
ENABLING LARGE-SCALE PEER-TO-PEER

STORED VIDEO STREAMING SERVICE

WITH QOS SUPPORT

by

Masaru Okuda

BS, Brigham Young University - Hawaii, 1989

MS, University of Pittsburgh, 1996

Submitted to the Graduate Faculty of

the School of Information Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2006

UNIVERSITY OF PITTSBURGH

THE SCHOOL OF INFORMATION SCIENCES

This dissertation was presented

by

Masaru Okuda

It was defended on

August 18th 2006

and approved by

Taieb Znati, PhD, Professor, Department of Computer Science

Richard Thompson, PhD, Professor, Department of Information Science and

Telecommunications

Martin Weiss, PhD, Associate Professor, Department of Information Science and

Telecommunications

Michael Spring, PhD, Associate Professor, Department of Information Science and

Telecommunications

Alexandros Labrinidis, PhD, Assistant Professor, Department of Computer Science

Dissertation Director: Taieb Znati, PhD, Professor, Department of Computer Science

ii

Copyright c© by Masaru Okuda

2006

iii

ENABLING LARGE-SCALE PEER-TO-PEER

STORED VIDEO STREAMING SERVICE

WITH QOS SUPPORT

Masaru Okuda, PhD

University of Pittsburgh, 2006

This research aims to enable a large-scale, high-volume, peer-to-peer, stored-video streaming

service over the Internet, such as on-line DVD rentals. P2P allows a group of dynamically

organized users to cooperatively support content discovery and distribution services without

needing to employ a central server. P2P has the potential to overcome the scalability issue

associated with client-server based video distribution networks; however, it brings a new set

of challenges.

This research addresses the following five technical challenges associated with the dis-

tribution of streaming video over the P2P network: 1) allow users with limited transmit

bandwidth capacity to become contributing sources, 2) support the advertisement and dis-

covery of time-changing and time-bounded video frame availability, 3) Minimize the impact

of distribution source losses during video playback, 4) incorporate user mobility information

in the selection of distribution sources, and 5) design a streaming network architecture that

enables above functionalities.

To meet the above requirements, we propose a video distribution network model based

on a hybrid architecture between client-server and P2P. In this model, a video is divided into

a sequence of small segments and each user executes a scheduling algorithm to determine the

order, the timing, and the rate of segment retrievals from other users. The model also employs

an advertisement and discovery scheme which incorporates parameters of the scheduling

algorithm to allow users to share their life-time of video segment availability information in

iv

one advertisement and one query. An accompanying QoS scheme allows reduction in the

number of video playback interruptions while one or more distribution sources depart from

the service prematurely.

The simulation study shows that the proposed model and associated schemes greatly

alleviate the bandwidth requirement of the video distribution server, especially when the

number of participating users grows large. As much as 90% of load reduction was observed

in some experiments when compared to a traditional client-server based video distribution

service. A significant reduction is also observed in the number of video presentation inter-

ruptions when the proposed QoS scheme is incorporated in the distribution process while

certain percentages of distribution sources depart from the service unexpectedly.

