properties at 

the tissue level where conventional means of observation and measurement are insufficient. 

 Using circumferentially and radially oriented test strips obtained from porcine aortic and 

pulmonary leaflets, David et al performed tensile tests to determine their mechanical behavior.  

They tested fresh tissue and tissue that had been fixated in glutaraldehyde and confirmed the 

difference in thickness between the two leaflet types.  Elastic properties were found to be similar 
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between the leaflets with regard to their native or fixated state and their orientation.  Based upon 

their findings, they determined that pulmonary valves were sufficiently mechanically similar to 

aortic valves to justify their use as their replacements.  However, their experiments were limited 

to tensile modes of deformation that were incapable of faithfully simulating physiological 

conditions [16]. 

 Christie et al performed a study examining the biaxial behavior of porcine aortic and 

pulmonary valve leaflets in extension before and after fixation with glutaraldehyde.  Square 

tissue specimens were dissected and mounted using four hooks on each side of the tissue to 

ensure a homogenous force application on each edge.  A suture was made in the center of 

specimen to mark the geometric center and location of strain measurements.  Tissue markers 

were provided by silicone carbide markers that were placed around the center of the specimen.  

All of the specimens were tested under a stress controlled protocol yielding tractions of 60 Nm-1.  

Their results from tests on fresh samples showed that pulmonary valves were more extensible in 

the radial direction but similar in the circumferential direction to aortic valves.  They also 

reported a decrease in strain in the circumferential direction in pulmonary leaflets as the load 

increased [17]. 

 

1.4.1 Heart valve flexural mechanical properties 
 
 
 To achieve the combination of low flexural rigidity necessary to allow normal valve 

opening, nature has evolved a tri-layered cuspal structure: the ventricularis, spongiosa, and 

fibrosa [8].  The ventricularis layer is composed of a dense network of collagen and elastin 

fibers, the spongiosa layer contains a high concentration of proteoglycans, while the fibrosa layer 
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is composed predominantly of a dense network of collagen fibers, and is thought to be the major 

stress-bearing layer [7].  Thus, any biomechanical study of heart valve leaflets must be designed 

to elucidate the unique mechanical properties of the tri-layered aortic cuspal structure. This is 

especially important when determination of the layer mechanical properties of the compliant 

cuspal tissue in the low stress-strain region is considered. For example, while our biaxial 

mechanical testing technique successfully quantified the in-plane stress-strain response [18], it 

cannot determine the contributions of individual layers since all the fibers through the thickness 

are loaded simultaneously.  Further, although the cuspal displacements are large the tissue strains 

are actually small, so that the low strain region of stress-strain curve is of interest.   Mechanical 

properties in the low strain region are notoriously difficult to obtain accurately from tensile 

studies [19], which also cannot measure compressive stiffness.  Vesely and Noseworthy [20] 

have demonstrated that the ventricularis layer preloads the fibrosa. Uniaxial characterization of 

separated fibrosa and ventricularis layers were also conducted and indicated substantial 

differences. However, uniaxial testing and uni-dimensional strain analyses cannot be used to 

characterize the anisotropic mechanical properties of biological tissues, including the low-strain 

region.  

 Flexure represents not only a natural deformation mode of the valve leaflet, it also 

introduces a deformation mode in which the different layers (unlike uni- or biaxial tensile 

experiments), experience different strains.  Further, the stress-strain response of the individual 

cuspal layers in the low strain region under both tension and compression can be obtained 

without the need for dissection or other interventional approaches.  Previous biomechanical 

studies have attempted to determine leaflet bending properties. While elucidating some important 

tissue mechanical principles, the methods employed forced the specimen into non-physiologic 
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loading states [21, 22]. More direct methods of measuring the shear behavior of the cusp using 

two moving plates have been attempted with intriguing results [23].  However, the effects of 

unavoidable tissue compression by the plates on the highly undulated aortic surface of the cusp 

and the non-physiologic nature of the induced tissue deformations make physical interpretation 

of the results unclear. Our laboratory has pioneered the use of a 3-point bending to elucidate the 

mechanical properties of native [24], bioprosthetic [25, 26], and engineered valve tissues [27, 

28].  However, the micro-mechanical basis underlying the observed response has yet to be 

elucidated. 

 

1.4.2 Aortic valve biaxial mechanical behavior and structural constitutive model. 
 
 
 In the University of Pittsburgh, we developed experimental techniques to determine the 

mechanical properties of the AV cusp under biaxial loading [29, 30].  Briefly, cuspal specimens 

were subjected to biaxial tests utilizing seven loading protocols to provide a wide range of load 

states (Figure 12). The cusps demonstrated a complex, highly anisotropic mechanical behavior, 

including pronounced mechanical coupling between the circumferential and radial directions. 

Mechanical coupling between the axes produced negative strains along the circumferential 

direction and/or non-monotonic stress-strain behavior in many samples subjected to equi-biaxial 

tension.  This study provided new insights into the AV cusp structure-function relationship. 

Next, Billiar and Sacks formulated the first constitutive model for the AV to describe its biaxial 

data [31].  A structural approach was used, in which we demonstrated that only three parameters 

were needed to describe cusp's complex behavior and predict a wide range of responses (Figure 

11).   In addition to providing a means to accurately simulate AV response, the structural model 

was also able to demonstrate that the complex cross-coupling is a result of the narrow angular 
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distribution of collagen fibers of the AV cusp. This was particularly evident with the presence of 

negative strains in the circumferential direction when the angular distribution of fibers was <20°.  

These results underscored the importance of understanding the role of tissue structure in 

understanding and modeling cuspal tissue mechanical properties. 
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Figure 11, a) The seven loading protocols used to characterize the biaxial stress-strain response, and (b) 
response to all loading protocols for a AV cusp (open circles), along with the structural model fit, 
demonstrating an excellent fit.  Taken from [31] 

 
 

1.4.3 Mechanical properties of the aortic valve cuspal layers 
 
 
 In our previous model of the aortic valve, the relative contributions from each layer were 

unknown.  To ascertain if there are differences on how fibers within the fibrosa and ventricularis 

layers contribute to the overall tissue planar biaxial response, the layers of two native aortic 

valve cusps that were previously biaxial tested were separated.  Following methods used in [32], 

each cusp biaxial test specimen was laid flat under a dissecting microscope, then the the fibrosa 
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and ventricularis layers were carefully separated with a pair of straight iris micro-scissors.  Each 

separated layer was then retested under biaxial stretch (Fig. 12).  Results indicated that 

substantial differences in layer mechanical properties were present, and suggest the need to 

incorporate these important structural/mechanical properties into future computational models of 

the aortic valve. 
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Figure 12, Biaxial mechanical properties of the intact (i.e. original), fibrosa, and ventricularis layers of the 
native aortic valve cusp.  Note the substantial differences in mechanical properties of the individual layers. 
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1.5 HEART VALVE DISEASE 
 
 
 
 
 Pediatric.  Disease of the aortic valve and pulmonary valve in children and adults can be 

a result of congenital defects or from a contracted disease such as rheumatic fever.  

Cardiovascular congenital defects claimed the lives of over 4100 people in 2001 with 2100 of 

those individuals being under the age of 15.  Diagnosis of congenital defects can be difficult and 

some cases, such as those of bicuspid (two-leaflet) aortic valves which occur in 13.7 of 1000 

people, are not found until they cause later complications at an advanced age.  Out of 1000 live 

births per year, 9.0 defects are expected with a total number of cardiovascular defects being 

about 36,000 babies annually.  Of these babies, 2.3 babies per 1000 require invasive treatment or 

die within the first year.  Overall inpatient mortality for cardiovascular defect related surgery was 

4.7 percent [1].  Pulmonary valve deficiencies, such as tetralogy of Fallot (TOF), are congenital 

defects which affect pulmonary valve function and usually result in either the total removal of 

the pulmonary valve (pulmonary valvotomy), or the use of a replacement valve.  TOF itself 

accounts for approximately 10% of all cardiac malformations [33].  Diagnosis of these 

deficiencies can occur via echocardiography while the baby is still a fetus or after birth if the 

baby exhibits blueness. 

 Adult.  Rheumatic fever remains a significant cause of cardiovascular disease in 

developed countries and occurs to between 100 and 200 school age children per 100,000 but also 

affects adults.  Heart valve damage occurs when the body’s immune response to the viral 

infection attacks causes inflammation and damage to the myocardium [34].  Bacteria can also 

damage the heart valves in a condition known as infective endocarditis.  Treatment is normally 
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undertaken with the administration of antibiotics but valve replacement is also indicated when 

the damage to the valve is too extensive [35].  Adults are also susceptible to those congenital 

heart defects that do not manifest themselves until after childhood.  Amongst adults with these 

defects, 26% suffered sudden death, 21% died from progressive heart failure, and 18% from 

peioperative death.  In the United States alone there are approximately 800,000 people with 

significantly life expectancy lowering congenital heart defects [36].  Deficiency of the heart 

valve in children and adults normally occurs via two primary pathways, stenosis (obstruction) or 

regurgitation. 

 Stenosis.  Stenosis of the valve obstructs the flow of blood from the left ventricle to the 

aorta and systemic circulation.  As a consequence, blood delivery is retarded and symptoms of 

insufficient circulation are experienced.  Stenosis occurs when the patients are born with 

problems such as a bicuspid or other malformed valve.  The defective valve does not possess the 

excellent hemodynamics of the normal valve and turbulent blood flow is a result.  Thus, calcium 

deposits may begin to grow upon the valve and the possibility of bacterial infection is 

encountered.  Calcification and the growth of scar tissue aggravate the stenosis by further 

misshaping the valves and altering their mechanical properties.  Insufficient blood flow through 

the valve stimulates the left ventricle to hypertrophy, or increase in size, to compensate for the 

smaller orifice.  This worsens the condition of the patient by damaging the entire heart, leading 

to eventual morbidity through heart failure or through failure of the stenotic valve. 

 Regurgitation.  Regurgitation is a condition that afflicts similarly malformed valves and 

can be coincident with stenosis.  When the pressure in the aorta exceeds that of the left ventricle, 

blood begins to flow backward and pushes the leaflets of the normal valve to coapt and shut.  

However, if the valve does not close completely, blood will flow back into the left ventricle, 
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sabotaging the advancement of blood through the aorta.  Severe cases of regurgitation will 

produce results similar to stenosis.  Hypertrophy of the heart is also a result of regurgitation for 

the same reasons as in stenosis, inadequate blood flow and delivery.  Diagnosis of these 

conditions can be accomplished by finding a heart murmur that results from the turbulent flow or 

through echocardiography [37]. 

 
 
 
 

1.6 TYPES OF VALVE REPLACEMENTS 
 
 
 
 
 Regardless of the dysfunction pathway taken by the valve, repair or replacement of the 

valve is necessary to maintain an acceptable quality of life.  Currently, valves can be replaced 

with either a mechanical or bioprosthetic prosthesis, each with its own advantages and 

disadvantages.  Another option gaining in some popularity amongst younger patients is the Ross 

procedure (mentioned above) [38-41].  Tissue engineered heart valves are another form of 

replacement being researched but will not be discussed because they remain in development and 

are not currently considered standard treatment. 

 

1.6.1 Mechanical heart valve replacements 
 
 
 Mechanical valves are produced by a number of different companies offering different 

advantages and benefits.  The majority of the designs in use are bileaflet or unileaflet tilting disk 

valves (Fig. 13) [42].  Because these valve alternatives are manufactured commercially, there are 

no concerns about availability and scarcity.  When mechanical valves were first introduced there 
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were some mishaps with design and manufacture, leading to some initial deaths.  However, with 

advancing designs and improved standards and testing, mechanical valves have established 

themselves as a reliable replacement for adults aged 65 years and above according to guidelines 

set forth by the American College of Cardiology and the American Heart Association [43]. 

 

 A B
Figure 13, The SJM Regent® mechanical valve (A) and the Toronto SPV® bioprosthetic valve (B) are shown.  
Copyright St. Jude Medical, Inc. 2004.  These images are provided courtesy of St. Jude Medical, Inc.  All 
rights reserved.  SJM Regent and Toronto SPV are registered trademarks of St. Jude Medical, Inc. 

 

 The disadvantage to having a mechanical valve implanted is, in some cases, severe.  The 

blood that continually passes through the valve will be affected by its presence and by the 

difference in hemodynamics.  Mechanical valves do not possess the same hemodynamics the 

native valves possess so that some damage to blood cells, also known as hemolysis, will occur.  

Significant hemolysis will result in anemia and its coincident symptoms.  The hemolysis of red 

blood cells will release a number of factors involved in the clotting system.  This results in the 

development of blood clots upon the valve, hindering its operation.  As clots form on the valve 

they are also released into the blood stream as emboli where they can potentially block vessels 
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downstream.  This can result in poor circulation in extremities to the more serious consequences 

of a cerebrovascular event such as a stroke [44-46]. 

 To prevent the initiation of clot formation in the presence of a mechanical heart valve, 

anti-coagulants are administered to the patient.  The most common anti-coagulant prescribed to 

patients is Coumadin.  These anti-coagulants prevent the formation of clots at the mechanical 

valve and throughout the entire body.  As a consequence, hemorrhage or bleeding internally and 

externally will not be stopped by the body as readily with the anti-coagulation treatment.  This is 

the primary disadvantage of the anti-coagulation treatment.  Patients are susceptible to possibly 

fatal and uncontrollable bleeding when undergoing anti-coagulant treatment.  Too much anti-

coagulant will result in excessive bleeding whereas too little anti-coagulant treatment will result 

in the formation of dangerous clots and emboli.  To gauge the level of anti-coagulant treatment a 

patient is to receive, the patient must undergo regular tests to determine their blood’s clotting 

capability and whether administration of anti-coagulant should be increased or decreased.  For 

example, in a study by Change et al, the level of anti-coagulant therapy was modified closely to 

reduce the occurrences of thromboembolisms and did so successfully by increasing 5-year 

freedom from thromboembolism from 96.7% to 99.0%.  However, bleeding fell from 99.3% to 

96.1% [42].  In addition, anti-coagulant treatment itself brings with it many undesirable side-

effects that lower the quality of life of the patient.  Adherence to the treatment and regular blood 

tests are vital to the successful implementation of this option and thus its application to pediatric 

cases is severely limited [47].  The use of mechanical valves may be feasible in adult patients 

who are not physically active but children are almost always partaking in physical activity of 

some sort or more often susceptible to cuts, bruises, or other injuries.  The implication of anti-

coagulant therapy in such cases would lead to uncontrolled and fatal hemorrhaging and severely 

28 



limit the freedom a child or young adult has.  The inability of the mechanical valve to grow with 

the younger patient requires that several re-operations be performed to replace the mechanical 

valve in order to avoid aortic stenosis and manage somatic growth of the child [48]. 

 
 

1.6.2 Bioprosthetic heart valve replacements 
 
 
 Bio-prosthetic heart valves (BHVs) are made in primarily two varieties, a chemically 

treated porcine aortic valve and a chemically treated valve made of bovine pericardium (Fig. 11).  

Pigs are chosen for their heart valves because of the anatomic similarities between them and 

humans.  Their valves are harvested and treated chemically to remove living tissue and prevent 

any possibility of rejection by the human body.  Untreated implanted tissue will normally be 

broken down and degraded by the body, whereas xenotypic implants, those from another species, 

will illicit an immune and inflammatory response that will result in the rejection and breakdown 

of the tissue [49].  The chemical treatment with glutaraldehyde also fixates the tissue, preventing 

degradation and stiffening it. 

 The valves can be mounted on a stent and then sewn in by the surgeon.  They can also 

come intact in the pig’s aorta and be sewn in by the surgeon with more difficulty.  The other 

types of BHVs are made of bovine pericardium.  The valve is put together from pieces taken 

from sheets of bovine pericardium.  The pieces of pericardium are also chemically treated to 

remove antigens and stabilize the tissue.  The BHV is a good alternative for adults to the natural 

valve in terms of its hemodynamics and, in contrast to the mechanical valves, its absence for any 

anti-coagulant therapy.  In pediatric cases, however, the BHV must inevitably be re-operated 

upon to compensate for the growth of the patient resulting in further surgical complications [38].  
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There are also some issues concerning the hemodynamics of the BHV because of the 

requirement for a stent in some installations and the difficulties in installing the valve into the 

patient.  The primary drawback to a BHV is the relatively low durability of the valve in vivo.  In 

spite of the chemical fixation, the valve will begin to degrade inside of the body and fall apart 

with time.  Glutaraldehyde treatment itself has been implicated by some to be responsible for the 

onset of calcification [50].  As the valve deteriorates, the same mechanisms that caused stenosis 

will begin to affect the BHV and calcification begins to decrease its efficiency as a valve [51].  

The deposition of calcium upon the tissue and its subsequent effects upon the mechanical 

properties of the tissue greatly affect its durability [12].  This deposition, located on the exterior 

of the leaflets is referred to as extrinsic calcification.  Calcification also occurs within the leaflet, 

amongst the ventricularis, spongiosa, and fibrosa.  This form of calcification is referred to as 

intrinsic calcification. 

 In spite of what is known about the effects of glutaraldehyde cross-linking, a great deal of 

understanding about the mechanical and fatigue properties of the tissue have not been fully 

evaluated.  Cross-linked and fatigued BHV have exhibited deteriorating collagen I [50].  It has 

been established in previous studies that glutaraldehyde treatment does not preserve the lamina 

spongiosa and its rich water and GAG content [26].  Vyavahare et al’s study provides data 

showing a depreciation of mechanical properties with time and a proportional loss of GAG 

content in the spongiosa layer [50].  Some studies have also shown other factors contributing to 

the failure of BHV under long-term use.  Deterioration and delamination of collagen fiber 

bundles have been observed in flexed valve cusps [14].  Failure of connective tissue has 

contributed to tearing and the break down of tissue leading to failure.  Failure through 

regurgitation has also been observed in BHV constructed using bovine pericardium.  The edges 
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of the leaflets degrade with time and eventually do not seal properly to prevent blood from 

leaking back from the aorta to the left ventricle [7]. 

 Inevitably, re-operation is required in many cases to replace the failing bio-prosthesis 

with some other alternative or another bio-prosthesis.  In one study, approximately 20% of 

patients required re-operation to their valves within the first eight years after replacement.  The 

percentage increased subsequently thereafter.  The bio-prosthetic heart valve finds its use in 

patients who cannot abide by anti-coagulant therapy for one reason or another or who are not 

expected to outlast the projected service time of the bio-prosthesis [44-46].  Thus, BHV 

replacement follows the same 65 years of age or older guideline as mechanical replacements 

[43]. 

 
 

1.6.3 The Ross procedure 
 
 
 An innovative alternative to the use of either of these replacement valves is the Ross 

procedure.  Also known as the pulmonary autograft, the pulmonary valve is used as a 

replacement for the aortic valve within the same patient.  The pulmonary valve is then replaced 

with a pulmonary homograft, a valve taken from a cadaver donor.  The Ross procedure, as it is 

called nowadays, is a complicated surgical operation performed by only a handful of skilled 

surgeons in the world.  The procedure transforms what would normally be a one-valve operation 

into a two-valve operation.  At first, the aorta and pulmonary artery are transected and the 

diseased aortic valve is removed.  The pulmonary root is then removed from the pulmonary 

artery and attached to the left ventricular outflow tract.  The pulmonary homograft is prepared 

and then attached to the right ventricular outflow tract.  The pulmonary arteries are then attached 
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to complete the reconstruction of the right ventricular outflow tract.  The coronary arteries 

followed by the aorta are attached to the autograft pulmonary root [52]. 

 The rationale behind such a complicated procedure is the idea of using an autograft or 

tissue from the same human body.  This negates the concern about negative immune responses to 

the transplant and also retains living viable tissue, enabling the transplant to grow, remodel, and 

repair with time.  This means that the Ross procedure implanted valve does not require the 

debilitating anti-coagulant therapy that mechanical valves require.  In addition Ross procedure 

implanted valves do not have the potential durability issues that bio-prosthetic valves have 

because they are living implants.  Thus, the pulmonary autograft presents an alternative that 

supercedes the two greatest drawbacks of the other implantation options.  The Ross implant is 

thus particularly attractive to use in pediatric, young adult, and active patients (Fig. 14) [53].  As 

a more complicated procedure, Ross operations cost more than single valve operations.  

However, statistics have shown that shorter post-operative stays incurred by pulmonary autograft 

patients offset these operative costs, leveling their costs with mechanical and bio-prosthetic 

replacements [54].  A successful Ross procedure can provide an almost perfect replacement for 

the diseased aortic valve, barring complications. 

 As with almost all medical procedures there are complications that can arise.  In the case 

of the Ross procedure, serious complications may arise during surgery.  When Mr. Ross first 

pioneered the operation, his initial morbidity after surgery was approximately 20% [55].  His 

procedure was limited by the amount of time he was allowed to retain the patient under 

cardiopulmonary bypass.  When advancements were made in the technique of cardiopulmonary 

bypass in the 1980’s the Ross procedure began to be performed by surgeons worldwide exclusive 

of Mr. Ross.  Presently, the surgery presents the same rate of initial morbidity as much simpler 
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valve operations.  However, the difficulty of the operation results in greater morbidity for those 

surgeons first performing the technique.  Thus, the “learning curve” for a surgeon inevitably 

results in some unnecessary deaths [54, 56, 57].  As more procedures are performed, however, 

improvements in surgeon experience and technique result in increased success with the 

procedure [58]. 

 If the surgery were to be completed successfully, other complications may occur.  The 

homograft that is used to replace the pulmonary root is susceptible to degradation just as bio-

prostheses are vulnerable to degradation in the aortic position.  The rationale behind placing a 

degradable valve in the pulmonary position is due to the different environments of the aortic and 

pulmonary valve positions.  The lower pressures in the pulmonary circulation do not stress the 

substitute valve as greatly as it would if it were to be in the aortic position.  In younger patients a 

greater immune response to the aortic homograft results in faster degradation whereas in the 

pulmonary position the homograft is more tolerated.  Thus, the durability of the homograft in the 

pulmonary position is improved and the autograft in the aortic position lasts longer [59].  

However, despite these assumptions, the homograft in the pulmonary position does occasionally 

fail.  Valve failure in the pulmonary position is relatively well tolerated by the heart so the 

complication is not immediately fatal as an aortic valve failure would be.  Re-operations to 

replace a failing pulmonary homograft account for approximately 1.3% of re-operations.  The 

pulmonary autograft itself is susceptible to failure in some cases.  Approximately 3.2% of 

pulmonary autografts must be re-operated because of total failure.  These failures can be a result 

of degradation, infection, or surgical errors.  One pathway of valve failure is due to the dilation 

of the pulmonary autograft root with time.  As the root begins to dilate, the leaflets of the valve 

will no longer mate as well as before, leading to valve insufficiency.  In other cases of 
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pulmonary autograft re-operation, 2.2% were re-operated and the autograft was successfully 

repaired and retained.  In total, 6.9% of Ross procedure patients have required re-operation for 

problems pertaining to the surgery or some other non-Ross procedure related complications 

(Table 1) [60]. 

