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ABSTRACT 
 
 

 
GRADIENT-ORIENTED BOUNDARY PROFILES FOR SHAPE ANALYSIS USING 

MEDIAL FEATURES 
 

Robert Joseph Tamburo, MS 
 

University of Pittsburgh, 2002 

 
Gradient-oriented boundary profiles have been developed as a novel method to parameterize boundaries.  

Boundary profiles are created at locations of high gradient magnitude by averaging intensity within a neighborhood 

of voxels oriented along the image gradient, making them rotationally invariant and relatively insensitive to image 

noise.  A cumulative Gaussian is fit to the collection of averaged voxel intensities yielding estimates of (1) 

extrapolated intensity values for voxels located far inside and outside of a boundary and (2) anatomical boundary 

location.  Intrinsic measures of confidence have been developed to eliminate low-confidence parameter estimates.  

Thresholds placed on these measures of confidence allow for high-confidence unsupervised classification of 

boundaries.   

The validity of gradient-oriented profiles is demonstrated on artificially generated three-dimensional test 

data and shown to accurately parameterize and classify the boundary.  Applying the measures of confidence and 

establishing thresholds, the accuracy of boundary location and intensities estimates improved drastically, making 

them a high-quality replacement for simpler methods of boundary detection.  Towards shape analysis, gradient-

oriented boundary profiles are applied to an existing a medial-based approach to shape analysis, known as core 

atoms. Core atoms in their previous implementation were based on simple gradient direction and unable to form 

without a priori knowledge of object intensity relative to background.  Boundary profiles were applied to core atoms 
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permitting the formation of so called “core profiles”.  Core profiles remove any restriction on the object’s or the 

background’s intensity, allowing multiple objects of differing intensities to be located with a single application.  

Core profiles were applied to 3D computer-generated data, as well as RT3D ultrasound cardiac phantom 

data.  It was shown on computer-generated data that calculating the volume with core profiles is more accurate then 

calculating the volume with core atoms, because of the improved accuracy of the boundary location.  Two new 

methods of automatically measuring volume on non-parametric data with core profiles are proposed.  Future work 

with includes constructing medial node models improved by gradient-oriented boundary profiles for automated left 

ventricular identification and measurement. 
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1.0 INTRODUCTION 
 
 
 

Since the birth of medical imaging, doctors and healthcare workers have been able to look beneath the 

surface of the skin to obtain diagnostic information.  Computational techniques to assist in the analysis of medical 

images have been developed, but have not advanced at the same rate as the imaging technologies themselves.  

Automating these computational techniques would alleviate the long hours of monotonous work required for 

manual analysis.  This is particularly valuable for large datasets such as those produced by Real-Time Three-

Dimensional (RT3D) ultrasound.  The work of this thesis takes steps towards automatically making measures of the 

left ventricle and myocardium beneficial to the diagnosis of cardiovascular diseases.  RT3D ultrasound is the 

imaging modality of interest because of its unique ability to capture three-dimensional images of the heart in real-

time.  A stable framework is developed in this thesis to automatically identify and measure structures in RT3D 

ultrasound cardiac phantom data. 

 
 

1.1 Goals and Clinical Motivation 
 
 
Dr. Roentgen’s inadvertent discovery of X-rays in 1895 was almost immediately applied to medicine 

when Dr. Edwin Frost performed the first clinical X-ray in early 1896.  These projected images dramatically 

affected the medical community providing a means to look into the body of a patient.  The newly acquired visual 

information assisted doctors and other healthcare professionals in making diagnostic decisions.  The clinical value 

was immediate and spawned the invention of further medical imaging modalities.  In 1965, engineers at Siemens 

created the world's first real-time ultrasound system, using sound to create live two-dimensional (2D) images of 

tissue displayed on a cathode-ray tube.  In 1967, Godfrey Hounsfield built the first Computed Tomography (CT) 

prototype using X-rays to produce a three-dimensional (3D) tomographic image.  Dr. Paul Lauterbur first described 

Magnetic Resonance Imaging (MRI) in 1972 using radio frequency and magnetization to generate 3D images of 
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internal structures.  These and other imaging modalities continue to rapidly evolve, each offering its unique insight 

into the human body.   

During the development of medical imaging techniques, computational methods of image reconstruction 

have been essential to image visualization.  Doctors need these images to extract information critical to diagnosis 

and treatment by identifying, measuring, and functionally assessing structures.  Unfortunately, image analysis as a 

means to assist doctors in extracting this information has evolved much slower than the imaging technology itself.  

Most current forms of clinical image analysis require manual input from the user making it a tedious and time-

consuming process.  This is of particular concern with large datasets such as those produced by an experimental 

imaging modality, Real Time Three-Dimensional (RT3D) ultrasound [1, 2].  RT3D ultrasound produces 3D images 

in real-time at a rate of 22 volumes per second, fast enough to capture a single heart beat, providing a “full picture” 

of the heart.  These unique capabilities of RT3D ultrasound are potentially very beneficial to cardiologists making 

observations based on cardiac structure and motion for diagnosis and treatment of cardiovascular diseases (CVD) 

[3-10].  With the limitations in current analysis techniques, RT3D ultrasound data is only useful when processed 

after the data has been obtained from the patient.  In order to take immediate advantage of the data and allow real-

time identification and measurement of cardiac structures, a real-time automated method is required.   

If automated cardiac image analysis can be improved, its worth to the medical community would 

immediately impact those suffering from CVD.  According to CDC (Centers for Disease Control and Prevention), 

NCHS (Nation Center for Health Statistics), and the AHA (American Heart Association), CVD contributed to one-

third of worldwide deaths in 1999.  Although the United States has one of the lowest mortality rates for males and 

females, CVD ranks as the leading cause of death responsible for 40 percent of the 2.4 million deaths per year, and 

nearly 61.8 million Americans live with some form of cardiovascular disease.  In 2002, it is estimated that 

Americans will pay about $330 billion in CVD-related medical costs and disability [11]. 

Automated techniques exist, but are generally unreliable because of the inherent difficulties with 

anatomical shapes and image quality, such as anatomy variation, image noise, and discontinuous object boundaries.  

In particular, ultrasound also suffers from the path dependence of the ultrasound signal and the non-rectilinear 

coordinate system in which the data are collected.  Among ultrasound technologies, RT3D ultrasound has 

especially high noise and low resolution, a trade-off made to achieve 3D imaging at such a high speed.  Despite 
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these difficulties with RT3D ultrasound, the potential clinical benefit justifies the challenge of automating its 

analysis. 

Continuous measurement of left ventricular volume can be utilized to calculate and monitor cardiac 

function parameters such as heart rate, stroke volume, and ejection fraction.  Myocardial volume, and thickness can 

be determined and myocardial motion can be tracked.  If healthy valves are assumed, stroke volume and cardiac 

output can be calculated.  Each of these measured quantities could be useful in the diagnoses of CVD, including 

cardiomyopathy, arrhythmia, ischemia, valve disease, myocardial infarction, and congestive heart failure.  

Abnormal cardiac contractions can be an indication of valve disease and arrhythmia, observed by tracking the 

cardiac surfaces through the cardiac cycle.  Independent of target and imaging modality, an automated technique of 

boundary classification would serve as a useful tool to recognize any anatomical shape or foreign body.  

 

1.2 Approach to Automating Image Analysis 
 
 

The work of this thesis focuses on developing a stable framework to automatically (1) locate and identify 

the left ventricle and myocardium, (2) measure ventricular volume and surface area, (3) measure myocardial 

volume and thickness, and (4) track cardiac motion on RT3D ultrasound data.  Given the difficult goal of 

automating image analysis on a complex structure in motion in noisy data, a sensible first step is to develop and test 

the approach on computer-generated data.  The next step will be to apply it to RT3D ultrasound images of a left 

ventricular model consisting of latex balloons.  The model presents a simplified structural representation of the 

heart while introducing the difficulties of RT3D ultrasound data.  

Typically, shape detection begins by finding boundary points in an image and then determining their 

parent shape in some way.  Boundary point detection dates back to the origins of image processing and typically 

involves locating areas with a gradient magnitude above a certain threshold.  However, many of these commonly 

used boundary detectors merely detect the presence of a boundary and discard valuable information that can be 

useful in shape detection and analysis.  Several boundary detectors make use of gradient direction, such as the 

Canny edge detector [12], but do not further parameterize the boundary or the opposing regions.  As part of my 

Master’s research, I have developed a technique called gradient-oriented boundary profiles that can parameterize a 

boundary by yielding estimates of boundary location, boundary width, and voxel intensities on both sides of the 
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boundary.  Gradient-oriented boundary profiles are rotationally invariant and inherently insensitive to noise.  The 

developmental work of boundary profiles has been presented at a national conference [13] and published in a peer 

reviewed journal [14]. 

A subsequent step in my Master’s research has been to use these new boundary profiles for shape 

detection.  A shape can be defined by the relationships between the points on its boundaries.  Shapes can be found 

by grouping neighboring boundary points or tracking them along potential boundaries.  Generally, such local 

boundary measurements are highly sensitive to image noise, and a global comparison of boundary points may be 

more successful.  Boundary points can be organized globally using geometric relationships between all boundary 

points, but this is computationally untenable.  A reasonable compromise is to focus on the medial relationship 

which links boundary points on opposing boundaries through the center of an object.  Core atoms [15, 16] are a 

means to perform this association by locating boundary pairs that face each other across an object.  To determine 

whether boundary points face each other one must compare the orientations of the boundary points.  The gradient 

direction of opposing boundary points may be either towards or away from each other, depending on the intensity 

of the target and background in the image.  Previous implementations of core atoms, based on simple gradient 

direction were unable to deal with this ambiguity.  The application of my new boundary profiles provides an 

elegant solution.  Boundary profiles permit the formation of core atoms without a priori knowledge of objects in 

the image, by comparing the shared intensities of the two boundary points.  Therefore, the selection of core atoms is 

independent of the background intensities.  Also, there is no restriction on the objects intensity and multiple objects 

of differing intensities can be found with the same search.  Finally, the profiles yield greater accuracy in 

determining boundary location than conventional boundary detectors.  

Statistical analysis of local core atom populations provides measures of medial properties of local shape.  

The long-term goal is to combine these simple shapes into complex shapes, to identify and measure the shape 

parameters of the objects they correspond to.  As previously mentioned, abnormal left ventricular volume, 

myocardial volume, myocardial thickness, and cardiac motion can be indicative of cardiovascular disease, so an 

accurate means to calculate these measures would be clinically useful.  The first step is to locate the cardiac 

surfaces in 3D real-time data, which is what the majority of this thesis addresses.  
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1.3 Thesis Overview 
 
 

i. Gradient-Oriented Boundary Profiles are developed as a method to parameterize boundaries 

contributing a robust set of parameters for shape analysis.  Profiles are validated on synthetic data and 

demonstrated on RT3D images of left ventricular phantoms. 

ii. Measures of confidence are developed for the parameters delivered by boundary profiles to eliminate 

low-accuracy estimates. 

iii. Core atoms are constructed from gradient-oriented profiles and their populations are statistically 

analyzed to yield local measurements of shape. 

 
 

1.4 Guide to Remaining Chapters 
 
 
Chapter 2 Background information on relevant boundary detection techniques, the state of medical imaging, 

methods to detect and measure left ventricular volume in ultrasound images, and medial shape 
analysis. 