v

TABLE OF CONTENTS

PREFACE . xiii

1.0 INTRODUCTION . 1

1.1 Video Streaming Overview . 3

1.1.1 System Components . 4

1.2 Existing Streaming Networks . 6

1.2.1 Web Based Distribution Networks 7

1.2.1.1 Caching and Replication 7

1.2.1.2 Content Delivery Network 8

1.2.2 On-Demand Multimedia Streaming Networks 9

1.2.2.1 Session Aggregation . 9

1.2.2.2 Session Alignment . 11

1.2.3 Peer-to-Peer Networks . 12

1.2.3.1 End Application Based Content Discovery 12

1.2.3.2 Overlay Network Based Content Discovery 13

1.2.4 Summary . 15

1.3 Research Goals . 17

1.3.1 Research Objective . 17

1.3.2 Functional Design Requirements 17

1.3.3 Performance Design Requirements 18

1.4 Methodology . 18

1.5 Contributions . 19

1.6 Document Overview . 20

vi

2.0 LITERATURE REVIEW . 21

2.1 Data Path Scalability . 21

2.1.1 Schemes Based on Application Layer Multicast 21

2.1.1.1 NICE . 22

2.1.1.2 ZIGZAG . 23

2.1.1.3 PeerCast . 24

2.1.1.4 CoopNet . 25

2.1.1.5 OTSp2p and DACp2p . 26

2.1.2 Schemes Based on Overlay Network Multicast 28

2.1.2.1 Patching . 28

2.1.2.2 Vcast . 29

2.1.2.3 Range Multicast . 30

2.1.2.4 Overcast . 30

2.1.2.5 OMNI . 31

2.2 Search Path Flexibility and Scalability 33

2.2.1 Schemes Based on Unstructured P2P Model 33

2.2.1.1 Associative Overlays . 33

2.2.1.2 YAPPERS . 34

2.2.1.3 Interest-Based Locality . 35

2.2.1.4 Search/Index Links . 36

2.2.2 Schemes Based on Structured P2P Model 36

2.2.2.1 CAN . 37

2.2.2.2 eCAN . 37

2.2.2.3 Binning . 39

2.3 Discussion . 39

2.3.1 Evaluation of Schemes that Improve Data Path Scalability 39

2.3.2 Evaluation of Schemes that Improve Search Path Scalability and

Flexibility . 44

2.4 Conclusion . 47

3.0 ARCHITECTURE DESIGN . 49

vii

3.1 Architecture Components . 49

3.2 Formal Definition of Virtual Theater Network 53

3.3 Target Operating Environment . 54

4.0 VIDEO SEGMENT RECEPTION MANAGEMENT 57

4.1 Definition of Key Concepts . 57

4.1.1 Segments . 57

4.1.2 Epochs . 59

4.1.3 Batches . 59

4.2 Scheduling of Segment Receptions . 61

4.2.1 Batch Size Determination . 61

4.2.2 Receive Bandwidth Management 63

4.2.3 Buffer Management . 65

4.3 Restrained Segment Receptions . 67

4.4 User Profile and VT Room Profile . 71

5.0 SEGMENT ADVERTISEMENT AND DISCOVERY 72

5.1 State Table . 72

5.2 State Table Sharing . 73

5.3 Distribution Source Identification . 75

5.4 Transmit Bandwidth Availability Updates 76

5.5 Mobility Support Extension . 76

6.0 QOS SUPPORT . 81

6.1 Existing Delay Coping Mechanism . 81

6.2 Delay Monitor . 83

6.3 Extended Playout Delay . 84

6.4 Expedited Segment Reception . 85

7.0 SIMULATION DESIGN AND ANALYSIS 90

7.1 The Model Description . 90

7.2 Experimental Design and Analysis . 91

8.0 CONCLUSION . 104

8.1 Future Work . 105

viii

APPENDIX A. NOTATIONS . 106

APPENDIX B. VIDEO SEGMENT RECEPTION SCHEDULING ALGO-

RITHM . 108

BIBLIOGRAPHY . 112

ix

LIST OF TABLES

1.1 Summary of challenges and focus areas of existing streaming content distri-

bution networks. 16

7.1 Collected data with 2k factorial design . 96

7.2 ANOVA for segment size and post-playback buffer size interactions 96

x

LIST OF FIGURES

1.1 Architectural Components of Streaming Network 5

1.2 Relationship of problem space in streaming content distribution networks . . 16

2.1 Sample data paths of ZIGZAG. 24

2.2 A sample eCAN topology and routing paths. 38

3.1 Virtual Theater Network . 51

3.2 Target Operating Environment . 55

4.1 Relationship among segments, epochs, and batches 60

4.2 Sample segment retrievals under the rate-limited batches 64

4.3 A sample buffer space usage . 66

4.4 Sample segment retrievals under the buffer-limited batches 68

4.5 Sample segment receptions: bandwidth and buffer limited case 69

5.1 Entry fields of a state table . 73

5.2 A sample view of state table sharing instances 74

5.3 Sample distance estimations from Ui to three other nodes at time t and at

time t + ∆(Sk) . 78

6.1 A Sample Delay Monitor . 83

6.2 A sample extended playout buffer . 84

6.3 Sample Segment Receptions with Extended Playout Delay 86

6.4 Sample Segment Receptions with Expedited Segment Reception 88

7.1 Effects of user arrival pattern . 93

7.2 Effects of streaming rate . 93

7.3 Effects of user bandwidth availability . 95

xi

7.4 Interaction between segment size and post-playback buffer size 97

7.5 Effects of segment size and post-playback buffer size 98

7.6 Effects of extended playout delay - I . 100

7.7 Effects of extended playout delay - II . 101

7.8 Effects of node departure rate . 102

xii

PREFACE

This dissertation is a culmination of many individuals’ labor and sacrifice. Without their

support, I have not been able to come thus far. I would like to thank the members of my

dissertation committee, Dr. Taieb Znati, Dr. Richard Thompson, Dr. Martin Weiss, Dr.

Michael Spring, and Dr. Alexandros Labrinidis. I am ever grateful to my adviser, Dr. Taieb

Znati, for the valuable training he has given me so that I may learn how to conduct a research

project. Dr. Znati was the sole reason for me to come to Pittsburgh to pursue my graduate

study. I thank him for his patience and all the funding I have received through him. I also

would like to thank Dr. Richard Thompson for his support. Without him extending me the

half-GSA position in the second year of my master’s program, I would not have been able

to be here today, but to go home without completing the program. He has been the best

teacher in all of my school years and has become the model for my teaching career.

I would like to thank the faculty members of the Telecommunications Systems Manage-

ment program at Murray State University and the university administration. I am grateful

to Dr. Danny Claiborne, Dr. Neal Webber, and Dr. Gary Brockway for their invitation to

join the MSU faculty and allowing me complete this dissertation during the first year of my

teaching appointment.

I am grateful to my church friends that are affiliated with various academic institutions:

Dr. Karl Johnson (University of Pittsburgh), Dr. Bradley Agle (University of Pittsburgh),

Dr. Brent Adams (Brigham Young University), Dr. Harry Kim (Carnegie Mellon Univer-

sity), and Dr. Neal Williams (Brigham Young University - Hawaii). They have been my

inspiration and great mentors. I am a recipient of their genuine love and concerns, which

sustained me day-to-day.

I am truly thankful to my parents, Yoshiharu and Atsumi Okuda. Yoshiharu, my father,

xiii

taught me, by his example, how to live a happy life by diligence and honest work, without

needing to have complicated things of the world. Regretfully, my father passed away without

seeing me completing my study. Atsumi, my mother, has been the greatest influence in my

upbringing. I am grateful that she had taught me those things that really matter in my life

while I was young. I continue to practice those things that she had taught me while I was

in kindergarten. I am also grateful to my sister, Yumiko, and my brother, Akira, for quietly

observing and supporting what I do.

I am truly thankful to my dear wife, Megumi, my eternal companion, and our precious

children, Nozomu, Shari, and Michael, for their support. I am completely and eternally

indebted to them for the sacrifices they had made to allow me to pursue my education and

finish this research work. I now realize that my zeal for higher learning was made possible

by an exchange for something that I can never take back. With all of my heart, I thank

them for their faith, long suffering, and love unfeigned.

Finally, I thank my God, for he is my strength. I acknowledge that every good gift comes

from Him. Without His mercy and grace, I cannot accomplish anything. With Him, nothing

is impossible.

In Murray, Kentucky

November, 2006

xiv

1.0 INTRODUCTION

With the advent of recent Internet technological advances, multimedia streaming services are

gaining increasing importance. Video streaming applications, such as on-line DVD rentals,

have the potential to enrich our lives and create new business opportunities.

In order to support the distribution of high-volume video streams to a large number of

users, the video server must be equipped with a substantial amount of transmit bandwidth.

A long playback time associated with a typical streaming video also limits the number of

users a video server may support in a given period of time. Due to the limited scalability

associated with the traditional client-server based network system, the design of a cost-

effective network that satisfies the peak-hour demand of high-volume stored-video streaming

service is difficult to achieve.

As high performance end-user systems are becoming widely available and the number

of subscribers to broadband Internet access is rapidly raising, a new computing paradigm

known as Peer-to-Peer (P2P) has emerged. P2P enables direct exchange of content among

a group of end users without the centralized management structure. Once a user finishes

downloading a content, the user takes on a server role to distribute the received content to

a small number of other users. P2P offers a framework in which a large-scale, distributed,

and self-organizing content distribution network can be constructed.

Although P2P has the potential to overcome the scalability problem associated with

the traditional client-server based content distribution networks, it introduces new set of

challenges. First, a limited uplink capacity of a typical broadband access technology, such

as ADSL and cable modem, may allow only a fraction of what is required to stream a

video at the nominal rate. As such, not all participating users may be able to become

contributing sources when bandwidth intensive content is distributed. Second, streaming

1

allows not only the playback of video frames as they arrive, but also the discarding of video

frames once they are played back. Since the contents of user buffer is constantly changing

in streaming, the design of advertisement and discovery schemes must capture the dynamic

nature of video frame availability. Third, video streaming requires an orderly and timely

delivery of video fames to ensure a smooth playback. Due to uncertainty in peer’s behavior,

including a sudden departure from the service, excessive delays in video frame arrivals may

be observed by the receiving user. A video distribution scheme which minimizes the impact

of distribution source losses to the video presentation is desired. Fourth, support for and

exchange of video frames among fixed and mobile users is important in providing seamless

video distribution service. Lastly, in order to support the above functionalities, an efficient

and robust design of a streaming network architecture is needed.