 Most opponents of the Ross procedure cite as one of their objections to the procedure the 

lack of long term results [57].  Mechanical valves and bio-prosthetic valves have been 

characterized in their long term behavior either through mechanical testing and simulations or 

long-term clinical and animal studies.  Both of these alternatives also provide some level of 

quality assurance from the engineers who design them.  The autograft used in the Ross 

procedure, however, does not offer any of these benefits.  As it is obtained from the donor almost 

immediately before use, there is no opportunity to run tests to determine its quality as an aortic 

valve substitute.  However, some mid-term results have shown that the autograft is capable of 

growth and remodeling along with the patient to possibly provide a viable permanent 

replacement [38-41]. 

 The Ross procedure has been performed in hundreds of patients since its first use in 1967 

by its innovator, Donald N Ross [60].  Most mid-term results present an optimistic outlook for 

the use of the Ross procedure in patients, netting a success rate approximately equal to that of 

mechanical and bioprosthetic replacements [54].  However, the evidence supporting the Ross 

procedure does not include any quantitative comparisons between the two valves or any clear 

understanding of any mechanisms that may influence the pulmonary valve in the aortic position.  

Obtaining valves after implantation for testing requires the cooperation of patients for significant 

follow-up procedures and has yet to be done.  The feasibility of observing changes to the 
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pulmonary valve in vivo is low because of the limited means of determining mechanical 

properties non-invasively and a poor understanding of baseline properties. 

 

Table 1, Table showing postoperative morbidity statistics from 1,656 total Ross operations.  Chart 
reproduced from Oury et al, “The Ross Procedure: Current Registry Results,” 1998 [60]. 

Complications No. of 
Patients 

% of 
Total 

Cardiac dysrhythmia 32 11.9
Postoperative bleeding 22 8.2
Endocarditis (new) 18 6.7
Sepsis 15 5.6
Myocardial infarction 10 3.7
Stroke 10 3.7
Thrombus 9 3.3
Endocarditis (recurrent) 7 2.6
Transient ischemic 
neurologic complications 5 1.9

Other complications 141 52.4
Total 269  
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Figure 14, Chart showing number of Ross operations performed that have been registered with the 
International Registry of the Ross Procedure.  Data taken from Oury et al, “The Ross Procedure: Current 
Registry Results,” 1998 [60]. 
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 For the pediatric patient, the Ross procedure remains the most effective and safe 

replacement for the aortic valve.  In a study by Turrentine et al, the re-operation rate for Ross 

procedures was the lowest at 11.9% compared to mechanical valve re-operations at 15.2%, BHV 

re-operations at 70%, and homograft re-operations at 50% [61].  In an analysis by Takkenberg et 

al, the Ross procedure proved to have a re-operation free life expectancy of 16 years from a 

patient population of 380 [62].  The homograft is the most suitable replacement for the ailing 

pulmonary valve because of its reduced immunogenic response compared to BHV in younger 

patients [42]. 
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1.7 MOTIVATION FOR PRESENT STUDY AND STUDY AIMS 
 
 
 
 
 To be able to develop the best treatments for heart valve replacement, the basic science 

and mechanisms that are responsible for the success or failure of devices must be understood.  

To be able to properly design such devices to minimize the chances of failure, a complete 

understanding of the ultimate design goals is required.  With heart valve replacements, the 

ultimate goal would be to design a permanent and functional prosthesis that would match the 

performance of the native valve.  Thus, the key to development would be to dissect the inner-

workings of the native valve and understand completely the relationship between its form and 

function.  The tensile, biaxial, and bending properties of the aortic valves have already been 

established but an appreciation of the micromechanics has yet to be really explored.  The 

relationship between the different layers and components of the valve obviously play a 

significant role in its gross behavior and should be explored.  Analogously, by determining the 

behavior of the pulmonary valve in a parallel fashion, the two valves can be compared to each 

other.  This comparison and contrast between the two valves will explain some of the adaptations 

undertaken by the native system to withstand low and high intravalvular pressures.  The 

comparison will also benefit the paradigm behind the Ross procedure by helping to explain the 

relative success of the pulmonary valve in the aortic position. 

 No study yet performed has directly compared the native properties and states of the 

aortic and pulmonary valves with intent upon determining some of the differences inherent 

amongst its different layers.  Most of the biological tissues that must be tested are very small in 

size and not conducive to normal testing methods such as tensile testing.  Tensile tests are 
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limited because of their single mode of deformation and the inability to accurately determine the 

cross-sectional area of tissues confounds what limited results may be found through these tests.  

It is intuitively obvious that the deformation of the valve leaflets in vivo are significantly more 

complicated than simple tension.  For example, the heart valve leaflets do not undergo strictly 

tensile loading but experience a complex load that can be most accurately simplified as bending.  

Bending tissue thus provides a test more accurate to in vivo conditions while allowing for the 

physical constraints of small biological specimens.  Fixation of tissues before experimentation 

irreparably damage and affects the tissue such that any properties that may be determined are 

vastly different from native properties and are applicable solely to the use of glutaraldehyde for 

fixative purposes. 

 To determine micromechanical tissue properties, new experimental approaches must be 

developed.  Currently available tools such as tensile testers and biaxial devices are suitable for 

determining gross tissue behavior and allowing inferences to be made of micromechanical 

behavior.  However, to make meaningful measurements towards determining micromechanical 

behavior, direct observation of changes in the structure of the tissue with deformation must be 

made.  This is especially important when dealing with a composite material such as the heart 

valve leaflet because compositional changes most likely dictate the overall behavior. 

 To expand upon the biomechanical studies on the aortic and pulmonary leaflets, this 

study was designed to explore the behavior of the leaflets as a whole as well as a level of 

complexity between the gross behavior of the entire leaflet and the microscopic happenings of 

their cells.  By understanding the mechanics of the leaflet and the influence its internal 

components have upon the mechanics of the entire leaflet, an appreciation of their contributions 

to its remarkable function can drive future developments by prioritizing the critical components.  

38 



The use of flexure in these experiments in addition to biaxial deformation sought to emphasize 

the behavior and deformation of the valve in vivo.  During its normal operation, the leaflets 

deform significantly in flexure to accommodate the flow of blood or the presence of the other 

leaflets when sealed.  The exploration of the differences in the bending and biaxial properties of 

the aortic and pulmonary leaflets stems from a desire to compare how the properties vary with 

respect to mechanical load.  Because of the great difference in operating environments between 

the two leaflets, some differences must be inherent in their behavior to account for this. 

The specific aims for this Thesis are: 

1. Development of a novel flexural testing device for heart valve leaflets. 

2. Application of the flexural device to the study of the micromechanics of the native AV 

and PV leaflet tissues. 

3. To compare tensile and flexural responses, conduct the first study of the native PV under 

biaxial loading using a comprehensive biaxial mechanical protocol. 
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2.0 METHODS 
 
 
 
 
 As discussed in Chapter 1, the design of this study was aimed towards the determination 

of the behavior of the aortic and pulmonary valve leaflets in flexure as a whole, the interactions 

between the three different layers of the leaflet, and the biaxial behavior of the pulmonary valve.  

As a mode of deformation, flexure was determined to be capable of capturing a higher level of 

complexity than simple tensile and biaxial testing. 

 Three-point bending is a testing method that attempts to duplicate a more intuitive mode 

of deformation of the in vivo leaflet .  Figure 15 shows the setup of a three-point bend test.  Two 

posts support the specimen while a bending bar at the center of the tissue applies force to flex the 

tissue.  The load is measured by recording the displacement of the pre-calibrated bending bar.  A 

reference rod is located within view of the bending bar so that the displacement of the bar can be 

measured relative to a fixed point.  Markers are affixed to the specimen with cyanoacrylate so 

that they can be tracked using a video camera system.  Markers are also affixed to the bending 

bar, reference rod, and first and second posts and are all tracked by the marker tracking software 

[26].  This method of flexure testing is effective at causing large deformations in the tissue but 

does so by generating a large artifact where the tissue contacts the bending bar leading to 

inaccuracies in measurements made around the center of the tissue.  The bending bar also alters 

natural flexural behavior of the tissue by forcing the leaflet strip to flex around the bar. 
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Figure 15, Schematic illustrating the concept of three-point bending and its application in testing soft tissues 
in flexure in previous studies.  The reference rod provides a marker to reference the initial position of the 
bending bar for the calculation of the force applied.  The bending bar cannot be referenced to the post 
markers because it is mounted upon a moving stage along with the reference rod.  The black dots on the 
beam are markers for determining the curvature of the beam. 

 

 No study performed has directly compared the native properties and states of the aortic 

and pulmonary valve with intent upon determining some of the differences inherent amongst its 

different layers.  Most of the biological tissues that must be tested are very small in size and not 

conducive to normal testing methods such as tensile testing.  Tensile tests are limited because of 

their single mode of deformation and the inability to accurately determine the cross-sectional 

area of tissues confounds what limited results may be found through these tests.  It is intuitively 

obvious that the deformation of the valve leaflets in vivo are significantly more complicated than 

simple tension  For example, the heart valve leaflets do not undergo strictly tensile loading but 

experience a complex load that can be most accurately simplified as bending.  Bending tissue 

thus provides a test more accurate to in vivo conditions while allowing for the physical 

constraints of small biological specimens.  Fixation of tissues before experimentation irreparably 

damages and affects the tissue such that any properties that may be determined are vastly 

different from native properties and are applicable solely to the use of glutaraldehyde for fixative 

purposes. 
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 Modification of the above flexural method, as described below, allowed for the 

measurements to be taken to determine the micromechanical behavior of the tissue and 

consequently the behavior of the leaflet layers.  Biaxial experiments were performed on 

pulmonary valve, as well as the aortic valve for completeness, to determine base-line biaxial 

behavior that was not thoroughly established enough in the literature. 

 
 
 
 

2.1 BENDING BEAM THEORY 
 
 

2.1.1 Experimental rationale 
 
 
 For practical reasons, the intact leaflet was not tested as a whole in flexure but was 

simplified and idealized with a circumferentially oriented strip of tissue that was removed from 

the leaflet (Fig. 28).  The leaflet strips used in testing were modeled using an elastic beam 

capable of large deformations and referred to in general as an ‘elastica’ [63].  Through 

experimentation the stiffness of the leaflet specimen was determined along with information 

about the relative movement of the layers of the tissue. 

 

2.1.2 Elastic beam theory 
 
 
 When a column buckles under an end-load directed along its long axis, the beam will 

bend into a shape referred to as an elastica if allowed to freely rotate at both ends [63].  This 

buckling beam configuration was adapted for use as a horizontally oriented beam to permit the 

application of a load (P) along the long axis of the beam (Fig. 16).  With increasing load, the 
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elastica would flex in an approximately parabolic shape and the straight-line distance between its 

two ends, L, would decrease and the vertical distance between the midpoint of the beam and the 

ends, y, would increase. 

 The stiffness of the elastica was computed from the moment applied to the beam and the 

curvature attained by the beam.  In the following we employed the moment-curvature 

relationship established by Bernoulli and Euler (Eq. 1): 

 

eff 0M E I( )= κ − κ  (1) 

 

Here: M: the moment applied to the elastica, Eeff: the effective stiffness of the tissue, I: the 

second moment of the area, κ and κ0: curvature and initial curvature.  The moment applied to the 

beam was determined at the middle of the beam and was defined as the product of the load 

applied with the vertical displacement of the midpoint, M=Py.  The second moment of the area 

was defined for a rectangular cross-section and calculated using the following where: t: specimen 

thickness, and W: specimen width. 

 

31I t
12

= W  (2) 
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Figure 16, A free body diagram depicting the idealized tissue mounted in the testing device with a force 
applied to its free end, P, via a pre-calibrated bending bar.  The other end of the tissue is securely affixed to 
the specimen bath.  The moment arm for the center of the tissue is represented as y and the horizontal 
distance between the two ends of the tissue is L. 

 

2.1.3 Composite bending beam theory 
 
 
 The effects of tissue mechanical property heterogeneity can be more easily understood by 

assuming the leaflet specimens to be idealized as a composite beam consisting of two layers.  

These layers are attributable to the ventricularis and fibrosa layer with the spongiosa layer 

omitted since it likely contributes negligibly to leaflet stiffness.  Composite beams in flexure 

behave differently than isotropic beams because of the differences in material response between 

the layers (Fig. 17). 
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Figure 17, Schematic showing the distribution of forces throughout an isotropic beam.  In this orientation, the 
beam is flexed upwards to form an upside-down U. 

 

 Following the conventions of figure 15, the top half of the beam experiences compressive 

forces while the bottom half of the beam experiences tensile forces.  If the beam were to bend 

towards the opposite direction, the compressive and tensile forces would subsequently be 

reversed.  The location along the thickness of the beam where no strains are present was referred 

to as the neutral axis.  Thus, for the isotropic beam in figure 13, the neutral axis was located 

halfway through the beam because every layer of the beam possessed the same compressive and 

tensile moduli.  As the material properties of the different layers deviated from each other, the 

location of the neutral axis and the distribution of strains through the thickness of the beam also 

changed.  The neutral axis tends to move towards the stiffer layer (higher compressive and 

tensile moduli) because the stresses shared amongst the layers in the beam shift away from the 

weaker layers.  Thus, the location of the neutral axis provides information about the relative 

stiffnesses of the layers found in the beam.  The beam can also be flexed in both directions to 

subject all the layers of the beam to variations of tension and compression.  Changes in the 

location of the neutral axis between bending directions reveal any differences that may be 
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present between the compressive and tensile moduli of each of the layers [63].  Thus, the relative 

differences in layer stiffness may be obtained without any direct modification to the layers.  A 

novel bending device was developed to investigate these phenomena in the leaflet tissues, as 

described in the next section. 

 
 
 
 

2.2 BENDING DEVICE DESIGN 
 
 
 A new material testing device was designed and built in order to investigate the flexural 

behavior of native aortic and pulmonary porcine valve leaflets.  This device was engineered to 

automatically perform several complicated tasks simultaneously to reduce the interaction of the 

user with the testing protocol to reduce the possibility of user-induced artifacts, expediting tests 

to increase efficiency and throughput, and enhancing the accuracy, resolution, and repeatability 

of tests. 

 

2.2.1 Imaging 
 
 
 The bending device consists of two modules that work simultaneously via computer 

control to capture macroscopic and microscopic digital images (Fig. 18).  The macroscopic 

images were processed in real-time to determine the effective modulus of the tissue specimen as 

a whole.  The microscopic images were captured and stored in the computer so that they could be 

processed later to determine the transmural strains.  The side of the tissue imaged by the 

macroscopic lens system will be referred to as the macroscopic side and the side of the tissue 

imaged by the microscopic lens system will be referred to as the microscopic side.  
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Figure 18, A schematic detailing the major components of the new bending device.  The macro camera is 
securely affixed to the platform the device is mounted upon.  ‘A’ represents the view obtained from the macro 
camera during testing.  The image is thresholded to isolate black objects from the white background.  Two 
metal sleeves are glued to the ends of the tissue so that it can be mounted onto a post attached to the sample 
bath and onto a post located on the bending bar.  The vertical bar located next to the bending bar is used to 
mark the location of the bending bar marker when the tissue is not attached.  The tissue sample is contained 
within a bath and mounted on a computer controlled servo stage.  The micro camera is mounted to two servo 
stages to enable it to move in a plane parallel with the view seen in the macro camera.  ‘B’ represents one of 
the images obtained using the micro camera.  The black markers seen on the edge of the tissue have been 
applied using an airbrush.  The image is post-processed to identify and locate the markers so that their 
displacement from the reference state to the deformed state can be quantified and used for strain analysis.  
The X1 axis coincides with the circumferential direction of the leaflet.  The X2 axis coincides with the 
thickness of the leaflet. 

 

2.2.1.1 Macroscoping imaging  The macroscopic imaging system takes images of the 

macroscopic side of the tissue as it is flexed as illustrated in figure 19.  A tele-centric lens 

attached to a 640 by 480 pixel resolution CCD camera (Sony XC-1) is used to image the tissue 

along the macroscopic edge.  A National Instruments (PCI-1407) video capture board is used to 

feed the video images into the computer and controlling Labview program.  Through Labview 

provided image thresholding routines, black markers are isolated from a white background and 

identified by the computer as seen in figure 20. 
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Figure 19, Photograph of actual device from the point of view of the (A) macro-imaging camera which is 
located in the foreground.  The (B) testing stage and the (C) specimen bath are located directly in front of the 
macro-imaging camera’s line of sight and the (D) micro-imaging camera is located directly behind the 
specimen bath.  The (E) bending bar is suspended into the specimen bath from the (F) crane assembly located 
at the right.  

 

 Two different groups of markers are located in each image.  The first group of markers 

represents the posts that are attached to the ends of the specimen.  The first post is located at the 

left end of the tissue specimen and is fixed to the specimen bath.  The second post is affixed to 

the right end of the tissue specimen and is attached to the bending bar.  The remaining markers 

are those that are attached to the specimen and are used to determine the shape of the specimen 

throughout testing.  The tissue specimen mounted upon the posts and suspended within the bath 

can be seen in figure 21.  Both posts were either attached to the ends of the specimen or attached 
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upon the surface of the specimen.  The location of the posts was deemed to be insignificant 

according to previous tests that were completed comparing different post attachment locations.  

Agreement was found between the data obtained from specimens with posts attached to the end 

and to the surface of the specimen.  

 

Bending Bar
Marker/ 
Second PostFirst Post 

Markers attached to specimen
 

Figure 20, Digitized photograph illustrating the different markers detected and tracked by the computer 
software. 
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Figure 21, Photograph demonstrating the view from the macro-imaging camera.  Note that this is not an 
actual image taken by the camera.  The (A) bending bar is attached to the (B) sample and is suspended into 
the (C) bath on the right.  The (D) bar to the left of the bending bar was used for initializing the initial 
position of the bending bar marker. 

 

 

Figure 22, Image sequence demonstrating the markers detected by the imaging software as well as the 
movement of the markers and the shape of the tissue during the flexure test.  Progression of the test begins at 
the upper left and moves towards the lower right. 
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 The two groups of markers were tracked throughout the experiment and were identified 

according to a set of algorithms.  The subroutines used by Labview to find particles in an image 

do so from top to bottom, so that the markers must be sorted accordingly to work with the 

Labview software.  Before the experiment begins, the tissue is approximately straight but does 

not necessarily have to be perfectly straight (Fig. 22).  Thus the markers and the two posts are 

roughly collinear.  As the specimen bath moves towards the bending bar and the tissue deforms, 

it begins to take upon a curved shape.  The direction the tissue bends towards is pre-determined 

and specified by the user.  The coordinates of all the identified markers are translated into polar 

coordinates for differentiation and identification.  These coordinates are then referenced to a 

specific point which roughly translates to the center or focus of the curve formed.  This point is 

determined by taking the x coordinate component as the average between the maximum and 

minimum of the x coordinates detected.  The y coordinate component is taken to be either the 

lowest y value if the tissue was flexed upwards or the greatest y value if the tissue were to be 

flexed downwards (Fig 23).  Using this focal point as a reference for all of the polar coordinate 

marker positions, the points can be identified by the theta component of the polar coordinate.  

The second post is found within the first quadrant (I) and the first post is found roughly within 

the fourth quadrant (IV).  The remaining markers detected are those affixed to the tissue are 

ordered according to the magnitude of their theta component. 
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Figure 23, Schematic illustrating the algorithm used to sort the markers detected by the marker detection 
software included with Labview. 

 

2.2.1.2 Microscopic imaging  The microscopic images are taken with a high magnification lens 

(Edmund Optics, VZM-1000i) mounted to a one megapixel resolution (1280 pixels by 1024 

pixels) color CMOS camera (PixeLink PL-A662) attached to the computer via a IEEE-1394 

interface.  As the tissue is flexed, the user prompts the system to pause and control of the system 

diverts from the real-time marker tracking to the microscopic lens.  The images are taken of the 

microscopic side of the tissue. 

 When tests are performed, the tissue bends from its initial position to a curved shape 

approximated by the analysis software as a quadratic.  The tissue is moved horizontally towards 

the bending bar by the movement of the entire tissue bath which is mounted upon a motorized 

stage (National Aperture MM-4M-EX-80) which will be referred to as the testing stage.  This 
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motorized stage and two others are responsible for all of the computer controlled movement 

performed by the testing software.  They are all stepper motors connected to an amplifier unit 

(National Aperture MC-4SA MicroMini) that is then interfaced to the computer via a National 

Instruments NI-7344 board.  The two other motorized stages (National Aperture MM-4M-EX-50 

and MM-4M-F-50) are mounted upon each other and onto a custom machined mount for the 

high magnification lens as can be seen in figure 24.  These two motors allow the computer to 

control the exact location of the camera throughout the test. 

 Because the area of interest on the microscopic side of the tissue moves throughout the 

test, it must be tracked accordingly so that it will remain within the field of view of the camera.  

This is accomplished by establishing the location of the high magnification lens camera as a 

function of the location of a specific marker on the tissue.  In this study, strain measurements on 

the microscopic side of the tissue were taken at the center of the specimen.  Thus, the marker 

placed on the macroscopic side of the tissue was designated as the tracking marker.  At the onset 

of testing, the position of the tracking marker was determined by the software and stored.  As the 

tissue moves throughout the test, the location of the marker is continually updated within the 

system.  Its translation in the x and y axes is converted to steps for the x and y stepper motors to 

move.  To determine the conversion from millimeters of movement on camera to motor steps, a 

calibration program was written that counted the number of steps moved by a motor for a given 

amount of displacement on-camera.  Thus, after initially positioning the lens to the appropriate 

area of interest, the motors will move the lens and camera assembly throughout the test, 

maintaining the same area of interest. 
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Figure 24, Photograph detail of the micro-camera imaging system.  The gray box at the left is the Firewire 
CMOS camera.  It is attached to the magnification tube which is then attached to an aluminum bracket 
attached to a vertically mounted servo stage.  The vertical servo stage was then mounted upon another servo 
stage at the bottom for left and right movement. 

 

2.2.2 Testing software 
 
 
 A screenshot of the testing software GUI can be seen in figure 25.  This custom Labview 

software walks the user through three different stages to complete a single test.  The first stage 

involves the initialization of testing parameters.  The algorithms used for determining and 

classifying marker positions requires that the user stipulate towards which direction the tissue is 

being flexed.  The tissue can either be flexed upwards, so that it is concave down, or flexed 

downwards so that it is concave up.  Repeatability experiments were performed to confirm that 
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bending the tissue upwards or downwards did not affect the results obtained.  The condition for 

ending the test must also be provided by the user.  Tests are terminated when the two posts reach 

a predetermined distance from each other or when the tissue attains a predetermined curvature.  