Chapter 3 Gradient-oriented boundary profiles are described in detail, including the algorithm to form them, 
means to eliminate profiles considered unacceptable, and their ability to classify boundaries. 

Chapter 4 Boundary profiles are applied to a computer-generated sphere to investigate different sampling 
regions and splat type, measure their accuracy in locating the surface of the sphere, and assess their 
overall performance. 

Chapter 5 Core profiles are described as well as methods to measure medial properties. 
Chapter 6 Core profiles are applied to data containing two concentric spheres.  The accuracy of boundary 

profiles to locate the boundaries is measured.  The population of core profiles is analyzed and used 
to calculate volumes of the data. 

Chapter 7 Measuring volume via core profiles without any geometric assumptions about the data consisting of 
two concentric ellipsoids.   

Chapter 8 Gradient-oriented profiles are applied to real-time three-dimensional ultrasound images. 
Chapter 9 Contribution to an open-source image processing toolkit called ITK. 
Chapter 10 Work to be done in the future to improve gradient-oriented profiles and more robust methods to 

automatically identify and measure objects. 
Chapter 11 Conclusion 

 



 
 

 

 6

 
 
 
 
 

2.0 BACKGROUND 
 
 
 

2.1 Boundary Detection 
 
 

Gradient-oriented profiles require a set of boundary candidates that deliver gradient magnitude and 

orientation.  Boundary detection is a well-established field, described in a number of general references, for example 

[17-21].  Many methods of image analysis employ a gradient detection scheme that identifies boundary candidates 

by simple measurement of the gradient magnitude throughout an image and selection of candidates above a pre-

determined threshold.  Boundaries in images are characterized by abrupt changes in intensitiy corresponding to a 

strong gradient.  By taking the derivative of the image and locating the maximum derivatives, boundaries can be 

found.  Taking the derivative of the image may proceed by convolving the image with a number of kernels, such as 

the Roberts Cross and Sobel kernels.  The Roberts Cross kernel, when applied to gray-images, yields gradient 

magnitude and location, but is very sensitive to noise.  The Sobel kernel is larger, effectively smoothing the image 

and reducing high-frequency noise.  This makes the Sobel kernel more stable than the Roberts Cross, but it is slower 

to operate and still somewhat sensitive to noise. 

Another class of convolusion kernels is the Difference of Gaussian (DoG) gradient detector.  The DoG 

detector is interesting for reasons related to human vision [22].  Human vision relies on first transducing light to a 

neural signal in the retina, which consists of a layer of photoreceptors connected to retinal ganglion cells through a 

number of intermediate layers.  The axons of the ganglion cells make up the optic nerve, which relays the signals to 

the lateral geniculate nuclei.  From there the signals are transmitted to the visual cortex in the posterior lobe, where 

the visual information is further processed [23, 24].  The spatial properties of retinal ganglion cells as receptive 

fields were first described by Hartline in 1938 [25].  He found that these cells would respond even when a light 

source was moved away from the center of its receptive field.  He also noted that the receptive fields were much 

larger than anticipated of individual photoreceptors, suggesting signal processing and integration through retinal 

circuitry [26, 27]. 
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Kuffler followed Hartline’s work and found that for each ganglion cell there is a small region in which 

illumination increases electrical activity, and surrounding this excitatory region is a ring-shaped region in which 

illumination decreases electrical activity.  He also found ganglion cells for which the opposite occurs, where 

illumination in the region inhibits excitatory activity, while illumination in the surrounding ring-shaped region 

increases electrical activity [28]. 

Following this pioneering work by Kuffler, neuroscientists mathematically modeled receptive fields.  In 

particular, Rodieck introduced the DoG model for the receptive field of ganglion cells.  In this model, each ganglion 

cell takes a weighted summation of its neighbors, where the weights can be positive or negative [29].  This permits 

the ganglion cells to act as an edge detector.  There are many forms of DoG gradient detectors, and a common 

version finds the difference between two concentric Gaussian kernels of different scale [6].  The version of the DoG 

gradient detector used for the research described in this thesis consists of three pairs of same-scale Gaussian filters 

displaced in location along each of the cardinal axes from the sample point to measure the respective components of 

the gradient in three dimensions.  This particular DoG gradient detector is efficient and delivers gradient direction 

(unlike the concentric DoG), as well as gradient magnitude, both being required for the construction of boundary 

profiles.  Each boundary candidate that exceeds a pre-determined threshold for gradient magnitude is used to 

generate an individual boundary profile (details of implementation are in section 3.2). 

The noise sensitivity of the Roberts Cross and Sobel kernels arise from taking a derivative, which amplifies 

the high-frequency image noise.  Marr [22, 30] and Canny [12] address this problem by convolving the image with a 

Gaussian kernel prior to calculating the derivative.  Increasing the width of the Gaussian kernel reduces the 

detector's sensitivity to high-frequency noise, but also eliminates the finer details in the image.  Inherent to the DoG 

detector used here is a Gaussian kernel with a carefully chosen kernel width.  After the Gaussian smoothing, Marr’s 

approach proceeds with the application of a Laplacian of Gaussian (LoG) filter locating boundaries wherever the 

value is zero.  The LoG operator can be closely approximated by a concentric DoG operator, which can similarly be 

used to enhance the visibility of edges while at the same time smoothing small-scale noise [22].  Canny’s boundary 

detector requires a set of boundary detection filter masks that have various orientations.  The masks contain a 

derivative of a Gaussian function to perform a directional derivative across the intended boundary.  When applied, a 

smooth averaging profile appears in the mask along the intended boundary direction in order to reduce noise without 

compromising the sharpness of the boundary profile [17].   
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Similar to the Canny edge detector, gradient-oriented profiles operate along the gradient direction 

averaging voxel intensities to reduce noise sensitivity.  The Marr and Canny edge detectors require multiple 

///applications of filters at different scales for a thorough edge detection procedure.  Gradient-oriented profiles 

require a single application, while producing a more thorough and accurate parameterization of the image 

boundaries than either the Marr or Canny edge detectors.  

A useful property of the gradient magnitude is its inherent insensitivity to rotation.  More complex 

parameterizations of the boundary can also be made rotationally invariant by operating along the local gradient 

vector.  Steerable Filters, for example, parameterize the boundary using a basis set of Gaussian derivatives that is 

easily rotated into the coordinate system of the local boundary [31].  An equivalent rotation is accomplished with 

gradient-oriented profiles by projecting voxels onto the gradient vector to produce a one-dimensional intensity 

profile.  Fitting a specific function to the profile, the cumulative Gaussian, directly yields physically significant 

estimates that parameterize the boundary.   

 
 

2.2 State of Medical Imaging 
 
 

Each of the primary modalities of medical imaging (Ultrasound, MRI, CT, etc.) offers its own unique 

insight into the human body.  Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) produce high-

resolution 3D images, effective for visualizing 3D objects (organs, foreign objects, etc.) in the body, but require 

significant time for image reconstruction.  Conventional ultrasound imaging produces real-time 2D images very 

useful for observing the behavior dynamic objects, such as cardiac motion.  Such ultrasound images can be re-

constructed to 3-D after data acquisition, but are no longer real-time and have poor image quality compared to MRI 

and CT.  CT can be used in cardiac studies if scans are gated to the electrocardiogram (ECG), in which case scans 

are averaged over many cardiac cycles.  Cine Computerized Tomography (cine-CT), the fastest form of CT, 

developed early in the 90’s by Imatron [32] is capable of producing a slice every 50 ms.  Cine-CT can capture a 3D 

dataset of the heart in about 400 ms, still not fast enough for analysis during the cardiac cycle without ECG gating. 

Real-time three-dimensional (RT3D) ultrasound, developed in the early 90’s at Duke University [2, 33] 

makes use of a matrix array of transducer elements instead of a linear array to capture 3D ultrasound data.  The 

scan rate of the transducer is approximately 22 frames per second (45ms), rapid enough to acquire cardiac data 
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throughout its cycle.  Thus, gating to the ECG is not required to analyze function during a cardiac cycle.  Image 

quality is sacrificed for the increased speed in RT3D data acquisition, resulting in a lower signal-to-noise ratio 

compared to conventional ultrasound.  However, several studies have shown that cardiac assessment with RT3D 

images is feasible [1, 2, 33-38]. 

 
 

2.3 Methods to Detect and Measure LV Volume in Ultrasound Images 
 

 
Early methods of measuring LV volume in 2D ultrasound rely on first manually finding the LV boundary, 

then calculating the volume based on geometric assumptions about the shape and location of the slice.  Utilizing 

Simpson’s rule, the LV volume can be approximated by summating the volume of discs in series along the long 

axis.  Using Dodge-Sandler’s method, the LV is approximated as an ellipsoid and the LV volume is calculated as 

the volume of the ellipsoid.  The biplane, area/length method requires only 2 cross-sectional areas and the length of 

the long axis to yield an approximate volume.  Since these methods are based on geometric assumptions, they tend 

not to be very exact.  To avoid the need for geometric assumptions, Nadkarni et al. reconstruct 2D images to 3D 

volumes and then manually segment the LV and calculate its volume [39]. 

Rather than depending on manual boundary identification in 2D images, deformable contours (snakes) 

attempt to locate boundaries in a semi-automated fashion.  Model based deformable contours attempt to segment 

objects by iteratively searching for possible boundaries armed with knowledge of the shape [40, 41].  Such 

deformable contours have been shown capable of finding, as well as measuring, the LV in 2D ultrasound data [42-

44].  Hammarneh and Gustavsson have combined active contours with active shape models to segment the left 

ventricle from 2D ultrasound images after a period of training.  The model acquires a priori information of the 

structures by first manually tracing and identifying them, capturing the variability of the LV training set [45].  

Setarehdan and Soraghan use a deformable contour to close the boundary after applying fuzzy logic to find a 

central point in the LV then using a multi-resolution edge detector to locate boundaries points [46]. 

The success of deformable contours on 2D data has recently been extended to 3D.  These deformable 

models rely on multi-local or global geometric expectations and have met with some success on mechanically 

scanned 3D ultrasound data [47].  Unfortunately, their application to RT3D ultrasound has not been encouraging 

due to the inherent low signal-to-noise ratio of the data [48].  Nevertheless, there has been success in semi-
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automatic algorithms for assessing wall motion abnormalities [5] and LV ischemic risk volume [49], identifying 

congenital heart defects in pediatric patients, measuring left ventricular mass in dogs [50, 51], and measuring LV 

volume [52-58].  Stetten has successfully developed a medial approach to automatically identify the LV and 

measure its volume by statistically analyzing populations of medial primitives call core atoms [15, 58].  This 

approach is followed and modified in this thesis to automatically locate the LV and myocardium and measure their 

volumes in RT3D ultrasound cardiac model data.  A brief overview of medial shape analysis is included in the 

following chapter. 

 
 

2.4 Medial Shape Analysis 
   

 
The medial approach to shape analysis originates back to the medial axis first introduced on binary images 

by Blum [59].  The medial axis is defined as the locus of centers of circles that are at least bi-tangent and fit entirely 

within the region being considered.  Pizer et al. developed a measure called medialness to extend the medial axis to 

gray level images.  This measure links the aperture of the boundary measurement to the radius of the medial axis to 

produce a “core”, defined as a height ridge of medialness [60, 61].  Methods using medialness as image features 

have proven robust against image noise and shape variation [62]. 