To address these issues, the design of the streaming network should be efficient in the use

of server bandwidth, scalable to accommodate increase in the community size and content

volume, versatile in supporting diverse user requirements, including mobility support, and

responsive to a dynamically changing community environment. In addition, it should be

resilient to sudden network changes to minimize the impact on the streaming service.

A few attempts have been made to enable the deployment of multimedia streaming over

the Internet. Their solutions typically focus on the support of applications that require low

bandwidth streams to many users, such as news tickers and real-time stock updates, or high

quality streams to a small set of users, such as video conferencing. To our knowledge, a viable

solution does not exist that adequately addresses challenges associated with the delivery of

high-volume video streams to many and diverse users of Internet.

In the remainder of this chapter, background information on video streaming is provided.

Existing streaming techniques are described and their shortcomings are discussed. Research

objectives are established, design requirements are identified, and research methodology is

discussed. The chapter concludes with the contributions made through this research study

and the outline of the rest of the document is provided.

2

1.1 VIDEO STREAMING OVERVIEW

Streaming is defined as “a technique for transferring data (usually over the Internet) in a

continuous flow to allow large multimedia files to be viewed before the entire file has been

downloaded to a client’s computer” [3]. Prior to the availability of streaming technique,

multimedia content was distributed no differently than any other ordinary files (i.e. text

files, executable files). They were all transmitted as “files” using file downloading protocols

such as ftp and http. Due to the large volume of data associated with a typical multimedia

file, a long transmission time as well as a large storage space were required before the playback

could begin. Furthermore, there was no way for the users to “peek” into the content to see

if it is the video they would like to watch. This was often inconvenient, if not unacceptable,

to the users due to a long waiting time and a large amount of wasted resources when the

content of the video turned out to be something they were not interested in.

Streaming enables near instantaneous playback of multimedia content regardless of their

sizes. It is made possible by a steady transmission of data packets in such a way that the

users will receive the needed packets moments ahead of the time they must be played back.

Streaming reduces the storage space and allows users to “quit” receiving the stream, if not

interesting or satisfactory, before the entire file is downloaded.

Streaming allows live and pre-recoded content to be distributed. Live streaming captures

audio/video signals from input devices (e.g. microphone, video camera), encodes the signals

using compression algorithms (e.g. MP3, MPEG-4), and distributes them in real-time.

Typical application of live streaming includes surveillance, broadcasting of special events,

and distribution of information that have the prime importance in real-time delivery. In

live streaming, the server side has the control over the selection of the distribution content

and the timing of their streaming. The user involvement is typically limited to joining and

leaving the running streaming sessions.

Pre-recorded or stored streaming distributes pre-encoded video files stored at a media

server. Sample applications include multimedia archival retrievals, news clip viewing, and

distance learning through which students attend classes on-line by viewing pre-recorded

lectures. Under stored streaming, when and what title of the video will be streamed are

3

dictated by the user. As such, a great amount of load may be placed on the media server

when supporting a large number of asynchronous users (i.e. users whose streaming requests

arrive at different times) with diverse interests. Our research focuses on the support of stored

streaming.

Streaming brings new challenges to the distribution of multimedia content. Due to its

strict on-time delivery requirement of data packets, a mechanism is needed to regulate the

flow of packets over the Internet. An active research has been conducted in the areas of

rate control, to cope with the time-varying bandwidth availability of Internet [39, 37], buffer

management, to overcome delay variations [22], and error control, to reduce the impact

of packet loss [28]. Progress in standardization work has produced specifications on key

aspects of streaming, such as media encoding [24], media transport and session control [33],

and media description and announcement [26].

However, these schemes and specifications mostly focus on the behavior of individual

streams and the semantics of control messages. They do not address fundamental issues

relating to the efficiency, scalability, versatility, and resiliency of streaming infrastructure.

Our research focuses on these performance attributes of streaming service.

1.1.1 System Components

This section describes the architectural components of a streaming network. While there are

different implementations of streaming systems, the following abstracted system components

are always present: content producer system, content distributor system, content consumer

system, and content distribution network.

Content producer system is responsible for the encoding of content to a format suitable for

the transmission over the network and for the decoding at the consumers. For live streaming,

content producer encodes the audio and video signals that arrive from microphones and video

cameras in real-time and transfers the encoded streaming media to the content distributor.

For on-demand streaming, it performs off-line encoding of content and have them available

at media server.

Content distributor system is responsible for the management of content, user profiles,

4

Contents

User Profiles

User
Management

 - Service profile
 - Authentication
 - Logging

Content
Management

- Retrieval
- Storage

Media Server
Management

- Data transmission
- Control message
 exchange
- User request
 scheduling

Content Distributor System

Content Distribution Network

Content Consumer
System

Streaming Client

- Playback
- Control message
 Exchange

Temporal
Storage

Network Level
Control Service

- Location discovery
- Content caching
 and replication
- Session
 aggregation

Encoder

- Real-time encoding
- Off-line encoding

Raw
content

Content Producer System

Content Consumer
System

Streaming Client

- Playback
- Control message
 Exchange

Temporal
Storage

Content Consumer
System

Streaming Client

- Playback
- Control message
 Exchange

Temporal
Storage

Figure 1.1: Architectural Components of Streaming Network

5

and transmission of content. Through the content management function, it controls the

storing and retrieval of content to and from the media server. The user management function

maintains the profile of end-users for service lookup, authentication, and logging purposes.

Through the streaming server management function, it exchanges stream control messages,

accepts and schedules user requests, and distributes content to the consumer systems via

distribution network.

Content consumer system is a part of a user’s end system. The types of consumer system

include PC, PDA, Internet TV, cell phone, and other types of electronic device equipped

with networking capability. It has a streaming client program that decodes the content

and plays back the audio and video signals. It also exchanges control messages with the

streaming server through the distribution network.

Content distribution network provides physical connectivity between content distribu-

tor and consumers through the backbone network (i.e. the Internet). From the backbone

network, access link extends to the distributor system and consumer system. In general,

the bandwidth available at the content distributor’s access link is much greater than one

from the content consumer’s. Embedded within the content distribution network is the

control services that are often not directly visible by the end user systems but vital to the

operation of the distribution service, such as location discovery, session aggregation, and

caching/replication.

A high-level abstraction of streaming network system with its key components are de-

picted in Figure 1.1:

In the following section, we identify the types of network on which a streaming service

can be offered today, describe their focal features, and discuss their key mechanism being

employed to achieve their performance and functional objectives.