All of the tests performed in this study were done so under curvature control so that tissue 

properties could be determined as a function of the curvature of the tissue.  The testing stage can 

be adjusted at this point to ensure that no force is being exerted upon the bending bar by the 

tissue and vice versa.  This is accomplished by using a thin steel bar that can be dropped in and 

out of the testing bath by using a high-accuracy swivel mount.  The placement of the steel bar is 

matched with that of the unloaded bending bar in the macroscopic image.  When the tissue is 

attached to the bending bar, the displacement of the bar changes from its unloaded state.  The 

testing stage is manually adjusted via the software so that the bending bar will again coincide 

with the drop-down calibration bar.  This ensures that the tissue is at an unloaded state. 
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Figure 25, A sample screen shot of the testing software GUI developed to control and orchestrate the different 
components of the testing device. 

 

 The second step of testing involves the setup of the video in the macroscopic and 

microscopic cameras.  A live video feed is displayed from the CMOS camera and control of the 

two positioning motors is surrendered to the user.  This allows for the precise positioning of the 
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high magnification lens at the area of interest.  The exposure length of the CMOS can be 

adjusted through the software.  The high magnification lens possesses a manual iris adjustment 

for depth of field and lighting corrections.  It is also at this stage that an initial image of the 

microscopic side of the tissue is taken.  This image serves as the reference state for all of the 

markers that will be subsequently identified.  Imaging thresholds can be adjusted at this point to 

obtain an appropriate image for the macroscopic camera.  The markers placed upon the tissue 

must be isolated from the background.  This is accomplished by keeping the tissue bath white.  

The tissue is naturally white as well and whatever components that are present and that are not 

white are masked away from the image.  The thresholding isolates all of the black objects in the 

image so that Labview subroutines can then identify them.  It is these identified objects that are 

then passed to the marker identification and sorting routines. 

 The third stage of testing is the part of the test program where the test is performed.  The 

initial curvature of the tissue is stored by the program into memory so that the difference in 

curvature throughout the test can be properly computed.  The force exerted by the bending bar 

upon the tissue is determined by the location of the second post marker.  This marker is 

physically attached to the bending bar and its translation in the x direction can be detected by the 

testing software.  The position of the bending bar marker is recorded and initialized to zero so 

that subsequent movement of the marker away from the other marker will be recorded as a 

displacement.  As previously discussed, each individual bending bar is pre-calibrated so that it 

will exert a force proportional to its displacement.  Thus, the displacement detected by the 

software can be interpreted into a proportional load.  Initiation of testing transfers control to the 

software and the testing regimen.  The testing stage stepper motor begins to move in increments 

towards the bending bar.  At the pause between every increment, the software records a 
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thresholded image of the markers detected by the macroscopic camera.  Measurements of force, 

curvature, and marker positions are all obtained with every repetition of the testing loop.  These 

values are saved to a file for future analysis.  When the tissue reaches the pre-determined test 

termination condition (ie the pre-determined distance between the two posts or the set curvature 

of the tissue) than the software ceases movement of the testing stage and displays the video 

image from the microscopic side of the tissue.  The position of the high magnification lens may 

be adjusted to ensure that the entire area of interest is captured.  Adjustments to the focus may 

then be necessary to maintain the same distance between the tissue specimen and the high 

magnification lens.  Images are captured by the user and referred to as the deformed state for 

later analysis.  When the deformed images have been stored, the program is allowed to terminate 

whereupon it will return the high magnification lens and the testing stage to their initial 

positions.  

 

2.2.3 Load measurement 
 
 
 The measurement of the miniscule forces encountered with native tissue was 

accomplished in an accurate and dependable manner by adapting the bending bar method used in 

three-point bending.  The bending bars were made of 316V stainless steel in varying diameters.  

The diameter of the bar determined the amount of force produced by the bar as a function of the 

bar’s displacement.  This method of measuring force was convenient because it avoided the 

necessity of using expensive load cells that had to be constantly calibrated and maintained.  The 

bending bars were also repeatedly accurate as determined by calibrations performed before and 

after testing regimens.  The tissue was attached to the ends of the bending bars by sliding the 
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sleeve attached to the tissue over a post attached to the end of the bending bar.  The steel wire 

used to make the posts was chosen to be significantly thicker than that of the bending bar to 

ensure any deformations in the bar would not occur in the post assembly.  These posts were 

attached to the bending bar by crimping them using another length of steel tubing.  Calibrations 

of the bending bars were performed with the entire post assembly attached to ensure accuracy. 

 

2.2.4 Repeatability, sensitivity, and accuracy 
 
 
 The difficulty in performing accuracy studies was encountered in locating reference 

materials possessing similar traits as the native leaflet material.  The novelty of exploring 

material behavior and characteristics using flexure was in itself a difficulty because of the lack of 

any materials whose bending properties had been fully established.  To this researcher’s 

knowledge, there were no materials available that possessed a similar tensile strength and 

extensibility that were not themselves biological materials as well.  In addition the availability of 

such a material possessing significantly different layer properties was also non-existent.  Thus, a 

silicone rubber was obtained that possessed a relatively low modulus as well as dimensions 

approximating those of the native aortic leaflet. 

 The load displacement relationship of the bending bars was pre-determined using a 

microscale and a moveable platform that had been calibrated to a micrometer.  Figure 26 

illustrates the setup used to calibrate the bending bars.  The force the bar exerted upon the scale 

was determined at zero displacement of the bar.  The bar was then displaced along regular 

intervals and force measurements were taken.  The load displacement response of the bars was 

linear so a linear equation was fit (Figure 27).  Thus, for any given amount of bar displacement, 
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the load could be accurately determined.  The calibration for each bending bar was determined 

before and after batteries of tests to ensure that repeated deformations of the bar did not influence 

the load-displacement relationship and alter data. 

 

B 
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Figure 26, Picture of the setup used to calibrate the bending bars (A) used for load measurement.  The 
deflection of the bending bar was increased by adjusting the caliper (B) attached to the stage. 
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Figure 27, Example plot demonstrating the linear trends determined from calibrating bending bar 
displacement with force exerted upon them.  Calibrations were made at three different time points during 
which tests were being run on the flexural device.  

 

 Studies were performed to ensure the data obtained from the testing device was accurate 

and repeatable.  To do so, the translucent silicone material was tested with the bending device 

and a tensile testing device to compare and confirm the accurate prediction of the effective 

stiffness.  Strips of the silicone rubber with a thickness of approximately 790 microns were tested 

using a MTS Tytron 250 Mechanical Test System.  The silicone sheets were prepared to the 

same dimensions used for the valve studies and markered identically.  Repeatability was 

determined by flexing silicone specimens in different bending directions (specimen flexed 

upwards and downwards for each side of the specimen) forty times and averaging the moduli 
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obtained.  This ensured that results obtained from one bend test to another were identical and that 

mounting and unmounting the samples from the bending device did not influence its accuracy. 

 
 
 
 

2.3 TESTING METHODS 
 
 
 Aortic and pulmonary valve leaflet specimens used for bend testing were obtained from 

porcine hearts harvested at a local abattoir.  Within five hours of acquiring the hearts, the aortic 

and pulmonary valves were separated from the heart and stored separately in PBS: 8.08 g NaCl, 

0.56 g KH2PO4, and 2.42 g Na2HPO4 in 1 L H2O.  The valves were then placed into a freezer at 

30 C.  Within a week of freezing the valves, they were removed from the freezer and allowed to 

thaw to room temperature before the leaflets were dissected from the valve and tested in the 

bending device.  The leaflets were removed from the root by using a scalpel to cut at the edges of 

the leaflet where they met the root.  A very small graphite marker (approximately 0.5 mm in 

diameter) was glued with a very small amount of cyanoacrylate on the ventricularis so that the 

two different sides could be distinguished after the leaflet had been removed.  The leaflet was 

then cut into a rectangular testing strip measuring approximately 14 mm in circumferential 

length and 3 mm in radial length measured using a sliding caliper.  The location of the cuts 

placed the specimen strip below the nodulus of the leaflet and circumferentially oriented.  This 

was performed by pressing a fresh razor blade into the tissue and cutting along the side of blade 

facing the tissue with a scalpel.  Thickness measurements were then taken of the leaflet specimen 

using a rotating dial caliper at three different locations along the length of the tissue.  The 

thickness was recorded immediately upon releasing the caliper upon the tissue and then three 

62 



seconds later to compensate for the softness of the tissue.  A small amount of cyanoacrylate was 

then used to attach a steel sleeve at each of the shorter ends of the tissue.  This was done by 

laying the tissue flat upon the cutting surface and applying a droplet of cyanoacrylate to the edge.  

The steel sleeve was then pushed up against the tissue and allowed to affix to the tissue.  This 

was done to both ends of the tissue.  While attaching the steel sleeves, the tissue was kept 

hydrated by applying drops of PBS to the center of the tissue, but the ends of the tissue were kept 

dry so that the posts would adhere securely. 
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Figure 28, Schematic showing the orientation of the leaflet within the aortic root along with the difference 
between the AC and WC bending directions for the leaflet.  Note that the natural curvature of the leaflet of 
interest is in the circumferential direction because all tissue samples were circumferential in orientation. 
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 Five graphite markers were then attached to the edge of the tissue closest to the free edge 

of the leaflet by using a needle and small droplets of cyanoacrylate (Fig. 29).  The tissue was 

then turned over so that the microscopic side was exposed.  Markers for the transmural strain 

tracking were then applied.  This was accomplished by first dabbing the side of the tissue dry.  

Using house air, an air brush was used to spray waterproof India ink onto the side of the tissue.  

To obtain a good coverage of markers across the area of interest, the tissue was sprayed for at 

least two minutes.  The other portions of the tissue were masked off to prevent covering the 

entire tissue in black ink that would have interfered with the marker tracking software.  

Afterwards, the tissue was allowed to dry for another minute before it was immersed in the PBS 

solution.  The tissue sample was then immediately transferred to the specimen bath in the testing 

device.  The tissue was then mounted within the testing bath by sliding the sleeves attached to 

the tissue over the post in the specimen bath and the post at the end of the bending bar.  The 

specimen bath was filled with the same PBS solution to ensure the neutral buoyancy of the 

specimen in the bath.  
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Figure 29, Graphite markers used by the macro-imaging system are shown on the edge of the leaflet specimen 
closer to the attachment edge.  The airbrushed transmural strain markers used by the micro-imaging system 
are shown on the edge of the leaflet specimen closest to the free edge of the leaflet.  The orientation of the X1 
and X2 coordinate system specifies the X1 axis to be coincident with the circumferential direction of the 
leaflet and the X2 axis to reflect the thickness of the leaflet. 

 
 Each leaflet was tested for at least five repetitions in the against curvature (AC) and with 

curvature (WC) directions, illustrated in figure 26.  The AC or WC directions are defined with 

respect to the natural curvature of the leaflets.  In vivo, the leaflet is oriented with the 

ventricularis facing downwards and the fibrosa facing upwards while curving downwards 

towards the ventricle.  The first three repetitions in each direction were performed without 

preconditioning.  To precondition the tissue, it was flexed back and forth to its maximum 

curvature ten times.  Afterwards, the two subsequent trials were performed and their results 

compared to the previous three results to determine any change in properties with conditioning.  

To determine any differences between performing tests in the AC direction first to performing 

tests in the WC direction first, both sets of tests were performed.  Some AC or WC directions 

were repeated at the end of the test set to determine if the previously obtained results could be 
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repeated.  Any differences that may have occurred from the dissimilar protocols would have 

manifested in some change of properties.  Pilot studies indicated no significant differences 

between the different testing protocols and it was determined that the order of testing did not 

have an impact upon the results.  The testing software outputted a text file recording all of the 

data that was obtained during the test including, for every point tracked on the tissue, the 

coordinates, the change in curvature, the moment applied, the vertical displacement, and the 

force being exerted by the tissue upon the bending bar. 
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2.4 ANALYTICAL METHODS 
 
 

2.4.1 Flexure analysis 
 
 
 The data obtained by the device and used for the flexural analysis included the positions 

of the macroscopic markers and the positions of the two posts.  All measurements required to 

determine the curvature and stiffness of the tissue were obtained from these marker coordinates 

which were recorded to disk for analysis.  Also, in remaining faithful to the desire to automate 

testing, all of the measurements from the marker coordinates were performed during the 

experiment and displayed to ensure variables remained within nominal operating boundaries. 

 The positions of the markers affixed to the tissue are fitted to a quadratic equation of the 

form of equation 3 using a general least squares method.  This expression was found to be the 

most appropriate because of its ability to capture the general shape of the tissue without being 

overly complicated.  From this equation, the curvature is determined using equation 4.  The 

coefficients for the fitted quadratic along with the curvature are determined in real-time so that 

the curvature measurements could be used by the program for control purposes.  Matlab math 

functions are used to perform these operations within the Labview program. 
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 The force applied to the tissue specimens is measured using pre-calibrated bending bars 

discussed earlier under load measurement.  The position of the bending bar (post two) is 

recorded by the program at execution and used as a reference for the displacement of the bar 

during the experiment.  The displacement of the bar along with its pre-determined calibration 

curve is then used to determine the amount of load being generated at the end of the leaflet 

specimen.  The moment is calculated using this applied load along with the geometry of the 

leaflet specimen as determined by the markers tracked.  Measurements are taken at the center of 

the specimen where a marker had been specifically placed and the moment equation was derived 

from the free body diagram of the tissue specimen (Eq. 5 and Fig. 30). 

 

 
Figure 30, Free body diagram of the idealized tissue specimen during testing. 

 

M Py=  (5) 

 

 Using the Bernoulli-Euler moment-curvature relation discussed earlier, equation 6, a 

correlation is made between the difference between the initial curvature, κ0, and the current 

curvature, κ, and the effective stiffness, Eeff, and the second moment of inertia of the specimen, I.  

The second moment of inertia of the specimen is determined using equation 7 and the thickness 
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of the specimen, t, and the width of the specimen, W.  The effective stiffness of the leaflet 

specimen as a whole can be determined by rearranging equation 6 to obtain Eeff.  Alternatively, a 

flexural rigidity can be determined as well by rearranging equation 6 to obtain EeffI.  This 

flexural rigidity is advantageous in some circumstances because it does not rely upon the 

dimension measurements required to obtain the moment of inertia.  The flexural rigidity is also 

found as the slope of a moment curvature plot where the moment applied to the specimen is 

plotted against the change in curvature of the specimen (Fig. 30). 

 

eff 0M E I( )= κ − κ  (6) 

31I t
12

= W  (7) 

 

2.4.2 Transmural strain determination 
 
 
 Data extracted from the transmural images taken from the experiment consist of the 

coordinates of the markers in the reference and deformed positions.  These points are manually 

matched from the set of before and after images through the use of a facilitating Labview 

program that identifies and isolates detected markers from the background of the tissue.  These 

coordinates are processed further by a Matlab script (see Appendix B.)  Post-processing of these 

images was necessary because of the number of markers sought as well as the variations in 

image quality that accompanied variations in specimens.  Unfortunately, automation was 

impossible for matching markers between the reference and deformed images because of the 

complexity and unpredictable nature of the marker patterns.  Otherwise, identification of the 
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markers was accomplished by the program using some of the same subroutines used to identify 

the markers for the moment-curvature analysis. 

 The displacement field is determined from the reference points, Xi, and the deformed 

points, xi, according to equations 8. 

 

1 1

2 2

u = X - x
v = X - x  (8) 

 

 The u and v displacements each describe a surface when plotted as a function of the 

reference positions, X1 and X2.  The X1 axis is defined to coincide with the Cartesian x-axis and 

the X2 axis is defined to coincide with the Cartesian y-axis.  On the tissue, the X1 is found to run 

along the length of the tissue and the X2 axis is found to run along the thickness of the tissue as 

seen in figure XX.  The surface fitted through the u and v displacements took the form of 

equations XX.   
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u = a +a X +a X +a X X +a X +a X
v = b +b X +b X +b X X +b X +b X2

 (9) 

 

 For every marker processed, a u and v displacement was calculated and a set of fit 

parameters were fit for each.  Higher and lower order equations were used with lesser success 

because of the propensity of those equations to be either hyposensitive or hypersensitive to 

perturbations in the surface.  By fitting an equation of moderate sensitivity, r2≈0.9, the general 

form of the surface is captured by the equations while local perturbations of the surface caused 

by inherent errors in image capture and processing are averaged out.  A higher r2 value would 
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yield a rough surface passing through points above and below the smooth surface fit by the lower 

r2 value resulting in local inaccuracies when differentiated.  The chosen form of the fit equations 

also allows for their derivatives to be taken with respect to X1 and X2, allowing for the 

determination of the deformation gradient, F, for each marker coordinate according to the 

following relationship. 
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 The deformation gradient can then be decomposed into its stretch and rotation tensors, U 

and R, respectively.  The polar decomposition of the deformation tensor removes rigid body 

motion effects into the rotation tensor, leaving only the stretch deformation information in the 

stretch tensor.  The rigid body rotation information in R was calculated to determine the degree 

of rotation experienced by the tissue during flexure.  Higher levels of rigid body rotation were 

determined to be coincident with measurements taken away from the center of the tissue. 

 

F RU=  (11) 

2 TU F= F  (12) 

1R FU−=  (13) 

2 2
1 11U UΛ = + 12  (14) 

2 2
2 22U UΛ = + 12  (15) 
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 The U stretch tensor reveals the amount of deformation in the X1 and X2 directions, 

respectively, via its U11 and U22 components.  When no deformation occurs, the stretch tensor is 

identical to the identity tensor.  When the U11 or U22 components are greater than one, than 

stretch in those directions occur.  When either component is below unity than a contraction has 

occurred in that direction.  Strains in the X1 direction coincide with a change in the length of the 

tissue, either a contraction or an extension.  Strains in the X2 direction coincide with a change in 

the thickness of the tissue (Fig. XX).  The Λ1 and Λ2 quantities were determined from U11, U22, 

and U12 so that the stretch information in U11 and U22 could be combined with the shearing 

information in U12 to provide a more accurate portrayal of the tissues behavior.  The distribution 

of these quantities throughout the tissue can be related directly to classical bending theory in 

interpreting the behavior of the tissue during the experiment. 
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2.5 BIAXIAL MECHANICAL TESTING 
 
 

2.5.1 Theoretical basis 
 
 
 Conventional means of testing materials exploit their isotropic nature and test them 

uniaxially.  Biological materials are inherently anisotropic and so new testing methods have been 

developed such as biaxial testing.  Biaxial testing has been used extensively in the literature [30, 

31] to test soft tissues.  The dimensions of the test specimens length-wise and width-wise are 

much greater than the thickness of the specimen.  The specimens are mounted like a trampoline 

using several metal hooks as point attachments to the tissue.  The center region of the tissue is 

where all the strain measurements are taken optically to avoid the confounding effects of the 

point loads on the edges. 

 The positions of the markers are captured by the testing software so that they may be 

used for the determination of the deformation gradient and subsequent quantities.  Four markers 

are tracked on the tissue with each marker being located at each of the four vertices of a square.  

The reference positions of the markers are referred to as X while the deformed locations of the 

markers are referred to as x.  The actual locations of the markers, however, do not always fall 

where they should for a perfect square.  Thus, the (x, y) locations of the markers are mapped to a 

finite element coordinate system (r, s) using the following interpolation functions: 

 

( ) ( )
=

=∑
m

n n
n 1

r,s f r,su u  (16) 
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Here, u is defined as the displacements calculated from the reference and deformed marker 

positions, u=x-X.  The shape functions, fn, are used to relate the marker positions to their 

corresponding nodes in the finite element, namely marker positions in the (x, y) coordinate 

system are transformed to the location in the (r, s) coordinate system.  Thus, the u displacements 

are found in the (r, s) coordinate system from the (x, y) positions and can then be used to 

determine the derivatives of u with respect to the (r, s) directions. 

 

m m
n n

n n
n 1 n 1

f f
r r s s= =

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂∑ ∑u uu u  (17) 

 

The derivatives of u in the (r, s) system are then translated back into the (x, y) system using the 

following relationship: 

 

1 2

1

1 2

2

u u
xr r r

u u
s s s x
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⎢ ⎥⎢ ⎥ ⎢ ⎥ ∂∂ ∂ ∂ ⎢ ⎥=⎢ ⎥ ⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (18) 

 

The deformation gradient, F, then follows from the following relationship: 

 

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ λ κ⎡ ⎤⎡ ⎤⎢ ⎥= + = + = ⎢ ⎥⎢ ⎥ κ λ⎢ ⎥∂ ∂ ⎣ ⎦ ⎣ ⎦
⎢ ⎥∂ ∂⎣ ⎦

F H I

1 1

1 2 1 1

2 22 2

1 2

u u
X X 1 0
u u 0 1
X X

 (19) 
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With F, the right Cauchy-Green deformation tensor, C, can then be computed using equation 20.  

Through polar decomposition, F can be separated into two tensors, R, the rotation tensor, and U, 

the stretch tensor.  The deformation gradient tensor includes information about the entire 

deformation, including rigid body rotation.  By separating F into the rotation and stretch tensor, 

the rigid body rotation information is removed and only the stretch information remains.  The 

right Cauchy-Green deformation tensor can also be obtained from the stretch tensor using 

equation 20. 

 

2

T

UC

FFC

=

=
 (20) 

 

From the right Cauchy-Green deformation tensor, the Lagrangian strain tensor, E, can be 

obtained using the following: 

 

)( IC
2
1E −=  (21) 

 

The Lagrangian strain tensor is a commonly used method of quantifying strain.  Lagrangian 

stress, T, can be determined from the dimensions of the specimen and the load applied to each of 

its sides. 

 

1 2
11 22

2 1

P PT , T
hL hL

= =  (22) 
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The load in each direction is P, the thickness of the specimen is h, and the length along each side 

of the specimen is taken to be L.  Thickness measurements of soft tissues are notoriously 

difficult to take because of their deformability when subjected to conventional measurement 

techniques.  Thus, in lieu of conventional stress measurements where load is normalized by 

cross-sectional area, the stress measured for these biaxial tests is membrane stress where the load 

is normalized by only the length of the tissue it is measured along.  Instead of units of N/m2, 

membrane stress is measured in units of N/m.  For ease in modeling the soft tissue response, the 

Lagrangian stress is converted to the second Piola-Kirchhoff stress tensor, S. 