The core can be found with ridge tracking, but this requires manual initialization and fails at discontinuities 

in the ridge.  Medialness filters have generally been used to look for pairs of boundaries with a specific orientation 

from the center.  Multiple applications of such filters are necessary to account for different orientations, which is 

very computationally expensive [63, 64].  As developed by Stetten and Pizer [15], core atoms are more efficient, 

requiring only a single application to detect a single object.  Candidate boundary points are initially found, and then 

examined pair-wise to see if they have sufficient medialness for core atom formation.  Local populations of core 

atoms are then statistically analyzed to extract medial properties of the core.  A brief overview of core atoms is 

included in chapter 5 where gradient-oriented profiles are used to create a new kind of core atom, a core profile, 

with the distinct advantages over the original ones developed by Stetten and Pizer. 
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3.0 GRADIENT-ORIENTED BOUNDARY PROFILES 
 
 
 

Gradient-oriented boundary profiles, developed in this thesis, make use of nonlinear regression to 

parameterize boundaries.  Unlike most boundary detectors, which simply detect the presence of a boundary, 

boundary profiles estimate the location of the boundary, the width of the boundary, and the voxel intensities on each 

side of the boundary.  The methodology of gradient-oriented profiles is presented in this chapter.  Also in this 

chapter, measures of confidence are derived for the boundary parameters, and a scheme to classify boundaries is 

explored.  In chapter 4, gradient-oriented profiles are applied to multiple three-dimensional computer-generated 

datasets and the performance of boundary profiles is compared to that of the Difference of Gaussian (DoG) 

boundary detector described in section 2.1.   

The process of finding and analyzing gradient-oriented profiles is outlined here and detailed in the 

following sections (corresponding to section numbers):   

(i) Finding Boundary Candidates:  Find boundary point candidates with a technique that delivers 

approximate location, gradient magnitude, and gradient direction.  The DoG gradient detector was used for 

the work of this thesis for reasons explained in section 2.1. 

(ii) Generating a Boundary Profile:  Define neighborhoods (ellipsoidal or cylindrical regions) around each 

detected boundary point, and then project voxels within each neighborhood into bins along the major axis 

(gradient direction) to yield a profile of voxel intensity. 

(iii) Fitting the Intensity Profile and Estimating Parameter Values:  Fit a cumulative Gaussian to the 

intensity profile, yielding estimates for intensity on both sides of the boundary as well as the actual location 

and width of the boundary. 

(iv) Eliminate Bad Profiles:  Eliminate blatantly “bad” boundary profiles by enforcing restrictions on the 

parameters based on a priori knowledge of the imaging modality. 

(v) Establishing Intrinsic Measures of Confidence:  For the remaining profiles, calculate measures of 

confidence for the estimated values and eliminate those falling below a chosen threshold. 
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(vi) Classifying the Boundary:  Classify the boundary using the remaining high-confidence estimated values. 

 

 
3.1 Finding Boundary Candidates 

 
 

The initial step in the generation of boundary profiles requires the collection of boundary points.  Any 

method of boundary detection can be used, as long as the gradient direction and magnitude are delivered.  The DoG 

gradient detector is chosen for reasons discussed in chapter 2.1 and implemented in the same manner as Stetten [15] 

with the use of a binomial kernel.  The binomial kernel in 3D is a 2x2x2 cube filled with ones.  When convolved 

with a 3D image multiple times (and normalized each time by dividing by 8, the Central Limit Theorem dictates that 

the result will approximate a Gaussian kernel.  The number of applications determines the width of the Gaussian.  

The DoG is achieved by subtracting the resulting Gaussian kernel from itself displaced on either side of the sample 

location along each of the cardinal axes to yield the corresponding gradient components.  A gradient in 3-

dimensions is accomplished by applying three separate DoG kernels, one along each cardinal axis. 

 
 

3.2 Generating a Boundary Profile 
 
 

Given the detection of boundary points by the DoG kernel, a boundary profile is generated in the direction 

of the gradient by sampling the voxels in an oriented a neighborhood centered at the original boundary point whose 

major axis is along the gradient vector.  Thousands of boundary points are likely to be found, and therefore 

sampling voxels around each boundary point could be time-consuming.  Choosing the shape and size of the 

neighborhood to minimize computation is important.  The shape should be large enough to gather sufficient 

information by extending just beyond the transition zone of the boundary.  Intuitively, a cylindrical or ellipsoidal 

sampling region would seem reasonable.  The effects of choosing sampling regions of different shape on the overall 

accuracy of boundary profiles are evaluated in section 4.1. 

The voxels within the sampling neighborhood are projected onto the major axis where their intensity 

values are splatted into bins.  Splatting is a technique commonly used in computer graphics that projects the 

footprints of individual voxels onto a plane.  Overlapping footprints are collected in bins and normalized to form a 
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rendered image.  Instead of splatting onto a plane, we splat onto a line, that is the major axis of the sampling region.  

Figure 1 demonstrates the process of sampling voxels within an ellipsoidal region. 

 

 
 

Figure 1 An ellipsoidal neighborhood whose center is the boundary point from the DoG gradient detector and major 
axis is the gradient vector gr of the boundary point.  Two adjoining disks, A and B are shown for which the voxels 
in the ellipsoid are partitioned and sampled. 
 

The ellipsoid is divided into disks along the major axis, with corresponding bins collecting footprints from voxels in 

adjoining disks.  The footprints are wider than an individual bin, so each voxel contributes to a number of bins.  A 

triangular footprint is has the effect as linearly interpolating the intensity of each voxel between neighboring bins 

along the axis.  Splatting with a triangular footprint proceeds in the following manner (illustrated in figure 2): 

 

 
 
 

Figure 2 Voxel ν  (white circle) contained in Disc B, splatting its weighted intensity across 4 bins with the most 
being splatted into Bin B. 

 

Given an ellipsoidal neighborhood such as shown in Figure 1, a voxel ν  with intensity Iυ is contained in 

disc B.  The length of the profile L will be equal to that of the ellipsoid’s major axis.  Let the width of each bin be 
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one voxel wide and the length of the profile be an integer value, so the number of bins n is equal to L.  The bin 

assignment for ν  is determined by first finding its location on the major axis: 

,
2
Lgd +•=

rr
ν  (1) 

where ν
r

 is the vector from the origin of the ellipsoid to ν , and gr  is the unit gradient vector of the boundary 

point.  The bin assignment is then: 

( )dfloorbin = ,  (2) 

where d is the distance from the edge of the ellipsoid to ν ’s projection on the major axis and floor is the greatest 

integral value less than or equal to d.  The displacement b of ν ’s projection in its bin, Bin B is:  

( )dfloordb −=   (3) 

The triangle footprint across four bins weights the intensity of ν accordingly: 

 
Table 1 

Voxel intensity weights for the four bins of a triangle footprint 
 

 

 

 

 

 

The weighted intensity of ν for Bin B is then: 

( )( ).2 bw
weightII −= νν  (4) 

All of the voxel weights in each disc are summed in the appropriate four bins.  The weight of contribution for each 

voxel is separately stored so that the total intensity in each bin can be normalized.  Thus, the intensity profile 

represents the average voxel intensity for each disk within the ellipsoidal sampling region.  Averaging within each 

disk reduces the effect of image noise on the boundary profile. 

 

 

bin Weight 
B - 1 b−1  

B b−2  

B + 1 b+1  

B + 2 b  
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A Gaussian footprint has also been tried shown in Figure 3.  The weighting of the Gaussian footprint 

follows the standard Gaussian 

( )
2

2

2)( σ
µ−

−
=

x

aexg .  (5) 

The maximum weight is determined by a (amplitude of Gaussian).  The parameterσ  is calculated by choosing a 

desired weight for the bin adjacent to the maximum bin (Figure 3).  

 

 

Figure 3 (Left) A Gaussian footprint for a voxel.  The maximum weight a is splatted to Bin A and Bin A’ receives 
the next largest weight a’. (Right) The equation to calculate σ  given a and the bin weight for A’. 

 
 

Equation 5 is modified to be a function of the voxel’s position in the bin using the quantity b as described in 

equation 3.  Table 2 shows the weighting for the four bins of the footprint using the notation in Figure 3 with c 

being equal to σ . 

 

Table 2 
The voxel intensity weights for the four bins of a Gaussian footprint 

 

 

 

 

 

 
 
 
 
  

The performance of the Gaussian footprint is measured against that of the triangle footprint in section 4.1.  

Regardless of the splatting footprint employed, sampling the voxels in this manner will result in a discretized profile 

of the intensity in the sampling neighborhood (Figure 4).  
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Figure 4 Discretized intensity profile from splatting voxels in a sampling neighborhood centered at the boundary 
point and oriented in the direction of its gradient. 

 
 
 

3.3 Fitting the Intensity Profile and Estimating Parameter Values 
 
 
 The discretized intensity profile captures voxel intensity variation across a boundary.  Intuitively, the 

boundary is located where the largest voxel variation occurs.  Voxel intensity begins to stabilize near the tails of the 

profile, indicating a region in the image away from the boundary, but may not fully stabilize within the extent of the 

profile.  These properties of the profile can be quantified if the profile is fit to a function.  A number of different 

functions could potentially be used to fit to the profile.  The cumulative Gaussian was chosen for reasons now 

described.   

 Most anatomical boundaries are very abrupt, inherently step functions at the sub-millimeter scale where 

one tissue ends and another begins.  Image acquisition is inevitably limited in resolution, however, with a particular 

device exhibiting an overall "point spread function" usually at a significantly larger scale than the actual tissue 

boundary.  Additional blurring may be performed intentionally or inevitably, for example, during the image 

processing that converts the raw data to an image.  The result of these sequential convolutions tends to have the 

effect of convolution with a Gaussian kernel because of the Central Limit Theorem.  Thus the step function of the 

anatomical boundary is expected to reach the image analysis stage as a cumulative Gaussian, i.e., the convolution of 

a step function with a Gaussian.  Therefore, by fitting a cumulative Gaussian, the blurring is, in effect, reversed and 

the original boundary may be parameterized, as well as the total width of the blurring. 
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Fitting a cumulative Gaussian to an intensity profile requires optimizing 4 parameters: (1) standard 

deviation, corresponding to the boundary width, (2) mean, corresponding to boundary location along the major axis, 

and (3,4) two asymptotic values, corresponding to voxel intensity on either side of the boundary sufficiently far from 

the boundary to be unaffected by blurring. 

The cumulative Gaussian )(xC  is derived as follows: The normalized Gaussian, 

( )
2

2

2

2
1)( σ

µ

πσ

−
−

=
x

exG , (6) 

is integrated defining the error function (erf),  







 −

∫
−

=
2

)(
σ

µx
erf

x

x
dvvG , (7) 

which is scaled and offset to yield the cumulative Gaussian ( )xC  as follows: 

( ) 
















 −
+

−
+=

2
1

2
12

1 σ
µxerf

II
IxC  (8) 

The four fixed parameters of ( )xC  are µ  (mean), σ  (standard deviation), and 1I  and 2I (asymptotic upper and 

lower voxel intensities).  On one side of the boundary  

( ) 1−=∞−erf , ( ) 1IC =−∞  (9) 

and on the other side 

( ) 1=∞erf , ( ) 2IC =∞ . (10) 

The four parameters are labeled below in Figure 5, which shows a particular fit of the cumulative Gaussian along the 

sampled region of the boundary profile.  The optimal boundary location b
r

is calculated from µ , the original 

boundary point location ob
r

, and the gradient ogr  by  

 
 ( )( )orelativeo gbb rrr

µ+= . (11) 
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Figure 5 A cumulative Gaussian fit to a profile from a sampled region (shaded area). 

