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POROVISCOELASTIC DYNAMIC FINITE ELEMENT MODEL OF BIOLOGICAL TISSUE 
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University of Pittsburgh, 2004 
 

 
Clinical evidences have demonstrated the important contribution of biomechanical 

factors to the behavior of soft tissues.  Finite element analysis is used to study the mechanical 

behavior of biological tissue because it can provide numerical solutions to problems that are 

intractable to analytic solutions.  This dissertation develops a finite element method that includes 

poro-viscoelastic material behavior, finite deformations, inertia and mechano-electrochemical 

effects for the modeling of biological tissue.  

The finite strains and inertial effects are introduced into the poroelastic model of 

biological tissues. Thus, the weak forms for the porous - electric-chemical model are developed 

by treating cation and anion as variables. Newmark-β method, the backward method, and 

Newton’s method are incorporated into the implicit nonlinear solutions with the nearly 

incompressible and fully incompressible cases considered. 

This methodology and codes developed for the study have been verified with one –

dimensional analytical solutions.  Moreover, this study, using two dimensional examples, clearly 

demonstrates the importance of the finite deformation, the viscoelasticity of the material, and the 

electric-chemic effect. Finally, a preliminary work on the effect of impact loads on brain has 

show the capability of the present work in capturing sophisticated response behavior of the brain.  
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1.0 INTRODUCTION 

 

 

Biological tissue is a group of cells that perform a similar function [1]. There are four basic types 

of tissue in the human body: epithelium, connective tissue, muscle tissue, nervous tissue [1]. 

Here we introduce a typical nervous tissue, disc, to represent the biological tissue. 

 

 

1.1   CLINICAL DISC PROBLEM 
 

About 26 million Americans between the ages of 20 and 64 are affected by frequent low back 

pain [1], which is one of the major causes of worker’s disability and costs roughly $50-100 

billion each year [2]. Consequently, more attention is being paid to prevent and treat this disease. 

Most of the lower back problems are concerned with intervertebral disc (IVD). 

Although work has been done by a large number of researchers, the mechanisms that lead 

to low back pain still are not clear. However, many findings indicate that biomechanical factors 

are connected with disc aging, degeneration, and prolapse, the major causes of back pain and 

allied symptoms [4-8]. The motion segment, functional spinal unit, regarded as “the smallest 

segment of the spine that exhibits biomechanical characteristics similar to that of the entire 

spine” [9], has been the focus of much spine biomechanics research. Numerous experiments and 
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numerical studies have been done in this field. Further study of IVD (intervertebral disc) 

function could afford a better understanding of abnormal as well as normal spine function.  

 

 

1.2 PREVIOUS DISC MODELS AND THEIR LIMITATIONS 
 

 

Finite element analysis (FEA) has been applied in orthopedic biomechanics and spine 

biomechanics research since 1983. Belytschko et al. [10] were probably the first to set up a body-

disc-body FE model. Later, this model was developed [11] to investigate the nonlinear behavior 

of the disc under axial load with the annulus fibrous treated as nonlinear elastic material. Further, 

a similar FE model [12, 13] was set up to do a parametric study of the effect of disc geometry 

and (isotropic) material property parameters under compressive loading and under complex 

loading. In the study of disc material properties, nine elastic constants to define the material 

properties of the annulus were identified in [14] when the annulus was taken to be orthotropic.  

Because fibers are embedded in the disc annulus, Shirazi-Adl [15, 16] treated the disc 

annulus as a composite of fibers and ground substance with the annular fibers modeled as 

tension-only. The ground substance was considered as a homogeneous isotropic material, and the 

nucleus as an incompressible material. This is a typical current model of the disc. 

Many experimental observations suggest that it would be more realistic to consider 

biological tissue as a biphasic model. For example, when the disc is compressed, fluid flows out 

from either whole disc [17-19] or disc slices [19-22]. Similar behaviors also occur with articular 

cartilage, a closely related tissue [23-26]. Therefore, the biological tissues should be considered 

as multiphase system. 
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1.3 GENERAL REVIEW OF MULTI-PHASE MODELS 

 

During the last decade, two theories of multi-phase behavior have been developed to study the 

soft tissue. They are biphasic theory [25] and poroelastic theory [39, 40]. Both theories and their 

development are reviewed as follows.   

 

1.3.1 Biphasic Theory 

 

Mow et.al. [25] first presented the biphasic theory where the material was modeled as a mixture 

of two distinct phases: an incompressible, porous solid phase to describe the collagen-

proteoglycan matrix and an incompressible fluid phase to represent the interstitial fluid. The 

constitutive equations, continuity equations and momentum equations were derived. This theory 

was applied to study biphasic creep and biphasic stress relaxation.  

Spilker et al.[26] proposed a finite element formulation of the linear biphasic model for 

articular cartilage and other hydrated soft tissues where the fluid phase and solid phase are 

considered as incompressible. The Galerkin weighted residual method is applied to the 

momentum equation and mechanical boundary conditions of both the solid phase and the fluid 

phase. The penalty method is utilized to deal with the problem of the intrinsically incompressible 

binary mixture. The u (the solid phase displacement) –v (fluid phase velocity) form is adopted to 

express the weak form of the weighted residual statements for the solid and fluid phases. Suh [66] 

went further to consider the solid phase as hyperelastic, and define the stress-strain relations in 

terms of the free energy function. Levenston et al. [32] derived a three-field mixed (u-p-w) finite 
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element formulations capable of describing both geometric and material nonlinearities based on 

three variational principles that make use of alternate penalized forms of the internal energy.  

It was demonstrated that the viscoelastic behavior of the tissue is not only due to the 

diffusive interaction between the solid matrix and the interstitial fluid (flow-dependent), but also 

to the intrinsic viscoelasticity of the solid (flow –independent) [27], therefore, many models were 

developed to describe it. Mak [28] made an integral-type linear viscoelastic model to represent 

the intrinsic viscoelaticity of the solid matrix [29]. Based on this work, Suh et al.[30,31] 

combined a viscoelastic solid phase and a mixed –penalty based finite element formulation to 

model cartilage in confined and unconfined compression. Also, Huang [58] incorporated 

biphasic theory [25], and a biphasic-conewise linear elastic model [60] with the biphasic 

poroviscoelastic model [28] into a single model to analyze the response of cartilage to standard 

testing configurations. Wolfgang [59] developed a model to combine a descriptive representation 

of the linear viscoelasticity law for the organic solid matrix with biphasic theory.  

Since significant deformations resulting from loading and inherent swelling mechanisms 

in the soft tissues have been described [19, 22, 33-35], Lai et al. [36] developed a triphasic model 

to consider the effects of swelling and transport in continuum descriptions of soft tissue 

mechanics. 

 

1.3.2 Triphasic Theory 

 

Triphasic theory [36] views the soft tissue as a mixture of three phases: an incompressible solid 

phase, an incompressible fluid phase and an ion phase of two species (cations and anions) of a 

single salt. This theory is the combination of the physical-chemical theory for ionic and 
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polyionic solutions with the biphasic theory for cartilage. The momentum equations involve 

chemical potentials whose gradients are the driving forces for movements of ions. These 

chemical potentials are determined by fluid pressure, salt concentration, solid matrix dilatation, 

and fixed charge density. 

Gu [67] extended triphasic theory to model the mechano-electrochemical behaviors of 

charged – hydrated soft tissues containing multi-electrolytes. There are n+2 phases such as 1 

charged solid phase, 1 non charged solvent phase, and n ion species. The corresponding 

continuity equations, momentum equations, and constitutive equations were derived. Sun et al. 

[72] gave the corresponding finite element formulation for Gu [67] theory. Similarly, Huyghe et 

al. [37] derived a chemo-eletro-mechanical formulation of quasi-static finite deformation of 

swelling incompressible porous media from mixture theory, in which four phases are defined: 

solid, fluid, anions and cations.  Based on the assumption of incompressible and isothermal 

deformation, balance laws are derived for each phase and for the mixture as a whole. These 

equations are solved by the finite element method using a weighted residual approach [68]. This 

model was applied to study the intervertebral disc tissue [38].  

 

1.3.3 Poroelastic Model 

 

B.R. Simon [39, 40] considered the soft tissues in the spinal motion segment as poroelastic 

materials which were treated as a fluid phase flowing through the pores of a deformable porous 

solid skeleton or solid phase. A u (displacement of solid phase)-w (displacement of fluid phase) 

formulation was utilized where the fluid motion is relative to the deforming solid phase. The 

field equations given by Biot [41] include an overall dynamic equilibrium equation and a 
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generalized Darcy law for the dynamic equilibrium for the fluid motion. Later, Simon [61] 

extended this work to large strains. He gave both Eulerian and Lagrangian forms of the 

governing equations.  

On the basis of Simon’s work [39, 40], Laible [42] modified the constitutive law and 

added initial stresses to include the effects of swelling caused by osmotic pressure. The results in 

this paper demonstrated the dramatic effect of swelling on the load carrying mechanisms in the 

disc. 

 

1.3.4 Poroelastic Transport-Swelling (PETS) Model 

 

In 1996, B.R.Simon et al. [43] extended poroelastic model to poroelastic transport –swelling 

(PETS) model which includes chemical effects, therefore, the governing equations of PETS have 

the terms of chemical potential inside and include the diffusion equation of ions as well. 

The latest development in this area is a 3-dimensional formulation for a poroelastic and 

chemical electric (PEACE) model [44]. Based on the work of Sun [67] and Simon [39, 40], this 

model adopted the field variables of solid displacement u, relative fluid velocity w, electric 

potential and Cl concentrations c- and Na concentrations c+ to investigate the influence of fixed 

charge density magnitude and distribution on a slice of disc material. The results show that the 

mechanical, chemical, and electrical behaviors were all strongly influenced by the amount as 

well as the distribution of fixed charges in the matrix.  
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1.3.5 Comparison of PETS and Triphasic Theory 

 

The PETS model takes the solid skeleton as the problem domain. The derivation of the 

governing equation of the fluid was based on empirical evidence that the fluid flow in porous 

media obeys a conduction-type law (Darcy’s law), where the flow is proportional to the pressure 

gradient. Besides, the motion of the ions is described by the diffusion equation. 

On the contrary, in Triphasic model, the solid and fluid phases are considered separate 

overlapping continua. The individual phases, and the mixture as a whole, have separate balance 

equations. According to principle of mixture, these equations should all have similar forms. For 

the ion phase, it is controlled by the electroneutrality condition and ion diffusion – convection 

equation.  

However, Levenston [32] and Simon [43] established the equivalence of both theories. 

 

 

1.4 LIMITATIONS OF EXISTING MODELS 

 

 The features of the existing models are listed in Table 1.1. This table clearly shows that these 

models incorporate increasing more features of actual biological tissue. However, except for the 

model of Simon [39, 40], the methods are quasi-static which means the inertia is ignored. 

Actually, the inertia terms can be significant when the external forces vary rapidly.  This table 

also shows that most of the models are limited in small strain case except the model of 

Spilker[26] and Levenston[32], but in fact, because of the low stiffness of biological tissue [39,  
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Table 1.1 Basic features of previous models 

 

 

References Theory Deformation Solid Elastic 
Solid 

Viscous 
Fluid 

Chemical 

Behavior 
Inertial 

Mow[25] Biphasic Small Linear No Incompressible No Quasi-static 

Spilker[26,66] Biphasic Large Nonlinear No Incompressible No Quasi-static 

Levenston[32] u-p-w Large Nonlinear No Incompressible No Quasi-static 

Suh[30,31] Biphasic Small Linear Visco Incompressible No Quasi-static 

Huang[58] Biphasic Small Linear Visco Incompressible No Quasi-static 

Wolfgang[59] Biphasic Small Linear Visco Incompressible No Quasi-static 

Lai[36] Triphasic Small Linear No Incompressible +,-ions Quasi-static 

Sun[72] 
Chemo-Electric-

Mechanical 
Small Linear No Incompressible +,-ions Quasi-static 

Huyghe[37,38] 
Chemo-Electric-

Mechanical 
Small Linear No Incompressible +,-ions Quasi-static 

B.R.Simon[39,40] Poroelastic Small Linear No Incompressible No Dynamic 

Laible[42] Poroelastic Small Linear No Incompressible Ion Quasi-static 

B.R.Simon[43] 
PETS 

(Poroelastic) 
Small Linear No Incompressible Ion Quasi-static 

C.I.James[44] 
PEACE 

(Poroelastic) 
Small Linear No Incompressible +,-ions Quasi-static 

Yang PETS Large Linear Visco Incompressible +,-Ions Dynamic 
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40], many physiological cases involve large deformation. The constituents of biological tissue 

such as collagen fibrils and proteoglycan gel are highly viscoelastic, independent of fluid flow, 

but only the models of Suh [30, 31], Huang [58], and Wolfgang [59] considered this point, 

however, these models are limited in small strain. Additionally, some models considered the 

chemical and electrical effects, others not. 