 

1−=S T F  (23) 

 

 The maximum stretches in the longitudinal and circumferential directions for all stretch 

ratio protocols were normalized against the equibiaxial protocol to determine the percent change 

in maximum stretches.  As the biaxial load was changed from equibiaxial (TCC:TRR=1:1) to non-

equibiaxial conditions (e.g. TC:TR=1:0.17), the degree of axial mechanical coupling was assessed 

from the percent change in peak stretch ratio along each axis.  These values were then used to 

create axial coupling plots and the results between the aortic and pulmonary leaflets were 

compared [64].  For example, as tension was reduced along the radial axis, (with circumferential 

tension unchanged), we measured the contraction in the radial direction and the corresponding 

stretch in the circumferential direction.  Thus, axial-coupling was determined as the percent 

change in circumferential or radial stretch from the equibiaxial state to the non-equibiaxial state: 

((Uxx-Ueq)/Ueq)*100%.  These axial coupling plots illustrate some of the subtle structural 

relationships inherent in the tissue that binds the behavior of the two primary directions of the 
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tissue together.  If coupling were to absent in the specimen being tested, the response in either 

the circumferential or radial directions would be wholly independent of the other.  Because of the 

intricate structure of the leaflet and the organization of collagen fibers along the circumferential 

direction, the leaflet is very responsive to coupling.  With radially applied tension the fibers in 

the leaflet separate and rotate away from the circumferential axis towards the radial axis. This 

resulted in extension in the radial direction and contraction in the circumferential direction.  By 

varying the tension ratios along the circumferential and radial directions, an idea of the 

magnitude of axial-coupling can be determined.  Membrane tension versus stretch plots were 

generated for the circumferential and radial directions using Tij and Uij, respectively to determine 

the response of the tissue with increasing load.  Comparisons can be made between the two 

tissues and their axial coupling plots to determine the magnitude of coupling between the two 

directions.  Significant differences in axial coupling would be related to some significant 

difference between  the structures and organization of collagen fibers between the two leaflets. 

 

2.5.2 Device description 
 
 
 The biaxial testing device consists of four computer controlled stepper motors arranged 

around a specimen bath (Fig. 31).  The bath consists of one cross shaped container recessed 

within another.  The exterior cross-shaped bath is used to circulate a separate solution to control 

the temperature of the solution within the inner cross for temperature dependent testing.  One 

stepper motor is attached to every arm of the cross.  Above the center of the cross is positioned a 

camera attached to a video capture card in the computer.  The movement of the stepper motors is 

controlled by the four markers tracked from the images of the specimen captured by the camera.  
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Attached to every stepper motor is a carriage that suspends a pair of pulleys over the edge of the 

specimen bath.  The pulleys are oriented so that sutures which have been hooked into the edges 

of the tissue specimen can be looped over the pulley.  The suture lines are inelastic and of equal 

length so the tissue specimen can be oriented properly at the center of the cross. 

 

 

Figure 31, Schematic of biaxial testing device.  The specimen has four black markers that are tracked by a 
camera system suspended over the device (outwards from the page).  The specimen is held in place by hooks 
and suture lines which are attached to pulleys which translate the forces exerted on the sutures to the load 
cells.  The stepper motors activate in unison to increase or decrease tension upon the circumferential and 
longitudinal axes. 

 

78 



2.5.3 Testing methods 
 
 
 Biaxial experiments were performed following protocols and methods previously 

established [30].  Briefly, tissue specimens were cut from the cusps of native porcine aortic and 

pulmonary valve leaflets to be squares as closely as possible.  On average, the aortic samples 

measured 10.1 mm in width and 9 mm in length using a slide caliper.  Pulmonary samples 

measured 10 mm in width and 9 mm in length.  A very small graphite marker was glued to the 

upper right of the square specimens so that the circumferential and radial directions could be 

retained and so the two different sides of the specimen could be differentiated.  Thickness 

measurements were performed using a rotating thickness caliper at the four corners of the 

specimen and averaged to yield an average thickness of 0.522 mm for aortic leaflets and 0.254 

mm for pulmonary leaflets.  Four small graphite markers making a square were glued using a 

minimal amount of cyanoacrylate to the center of the specimen below the nodulus of Arantii.  

The tissue specimen was then placed into the biaxial device so that the positions of the markers 

could be determined before sutures were placed into the tissue.  This state was designated as the 

free-floating reference state.  Suture lines with hooks on either end were then attached to the 

tissue specimen.  Two suture lines were attached to every side of the specimen.  The marker 

positions were captured again and designated as the free-floating sutured state.  The geometry of 

the tissue specimen and the placement of the markers and the hooks and lines can be seen in 

figure 32.  The suture lines were then fitted over the pairs of pulleys attached to the stepper 

motor carriages.  A load of approximately 0.5 g was then applied to both axes of the specimen.  

Another set of marker positions were then taken and designated as the sutured pre-tensioned 

state. 
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Figure 32, Photograph of a specimen attached to hooks and suture lines and suspended within the testing 
bath. 

 

 The first test protocol performed was a load controlled equi-biaxial stretch.  Aortic valve 

tissues were loaded to 60 Nm-1 and pulmonary valve tissues were loaded to 30 Nm-1.  The ratio 

of the tensions upon each side of the tissue was kept 1:1.  Marker positions were recorded after 

this first test run to obtain the post-preconditioned, pre-tensioned state.  This state was used as 

the reference state for the following analyses.  Six other protocols were performed upon the test 

specimen before a final equi-biaxial test was performed.  The protocols that were performed 

possessed the following tension ratios of 0.5:1, 1:0.5, 0.25:1, 1:0.25, 0.1:1, 1:0.1 (Fig 33).  The 

variation of tensions between the longitudinal and circumferential directions reveals what 
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mechanical differences the tissue may possess between the axes along with any coupling that 

may occur. 
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Figure 33, Representative plot of the tensions in the longitudinal and circumferential directions for the 
different ratios used (1:1, 0.5:1, 1:0.5, 0.25:1, 1:0.25, 0.1:1, 1:0.1) for aortic valve. 
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3.0 RESULTS 
 
 
 
 

3.1 FLEXURE RESULTS 
 
 
 A total of 18 aortic and 18 pulmonary leaflet specimens were tested.  The differences in 

bending stiffnesses between the aortic and pulmonary valve are illustrated in the plot in figure 

34.  Figure 35 shows the typical results obtained from a bending test, showing the data points 

and fitted trend lines obtained in the AC and WC directions for one tissue sample.  A linear trend 

line was fitted to the data points to determine the slope and EI.  Results from the tests performed 

are summarized in figures 36 and 37.  The effective stiffness of the tissue, E, is obtained from the 

EI flexural rigidity values by dividing by I, the second moment of the area determined by the 

tissue geometry.  The value of I, determined from equation 2, is highly dependent upon the 

measured thickness of the sample because of the 1/t3 term.  As mentioned above, the protocol for 

determining the thickness of the tissue specimen involved taking the initial caliper reading and 

the caliper reading three seconds later.  This method of measurement sought to normalize for the 

compressibility of the tissue under loads.  However, because of the nature of the tissue, thickness 

measurements and quantities dependent upon them must be considered with some caution. 
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Figure 34, A representative plot of the moment-curvature bending response of a native aortic valve leaflet in 
the AC and WC directions that has been flexed to a change of curvature of 0.2 in either direction. 
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Figure 35, Representative plot of moment-curvature relationship for aortic valve showing fitted linear trend 
line.  The slope of the trend line represents the quantity EI.  Notice the greater degree of linearity in the AC 
direction in contrast to the delayed onset of linearity in the WC direction. 

 
 
 The averaged flexural rigidity  (EI) for aortic and pulmonary valve leaflets are 

summarized by figure 36.  The averaged effective modulus (E) for aortic and pulmonary valve 

leaflets are summarized by figure 37.  Error bars represent the standard error of the mean for 

each set of 18 tests. 
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Figure 36, The flexural rigidity was determined from the slope of moment-curvature plots and is a product of 
the effective modulus, Eeff, and the second moment of the area, I.  Error bars are SEM.  There were no 
statistically significant differences between the AC and WC values for the PAV and PPV. 
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Figure 37, The effective modulus of the tissue was determined in the AC and WC directions for each tissue 
sample.  The effective modulus was obtained from the slope of the moment-curvature plot after having 
divided out the second moment of the area (I.)  Error bars are SEM.  There was a statistically significant 
difference in the AC bending direction between the PAV and PPV (p=0.007) and in the WC bending direction 
(p=0.004).  There were no statistically significant differences between the AC and WC bending directions for 
each valve type. 

 
The bending response of the aortic tissue in the AC direction was relatively linear (Fig. 38) while 

the response in the WC direction was linear at slightly higher changes in curvature.  On average, 

bending in the AC direction was determined to be negligibly different from bending in the WC 

direction (n=17).  In the AC direction, the flexural rigidity was 1.06±0.08 (Fig. 39) with an 

effective stiffness of 150±16 kPa (Fig. 40).  In the WC direction, the flexural rigidity was 

1.08±0.17 with an effective stiffness of 144±13 kPa.  Similar results were obtained for the 

pulmonary tissue where the flexural rigidity and effective stiffness in the AC direction were 

1.04±0.12 and 235±26, respectively.  In the WC direction the flexural rigidity was 1.09±0.19 and 

the effective stiffness was 228±25. 
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3.2 TRANSMURAL STRAIN RESULTS 
 
 
 Fourteen porcine aortic valve specimens and eleven porcine pulmonary valve specimens 

were tested and images captured for transmural analysis.  Specimens were flexed in the AC and 

WC directions at three curvature increments.  The curvature that was measured was the change 

in curvature from the tissues initial curvature.  This was accomplished by the testing program by 

taking the curvature of the tissue before testing and using that as a baseline for all subsequent 

curvature measurements.  Images were taken of the tissue at its reference state for everyone of 

the three curvature increments tested for.  Tissue was flexed to a change in curvature of 0.1, 0.2, 

and 0.3.  These values were chosen to encompass previously attained curvatures in flexure 

between 0-0.2 [65] as well as larger ranges of curvature in the 0.2-0.3 region suggested by the 

literature [66].  All of the tissue specimens reached a change in curvature of 0.1, only some to 

0.2, and even fewer to a change of 0.3.  For each level of curvature and each direction of 

bending, the location of the neutral axis was compared along with the maximum and minimum 

stretches in the X1 and X2 directions. 

 To characterize the overall layer behavior of the tissue, the location of the neutral plane 

was determined by examining Λ1 against the thickness of the tissue (Figs. 39 & 48).  Shearing 

within the leaflets was determined to be sufficiently negligible enough so that Λ1 and Λ2 were 

approximately equal to U11 and U22.  The values and locations of the maximum and minimum Λ1 

stretches were determined and compared between the WC and AC directions to find the relative 

deformability of the layers in compression and tension.  A composite plot of Λ1 versus 

normalized thickness was generated by averaging the Λ1 values at every 0.1 increment of 

normalized thickness for all specimens (Figs. 41, 42 & 50, 51).  Λ1 and Λ2 maximum and 
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minimum values were determined at all three levels of curvature (Figs. 39, 40, 43 & 48, 49, 52) 

and a composite Λ2 versus normalized thickness plot was also generated (Figs. 44, 45 & 51, 53).  

For appropriate pulmonary valve graphs, aortic valve results were also plotted to facilitate the 

illustration of differences between the two.  Maximum and minimum values of the shear angle α 

were determined for the AC and WC directions and averaged (Fig. 46 & 55). 
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Figure 38, These results were obtained from transmural bending tests performed on native aortic valve tissue.  
The tissue was flexed to three different changes of curvature, 0.1, 0.2, and 0.3.  The location of the neutral 
axis through the tissue was normalized against the thickness and tabulated with other results.  Error bars are 
SEM. 
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Figure 39, These results show the change in the aortic valve maximum stretch in the circumferential direction 
along the thickness of the tissue at three different levels of curvature.  Error bars are SEM.  There was a 
statistically significant difference between the AC and WC directions at 0.2 change in curvature (p=0.041). 
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Figure 40, These results show the change in the minimum aortic valve U11 stretch in the circumferential 
direction along the thickness of the tissue at three different levels of curvature.  Error bars are SEM.  There 
were no statistically significant differences between the AC and WC bending directions. 
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Figure 41, The regression lines from AC aortic valve samples at three curvatures were averaged together to 
create composite regressions lines representing the values of Λ1 plotted against the normalized thickness of 
the tissue.  Error bars are SEM.  The differences in curvature were determined to not be statistically different 
from each other. 
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Figure 42, The regression lines from WC aortic valve samples at three curvatures were averaged together to 
create composite regressions lines representing the values of Λ1 plotted against the normalized thickness of 
the tissue.  Error bars are SEM.  The differences in curvature were determined to not be statistically different 
from each other. 
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Figure 43, The maximum and minimum changes in aortic valve thickness, U22, are plotted for AC and WC 
samples at three different levels of curvature.  Error bars are presented as SEM.  Differences between the AC 
and WC samples were determined to be not statistically significant. 
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Figure 44, The regression lines from AC aortic valve samples at three curvatures were averaged together to 
create composite regressions lines representing the values of Λ2 plotted against the normalized thickness of 
the tissue.  Error bars are presented as SEM. 
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Figure 45, The regression lines from WC aortic valve samples at three curvatures were averaged together to 
create composite regressions lines representing the values of Λ2 plotted against the normalized thickness of 
the tissue.  Error bars are presented as SEM. 
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Figure 46, These results show the change in the aortic valve shear angle α along the thickness of the tissue at 
three different levels of curvature.  Error bars are presented as SEM.  There was a statistically significant 
difference (p=0.033) between the minimum AC α value and the minimum WC α value. 
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Table 2 - Neutral Axis Location values at three different levels of curvature showing the progression of the 
neutral axis towards the fibrosa in the aortic valve.  Neutral axis values are presented as normalized thickness 
with the ventricularis at 0 and the fibrosa at 1.  Error is reported as SEM.  There were no statistically 
significant differences. 

  Against Curvature (AC) With Curvature (WC)
0.1 0.61±0.09 0.55±0.10 
0.2 0.59±0.10 0.56±0.10 ∆κ

0.3 0.60±0.07 0.56±0.03 

 

Table 3 - Tabulated aortic valve U11 values showing maximum and minimum U11 values at three different 
levels of curvature for AC and WC directions.  Tensile and compressive strains increase with increasing 
flexure in both bending directions.  Error is reported as SEM.  There were no statistically significant 
differences. 

Against Curvature (AC) With Curvature (WC)
  Maximum Minimum Maximum Minimum 

0.1 1.03±0.02 0.96±0.02 1.05±0.03 0.96±0.03 
0.2 1.05±0.03 0.94±0.03 1.10±0.07 0.94±0.03 ∆κ

0.3 1.06±0.05 0.93±0.05 1.10±0.08 0.92±0.05 

 

Table 4 – Aortic valve U22 values at three levels of curvature showing an increase in the maximum U22 in the 
AC direction with increasing flexure and a decrease in the minimum U22 in the WC direction with increasing 
flexure.  Error is reported as SEM.  There were no statistically significant differences. 

Against Curvature (AC) With Curvature (WC)
  Maximum Minimum Maximum Minimum 

0.1 1.08±0.09 0.85±0.13 1.20±0.15 0.93±0.14 
0.2 1.10±0.08 0.90±0.08 1.11±0.16 0.88±0.08 ∆κ

0.3 1.10±0.03 0.94±0.03 1.20±0.13 0.86±0.17 

 

Table 5 – Aortic valve shear angle α values in degrees at three levels of curvature measured in degrees 
showing a gradual increase in the shear angle with increasing flexure.  Error is reported as SEM.  There was 
a statistically significant difference (p=0.033) between the minimum AC α value and the minimum WC α 
value. 

Against Curvature (AC) With Curvature (WC)
  Maximum Minimum Maximum Minimum 

0.1 4.15±5.72 -5.87±7.85 4.96±3.08 -6.50±9.61 
0.2 8.87±8.94 -3.60±4.82 8.55±4.64 -11.47±9.24 ∆κ

0.3 1.20±1.77 -4.25±2.20 7.32±5.28 -11.03±13.90 
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Figure 47, These results were obtained from transmural bending tests performed on native pulmonary valve 
tissue.  The tissue was flexed to three different changes of curvature, 0.1, 0.2, and 0.3.  The location of the 
neutral axis through the tissue was normalized against the thickness and tabulated with other results.  Error 
bars are SEM.  There was a statistically significant difference (p=0.030) between the bending directions at 0.1 
change in curvature. 
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Figure 48, These results show the change in the maximum pulmonary valve stretch in the circumferential 
direction along the thickness of the tissue at three different levels of curvature.  Error bars are SEM.  There 
were no statistically significant differences. 
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Figure 49, These results show the change in the minimum pulmonary valve U11 stretch in the circumferential 
direction along the thickness of the tissue at three different levels of curvature.  Error bars are SEM.  There 
were no statistically significant differences. 
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Figure 50, The regression lines from AC pulmonary valve samples at three curvatures were averaged 
together to create composite regressions lines representing the values of Λ1 plotted against the normalized 
thickness of the tissue.  Error bars are SEM. 
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Figure 51, The regression lines from WC pulmonary valve samples at three curvatures were averaged 
together to create composite regressions lines representing the values of Λ1 plotted against the normalized 
thickness of the tissue.  Error bars are SEM. 
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Figure 52, The maximum and minimum changes in pulmonary valve thickness, U22, are plotted for AC and 
WC samples at three different levels of curvature.  Error bars are SEM and no statistically significant 
differences were found between the maximum and minimum U22 values in the AC and WC directions. 
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Figure 53, The regression lines from AC pulmonary valve samples at three curvatures were averaged 
together to create composite regressions lines representing the values of Λ2 plotted against the normalized 
thickness of the tissue.  Error bars are SEM. 

 

104 



0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Thickness

Λ 2

0.1 0.2 0.3

V F

 
Figure 54, The regression lines from WC pulmonary valve samples at three curvatures were averaged 
together to create composite regressions lines representing the values of Λ2 plotted against the normalized 
thickness of the tissue.  Error bars are SEM. 
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Figure 55, These results show the change in the shear angle α for the pulmonary valve along the thickness of 
the tissue at three different levels of curvature.  Error bars are presented as SEM.  There were no statistically 
significant differences. 
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Table 6 – Neutral Axis Location values at three different levels of curvature for the pulmonary valve showing 
the progression of the neutral axis towards the fibrosa.  Neutral axis values are presented as normalized 
thickness with the ventricularis at 0 and the fibrosa at 1.  Error is reported as SEM. There was a statistically 
significant difference (p=0.030) between the bending directions at 0.1 change in curvature. 

Against Curvature (AC) With Curvature (WC)
  AV PV AV PV 

0.1 0.61±0.09 0.54±0.05 0.55±0.10 0.47±0.04 
0.2 0.59±0.10 0.54±0.10 0.56±0.10 0.50±0.11 ∆κ

0.3 0.60±0.07 0.56±0.04 0.56±0.03 0.49±0.09 

 

Table 7 – Tabulated U11 values showing maximum and minimum U11 values at three different levels of 
curvature for AC and WC directions.  Tensile and compressive strains increase with increasing flexure in 
both bending directions.  Error is reported as SEM.  There were no statistically significant differences. 

Against Curvature (AC) With Curvature (WC)
  Maximum Minimum Maximum Minimum 

0.1 1.04±0.03 0.96±0.03 1.07±0.03 0.93±0.04 
0.2 1.04±0.03 0.95±0.02 1.09±0.05 0.91±0.06 ∆κ

0.3 1.07±0.04 0.92±0.01 1.09±0.02 0.90±0.05 

 

Table 8 – U22 values at three levels of curvature showing an increase in the maximum U22 in the AC direction 
with increasing flexure and a decrease in the minimum U22 in the WC direction with increasing flexure.  
Error is reported as SEM.  There were no statistically significant differences. 

Against Curvature (AC) With Curvature (WC)
  Maximum Minimum Maximum Minimum 

0.1 1.19±0.30 0.86±0.14 1.22±0.21 0.85±0.18 
0.2 1.12±0.05 0.91±0.11 1.18±0.11 0.89±0.09 ∆κ

0.3 1.16±0.02 0.87±0.15 1.09±0.09 0.85±0.08 

 

Table 9 – Shear angle α values in degrees at three levels of curvature measured in degrees showing a gradual 
increase in the shear angle with increasing flexure.  Error is reported as SEM.  There were no statistically 
significant differences. 

Against Curvature (AC) With Curvature (WC)
  Maximum Minimum Maximum Minimum 

0.1 2.11±0.98 -6.25±5.54 7.62±7.09 -6.02±4.47 
0.2 5.78±2.39 -5.43±3.88 10.38±15.42 -7.03±5.38 ∆κ

0.3 5.87±2.75 -8.52±6.21 20.02±14.55 -0.72±4.42 
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3.3 BIAXIAL TEST RESULTS 
 
 
 Eight porcine aortic leaflet biaxial experiments and six porcine pulmonary leaflet biaxial 

experiments were performed.  The results from the biaxial experiments were summarized by 

plotting values of the membrane tension applied against the corresponding stretches obtained.  

Figure 59 shows the typical collection of plots generated by the different protocols for the aortic 

specimens and figure 60 shows the typical collection of plots generated by different protocols for 

the pulmonary specimens.  Figure 61 illustrates the differences between the equibiaxial protocols 

of the pulmonary and aortic leaflets.  Note that the pulmonary leaflets could only be tested to a 

maximum membrane tension of 30 N/m whereas the aortic leaflets were tested to a maximum 

membrane tension of 60 N/m.  Table 9 and 10 summarize the axial coupling results obtained 

between the aortic and pulmonary leaflets in the circumferential and radial stretch directions, 

respectively.  Figures 62 and 63 illustrate the axial coupling values summarized in tables 11 and 

12.  Axial coupling data was obtained from the both leaflets at a maximum tension level of 30 

N/m. 
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Table 10, Mean U11 and U22 stretch values from the 1:1 protocol for aortic and pulmonary leaflets at 30 N/m 
and 60 N/m of tension.  Values are reported with their standard error. 

U11 U22 
  30 N/m 60 N/m  30 N/m 60 N/m 
PAV 1.14±0.02 1.14±0.02 PAV 1.54±0.04 1.57±0.04 
PPV 1.08±0.01   PPV 1.64±0.06   

 
 

Table 11, Mean values accompanied by standard error showing the percent change in maximum stretch from 
the 1:1 equibiaxial protocol for several different stretch ratios in the circumferential direction.  Significant 
differences between the AV and PV results are denoted with p-values under the appropriate stretch ratio. 

Circumferential Direction (U11)
AV 0.1:1 0.5:1 0.75:1 1:1 1:0.75 1:0.5 1:0.1 

Mean -11.52±2.08 -3.85±0.69 -1.31±0.28 0.00±0.00 1.06±0.09 2.64±0.41 5.41±1.18 
          

PV 0.1:1 0.5:1 0.75:1 1:1 1:0.75 1:0.5 1:0.1 
Mean -13.53±2.47 -7.87±1.30 -2.84±0.49 0.00±0.00 2.58±0.55 4.46±0.86 7.61±1.29 

p-
value   p=0.013 p=0.014   p=0.008     

 

 
Table 12, Mean values accompanied by standard error showing the percent change in maximum stretch from 
the 1:1 equibiaxial protocol for several different stretch ratios in the radial direction.  Significant differences 
between the AV and PV results are denoted with p-values under the appropriate stretch ratio. 