 
 

A variety of techniques are available for optimizing the fit of a non-linear function to a set of sample 

points.  A Quasi-Newton non-linear optimization algorithm available as part of the AD Model Builder from Otter 

Research, Inc., [65] was used because it does not require explicit derivation of derivatives and is acceptably rapid 

and robust. 

To make intelligent use of parameters estimated from the curve fitting, measures of confidence for each of 

the parameters must be established.  This takes the form of two steps, as described in the following two sections. 

 
 

3.4 Eliminating Bad Profiles 
 
 

The first step involves the elimination of unacceptable parameters by rejecting blatantly “bad” profiles for which 

a reasonable fit of the cumulative Gaussian cannot be found.  The profile is rejected if: 

(i) Either extrapolated voxel intensity value 1I  or 2I  falls outside of the acceptable range of values for the 

imaging data. 

(ii) The estimated boundary location µ  falls outside of the sampling region. 
 

Boundary profiles that are rejected by these criteria are no longer considered.  Determining confidence 

levels for the estimated parameters and eliminating low-confidence estimates on a parameter-by-parameter basis 

further eliminates bad profiles. 
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3.5 Establishing Intrinsic Measures of Confidence 
 
 

If a fit was accepted for a given profile, the next step is to determine a measure of confidence in the 

individual parameters of the cumulative Gaussian.  It is postulated that the confidence in a particular parameter is 

related to the location of the boundary within the ellipsoid, as well as the boundary width.    

In Figure 5, the cumulative Gaussian that best fits an intensity profile is shown.  By definition, the 

underlying function (ignoring the particular region over which it was sampled) is symmetrically distributed on either 

side of the mean µ  (with µ  representing the optimum boundary location). However, the function is not generally 

symmetrically distributed with respect to the sampling region (represented by the shaded area from 1p  to 2p ).  

Given that the best fit has a mean µ  and standard deviation σ , two distances 1d  and 2d  can be defined from µ  to 

1p  and 2p  respectively, from which two normalized distances 1z  and 2z  can be computed as,   

σ
1

1
d

z =   and 
σ

2
2

d
z = .  (12) 

The values of 1z  and 2z  indicate how many standard deviations from µ  in each direction the actual samples 

extend, and serve as measures of confidence for 1I  and 2I  respectively.  For each direction, the greater the number 

of standard deviations the samples extend from µ , the less the effect of the boundary and the greater the confidence 

the estimated intensity.  For example, in Figure 5 there is more confidence in the estimate 1I  than the estimate 2I , 

because 21 dd > , and therefore 21 zz > .  A threshold can be placed on 1z  and 2z  based on the desired accuracy for 

the intensity estimates. 

In addition to a measure of confidence for 1I  and 2I , a measure of confidence for µ  is developed.  The 

measure of confidence for µ  indicates whether sufficient samples exist on either side of µ  to estimate it 

accurately.  This measure of confidence is defined as 

( )21min ,min zzz = . (13) 

If on either side of µ  insufficient samples exist to anchor the cumulative Gaussian, minz will be small, and it is 

expected the there will be difficulty in estimating µ  accurately.  Like the measures of confidence for profile 

intensity estimates, a threshold is also placed on minz to determine whether there is acceptable confidence in µ . 
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 The standard deviation σ  determines the width of the transition zone for the cumulative Gaussian.  The 

measure of confidence for σ  is a measure of how much the transition zone encompasses the sampling region.  If σ  

is too large, too many samples will anchor the transition zone of the cumulative Gaussian, but not enough samples 

will anchor the tails resulting in an inaccurate estimate for σ  as well as 1I  and 2I .  This measure of confidence is 

defined as the ratio of σ  to the length of the sampling profile L , 

 
L

z σ
σ = . (14) 

If too many samples contribute to the transition zone of the cumulative Gaussian, σz will be close to 1.  A threshold 

can be placed on  σz  based on the amount of pre-processing blurring.  For instance, if a blurring kernel was applied 

only once then the threshold on σz  should be low. 

3.6 Classifying the Boundary 
 
 

Armed with high-confidence estimates for 1I , 2I ,  µ , and σ  the local boundary can now be classified in 

terms of these parameters.   The parameters 1I  and 2I  estimate voxel intensity beyond the ellipsoid, sufficiently far 

from the boundary to be stable. The mean µ  estimates the anatomical boundary location on the major axis of the 

sampling neighborhood and σ  estimates the total boundary width. 

Rather than struggling to extract the last bit of classification from each profile, the measures of confidence 

permit the exclusion of individual parameters on a case-by-case basis.  In the initial gathering of boundary 

candidates, a sampling interval well below the conventional Nyquist guidelines is used to yield a comprehensive set 

of profiles from which a thorough examination of a given boundary can be made.  By setting thresholds for the 

intrinsic measures of confidence, individual estimates can be rejected or accepted to make intelligent use of this 

over-sampled population. 
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4.0 ASSESSMENT OF BOUNDARY PROFILES ON A SYNTHETIC SPHERE 
 
 

 
 Computer-generated 3D data containing a sphere was used to assess the performance of gradient-oriented 

boundary profiles as well as demonstrate the effects of different types of sampling neighborhoods and splatting 

footprints.  The sphere was initially used for testing purposes because of its simple parametric definition.  The data 

was 100 voxels on a side, consisting of 8-bit voxels and the generated sphere had a radius of 30 voxels, an interior 

value of 32, and an exterior value of 64 (Figure 6).  Different combinations of sampling neighborhood shapes and 

splatting footprints were first explored.  Initial thresholds for intrinsic measures of confidence discussed in section 

3.5 were established to eliminate low-confidence profiles.  Then the radius of the sphere was estimated and 

compared to its known value.  A Root Mean Squared (RMS) error metric was used to determine which combination 

yielded the more accurate results.  After choosing the combination of sampling and splatting methods with least 

RMS error, the performance of these boundary profiles was assessed in more detail.  Optimal thresholds for 

measures of confidence for each profile parameter were found by using the measured error in the parameters.  In 

section 6.1, generated data is extended to a hollow sphere, representing the LV and myocardium to test the 

application of profiles to core atoms.  

 
 
 

Figure 6 Computer generated 3D data of a sphere of radius 30 voxels, inner intensity of 32, and outer intensity of 
64. 
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4.1 Testing Sampling Regions and Splat Types on a Sphere 
 
 

For each type of sampling region and splat type, a binomial kernel was applied multiple times on the 

computer-generated sphere, approximating a Gaussian and simulating the point-spread function of an imaging 

system.  Using the DoG gradient detector kernel as described in section 3.1, 1,264 boundary candidates were found.  

Figure 7 shows the centers of the DoG kernels that met the gradient threshold requirement.  These boundary point 

locations are located on the sampling grid rather than on the boundaries themselves, often identifying two 

boundaries on each side of the true boundary. 

 

 

 

 
Figure 7 Boundary points found with DoG kernel. The boundary points are shown as yellow points with the data in 
(a) and without the data on in (b). 

 

These boundary points were used as the centers of the sampling regions for boundary profile construction.  The 

sampling regions were either an ellipsoid or cylinder oriented along the boundary point’s gradient.  The sampling 

region size was chosen ad hoc (potential automated methods are discussed in Chapter 11) having a major axis length 

of 10 voxels and a minor axis length of 6 voxels.  Along the major axis, 10 bins were established, each being one 

voxel wide.  The intensity values of the voxels within the neighborhoods were splatted into the bins using either a 

triangle or Gaussian footprint as described in section 3.2.  A cumulative Gaussian was fit to the resulting intensity 

profile as described in section 3.3.  A fit was rejected if either intensity estimates were outside of the range of the 8-

bit data or the estimate for boundary location fell outside of the sampling region (section 3.4).  Data including the 

number of profiles found, number of profiles eliminated, and total time for construction is shown below in table 3.  

a b 
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Table 3 
Number of profiles found, eliminated, and total time for discovery and construction 

 
Neighborhood 

Type 
Splat Type # of Blatantly Bad Profiles Final # of Profiles Time to Find Profiles 

(seconds)* 

Cylindrical Gaussian 96 1168 158 
Cylindrical Triangle 64 1200 150 
Ellipsoidal Gaussian 96 1168 158 
Ellipsoidal Triangle 64 1200 152 

* Workstation Specifications: 550 MHz Pentium III Xeon Processor and 512 MB Memory. 

For these trials, a 550 MHz Pentium III Windows-based machine with 512 MB of memory was used for 

computation and visualization.  The average time for profile construction was approximately 154 seconds, slower 

than the DoG kernel and too slow for real-time analysis.  A more powerful computer (Dual 1.2GHz processors with 

2GB memory) was subsequently used and shown to significantly decrease the computation time to approximately 90 

seconds for each trial.  The boundary location estimates by the profiles are shown in Figure 8 for an ellipsoid 

sampling neighborhood and triangle footprint. Visually, the points are located on the surface of the sphere and not 

the sampling grid like they were with the DoG points.  The sub-pixel boundary estimation accuracy is demonstrated 

below.  Unfortunately, the computation overhead of constructing profiles makes them insufficient for real-time 

image analysis, but profiles offer a vastly improved set of boundary points and valuable image information. 

 

 

 

 
 

Figure 8  Boundary profiles estimating the true location of the sphere’s boundary shown with (a) and without (b) the 
data. 

 

a b 



 
 

 

 24

The improvement of estimating boundary location by profiles appeared to be consistent, independent of 

neighborhood type and splat type, which will be shown quantitatively later in this chapter. 

The radius of the sphere was estimated from both DoG boundary points and the boundary profiles by 

calculating the distance to the center of the sphere.  The error in radius estimate was found by comparing the 

calculated value to the known radius of the sphere.  The distance from the center of the sphere to the location on the 

major axis of the neighborhood corresponding to µ  was defined as the estimated radius estimateR .  This was 

compared to the known radius trueR  of the sphere, with errorR  being defined as 

estimatetrueerror RRR −= . (15) 

Figure 9 shows the error distribution for the DoG boundary point radius estimation.  The radius error ranges from 0 

to 8 voxels and the bi-modal distribution is most likely due to sampling error.  In contrast, boundary profiles were 

able to consistently estimate the radius to within 4 voxels, with a majority of the errors within 0.05 voxels of the 

true radius demonstrating sub-pixel accuracy by boundary profiles.  Figure 10 shows the distribution of radius 

errors estimated from boundary profiles with the four different combinations of sampling regions and splat types. 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 9 Radius error from the DoG boundary points used to construct boundary profiles. 
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Figure 10 The radius error calculated from µ  of profiles generated with differing neighborhoods and splatting 
footprints after eliminating blatantly “bad” profiles and prior to elimination of low-confidence parameters.  The 
symbol // indicates a break in the axis scale of the graphs. 