 

 

1.5 OBJECTIVES 

 

From the above discussion, we can see that there is no model which includes large deformation, 

material viscoelasticity and inertial effects, and these are important features of the mechanical 

behavior of the biological tissue.  In order to understand the mechanical behavior of the spine, 

we must distinguish the role of the interaction of the fluid and the solid and the role of the 

viscoelasticity of the materials. We also need to know the effect of large deformation and inertia 

because they exist in the biological tissue. Therefore the objective of this thesis research is to 

develop poro-viscoelastic, finite deformation, dynamic finite element model, including the 

mechano-electrochemical effects.  

 The paper is organized as follows: 

 • The background including the biomechanics of the disc is introduced in Chapter 2. 

• The model formulation of the poroelastic theory is given in Chapter 3 along with a 

description of the material properties. 

• Chapter 4 presents the numerical implement of the model. 

• Some verifications of the program are done in chapter 5. 
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• Parametric studies of a 2-D model are accomplished in chapter 6. 

• Conclusions and future research are included in chapter 7. 
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2. 0 BACKGROUND 

 

 

2.1 NORMAL ANATOMY AND BIOMECHANICS 

 

The intervertebral disc is the primary focus of this study and is used to represent the biological 

tissue. The intervertebral disc is composed of three distinct parts: the nucleus pulposus, the 

annular fibrosus, and the cartilaginous end-plate (Figure 2.1). The nucleus pulposus is a viscous, 

mucoprotein gel located in the center of the disc [45, 46]. It consists of plentiful sulfated 

glycosaminoglcans in a loose network of type II collagen. The water in nucleus varies with age. 

At birth, it has the maximum, approximately 90%, then decreases to 80% in the young adult and 

continues to decline with age. The annulus fibrosus is the outer boundary of the disc, which 

becomes differentiated from the periphery of the nucleus. The interface between the nucleus and 

the annulus is progressively more indefinite with age. Coarse type I collagen fibers in the 

annulus are oriented obliquely and arranged in lamellae which connect the adjacent vertebral 

bodies. The fibers are in the same direction within a given lamella but opposite to those in 

adjacent lamellae. The collagen content of the disc steadily increases along the radial direction 

from the center to outside, where collagen reaches 70% or more of the dry weight. Type I and II 

collagen are located radially in opposing concentration gradients. The cartilaginous end-plates 

are composed of layers of hyaline cartilage which cover the adjacent vertebral bodies over the 

nucleus and inner annulus. Nutrients transport into the disc along the channels within end-plates. 
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Figure 2.1 Schematic of human lumber intervertebral disc [38] 
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The structural properties of disc are related to its chemical effect inside. A ‘swelling pressure’ 

exists in nucleus to enable the disc to support spinal compressive loads. The pressurized nucleus 

also creates tensile pre-stress within the annulus and ligamentious structures surrounding the disc. 

It is found that the ±60º orientation of the collagen fibers, relative to the longitudinal axis of the 

spine is optimal to support the tensile stresses developed within a pressurized cylinder [47]. This 

state of pre-stress provides an innate mechanical stability to the disc. 

 When a stress is placed on the spine is greater than the nuclear swelling pressure, water is 

extruded from the disc, principally through the semipermeable cartilaginous end-plates. 

Therefore, significant disc water loss can occur [48]. Adams’ [50] experiments on cadaveric 

spines found that under sustained loading, intervertebral disc lose height, bulge, and become 

stiffer in compression and more flexible in bending. Loss of nuclear water also has some effects 

on the load distribution internal to the disc. McNally and Adams [51] found that in the healthy 

disc under compressive loading, compressive stress occurs mainly within the nucleus pulposus, 

with the annulus acting primarily in tension. After three hours of compressive loading, a 

significant change occurred in the pressure distribution, with the highest compressive stress 

occurring in the posterior annulus. There were similar pressure distributions noted in degenerated 

and denucleated discs [52, 53].  
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2.2 REQUIREMENTS OF THE BIOLOGICAL TISSUE MODEL 

 

From the components and biomechanics of biological tissue, we can see that there are four 

phases: solid, fluid, positive and negative ions. As to these phases, there are different 

requirements. 

For the solid, it should satisfy the static equilibrium equation, like biphasic [25] and 

triphasic theory [36], or the governing equation of motion like poroelastic [39,40] and PETS 

model [43]. The selection of the material property develops from linear isotropic in model of 

Mow [25], Lai [36], Simon [39, 40] to nonlinear elastic in model of Levenston [32] and Spilker 

[26] or viscoelasticity in models of Suh [30, 31], Huang [58], and Wolfgang [59]. In addition, 

large strains were considered in models of Levenston [32] and Spilker [26], while the other 

models just were limited to small strains. 

For the fluid phase, there is little difference in these models. They should satisfy the 

Darcy equation. However, in model of poroelasticity [39, 40] and PETS [43], the equation 

includes the inertia term. 

For the electrochemical effect, every model that includes the effect of ions like PETS 

[43], Triphasic theory [36], and the Huyghe model [37, 38], has the diffusion equation and the 

electroneutrality condition to describe the motion of the mobile ions.  
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3.0   MODEL FORMULATION METHODS 

 

 

Simon et al. [43, 61] presented a formulation for poroelastic transport – swelling (PETS) field 

problem in soft tissues. However, this model is linear, small-strain, and quasi-static response, 

which limits the modeled behavior of soft tissue. Therefore, in this chapter, the PETS theory of 

Simon will be extended to include finite strains and inertial effects. 

 

 

3.1   POROELASTIC MODELS  

 

3.1.1 Mass and density [43] 

 

The soft tissues are composed of a fibrous tissue matrix enclosing interstitial fluid (water), in 

which the mobile species can move. Therefore, there are four phases in the soft tissue: solid, 

fluid, negative ions, and positive ions. In the poroelastic model for soft tissue, its structure is 

composed of deformable, porous elastic materials that are saturated with a mobile fluid. In 

addition, the concept of pores is a continuum view of the material. The ion phases also include in 

this model.  
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In the current configuration, the soft tissue is described theoretically as a continuum of an 

infinitesimal total volume of the bulk material, dV, that is located at a position x at time t. At the 

reference position X at tR=0, the volume dV is initially dVR. Based on the assumption that the 

volume and the mass of the mobile ion phases are negligible, the volume dV is the sum of solid 

(dVs) and fluid (dVf),  

                                                                                                (3.1) fs dVdVdV +=

And the total mass, namely dm, as 

fs dmdmdm +=                                                         (3.2) 

Thus, the overall density of the material in dV is given by 

dV
dm

=ρ                                                                (3.3) 

The porosity of the material n is defined as the ratio of the volume of the pores to the 

total volume of the material, therefore, the porosity of the soft tissues viewed as saturated porous 

solids is  

     
dV

dVn
f

=                                                               (3.4) 

The density of the solid is commonly defined by  

s

s
s

dV
dm

=ρ                                                        (3.5) 

and the density of the fluid as 

f

f
f

dV
dm

=ρ                                                            (3.6) 

Substituting equations (3.2), (3, 5) and (3, 6) into (3.3), yields  

fs nn ρρρ +−= )1(                                                      (3.7) 
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In the soft tissue, deformation results from the inherent swelling mechanism caused by 

the charges in the soft tissue. These charges are the ion phases in the soft tissue. The 

concentration of the ion phase c is defined in terms of the amount of positive and negative ions 

per volume of the fluid as 

f

c

dV
dmc

+

=+                                                               (3.8) 

f

c

dV
dmc

−

=−                                                               (3.9) 

 Some charges in the soft tissue, namely fixed charges, are immobile and fasten to the 

porous solid.  So, fixed charge density (FCD) is defined in terms of the amount of fixed charge 

in  as 
Fcdm fdV

f

c
F

dV
dmc

F

=                                                           (3.10) 

The electroneutrality condition requires 

Fccc += −+                                                          (3.11) 

 

3.1.2 Kinematics  

 

In this problem, there are four primary field variables: the displacement of the porous solid, u; 

the displacement of the pore fluid relative to the deforming solid w ; the concentration of the 

negative ion phase c-; and the concentration of the positive ion phase c+ . 

Consider a material point having a position vector X located in an initial coordinate 

system. At time t, the coordinate of the material point moves to a new location, which is denoted 
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as x, Thus, mathematically, the motion can be expressed as a mapping, Θ, of the initial ( material) 

coordinates X to the current (spatial) coordinates x: 

),( tXx Θ=                                                           (3.12) 

For the deformed material, the deformation information is available in the deformation gradient 

F, which is the key quantity in nonlinear elasticity, and is defined mathematically as follows: 

uIxF ∇+=∇≡                                                         (3.13) 

It is important to select the proper coordinate system in finite deformation analysis. There 

are two coordinate systems, one is in terms of the initial configuration (i.e. with respect to X), 

called a material or Lagrangian description, another one is in a deformed state (i.e. with respect 

to x), termed a spatial or Eulerian description.  

 

3.1.2.1 Eulerian form  The displacement of the saturated porous solid, u, is given by 

Xxt)u(x,u −==                                                        (3.14) 

The corresponding velocity and acceleration are  

  
Dt
Duu =&                                                                (3.15) 

Dt
Duu
&

&& =                                                                (3.16) 

The displacement of the pore fluid relative to the deforming solid, w, is 

uuxww −== ft),(                                                  (3.17) 

The relative velocity and acceleration of fluid are given by 

uuw &&& −= f                                                          (3.18) 

uuw &&&&&& −= f                                                          (3.19) 

The concentrations c+ and c- are expressed as 
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                                                             (3.20) )

)

,( tcc x++ =

                                                             (3.21) ,( tcc x−− =

The motion of the ion phases are described as 

 )                                                           (3.22) ,( tcc xuu ++ =

),( tcc xuu −− =                                                           (3.23) 

The corresponding velocity is given by 

                                                                     (3.24) ),( tcc xuu ++ = &&

),( tcc xuu −− = &&                                                          (3.25) 

Figure 3.1 illustrates the relationship between the absolute and relative displacements of 

the solid, fluid, negative ion phase and positive ion phase. 