Radial Direction (U22)
AV 0.1:1 0.5:1 0.75:1 1:1 1:0.75 1:0.5 1:0.1 

Mean 4.91±0.45 2.77±0.33 1.34±0.22 0.00±0.00 -0.94±0.28 -6.01±2.45 -16.80±1.51 
          

PV 0.1:1 0.5:1 0.75:1 1:1 1:0.75 1:0.5 1:0.1 
Mean 7.01±1.16 4.33±0.82 1.56±0.66 0.00±0.00 -3.01±0.55 -5.90±0.81 -18.00±1.32 

p-
value         p=0.004     
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Figure 56, Chart showing the spread of load versus stretch responses of the native porcine aortic valve leaflet 
to varying biaxial stretch ratio testing protocols. 
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Figure 57, Chart showing the spread of load versus stretch responses of the native porcine pulmonary valve 
leaflet to varying biaxial stretch ratio testing protocols. 
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Figure 58, Chart showing the representative circumferential and radial load versus stretch curves obtained 
for native porcine aortic and pulmonary leaflets under equibiaxial conditions. 
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Figure 59, Chart showing the percent change from the equibiaxial state in U11 (circumferential direction) and 
U22 (radial direction) at several different stretch ratios for native porcine aortic valve leaflets. 
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Figure 60, Chart showing the percent change from the equibiaxial state in U11 (circumferential direction) and 
U22 (radial direction) at several different stretch ratios for native porcine pulmonary valve leaflets. 
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3.4 VALIDATION RESULTS 
 
 
 Tensile tests upon the silicone rubber confirmed that it possessed a Young’s modulus of 

3.3 MPa which was also obtained using the bending device.  Repeatability testing was confirmed 

after averaging the moduli to achieve the same Young’s modulus of 3.3 MPa. 

 

Table 13, Table summarizing a set of tensile tests performed to determine effective stiffness of silicone. 

Tensile Test to 5% Strain 
Test # E (Pa) E (MPa) 

1 3298426.60 3.298 
2 3293070.84 3.293 

Average   3.296 
Standard Error 0.003 

 

Table 14, Table summarizing repeatability results performed to determine the differences between bending 
directions. 

Specimen 
normal 

Bending 
direction E (MPa) Specimen 

normal 
Bending 
direction E (MPa) 

Up Down 3.59 Down Down 3.28 
Up Down 3.61 Down Down 3.24 
Up Down 3.56 Down Down 3.22 
Up Down 3.56 Down Up 3.37 
Up Down 3.56 Down Up 3.31 
Up Down 3.36 Down Up 3.30 
Up Down 3.50 Down Up 3.30 
Up Down 3.52 Down Up 3.30 
Up Down 3.44 Down Up 3.27 
Up Down 3.49 Up Up 3.80 
Up Down 3.58 Up Up 3.75 
Up Down 3.51 Up Up 3.71 
Down Down 3.08 Up Up 3.71 
Down Down 3.22 Up Up 3.70 
Down Down 3.22 Up Up 3.61 
Down Down 3.22 Up Up 3.60 
Down Down 3.22 Up Up 3.75 
Down Down 3.24 Up Up 3.63 
Down Down 3.29 Up Up 3.69 
   Average 3.41 
   Standard Error 0.03 
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4.0 DISCUSSION 
 
 
 
 
 This study sought to determine the mechanical differences between the porcine aortic and 

pulmonary valve leaflets by examining their flexural behavior and micromechanical behavior 

through novel biomechanical testing, as well as contrasting these behaviors with biaxial 

mechanical testing. 

 
 
 
 

4.1 SUMMARY OF FINDINGS 
 
 

4.1.1 Flexural behavior 
 
 
 EI values were obtained from the moment curvature plots at a change of curvature of 0.2 

(Fig. 38) and tabulated.  The flexural rigidity (the product of the effective modulus and second 

moment of the area) was demonstrated to be roughly equivalent between the AC and WC 

flexural directions and between the two leaflet types (Fig. 39).  The effective modulus, Eeff, 

determined from the data (Fig. 40) showed that the tissues exhibited similar behavior in the WC 

and AC directions but demonstrated different results when compared to each other.  The 

effective modulus for the pulmonary valve was observed to be statistically higher than the aortic 

valve by a factor of a little less than two.  This result of the effective modulus, however, cannot 
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be taken completely without some caution because of this measurement’s dependence upon the 

second moment of the area which is calculated using the thickness cubed.  The similarities 

between the flexural rigidity results are interesting because they show that the leaflets provide 

approximately the same magnitude of resistance to an applied moment.  Only when the 

thicknesses of the leaflets are taken into account are differences observed between them.  These 

results illustrate the similarities between the function of the leaflets but also the apparent 

differences considering the variation of thickness between the two types of valves. 

 

4.1.2 Transmural strain 
 
 
 In both bending directions, increasing curvature caused a slight statistically insignificant 

shift of the neutral axis towards the fibrosa in the aortic valve.  The overall location of the neutral 

axis suggested that the fibrosa was stiffer than the ventricularis.  This conclusion was confirmed 

by comparing the maximum and minimum Λ1 stretches of the ventricularis and fibrosa faces in 

the two different bending directions.  In the AC direction, the ventricularis faced the interior of 

the tissue curvature and the fibrosa the exterior and vice versa for the WC direction (Fig 1).  

Consequently, according to bending theory and experimental results, the ventricularis was under 

tension and the fibrosa was under compression in the X1 direction of AC bending and vice versa 

for WC bending.  The ventricularis appeared to be more extensible than the fibrosa in tension.  

The neutral plane determined from the Λ1 vs normalized thickness plots was biased towards the 

fibrosa layer in all bending directions and curvature levels.  With increasing changes in 

curvature, the neutral plane was found to shift slightly towards the fibrosa.  The compressive 

strains for the layers were comparable in both bending directions suggesting similar compressive 
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behavior for the ventricularis and fibrosa.  In the natural state, though, the differences between 

the layers was slight with only the difference in the maximum Λ1 stretch at 0.2 change in 

curvature being statistically significant. 

 Similar to the behavior of AV leaflets, the PV specimens demonstrated progressive 

movement of the neutral axis towards the fibrosa with increasing flexure although to a lesser 

degree.  The difference between the neutral axis and the halfway mark of tissue thickness was 

determined to be essentially insignificant in both valve types.  The PV minimum Λ1 results 

demonstrated increased levels of compression in the WC bending direction compared to AV 

specimens.  The similarity between bending directions exhibited in the AV was also apparent in 

the PV data with differences between the AC and WC bending directions being statistically 

insignificant. 

 Shear angle α measurements illustrated a negligible amount of shearing at the center of 

the tissue during bending.  For all directions of bending, maximum shearing angles occurred at 

the fibrosa and ventricularis faces.  Insignificant differences between U11, the pure stretch 

information, and Λ1, combined stretch and shear information, were observed.  The overall trend 

for α over the increasing change in curvature was not as obvious as those for the neutral axis and 

maximum and minimum U11 stretches.  For WC samples, the shear angle exhibited increases 

with changes in curvature.  The change in thickness of the leaflet represented by U22 and Λ2 

showed interesting results suggesting the tissue underwent significant thickness changes.  The 

composite trends of Λ2 versus normalized thickness showed increasing thickness changes with 

flexure in the WC direction and decreasing thickness changes in the AC direction. 
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4.1.3 Biaxial results 
 
 
 The experimental results from the biaxial tests on the native porcine aortic and 

pulmonary leaflets demonstrated some significant differences between their responses.  The 

pulmonary leaflets were not tested to the membrane tension of 60 N/m that the aortic valves were 

tested to because the pulmonary leaflets, in general, were not capable of withstanding that level 

of tension without tearing at the hook attachment points.  Although the membrane tension versus 

stretch plots for the pulmonary leaflet end at 30 N/m, their comparison to the aortic leaflet plots 

show the large difference in extensibility between the two. 

 The axial cross coupling results demonstrated a significantly greater change in 

circumferential stretches in the pulmonary valve in a limited number of stretch ratios.  This 

showed that, although the pulmonary leaflets were subject to a lower maximum stretch at 30 

N/m, they experienced a somewhat greater change in stretch in the circumferential direction with 

certain ratios. 

 
 
 
 

4.2 HYPOTHESES: INTERPRETATION OF FINDINGS 
 
 

4.2.1 Flexural behavior 
 
 
 The indifference between bending directions could be attributed to the distribution of 

stress and strain throughout the structure of the leaflet.  Fibers may not be solely responsible for 

material response and observed behavior may result from different mechanisms such as the 

sliding of fibers.  Furthermore, the compressive behavior of the layers was shown to be similar in 
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the transmural data suggesting that a structural component other than the fibers such as the 

GAGs could have been responsible.  The increased stiffness could also be an adaptation to the 

low pressure environment, a lack of adaptation to a high pressure environment, or a consequence 

of structural features. 
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4.2.2 Transmural strain 
 
 
 The shift of the neutral axis towards the fibrosa may be accounted for by the greater 

concentration of inelastic collagen (1-2% strain) within the fibrosa and the greater concentration 

of elastin in the ventricularis.  Previous studies have shown that the elastin in the ventricularis 

forms a honeycomb network around the collagen fibers, allowing the fibers to stretch and return 

to their initial state [67, 68].  The collagen fibers in the fibrosa do not possess an extensive or 

organized elastin network and are bound together more tightly [69].  Thus, the different levels of 

stretch and the location of the neutral axis allude to differing tensile stiffnesses of the two layers, 

however, because of the statistical insignificance of the shift, the tissue could essentially be 

assumed to be isotropic in nature.  The layers would not possess any significant differences in 

stiffness if they were approximately equal in size within the leaflet.  The fibrosa, though, tends to 

be slightly thicker than the ventricularis introducing the possibility that may yet possess different 

stiffnesses but exhibit isotropic behavior when combined as the composite leaflet. 

 Because the leaflets had not been fixed in glutaraldehyde, the glycosaminoglycans in the 

spongiosa were preserved [19].  This water rich, compression resistant layer loosely located 

between the other two layers probably played a significant role in distributing and withstanding 

the compressive strains of the leaflet.  Thus, fixation with glutaraldehyde would remove 

whatever contribution the glycosaminoglycans have towards the proper flexing of the leaflet in 

addition to exacerbating the differences in the behavior of the layers [26]. 

 Increasing shear with increasing changes in curvature would be expected as the different 

layers of the tissue were stretched to a greater and greater degree.  However, the absence of any 

observable trends in shear could be an indication to the role the spongiosa plays in permitting 
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layer sliding and alleviating shear stresses within the leaflet.  This sort of mechanism would be 

advantageous to the operation of the valve because it would act as a kind of internal damper that 

reduces the magnitude of shear stresses while simultaneously isolating them to the proper 

structures. 

 The variation in thickness in the WC direction may be attributed to the already undulated 

surface of the fibrosa undergoing compression and becoming even more convoluted.  The 

increases in the hills and valleys of the fibrosal surface may cause changes throughout the leaflet 

as collagen fibers are pulled together, apart or tighter.  The AC results are more difficult to 

understand because of the inverse relationship between Λ2 and flexure.  The undulations of the 

fibrosa could be expected to straighten with applied tension resulting in increasing thickness 

changes with increasing flexure.  The observed behavior suggests an auxiliary mechanism at 

work or some sort of caveat relating flexure in the AC direction to the microstructure of the 

leaflet that is still unclear. 

 Under tensile conditions, the AV can be expected to be stiffer than the PV because of a 

greater concentration of collagen (due to higher transvalvular pressures) and its increased 

thickness [17].  The values of maximal Λ1 stretch at the fibrosal surface support this notion 

because of the higher levels of stretch obtained in the PV leaflet than the AV leaflet.  The 

stiffness of the AV may also be attributed to a fiber organization more highly aligned with the 

circumferential and radial directions or a greater density of collagen and perhaps a reduced 

collagen crimp [30]. 

 A structural difference between the PV and AV must be responsible for the difference in 

compressive ranges for the two.  In the WC direction, the fibrosa undergoes compression while 

the ventricularis is under tension.  The similar compressive ranges for the AV were hypothesized 
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to be caused by the contribution of GAGs and independent of the fibers present.  The collagen 

fibers within the fibrosa can be assumed to be as weak in resisting compression as they are 

strong under tension.  The organization or distribution of GAGs within the PV must assume a 

different pattern from AV leaflets to account for differences in maximum compression.  The AV 

results supported the hypothesis that the layers were sufficiently separated with GAGs in the 

spongiosa to permit sliding between the layers.  The PV results suggest structural differences are 

present that alter the leaflets response to bending stress.   The increased stiffness of the leaflet in 

both bending directions may be a result of increased cross-linking between individual fibers or 

reduced GAG content that effectively curtails the sliding and movement of fibers.  The leaflet 

consequently has less freedom reorganizing its internal structure to respond to applied stress, 

shifting the burden of compressive strains upon all of its constituents [70].  Thus, a less elastic 

leaflet would resist flexure more prominently, as demonstrated in the bending experiments.  The 

reduction in the maximum strains of the ventricularis in tension may be attributed to the increase 

in fiber cross-linking and absence of substantial fiber movement.  The collagen fibers in the PV 

fibrosa play a greater role in compression than in the AV and are understandably strained to a 

greater degree.  In tension, however, they exhibit similar characteristics as in the AV specimens 

 

4.2.3 Biaxial behavior 
 
 
 The aortic leaflets proved to yield more than the pulmonary leaflets in biaxial tension 

alluding to some structural difference between the two but most probably due to a difference in 

collagen and elastin organization.  An increased presence of elastin and higher levels of collagen 

crimp within the aortic leaflet would be required to allow the leaflet to stretch more.  The 
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orientations of collagen fibers within the pulmonary leaflet may become more highly aligned 

along the circumferential and radial directions during biaxial tension and thus provide more 

direct resistance to the biaxial load.  Elevated elasticity in the aortic leaflet could possibly be 

attributed to the requirement that the leaflet withstand greater transvalvular pressures and be 

more flexible to do so.  This observation was possibly a result of the decreased maximum stretch 

of the pulmonary leaflet and the subsequently lower resistance of the leaflet micro-structure to 

applied load.  The discrepancy between the stiffnesses of the leaflets in the flexure experiments 

and the biaxial experiments may be a result of the response of the tissue at different magnitudes 

and modes of loading.  The loading experienced in the biaxial tests was significantly higher than 

those in flexure so the leaflets may behave differently at different levels of load to compensate.  

Thus the stress-strain response of the aortic and pulmonary valve may not be entirely linear but 

perhaps somewhat sigmoidal in nature with the pulmonary valve being stiffer than the aortic 

valve at lower stresses and reaching a lower maximum stretch than the aortic valve at higher 

levels of stress.  This difference could be hypothesized to be directly related to the differences in 

operating pressures the two valves experience.  These differences in tissue behavior underscore 

the importance of rigorous soft tissue testing through the use of multiple testing regimens.  

Complex tissue structure and function cannot be fully explained without thorough examination 

from varying points of view.  These puzzling findings confirm the rationale behind including 

biaxial experiments with flexural analyses in providing an adequate picture of complexity of soft 

tissue mechanics. 
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4.3 RELATION TO PREVIOUS STUDIES 
 
 
 By exploring the mechanical behavior of the aortic and pulmonary leaflets in relation to 

their flexural properties and the interactions amongst their key structural components, a rough 

understanding of how these materials function so effectively in their individual environments has 

been achieved.  In flexure, a physiologically faithful mode of deformation, the PV proved to be 

stiffer than the AV in contrast to biaxial experiments showing the contrary [17].  Christie et al 

examined the biaxial behavior of both native and glutaraldehyde fixed porcine aortic and 

pulmonary valve leaflets and found that they possessed similar stretch behavior circumferentially 

but that radially the pulmonary leaflets were more extensible which counter the findings in this 

study [17].  Differences in testing methodology may be responsible for these discrepancies since 

Christie et al used randomly placed markers and also introduced a suture at their location of 

strain measurement.  From their results they hypothesize that the collagen content of the 

pulmonary valve is lower than that of the aortic valve which resonates with this study’s findings 

that lower collagen may be responsible for the pulmonary valve’s reduced tensile strength.  

Vesely et al found that the pulmonary valve cusps were capable of greater stretch but were also 

stiffer than their aortic counterparts [71].  Their tests, however, were uniaxial in nature and 

performed on cryopreserved valves and the effects of that treatment may have altered their 

results from the native state.  This study, through flexural and biaxial experiments has shown that 

the difference between the pulmonary and aortic valve leaflets is not so profoundly distinctive 

that one can be said to be completely stiffer or extensible than the other.  Via transmural strain 

measurements, the interaction of layer structures between the two valves was shown to differ, 

causing the observed behavioral differences. 
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4.4 EXPERIMENTAL DIFFICULTIES AND LIMITATIONS 
 
 

4.4.1 Experimental difficulties 
 
 
 Specimen ‘curling.’  The leaflet specimens were cut to dimensions that had been 

determined large enough to accommodate the large curvatures and small enough to prevent 

curling in the radial direction.  All strips cut from the leaflets curled along the lengthwise edges 

towards the ventricularis.   This phenomenon could most likely be attributed to the presence of 

pre-stressed elastin in the ventricularis [19].  This pre-stress was released from the tissue when 

the strip was cut from the leaflet.  The curling effect upon the leaflet specimens did not modify 

the geometry of the specimen sufficiently to prevent moment curvature relationship 

measurements.  However, some samples experienced sufficient curling at the edges to prevent 

them from being used in the transmural studies.   The strips were flexed at 500 micron 

increments until the two ends of the tissue were approximately 7 mm apart.  Samples that did not 

bend properly from the approximately horizontal state to the approximately circular shape were 

eliminated. 

 Pulmonary valve ‘thinness.’  The decreased thickness of the PV leaflets relative to their 

AV counterparts, 250 microns compared to 360 microns respectively, presented several 

significant difficulties in performing experiments.  The area used for transmural imaging was 

significantly reduced, complicating the application of the markers and reducing the number of 

viable markers available for analysis.  The curling effect previously observed in the AV strips 

was exacerbated in the PV leaflets due to their thinness. 
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4.4.2 Limitations 
 
 
 The limitations of the study were primarily in the task of post-processing image for 

determining transmural strains and the preparation of tissues for testing.  The established 

technique of airbrushing micron-sized ink particles possessed significant drawbacks that affected 

the ease and efficiency of performing experiments.  There were no assurances to the density of 

particle coverage particles or particle size so tissue samples that have been prepared but 

airbrushed improperly cannot be tested.  Several different alternative methods were attempted 

including using small fluorescent micro-spheres (ranging in size from 5 to 20 microns) pressed 

into or affixed to the tissue with an agarose gel.  The use of the spheres failed because of the 

inability for the spheres to affix properly to the tissue.  Other attempts involved the use of 

fluorescent cell staining, however, the technique proved too complicated to properly execute 

given testing conditions and was also abandoned.  The development of an effective means of 

applying micron sized markers to the edge of the tissue would greatly enhance the efficiency of 

testing as well as reduce the introduction of experimental error.  Improvements upon the 

established methods of manually matching the markers from their reference positions to their 

deformed positions would greatly expedite testing so that experimental results could be obtained 

within a short time of its completion.   

The accuracy of results was highly dependent upon the behavior of the tissue when 

placed into an experimental situation.  The steel sleeves mounted on the edges of the tissue were 

fitted over posts in the specimen bath during testing and the rotation of these sleeves about the 

posts was assumed to be frictionless.  Although the sleeves were made to fit loosely they would 
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have experienced some resistance in rotating.  The method of zeroing the bending bars before the 

beginning of an experiment discussed above was the most straight-forward way of ensuring that 

no force was being applied to the tissue.  However, variations between the zero-load state from 

one test to another could have existed because of the need for user adjustment of the bending bar 

and zeroing bar.  The variability inherent in biological tissues cannot be controlled and 

differences between leaflets lend themselves to introducing significant variability in the 

measurements taken for this experiment.  Improvements in testing and handling of soft tissues 

would significantly improve the quality of data as well as ease the burden of interpretation. 

 
 
 
 

4.5 FUTURE RESEARCH DIRECTIONS 
 
 
 The work performed in this research project provides insight into the mechanical 

behavior of the aortic and pulmonary leaflets and establishes some fundamental differences 

between them.  Further experiments examining leaflet behavior at higher levels of curvature 

could possibly show any behavioral differences they may exhibit with increased flexure.  To 

continue along this vein, other properties about the valves must be studied with respect to the 

current methods of treating valve disease.  Planned studies include examining the effects of 

glutaraldehyde fixation upon the bending and transmural strain behavior of the aortic valve 

leaflet.  Because of the prevalence of using glutaraldehyde treatments in heart valve 

replacements, it is important to see how these behaviors deviate from the natural leaflet.  This 

information could improve the current understanding of the damage mechanisms of 

glutaraldehyde treated heart valve replacements.  Of course, these experiments would be 
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conducted on tissue at varying concentrations of glutaraldehyde and under different fixation 

pressures.  Using the device, the changes in bending and transmural behavior of leaflets 

undergoing fatigue could also be explored.  Thus, changes in the leaflet as a whole can be 

attributed to any changes that may occur in the layers with time.  It would also be interesting to 

determine the flexural and biaxial behavior of the pulmonary leaflet after its transplantation into 

the aortic position to observe what changes may occur with the increased operating pressures and 

what possible remodeling could be occurring. 
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5.0 CONCLUDING REMARKS 
 
 
 
 
 This study has succeeded in illustrating that there are interesting differences between the 

native porcine aortic and pulmonary valve leaflet biomechanical behavior.  Through flexural 

experimentation, the pulmonary valve has been shown to be stiffer than the aortic valve in 

flexure but less compliant than the aortic valve through biaxial testing.  The interactions between 

the layers of the leaflets lend an isotropic nature to the leaflet in flexure but do so through 

mechanisms that are not fully understood.  For heart valve leaflet replacement therapy, this study 

illustrates the biomechanical differences between the aortic and pulmonary valve leaflets and 

emphasizes the need to fully characterize the two as separate but related entities.  The pulmonary 

valve cannot be thought of as simply a thinner or smaller version of the aortic valve.  The 

effective stiffness measurements and the extensibility of the valves in biaxial testing show this.  

The results also demonstrate the complexity of native valve function and how nature has evolved 

this structure to serve its purpose in a masterful way.  Although both the aortic and pulmonary 

leaflets are constructed as composite materials with very different layers of varying composition, 

they behave relatively isotropically in flexure.  However, under tensile conditions provided by 

biaxial testing, the leaflets show an increased strength and can withstand greater stress.  This 

dichotomy is puzzling at first but  

 The results obtained within this thesis illustrate a general need for scientific researchers 

to explore a previously overlooked level of detail within human physiology, namely, the tissue 
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level.  Whereas great advances are currently being made towards the elucidation of the 

mechanical properties and physiology of organs and their components and the methods of 

exploring molecular biology and their mechanisms are firmly established, the methods for 

determining the structure and function of biology between these two levels are under-developed.  