 
 

The measure of confidence for µ , which was defined as ( )21min , zzz  in section 3.5, was determined for each trial, 

and used to eliminate profiles expected to produce a large radius error.  By plotting the minz  vs. the radius error a 

measure of confidence 5.1min >z standard deviations was chosen to ensure that µ is consistently within .5 voxel 

of the true boundary and eliminates all outliers across the 4 trials (Figure 11).  Table 4 shows that the number of 

profiles eliminated for each trial was about the same. 
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Figure 11 Measures of confidence for µ  plotted against the error in estimating the radius of the sphere.  Dashed 
line shows the threshold that ensures profiles that will estimate the radius within .5 voxels of the true radius. 

 

Table 4 
Number of profiles eliminated using a threshold of 5.1min >z  

 
Neighborhood Type Splat Type # of Eliminated Profiles 

Cylindrical Gaussian 144 
Cylindrical Triangle 192 
Ellipsoidal Gaussian 200 
Ellipsoidal Triangle 240 

 

After removing profiles below the µ  measure of confidence threshold, Root Mean Squared (RMS) was used as a 

metric to assess which sampling neighborhood and footprint combination yields the least error in estimating the 

radius: 

∑
=

=
n

i
errorR

n
RMS

1

21
. (16) 
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The resulting RMS values are summarized in Table 5.  Identical to standard RMS, a value near 0 indicates least 

error.  Since the ellipsoidal neighborhood and triangle footprint resulted in the smallest RMS value, this combination 

was used for the remainder of this thesis.  The radius errors for the remaining 1,048 profiles after applying the µ  

measure of confidence threshold are shown in Figure 12.  The radius error ranges from 0 to .2 voxels as opposed to 

0 to 8 voxels before applying the boundary profiles (compare with Figure 9). 

 
Table 5 

Effects of neighborhood and splat type on determining the radius of the sphere accurately 
 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Figure 12 Radius error from estimated µ  after removing low-confidence profiles for profiles generated with an 
ellipsoidal sampling neighborhood and triangle splatting footprint. 

 
 
 

4.2 Measuring the Accuracy of Intensity Estimates by Gradient- 
Oriented Profiles 

 
 

 After eliminating profiles with low-confidence estimates for µ , the accuracy of the intensity parameters of 

the remaining profiles was measured using a priori knowledge of the intensities on both sides of the boundary.  

trueI  is the known voxel intensity, denoted 1I  inside the sphere or  2I  outside the sphere. The use of a priori 

knowledge of the intensities can be eliminated and replaced with a statistical analysis of the population of boundary 
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profiles.  The intensity estimates of the boundary profiles can be clustered within a threshold and averaged for a 

measure of trueI .  The estimate of intensity derived from the profile for either 1I  or 2I  is denoted estimateI , and 

errorI  is defined as 

estimatetrueerror III −= . (17) 

Figure 13 is a graph of errorI  vs. relativeµ , where  

2
L

relative −= µµ   (18) 

and L is the length of the sampling region’s major axis and 

22
LL

relative <<− µ  . (19) 

Representing µ  in this manner as relativeµ defines a coordinate system for the boundary location within the 

sampling region.  If: 

 0=relativeµ , the boundary is near the center of the sampling region  (20) 

0<relativeµ , the boundary is towards the lower asymptotic end of the sampling region  (21) 

0>relativeµ , the boundary is towards the upper asymptotic end of the sampling region.  (22) 

When relativeµ  is close to 0, the profiles are better able to estimate the intensity on either side of the boundary than 

when µ  is located away from the center of the sampling region.  When µ  is located away from the centers of the 

sampling region, intensity values are estimated less accurately in that direction.  However, such a profile will 

estimate the intensity in the opposite direction with even better accuracy.  For example, in Figure 13, 2I  can be 

estimated to within one unit of intensity, when relativeµ  is much less than zero.  

 

 

 

 

 



 
 

 

 29

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 The distribution of error in estimating the intensity values on either side of the boundary as a function of 
µ  (with zero being the center of the ellipsoid). 

 
 
 

4.3 Judging Intrinsic Measures of Confidence 
 
 

Gradient-oriented profiles have been shown to estimate the intensity values and localize the boundary 

location.  The validity of the intrinsic measures of confidence is now demonstrated. 

The measures of confidence for the profile parameters were calculated using the methods discussed in 

section 3.5.  Figure 14 shows the error in estimating 1I  (interior of sphere) as a function of its measure of 

confidence 1z  and for 2 standard deviations ( 0.21 ≥z ) the error 10<errorI .   Therefore, a threshold placed on 1z  

of 2.0 would guarantee this accuracy.   
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Figure 14 The error in estimating the intensity for the interior of the sphere 1I  versus its measure of confidence 1z . 

 
 

With this threshold, 776 of the total profiles (67%) will remain to estimate the intensity 1I .  Similarly, Figure 15 

shows the error in estimating 2I  (exterior of sphere) as a function of its the measure of confidence 2z , with similar 

results for 10<errorI  the threshold for 2z  is 1.5. 

 

 

 
 
 
 

 
 
 
 
 
 
 

Figure 15 The error in estimating the intensity exterior to the sphere 2I  as a function of its measure of 

confidence 2z .   
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It was predicted earlier that profiles with µ  near the center of the ellipsoid should be able to estimate both 

intensities 1I  and 2I  with high accuracy.  There were 632 out of the 1,160 (54%) profiles that could reliably 

classify both intensities as described above and they with µ  near the center of the sampling region. 

Profiles with µ  near the center of the ellipsoid should also be able to reliably estimate µ .  Our measure of 

confidence for µ  was therefore defined as ( )21min , zzz .  As shown in Figure 16, for minz  > ½ standard deviations, 

a high confidence seems warranted for µ , since it is consistently within 1 voxel of the true boundary.  This 

threshold places high confidence in the estimates of boundary location for 1,152 out of 1,160 profiles (99%). 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 16 Error in boundary location from gradient-oriented profiles versus measure of confidence.
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5.0 BOUNDARY PROFILES APPLIED TO CORE ATOMS 
 

 
Boundary profiles were applied to a medial approach to shape analysis, called core atoms, which relate 

multiple boundary points to common central points deep within the object [16].  A core atom is formed from pairs 

of boundary points that face each other across the intervening distance.  As already discussed, core atoms as 

previously implemented employ simple gradient boundary points and therefore have several limitations.  The first 

limitation derives from the ambiguity of gradient direction depending on the background.  In addition, core atoms 

only provide gradient strength rather than absolute intensity, making it impossible to differentiate particular tissue 

types on either side of the boundary by intensity.  These limitations of core atoms can be overcome by providing 

intensity information.  Gradient-oriented profiles do exactly this. Thus it seems natural to apply gradient-oriented 

profiles to core atoms, enhancing the performance of the core atoms by providing absolute intensity information.  

Core atoms based on gradient-oriented profiles have the added advantage of greater accuracy in estimating 

boundary location.    

 
 

5.1 Core Profiles 
 
 

For the purposes of this dissertation, the term core profile has been given to the next-generation core atom 

enhanced by gradient-oriented profiles.  The reason for this was mostly for the sake of clarity.  A core atom is no 

more than two boundary points connected in image space, if sufficient medialness exists, and is represented by the 

center point between these two points.  Core profiles are still two connected boundary points, represented by a 

center point, but differ in having new medialness requirements for the two boundary points (boundary profiles).  

Also, by means of the boundary profiles core profiles contain intensity information.  The process of constructing 

core profiles is presented in section 5.2 and resulting performance of core profiles on three-dimensional cardiac 

phantom data can be found in section 6.2.  These results also include a simple and preliminary method for volume 

measurement in a cardiac phantom corresponding to the LV and the myocardium. 
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The theory behind the construction of core profiles is very similar to that of core atoms.  A brief review will 

be included here, but a more detailed explanation can be found elsewhere [15, 16].  Rather than consisting of two 

boundary points like a core atom, a core profile consists of two boundary profiles.  The collection of the boundary 

profiles follows the methods as discussed in section 3.1.  For each boundary profile, search regions for other 

boundary profiles are established along the image gradient in both directions.  Pairs of boundary profiles are then 

collected that meet the following requirements:   

 
(i) The distance between the boundary profiles (estimated boundary locations) is within a specified range.  This 

permits savings in computation if there is a priori information about the expected width of the object.  This 

distance is termed the scale of the resulting core profile and is defined as 

122,1 bbs −=
r

, (23) 

where max2,1min sss ≤≤
r

 and the expected width is between mins  and maxs .  The vector 2,1s
r

indicates 

the direction from the first boundary profile location 1b  to the second boundary profile location 2b and the 

core profile is defined to be located at the midpoint between the two boundary profiles.  Figure 17 

illustrates a core profile created across an object of intensity 1I  against a background of intensity 2I . 

                               

 
 

 

 

 

 
 

Figure 17 A core profile spanning an object containing voxels of intensity 1I (shaded area), against a background of 

intensity 2I .  The core profile consists of two boundary profiles separated by 2,1sr  and a center point midway 

between the boundary locations of the profiles.  ijI  is the intensity estimate for region i  by core profile jb .  The 

angle between the core vector 2,1s
r

 and the individual gradient directions does not have to be zero (see (ii) of 

requirements).  Also, the exterior voxel intensities 2I do not have to be the same for each boundary profile (see (iii) 
of requirements). 
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(ii) The face-to-faceness, defined as  

( ) 









⋅










⋅= 2

1,2

1,2
1

2,1

2,1
21, n

s
s

n
s
s

bbF r
r

r
r

r

r

,  (24) 

where in  (i = 1,2) is the orientation of the thi boundary profile, is sufficiently close to 1, while still 

allowing some variation in the relative orientations of the boundaries.   

 
(iii) For the candidate boundary profiles, the intensity estimates for the space they traverse must both be high-

confidence estimates (established in section 3.5) and have similar values within some pre-determined 

tolerance.  As illustrated in Figure 17, ijI   (i, j = 1,2) is the intensity estimate for region i  by boundary 

profile jb .  For example, 12I  is the intensity estimate of region 1I  by boundary profile 2b  and 11I  is the 

intensity estimate of region 1I  by boundary profile 1b .  The measure of confidence placed on the intensity 

estimate for region i  by profile jb  is denoted ijz (i,j = 1,2).  Thus, profile 1b  estimates intensity 1I  with 

high-confidence if )( 1111 zthresholdz > .  Core profile 2,1s
r

 is acceptable if all of the following are met: 

(a) )( 1111 zthresholdz >   (25) 

(b) )( 1212 zthresholdz >    (26) 

(c) τ<− 1211 II , where τ  is an intensity tolerance  (27) 

Equations 25 and 26 guarantee that the intensity estimates for 1I  by both profiles are estimated with high-

confidence and equation 27 states that these estimated intensities must be nearly equal. 

 

Any boundary profile may link to several other boundary profiles, thus becoming involved in a multiple 

number of core profiles.  The additional intensity information delivered from gradient-oriented profiles may permit 

core profiles to be formed in both directions of the gradient, resulting in a network of core profiles as shown in 

Figure 18.  Core profiles 2,1s
r

, 3,2sr , and 4,3sr  are termed homogeneous core profiles because their entire lengths 

span local regions homogenous intensity.  Core profile 4,1s
r

, is a heterogeneous core profile because it spans 
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multiple regions of varying intensities. Since only homogeneous core profiles are desirable, the additional constraint 

is required that the intensity must be roughly homogenous throughout the interior region. 