 

 

Fig.3.1   One-dimensional representation of kinematics, including motions relative to the 

deforming solid 

X
x 

u=us

w 

 uf

uc+

W 

C+ C+ 

W 

uc-
C- C- 
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3.1.2.2 Lagrangian form  

 

3.1.2.2.1 Lagrangian form for the solid phase   For an arbitrary material point of the solid 

phase initially located at X in the reference configuration and located at x in the current 

configuration, the displacement, velocity and acceleration are given by 

Xxt)u(X,u −==                                        (3.26) 

                                 
dt
dut)(X,uu == &&                                                         (3.27) 

 
dt
dut)(X,uu
&

&&&& ==                                                         (3.28) 

 

3.1.2.2.2 Lagrangian form for fluid phase        Since the given fluid displacement is 

referred to the solid phase, with an assumption that an equal relative fluid mass flow rate occurs 

at the cross area, the relative fluid velocity the relationship of a relative fluid velocity between 

the Lagrangian form and Eulerian form is given in Appendix B as 

w
x
Xw &&
∂
∂

= Jˆ                                                           (3.29) 

Similarly, in an average (in the bulk sense) view of  and , and assuming that the integration 

of  and at the cross area is unchanged [Simon, 1992], the relative fluid displacements  and 

acceleration w are given as 

w&&̂ ŵ

w&&̂ ŵ ŵ

&&̂

w
x
Xw
∂
∂

= Jˆ                                                          (3.30) 
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w
x
Xw &&&&
∂
∂

= Jˆ                                                         (3.31) 

 

3.1.2.2.3   Lagrangian form for ion phases     For the ion phases, the motion and the velocity 

are given by 

                                                             (3.32) )

)

,( tcc X++ =

),( tcc Xuu ++ =                                                          (3.33) 

),( tcc Xuu ++ = &&                                                           (3.34) 

                                                              (3.35) ,( tcc X−− =

),( tcc Xuu −− =                                                           (3.36) 

),( tcc Xuu −− = &&                                                          (3.37) 

  

3.1.3 Momentum conservation laws (Eulerian Form) 

 

There are four forces on solid phase:  the frictional force between the solid and fluid )( wF &ssf R= ,  

body force, fluid pressure p, and pressure pc which is function of concentration of ions c, 

chemical expansion stress Tc, and the deformation of fluid, so the momentum conservation laws 

for the porous solid in the absence of body force are [42, 43] 

uσLw &&& )1()'()1( npRpn s
Tc

s −=+∇−+∇− ρ                                  (3.38) 

where   

1x
T

∂
∂

=<∇   
2x∂
∂

 >
∂
∂

3x
                                                (3.39) 
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TL                                      (3.40) 

 

             Rs = isotropic resistivity  

             pc = pressure due to the chemical potential,  

                                                                                 (3.41) )2(0
Fw

fcwf
c ccRTTBp ++−+= φµρξ

            = coupling coefficient in the chemical potential fB

              ζw = variation of water content 

             =  initial chemical water potential w
0µ

              =   chemical expansion stress cT

            R  =   universal gas constant 

            T  =  absolute temperature          

            φ  = osmotic coefficient 

 
           Because the pore fluid satisfies the Darcy equation, the momentum conservation laws for 

the pore fluid in the absence of body force have the form [43] 

ff
c

s npRpn uw &&& ρ=∇+−∇                                              (3.42) 

Making use of equation (3.17), the above equation changes as 

                                                     (3.43) wuw &&&&& ff
c

s nnpRpn ρρ +=∇+−∇

Thus, adding equations (3.7), (3.38) and (3.43), yields 

                                             (3.44) wuσL &&&& f
T np ρρ +=+∇ )'(
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In the porous model, the total stress σ is composed of the effective stress σ’ and the pore 

fluid pressure, p where p>0 for tension, 

            pmσσ += '                                                           (3.45) 

where   [ 1  1   1  0   0  0 ]                                                                                              (3.46) =Tm

So, equation (3.44) becomes 

                                                               (3.47a) wuσL &&&& f
T nρρ +=

Multiplying equation (3.43) by  yields a generalized Darcy law, 1−n

 wuw &&&&& ff

c

n
p

k
np ρρ +=

∇
+−∇                                        (3.47b) 

where 

                                 
sRn

k 2

1
=                                                           (3.48) 

Equations (3.47) are the governing equations of the soft tissue in Eulerian form in the absence of 

body forces. 

 

3.1.4 Momentum conservation laws (Lagrangian Form) 

 

Using equations (3.28), (3.29) and (3.31), equations (3.47) can be converted into the Lagrangian 

form,  

wFuTL &&&& ˆ)()( 1
0

−+= Jn f
T ρρ                                          (3.49a) 

wFuwFFF &&&&& ˆ)(ˆ)()( 11
0

1
0

1 T
ff

T
c

JJ
k
n

n
pp −−−− +=−∇⋅+∇⋅ ρρ                (3.49b)                         

where  

σFT ⋅= −1                                                         (3.50) 
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Multiplying equation (3.49b) by  yields  F

wFFuFwFF &&&&& ˆ)(ˆ)()( 11
00 ⋅⋅+⋅=⋅−∇+∇ −− T

ff
T

c

JJ
k
n

n
pp ρρ                         (3.53)                         

The permeability k̂  in Lagrangian form is defined by 

                                                                    (3.54) IFFk kkJ T ˆˆ 1 =⋅= −−

In this study, an average view of the permeability is taken, and k̂ is used to express the 

permeability of the porous material.  Thus, equation (3.53) becomes 

wFFuFw &&&&& ˆ)(ˆ
ˆ)( 1

0 ⋅⋅+⋅=−+∇ − T
ff

c

J
k
n

n
pp ρρ                             (3.55) 

 

3.1.5 Mass conservation laws (Lagrangian Form) 

 

According to the mass conservation, the storage due to compressibility of the solid and of the 

fluid should be equal to the dilation of the fluid and of the solid, so in small deformation, the 

fluid pressure can be expressed as [57] 

                                                           (3.56) ζα QnQp T += em

where 

Lue =                                                           (3.57) 
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                                                                       (3.58) wT∇=ζ

             
sf K
n

K
n

Q
−

+=
α1                                                         (3.59) 

              
sK

K
−= 1α                                                              (3.60) 

           K = “ apparent “ bulk moduli for the solid [62] 

           =  “true” bulk moduli for the solid [62] sK

           = “true” bulk moduli for the fluid [62] fK

In case of large deformation, it can be converted to the Lagrangian Form as 

[ ]ζα nEQp kk += '                                                     (3.61) 

where 

                                                                                                                     (3.62) 1' −− ⋅⋅= FEFE TJ

The material of soft tissue is always considered as nearly incompressible or 

incompressible. In poroelastic theory, the soft tissue is considered as nearly incompressible, and 

in biphasic and triphasic theories, it is fully incompressible. In case of near incompressibility, the 

“true” Possion’s ratio of solid phase is selected close to 0.5, which means is relatively high. 

However, in case of full incompressibility, both the solid and fluid are fully 

incompressible, , and 

sK

∞→sK ∞→∞→ QK f , , which means the pressure can not be 

determined by E’ and ζ directly. Thus, the incompressibility constraint can be applied to 

determine fluid pressure indirectly  

         0~" =+ ζ&& nEkk                                                        (3.63)  

where                      
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                                                                                                                     (3.64)          1" −− ⋅⋅= FEFE && TJ

                                                                             

3.1.6 Mobile ions  

 

In the triphasic theory [72], the gravitational and magnetic effects are neglected, and the 

gradients of chemical/electrochemical potentials µ̂∇  are the driving forces balanced by the 

frictional forces between phases such as the frictional force between the cation and solid 

phase . So the momentum equations are given as ))(( +
++ −= vvF s

ss f

Cation:  

0)()()(ˆ =−+−+−+∇− +−
−+

+
+

+
+

++ vvvvvv fff w
f

s
sµρ                    (3.65) 

Anion:  

0)()()(ˆ =−+−+−+∇− −+
+−

−
−

−
−

−− vvvvvv fff w
f

s
sµρ           (3.66) 

Where 

             =  frictional coefficients per unit tissue volume between α and β components, α, β 

{solid (s),fluid ( f), positive ion ( +), negative ion ( -)} 

αβf

∈

              = velocity of α component αv

              =  positive chemical potential +µ̂

             =   negative chemical potential −µ̂

Since the permeability of the soft tissue is extremely low, about 10-14 m4/Ns, it is 

reasonable to assume the soft tissue behaves like a pure solid [62], which means that the velocity 

of fluid is almost the same as that of solid. As a result, combining the second term and third term 

of equations (3.65) and (3.66), we have 
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Cation: 

0)()(ˆ =−+−+∇− +−
−+

+
+

++ vvvv ff s
sfµρ                                   (3.67) 

Anion: 

                                  (3.68) 0)()(ˆ =−+−+∇− −+
+−

−
−

−− vvvv ff s
sfµρ

Where 

fssf fff +++ +=                                                       (3.69) 

fssf fff −−− +=                                                       (3.70) 

The constitutive equations for the negative and positive ions are given by [72]: 

+
++

+
++ ++=

M
F

c
M
RT cϕγµµ )ln(ˆ 0                                           (3.71) 

−
−−

−
−− −+=

M
F

c
M
RT cϕγµµ )ln(ˆ 0                                            (3.72) 

The ion fluxes relative to the solid phase are defined by [72] 

                                                                 (3.73) )( sc vvJ −= +++

)( sc vvJ −= −−−                                     (3.74) 

Substituting (3.73) and (3.74) into equation (3.67), we have  

0)()(ˆ =−+−+∇− +

+

−

−

−++

+

+
++

cc
f

c
f sf

JJJµρ          (3.75) 

+++
+

−++−
−
−+ ∇=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
−⎟

⎠
⎞

⎜
⎝
⎛ µρ ˆJJ

c
ff

c
f sf        (3.76) 

Similarly, equation (3.68) becomes 

−−−
−

+−−+
+
+− ∇=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
−⎟

⎠
⎞

⎜
⎝
⎛ µρ ˆJJ

c
ff

c
f sf                                       (3.77) 

So, from equations (3.76) and (3.77), and can be expressed as +J −J
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sfsfsfsf

sf

ffffff
fcffc

−−++−+−+

−+
−+−

+−−
+++

+

++

∇++∇
−=

µρµρ ˆ)(ˆ
J                              (3.78) 

sfsfsfsf

sf

ffffff
fcffc

−−++−+−+

+−
+−+

−++
−−−

−

++

∇++∇
−=

µρµρ ˆ)(ˆ
J                               (3.79) 

or 

−++++++ ∇+∇= µµ ˆˆ 21 ckckJ                                            (3.80) 

+−−−−−− ∇+∇= µµ ˆˆ 21 ckckJ                                             (3.81) 

where 

sfsfsfsf

sf

ffffff
ff

k
−−++−+−+

+−−
+

+

++

+
−=

)(
1

ρ
                                      (3.82) 

sfsfsfsf ffffff
fk

−−++−+−+

−+
−

+

++
−=

ρ
2                                        (3.83) 

sfsfsfsf

sf

ffffff
ff

k
−−++−+−+

−++
−

−

++

+
−=

)(
1

ρ
                                        (3.84) 

sfsfsfsf ffffff
fk

−−++−+−+

+−
+

−

++
−=

ρ
2                                         (3.85) 

The continuity equations for ions are 

0)( =⋅∇+⋅∇+
∂
∂ ++

+
sc

t
c vJ                                              (3.86) 

0)( =⋅∇+⋅∇+
∂
∂ −−

−
sc

t
c vJ                                               (3.87) 

Equation (3.11) gives the electroneutrality condition for the global field, and for the local 

field it becomes 

0=⋅∇−⋅∇ −+ JJ                                                      (3.88) 
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Combination of equations (3.86) and (3.87) gives 

0)( =⋅∇+⋅∇+⋅∇+
∂
∂ −+ sk

k

c
t

c vJJ                                       (3.89) 

where 

−+ += ccck                                                             (3.90) 

 Equations (3.88) and (3.89) are the governing equations for the ions. 

 

 

3.2 CONSTITUTIVE LAW 

 

The effective stress σ’ in equation (3.44) is the portion of the total stress in excess of the local 

pore fluid pressure [57], and is connected with the properties of the “drained” material. In this 

study, we consider the material as viscoelasticity due to the components of biological tissue such 

as collagen fibrils and proteoglycan gel are highly viscoelastic, independent of fluid flow. In 

order to deal with the viscoelasticity, a concept that the final stress state is only dependent on the 

elastic deformations is applied here, therefore it is necessary to define the local elastic 

deformation gradient and the local viscous deformation gradient of the finite strain.  

 

3.2.1 Deformation gradient  

 

In this study, this deformation process of soft tissue is considered to involve the local 

instantaneous elastic deformation and local viscous deformation [54]. As a result, the 

deformation gradient consists of two parts: elastic and viscous, which is expressed as follows 

veFFF =                                                             (3.91) 
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Fig. 3.2 shows the multiplicative decomposition of the deformation gradient F. First, 

maps BvF 0 into B*, then maps B* into the current configuration B.  It should be noted that 

this transform isn’t unique, because the intermediate configuration with arbitrary rigid body 

rotation does not affect the validity of equation (3.91). Consequently for a given total 

deformation gradient F, decomposition given in equation (3.91) should be not unique. Thus, it is 

assumed that rotation is absent in the permanent part of the deformation gradient   to remove 

nonuniqueness. This assumption provides a base of further study equation (4.96). 

eF

vF

 

 

 

Fig.3.2 Configurations for describing the multiplicative decomposition of F [54] 

 

3.2.2    Large strain  

  

The Cauchy-Green strain tensor is defined as [54] 

B0 (initial) 

B (current) 

B* 

Fv

Fe

F 
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)(
2
1 IFFE T −=                                                       (3.92) 

Making use of equation (3.91), it can be written as 

                            I])F(F)F[(FE veTve −=
2
1  

                                           ])()()()()()[(
2
1 IFFFFFFFF −+−= vTvvTvveTeTv  

                                            I]FFFIFFF −+−= vTvveTeTv )[(
2
1]})[(

2
1{)(                             (3.93) 

or 

vveTv EFEFE += )()(                                                 (3.94)   

where are determined by: ve EE ,

])[(
2
1 IFFE −= eTee                                                  (3.95) 

])[(
2
1 IFFE −= vTvv                                                  (3.96) 

 

3.2.3 Stress measures  

 

The Cauchy stress tensor, or true stress, which is denoted by , is given in the current 

configuration B. Thus, the elastic stress and the viscoelastic stress are presented as follows [54].  