1.2 EXISTING STREAMING NETWORKS

There are three prominent ways in which a streaming service may be offered over the In-

ternet. The first approach is to use the Web based distribution mechanism. This is the

6

most commonly used method to distribute small streaming content. For a large scale ser-

vice, streaming content is distributed through a Content Delivery Network (CDN) which

improves the scalability of Web based content distribution. The second method is to use a

network specifically designed for the distribution of streaming content. A number of net-

works have been proposed that are specialized in on-demand delivery of video streams. In

this document, we refer them as On-demand Multimedia Streaming Networks. The third way

is through direct exchange of streaming content among end users in a cooperative network

environment. Active research is conducted on the peer-to-peer based streaming service.

1.2.1 Web Based Distribution Networks

World Wide Web (WWW or Web) has become a large and successful information distribution

network today. Thousands of web servers dot the Internet and millions of users retrieve

information from the servers through web browsers. While various types of content may be

distributed through the Web, its primary use is to retrieve small-size documents and images.

Due to client-server based computing model, Web based content distribution architecture

suffers from server overloading when a large number of access requests arrive. A great

deal of research effort have been place on the scalability challenge of Web-based content

distribution and the studies mainly focused on how to lighten and distribute the load on the

servers. Content caching and replication are two primary methods to cope with the server

overloading problem.

1.2.1.1 Caching and Replication Through caching, recently accessed web page con-

tent is stored at a temporal buffer so that subsequent requests to the same content can be

retrieved locally or from a nearby cache server. Proxy server is a dedicated cache server that

provides web caching service for many users. Scale of economy can be achieved through proxy

servers since many users may request the same content. Caching is applied at a meaningful

unit of content (e.g. individual graphics on a web page) and cached content is refreshed

periodically to keep them fresh.

Web caching reduces the access latency, conserves CPU cycle of a Web server, and cuts

7

down the network bandwidth usage. However, it is generally considered not a good solution

for streaming video content. Caching of a video stream requires a very large buffer space

since the entire content must be saved. A conflict exists with a refresh interval since the

playback time of a typical video stream takes a longer time than the refresh interval of the

cache.

Replication is a mechanism to automatically create and manage duplicate copies of data

from one system to other systems. Many web sites replicate their content at multiple servers

in order to reduce the load on the originating server. Replication also provides server redun-

dancy in case of server and network failures.

1.2.1.2 Content Delivery Network In recent years, an advanced from of replication

service is offered through Content Delivery Networks (CDNs) (e.g. [1, 29, 20, 10]). A CDN

is a set of originating and mirror servers that enable handling of a large amount of web page

requests. In addition to increased server capacity and resiliency, a CDN provides controlled

load balancing and improved content accessibility. A CDN implements a scheme, such as ping

triangulation, to identify the locations of users in relation to geographically dispersed mirror

servers. Once the closest mirror server is identified, the originating server redirects web client

requests to it. The forwarding operation of client requests is performed transparently to the

web clients.

While content replication offers an effective means to distribute the load and increase

the overall availability of desired content, it is questionable whether a sufficient number of

replication servers can be deployed to overcome the bandwidth bottleneck problem associ-

ated with the distribution of high quality streaming content to mass users. Intelligent load

balancing performed by a CDN gives an additional level of load distribution, yet the amount

of load the network can handle is fixed by the total CDN capacity. Special events and pro-

grams often generate more demands than what the network can handle in a short period

of time and CDN will not be able to support those excess demands. What is desirable is a

mechanism that allows dynamic addition and removal of replication servers at those loca-

tions where demand becomes high. In order for a CDN to be truly effective, a large number

of replication servers must be deployed throughout the Internet. Such an undertaking may

8

not be possible by small ISPs and independent business owners.

1.2.2 On-Demand Multimedia Streaming Networks

In addition to WWW and CDN based content distribution, studies have been conducted

on how to support on-demand delivery of multimedia streams over the Internet (e.g. [6, 2,

19, 18, 14, 34, 15]). Their goal is to provide efficient Video-on-Demand (VoD) service to a

group of users. VoD service enables immediate distribution of video streams to users, from

the beginning of the content, regardless of the time at which the service request arrives in

relation to other on-going streaming sessions.

The fundamental challenge of VoD service is how to meet the on-demand expectation

of users without consuming a large amount of bandwidth at the content server. A number

of schemes have been proposed that focus on the efficient bandwidth usage of the content

server. Their approach involves some form of session aggregation to reduce the amount

of data flow and align the service start time. A common thread in all schemes is the use

of multicasting. Some schemes propose how to provide efficient and practical multicasting

while others assume the availability of multicasting to all participating users. In this section,

we review several approaches in providing multicasting as well as how session alignment is

achieved by various schemes.

1.2.2.1 Session Aggregation Multicasting enables transmission of packets from one

source to multiple destinations without having to send duplicate copies of packets to each

destination. IP multicast implements this service at the IP layer and offers efficient group

communication. In order for IP multicast to be effective, all IP routers must be equipped

with multicasting functionalities. However, very few routers on the Internet can support IP

multicast. Overhauling the Internet with IP multicast capable routers is a task considered

not feasible in the near future. In addition, a limited number of address space allocated

for IP multicast makes its deployment unpractical for general use. For these and other

reasons, researchers have looked in other ways to achieve an efficient and effective group

communication.

9

In overlay network based multicasting, a network dedicated for the purpose of multicas-

ting is created on top of existing IP network. Only those routers (i.e. overlay nodes) that

are equipped with multicasting functionality participate in multicast specific service (e.g.

branch trimming); other routers simply forward packets in multicast sessions as regular

unicast flows.

The strengths of overlay network based multicasting include ability to deploy a large-

scale multicast network without needing to upgrade all IP routers, support virtually un-

limited number of multicast groups, and provide a practical solution for the deployment of

group communication infrastructure on the Internet. However, it typically requires semi-

permanently installed overlay nodes that will remain in service for an extended period of

time or at least for the duration of the multicast session. For this reason, it is difficult

to construct and maintain such a network within an environment where network nodes are

highly dynamic, such as Ad-Hoc networks and P2P networks.

Application layer based multicast constructs a pseudo-multicast network among par-

ticipating end systems without special support from the network. It is a pseudo-multicast

because all connections between the end systems are actually unicast connections. Those end

systems that function as the root or the branch nodes of a multicast tree establish multiple

unicast connections to children nodes.

In order to build an efficient pseudo-multicast network, end systems must construct a

spanning tree. This requires acquisition of the global network state, including the discovery

of all existing nodes and how they are connected to each other. How to accomplish this task

effectively is an on-going research topic.

Application layer multicast allows immediate deployment of pseudo-multicasting service

by simply installing special software on end systems – no network component upgrade is nec-

essary. It has been shown that application layer based multicast better utilizes the network

bandwidth compared to the conventional unicast connections for group communication.