 
 
 
 
 
 
 
 
 
 

 
Figure 18 A network of four core profiles spanning 3 different regions of homogenous voxel intensity (solid lines) 
and 1 region of heterogeneous voxel intensity (dashed line).  Heterogeneous core profiles span regions of differing 
intensity. 

 
 

Core profiles as described above, only pay attention to the interior intensity, and are therefore essentially 

independent of background.  However, it is possible to require boundary profiles to only pay attention to exterior 

intensities instead.  Instead of medialness, such core atoms would detect what could be called lateralness.  For 

example, in a cross-section of the human torso, such core profiles would traverse the entire torso, ignoring internal 

organs, and base their creation on the common intensity of air exterior to the body.  This type of core atom will not 

be explored further her because these core profiles may not be forming on real objects at all. 

 
 

 5.2 Measuring Medial Properties With Core Profiles: Medial Densities 
 

Populations of homogeneous core profiles can be analyzed for a measure of medialness following the same 

methodology that Stetten has developed for core atoms [15].  A brief overview is included here.  For 3D data, there 

are three basic core atom configurations; “koosh-ball,” “bed-of-nails,” and “spokes-of-a-wheel.”  The “koosh-ball” 

configuration occurs when core atoms are formed within a spherical surface.  The core atom vectors form the koosh 

spikes and the centers of the core atoms form the cluster near the center of the sphere.  Data containing a cylinder 

results in a “spokes-of-a-wheel” arrangement, having core atom centers located along the cylindrical axis.  Core 

atoms that form on the surface of a slab will yield the “bed-of-nails” configuration across the interior of the slab, 

with core atom centers clustered on a 2D plane between the surfaces of the slab  (Figure 19).   
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Figure 19 Top shows basic shapes in dark gray with corresponding core in light gray.  Below these are shown the 
corresponding basic core atom configurations (from left to right): “koosh-ball,” “spokes-of-a-wheel,” and “bed-of-
nails.” (courtesy of George Stetten [15]).  

 

For a given population of core atoms, their orientation vectors can be statistically analyzed with eigenanalysis to 

yield a measure of dimensionality and an overall estimate of orientation.  The resulting eigenvalues 321 λλλ <<  

define the dimensionality of the core and eigenvectors 321 ,, aaa rrr
 define a specific coordinate system for 

orientation.  The eigenvectors are ordered such that 1ar  is most orthogonal to the population of core atom vectors 

and 3ar  is least orthogonal to the set of core atom vectors.   

  The eigenva1ues are normalized and greater than or equal to zero.  A value of 0 indicates that the 

corresponding eigenvector is completely orthogonal to every core atom.  This is true for 1ar  of a cylinder and 1ar  

and 2ar  of a slab.  For the sphere, none of the eigenvectors is orthogonal to every core atom since the core is a point.  

Since 1321 =++ λλλ , the eigenvalues can be viewed as a system with only 2 independent variables, 1λ  and 

2λ .  Further constraints on the system limit values for 1λ  and 2λ  to 21 λλ ≤  and 
2

1 1
2

λλ −
≤ , which defines a 

triangular domain called the lambda triangle (Figure 20).   
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Figure 20  Lambda triangle 
 

The triangle’s vertices represent the three basic shapes. All possible sets of eigenvalues are bounded by the 

triangle.  Thresholds placed on 1λ  and 2λ  ( ρ  and γ ), divide the triangle into 3 compartments designating 

dimensionality for a given population of core atoms as an integer value: 

• Sphere = 0 

• Cylinder = 1 

• Slab = 2 

For this work, the thresholds ρ  and γ  follow the arbitrary values established by Stetten, 
5
1

=ρ  and 
3
1

=γ .  This 

simplified designation of dimensionality is primarily used for visualization, with the medial densities displayed as 
lines with the following color codes: 
 

• Sphere = blue 

• Cylinder = green 

• Slab = red 

 
Medial properties measured in this manner are prone to displacement from the true core, a result of the face-to-

faceness threshold and sampling artifact.  This may cause a misclassification of local dimensionality.  For instance, 

consider the cross section of a cylinder.  Core atoms formed should ideally traverse the center axis of the cylinder.  
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However, if they are displaced from the true core of the cylinder, a slabness measure in the periphery of the true 

cylindrical core will result.  This problem is overcome by taking the location of the core atom populations into 

consideration and searching for medial neighbors to cluster core atoms, using the method described by Stetten [16].    
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6.0 CORE PROFILE TEST DATA 
 
 

Core profiles were tested on a 3D data set, 100 voxels cubed, 8-bit voxels.  The test target consisted of two 

concentric spheres, chosen to crudely represent an ultrasound scan of the heart.  The inner sphere represented the 

endocardium with a radius of 15 voxels.  The outer sphere represented the epicardium and had a radius of 30 voxels.  

The interior intensity of the smaller sphere was 32 (LV cavity), the shell between the spheres had an intensity of 128 

(myocardium), while the exterior of the larger sphere had an intensity of 64 (background).  This test data is shown 

below in Figure 21.  

 

  

 
Figure 21 Test data simulating a 3D ultrasound image of a heart.  The interior of the smaller sphere is of intensity 
32 and represents the left ventricle, the shell is of intensity 128, representing the myocardium, and the background is 
of intensity 64. 

 

Using the DoG kernel, as described in section 3.1, a total of 1,936 boundary candidates were found (shown 

in Figs. 22a and 22b).  The parameters for the size of the ellipsoid, bin size, and footprint type were as described in 
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section 4.1. Of the resulting 1,936 profiles, 384 profiles were eliminated because they did not meet the constraints 

defined in section 3.5, leaving 1,552 profiles for analysis (shown in Figs. 22c and 22d). 

   

 
 

 
Figure 22 a) The boundary points found with the DOG kernel on a regularly sampled grid overlaid on the data. b) 
The grid of boundary points seen more clearly without the data. c) The resulting boundary profiles found from the 
boundary points in (a).  d) The same boundary profiles shown in (c) without the data.  Notice the profiles in (c) and 
(d) are more accurately located on the boundaries without the sampling artifact seen in (a) and (b).  

 

For the remaining profiles, the measures of confidence for the classification parameters were calculated as 

derived in section 3.5.  There were a total of 98,771 boundary comparisons of which 10,110 met the requirements as 

discussed in section 5.1 for core profile formation.  In Figs. 23a through 23c, the core profiles are shown by their 

boundary profiles and center locations.  The boundary profiles are shown as green dots and the core profile centers 

a b

c d
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as red dots.  Qualitatively, the centers are located as expected.  The core profiles that form across the inner sphere 

have center points near the center of that sphere.  Core profiles that form across the spherical shell have center points 

midway through the shell.  The analysis of these core profiles is performed in section 6.2 along with a measure of 

the accuracy of the gradient-oriented profiles for this new test model, to ensure that they perform in an effective, 

consistent manner.  Figures 24a and 24b show the medialness of the sphere using the techniques described in section 

5.2.  As expected, the shell around the inner sphere was found to demonstrate slabness (red lines).  The inner sphere 

demonstrates some expected sphericalness (blue lines), but also some cylindricalness (green lines).  The 

cylindricalness is due to the core profile sample being too far away from the theoretical core of the sphere.  By using 

the clustering methods briefly discussed in section 5.2, the inner sphere is correctly labeled as a sphere.  The sphere 

is displayed as 3 orthogonal blue lines placed in the center of the core profile cluster with lengths equal to the 

average core profile length of the cluster.  Slabs were found between the two spheres as expected, and are shown as 

thick red lines with length approximately equal to the thickness of the shell. 
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Figure 23 a) The results of applying core profiles to 
the test data, displayed with the data.  The red dots 
correspond to boundary profiles of the core profiles.  
The green dots are the centers of the core profiles.  b) 
Cutaway view exposing the centers of the core profiles.  
c) The resulting core profiles without the test data. 
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Figure 24 a) Medialness found from core profiles.  
Red lines indicate slabness, green lines indicate 
cylindricalness, and blue lines indicate sphereness.  
b) Cutaway view exposing the lines of medial 
dimensionality.  c)  Clustered core atoms indicating 
sphericalness, displayed as a the blue symbol and 
slabness displayed as the red lines. 

 
 

 
 

6.1 Measuring the Accuracy of Gradient-Oriented Profiles 
 
 

Unlike the single sphere (Chapter 4) the test model in chapter 5 contained two spheres and generated two 

populations of boundary profiles.   The accuracy of these boundary profiles can be examined in the same way as 

discussed in section 4.1 and 4.2, if the populations of the profiles are first separated by their estimation of the radius 

of the boundary.  There were 280 profiles near the inner boundary and 1,263 profiles near the outer boundary.  

Figure 25 shows the distribution of error in estimating the intensity values on either side of both boundaries as a 

function of µ .  Results are consistent with previous results, showing that when µ is near the center of the sampling 

region, profiles are able to estimate the intensity on either side of the boundary better than when µ  is located away 

from the center of the sampling region.  

a b

c
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Figure 25 Both graphs show the error in estimating intensities on either side of a boundary as a function of relativeµ .  
The left graph shows the error in estimating the intensities on both sides of the inner boundary.  The right graph 
shows the error in estimating the intensities on both sides of the outer boundary.   
 
 
Using Eq. 15, the accuracy of the profiles in estimating the true boundary location can be measured.  Out of the 

1,152 profiles, 1488 (95.87%) were able to estimate the location of a boundary within one voxel.  By comparison, 

the simple gradient (DoG) detector had only 456 out of the 1,152 (29.38%) boundary points within one voxel of a 

boundary.  Figure 26 compares the error in estimating the true boundary locations by profiles and the DoG detector. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 26 Comparison of errors in estimating boundary locations with the DoG detector versus gradient-oriented 
profiles.  96% of the total profiles as opposed 29% of the total DoG kernels estimated a boundary location within 
one voxel. 
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I1 Error vs. z1
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Figure 27 Intensity measures of confidence for both boundaries. 

 

The measures of confidence for the profile parameters were calculated using the methods described in 

section 3.5.  Plotting 1I  versus 1z  (Figure 27) shows the error in estimating the inner intensity of the inner 

boundary 1I as a function of its measure of confidence 1z .  When 1z is greater than 1.9, the error in estimating 1I  is 

less than 7 units of intensity (8-bit data with a full scale of 0-255).  With this threshold, 80% of the inner boundary 

profiles are considered acceptable for estimating 1I .  The error in estimating the outer intensity of the inner 

boundary 2I as a function of its measure of confidence 2z  can be found by plotting 2I  versus 2z .  If an intensity 

error of 8 is acceptable for estimating 2I , 100% of the inner boundary profiles can estimate 2I with high-

confidence. 