'σ

The elastic stress related to the configuration B* is defined as: 

Teee J −−= )(')( 1 FσFS                                                 (3.97) 

The viscoelastic stress related to the configuration  is determined by: 0B

TvevTvevev J −−−− == )()()(')( 11 FSFFFσFFS                               (3.98) 
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The definition of those stress tensors and the strain tensors and  shows clearly that 

the pair S

eE vE

e and is the Lagrangian pair with respect to the configuration B*, and the pair SeE v and 

 is the pair related to the configuration BvE 0. Because elastic deformations are imposed on the 

configuration B*, it is reasonable to adopt Se and to describe purely elastic problem in the 

constitutive equations developed for the Lagrangian description, and S

eE

v and  for Lagrangian 

description of viscoelasticity. 

vE

From equation (3.97), the effective stress   can be expressed as 'σ

Teee

J
)()(1' FSFσ =                                                      (3.99) 

Thus, in order to calculate the effective stress , the constitutive equations between the 

stress and the strain must be set up.  

'σ

 

3.2.4   Constitutive equations for viscoelastic materials 

 

Roger [56] has done extensive work to describe the behavior of  viscoelastic materials. In general, 

it is difficult to determine the large number of parameters in complex material models by 

experimental methods, thus, models with a small number of parameters have been used often in 

practice since they provide sufficient engineering accuracy in many applications.  

 

3.2.4.1  Instantaneous linear elasticity   For linear elastic problem, the relation between the 

stress and the strain is given as 

ee EDS ⋅=                                                          (3.100) 

where D has the isotropic form 
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⎢
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⎣

⎡

+
+
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µ
µ

µ
µλ
λµλ
λλµλ

.
0
00
0002
0002
000)2(

symm

D                            (3.101) 

 

3.2.4.2  Viscoelastic model [70]    There are two ways to describe viscoelastic behavior of 

materials: the differential description and the hereditary integral description. Both approaches are 

equivalent in principle because the integral form is a solution of the differential equations used in 

the differential description of the problem. In practice for nonlinear problems, the integral 

formulation is much more common, so the integral formulation will be adopted in this study. The 

relaxation formulation is interpreted as follows. 

For a body, at t=0, a stress 0σ is applied suddenly, and the corresponding strain is 

produced,  

 )(0 tJ vσε =                                                          (3.102) 

Later, σ  undergoes change as an arbitrary function )(tσ . The corresponding strain at 

time t can be obtained by combination of the strain caused by all the steps that occurred at 

time  (Figure.3.3), that is, tt <'
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Fig.3.3     Derivation of the hereditary integral [70] 

 

∫ −+=
t

vv dt
dt
dttJtJt

0
0 '

'
')'()()( σσε                                       (3.103) 

The above formula shows the strain at any given time is the function of the entire stress 

history )'(' tσ , , which is quite different from what happens in an elastic material since the 

strain of an elastic material depends at any time solely on the stress acting at that time only. 

tt <'

The integral in (3.103) is called a hereditary integral. Another useful form can be 

obtained through integration by parts: 

∫
−

−⋅−+=
t

vt
vv dt

dt
ttdJ

ttttJtJt
0

00 '
'

)'(
)'()]'()'([)()( σσσε                      (3.104) 

It should be noted that all the zeros in these equations refer to . Thus, when the 

bracketed boundary term is evaluated, it combines with the first term.  

+0

Since 

 
)'(

)'(
'

)'(
ttd

ttdJ
dt

ttdJ vv

−
−−

=
−

                                                (3.105) 

Equation (3.104) can be rewritten as 
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∫ −
−

+=
t

v
v dt

ttd
ttdJ

tJt
0

0 '
)'(
)'(

)'()0()( σσε                                     (3.106) 

We can extend the above equation to general relaxation formulation, which can be used to 

describe a viscoelastic material. , and then Jv becomes the tensor Jv. When Jv(0)=0, one memory 

integral has the following form [55]: 

∫ −∂
−∂

=
t

vvv d
t
t

0

)(
)(
)(

)( ττ
τ
τ

τ S
J

E                                          (3.107) 

The nature of the relax memory matrix  can be adequately described as )(tvJ

∑
=

−
− −=

m

i
ivv

ieA
1

1 )1()( τ
θ

θ DJ                                            (3.108) 

where is a matrix of material constants. The number of terms m and the values of those 

constants depend on experimental data. 

1−
vD
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4.0 NUMERICAL IMPLEMENTATION 

 

 

The mathematical model for the biological tissue has been described in the preceding chapters, 

including the porous model and the electro-chemical model. Equation (3.45) governs the porous 

model, and equation (3.81) and (3.82) controls the ion motion. Obviously, equation (3.45) 

couples the behavior of the solid and fluid, since the pressure is the function of the displacement 

of the solid and the fluid. Also, the coefficients in equations (3.81) and (3.82) are functions of 

unknown c+ and c-, and these equations are nonlinear. These complicated equations will be 

solved separately with two steps. First, equation (3.81) and (3.82) are solved to give the 

distribution of c+ and c- , and then with the known c+ and c- , equation (3.45) is computed to give 

the displacement of the solid and the fluid..  

In this chapter, the numerical implementation is discussed, including linearization of 

solid stress equations. First, we start with the finite element form of the governing equations.  

 

 

4.1 FINITE ELEMENT FORM OF THE POROUS MODEL 

 

In the finite element method, the governing differential equations are always converted into their 

weak form. The weak form and the differential equation with the specified natural boundary 
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conditions are equivalent, but the weak form is an integral form that is easy to implement 

numerically. The standard Galerkin method is utilized to find the generalized weak form.  

The porous model involves displacement of solid, displacement of fluid, pressure. 

Several finite element formulations were employed to solve it. In general, u-p formulation is 

common because of its computational efficiency [57]. However, its approximation of the fluid 

velocity field is poor, which is generally two orders lower than the solid displacement, and 

results in a discontinuous fluid flux at the element boundaries [73]. On the contrary, u-w-p 

formulation has no such problem, and was proved to be an effective form for the soft tissue 

problem [32, 65]. In addition, the near incompressibility and full incompressibility cases can be 

implemented easily with u-w-p formulation. Thus, u-w-p formulation is adopted in this study.  

Since the soft tissue is considered as near incompressibility or full incompressibility with 

different governing equations to describe it, the weak form for the near incompressibility is given 

first, and then modified for full incompressibility.  

 

4.1.1 Weak form for the near incompressibility 

 

Equation (3.45a) governs the motion of the solid phase in the absence of gravity by 

0ˆ)( 1 =
∂
∂

−−
∂

∂ −
j

j

i
fi

j

ji w
X
x

Jnu
X
T &&&& ρρ                                        (4.1) 

Multiply the above equation by the weight function H, and integrating over the domain of the 

problem, gives 

0ˆ)( 1 =Ω
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−−
∂

∂
Η −

Ω∫ dw
X
x

Jnu
X
T

j
j

i
fi

j

ji &&&& ρρ                                   (4.2) 

Using integration by parts on the first term, the above equation is written as 
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0ˆ)( 1
,, =Ω⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

Η−ΩΗ−ΩΗ−ΩΗ∫ ∫ ∫∫
Ω Ω Ω

−

Ω

dw
X
x

JndudTdT j
j

i
fijijjji

&&&& ρρ                (4.3)                         

and applying Green’s theorem to the first term, yields 

 0ˆ1
, =Ω⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

Η−ΩΗ−ΩΗ−Η ∫ ∫∫ ∫
Ω Ω

−

Ω∂ Ω

dw
X
x

JndudTdst j
j

i
fijiji

&&&& ρρ                  (4.4) 

Choosing the shape functions and the weight functions as 

u
LiN=Η                                                              (4.5a) 

Ki
u
Kii uNu =                                                           (4.5b)                      

Kj
w
Kjj wNw =ˆ                                                          (4.5c) 

and noting that the interpolation functions, and , are not time dependent, substituting 

equation (4.5) into equation (4.4) gives,  

u
KiN w

KjN

∫ ∫ ∫∫
Ω∂ Ω Ω

−

Ω

=Ω⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+Ω+Ω+− 0)()( 1
, Kj

w
Kj

j

i
f

u
LiKi

u
Ki

u
Liji

u
jLii

u
Li wdN

X
x

JnNudNNdTNdstN &&&& ρρ  

                           (4.6) 

Writing the above equation in matrix form, gives 

0=Ω+−+ ∫
Ω

dT
usfss TBfwMuM &&&&                                         (4.7) 

or 

Ω−=+ ∫
Ω

dT
usfss TBfwMuM &&&&                                            (4.8) 

where 

∫
Ω

Ω= dNNM u
Ki

u
LiLKss ρ)(                                                       (4.9) 
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∫
Ω

− Ω⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

= dN
X
x

JnNM w
Kj

j

i
f

u
LiLKsf

1)( ρ                                         (4.10) 

∫
Ω∂

= dstNf i
u
LiLu )(                                                        (4.11) 

T
jLi

T
ji N ,,][ =B                                                          (4.12) 

Equation (3.51) gives the governing equation for the fluid phase, 

 0ˆ)(ŵˆ
)/( 1 =

∂
∂

∂
∂

−
∂

∂
−−

∂
+∂ −

j
j

k

i

k
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i

j
fj

i

c
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X
x

Ju
X
x

k
n

X
npp &&&&& ρρ        (4.13) 

Multiplying the above equation by weight function Г and integrating over the domain, gives 

0]ˆ)(ŵˆ
)/([ 1 =Ω

∂
∂

∂
∂

−
∂

∂
−−

∂
+∂

Γ −

Ω
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X
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j
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i
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&&&&& ρρ  

                                                                                                              (4.14) 

Choosing weight function as  and substituting equation (4.5) into equation (4.14) yields w
LiN=Γ

∫∫∫
ΩΩΩ

Ω−Ω+Ω Kj
w
Ki

w
Li

i
c

w
LiKiK

w
Li wdNN

k
nd

n
pNdpNN &

ˆ, ,                                                   

0=Ω
∂
∂

∂
∂

−Ω
∂

∂
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ΩΩ
Kj

w
Ki
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LiKjKj

i

j
f

w
Li wdN

X
x

X
x

J
NudN

X
x

N &&&&
ρ

ρ  

                                                                                                                        (4.15)    

Writing equation (4.15) in matrix form, we get 

            wdfffs fwMwMuM =++ &&&&&                                           (4.16)                         

where 

 ∫
Ω

Ω
∂

∂
= dN

X
x

NM Kj
i

j
f

w
LiLKfs ρ)(          (4.17) 
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∫
Ω

Ω
∂
∂

∂
∂

= dN
X
x
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x
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NM w

Kj
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i

kfw
LiLKff

ρ
)(            (4.18) 

∫
Ω

Ω= dNN
k
nM w

Kj
w
LiLKd ˆ)(                                                   (4.19)    

Ω⋅+Ω⋅= ∫∫
ΩΩ

d
n

pNdpNNf i
c

w
LiKiK

T
LiLw

,,)(                            (4.20) 

In case of the near compressibility, referred to equation (3.56), the pressure can be expressed as,  

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

+=
k

s
rs

k

r
ii x

X
E

x
X

JQwnQp α,ˆ                                           (4.21) 

Multiplying the above equation by weight function Г and integrating over the domain, 

Ω⎥
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⎤
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Selecting the weight function to be , we get from the above equation  p
LN=Γ

pf=0                                                                (4.23) 

where 
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Combining equations (4.8), (4.16), and (4.23) into matrix form as follows: 
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⎪
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                                                                                                                       (4.25) 

or       
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FXCXM =+ &&&                                                         (4.26) 

where   
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4.1.2 Weak form for the full incompressibility 

 

Based on equation (3.57), the continuity equation becomes, 

0~
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∂
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The weighted residual formulation for the above equation is  
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so,  
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∫∫
ΩΩ