One of the challenges in supporting high quality streaming sessions through application

layer based multicast is the lack of excess bandwidth at end systems. They must have

adequate amount of transmit (Tx) bandwidth to support multiple streaming sessions to

other end systems. Typical residential broadband access links (e.g. cable modem, xDSLs)

10

offer substantially lower bandwidth on the Tx direction than receive (Rx) direction (about

1/10th). This can be a limiting factor when considering the support of multicast sessions

for bandwidth demanding streams.

1.2.2.2 Session Alignment Various session alignment techniques have been developed

for the support of VoD service. They are largely divided into three types of techniques:

batching, patching, and merging. Batching supports quasi-VoD service through queuing

of streaming requests at the content server and servicing them in batches. The streaming

content is divided into a number of different segment sizes and all segments are transmitted

simultaneously and cyclically on separate multicast trees. Any request that arrives while the

first segment is being streamed will be queued and serviced in the next cycle. Users who

receive the first segment also receive the second segment concurrently while playing back the

first segment. Once the first segment finishes, the users start the play back of the second

segment from their buffer and begin receiving the third segment. This process is repeated

until the last segment is received and played back. By assigning the length of each segment

in increasing order (i.e. the first segment being the shortest), the waiting time of user request

can be made small.

Patching supports true VoD service by establishing two streaming sessions from the

user to the servers. One session goes to the on-going multicast stream and the other to

the patching server. Any missed segments will be streamed from the patching server for

immediate playback. The segments from the on-going multicast stream will be saved on

local storage and played back as soon as the segments from the patching session finish.

The common issue among batching and patching is that they require twice or more Rx

bandwidth at the user system than the nominal playback rate since users must establish

multiple streaming sessions concurrently. They also require a substantial amount of disk

space in order to store segments from one of the streams while the other is being played out.

In addition, they all assume the availability of multicasting capability at all participating

nodes.

Merging incorporates a technique to fuse two independent streaming sessions that are

close in their playback time to form a single session. The idea is based on a human factor

11

that slight fluctuations in the quality of video and audio streams can be undetected or

tolerated by humans. The lagging stream plays out faster and leading stream plays out

slower than the nominal rate of the playback. In some future time, there will be a point

in time where the two streams will come together. Beyond this point, only one multicast

streaming session will be maintained. The novelty of this approach is that, unlike other

schemes which perform session aggregation off-line, it enables on-line or dynamic merging

of multiple streams. However, it may take a long time to complete the merging process or

may never be realized when the time gap is large between two sessions. It also requires an

encoder/decoder system that dynamically changes the rate of stream.

1.2.3 Peer-to-Peer Networks

A new type of communication architecture, known as Peer-to-Peer (P2P), has emerged in

recent years. It is a distributed information sharing architecture that enables direct exchange

of content among a group of end users. P2P is based on a communication model where each

node, called a peer, is capable of taking both the client and server roles. Peers provide hosting

service for selected content, such as personal collection of image files, music files, electronic

documents, and software programs. P2P provides a way to share information without the

expense of maintaining a centralized server and management structure. Though individual

peers may have limited service capacity, a P2P community as a whole could service a large

volume of requests.

One of the primary challenges of P2P based content distribution is how to locate the

desired content among globally distributed peers. It is a challenging task because the avail-

ability of content changes dynamically as peers join and leave the network. Effective content

discovery has been a major research focus of P2P network. Two types of content and peer dis-

covery mechanisms have been proposed: end application based discovery (e.g. [13, 23, 25, 7])

and overlay network based discovery (e.g. [36, 31, 32, 42]).

1.2.3.1 End Application Based Content Discovery End application based content

discovery uses a flooding mechanism to find the existence of other peers and locate desired

12

content. A peer, X, sends an exploratory packet to a known existing peer1, Y , in the P2P

community. Once the exploratory packet arrives, Y sends X its IP address and port number

at which the content distribution service is available. It then forwards the exploratory packet

to those peers that had recently visited Y . This process is repeated at those recently visited

peers until the exploratory packet ages out. Once X discovers the existence of other peers,

it sends a query to them and requests a list of matching content to be returned.

End application based content discovery requires no central server or overlay nodes. It

require no modifications to the existing network infrastructure. It is simple and easy to

implement, yet very robust in times of node and link failures. No node join or departure

process is involved, no recovery operation exists, and no peer is indispensable in this scheme.

Popular content (i.e. content owned by many peers) can be located quickly and abundantly

since the exploratory packets multiply and spread somewhat randomly by following daisy

chained paths. End application based discovery scheme has a potential to work well with a

small and dynamic network environment (e.g. Ad-Hoc network).

There are several shortcomings that make this discovery process unfit for global and

large-scale search. First, due to flooding based discovery mechanism, it does not perform

well when the size of a P2P community becomes large. Second, the search is limited, generally

to about seven hops away, in order to constrain the amount of control messages exchanged.

This will restrict the extent of the exploration and makes global search nearly impossible

when many peers exist in the network. Third, the existing design assumes one and only one

global P2P network and does not allow creation of disjoint P2P networks based on interests

and purposes. This makes the end application based discovery difficult to provide an efficient

and targeted search because the exploratory packets must be forwarded blindly to all peers

within the reaching distance. Forth, rare content (i.e. content owned by a small number of

peers) may not be easily found since peers are uncovered randomly.

1.2.3.2 Overlay Network Based Content Discovery Overlay network based content

discovery builds and maintains a network dedicated for the management and discovery of

1It is known to the peer administratively (i.e. some IP address of peers are published on the web and
users can manually specify the starting peer.)

13

content and peers. This network is laid on top of the existing IP network by installing layer

3.5 (i.e. overlay layer) software modules at selected routers or network nodes. Participating

overlay nodes collectively maintain a complete list of content location pointers in a distributed

fashion, known as Distributed Hash Table (DHT). Each overlay node is assigned a unique

hash value. Every content on P2P network is also associated with a hash value generated

from its content name and registered with the overlay node with the closest hash value. The

overlay nodes are logically arranged in such a way that by following the pointers maintained

at each overlay node, requests are guided to the managing overlay node of the requested

content. CAN [31], Chord [36], Pastry [32], and others use overlay network based content

discovery.

Overlay network based content discovery scales well compared to centralized or end

application based discovery schemes. It requires no central server and no flooding is involved

in discovery process. An increase in the number of peers as well as content can be handled

gracefully by simply adding new overlay nodes. P2P network based on overlay discovery

process allows co-existence of disjoint P2P networks. This is an important attribute because

increase in the network load can be dealt with in two ways: by creating a bigger P2P network

with greater overlay node capacity or by splitting P2P network and create smaller networks

that are manageable in size. Unlike end application based discovery, it works well with the

globally spread peers and content. The discovery of “unpopular” content is no more difficult

than the “popular” content since both operations take the same amount of processing effort.