Similar plots for the outer boundary show the error in estimating the inner and outer intensity of the outer 

boundary as a function of their measures of confidence.  A threshold of 1.1 on 1z  accepts profile estimates (84%) of 

the inner intensity of the outer boundary 1I  to within 7.  A threshold of 1.6 on 2z  permits 84% of the outer 

boundary profiles to estimate, with high-confidence, the outer intensity 2I .   
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6.2 Analysis of Core Profile Population 
 
 

The two concentric spheres generate two populations of core profiles: those that span the inner sphere, and 

those that span the shell between the spheres.  Since only homogenous core profiles are being considered, core 

profiles that span the outer sphere are not allowed.  Recall that each core profile can be described by its two 

boundary profiles, its center point, and its scale.  In the previous section, it was shown that the boundary profiles 

composing core profiles are able to accurately locate the true boundaries and estimate the intensities of the test 

model for an ultrasound image of a heart.  We now show that the center point and scale of the core profiles created 

are consistent with the expected results.  The spherical nature of the data simplifies this analysis.  We denote the 

center of the two spheres as the “origin”.  The center points of the core profiles should either be near the origin 

spheres or half way between the two spheres.  Figure 28 shows the distance between the centers of the core profiles 

and origin.   Half-way between the two spheres is 22.5 units from the origin, and corresponds to the second peak on 

the graph.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28 The distribution of center points of the core profiles.  The center of the sphere is at 0 and the center of the 
slab between the spheres is at 22.5. 
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Many core profiles have their centers located very close to the midpoint of the slab, but there is a greater spread for 

the centers of core profiles formed across the inner sphere.  This spread is expected because the error in gradient 

orientation has a greater effect at the larger scale of the inner core profiles.   

Core profiles (homogeneous) formed across the inner sphere should have a scale of 30, while those formed 

across the outer sphere (heterogeneous) should have a scale of 60 voxels.  Those formed across the slab should have 

a scale near 15 voxels.  Figure 29 shows these three populations of core profiles.  Heterogeneous core profiles have 

been included for the purposes of this experiment, although they are usually excluded.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 

Figure 29 Distribution of core profile scale consistent with expected results. 
 
 
 

6.3 Measures of Volume 
 
 
The expected volume in the test data corresponding to the simulated left ventricle (LV) and myocardium in the 

concentric spheres can be calculated using the equation for the volume of a sphere, 

3

3
4 rV π= . (28) 

The expected volume of the LV is calculated by using Eq. 28 with a radius of 15 voxels.  Likewise, the expected 

volume of the entire heart (LV and myocardium) is found with Eq. 28 and a radius of 30 voxels.  The expected 

volume of the myocardium is the difference between expected LV volume and total heart volume.    

Distribution of Core Profile Scale

0

500

1000

1500

2000

2500

14
.5

15
.5

20
.5

21
.5 24 29 30 43

.5
45

.5
48

.5
55

.5
56

.5
57

.5
58

.5
59

.5
60

.5
64

.5
68

.5

Core Profile Scale (voxels)

N
um

be
r 

of
 C

or
e 

Pr
of

ile
s



 
 

 

 48

These volumes are measured using the scale of the core profiles.  The core profiles with a scale between 20 

and 45 voxels are averaged and used to approximate the volume of the LV by using Eq. 28. Similarly, the heart 

volume is found with core profiles having a scale between 45 and 70 voxels and the volume of the myocardium is 

the difference between these two measures.  Table 6 contains a summary of these volume measures as well as an 

error measure (percent error) for the volume calculated by the core profiles. 

 
Table 6 

An average core profile scale after sorting them by scale permits the calculation of LV and myocardial volume.  The 
true volumes are found simply by using the equation of a sphere and the known radii of the test data.  The percent 
errors (PE) for volume measure and standard deviation (σ ) of the core atom and profile lengths are shown in 
parentheses. 
  
 

 

 

The percent error for measuring volume with core atoms and core profiles did not differ by much.  However, the 

standard deviations of the core profile scales used to calculate volume were less than those by core atoms.  Thus, it 

can be concluded that the errors in boundary location seen with the DoG kernel tend to average out, so the volume 

measure is just as accurate as with boundary profiles, but the individual boundary profiles are more consistent.  

Calculating the volumes with the core profiles in this manner was possible because only spheres were involved.  In 

real data, volumes cannot be calculated in this manner.  Currently, more versatile methods of volume calculation 

based on core profile features are being developed and these are discussed in the following chapter. 

Method of Calculation LV Volume (voxels) Heart Volume (voxels) Myocardium Volume (voxels)

Known Parameters of Data 14,137 113,097 98,960 

Average Core Atom Scale 13,158 (PE = 7%, =σ 2.7)114, 082 (PE = 1%, =σ 5.4) 100,924 (PE = 2%) 

Average Core Profile Scale 13,215 (PE = 6%, =σ 2.1) 111,002 (PE = 2%, =σ 2.3) 97,787 (PE = 1%) 



 
 

 

 49

 
 
 
 
 

7.0 MEASURING VOLUME WITHOUT GEOMETRICAL ASSUMPTIONS WITH 
CORE PROFILES ON CONCENTRIC ELLIPSOIDS 

 
 

In this section computer-generated 3D data consisting of two concentric ellipsoids was used to illustrate 

two potential methods for automatic volume measure with core profiles without geometric assumptions.  The two 

concentric ellipsoids served as a crude model of the balloon phantom.  The data containing the two concentric 

ellipsoids were 100 voxels on a side, consisting of 8-bit voxels with a background of intensity 64.  The larger 

ellipsoid had a major axis of 70, minor axis of 50, and intensity of 128.  A smaller ellipsoid was placed in the data 

with a major axis of 60, minor axis of 40, and intensity of 32.  The result was a small ellipsoid (voxel value of 32) 

surrounded by a 10 voxel thickness surrounding shell of intensity of 128 (Figure 30).   

 
 

Figure 30 Computer generated 3D data of two concentric ellipsoids. 
 
 

Two methods developed for automated volume measures are discussed here that may prove valuable where 

volume measures are needed, but where explicitly defining a parametric shape is not possible.  These methods are 

theoretically presented, but not empirically evaluated. This represents future work, which will include automated 

model building from medial nodes. 

The first method relies on a dense population of core profiles (Figure 31 shows the population of boundary 

profiles from which some core profiles are formed).  The method samples voxels in regions around individual core 
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profiles and counts voxels that have intensity similar to inner intensity of the corresponding boundary profiles.  For 

this reason, it is called the “search and count” method.  It is shown in Figure 32 and described in more detail below. 

 
 

 
 

 
Figure 31 Left shows estimations of boundary locations from gradient-oriented profiles as orange points with the 
data.  Right shows the boundary profiles without the data, conveying the sub-pixel ability of profiles to locate 
boundaries. 

 

 
 

 
Figure 32 Search and Count Method: Automatically measuring volume with core profiles using an intelligent fill 
routine. 
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The “search and count” method proceeds with the following steps until all core profiles have been visited: 

1. Visit a core profile and define an ellipsoidal voxel-counting region that extends to both boundary profiles 

(green circles), centered midway between the boundary profiles (red circle).  This ellipsoid region is shown 

as blue in figure 32. 

2. Count the number of voxels within the ellipsoid region that have an intensity value similar to the inner 

intensity of the boundary profiles.  For instance, voxel ω is added to the volume count if its intensity ϖI  

satisfies  

 







 −

+ κ
2

11 BA II
≤≤ ϖI 






 +

+ κ
2

11 BA II
,   (29) 

 
where AI1  is the inner intensity estimated by boundary profile A  and  BI1  is the inner intensity estimated 

by boundary profile B  and κ is an intensity threshold chosen empirically. 

3. If a voxel has been added to the volume count, it is no longer considered for the volume count, i.e. all of the 

voxels in the dark blue region are counted only once. 

 
The “search and count” method will tend to be computationally inefficient as a result of repeatedly visiting voxels in 

overlapping counting neighborhoods, if only to check whether they have already been counted.  If the population of 

core profiles is sparse, the volume measure will be inaccurate.  The effects of boundary discontinuities and image 

noise are difficult to predict. 

 The second technique, called “medial region filling” utilizes the medial nodes described in section 5.2.  

First, medial nodes must be constructed.  The nodes are shown below in Figure 33 for the concentric ellipsoids along 

with their medial densities.   
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Figure 33 a) Local medialness found from core 
profiles.  Red lines indicate slabness and green lines 
indicate cylindricalness.  No sphereness has been 
detected in this case.  b) Clustered core atoms 
indicating cylindricalness for the inner ellipsoid, 
displayed as the green symbol and slabness displayed 
as the red lines for the shell around the inner ellipsoid.  
c)  Clustered core profiles without data.   

 

 
 

 
 
 

As expected the shell around the inner ellipsoid exhibits slabness and the inner ellipsoid shows cylindricalness.  A 

“medial region fill” is shown in Figure 34.   

a 

b c 
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Figure 34 The use of medial nodes to measure volume without explicitly defining a surface with a “medial region 
fill.”  Spherical regions are centered at each medial node with a diameter equal to the average core profile length.  
The spherical regions expand into ellipsoids to similar voxels until they collide with object boundaries.  The final 
volume measures are found by counting voxels for similar spherical regions.  
 

Regardless of dimensionality; a spherical fill region (blue circles) is centered at each medial node (gray circle) with 

a diameter equal to the average core profile length.  The spheres are deformed by expanding into ellipsoids along 

axes orthogonal to the core atom population to include neighboring voxels that have intensity representative of the 

medial node intensity.  The spheres continue to deform until they collide with object boundaries.  The volume of the 

inner volume is measured by counting the number of voxels within the corresponding deformed spheres (ellipsoids).  

The medial region fill method may be more robust than the search and count method because it may be less 

sensitive to individual missing boundaries. 
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8.0 APPLICATION OF METHODS TO RT3D ULTRASOUND DATA 
 
 

In this section gradient-oriented boundary profiles and core profiles are formed on real-time 3D ultrasound 

data, and measures of medialness computed.  The data come from David Sahn, M.D., Oregon Health Sciences 

University, and contain a left ventricular balloon model [66].  The phantom data are used to explore ultrasound-

specific difficulties, such as image noise, while minimizing the more complex issues found with cardiac RT3D data. 

The balloon model is made up of an inner latex balloon of 10-inch diameter (representing the endocardium) and 

an outer balloon of 12-inch diameter (representing the epicardium).  A mixture of water and ultrasound gel was 

inserted between the two balloons (representing the myocardium), and pure water was inserted into the inner balloon 

(representing the LV).  Air bubbles were removed with a catheter through the necks of the balloons.   

For this dataset, the “myocardial space” was filled with 50 mL of gel solution and the “LV” was filled with 100 

mL of water.  The balloon phantom was placed in a tank of water and imaged from beneath by a real-time 3D 

ultrasound machine (Model 1 machine, Volumetric Medical Imaging).  The distance from the face of the transducer 

to the center of the balloon was between 5 and 7 cm.  The entire balloon was captured in real-time within a 64x64 

pyramidal volume sampled to a range of 18 cm.  A representative scan is shown in Figure 35 as 2D cross-sections.  

The two orthogonal vertical slices are termed B-mode slices and the horizontal slice is called a C-mode slice. 
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Figure 35 A 3D scan of the left ventricular balloon model displayed as 2D cross-sections.  The transducer is at the 
top of the image and the necks of the balloons are at the bottom of the image (the circular white blob).  The 
“reflection” at the bottom of the image is an ultrasound artifact caused by reverberations within the balloon. 
 