Understanding the interactions of microscopic structures such as collagen and elastin fibers is 

critical to understanding the response of the tissue as a whole and how all these elements 

combine to provide a functioning component of the organ system.  These studies also reveal 

some before-unknown properties of the leaflets, namely their isotropic nature in flexure, that 

may influence the current approach towards developing and using biomaterials for producing 

valve replacements.  By understanding some of the features inherent in the natural leaflet, 

researchers and designers can seek to duplicate these features and produce a more effective valve 

replacement. 
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APPENDIX 
 
 
 
 

BENDING DEVICE MANUAL 
 
 
 
 

Introduction 
 
 
 The bending device incorporates two systems that work together to characterize the 

bending properties of an appropriately sized tissue specimen.  The bending moment-curvature 

relationship can be determined for a specimen using the macro camera.  The transmural strain 

distribution of the specimen can be determined using the micro camera.  The two systems work 

in unison to expedite tissue testing and to avoid excessive handling and manipulation of 

specimens.  Bending data is collected automatically by the driving control PC during the test and 

saved to disk for analysis.  Transmural data is obtained by post-processing images with Labview 

software and Matlab scripts. 
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Figure 61, Flowchart describing the main functions of the testing program. 
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Components 
 
 
The bending device consists of the following components: 

Macro Camera System 

XC-1 (Sony, 640x480 resolution CCD camera) 

55mm FL Telecentric Video Lens (Edmund Industrial Optics) 

PCI-1407 (National Instruments, analog capture board) 

 

Micro Camera System 

PL-1642 (PixeLINK, 1 MegaPixel CMOS 1394 camera) 

VZM-1000i (Edmund Optics , high magnification video lens) 

 

Motor Control 

MC-4SA (National Aperture, MicroMini servo amplifier system) 

MM-4M-F (National Aperture, Folded Motorized MicroMini Stage) 

MM-4M-EX (National Aperture, Extended Motorized MicroMini Stage) 

PCI-7344 (National Instruments, motor control board) 

 

Motorized Stages 
 
 
 The motorized stages that control horizontal translation are MM-4M-EX motorized 

stages.  The motorized stage controlling the motion of the specimen chamber will be referred to 

as Axis 1 and is motorized stage MM-4M-EX-80.  The motorized stage controlling the 

horizontal motion of the high magnification camera is referred to as Axis 2 and is motorized 
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stage MM-4M-EX-50.  The motorized stage controlling the vertical motion of the high 

magnification camera is referred to as Axis 3 and is motorized stage MM-4M-F-50. 

 
Table 15, Motors used for different axes of motion in bending device. 

Axis NAI Motion Model # Function 
Axis 1 MM-4M-EX-80 Horizontal translation for specimen chamber 
Axis 2 MM-4M-EX-50 Horizontal translation for high magnification 

camera 
Axis 3 MM-4M-F-50 Vertical translation for high magnification 

camera 
 

 Table 10 summarizes this information regarding the motorized stages.  The stages are 

attached to the MC-4SA amplifier system and are activated via the Axis 1-3 switches.  The MC-

4SA interfaces via a 68-pin connector to the PCI-7344 motor controller board in TMLFLEX.  

Control of the motors is all performed through the Labview interface.  Measurement and 

Automation Explorer allows specific settings to be set for the motor system.  By default, Axis 1 

has been renamed Testing Stage and has been set to Servo mode with an encoder resolution of 

896 encoder counts per revolution.  By default, Axis 2 has been renamed Horizontal Zoom and 

has been set to Servo mode with an encoder resolution of 896 encoder counts per revolution.  By 

default, Axis 3 has been renamed Vertical Zoom and has been set to Servo mode with an encoder 

resolution of 2560 encoder counts per revolution.  By default, Axis 4 has been disabled.  Other 

motor settings are left at the initial defaults.  Control of the three motors is provided by the VI 

motormover.  Six Boolean inputs are provided turning on and off movement in the three 

directions.   
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PixeLINK Camera 
 
 
 The PL-1642 is a color CMOS camera with a 1 megapixel resolution that is controlled 

via the Firewire IEEE-1394 bus card installed in TMLFLEX.  Camera functions are not directly 

supported by Labview but an API provided by PixeLINK provides the functions necessary to 

control the camera.  Using the call library function in Labview, the PixeLINK functions can be 

accessed by Labview during execution of the test.  The DLLs are called using standard windows 

calling and arguments are specified according to the PixeLINK API manual.  Images can be 

obtained two ways.  The slower method of image capture would be return frames from the video 

stream of the camera and convert them to the image format used by Labview.  This way of 

importing images into Labview permits the use of Labview image processing routines upon the 

video stream from the camera in real-time.  To do so, the raw data from the camera is returned 

using a PixeLINK DLL and then converted to an image using the Labview function Array to 

Image.  The buffer containing the data returned from the PixeLINK DLL must be reserved 

before calling the VI.  This method is not very fast.  The second method of obtaining images 

from the camera is to use the camera’s preview window capabilities to display a preview 

window.  Images are captured using the MegaCaptureFrametoBMP function which captures a 

frame from the video stream and writes it to the specified path in bitmap format.  The following 

functions in Table 2 have already been prepared for use with Labview. 

 

 The PixeLINK Megapixel Firewire Camera Developer’s Manual is attached at the end of 

this manual and provides all the necessary information regarding the functions included in the 
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API.  Also attached is the include H file that defines many of the constants used by the 

PixeLINK API functions. 

 
Table 16, PixelLINK DLL functions incorporated into Labview custom VIs to permit the use and control of 
firewire camera functions including image acquisition. 

Function and VI name Purpose 
MegaCaptureFrametoBMP Capture and save frame to a BMP file 
MegaInit Initialize PL-1642 camera and obtain imager handle 
MegaPausePreview Pause/restart preview window 
MegaReturnStillFrame Returns a still frame 
MegaSetDataTransferSize Set the data transfer size (bpp) 
MegaSetExposureTime Set camera exposure time in milliseconds 
MegaSetImageFlip Set horizontal and vertical image flip 
MegaSetImagerClocking Set the oscillator type and clock divisor 
MegaSetSubWindowSize Set the size of the imager subwindow 
MegaSetVideoMode Set video mode to STILL_MODE (0) or VIDEO_MODE (1) 
MegaStartPreview Start preview window 
MegaStartVideoStream Open video stream from camera 
MegaStopPreview Stop and close preview window 
MegaStopVideoStream Close video stream from camera 
MegaUninitialize Uninitialize camera 
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Labview Interface 
 
 
 Labview is a graphically driven programming environment that is closely married with 

hardware input/output and control.  A Labview program comprises of a Front Panel and a Block 

Diagram.  Labview functions are referred to as Visual Instruments or VIs.  VIs are connected 

with wires that control the flow of data and information from one VI to another.  The piecing 

together of wires and VIs is performed in the Block Diagram (Fig. XX).  The square boxes 

represent VIs.  The blue pull-down menus are rarely used options set by the user in the Block 

Diagram.  The green controls link the Block Diagram to the Front Panel in the form of controls.  

The Front Panel displays information from the Block Diagram and serves as the user interface.  

On the Front Panel, buttons, toggle switches, and dialog boxes serve as user input and control for 

the program.  Digital readouts, meters, and graphs are used to display data and status.  The 

bending device takes advantage of two Labview programs. 

 

 

Figure 62, Block Diagram example 
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programv23.vi:  This program is responsible for all tissue testing operations.  It collects user 

requirements for testing parameters and automates the three subsystems to complete an 

experiment with the minimum of user intervention.  Data collected during the experiment is 

graphically displayed by the program during the experiment and also saved to disk for further 

processing and analysis.  Experiments are performed in three stages necessitating three 

integrated Front Panels. 

 

transmuralv2.vi: This program is responsible for the post-processing of images captured from the 

micro camera for the purpose of transmural strain determinations.  It takes advantage of a dual 

monitor computer to display the reference and deformed images concurrently so that markers 

identified by the program can be matched between them. 

 

The Front Panel interfaces of both programs will be discussed to explain their major features and 

use. 
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Labview Interface: Positioning 
 
 

 
Figure 63, Program interface for positioning 
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1: The Bending Bar Selection pull down menu is used to select the proper diameter for the 

bending bar being used in the experiment.  This selection must be made BEFORE executing the 

VI to ensure that the proper bending bar size is registered with the program.  Additional entries 

in the pull down menu can be added in the VI source by inputting another title entry and another 

scaling entry.  The scaling entry is a number determined from the calibration of the bar and is 

used to determine the force being exerted by the bar from the displacement of the bar. 

 

2: The Bend Up/Down button is used to specify the direction the tissue is flexed during the 

experiment.  When the tissue is concave downwards, the tissue is flexed upwards and vice versa.  

Selecting the proper direction of bending is important for the program to use the proper marker 

tracking algorithms.  This selection should be done BEFORE the program is executed. 

 

3: The Curvature Control/Distance Control button is used to specify to the program the control 

algorithm to be used for termination of the experiment.  Under Curvature Control, the 

experiment ceases when the tissue reaches a preset level of curvature specified in the input box 

in item 4.  Under Distance Control, the experiment ceases when the distance between the two 

ends of the tissue dips below a preset distance value specified in item 4.  This selection must be 

done BEFORE the program is executed. 

 

4: The two input boxes are used to set the limits for the termination of the experiment.  The 

selection made in item 3 dictates which of the two limits are employed during the experiment.  

The limit that was not selected does not affect the outcome of the experiment.  This selection 

must be done BEFORE the program is executed. 
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5: The two sets of controls are responsible for controlling the three servo stages.  The Transmural 

buttons are responsible for controlling the movement of the micro camera horizontally and 

vertically.  The directions on the panel are referenced to the point of view of the camera so the 

horizontal translation is reversed in the macro camera view.  Vertical translation remains 

unchanged regardless of the point of view.  The Macro controls control the movement of the 

servo stage responsible for moving the specimen bath horizontally.  These controls are 

referenced to the point of view of the macro camera. 

 

6: The slide control is responsible for controlling the speed of the camera.  The gradations are 

with respect to the number of counts per minute the servo motors are run at.  Adjustments to the 

speed of the motors should be made while observing the movement of the cameras and the 

testing stage to ensure proper movement.  These adjustments do not affect the movement of the 

servo stages later in the program.  All servo stages are affected by these speed changes. 

 

7: The level of exposure controlled in this slide control is for the micro camera.  The units of the 

controller are in milliseconds.  Acceptable values range between 0 and 1000 milliseconds, 

however, the useful range is between 0 and 150 milliseconds.  Behind this control is the 

MegaSetExposureTime VI which interfaces with the PixeLink API function 

MegaSetExposureTime. 
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8: This switch is responsible for adjusting the orientation of the cameras to account for the 

orientation of the tissue sample.  By default, the ventricularis is always located at the bottom of 

the sample.  This adjustment must be made BEFORE the program is executed. 

 

9: The large NEXT button is used to transfer control of the program to the second stage after all 

of the initialization steps have been followed. 

 

10:  The path of the data files and the name of the specimens are input in the dialogs at item 10.  

The output paths and files are then output by the program for user information.  The path is 

automatically generated by the program from the path specified by the user.  Each execution of 

the program receives a unique path name that incorporates the current date and the time of 

execution. 

 

11: This cluster of tab controls and dialog boxes houses all of the programs error reporting 

abilities.  Different tabs represent different subsystems of the program.  Any errors reported in 

the PixeLink tab emanate from the portions of the program dealing with the PixeLink camera.  

The Macro tab shows any errors emanating from the macro camera system.  The Motors tab 

shows any errors that originate from the servo stages and its control system.  The Matlab tab 

shows any errors that may have occurred in any of the Matlab scripts included in the program.  

Normally, Matlab does not report detailed error information but only if the script failed to 

execute properly. 
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12: The ABORT button is used only in the third stage of testing when a test has actually 

commenced.  If for any reason the test proceeds outside of normal conditions, the ABORT button 

is used to terminate the program.  Otherwise, the system may not be able to detect a problem 

with the test and may destroy the tissue.  The servo stages themselves are protected with limit 

switches to define their range of movement but are independent of the device design and 

orientation of attachments. 
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Labview Interface: Thresholding 
 
 

 
Figure 64, Program interface for thresholding 
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1: These buttons are similar to the Transmural buttons in stage one in that they are responsible 

for the movement of the micro camera for positioning purposes.  These controls are also oriented 

with the point of view of the micro camera. 

 

2: The speed control slider functions exactly as the speed control slider found in stage one. 

 

3: The Snap Reference Transmural Image button captures the image currently displayed on the 

micro camera and saves it to the hard disk.  The images taken are used as the reference state for 

the transmural analysis that is performed after the end of the test.  The files are always named 

‘refstateXXXX.bmp’ where the XXXX is provided by the iteration number of the program.  This 

numbering system ensures that no reference images are overwritten.  The image is saved in the 

output path as a bitmap to ensure that no information is lost through compression. 

 

4: The display in item 4 reports, from top to bottom, the number of particles detected in the 

macro camera by the software, the horizontal resolution of the micro camera, and the vertical 

resolution of the micro camera.  It is important to note the number of particles detected do not 

and should not equal the number of markers placed on the tissue.  There will always be two extra 

markers in the image, the static left-most marker on the post and the bending bar marker at the 

right.  Extra particles detected during the test will confound the software and corrupt the data 

obtained. 

 

5: The two slide controls and digital inputs are used to determine the low and high ranges of the 

thresholding the images in the macro camera.  These must be adjusted to ensure that the markers 
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are isolated against the background while eliminating everything else in the image.  As a rule of 

thumb, the values reached for a specific camera setup normally can be used for subsequent 

experiments.  As always, the lower threshold bound should always be lower than the upper 

bound. 

 

6: The four toggle switches turn on and off the following functions for the macro camera: Inverse 

inverts the colors of the image, turning white to black and black to white.  The P Filter toggle 

eliminates small (<XX pixels) detected objects in the image as well as any black objects that are 

located along the borders of the image.  This toggle can be used to eliminate any erroneous 

objects that cannot be eliminated by thresholding.  The Threshold toggle is used to turn the 

thresholding of the image on and off.  The Track toggle switches on and off the marker tracking 

functions.  This toggle is used to ensure that the proper objects are being identified as markers 

for the rest of testing. 

 

7: The large NEXT button is used to transfer control of the program to the third stage after all of 

the initialization steps have been followed. 

 

8: This window displays the identified and tracked markers as empty circles on a coordinate 

system localized to the area the tissue will move.  The quadratic equation that is fitted to the 

marker coordinates is also displayed superimposed upon the markers so that the accuracy of the 

fit can be determined quickly by visual inspection. 
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Labview Interface: Testing 
 
 

 
Figure 65, Program interface for testing 
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1: The number of iterations the program goes through is displayed for informational purposes.  

The iteration number is used to name files saved to the hard disk to ensure that no files are 

overwritten. 

 

2: The Small Object Filter toggle switch serves the same purpose as the P Filter toggle switch on 

the second stage.  To enable small particle filtering, this switch must be enabled even if it was 

enabled in the second stage when setting up the thresholding levels.  The thresholding levels, 

however, are maintained. 

 

3: The Zero Bar button is used to set the displacement of the bending bar detected by the 

software as zero so that the force registered by the bending bar will be recorded as zero at the 

onset of testing.  The Initial K button is used to initialize the curvature detected by the software 

by recording the current curvature and displaying and recording the difference between the 

current curvature and this initial curvature.  It is important to zero the bending bar and the 

curvature so that the data outputted by the recording system will be correct.  Otherwise, the data 

will have to be post-processed manually to account for the initial displacement of the bar and the 

initial curvature. 

 

4: The resolution control refers to the resolution of the macro camera in millimeters per pixel.  

This resolution is set beforehand by taking an image of a calibration grid using the macro camera 

and determining the number of pixels per millimeter using SigmaScan Pro software.  This 

resolution determination does not need to be repeated unless the position of the camera or the 

testing stage changes.  Calibrating the camera is discussed in its own section. 
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5: The Precondition button is used to instruct the program to precondition the specimen.  Using 

the control algorithms specified during the first step, the system will bend the tissue back and 

forth a total of 10 times.  The LED next to the Precondition button lights up when the system is 

preconditioning and the digital readout next to the LED records the number of preconditions the 

specimen has had.  The Test Away button is depressed to begin testing after all of the options 

have been set and the specimen is ready.  This relinquishes control to the program as it begins to 

bend the tissue up to the earlier set limits.  The program will move the tissue in small increments, 

collecting data all the while and recording a macro camera image at every increment.  It 

suspends the bend test and switches to the micro camera system when running under curvature 

control.  This permits the user to capture images  from the micro camera for transmural strain 

analysis later. 

 

6: The large STOP button can be depressed to terminate the program anytime before the TEST 

AWAY button has been pressed.  Pressing the STOP button during testing will terminate the 

program as well but will not reset the servo stages to their initial positions, requiring them to be 

repositioned manually.  To terminate testing, the ABORT button detailed in stage one should be 

used.  This will stop the testing regimen and return the system to its initial state. 

 

7: Unfortunately, there will be times when the specimen must be flexed more or less so that it 

may be positioned properly for the experiment.  This may occur when attempting to bend a 

stubborn tissue against its natural curvature.  When the toggle is switched on, the TEST AWAY 

button is disabled to prevent accidental test activation.  Only the testing stage may be moved 
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with the direction controls.  Adjustments using this control should only be used when the 

specimen is difficult to work with and only after the bending bar has been zeroed and before the 

initial curvature is captured.  

 

8: The Distance between Posts meter measures the distance between the two posts in mm.  The 

first post is the static marker in the specimen bath and the second post is the marker on the 

bending bar.  The distance between the posts should be controlled to prevent the device from 

damaging the bending bar and the specimen. 

 

9: The TRANSMURAL button activates the cluster of controls in items 9, 10, and 11.  It can be 

used by the user any time during testing to switch to the micro camera to capture images.  

Otherwise, the computer program will enable the transmural mode automatically when the 

curvature limit has been reached.  The SNAP PICTURE button saves an image from the video 

stream to the hard disk.  The files will be named according to the Image Name input in the first 

stage in the format nameXXTYY.bmp.  The XX is replaced with the number of iterations the 

program was at when it was suspended into transmural mode.  The YY is replaced with the 

number of iterations of the transmural subsystem.  This ensures that no images are overwritten. 

 

10: In some cases it may be necessary to adjust the position of the micro camera.  Normally, the 

tissue should be within the field of view of the camera or very close, depending on how accurate 

the servo stage calibrations are.  In some instances, the micro camera image window must be 

moved to increase its update priority and maintain a smooth frame-rate. 
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11: The speed of the servo stages controlling the micro camera position can be controlled via the 

slider as earlier described in stage one. 

 

12: This cluster of displays show the values obtained by the system for EI, the current curvature 

of the tissue, the bending bar force being exerted (bbf), and the moment at the center of the 

tissue.  The EI is obtained by dividing the current moment with the current change in curvature.  

The curvature of the tissue is what is recorded to the data file so it is affected by initializing the 

curvature.  The bbf is calculated from the displacement of the bending bar along with the 

corresponding calibration factor.  The moment at the center of the tissue is determined by finding 

the vertical distance of the center of the tissue from the axis defined by the posts and multiplying 

it by the bbf. 

 

13: The Numbers tab hides a variety of reported data values from the system that were used for 

debugging purposes.  The initial curvature values, x and y coordinates of markers, coordinates of 

the posts, coordinates of the tracked point, the initial bending bar displacement, and the number 

of objects detected are displayed.  The LED is a part of the curvature control system. 
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Calibrating the Macro Camera 
 
 
The resolution of the macro camera is determined by finding the number of pixels that 

correspond to a known distance within an image.  A millimeter graduated grid is used as the 

reference for the known distance.  It is attached to a calibrating bar that can be maneuvered into 

position so that the grid is parallel with the specimen mounted in the bath.  An image is acquired 

using the National Instruments Measurement and Automation Explorer software.  The analog 

video capture board, the IMAQ PCI-1407, is listed under devices and interfaces.  The camera is 

found under channel 0 of the board as an rs170 camera.  MAX can display the video stream from 

the camera as well as capture still images for calibration purposes.  The calibration image is 

opened using SigmaScan Pro 4.01 (SPSS Inc.). 

Using SigmaScan Pro’s calibration routines, the number of pixels per millimeter is determined: 

1. Open the image in SigmaScan Pro 

2. Under the Measure menu heading, select Calibrate Distance and Area… 

3. In the New Distance block, enter the number of microns desired (for example, if you will 

be measuring on the image a 4 mm distance than you will want to enter 4000 microns, 

corresponding to the 4 mm).  It is advisable to use a large value such as 4000 microns or 

more to calibrate the image.  Small values will be more susceptible to measurement 

errors. 

4. Click in the Old Distance block and then click on the Image button to obtain the Old 

Distance from the image itself. 
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5. Now you will have the opportunity to click upon the grid in the image.  The distance 

clicked is the distance measured corresponding to the value entered in New Distance.  It 

is advisable to click on the same part of the grid for each end point. 

6. When the two points have been defined, the program will return a value into the Old 

Distance dialog box.  This is the number of pixels between the two end points.  The 

resolution is determined by dividing New Distance by Old Distance.  In this example this 

would be 4000 microns divided by Old Distance.  The units of the resolution are then 

microns/pixel.  On average, the resolution should be around 80 microns/pixel. 
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Calibrating the Bending Bars 
 
 
 The force applied to the tissue specimens is measured using pre-calibrated bending bars.  

The bending bars are made of 316V stainless steel in varying diameters.  The diameter of the bar 

determines the amount of force produced by the bar as a function of the bars displacement.  The 

load displacement relationship of the bar is determined by using a microscale and a platform that 

can be moved in micron increments.  Figure X2 illustrates the setup used to calibrate the bending 

bars.  The bending bar is suspended horizontally to the microscale and rigidly fixed to the 

platform.  An allen wrench is placed upon the microscale and the end of the bending bar is 

centered upon the wrench.  Something must be placed onto the surface of the microscale to 

elevate the end of the bending bar so that the bar will not contact the microscale when it is 

deformed.  The force the bar exerts upon the scale is determined at zero displacement of the bar.  

The bar is then displaced along regular intervals and force measurements from the microscale are 

taken.  The load-displacement response of the bars is linear so a linear equation is fit to the data.  

Thus, for any given amount of bar displacement, the load  can be accurately determined.  This 

method of measuring force is convenient because it avoids the necessity of using expensive load 

cells that need to be constantly calibrated and maintained. 
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Transmural Post-Processing and Analysis 
 
 

1: The color of the markers can be either black or red.  For the 

majority of experiments, the markers airbrushed to the side of 

the tissue are black.  By selecting the color of the marker, the 

program will use different algorithms to threshold and isolate 

the chosen colors against the background.  When red markers 

are chosen, the button will be red. 

 

2: The locations of the two images used for analysis must be 

specified.  The reference image location is placed into 

reference path dialog box and the deformed image location is 

placed into the deformed path dialog box.  The folder icons 

located on the right can be used to browse for the files. 