=Ω+⋅Ω 0)(')( wmBNuBmN && dnd TPTP          (4.33) 

where  m= the vector form of Kronecker delta, {1 1 1 0 0 0} 

 m’ =the modified vector form of Kronecker delta, {m1 m2  m3 0 0 0}, which is 

determined by ( )1−− FF TJ  

Equation (4.33) can be written as 

            0=⋅+⋅ wMuM &&
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where 
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Therefore, C and F  matrixes in equation (4.26) become 
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4.2 FINITE ELEMENT FORM OF THE ELECTROCHEMICAL MODEL 

 

The governing equation of the electrochemical model is given by equations (3.81) and (3.82) 

0=⋅∇−⋅∇ −+ JJ                                                   (4.39) 

0)( =⋅∇+⋅∇+⋅∇+
∂
∂ −+ sk

k

c
t

c vJJ                                (4.40) 

Multiplying the above equation by the testing functionψ , gives   

0)( =Ω⋅∇−⋅∇ −+

Ω
∫ dψJJ                                           (4.41) 

                                     (4.42) 0)()( =Ω⋅∇−Ω⋅∇ −

Ω

+

Ω
∫∫ dd ψψ JJ

With equation (3.73), the first term of the above equation becomes 

∫∫
Ω

−++++++

Ω

Ω∇+∇⋅∇=Ω⋅∇ dckckd ψµµψ ))ˆˆ(()( 21J  

∫ ∫
Ω

−++

Ω

+++ Ω∇⋅∇+Ω∇⋅∇= dckdck ψµψµ ))ˆ(())ˆ(( 21   (4.43) 

 Using integration by parts on the first term, yields 
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Ω Ω
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and applying Green’s theorem, we have 

∫∫ ∫
Ω
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Ω
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s
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Similarly,  
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Ω
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s
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so that, 
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and also, 
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Thus, the electroneutrality condition becomes 
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          (4.49) 

Choosing weight function as cN=ψ  
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         (4.50) 

and collecting term, the above equation can be written as 

dsckckckck cccc nNNNN ⋅∇−∇−∇+∇ +−−−−−−+++++

Ω
∫ )ˆˆˆˆ( 2121 µµµµ
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           (4.51) 

or in matrix form 

 c
111 ˆˆ fµMµM =+ −−++                                                  (4.52) 

 44



Where  

Ω∇⋅∇+−= −−++

Ω

+ ∫ dckck cc )())(( 211 NNM                               (4.53) 

Ω∇⋅∇+−= −−++

Ω
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dsckckckck ccccc nNNNNf ⋅∇−∇−∇+∇= −++++++−−−−−
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∫ )ˆˆˆˆ( 21211 µµµµ  (4.55) 

Multiplying equation (4.40) by the testing functionΨ , gives   
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vJJ                             (4.56) 

The third term of the above equation can be converted to: 

∫ ∫∫
Ω ΩΩ

Ω⋅Ψ∇−ΩΨ⋅∇=ΩΨ⋅∇ dcdcdc sksksk )()()()][ vvv                 (4.57) 

and using the divergence theorem, this term can be transformed as: 
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sksksk dcdscdc )()()()][ vnvv

Substituting equations (4.58), (4.48) into (4.56) , and  choosing weight function , cN=Ψ
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          (4.59) 

or 

ck
c 2fcB =&                                                            (4.60) 

where  
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                                                            (4.61) ∫
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  (4.62) 

 

 

4.3 TIME INTEGRATION 

 

There are two kinds of time integration schemes utilized for the finite element method. One is  

explicit time integration such as the central difference method, and the other is an implicit time 

integration such as trapezoidal rule.  For the explicit time, it has low computation cost because it 

dose not need to perform inversion, but it is conditionally stable, which requires a small time 

increment. On the other hand, the implicit time integration has opposite features. 

In this study, the Newmark-β method is applied for equation (4.26) and the backward-

Euler method for equations (4.52) and (4.60). 

 

4.3.1 Newmark-β method 

 

The discrete equation of motion is formulated by the following equation. 

nnnn FKXXCXM =++ &&&                                                  (4.63) 

and in n+1 step, 
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1111 ++++ =++ nnnn FKXXCXM &&&                                             (4.64) 

When Newmark-β is used, and are approximated as follows: nX& nX&&

)(
2

11 ++ +
∆

+= nnnn t XXXX &&&&&&                                                (4.65) 

}2)21{(
2

1
2

1 ++ +−
∆

+∆+= nnnnn tt XXXXX &&&&& ββ                              (4.66) 

Equations (4.65) and (4.66) are finite difference formulas. The parameter β determines 

the characteristics of stability and accuracy of this algorithm. 

The Newmark – β method has an advantage of unconditionally stability under the 

condition of   4/1≥β . 

 

4.3.2 Formulation 

 

The Newmark – β method is applied to solve equation (4.26). In case of 4/1,2/1 == βγ , it’s 

unconditionally stable. With these paremeters, equations (4.64), (4.65) and (4.66) become 

111 +++ =+ nnn FXCXM &&&                                                  (4.67) 

t
nn

nn ∆
+

+=
+

+

2

1
1 XXXX

&&&&
&&                                               (4.68) 
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+
+ XXXXX
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&                                    (4.69) 

Using the above equations to eliminate and  gives 1+nX& 1+nX&&

⎥⎦
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⎢⎣
⎡ +
∆
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⎡ +
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11

2  

                                                                                                                        (4.70) 
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Then, the terms and are updated using the formulas,  1+nX& 1+nX&&

nnnnn t
t

XXXXX &&&&& −∆−−
∆

= ++ )(4 1
2

1                                       (4.71)                         

nnnn

t
XXXX && −−

∆
= ++ )(2 11                                             (4.72)                         

where , and are known from the previous step of the calculations. Thus, if is 

determined from equation (4.70), and can be obtained from equations (4.71) and (4.72). 

So, the key point of this problem is to solve the nonlinear equation (4.70). 

nX nX& nX&& 1+nX

1+nX& 1+nX&&

Equation (4.70) can be written as 

0)( =−= LHSRHSXG                                                 (4.73) 

In order to solve the above nonlinear equation, Newton’s method [74] is applied to make 

the residual,  very small (Fig.4.1) with successive corrections until it is less than some 

tolerance. Thus, it is necessary to linearize equation (4.73) for matrix K [54]. 

)(XG

 

 

 

Fig.4.1 Schematic of Newton’s method 
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This is done by writing equation (4.73) as 

0)(1 =+=
∂
∂

+=+=++ ∆XKG∆X
X
GG∆GG∆X)(XG nnn

n
n                              (4.74) 

The above equation indicates how K matrix to be constructed. It can be expressed as a collection 

of columns in the form.  
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⎥
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                                (4.75) 

Each column can be determined as follows: 

j

NjNjj

j X
XXXXXXXXX

X δ
δ ),,,(),,,( 2121 LLLL GGG −+

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂             (4.76) 

where jXδ dependents on the specific problem. In this work, a good value for jXδ  was found to 

be . Every degree of the freedom has its corresponding column obtained by equation 

(4.76). 

10000/jX

Once the global stiffness matrix is determined, the increments X∆ can be obtained by 

equation (4.75), and then the vector X  is updated by XXX ∆+=+ nn 1 . Thus equation (4.75) is 

updated and the process is repeated until G is less than tolerance. Now the current step 

quantities  at every node are known and satisfy the governing equations. Subsequent time steps 

can be done until the final time is reached.  

X

A simplified flow chart of X and G iterative process and time integration can be seen in 

Fig.  4.2. 
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Input 
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Fig.4.2 Flow chart of solution of the system of equations  
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4.3.3. The backward - Euler method for the electrochemical model 

 

The backward-Euler method as an implicit method utilized to solve equation (4.60) [74]. This 

method approximates the derivative as follows: 

))((1)( 11 nnn ttx
t

tx −
∆

= ++&                                                (4.77)              

The backward-Euler method offers a better numerical stability than the explicit Euler method, 

which means that generally the time step size ∆t can be chosen larger with the explicit method 

and still yield results of the same accuracy as the explicit method. 

 So equations (4.52) and (4.60) become  

1
1

11
1

11
1 )()ˆ()()ˆ()( ++−+−++++ =+ ncnnnn fµMµM                            (4.78a) 

1
2

1 )())()(( ++ =−
∆

ncnknkc

t
fcc

B
                                     (4.78b) 

In the above equations, +c  and −c  are the unknowns. And kc , +µ̂ , −µ̂ ,  and are 

the functions of 

+
1M −

1M

+c  and −c , so these equations are nonlinear, and can be solved by Newton’s 

method described in the section 4.3.2.  

 

 

4.4 SELECTION OF THE ELEMENT 

  

In order to solve equations (4.70) and (4.78), the Galerkin finite element method is employed. 

With this approach the domain is discretized into elements and the unknown variable is 
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approximated in each element. In this approach, the unknowns, for example, the unknown field 

of displacement, u, should be represented in the following way: 

∑
=

=
N

i
ii Nuu

1
                                                          (4.79) 

where , known as shape or basis functions.  is the nodal value of the unknown function to 

be determined and N is the number of nodes each element contains.  

iN iu

            The discrete surface of the current configuration can be mapped into discrete elements in 

order to determine the unknown coefficients, and the key point is how to select suitable  for 

our problem. 

iN

This mathematical porous model involves the solid, the fluid and pressure, which means 

it’s a mixed problem. For this kind of problem, the selection of the interpolations for 

displacement and pressure is very important [64], and it is frequently noted that inappropriate 

interpolations yield very poor approximations.  

For the soft tissue, the solid and fluid phases are always considered as nearly 

incompressible, which may cause mesh locking. In mathematics, the discrete Babuska-Brezzi 

(BBL) condition was proved to be a critical requirement for the mixed finite element method to 

be stable and convergent. This theory was given in detail in Oden and Carey [63].  

However, in practice, a quick and simple tool is given to describe the discrete system 

behaviors in the different interpolations. The constraint ratio, r, is defined by 

c

eq

n
n

r =                                                              (4-80) 

Where for two dimensional problems,  

r>2                   too few incompressibility constraints 

r=2                   optimal 
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r<2                   too many incompressibility constraints 

r≤1                   locking 

Some typical elements are listed as follows. 

(1) The biquadratic displacement – biquadratic pressure quadrilateral 

(Ub2/Pb2)(Fig.4.3) 

 

 

 

 

 

 

 

                                                       

 

Fig.4.3 Ub2/Pb2 element (         - Pressure,        - Displacement) 

 

             r=2, which is optimal, but this element violates the BBL condition, which means it may 

exhibit spurious pressure modes. 

(2) The biquadratic displacement – bilinear pressure quadrilateral (Ub2/Pb1) (Fig.4.4) 

  r=8, which is very high (i.e., there are too few incompressibility constraints). Although 

it satisfies the BBL condition, sometimes, it yields very poor approximations. However, it is 

widely used. 
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Fig.4.4 Ub2/Pb1 element (         - Pressure,        - Displacement) 

(3) The biquadratic displacement – linear pressure   quadrilateral (Ub2/P1) (Fig. 4.5) 

 

 

 

 

 

                                                       

 

 

Fig.4.5 Ub2/P1 element (         - Pressure,        - Displacement) 

 

R=2.67, which is relatively optimal. This element satisfies the BBL conditions. But 

pressure in the element is discontinuous, which has inconvenience in defining boundary 

conditions of pressure. 
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In our study, we employ mainly Ub2/Pb2 elements in 2-D and 3- D problems, although 

they don’t satisfy the BBL conditions, they usually display good converge and yield satisfactory 

results. More important, no stability difficulties have been encountered in our problems. In 

addition, we also developed the Ub2/Pb1 and Ub2/P1 elements (referred to Appendix A), which 

can substitute for Ub2/Pb2 element if stability difficulties occur with the Ub2/Pb2 element.  

                

 

 

4.5 Ub2/Pb2 FINITE ELEMENT DESCRIPTION 

 

4.5.1 Element for Ub2/Pb2 

 

In this section, the 3-dimensional (3-D) Ub2/Pb2 finite element will be described because the 2-

dimensional (2-D) finite element is similar to the 3-D finite element, and the 3-D finite element 

can be reduced to be 2-D finite element. 