While overlay network based discovery offers these noteworthy merits in supporting large-

scale P2P network, there are issues that need further study. First, an overlay node failure

can result in a complete loss of service of a particular content. Though overlay nodes are

distributed, pointers to a particular content are managed by a single overlay node. This is

because the content with the same name will generate the same hash value and the hash

value determines the managing overlay node. On this particular issue, overlay node suffers

from the same shortcoming as the centralized server. Second, the overlay network structure

maintenance can be costly and slow. The overlay network based discovery process has a

provision for dynamic addition and removal of overlay nodes. While this process has been

designed to bring affected overlay nodes to a stable and operational state, it is not designed

14

for frequent overlay node addition and removal. The convergence time can become long,

especially when multiple overlay nodes are lost or inserted and it may introduce instability

to a discovery service for a prolonged period of time. Third, it is expected that, as a P2P

community grows larger, a query response may include a large number of content location

pointers. Once a per receives these entries, there is no good way for a peer to tell which

ones offer the “best” service (e.g. nearest). While this issue is not unique to overlay network

based discovery, the problem is aggravated by its superior capability to gather globally

spread content pointers to a single point in the network. Fourth, while overlay nodes may

be inserted and removed as needs arise, the overlay nodes themselves are not dynamically

created entities. In fact, they are considered a part of the network infrastructure and assumed

to exist semi-permanently. The fixed nature of overlay nodes make them difficult to operate

in a dynamic environment. Overlay network based discovery approach is more suitable for

a stable and long-lived network than a dynamic and short-lived network. Fifth, a partial

string search is not supported easily.

1.2.4 Summary

Table 1.1 summarizes the challenges and focus areas of existing streaming content distri-

bution networks. Web-based network, on-demand multimedia streaming network, and P2P

network are three prominent ways in which streaming media can be distributed over the

Internet. Driven by a desire and a need for supporting a large user population, Web-based

distribution mechanism focuses on the development of various types of caching and repli-

cation techniques that improve the scalability of streaming service and alleviate the server

overloading problem. On-demand multimedia streaming network focuses on the efficient use

of server bandwidth to handle on-demand expectation of users. Their efforts have produced

various session aggregation and alignment techniques. P2P based distribution is challenged

by the dynamic nature of server and content availability. Since content is scattered globally

and their availability changes dynamically as peers join and leave the community, P2P based

distribution focuses on ways to provide effective content discovery.

The relationship of problem space and focus area of existing streaming networks is de-

15

Table 1.1: Summary of challenges and focus areas of existing streaming content distribution

networks.

Network Type Typical Use Challenge Focus Area
WWW &
CDN

Web page
distribution

Server overloading
(Scalability)

How to lighten and
distribute load (Content
caching and replication)

Multimedia
Streaming

Streaming
video
distribution

On-demand
expectation
Server bandwidth
limitation
(Efficiency)

How to bundle requests for
the same content for
efficient streaming
(Session alignment and
aggregation)

Peer-to-Peer Personally
owned content
distribution

Scattered and
changing content
availability
(Dynamism)

How to locate desired
content
(Content discovery)

ScalableEfficient

Dynamic

Low

Low

Low

Mid

Mid

High

Mid

High

High

Web

P2P

MM
Streaming

Targat

Figure 1.2: Relationship of problem space in streaming content distribution networks

16

picted in Figure 1.2. Our research focuses on the problem space where a great number of

users request very large and long streaming content in a highly dynamic environment. This

is marked at the peak of all three dimensions in the figure.

1.3 RESEARCH GOALS

This section presents the objective of this research and describes its functional and perfor-

mance design requirements.

1.3.1 Research Objective

To design a network architecture, schemes, and algorithms to enable an efficient, scalable,

and resilient on-demand peer-to-peer high-volume stored-video distribution service to large

communities of dynamic users with diverse system capabilities, any time, any where.

1.3.2 Functional Design Requirements

Support for high-volume streaming service: Our primary goal of this research is to design a

network architecture and supporting schemes to enable the delivery of high-volume streaming

videos to a large community of users.

Support for on-demand service: We aim to design a streaming video network that can

provide immediate delivery of requested content regardless of time it is received. As users

join a distribution community, they should be able to find a distribution source and begin

receiving desired content immediately.

Support for heterogeneous system: A streaming video network that accommodates het-

erogeneity of end user systems is one that is capable of supporting diverse user equipment

(e.g. workstations, PCs, PDAs) and take advantage of differences in their capabilities (e.g.

bandwidth availability).

Support for mobile users: The design of a new streaming video network should support

both the fixed and the mobile users. Unique attributes (e.g. roaming) associated with the

17

mobile users should be incorporated into the design of a video distribution service.

1.3.3 Performance Design Requirements

Efficient: An efficient distribution network system allows effective use of resources, such

as server bandwidth. The architecture of a new content distribution model should allow a

substantial relief in the use of server access link bandwidth.

Scalable: Scalability is a measure of how well the proposed solution will work when

the size of the problem increases. The design principles of a scalable system must allow

graceful handling of increase in user population and content size. Furthermore, this should

be achieved without exceeding or over burdening the resource capacity and computational

complexity of the system.

Dynamic: A dynamic system is one that is capable of responding to constantly changing

environment in real-time. The proposed distribution model should be able to handle frequent

user joins and departures. In addition, it should provide support for the advertisement and

discovery of time-bounded content availability.

Resilient: Resiliency is a measure of how well a system returns to an original state after

being exposed to a severe condition. A resilient streaming content distribution network is one

that is capable of recovering from unexpected network changes, such as network component

failures and excessive congestions, with minimal impact on the distribution service.

There are other important attributes that enhance the design of a streaming network,

such as security and fairness. In this study, we focus on the four performance attributes

listed above. Other features are left for future study.

1.4 METHODOLOGY

To enable an efficient, scalable, and resilient streaming video service, various shortcomings

that accompany the existing stream distribution networks will need to be overcome. A

network design which is based solely on a P2P architecture or on a traditional client-server

18

model may not provide stability and flexibility desired for the support of an envisioned

streaming network. We argue that a better approach is to design a hybrid network to

take advantage of the stability of client-server architecture while reaping the flexibility of

the P2P model. A client-server model is simple, well-studied, and successfully deployed

over the Internet. It provides a default point of contact for participating users to help

bootstrap the P2P community to distribute the streaming video. P2P provides scalability

through decentralized operations in a dynamically changing community environment and

allow participation of diverse end systems to help meet individual needs. By combining the

two models, we create a design that better copes with the challenges of the distribution of

high-volume streaming content to many and diverse users of the Internet.

To provide a streaming service on a hybrid network architecture, a discovery of video

frame availability at participating peers is necessary. Existing P2P content discovery schemes

do not serve well in the streaming network since the contents of user buffer are constantly

updated as new video frames arrive in steady stream while old video frames are discarded.