 

3: LOW REFERENCE and HIGH REFERENCE refer to the 

upper and lower threshold bounds for the reference image 

displayed on the main display.  These values must be adjusted 

to obtain balance between the white background and the black 

or red markers.  LOW DEFORMED and HIGH DEFORMED 

are the upper and lower bounds for the deformed image.  

Separate thresholds are used for both images to account for 

different imaging conditions. 
Figure 66, Marker matching 
interface 
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4: The HISTO buttons are used to turn on/off the thresholding of each image. 

 

5: The GET LOWER EDGE and GET UPPER EDGE buttons are used to find the upper and 

lower edges of the specimen.  When they are depressed, the user is allowed to select five points 

along the edge of the tissue which are then fit to a quadratic equation.  The edge information is 

recorded to disk in their own files. 

 

6: For both images, the number of objects found by the program’s particle VIs is displayed.  It is 

best to find a moderate number of markers because too many markers will clutter the display 

while too few will not provide sufficient markers for matching. 

 

7: The PARTICLE button toggles the particle finding VIs.  When particles are identified, a 

bounding box is drawn around the particle and overlaid onto the image along with the identifying 

number.  The particles are found once and that image data is saved in the program.  When the 

image containing the identified particle information is displayed, the large LED below the 

PARTICLE button is lit.  To switch between the source image and the modified image, the LED 

can be turned on and off.  When any of the threshold controls or particle size controls are 

changed, the PARTICLE button must be depressed to refresh the modified image. 

 

8: The two slide controllers have different scales to accommodate the range of particles that may 

be identified with the software.  These sliders are adjusted to eliminate particles that are too 
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small or too large for use.  They can also be used to isolate a group of markers so their 

identification and matching can be performed more efficiently. 

 

9: These inputs are used to specify the identity of the matched marker in the reference and 

deformed images.  The REFERENCE POINT input is hotkeyed as F1 and the DEFORMED 

POINT input is hotkeyed as F2.  When a point is found in the reference image, its identifying 

number is input into REFERENCE POINT.  Its corresponding point in the deformed image is 

input into DEFORMED POINT. 

 

10: The two markers identified using item 9 are matched together by using the MATCH POINTS 

button.  This has also been hotkeyed as F3.  The number of matched points is displayed in the 

digital readout to the right of the button.  When two points are selected to be matched, their areas 

and centroids are recorded in the file matched.txt.  Their bounding boxes in the modified images 

are also filled to eliminate them from the image.  The images are automatically re-processed to 

account for missing markers.  Modifications to the image do not alter the source image stored on 

the hard disk.  The sequence of key strikes should be F1, reference marker number, F2, deformed 

marker number, and then F3.  The identification numbers of the all the markers in the image are 

likely to change when a marker is eliminated from the image. 

 

11: Errors produced by the program are displayed in this error cluster.  Most error-prone 

functions output their function name in the source dialog to ease debugging. 
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12: The STOP button terminates program execution.  This is normally done after all the possible 

marker matches have been exhausted. 
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Post-processing of Transmural data 
 
 
 After matching the points using the transmuralv2 VI, a text file, matched.txt is generated.  

The first two columns are the x and y coordinates of the points in the reference frame, 

respectively.  The third and fourth columns are the x and y coordinates of the points in the 

deformed frame, respectively.  The fifth column is the u gradient, defined as xdeformed-xreference or 

X-x. This fifth column is calculated so that erroneously large values of u can then be discarded as 

these are most probably mismatches between points.  Inclusion of these points in the analysis 

program will yield poor and inaccurate results.  The edited matched.txt file should be saved as 

data.txt so that the analysis program, loco.m will be able to locate the data.  The transmural VI 

will also output a text file, edges.txt.  This text file contains the iteration at which the 

deformation image was taken at along with four sets of polynomial coefficients.  These 

polynomials were used to define the upper and lower bounds of the reference and deformed 

images as they were picked out in previous versions of the transmural VI.  Currently, the edge.txt 

file has no use.  The loco.m also looks for the presence of the file ac.txt.  The presence of this 

empty file prompts the program to modify the data for an against curvature test where the 

ventricularis is found at the top of the image and the fibrosa at the bottom.  The data is flipped 

along the horizontal axis so that the ventricularis is located at the bottom of the image according 

to previously established conventions. 

 The Matlab script loco.m performs all of the calculations and data processing to go from 

raw marker coordinates to analyzed data.  A variety of formatted plots can be generated by the 

script and saved to disk in Adobe Acrobat PDF format.  The variables used in loco.m are listed 

and detailed in Table XX and the source code with explanations follows afterwards. 
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Table 17: Variables used in loc.m 

data Matrix containing data loaded from data.txt 
dat.x1 Reference marker x coordinates read from data 
dat.y1 Reference marker y coordinates read from data 
dat.x2 Deformed marker x coordinates read from data, corrected for 

translation from reference origins 
dat.y2 Deformed marker y coordinates read from data, corrected for 

translation from reference origins 
dat.u u gradient calculated from X1-x1
dat.v v gradient calculated from X2-x2
toaster1 Scaling factor used to determine whether the v gradient of some 

points cause them to be outliers 
toaster2 Scaling factor used to determine whether the u gradient of some 

points cause them to be outliers 
i Iterative variable 
p Linear trend line fit to reference markers 
angle Angle calculated from p that line must be rotated to be horizontal 
R Rigid body rotation tensor 
dat.base Base matrix of (x, y) coordinates 
dat.thick Thickness of tissue calculated from maximum and minimum 

reference y coordinates 
plotmesh Delaunay triangle mesh generated from reference points 
beta Initial values used for nonlinear fitting routines 
sr Search radius of local fit read from file sr.txt for each specimen 
k Iterative variable 
sstx Sum of squares of total for x fit 
ssty Sum of squares of total for y fit 
ssex Sum of squares of errors for x fit 
ssey Sum of squares of errors for y fit 
j Iterative variable 
dist Distance map calculated for every point from every point 
local.x Reference marker x coordinates for the local system 
local.y Reference marker y coordinates for the local system 
local.xd Deformed marker x coordinates for the local system 
local.yd Deformed marker y coordinates for the local system 
local.u u gradient calculated from X1-x1 for the local system 
local.v v gradient calculated from X2-x2 for the local system 
local.base Base matrix of (x, y) coordinates in the local system 
localxfit Coefficients from nonlinear fit of deformed x coordinates 
localyfit Coefficients from nonlinear fit of deformed y coordinates 
local.xdpred Predicted deformed x positions using fit 
local.ydpred Predicted deformed y positions using fit 
local.meanx Mean of all local x coordinates 
local.meany Mean of all local y coordinates 
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Table 16 (continued).  

ss Iterative variable for determination of r2

rsquaredx r2 value determined for x fit 
rsquaredy r2 value determined for y fit 
base Base matrix of (x, y) coordinates 
dat.f11 F11 determined from partial derivative of x fit 
dat.f21 F21 determined from partial derivative of y fit 
dat.f22 F22 determined from partial derivative of y fit 
dat.f12 F12 determined from partial derivative of x fit 
Xi X coordinates obtained from generating a mesh of data range 
Yi Y coordinates obtained from generating a mesh of data range 
dat.uGrid u gradient expanded to grid made by Xi, Yi 
dat.vGrid v gradient expanded to grid made by Xi, Yi 
m Size in one dimension of gridded data 
n Size in one dimension of gridded data 
newsize Total number of elements in gridded data 
dat.Xv Vector form of Xi 
dat.Yv Vector form of Yi 
dat.uGridv Vector form of dat.uGrid 
dat.vGridv Vector form of dat.vGrid 
dat.ufit Coefficients of nonlinear fit of u gradients 
ru Residuals of nonlinear fit of u gradients 
jacbu Jacobian of nonlinear fit of u gradients 
dat.upredv Vector form of dat.upred 
dat.upred Predicted u gradients obtained from nonlinear fit 
dat.vfit Coefficients of nonlinear fit of v gradients 
rv Residuals of nonlinear fit of v gradients 
jacbv Jacobian of nonlinear fit of v gradients 
dat.vpredv Vector form of dat.vpred 
dat.vpred Predicted v gradients obtained from nonlinear fit 
dat.ynorm Reference y values normalized to range from 0 to 1 
dat.F Deformation gradient tensor 
dat.Ft Transpose of deformation gradient tensor 
dat.C Right Cauchy-Green deformation tensor 
dat.U Stretch tensor obtained via polar decomposition 
dat.R Rotation tensor obtained via polar decomposition 
dat.E Lagrangian strain tensor 
dat.V Eigenvectors of deformation gradient tensor 
dat.d Eigenvalues of deformation gradient tensor 
dat.L1  
dat.L2  
temp Temporary variable used for assigning values 
dat.xpred Deformed x coordinates predicted by applying F 
dat.ypred Deformed y coordinates predicted by applying F 
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Table 16 (continued).  
dat.xrot Rotated x coordinates predicted by applying R 
dat.yrot Rotated y coordinates predicted by applying R 
dat.xrot2 Rotated x coordinates predicted by applying R-1

dat.yrot2 Rotated y coordinates predicted by applying R-1

dat.xstr Stretched x coordinates predicted by applying U 
dat.ystr Stretched y coordinates predicted by applying U 
dat.sinalpha12 Intermediate to calculation of shear angle alpha 
dat.alpha Measure of angular rotation caused by application of F 
dat.lambda1 Stretches in the X1 and X2 coordinate system directions 
dat.deter Determinant of deformation gradient tensor 
dat.eigv Eigenvectors of stretch tensor U 
dat.eigd Eigenvalues of stretch tensor U 
dat.delta Angular rotation of principal axes from coordinate axes  
dat.lambda1p X1 stretch in principal direction 
dat.lambda2p X2 stretch in principal direction 
dat.caplamU1 Λ1 taking into account U11 and U12
dat.callamU2 Λ2 taking into account U22 and U12
dat.caplamF1 F1 taking into account F11 and F12
dat.caplamF2 F2 taking into account F22and F21
dat.lambda1vsynorm Linear trend line fit to U11 stretches and y normalized 
dat.caplam1vsynorm Linear trend line fit to Λ1 stretches and y normalized 
dat.ynormvscaplam1 Linear trend line fit to y normalized and Λ1 stretches 
capu1r2 r2 value obtained from ynormvscaplam1 fit 
intervals y normalized expressed in 0.1 intervals  
uoneline Λ1 values determined by ynormvscaplam1 along y normalized 

intervals 
dat.ynormvscaplam2 Linear trend line fit to y normalized and Λ2 stretches 
capu2r2 r2 values obtained from ynormvscaplam2 fit 
utwoline Λ2 values determined by ynormvscaplam2 along y normalized 

intervals 
dat.ynormvsalpha Linear trend line fit to y normalized and shear angle α values 
alphar2 r2 value obtained from ynormvsalpha fit 
alphaline α values determined by ynormvsalpha along y normalized 

intervals 
dat.naloc Location of neutral axis in normalized y coordinates 
fid File identification handle 
e11 E11 for output reasons 
e12 E12 for output reasons 
e22 E22 for output reasons 
u11 U11 for output reasons 
u12 U12 for output reasons 
u22 U22 for output reasons 
f11 F11 for output reasons 
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Table 16 (continued).  
f12 F12 for output reasons 
f21 F21 for output reasons 
f22 F22 for output reasons 
output Matrix for organizing data to be written to disk 
capU1capU2 Product of Λ1 and Λ2 for the determination of incompressibility 
flag0 Flag for plot of reference/deformed positions and displacement 

vectors 
flag1 Flag for plot of u and v displacements 
flag2 Flag for plotting E against y normalized 
flag3 Flag for plotting F against y normalized 
flag4 Flag for plotting U against y normalized 
flag5 Flag for plotting R against y normalized 
flag6 Flag for plotting lambda values against y normalized 
flag7 Flag for plotting 3D surfaces 
flag8 Flag for plotting separate u and v displacements 
flag9 Flag for plotting Lambda values against U and F 
flag10 Flag for plotting composite page of important plots 
dotsize Specification for size of scatter points 
pathstr String containing current path 
name String containing current directory name 
pwd System variable containing current path 
z Temporary variable for determining a string within a string 
first First part of specimen label, namely specimen number 
second Second part of specimen label, namely testing time 
suptitle Concatenated specimen label 
X X coordinates obtained from generating a mesh of data range 
Y Y coordinates obtained from generating a mesh of data range 
maxU11 Maximum U11 value 
minU11 Minimum U11 value 
maxU22 Maximum U22 value 
minU22 Minimum U22 value 
maxA Maximum α value 
mina Minimum α value 
maxE12 Maximum E12 value 
minE12 Minimum E12 value 
maxcU1 Maximum Λ1 value 
mincU1 Minimum Λ1 value 
maxcU2 Maximum Λ2 value 
mincU2 Minimum Λ2 value 
datarow Vector used to organize data for screen output 
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% Thanh Lam 
% March 25, 2004 
% Transmural strain analysis program 
clear; 
 
%-----------------------------------------------------------------------% 
% Load data.txt generated by Transmural VI 
%-----------------------------------------------------------------------% 
if exist('data.txt') 
    load data.txt; 
 
    dat.x1=data(:,1); 
    dat.y1=1024-data(:,2); 
    dat.x2=data(:,3)-(mean(data(:,3))-mean(data(:,1))); 
    dat.y2=(1024-data(:,4))-((1024-mean(data(:,4)))-(1024-mean(data(:,2)))); 
 
    clear data; 
else 
    error('data.txt file not found'); 
end 
 
if exist('ac.txt') 
    dat.x1=1280-dat.x1; 
    dat.y1=1024-dat.y1; 
    dat.x2=1280-dat.x2; 
    dat.y2=1024-dat.y2; 
end 
 
%-----------------------------------------------------------------------% 
% Calculate u and v gradients from x and y data 
%-----------------------------------------------------------------------% 
dat.u=dat.x2-dat.x1; 
dat.v=dat.y2-dat.y1; 
 
%-----------------------------------------------------------------------% 
%   TOASTER ELIMINATES OUTLIERS 
%-----------------------------------------------------------------------% 
if exist('notoast.txt') 
    toaster1=20000; 
    toaster2=20000; 
else 
    toaster1=mean(abs(dat.v))*2; 
 for i=1:size(dat.x1) 
        if abs(dat.v(i))>=toaster1 
            dat.x1(i)=0; 
            dat.y1(i)=0; 
            dat.x2(i)=0; 
            dat.y2(i)=0; 
            dat.u(i)=0; 
            dat.v(i)=0; 
        end 
 end 
 
    toaster2=mean(abs(dat.u))*2; 
    for i=1:size(dat.x1) 
        if abs(dat.u(i))>=toaster2 
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            dat.x1(i)=0; 
            dat.y1(i)=0; 
            dat.x2(i)=0; 
            dat.y2(i)=0; 
            dat.u(i)=0; 
            dat.v(i)=0; 
        end 
 end 
 
dat.x1=nonzeros(dat.x1); 
dat.y1=nonzeros(dat.y1); 
dat.x2=nonzeros(dat.x2); 
dat.y2=nonzeros(dat.y2); 
dat.u=nonzeros(dat.u); 
dat.v=nonzeros(dat.v); 
 
end 
 
clear toaster1 toaster2; 
 
%-----------------------------------------------------------------------% 
%    DATA FITTING 
%-----------------------------------------------------------------------% 
 
p=polyfit(dat.x1,dat.y1,1);                               % Rotate data 
angle=atan(p(1));                                         % Rotate data 
R=[cos(angle), -sin(angle);sin(angle),cos(angle)];        % Rotate data 
dat.base=[dat.x1,dat.y1]*R;                               % Rotate data 
dat.x1=dat.base(:,1);                                     % Rotate data 
dat.y1=dat.base(:,2);                                     % Rotate data 
clear dat.base;                                           % Rotate data 
dat.base=[dat.x2,dat.y2]*R;                               % Rotate data 
dat.x2=dat.base(:,1);                                     % Rotate data 
dat.y2=dat.base(:,2);                                     % Rotate data 
clear dat.base;                                           % Rotate data 
 
dat.thick=max(dat.y1)-min(dat.y1);              % "thickness" of tissue 
plotmesh=delaunay(dat.x1,dat.y1); 
beta=[1,1,1,1,1,1,1,1]';            % Initial values for nonlinear fits 
sr=load('sr.txt');                        % search radius for local fit 
 
%-----------------------------------------------------------------------% 
% Local fit code 
%-----------------------------------------------------------------------% 
% sstx, ssty: sum of squares total for x and y fits 
% ssex, ssey: sum of squares error for x and y fits 
% A distance table is calculated for every point from every point, those 
% points that are within the search radius are included for the local fit 
% (local.base).  Fit to the form in fit.m.  Points are predicted using the 
% fits to determine the SSE for the Rsquared calculation of each fit. 
%-----------------------------------------------------------------------% 
for i=1:length(dat.x1) 
    k=1; 
    sstx=0; 
    ssty=0; 
    ssex=0; 

166 



    ssey=0; 
    for j=1:length(dat.x1) 
        dist=sqrt((dat.x1(i)-dat.x1(j))^2+(dat.y1(i)-dat.y1(j))^2); 
        if dist < sr 
            local.x(k,:)=dat.x1(j); 
            local.y(k,:)=dat.y1(j); 
            local.xd(k,:)=dat.x2(j); 
            local.yd(k,:)=dat.y2(j); 
            local.u(k,:)=dat.u(j); 
            local.v(k,:)=dat.v(j); 
            k=k+1; 
        end 
    end 
    local.base=[local.x,local.y]; 
     
    localxfit(:,i)=nlinfit(local.base,local.xd,@fit,beta);      % X, Y fit 
    localyfit(:,i)=nlinfit(local.base,local.yd,@fit,beta);      % X, Y fit 
    local.xdpred=fit(localxfit,local.base);                     % X, Y fit 
    local.ydpred=fit(localyfit,local.base);                     % X, Y fit 
    local.meanx=mean(local.x);                                  % X, Y fit 
    local.meany=mean(local.y);                                  % X, Y fit 
    for ss=1:length(local.x)                                    % X, Y fit 
        sstx=sstx+(local.xd(ss)-local.meanx)^2;                 % X, Y fit 
        ssty=ssty+(local.yd(ss)-local.meany)^2;                 % X, Y fit 
        ssex=ssex+(local.xd(ss)-local.xdpred(ss))^2;            % X, Y fit 
        ssey=ssey+(local.yd(ss)-local.ydpred(ss))^2;            % X, Y fit 
    end                                                         % X, Y fit 
     
%     localxfit(:,i)=nlinfit(local.base,local.u,@fit,beta);      % u, v fit 
%     localyfit(:,i)=nlinfit(local.base,local.v,@fit,beta);      % u, v fit 
%     local.upred=fit(localxfit,local.base);                     % u, v fit 
%     local.vpred=fit(localyfit,local.base);                     % u, v fit 
%     local.meanu=mean(local.u);                                 % u, v fit 
%     local.meanv=mean(local.v);                                 % u, v fit 
%     for ss=1:length(local.x)                                   % u, v fit 
%         sstx=sstx+(local.u(ss)-local.meanu)^2;                 % u, v fit 
%         ssty=ssty+(local.v(ss)-local.meanv)^2;                 % u, v fit 
%         ssex=ssex+(local.u(ss)-local.upred(ss))^2;             % u, v fit 
%         ssey=ssey+(local.v(ss)-local.vpred(ss))^2;             % u, v fit 
%     end                                                        % u, v fit 
 
    rsquaredx(i,:)=1-ssex/sstx; 
    rsquaredy(i,:)=1-ssey/ssty; 
    clear local; 
end 
 
base=[dat.x1,dat.y1]; 
 
dat.f11=xfit(localxfit,base); 
dat.f21=xfit(localyfit,base); 
dat.f22=yfit(localyfit,base); 
dat.f12=yfit(localxfit,base); 
 
warning off MATLAB:griddata:DuplicateDataPoints; 
 
% Meshes x and y coordinates and then generates denser grid of data for 
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% given data set, reshapes data output to a point coordinate vector 
[Xi,Yi]=meshgrid(floor(min(dat.x1)/100)*100-100:10:floor(max(dat.x1)/100)*100+100,... 
    floor(min(dat.y1)/100)*100-100:10:floor(max(dat.y1)/100)*100+100); % For testing 
dat.uGrid=griddata(dat.x1,dat.y1,dat.u,Xi,Yi,'linear'); 
dat.vGrid=griddata(dat.x1,dat.y1,dat.v,Xi,Yi,'linear'); 
[m,n]=size(dat.uGrid); % Determine number of points and length of vector 
newsize=m*n; 
dat.Xv=reshape(Xi,[newsize 1]); 
dat.Yv=reshape(Yi,[newsize 1]); 
dat.uGridv=reshape(dat.uGrid,[newsize 1]); 
dat.vGridv=reshape(dat.vGrid,[newsize 1]); 
base=[dat.Xv,dat.Yv]; 
 
% % Performs nonlinear fit of u griddata and obtain coefficients 
[dat.ufit,ru,jacbu]=nlinfit(base,dat.uGridv,@fit,beta); 
dat.upredv=fit(dat.ufit,base); 
dat.upred=reshape(dat.upredv,[m n]); 
 
% % Performs nonlinear fit of v griddata and obtain coefficients 
[dat.vfit,rv,jacbv]=nlinfit(base,dat.vGridv,@fit,beta); 
dat.vpredv=fit(dat.vfit,base); 
dat.vpred=reshape(dat.vpredv,[m n]); 
 