The 3-D element is a 27 node isoparametric element with local coordinates ξ, η, and ζ 

ranging from –1 to 1 (Figure 4.6). The corresponding shape functions are listed in Table 4.1. The 

five unknowns u, w, p, c+, c-,  are discretized as follows: 

 

−−

++

=

=

=

=

=

K
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K

K
c
K

K
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w
Kjj
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u
Kjj

cNc

cNc

pNp

wNw

uNu

                                                       (4.81)     
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(a) The global element 

ζ 

 

                                                                (b) The local element  

Fig. 4.6 Mapping of the global element into the local element 

ξ 

η 
III 
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I II III 
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Table 4.1 Shape functions of 27-node isoparametric element 

 

Node Shape function Node Shape function Node Shape function 

1 )1()1()1(
8
1

−−− ζζηηξξ  10 )1)(1()1(
4
1 2ζηηξξ −−−  19 )1()1()1(

8
1

+−− ζζηηξξ  

2 )1()1()1(
4
1 2 −−− ζζηηξ  

11 )1)(1()1(
2
1 22 ζηηξ −−−  

20 )1()1()1(
4
1 2 +−− ζζηηξ  

3 )1()1()1(
8
1

−−+ ζζηηξξ  12 )1)(1()1(
4
1 2ζηηξξ −−+  21 )1()1()1(

8
1

+−+ ζζηηξξ  

4 )1()1)(1(
4
1 2 −−+ ζζηξξ  13 )1)(1)(1(

2
1 22 ζηξξ −−+  22 )1()1)(1(

4
1 2 +−+ ζζηξξ  

5 )1()1()1(
8
1

−++ ζζηηξξ  14 )1)(1()1(
4
1 2ζηηξξ −++  23 )1()1()1(

8
1

+++ ζζηηξξ  

6 )1()1()1(
4
1 2 −+− ζζηηξ  

15 )1)(1()1(
2
1 22 ζηηξ −+−  

24 )1()1()1(
4
1 2 ++− ζζηηξ  

7 )1()1()1(
8
1

−+− ζζηηξξ  16 )1)(1()1(
4
1 2ζηηξξ −+−  25 )1()1()1(

8
1

++− ζζηηξξ  

8 )1()1)(1(
4
1 2 −−− ζζηξξ )1)(1)(1(

2
1 22 ζηξξ −−−17 26 )1()1)(1(

4
1 2 +−− ζζηξξ

9 )1()1)(1(
2
1 22 −−− ζζηξ )1)(1)(1( 222 ζηξ −−−18 

 
27 )1()1)(1(

2
1 22 +−− ζζηξ

 

 

 

4.5.2 The gradient of the displacement  

 

In equations (4.70) and (4.78), the gradients of u, w, p,  and   have to be calculated. As an 

example, the gradient of the displacement field u is evaluated as follows: 

+c −c
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In the above equation, the partial derivatives with respect to the current coordinates, x, y and z, 

of the shape functions are needed and defined by 
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The derivative of the shape functions with respect toξ ,η andζ  can be easily evaluated 

because the shape functions are explicit functions of the coordinatesξ ,η andζ .  The approach to 

calculate the partial derivatives ofξ ,η andζ with respect to the current coordinates x, y and z is 

done using the identity: 
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which gives 
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Specifically the terms on the right hand side of equation (4.85) can be evaluated as follows 
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The following well known formula [54] is also needed, 

ζηξ dddJdxdydz e=                                                    (4.87) 

 In the finite element calculations, each of the elements is mapped onto the same base 

element of Fig.4.6. Because of the complexity of the calculations, numerical integration is 

needed and the formula for Gauss integration is given by, 

∫ ∫ ∑∑∑∫− − −
Φ≅Φ

1

1

1

1 ,

1

1
),(),,(

j i kn

j

n

i

n

k
kjikji wwwddd ζηξζηξζηξ                       (4.88) 

where ),,( ζηξΦ is arbitrary function evaluated at the Gauss point ),,( kji ζηξ with the associated 

weighting values of nd . In this study, 3 gauss points were used in each direction of 

integration, so . 

ji ww , a kw

3=== kji nnn
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4.6 COMPUTATION OF THE INTERNAL FORCE 

 

In case of the large deformation and viscoelasticity, the computation of the internal force is 

complicated. In order to solve it numerically, the kinematical equations and viscoelastic 

constitutive equations should be linearized. Here we adopt the method of Jason Aaron given in 

[54]. 

 

4.6.1 Linearization of kinematical equations  

 

With an increment in time, all the gradients have an increment. In the following equations, a 

superposed hat is used to signify the incremented  or  current value. Thus,  

vevvee FFFFFF∆FFF
))

=∆+∆+=+= ))((ˆ                                 (4.89) 

where  

∆u)(uIuF∆FF +∇+=∆∇+=+ )(                                      (4.90) 

With the Cauchy-Green strain tensor formulation, the current strain associated with F
)

can then 

be obtained by 

)(
2
1)(

2
1)ˆˆ(

2
1ˆ IFFFIFFFIFFE −+−=−= vvveevT TTT ))))))

                       (4.91) 

This can be rewritten as: 

vvevT

EFEFE
))))

+=ˆ                                                      (4.92) 

where 

)(
2
1 IFFE −= eee T )))

                                                     (4.93) 
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)(
2
1 IFFE −= vvv T )))

                                                   (4.94) 

   In order to simplify the solution process, vL∆ , the viscoelastic increment, is introduced 

here as, 

1−

∆=∆ vvv FFL                                                         (4.95) 

It was mentioned in chapter 3 that rotation is assumed absent in the permanent parts of the 

deformation gradient , so the viscoelastic increment has no component of rotation. As a result, 

becomes a symmetric tensor:  

vF

vL∆

Tvv LL ∆=∆                                                            (4.96) 

The current viscoelastic deformation gradient can be expressed as: 

vvvvv FLIFFF )( ∆+=∆+=
)

                                            (4.97) 

Thus, the current viscoelastic strain is: 

vvvvvvvvvvv F
TTTT

EELLLLFIFFE ∆+=∆∆+∆+∆+−= )(
2
1)(

2
1)

              (4.98) 

Therefore, the increment of the viscoelastic strain is given by 

vvvvvvv TTT

FLLLLFE )(
2
1

∆∆+∆+∆=∆                                   (4.99) 

Finally, substituting equation (4.99) into equation (4.92), the current elastic strain can be given 

by  

1]))[()(
2
1ˆ(])[( −− ∆+∆∆+∆+∆−−∆+= vvvvvvvvvTvve TTT

FLIFLLLLFEEFLIE
)

 

                                                                                                                        (4.100) 

Because the displacement of solid remains unchanged over the increment, E in the above 

equation is known. And and  are the values of the previous time step. Therefore the above 

ˆ

vF vE
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equation is a nonlinear function of the viscoelastic increment, vL∆  to express the current value 

of the elastic strain.  

With the expression of the current value of the elastic strain, the current elastic stress can 

be expressed as: 

])ˆ([::
1−−

∆−−== vvvvee T

FEEEFDEDS
))))

                             (4.101) 

The elastic stress measure,  can be converted to the viscoelastic stress measure, , by  eS vS

TTT vvvvvvvevv −−−−−−

∆−−== FFEEEFDFFSFS
))))))))

]})ˆ([:{
111

                  (4.102) 

            Subtracting the stress of the previous time step from the stress at the current time, yields 

the increment of the viscoelastic stress,  

vvvvvvvvvv TT

SFFEEEFDFSSS −∆−−=−=∆
−−−− )))))

]})ˆ([:{
11

                 (4.103) 

 

4.6.2. Linearization of viscoelastic constitutive equations [54] 

 

As mentioned in Chapter 3, the integral form of the viscoelastic constitutive relation is used in 

this work as: 

∫ −∂
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=
t vvv d

t
t

t
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E                                              (4.104) 

A widely used form of the creep compliance  is chosen here, vJ

∑
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τ DJ                                            (4.105) 

The viscoelastic matrix is material property, which is determined by the experimental study.  vD

With the differentiation of the above equation, yields 
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so, equation (4.104) becomes 
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The increment of the viscoelastic strain in an increment of time can be expressed by 

)()( ttt vvv EEE −∆+=∆                                               (4.108) 

Substituting equation (4.104) into the above equation yields, 
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Using a linear approximation of and  from the interval t to , and taking the 

integration intervals from and , we have 
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where  

τττ
τ
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For simplification, equation (4.110) can be rearranged in terms of pv, wv, and hv. 
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v

v
vv

v
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where 
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Therefore, the increment of the viscoelastic stress, , can be obtained from equation (4.112) 

by 

vS∆

):(1 v
vv

v
v

v

v p
w

ShEDS −−∆=∆                                        (4.116) 

 

4.6.3. Nonlinear local incremental solution 

 

From equation (4.103) and equation (4.116), we can see that the increment of the viscoelastic 

stress is given in two different ways, one is from the kinematical equations, and another is based 

on the constitutive equation. Combining equation (4.103) and (4.116), yields, 

vvvvvvvv
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v
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]})ˆ([:{):(1 11

       (4.117) 

In the above equation, there is only one unknown, the viscoelastic increment .  Other 

terms are either known from the previous time step or expressed as a function of , therefore, 

using Newton’s method (referred to 4.3.2), 

vL∆

vL∆

vL∆ can be calculated numerically.  

Once is obtained, a schematic of the solution process is:  vL∆

eEqneEqnvEqnv SEEL
)

⎯⎯⎯ →⎯⎯⎯⎯ →⎯⎯⎯⎯ →⎯∆ )101.4()100.4()98.4( ˆˆ , thus the second Piola-Kirchhoff stress can be 

calculated and used to formulate the internal force.  
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5.0 VERIFICATION OF MODEL 

 

 

Verification of the computer model is hard to accomplish because of the complication of the 

problem. Here, we study the problems which have the analytical solutions. The verification can 

be done by comparing numerical results to analytical solutions for well established problems.  

These problems we select are: (1) solid phase (only); (2) fluid phase (only); (3) verification of 

the electroneutrality condition; (4) verification of the diffusive equation (one dimension); (5) 

solid-fluid phase (coupled, one dimension).  

 

 

5.1 SOLID PHASE  

 

Since in the small strain problems, the higher order terms of large strain theory can be considered 

negligible, the numerical results obtained by the proposed model should be almost the same as 

the result of small strain elastic theory. This provides a possibility to verify our program. Here 

the small uniaxial tension model is chosen (shown in Fig.5.1). The upper edge is loaded with 

pressure 90 Pa, and the corresponding loading history is shown in Fig.5.2. The bottom edge is 

constrained. The material properties are selected (referred to Table 5.1). Because the velocity and 

acceleration are relatively small, the static solution is considered as our analytical solution. 
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Table 5.1 Material properties of the element (Solid) 

 

E(Pa) ν ρs(kg/m
3
) ρf(kg/m

3
) n k( )sNm −/4

45500 0.0 1016 1000 0.0001 1E-16 

 

σ 

L=2m 

2m 
 

(a) Physical model 

 

(b) Finite element model 

Fig.5.1 The uniaxial tension model 
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                  Fig.5.2.The loading history 

 

For viscoelastic properties in equation (4.105), the amplitude A is selected as 0.00014 

and the relaxation time τ as 20.    

 

5.1.1 Elastic response 

 

In the small strain uniaxial tension, the analytical static results is  

            
E

Ltu σ
=)(                                                               (5.1) 

Figure 5.3 shows the result given by the proposed model is nearly the exact same result 

as the analytical solution. 
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Fig.5.3 Variation of Uy at top with time (elasticity) 

 

5.1.2 Viscoelastic response 

 

The small strain constitutive relation for the small strain viscoelastic theory is  
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τ

σε d
J

E
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t
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0
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Here, the relaxation function is given by: 
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Substituting equation (5.3) into equation (5.2), we get 
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t τσσε 1)(                                                   (5.4) 

In case of small loads, the strain kinematical relation can be well obtained by 
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 LL /∆=ε                                                               (5.5) 

Therefore, the final expression of displacement can be written as 
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Figure 5.4 indicates that the result of the proposed nonlinear model is in accordance with 

the linear small stain analytical solution. 
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Fig.5.4 Variation of Uy at top with time (viscoelasticity) 

 

           Thus, the results of the computation model correspond well to analytical solutions for 

elastic and viscoelastic solid problems. 
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5.2 FLUID PHASE  

 

A one dimensional fluid problem is examined to verify the porous computations of the program. 

The problem is show in Fig.5.5, and the displacement of solid is fixed, and a pressure is applied 

on the fluid. The fluid properties are given in Table 5.2. 12 2-D elements are arranged in a line, 

but only the motion in X direction is allowed.  