One of the ways to maintain the latest content availability of user buffers at their respective

information storage point, frequent updates of video frame availability may be made. Sim-

ilarly, frequent queries may be required to learn the latest buffer state of other users. We

argue that a better approach in solving this problem is to incorporate the temporal property

of content availability in the advertisement scheme. Specifically, we allow scheduling param-

eters of video stream receptions to be included in the advertisement scheme. Users will be

able to describe their life-time of video frame availability in a concise and precise manner.

1.5 CONTRIBUTIONS

To enable scalable, efficient, resilient, and versatile streaming service to the users of the

Internet, we propose the design of a new streaming video distribution network model, called

Virtual Theater Network, and accompanying video reception and discovery schemes in a

hybrid computing environment. The following contributions are made through this research:

• A design of a new streaming video distribution network model, Virtual Theater Net-

19

work, which allows organization of peer-to-peer communities (VT Rooms) to support

the distribution of streaming videos among the members of a VT Room.

• A design of a segmented video stream reception scheme and an accompanying scheduling

algorithm for an orderly and timely video segment retrieval that allows contributions

from users with limited resource availability.

• A design of a video segment availability advertisement and discovery scheme which in-

corporates the parameters of segmented video reception scheduling algorithm. It enables

users to capture the constantly changing segment availability information of user buffers

and greatly simplifies the advertisement and discovery process such that one adver-

tisement and one query is sufficient to post and retrieve the life-time of the segment

availability of a user.

• QoS support in mitigating the video viewing interruptions in face of excessive delays,

including those that are caused by one or more video distribution source losses.

• Incorporation of mobility information in the selection of video distribution sources that

best satisfy the user needs.

1.6 DOCUMENT OVERVIEW

The remainder of this document is organized as follows. Chapter 2 provides selected lit-

erature reviews on P2P based streaming content distribution network. Chapter 3 presents

the architectural design of the streaming network model we propose. Chapter 4 describes

the video reception scheme and accompanying scheduling algorithm. Chapter 5 details the

advertisement and discovery scheme to locate users with desired video segments. Chapter

6 provides the descriptions of a QoS scheme that reduces the chances of video presentation

interruptions when distribution sources depart from the service unexpectedly. Chapter 7

presents the design and analysis of experiments to study the behavior of users in the pro-

posed video distribution network. Chapter 8 concludes the document.

20

2.0 LITERATURE REVIEW

Selected literature review on peer-to-peer streaming systems are presented in this chapter.

The reviewed schemes are grouped into two categories depending on the focus of their studies.

Those schemes that seek to improve scalability in the data path are grouped in one cate-

gory while others that try to add flexibility and scalability to the search path are grouped

in another category. We identify problems that each scheme tries to solve and give brief

descriptions of the approach it takes in achieving its goal. We describe how our work differs

from theirs at the end of this chapter.

2.1 DATA PATH SCALABILITY

An overview of selected schemes that aid in the scalability of data path in P2P streaming

network is presented. Schemes in this category are further divided in two groups depending

on their multicasting approach. The first group of schemes are based on application layer

multicast while the other group builds their schemes on overlay network based multicast.

2.1.1 Schemes Based on Application Layer Multicast

NICE [4], ZIGZAG [38], PeerCast [11], CoopNet [27], and OTSp2p & DACp2p [40] are ap-

plication layer multicast schemes which aim to enhance the scalability of data path in P2P

streaming network. NICE and ZIGZAG are designed to support many live-streams with

relatively small payload. PeerCast is designed to support live-streams in highly dynamic

environment. CoopNet’s main objective is to enhance the resiliency of streaming service of-

21

fered by the traditional content delivery network by supplementing it with application layer

multicast. OTSp2p & DACp2p evaluates an environment where peers have different transmit

bandwidth capabilities. A brief overview of each scheme follows.

2.1.1.1 NICE NICE [4] is designed to support live-streaming applications such as news

and sports tickers, real-time stock updates, and Internet radio broadcasts. These applications

are characterized by their large user populations, relatively low bandwidth consumption, and

real-time nature of data stream which can withstand occasional packet losses. When low

bandwidth traffic is sent to a large number of users, control data generated by a large number

of peers can occupy a significant percentage of the total number of bytes being sent across the

network. In this type of environment, it is difficult to absorb the cost of control overhead.

It is desirable to minimize the overhead cost as much as possible. NICE investigates the

feasibility of using application-layer multicast to solve this problem.

NICE organizing peers in hierarchy of clusters and builds distribution trees that aim to

achieve low latency and small control overhead. NICE members that are close to each other,

in terms of end-to-end latency, organize themselves into clusters. Members that belong to

different clusters but are close to each other are mapped to the same part of clustering hier-

archy. This tree structure ensures that the latency is kept low when distributing streaming

data. All members belong to the lowest layer, L0, of the clustering hierarchy. A member

that has the minimum maximum distance to all other members in the same cluster becomes

the cluster-leader. The cluster-leaders at layer L0 form layer L1 cluster(s). A member at

the center of the cluster at layer L1 becomes its cluster-leader. This assignment repeats

until the highest layer, which has a single cluster with only one member. There are at most

log kN layers in total, where k determines the size of a cluster1 and N is the total number

of members. Hierarchically clustered peers in NICE multicast topology also helps maintain

low control overhead (i.e. the number of peers a newly joining peer needs to contact) and

localizes effects of member failures. Data delivery path is implicitly defined by the the hier-

archical structure of the control path that no additional route computation is necessary for

the data packet forwarding.

1Each cluster has a size between k and 3k − 1, where k is a constant.

22

NICE members maintain information of all other members in the same cluster. The

cluster-leader sends a complete membership listing to each member periodically. With this

information, each member sends HeartBeat message to other members at a fixed interval.

The loss of consecutive HeartBeat messages beyond a predefined threshold is interpreted as

a member failure. The HeartBeat message contains the latency information as seen by the

sending member and this information is used to determine the distance among each other.

If the cluster-leader is removed, all cluster members independently decide who will be the

next cluster-leader from the latency information maintained locally. When a cluster size

becomes greater than 3k − 1, the cluster-leader splits the cluster into two clusters with at

least b3K/2c size that result in two clusters of minimum maximum radius. Once the cluster

splits are determined, the current cluster-leader sends LeaderTransfer message to the new

cluster-leaders. When the size of a cluster falls below k, it will be merged with a nearby

cluster.

2.1.1.2 ZIGZAG ZIGZAG [38] asserts that there are three fundamental challenges as-

sociated with the distribution of live media over the application-layer based multicast trees.

First, the end-to-end delay from the source to a receiver may become very long since pack-

ets follow a path with a number of intermediate receivers. Second, the receiver peers may

abandon their descending at any time peers as they are free to join and leave the service.