%-----------------------------------------------------------------------% 
%   CALCULATIONS 
%-----------------------------------------------------------------------% 
% % Reset base point coordinate vector to data points 
base=[dat.x1,dat.y1]; 
dat.ynorm=(dat.y1-min(dat.y1))/dat.thick; 
 
for i=1:size(dat.f11,1) 
    dat.F(:,:,i)=[dat.f11(i),dat.f12(i);dat.f21(i),dat.f22(i)]; % F tensor 
    dat.Ft(:,:,i)=[dat.f11(i),dat.f12(i);dat.f21(i),dat.f22(i)]'; % F transpose tensor 
    dat.C(:,:,i)=fix((dat.Ft(:,:,i)*dat.F(:,:,i))*10000)/10000; % C tensor 
    dat.U(:,:,i)=sqrtm(dat.C(:,:,i)); % U tensor 
    dat.R(:,:,i)=dat.F(:,:,i)*inv(dat.U(:,:,i)); % R tensor 
    dat.E(:,:,i)=0.5*(dat.C(:,:,i)-eye(2)); % E tensor 
    [dat.V(:,:,i),dat.d(:,:,i)]=eig(dat.F(:,:,i)); 
    dat.L1(i)=sqrt(2*dat.V(1,1,i)+1); 
    dat.L2(i)=sqrt(2*dat.V(2,2,i)+1); 
    temp=dat.F(:,:,i)*[dat.x1(i);dat.y1(i)]; 
    dat.xpred(i)=temp(1); % x coordinates predicted from using F 
    dat.ypred(i)=temp(2); % y coordinates predicted from using F 
    temp=dat.R(:,:,i)*[dat.x1(i);dat.y1(i)];  
    dat.xrot(i)=temp(1); % x coordinates rotated by R 
    dat.yrot(i)=temp(2); % y coordinates rotated by R 
    temp=inv(dat.R(:,:,i))*[dat.x1(i);dat.y1(i)]; 
    dat.xrot2(i)=temp(1); % x coordinates rotated by inverse R 
    dat.yrot2(i)=temp(2); % y coordinates rotated by inverse R 
    temp=dat.U(:,:,i)*[dat.x1(i);dat.y1(i)]; 
    dat.xstr(i)=temp(1); % x coordinates stretched by U 
    dat.ystr(i)=temp(2); % y coordinates stretched by U 
    dat.sinalpha12(i)=(2*dat.E(1,2,i))./(sqrt(1+2*dat.E(1,1,i)).*sqrt(1+2*dat.E(2,2,i))); 
    dat.alpha(i)=(180/pi)*asin(dat.sinalpha12(i)); 
    dat.lambda1(i)=dat.U(1,1,i); 
    dat.deter(i)=det(dat.F(:,:,i)); 
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    [dat.eigv(:,:,i),dat.eigd(:,:,i)]=eig(dat.U(:,:,i)); 
    dat.delta(i)=acos(dot(abs(dat.eigv(:,1,i)),[1;0]))*180/pi; 
    dat.lambda1p(i)=dat.eigd(1,1,i); 
    dat.lambda2p(i)=dat.eigd(2,2,i); 
    dat.caplamU1(i)=sqrt(dat.U(1,1,i)^2+dat.U(1,2,i)^2); 
    dat.caplamU2(i)=sqrt(dat.U(2,2,i)^2+dat.U(1,2,i)^2); 
    dat.caplamF1(i)=sqrt(dat.F(1,1,i)^2+dat.F(1,2,i)^2); 
    dat.caplamF2(i)=sqrt(dat.F(2,2,i)^2+dat.F(2,1,i)^2); 
end 
 
% Find normalized location of neutral axis 
% dat.lambda1vsynorm=polyfit(dat.lambda1',dat.ynorm,1); 
% dat.caplam1vsynorm=polyfit(dat.caplamU1',dat.ynorm,1); 
% dat.naloc=polyval(dat.caplam1vsynorm,1); 
dat.ynormvscaplam1=polyfit(dat.ynorm,dat.caplamU1',1); 
capu1r2=r2linear(dat.ynormvscaplam1,dat.ynorm,dat.caplamU1'); 
intervals=[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]'; 
uoneline=polyval(dat.ynormvscaplam1,intervals); 
dat.naloc=(1-dat.ynormvscaplam1(2))/dat.ynormvscaplam1(1); 
 
dat.ynormvscaplam2=polyfit(dat.ynorm,dat.caplamU2',1); 
capu2r2=r2linear(dat.ynormvscaplam2,dat.ynorm,dat.caplamU2'); 
utwoline=polyval(dat.ynormvscaplam2,intervals); 
 
dat.ynormvsalpha=polyfit(dat.ynorm,dat.alpha',1); 
alphar2=r2linear(dat.ynormvsalpha,dat.ynorm,dat.alpha'); 
alphaline=polyval(dat.ynormvsalpha,intervals); 
 
%-----------------------------------------------------------------------% 
% Output calculated values to text file crunched.txt 
%-----------------------------------------------------------------------% 
fid=fopen('crunched.txt','w'); 
fprintf(fid,'x1\tx2\tX1\tX2\tU\tV\tYNORM\tALPHA\tE11\tE12\tE22\tU11\tU12\tU22\tF11\tF12\tF21\tF22\tr2X
\tr2Y\n'); 
 
e11(:,1)=dat.E(1,1,:); 
e12(:,1)=dat.E(1,2,:); 
e22(:,1)=dat.E(2,2,:); 
u11(:,1)=dat.U(1,1,:); 
u12(:,1)=dat.U(1,2,:); 
u22(:,1)=dat.U(2,2,:); 
f11(:,1)=dat.F(1,1,:); 
f12(:,1)=dat.F(1,2,:); 
f21(:,1)=dat.F(2,1,:); 
f22(:,1)=dat.F(2,2,:); 
 
output=[dat.x1, dat.y1, dat.x2, dat.y2, dat.u, dat.v, dat.ynorm, dat.alpha', ... 
        e11, e12, e22, ... 
        u11, u12, u22, ... 
        f11, f12, f21, f22, rsquaredx, rsquaredy]'; 
 
fprintf(fid,'%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n',output); 
fclose(fid); 
capU1capU2=mean(dat.caplamU1'.*dat.caplamU2'); 
clear output e11 e12 e22 u11 u12 u22 f11 f12 f21 f22; 
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%-----------------------------------------------------------------% 
%         PLOTTING ROUTINES 
% --------------------------------------------------------------- % 
flag0=0;             % reference/deformed points and vector plots % 
flag1=0;                                       % uv displacements % 
flag2=0;                                               % E tensor % 
flag3=0;                                               % F tensor % 
flag4=0;                                               % U tensor % 
flag5=0;                                               % R tensor % 
flag6=0;                                                % lambdas % 
flag7=0;                                               % 3D plots % 
flag8=0;                         % separate u and v displacements % 
flag9=0;                             % cap lambdas versus U and F % 
flag10=1;                                             % composite % 
dotsize=15;                                                        
 
% Determine the name of the sample specimen from the current directory 
% Used to name the composite graph page 
[pathstr,name]=fileparts(pwd);      % pwd is a system variable of the current path 
z=strfind(pathstr,'\'); 
first=upper(pathstr(z(length(z))+1:length(pathstr)));   % specimen number 
z=strfind(name,' '); 
second=name(z(length(z)):length(name));                 % test time 
suptitle=strcat(first,second); 
 
if flag0 
 figure; 
 set(gcf,'PaperPosition',[0.25 0.25 8 10.5]); 
 subplot(3,2,1); 
 scatter(dat.x1,dat.y1,'filled'); 
 hold on; 
 scatter(dat.x2,dat.y2); 
 title('Reference and Deformed Points'); 
 xlabel('X-coordinate');     ylabel('Y-coordinate'); 
 subplot(3,2,2); 
 quiver(dat.x1,dat.y1,dat.u,dat.v); 
 title('Displacement vectors'); 
 xlabel('X-coordinate');     ylabel('Y-coordinate'); 
 subplot(3,2,3); 
 quiver(dat.x1,dat.y1,dat.xstr'-dat.x1,dat.ystr'-dat.y1); 
 xlabel('x coord');      ylabel('y coord'); 
 title('U only gradient'); 
 subplot(3,2,4); 
 quiver(dat.x1,dat.y1,fix((dat.xrot'-dat.x1)*10000)/10000,fix((dat.yrot'-dat.y1)*10000)/10000); 
 xlabel('x coord');      ylabel('y coord'); 
 title('R only gradient'); 
 subplot(3,2,5); 
 scatter(dat.x1,dat.y1,'filled'); 
 hold on; 
 scatter(dat.xpred-(mean(dat.xpred)-mean(dat.x1)),dat.ypred-(mean(dat.ypred)-mean(dat.y1))); 
 xlabel('x coord');      ylabel('y coord'); 
 title('Reference and Predicted Points'); 
 subplot(3,2,6); 
 quiver(dat.x1,dat.y1,dat.xpred'-dat.x1,dat.ypred'-dat.y1); 
 quiver(dat.x1,dat.y1,dat.xpred'-(mean(dat.xpred)-mean(dat.x1))-dat.x1,... 
        dat.ypred'-(mean(dat.ypred)-mean(dat.y1))-dat.y1); 
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 xlabel('x coord');      ylabel('y coord'); 
 title('Predicted Displacement Vectors'); 
end 
 
if flag1 
    figure; 
    colormap('gray'); 
    set(gcf,'PaperPosition',[0.25 0.25 8 10.5]); 
    subplot(3,2,1); 
    scatter(dat.ynorm,dat.u,dotsize,dat.x1,'filled'); 
    xlabel('y normalized');    ylabel('u displacement');    grid; 
    subplot(3,2,2); 
    scatter(dat.ynorm,dat.v,dotsize,dat.x1,'filled'); 
    xlabel('y normalized');    ylabel('v displacement');    grid; 
    subplot(3,2,3); 
    scatter(dat.ynorm,dat.dudx,dotsize,dat.x1,'filled'); 
    xlabel('y normalized');    ylabel('ux');    grid; 
    subplot(3,2,4); 
    scatter(dat.ynorm,dat.dudy,dotsize,dat.x1,'filled'); 
    xlabel('y normalized');    ylabel('uy');    grid; 
    subplot(3,2,5); 
    scatter(dat.ynorm,dat.dvdx,dotsize,dat.x1,'filled'); 
    xlabel('y normalized');    ylabel('vx');    grid; 
    subplot(3,2,6); 
    scatter(dat.ynorm,dat.dvdy,dotsize,dat.x1,'filled'); 
    xlabel('y normalized');    ylabel('vy');    grid; 
end 
 
if flag2 
    figure; 
    colormap('gray'); 
    set(gcf,'PaperPosition',[0.25 0.25 8 10.5]); 
    subplot(3,2,1); 
    scatter(dat.x1,dat.E(1,1,:),dotsize,dat.y1,'filled'); 
    xlabel('x1');    ylabel('E11');    grid; 
    subplot(3,2,2); 
    scatter(dat.ynorm,dat.E(1,1,:),dotsize,dat.x1,'filled'); 
    xlabel('y normalized');    ylabel('E11');    grid; 
    subplot(3,2,3); 
    scatter(dat.x1,dat.E(1,2,:),dotsize,dat.y1,'filled'); 
    xlabel('x1');    ylabel('E12');    grid; 
    subplot(3,2,4); 
    scatter(dat.ynorm,dat.E(1,2,:),dotsize,dat.x1,'filled'); 
    xlabel('y normalized');    ylabel('E12');    grid; 
    subplot(3,2,5); 
    scatter(dat.x1,dat.E(2,2,:),dotsize,dat.y1,'filled'); 
    xlabel('x1');    ylabel('E22');    grid; 
    subplot(3,2,6); 
    scatter(dat.ynorm,dat.E(2,2,:),dotsize,dat.y1,'filled'); 
    xlabel('y normalized');    ylabel('E22');    grid; 
end 
 
if flag3 
    figure; 
    set(gcf,'PaperPosition',[0.25 0.25 8 10.5]); 
    subplot(4,2,1); 
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    scatter(dat.x1,dat.F(1,1,:)); 
    xlabel('x1');    ylabel('F11');    grid; 
    subplot(4,2,2); 
    scatter(dat.y1,dat.F(1,1,:)); 
    xlabel('y1');    ylabel('F11');    grid; 
    subplot(4,2,3); 
    scatter(dat.x1,dat.F(1,2,:)); 
    xlabel('x1');    ylabel('F12');    grid; 
    subplot(4,2,4); 
    scatter(dat.y1,dat.F(1,2,:)); 
    xlabel('y1');    ylabel('F12');    grid; 
    subplot(4,2,5); 
    scatter(dat.x1,dat.F(2,1,:)); 
    xlabel('x1');    ylabel('F21');    grid; 
    subplot(4,2,6); 
    scatter(dat.y1,dat.F(2,1,:)); 
    xlabel('y1');    ylabel('F21');    grid; 
    subplot(4,2,7); 
    scatter(dat.x1,dat.F(2,2,:)); 
    xlabel('x1');    ylabel('F22');    grid; 
    subplot(4,2,8); 
    scatter(dat.y1,dat.F(2,2,:)); 
    xlabel('y1');    ylabel('F22');    grid; 
end 
 
if flag4 
    figure; 
    set(gcf,'PaperPosition',[0.25 0.25 8 10.5]); 
    subplot(4,2,1); 
    scatter(dat.x1,dat.U(1,1,:)); 
    xlabel('x1');    ylabel('U11');    grid; 
    subplot(4,2,2); 
    scatter(dat.y1,dat.U(1,1,:)); 
    xlabel('y1');    ylabel('U11');    grid; 
    subplot(4,2,3); 
    scatter(dat.x1,dat.U(1,2,:)); 
    xlabel('x1');    ylabel('U12');    grid; 
    subplot(4,2,4); 
    scatter(dat.y1,dat.U(1,2,:)); 
    xlabel('y1');    ylabel('U12');    grid; 
    subplot(4,2,5); 
    scatter(dat.x1,dat.U(2,1,:)); 
    xlabel('x1');    ylabel('U21');    grid; 
    subplot(4,2,6); 
    scatter(dat.y1,dat.U(2,1,:)); 
    xlabel('y1');    ylabel('U21');    grid; 
    subplot(4,2,7); 
    scatter(dat.x1,dat.U(2,2,:)); 
    xlabel('x1');    ylabel('U22');    grid; 
    subplot(4,2,8); 
    scatter(dat.y1,dat.U(2,2,:)); 
    xlabel('y1');    ylabel('U22');    grid; 
end 
     
if flag5 
    figure; 
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    set(gcf,'PaperPosition',[0.25 0.25 8 10.5]); 
    subplot(4,2,1); 
    scatter(dat.x1,dat.R(1,1,:)); 
    xlabel('x1');    ylabel('R11');    grid; 
    subplot(4,2,2); 
    scatter(dat.y1,dat.R(1,1,:)); 
    xlabel('y1');    ylabel('R11');    grid; 
    subplot(4,2,3); 
    scatter(dat.x1,dat.R(1,2,:)); 
    xlabel('x1');    ylabel('R12');    grid; 
    subplot(4,2,4); 
    scatter(dat.y1,dat.R(1,2,:)); 
    xlabel('y1');    ylabel('R12');    grid; 
    subplot(4,2,5); 
    scatter(dat.x1,dat.R(2,1,:)); 
    xlabel('x1');    ylabel('R21');    grid; 
    subplot(4,2,6); 
    scatter(dat.y1,dat.R(2,1,:)); 
    xlabel('y1');    ylabel('R21');    grid; 
    subplot(4,2,7); 
    scatter(dat.x1,dat.R(2,2,:)); 
    xlabel('x1');    ylabel('R22');    grid; 
    subplot(4,2,8); 
    scatter(dat.y1,dat.R(2,2,:)); 
    xlabel('y1');    ylabel('R22');    grid; 
end 
 
if flag6 
    figure; 
    set(gcf,'PaperPosition',[0.25 0.25 8 10.5]); 
    subplot(2,1,1); 
    scatter(dat.ynorm,dat.U(1,1,:)); 
    xlabel('ynorm');    ylabel('lambda1');    grid; 
    subplot(2,1,2); 
    scatter(dat.ynorm,dat.U(2,2,:)); 
    xlabel('ynorm');    ylabel('lambda2');    grid; 
end 
 
[X,Y]=meshgrid(dat.x1,dat.y1); 
 
if flag7 
    figure; 
    set(gcf,'PaperPosition',[0.25 2.5 8 6]); 
    subplot(2,2,1); 
    scatter3(dat.x1,dat.y1,dat.u,'filled','k'); 
    hold on; 
    surfc(Xi,Yi,dat.upred,'EdgeAlpha',0.1); 
    colormap(summer); 
    title('x deformed'); 
    xlabel('x coord');    ylabel('y coord'); 
    subplot(2,2,2); 
    scatter3(dat.x1,dat.y1,dat.v,'filled','k'); 
    hold on; 
    surfc(Xi,Yi,dat.vpred,'EdgeAlpha',0.1); 
    title('y deformed'); 
    xlabel('x coord');    ylabel('y coord'); 
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    subplot(2,2,3); 
    trisurf(plotmesh,dat.x1,dat.y1,dat.E(1,2,:)); 
    title('E12'); 
    xlabel('x coord');    ylabel('y coord'); 
    subplot(2,2,4); 
    trisurf(plotmesh,dat.x1,dat.y1,dat.E(2,2,:)); 
    title('E22'); 
    xlabel('x coord');    ylabel('y coord'); 
end 
 
if flag8 
    figure; 
    colormap('gray'); 
    set(gcf,'PaperPosition',[0.25 0.25 8 10.5]); 
    subplot(2,1,1); 
 quiver(dat.x1,dat.y1,dat.u,zeros(size(dat.u))); 
 title('u displacements ONLY'); 
 xlabel('X-coordinate');     ylabel('Y-coordinate'); 
    subplot(2,1,2); 
 quiver(dat.x1,dat.y1,zeros(size(dat.v)),dat.v); 
 title('v displacements ONLY'); 
 xlabel('X-coordinate');     ylabel('Y-coordinate'); 
 
end 
 
if flag9 
    figure; 
    set(gcf,'PaperPosition',[0.25 0.25 8 10.5]); 
    subplot(2,2,1); 
    scatter(dat.U(1,1,:),dat.caplamU1); 
    xlabel('U11');   ylabel('CapLamU1');    grid; 
    subplot(2,2,2); 
    scatter(dat.U(2,2,:),dat.caplamU2); 
    xlabel('U22');   ylabel('CapLamU2');    grid; 
    subplot(2,2,3); 
    scatter(dat.U(1,1,:),dat.caplamF1); 
    xlabel('U11');   ylabel('CapLamF1');    grid; 
    subplot(2,2,4); 
    scatter(dat.U(2,2,:),dat.caplamF2); 
    xlabel('U22');   ylabel('CapLamF2');    grid; 
end 
 
if flag10 
 figure; 
 set(gcf,'PaperPosition',[0.25 0.25 8 10.5]); 
 subplot(3,2,1); 
%  scatter(dat.ynorm,dat.U(1,1,:),'filled','k'); 
%  title('U11 vs Y normalized'); 
 scatter(dat.ynorm,dat.caplamU1','filled','k'); 
    hold on; plot(intervals,uoneline); hold off; 
 title('capLambda1 vs Y normalized'); 
%  xlabel('Y normalized');     ylabel('U11');  grid; 
    xlabel('Y normalized');     ylabel('capLambda1');  grid; 
 subplot(3,2,2); 
 scatter(dat.ynorm,dat.U(1,2,:),'filled','k'); 
 title('U12 vs Y normalized'); 
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 xlabel('Y normalized');     ylabel('U12');  grid; 
 subplot(3,2,3); 
%  scatter(dat.ynorm,dat.U(2,2,:),'filled','k'); 
%  title('U22 vs Y normalized'); 
 scatter(dat.ynorm,dat.caplamU2','filled','k'); 
    hold on; plot(intervals,utwoline); hold off; 
 title('capLambda2 vs Y normalized'); 
%  xlabel('Y normalized');     ylabel('U22');  grid; 
 xlabel('Y normalized');     ylabel('capLambda2');  grid; 
 subplot(3,2,4); 
    scatter(dat.ynorm,dat.alpha,'filled','k'); 
    hold on; plot(intervals,alphaline); hold off; 
    title('alpha (degrees)'); 
 xlabel('Y normalized');      ylabel('alpha');  grid; 
 subplot(3,2,5); 
    scatter(rsquaredx,rsquaredy,'filled','k'); 
    axis equal; 
    title('R-squared in x vs R-squared in y'); 
 xlabel('R-squared in x');      ylabel('R-squared in y');  grid; 
 subplot(3,2,6); 
    scatter(dat.ynorm,dat.E(1,2,:),'filled','k'); 
 title('E12 vs Y normalized'); 
    xlabel('Y normalized');      ylabel('E12');  grid; 
    ax=axes('Units','Normal','Position',[.1 .1 .85 .85],'Visible','off'); 
    set(get(ax,'Title'),'Visible','on') 
    title(suptitle);       % Setup axes to place a supertitle 
    print -dpdf composite.pdf;      % Output figure to a pdf file 
%     close; 
end 
 
save dat.mat dat; 
 
%-----------------------------------------------------------------------% 
% Debugging plots 
%-----------------------------------------------------------------------% 
% figure; scatter(dat.x2,dat.y2,'filled'); hold on; scatter(dat.x1+dat.up,dat.y1+dat.vp); 
% figure; scatter(dat.x2,dat.y2,'filled'); hold on; scatter(dat.xpred,dat.ypred); 
% figure; scatter(dat.x1,ref.botpts); hold on; scatter(dat.x1,ref.toppts); 
%     scatter(dat.x1,dat.y1+ref.botpts); 
% figure; trisurf(plotmesh,datbak.x1,datbak.y1,zeros(size(datbak.x1))); 
% figure; trisurf(plotmesh,dat.x1,dat.y1,zeros(size(dat.x1))); 
% hold on; 
% scatter(tri.x1,tri.y1); 
% quiver(tri.x1,tri.y1,tri.xpred'-tri.x1,tri.ypred'-tri.y1,'k'); 
% view(0,90); 
% daspect([1 1 1]); 
% scatter(tri.x2,tri.y2,'k'); 
% % triplot(plotmesh,datbak.x2,datbak.y2); 
% triplot(plotmesh,dat.x2,dat.y2,'k'); 
maxU11=max(dat.U(1,1,:)); 
minU11=min(dat.U(1,1,:)); 
maxU22=max(dat.U(2,2,:)); 
minU22=min(dat.U(2,2,:)); 
maxA=max(dat.alpha); 
minA=min(dat.alpha); 
maxE12=max(dat.E(1,2,:)); 
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minE12=min(dat.E(1,2,:)); 
maxcU1=max(dat.caplamU1); 
mincU1=min(dat.caplamU1); 
maxcU2=max(dat.caplamU2); 
mincU2=min(dat.caplamU2); 
% disp('max stretch:'); 
% disp(maxU11); 
% disp('min stretch:'); 
% disp(minU11); 
% disp('neutral axis location:'); 
% disp(dat.naloc); 
 
%-----------------------------------------------------------------------% 
% Save pertinent data to text file in root directory 
%-----------------------------------------------------------------------% 
datarow=[maxU11,minU11,maxU22,minU22,dat.naloc,mean(rsquaredx),mean(rsquaredy),sr,capU1capU
2,i... 
        maxA,minA,maxE12,minE12,maxcU1,mincU1,maxcU2,mincU2]; 
% fid=fopen('..\..\stats.txt','a'); 
% fprintf(fid,'%s\t',suptitle); 
% fprintf(fid,'%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f',datarow); 
% fprintf(fid,'%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f',capu1r2,uoneline'); 
% fprintf(fid,'\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f',capu2r2,utwoline'); 
% fprintf(fid,'\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\r',alphar2,alphaline'); 
% fclose(fid); 
%-----------------------------------------------------------------------% 
 
clear maxU11 minU11 maxU22 minU22 maxA minA maxE12 minE12 maxcU1 mincU1 maxcU2 mincU2; 
% figure; 
% subplot(2,1,1); 
% scatter(dat.x1,dat.delta); 
% xlabel('x1 coord'); 
% ylabel('delta princip rotation degrees'); 
% grid; 
%-----------------------------------------------------------------------% 
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