 

Table5.2 Material properties of the element  

 

ρf(kg/m
3
) n k( ) sNm −/4

1000 0.1 0.3 

 

Z 

X 
2m 

PX

Y 
30 

10 
X 

 

Fig.5.5 The fluid model and the distribution of pressure along X axis 
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In the case of an uncoupled fluid phase and the absent of a body force, equation (3.51) 

can be simplified as 

0=−−∇ ww &&& fk
np ρ                                                      (5.7) 

Assuming is a constant in the total field, and only one di

is 

p∇ mension (x) is considered, the fluid 

velocity Vx given by 

)/()/( nkdxdpeAV n
k

fx

f

⋅+=
−

ρ

                                              (5.8) 

The initial condition gives the value of A. When 0=xV at t=0,  

n
k

dx
dpAf −=                                                             (5.9) 

Thus, 

)1(
t

n
k

x

f

e
n
k

dx
dpV

ρ
−

−=                                                      (5.10) 

From Fig.5.6, we can see that the overall results from

analyti

 the proposed model fit the fluid 

cal solutions very well. The small difference may be done due to neglecting 0X&& . In our 

computation, it is assumed to 0 for convenience. 
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Fig.5.6 Variation of fluid velocity at the center with time 

 

 

5.3 VERIFICATION OF ELECTRONEUTRALITY CONDITIONS 

 

A simple 2-D model (referred to Fig.5.7a) is used to study the electroneutrality conditions. A 1×1 

square is filled with two monovalent ion species, i.e., anion (-) and cation (+). The cation and 

anion concentrations at point A are 3. For other points in the field, the concentrations are selected 

as 2 (referred to Fig.5.7b).  

The results about point A and point B (close to A) are shown in Fig. (5.8). For A and B, 

the concentration of anions is the same as that of cations during the whole time, which indicates 

the electroneuality condition is satisfied. In addition, the concentration at A decreases with time, 

and approaches to the same value of B, which is in accordance with the diffusive equation. 
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Fig.5.7 Electric-chemical model 
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Fig.5.8 Concentration of A and B with time 
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5.4 STUDY OF DIFFUSIVE EQUATION  

 

he program is used to analyze the diffusion in a one-dimensional rod of length . Equation 

 

T 0l

(4.60) is transformed to the typical diffusive equation (5.11) to obtain an analytical result. The 

governing equation describing the problem is  

2

2

dx
cdD

dt
dc

cc=                                                        (5.11) 

where Dcc is the diffusive coefficient.  

 are  The boundary conditions for the problem

0=
dc         
dt

at 0,0 lxx ==                                        (5.12a)   

and the initial condition is 

0>t

 xtxc 10),( =     for ,0=t  00 lx ≤≤                                      (5.12b)      

The analytical solution to this oblem is givpr en by 

tDln

n

n cce
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20
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∑ −−−= */

1 0
20

2
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22

cos])1
)(

ππ
π

−

=

                            (5.13)  

where the diffusion coefficient Dcc is selected as 2, and 60 =l . 

12 2-D elements are arranged in a line, but onl my the otion in X direction is allowed. It 

can be seen that in Fig.5.9, the analytical solution and the numerical solution correlate well, 

which demonstrates the performance of the computation program in modeling diffusion. 
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Fig. 5.9 Variation of c at x=0 with time 

 

5.5 PORO-ELASTIC PROBLEM (NEARLY INCOMPRESSIBLE) [57, 69] 

 

A one-dimensional poroelastic problem is shown in Fig.5.10, which describes the motion of 

porous elastic material along the x-axis. The material properties are given to Table 5.3.  

 

Table 5.3 Material properties of the element  

 

E(Pa) ν ρs(kg/m
3
) ρf(kg/m

3
) n k( )sNm −/4 Ks(Pa) Kf (Pa) 

3000 0.2 0.306 0.2977 0.333 0.004883 5005 61060 
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P(0,t)=0, 
σ(0,t)=F(t) 

 

 

 

 

 

 

 

 

 

X 
L

 

 
          No flow 
(u(L,t)=0,w(L,t)=0)

 

Fig.5.10 A one-dimensional boundary value problem 

(No flow or displacement on lateral boundaries) 

 

The boundary conditions are 

)(),0( tFt =σ                                                       (5.14a) 

and       

0),0( =tp                                                         (5.14b) 

and the initial conditions are 
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            0)0,()0,()0,()0,( ==== xwxwxuxu &&                                   (5.14c)        

In order to assess the accuracy of our proposed model, the analytical solution obtained by 

Simon et al. [57, 69] for this problem is given as follows. 

A non-dimensional u-w form of the field equation is [57, 69] 

ττττξξξξ βα ,,,, wukwu +=+                                               (5.15a) 

τττττξξξξ γβα ,,,, , wwukwku ++=+                                          (5.15b) 

where 

 )/(1 ckVx ρξ =                                                        (5.16) 

           )/( kt ρτ =                                                             (5.17) 

                                                                   (5.18) 22 /, ξξξ ∂∂= uu

           ρρβ /f=                                                             (5.19) 

            n/βγ =                                                                (5.20) 

                                                                (5.21) )2/( 2QQk αµλ ++=

And where  is the speed of propagation for waves that move through the porous medium with 

w=0, defined as 

cV

 ραµλ /)2( 2QVc ++=                                                 (5.22) 

The boundary conditions are 

)(/),0(/)( tFVkVkf cc == τστ  at 0=ξ      (5.23) 

            0),0( =τp                                                                 (5.24) 

and the initial conditions are given by 

 0,, ==== ττ wwuu  for 0=τ                                             (5.25) 
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An analytical solution of equation (5.15) could not be obtained for arbitrary materials. 

However, under the condition of arbitrary f(t), and an infinite domain ( no reflections) composed 

of solid and fluid materials that are dynamically compatible ( βα =k ),  an analytical solution 

was given in [57,69] as 

τξτ
ξτ

τττξ
τ τ

da
a

ab
Iefcww a

b

a )(1)
2

()(),(
0

22

0
2 −

−
−== ∫

−
                    (5.26a) 

∫ −−−−==
τ

τξβτξττττξ
0

),()(1)(),( wdfuu                                (5.26b) 

where  

                                                                    (5.27) ba )( 2βγ −=

)/(1 2β−= kb                                                           (5.28) 

          )1( αβα −= aca                                                         (5.29) 

In this solution, there are two dilatational waves: a Biot’s wave with a non-dimensional 

speed, , and a slower Biot’s wave with a non-dimensional speed, 11 =v
a

v 1
2 = . Therefore, the 

testing time is selected as 0.2 second so that no reflected waves were present in the region of 

interest in the finite element model (which has a finite length). 

            In this problem, a step load, )(10 tσσ = , and free flow, 0=p , were prescribed at the free 

top surface of a one-dimensional porous medium (see Figure 5.10). 12 2-D elements are arranged 

in a line (X direction). Three element formulations, Ub2/Pb2, Ub2/Pb1, and Ub2/P1 are 

considered here. Fig.5.11 and Fig.5.12 indicate how the solid and fluid displacements at the top 

vary with time. Fig.5.13 and Fig.5.14 gives the displacements of the solid and fluid phases along 

the X axis at time t=0.05 s. Fig.5.15 shows the distribution of pressure at time t=0.05s. 
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Comparing the finite element results with the analytical solutions, we can see that with these 

elements, the results for Ub2/Pb2 in both phases are in accordance with the analytical result with 

high accuracy. The Ub2/Pb1 and Ub2/P1 elements have good agreement for the solid behavior, 

but have large difference in the field of the fluid phase. This example demonstrates the 

performance of the Ub2/Pb2 element in a solid-fluid coupled problem.  

 

-2.50E-03

-2.00E-03

-1.50E-03

-1.00E-03

-5.00E-04

0.00E+00
0 0.02 0.04 0.06 0.08 0.1

Time(s)

U
y 

at
 to

p

Analytical
U9W9P9
U9W9P3
U9W9P4

 

Fig.5.11 Variation of uy at top with time (near compressibility) 
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Fig. 5.12 Variation of Wy at top with time( near compressibility) 
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Fig.5.13 Distribution of Uy along X axis (t=0.05s) 
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Fig.5.14 Distribution of Wy along X axis (t=0.05s) 
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Fig.5.15 Distribution of pressure along X axis (t=0.05s) 

 81



 

 

5.6 SOLID-FLUID COUPLED PROBLEM (FULLY INCOMPRESSIBLE) 

 

The previous example is also used to study the performance of the program for fully 

incompressible problems. Because of the mathematical difficulty, the analytical solution can not 

be obtained directly; however, there is a simple way to testify our program. For the continuity 

condition, in one dimensional problems with small strains,  becomes, 

0),(),(
=+

dx
txwdn

dx
txud &&

                                             (5.30) 

The integral of the above equation becomes 

 )('),(),( ttxwntxu φ=+ &&                                             (5.31) 

Then integrating with respect to time, yields 

∫ ==+ )()('),(),( tdtttxnwtxu φφ                                       (5.32) 

with the boundary condition 0),0(),0( == twtu , we have 

0)( =tφ                                                             (5.33) 

Thus, 

0),(),( =+ txnwtxu                                                   (5.34) 

Equation (5.34) reveals the relations between the displacement of fluid and solid in this 

one-dimensional problem.  12 2-D elements are arranged in a line (X direction). Ub2/Pb2 

element formulation is considered here. Figure 5.16 gives the displacement of fluid and solid of 

top point with time, which agrees with equation (5.34) with high accuracy. 
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                     Fig. 5.16 The displacement of solid and fluid at top with time 

 

In order to compare the difference between  fully incompressible and nearly 

incompressible behavior, the “true “Possion’s ratio is selected as 0.49 for the solid phase in the 

nearly incompressible case, and the corresponding results are given in Fig. 5.17-5.21. 
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Fig.5.17 Wy at top in the full and near incompressibility 
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                       Fig.5.18 Uy at top in the full and near incompressibility  
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Fig.5.19 Uy distribution along X axis (t=0.015s) 
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Fig.5.20  Wy distribution along X axis (t=0.015s) 
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Fig.5.21 Pressure distribution along X axis (t=0.015s) 

 

Figures 5.17 and 5.18 show that there is little difference between the near and full 

incompressibility in the response of fluid, but in the response of solid, the difference becomes 

more pronounced. Figures 5.19 and 5.20 reveal that with the wave transportation at time 

0.015second, the points close to the force point are stimulated; others far from the force point 

have no response.  Figure 5.21 indicates that in case of the full incompressibility, the pressure 

wave goes through the whole domain, on the contrary, for the near incompressibility, the 

pressure varies gradually along X axis. 

For the full incompressibility, since the pressure wave goes through the whole domain, 

the initial conditions of pressure become significant. However, the initial pressure conditions in 

some problems are difficult to define. This is the disadvantage of the full incompressibility. So in 

the quasi-static problem, the penalty method is applied to make the pressure implicit. However, 
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in the dynamical problem, it’s hard to find a right penalty number for the computation because of 

the various scales of the solutions with time. Consequently, the penalty method is not suitable in 

the dynamical problem. For the near incompressibility, although it has no such difficulty because 

the pressure varies gradually, this method needs to have the “true “poisson’s ratio of the solid 

phase, which is hard to define it sometimes. Therefore, it is always chosen a value close to 0.5 

[39-40]. In principle, the penalty method is close to the near incompressibility because the 

gigantic penalty number is used in the penalty method.  
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6.0 PARAMETRIC STUDY OF A 2-D MODEL 

 

 

In this chapter, some numerical examples are considered show the importance of the finite 

deformations, the viscoelasticity, and the electric-chemical effect on the mechanical response of 

porous solids.  