 
 Gradient-oriented boundary profiles were applied to the balloon data.   The parameters previously 

established were used:  ellipsoidal sampling neighborhood with a major axis of 10 voxels and a minor axis of 6 

voxels and triangle splatting footprint with 4 splatting bins.  The resulting boundary profiles are shown in Figure 

36a.  The profiles form a double layer at the two balloon surfaces.  In the upper left corner of Figure 36a one can see 

the difficulty in analyzing RT3D data.  The “hole” in the outer boundary makes it impossible for boundary profiles 

to form without dramatic over sampling, which would lead to an enormous number of boundary profiles.  Boundary 

profiles that form in the reverberation artifact at the bottom of the scan may also present a problem, but can be 

neglected during core profile formation by constraining the range to contain only the balloon.  Intelligent shape 

analysis routines, to be devised in ongoing research, will hopefully eliminate such outliers.  

There are two differing populations of core profiles once the homogeneous constraint is applied: one 

population of core profiles across inner balloon and another across the interballoon space.  Core atoms in their 

previous implementation would require a minimum of two passes to detect both populations of core atoms.  Each 

pass would need the scale and gradient direction set to find the particular core atoms desired.  An advantage of core 

profiles is they contain the image intensity information, so a gradient direction does not need to be chosen making 

them capable of detecting both populations of core profiles in a single pass.    Formation of core profiles in 2 passes 

was compared to formation in 1 pass, as described next. 

B-mode slices 

C-mode slice 

Myocardium 

Left Ventricle 
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Core profiles were formed in 2 passes with a face-to-faceness threshold of 12 degrees and a search region 

either between 1 and 5 voxels or 10 and 15 voxels.  The total time to form core profiles for each pass took 

approximately 120 secs.  Both populations of core profiles constructed from the boundary profiles in Figure 36a are 

shown together in Figure 36b.  The red points are the boundary profiles of a core profile and green points are centers 

of core profiles.  The presence of a “hole” in the outer boundary is present and does not permit some core profiles to 

form across the LV space.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 36 a) Location of boundaries found by boundary profiles.  b)  Population of core profiles found (red points 
are boundary profiles and green points are centers of core profiles). 
 

After forming the core profiles, each population was clustered according to the method described in section 

5.2.  Figure 37a shows that the medial nodes found from the short core profiles are slab-like and Figure 37b shows 

that the long core profile medial nodes cluster as a cylinder. 

 
Figure 37 a) Medial nodes found for the balloon detecting slabness of the simulated myocardium.   b) Medial nodes 
detecting cylindricalness for the LV. 

 

a b 

a b 
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Core profiles were formed in a single pass with a face-to-faceness threshold of 12 degrees and a search 

region between 1 and 15 voxels.  The total time to form these core profiles was approximately 140 secs.  Core 

profiles can be clustered at one time by utilizing the classification of boundaries by boundary profiles.  Figure 38a 

shows the resulting clustered profiles.  Like the graphical test figure of the two concentric ellipsoids, only slab-like 

nodes and cylinder-like nodes were found.  However, they tended to be dispersed throughout the data rather then 

localized along the medial cores due to core atoms forming on extraneous noise. This is not a function of the 

boundary profiles themselves, but an inherent problem to the core profile clustering.  Resolving this is beyond the 

scope of this thesis, but will be addressed in future research.   

In the meantime, applying specific constraints on the medial nodes can refine them.  Figure 38b shows the 

medial nodes after applying the following constraints: 

1. Cylindrical nodes are discarded if they are not located in some proximity to the long-axis of the data, 

i.e. through the center of the balloon.   

2. Slab nodes are discarded if the distance between them and the nearest cylindrical node is larger than 

a pre-determine distance. 

 

 

 

Figure 38 a) Clustered core profiles.  b) Applying constraints to clustered profiles 
 
 
Although effective at reducing the number of extraneous medial nodes, extensive a priori knowledge of the data is 

necessary.  Future work will involve performing medial analysis on a training dataset then deriving a model based 

on medial nodes to represent the objects of interest.  After the model is trained, a correspondence metric will be 

a b 
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calculated between its nodes and nodes of a given dataset.  If sufficient correspondence does not exist, the test node 

is removed, thus, providing autonomous removal of extraneous medial nodes. 
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9.0 INSIGHT TOOL KIT CONTRIBUTION 
 
 
 

In 1999, the National Library of Medicine of the National Institutes of Health awarded a three-year contract 

to develop an open-source registration and segmentation toolkit, now known as the Insight Toolkit (ITK).  The 

toolkit, was originally developed and maintained by six primary contractors; three academic organizations, three 

commercial organizations, and several sub-contractors, including the University of Pittsburgh.  A number of new 

contributors have since joined the consortium. 

ITK is an open-source platform-independent software toolkit for performing registration and segmentation, 

intended to support the Visible Human Project for registration and segmentation.  In general, it is hoped that ITK 

will establish a standard foundation for future image processing research.  A repository of fundamental algorithms 

exists and validation techniques will be available to compare results of different algorithms.  The software 

architecture is multi-dimensional and designed to handle large datasets and serves as a platform for advanced 

product development.  Moreover, it is envisioned that ITK will create a convention for future image processing work 

and cultivate a self-sustaining community of software users and developers.  

 I have been involved with the ITK project as a student in George Stetten’s lab practically since its 

conception.  During its development, I have learned its architecture, and written base classes and tutorials.  After a 

significant amount of time, I was able to implement the work of this thesis into the toolkit.  The source code is 

currently available for download with the toolkit at the ITK web page http://www.itk.org.  

 

http://www.itk.org
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10.0 FUTURE WORK 
 
 

 
A goal of this thesis was to present methods of shape detection and measurement fast enough to take 

advantage of the real-time acquisition of RT3D for real-time analysis.  Unfortunately, gradient-oriented boundary 

profiles typically require around 2 minutes to fully execute for a given volume of RT3D data.  Even though the 

information delivered by boundary profiles is valuable for shape analysis, it cannot operate in real-time.  Thus, 

future work will investigate methods to accelerate the formation of boundary profiles.  Techniques for volume 

measures in RT3D were theoretically developed, but rely on either a dense number of boundary profiles or medial 

nodes.  Future work will look into generating models from medial nodes for a more robust detection of shape.  

These medial node models will also permit automated volume measures based on the registration of the model and 

the data. 

 

10.1 Improving the Performance of Gradient-Oriented Boundary Profiles 
 

Voxel sampling regions and curve fitting techniques of the intensity profiles will be researched.  The actual 

time to sample voxels in the sampling regions has not been recorded, but it is likely that this is contributes to the 

slow computation speed of profiles in addition to the time to fit the intensity profile.  The sampling regions are fixed 

in size, so for every boundary point the same number of voxels are sampled.  If a boundary point is already near the 

true boundary, fewer of voxels actually need to be sampled to generate an intensity profile.  If a boundary point is 

far from the true boundary, it will most likely result in a “bad” profile anyway. Predicting each of these cases 

beforehand would reduce the number of times voxels in these large sampling regions would occur.   

An alternative is to automatically tailor the size of each sampling region specific to the properties of the 

boundary point.  One proposal is to sample voxels linearly along the gradient vector.  A cumulative Gaussian would 

be fit and an “error metric” computed.  The length of the sampling line would be increased until the “error metric” 
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was acceptable.  This length would be the length of the sampling region and the width of the sampling region could 

be some fixed proportion of the length.   

The curve fitting takes approximately .01 seconds to completion for each profile. Although this seems 

rapid, an image may easily contain thousands to hundreds-of-thousands of boundary points, making the total time to 

curve fit all of the intensity profiles on the order of 10 to 100 seconds.  Either the curve fitting process needs be 

made faster or the number of intensity profiles needs to be reduced prior to the curve fitting.   

 
 

10.2 Medial-Node Models 
 
 
 Clustered core profiles, represented by a medial node, demonstrate slabness, cylinderness, or sphereness.  

These primitive shape features can be used to construct higher-level shapes by calculating a correspondence metric 

(based on the eigenanalysis results of the core profiles) between nodes in two images or between nodes in an image 

and a model.  Higher-level metrics between pairs and triplets of nodes can also be constructed.  This will probably 

form the basis of my Ph.D. research. 
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11.0 CONCLUSION 
 
 

 
“Reading, after a certain age, diverts the mind too much from its creative pursuits. Any man who 
reads too much and uses his own brain too little falls into lazy habits of thinking.” -Albert 
Einstein 
 
 
In this thesis, gradient-oriented boundary profiles have been developed as a method to parameterize 

boundaries.  Boundary profiles average voxel intensities along the gradient vector, making them rotationally 

invariant and relatively insensitive to image noise.  A cumulative Gaussian was fit to the collection of averaged 

voxel intensities yielding estimates of (1) extrapolated intensity values for voxels located far inside and outside of 

the boundary, and (2) anatomical boundary location.  Intrinsic measures of confidence were developed to eliminate 

low-confidence parameter estimates.  Thresholds placed on these measures of confidence allowed for high-

confidence classification of boundaries.   

Gradient-oriented profiles were shown to be capable of accurately parameterizing the boundary on 

computer-generated data.  The radius of a computer-generated sphere was estimated to within one voxel of its 

known radius.  The intensity of the sphere and image background was estimated to within 10 intensity units.  Using 

the measures of confidence and establishing thresholds, the accuracy of boundary location and intensities estimates 

improved drastically, removing many of the outliers. 

A thorough investigation was conducted on the effects of varying the parameters for boundary profile 

formation, specifically, (1) using ellipsoidal versus cylindrical neighborhoods and (2) using triangle versus Gaussian 

footprints.  The spherical data was used to test the various parameters and it was shown that a combination of 

ellipsoidal sampling region and triangle footprint yields more accurate results.   

Gradient-oriented boundary profiles were shown to improve an existing medial-based approach to shape 

analysis, called core atoms.  Core atoms, a means to measure medial properties, have previously been successful in 

automated shape detection.  However, core atoms in their previous implementation (based on simple gradient 

direction) were unable to form without a priori knowledge of object intensity relative to background.  Boundary 
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profiles were applied to core atoms permitting the formation of core profiles, automatically and independent of 

background intensity.  Core profiles remove any restriction on the object’s intensity, allowing multiple objects of 

differing intensities to be located with a single application. 

Core profiles were applied to 3D computer-generated data consisting of two concentric spheres, two 

concentric ellipsoids, as well as RT3D ultrasound data.  The data containing two spheres was chosen so that the 

volume of the inner sphere and space between the spheres could be easily calculated with core profiles and core 

atoms.  It was shown that calculating the volume with core profiles is more accurate than calculating the volume 

with core atoms, because of the improved boundary location delivered by boundary profiles.  

The data containing two ellipsoids was used as a model for the RT3D ultrasound data to test two new 

methods of automatically measuring volume on non-parametric data with core profiles.  Unfortunately, the 

population of core profiles and medial nodes were not dense enough for an accurate measure of volume.  Methods of 

volume measures detailed in Chapter 9 will make use of higher-level shape analysis routines developed in my Ph.D. 

dissertation. 

Finally, core profiles were applied to RT3D ultrasound data of a cardiac phantom.  Core profiles were able 

to successfully locate balloon boundaries.  Future work with models built from medial nodes will hopefully allow 

for automated left ventricular identification and measurement. 
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