 

 

6.1 COMPARISON OF SMALL STRAN AND LARGE STRAIN 

 

The geometry chosen for study is a square domain (Fig.6.1). For the solid phase, the bottom edge 

is fixed, others are free. For the fluid phase, all edges are free. The top edge is loaded with 

pressure P. In order to compare the difference between the large strain and small strain without 

the effect of the inertial terms, a long duration (200s) is applied (shown in Fig. 6.2), and the 

value of P is chosen as 100% of E. The material properties of the human disc are selected [44]: 

E=2.25 ,Pa510× 45.0=υ , , , . Two 

different porosities 0.5 and 0.7 are considered.  

sNmk −×= − /101 414 3/1026 mkgs =ρ 3/1000 mkgf =ρ

 Figure 6.3 shows that with increasing time, the difference in the displacement of point A 

between the large strain case and the small strain case increases. At the time of 200s, the 

difference is almost 100%. Figure 6.3 also indicates that the displacement of point A with n=0.5 
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is larger than that with n=0.7. Figures 6.5-6.8 present the deformation of the total model at time 

200s with the different porosities. 
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Fig.6.1 The testing model 

 

 

Fig.6.2 The loading process 
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Fig. 6.3 Comparison of Uy of A in case of the large strain and small strain 
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Fig. 6.4 Comparison of Pressure of A in case of the large strain and small strain 
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Fig.6.5 Deformation in case of the large strain (T=200s, n=0.7) 

 

 
Fig.6.6 Deformation in case of the small strain (T=200s, n=0.7) 
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Fig.6.7. Deformation in case of the large strain (T=200s, n=0.5)  

 
Fig.6.8 Deformation in case of the small strain (T=200s, n=0.5) 
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For the comparison of the small strain and large strain, when a poroelastic material is in 

compression, the component in compression direction of the gradient of the deformation F is less 

than 1 because from equation 3.84 because of the compression deformation in this direction,  

uIrF ∇+=∇≡                                                       (6.1)                

As a result, since 

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

+=
k

s
rs

k

r
ii x

X
E

x
X

QJwnQp α,ˆ                                           (6.2) 

Equation (6.2) involves the inversion of F, pressure increases (shown in Fig.6.4). 

The stress of the solid phase is composed of the effective stress and the fluid pressure p [39], 

            pmσσ α+= '                                                           (6.3) 

Thus, when the pressure in the large strain case is greater than that of the small strain case, the 

effective stress of the small strain should be larger than that of the large strain case for the same 

pressure loaded. Therefore, the deformation in the small strain problem should be greater than 

that of the large strain problem.  

With the decrease of the porosity, the quantity α defined in equation (3.55) decreases also [57]. 

Therefore, this causes the effective stress in the low porosity case to be larger than that of the 

large porosity case with the same pressure loaded.   

 
 

6.2 COMPARISON OF THE ELASTICITY AND VISCOELASTICITY 

 

As we mentioned in chapter three, the material of the biological tissue is viscoelastic, therefore, 

the comparison of the elasticity and viscoelasticity is done in this section to show the effect of 

the viscoelasticity.  
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 The model and the loading are the same as the previous section, except including the 

viscoelastic material properties, which are selected in the range of [73]: A=1e-5, τ=100 

 Figure 6.9 shows the significant difference between the viscoelasticity and the elasticity, 

which states the effect of the viscoelasticity is not negligible. Figure 6.10 indicates the 

displacement of A at n=0.5 is larger than that at n=0.7. Figures 6.11, 12, and 13 present the 

deformation of the solid phase at time 200 s. 
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Fig.6.9 Uy of A with time in case of the elasticity and viscoelasticity (n=0.7) 
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Fig.6.10 Uy of A with time at different porosities 

 
  

 
 

Fig.6.11 Deformation with the viscoelasticity (T=200s, n=0.7) 
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Fig.6.12 Deformation with the elasticity (T=200s, n=0.7) 

 
Fig.6.13 Deformation with the viscoelasticity (T= 200s, n=0.5) 

 
 
 

 96



 
 

6.3 BEHAVIOR UNDER RAPID LOADING 

 

 The model and the material properties are the same as the previous section, except the 

loading history, which is selected as 0.1 second (Fig. 6.14) 

 Figures 6.15-6.17 show that under rapid loading, the displacement and fluid pressure at 

top have a little bit of vibration after the loading time 0.1second.  
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Fig.6.14 The loading history 
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Fig.6.15 Uy at top with time 
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Fig.6.16 Fluid pressure at top with time 
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Fig.6.17 Syy at B with time 

 
 

 
Fig.6.18 Deformation of solid phase at t=0.1s 
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6.4 THE CHEMICAL ELECTRIC SWELLING MODEL 

 

The electro-chemical model is given in Figure 6.19. A soft tissue is putted in a 1cm×1cm square 

cup ABCD in which 0.1M NaCl is filled with. ABCD is connected with a NaCl bath which 

concentration is 0.3M. DC edge is fixed for the solid phase of the soft tissue, but is permeable to 

allow NaCl to go through. AD and BC are constrained, and only one dimensional movement is 

allowed. At the beginning, the soft tissue is in equilibrium that means the pressure outside is 

equal to the swelling pressure caused by 0.1M NaCl. The porous material properties are the same 

as those in the previous section, and the material properties in the electro-chemical model are 

selected in the range of literature [44]:      

T=310K, R=
Kmole

Paliter
−
−8318 , 4

8100.1
m

sNffff swsw
−

×==== +−−+−+  

 

 A       B

 
       Soft tissue        

 
         (0.1M NaCl )         

 

D          C                      

 
          0.3M NaCl    

 

 

Fig.6.19 The electro-chemical model 
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Since the concentration at DC is constant as 0.3M, and the initial concentration for 

ABCD is 0.1M, NaCl ions diffuse from DC to the total square. Thus, the concentration in ABCD 

becomes larger with time, and eventually approaches to 0.3M, which is in accordance with the 

computational results (Fig. 6.20). As a result, with the increase of the ion concentrations, the 

swelling pressure at AB becomes larger than the outside pressure, which makes the soft tissue 

swell (Fig. 6.21 and 22).  
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Fig.6.20 Ion concentrations of AB edge with time 
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Fig. 6.21 Deformation of the solid phase at 200s 
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Fig.6.22 Displacement of edge AB with time 
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6.5 STUDY OF BRAIN TISSUE (APPLICATION) 

 

Traumatic brain injury (TBI) frequently occurs due to the blunt impact to the head. Many studies 

[75] have been done to understand the mechanical behavior and the injury mechanisms of brain. 

The brain is a hydrated soft tissue, which consists of about 78% water, 10-12% phospholipids, 

8% protein, and small amounts of carbohydrates, inorganic salts, and soluble organic substances, 

our poroelastic program is applied to study the impact of the brain tissue. 

 A two-dimensional circular geometry is used to model the brain shown in Fig.6.23. The 

boundary is constrained (both solid and fluid phases) except a small loading window (between 

point E and F). A sinusoidal point force (Fig.6.24) is applied to simulate an impact load. The 

response up to 10 ms will be investigated. The material properties are chosen from the literature 

as: n=0.8, k=10-8m4/N-s. E=31300Pa, the solid density ρs=1016kg/m3, the fluid density 

ρf=1000kg/m3, the apparent Poisson ratio υ=0.36, the true Poisson ration υ=0.49 [62]. The 

viscoelastic properties are given as: A=1e-5, τ=100[75]. The aim of this study is to find an 

appropriate scaling of P based on size. For the small model, the radius is selected as 

0.5”(1.27cm), and for the larger model, it is 2.5” (6.35cm).   
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            Fig. 6.23 The model of the brain impact 

 

 

                                Fig.6.24 The loading history  

            (for the small model brain, p=1; for the large model, p=5) 

 

Because the electrochemical effects in the brain tissue are unknown, only the poroelastic 

behavior is used to study the impact. Using a plane of symmetry, the finite element model is 

shown in Figure 6.25. 
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Fig.6.25 The finite element model 

 

Figures 6.26 and 6.27 indicate the pressures and displacements of points B and C vary 

with time respectively. Figures 6.29 - 6.32 give the fluid pressure and solid deformation at time 

2.5ms respectively. Figure 6.27 and 6.28 illustrate the fluid pressure and maximum of τmax of 

points B and C are much close in case of radius 0.5” and 2.5”. Thus, scaling 5 is a proper choice 

for radius 0.5” and 2.5”.  

 

 105



-4.00E-04

-3.00E-04

-2.00E-04

-1.00E-04

0.00E+00

1.00E-04

2.00E-04

3.00E-04

0 0.002 0.004 0.006 0.008 0.01

Time(s)

U
y 

B(0.5")

C(0.5")

B(2.5")

C(2.5")

 
Fig.6.26 Displacement with time 
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Fig.6.27  Fluid pressure with time 
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Fig.6.28 τmax with time 

 
Fig.6.29 Fluid pressure (0.5”, T=2.5ms) 
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Fig.6.30 Fluid pressure (2.5”,T=2.5ms) 

 
Fig.6.31 Deformation of the solid (0.5”, T=2.5ms)  
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Fig.6.32 Deformation of the solid (2.5”, T=2.5ms)  
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7.0 CONCLUDING REMARKS 

 

 

The work carried out for the present study was aimed mainly at building an infrastructure within 

the framework of finite elements for a better understanding of the mechanical behavior of 

biological tissue. The model developed for the study includes most important features of 

biological tissue, although it is no way complete. 

Among the pertinent accomplishments of this work are:  

• Introduce finite strains and inertial effects into the poroelastic model of biological 

tissues 

         • Develop the weak forms for the porous - electric-chemical model by treating cation and 

anion as variables 

         • Incorporate Newmark-β method, the backward method, and Newton’s method into the 

implicit nonlinear solutions with the nearly incompressible and fully incompressible 

cases considered 

 This methodology and codes developed for the study have been verified with one –dimensional 

analytical solutions.  Moreover, this study, using two dimensional examples, clearly 

demonstrates the importance of the finite deformation, the viscoelasticity of the material, and the 

electric-chemic effect. Finally, a preliminary work on the effect of impact loads on brain has 

show the capability of the present work in capturing sophisticated response behavior of the brain.  
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One of the potentially important features of biological tissue not included in the present 

study is the effects of nonlinear material properties. Neither does this study address the 

computational efficiency of the finite element implementation. The logical next step for a follow 

up research is to address these issues. Also an extension that can be readily achieved is to expand 

the implementation to three-dimensional based upon the formulation presented. 

There are also research issues that are important from modeling perspectives: the needs to 

have a better material characterization and good scale test results database for model verification.  

Without complementary research in these areas, the analytical and numerical modeling alone can 

not be expected to provide a comprehensive and precise picture of the biological tissue behavior.  
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APPENDIX A 

 

 

ELEMENT FORMULATION OF THE Ub2/P1 AND THE Ub2/Pb1 ELEMENTS 

 

 

The two-dimensional element is considered here. As the displacement in these elements has the 

same approximation as in Ub2/Pb2, therefore, only the pressure approximation is given.  

(1) Ub2/P1 element [62] 

 In this element, pressure is represented as a linear function: 

cybxap ++=                                                      (A1) 

For the sake of convenience in the implementation of the algorithm, the pressure can be 

expressed in terms of the pressure and pressure gradient evaluated at the center node, node 9, of 

the element. Therefore, 
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where N is the pressure interpolation function and is the element pressure vector 

calculated at the center node of the element. 

e
hP

(2)Ub2P/b1 element 

In this element the local coordinates ξ, η range from –1 to 1(Fig.A1), and the pressure is 

described as 

 (-1,1) (1,1) 

η 

ξ 

(1,-1) (-1,-1) 

 

                            Fig. A1  P element in Ub2/Pb1 element 
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APPENDIX B 

 

 

THE RELATIONSHIP BETWEEN THE LAGRANGIAN FORM AND THE EULERIAN 

FORM 

 

 

In the initial configuration (Fig.B1.a), the fluid moves through the face of dSR, and N is unit 

normal to SR. In the current configuration (Fig.B1.b), the fluid flows through the face of dS, and 

n is unit normal to dS. 

N 
dX

dY 

(a) 
n  

 
 dx 
 
 

dy  
 
(b) 

 

Fig.B1 The surface deformations of  

(a) the initial configuration; (b) the current configuration 
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dYdXN ×=RdSˆ                                                       (B.1) 

and  

dydxn ×=dSˆ                                                         (B.2) 

Or in rectangular Cartesian components 

KJIJKRI dYdXedSN =ˆ                                                     (B.3) 

tsrstr dydxedSn =ˆ                                                        (B.4) 

Since  
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Making use of equations (B.5) and (B.6), equation (B.3) becomes 
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From the definition of the determination of matrix, we know  
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 Thus, 
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Substituting equation (B.4) into the above equation, yields [71], 
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Since mass conservation of fluid should be satisfied, an equal relative fluid mass flow rate occurs, 

thus, the relative fluid velocity,  is defined by [61], iw&̂
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For incompressible fluid,  
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