Third, control overhead associated with the support of a large number of users can become

significant. ZIGZAG focuses on these issues and tries to overcome them.

ZIGZAG’s goal is to build application-layer multicast trees which offer small source

to receiver delay, quick and graceful recovery from failures, and small control overhead to

maintain the multicast tree. The multicast tree is organized in layers of hierarchy identical

to NICE. Unlike NICE, the data path does not follow the control path of the tree. In

stead, non-head peers in a cluster (i.e. members that are not functioning as a cluster-leader)

receive data from the head peer of another cluster. This unintuitive data path design actually

reduces the node degree (i.e. the number of branches extending from a node) and help reduce

the failure recovery overhead. Sample data paths of ZIGZAG are illustrated in Figure 2.1.

In this example, the content server, S, forwards packets to its cluster member (4) at

23

Figure 2.1: Sample data paths of ZIGZAG.

layer L2. It also establishes data delivery paths to non-head members (1, 2, 3) of the cluster

on the left at layer L1. Notice that the server does not belong to this cluster. Packets are

further forwarded by nodes 1, 2, 3 to non-head members of a cluster that they don’t belong

at layer L0. A similar arrangement is made from node 4 to the members in the clusters on

the right.

Addition of a new peer is attempted first to the cluster with a vacancy that has the least

source-to-receiver delay. If all clusters are fully populated, the new peer is added to the

shortest delay cluster and the cluster will be split in half during the next interval of cluster

split operation. In addition to the shortest delay, ZIGZAG has a provision for using the

number of node degree or the available bandwidth capacity as an option for choosing the

joining cluster, though the details area not provided.

2.1.1.3 PeerCast PeerCast [11] aims to provide an efficient live media streaming service

in a highly dynamic environment. PeerCast argues that while application-layer multicast can

provide an effective means to deliver live streams, it is difficult to avoid service interruptions

due to autonomy and unpredictable behavior of end user systems. The impact of a node

departure can be large when it is the parent node of many children. PeerCast suggests

that the design of an application-layer multicast should include a mechanism to address the

dynamic nature of end user systems. PeerCast tries to achieve this goal by using a layered

24

P2P architecture.

PeerCast introduces peering layer which is placed between RTSP and UDP layers. Peer-

ing layer manages two types of sessions: data transfer sessions and application sessions.

Data transfer sessions are established between end nodes and their parent nodes through a

multicast tree. Application sessions are established between the peering layer and the end

application at each node.

The robustness of data transfer sessions are realized by the implementation of a lightweight

session protocol. When a parent node leaves a multicast group, it sends a redirect request

to its children so they may re-attach to a new parent. If the new parent is unable to sup-

port those children, it redirects them to its immediate children. This process repeats until

unsaturated node (i.e. a node with sufficient resource available) is found. In an event where

all nodes are saturated, the peering layer indicates “resource unavailable” error to higher

application layer.

Application sessions that are established between the peering layer and the end appli-

cation shield the dynamic nature of data transfer layer from the end applications so that

applications need not be concerned with the intricacies of the actual data transfer operations.

While data transfer sessions may be torn down at any time and for any number of times,

application sessions are expected to be intact for the entire duration of the live streaming

presentation.

Using the peering layer mechanism, PeerCast investigates a variety of policies for node

join, node departure, and tree maintenance. It concluded that a simple mechanism based

on a layered architecture seemed to improve the resiliency of streaming service in a dynamic

environment.

2.1.1.4 CoopNet CoopNet CoopNet asserts providing a reliable streaming service over

P2P network is a challenging task due to sudden node departures expected in P2P envi-

ronment. This is especially true with application-layer multicast where a departing peer

may abandon a large number of children peers. CoopNet focuses on minimizing the effect

of sudden node departures in application-layer multicast. It’s goal is to avoid a complete

loss of service during data path recovery so that the users may receive continual streaming

25

service in spite of peer departures.

CoopNet uses application-layer multicast trees to compliment, rather than to replace,

the existing client-server based content delivery networks (CDNs). Unlike other application-

level multicast schemes being reviewed in this document, it tries to support both the live

stream service as well as on-demand audio/video streaming.

CoopNet tries to achieve resiliency through distributing a content over multiple applica-

tion multicast trees. Each multicast tree is built independently and the sum of the packets

delivered by all multicast trees reconstructs the original content. Packets carried by each

multicast tree are coded in such a way that the streamed content can be played back at a

fraction of the total quality independent of other multicast trees. Even if there are absence of

packets from some multicast trees, it enables the continual presentation of streaming content

with a lesser quality. This type of coding is known as Multiple Description Coding (MDC).

The membership and the structure of multicast trees are managed centrally at the content

server. When a node wishes to join a multicast group, it contacts the content server and

registers its resource availability. The content server responds with a list of randomly chosen

set of distribution nodes (one node for each multicast tree) that are capable of supporting

children nodes. The joining node contacts the specified parent nodes to receive the stream.

On-demand streaming is carried out in a very similar manner as live media streaming.

Joining node sends a request to the content server. If the content server is overloaded, the

server returns a list of distribution nodes that have recently requested the same content who

have indicated their willingness and capability to take on a CoopNet content server role.

These nodes store the received content at their local storage and make them available for

other peers to retrieve. The joining client contacts each node in the list given by the server

to determine which peers have the needed MDC coded strips and requests them to send the

stream. [27] does not provide details of on-demand streaming procedures.

2.1.1.5 OTSp2p and DACp2p P2P network users generally have different system capabil-

ities and resource availabilities. Taking these differences into considerations when supporting

streaming media distribution over a P2P network is important. Xu, et al. [40] focuses on a

specific case where peers have different and limited (i.e. less than nominal playback rate)

26

transmit bandwidth capabilities. In this type of environment, a requesting peer will have to

establish multiple sessions to different supplying peers so that the accumulated bandwidth

will be equal to the nominal playback rate. A requesting peer must also ask different seg-

ments to be sent from each supplying peer in order to playback the whole content. [40] raises

the following two research questions under such P2P environment: 1) Given a limited avail-

ability of Tx bandwidth, what is the order in which a supplying peer should service requests

waiting in a queue that came from different requesting peers? 2) Given a requesting peer

must establish sessions to multiple supplying peers, how should it decided which peer supplies

what segment?

Xu, et al. highlights a unique characteristic of a P2P based content distribution that more

a content is downloaded, a greater the total content availability it becomes. For example, a

content originally existed at a single site can be made available at 100 other cites if it were

shared with 100 other peers. Xu, et al. uses this knowledge to define the design goals for

the two questions being raised. For the first question, Xu, et al. services requesting peers

in a queue in such an order that it results in minimizing the time taken to proliferate a

particular content on the network. In other words, the goal is to maximize the total content

availability in a shortest period of time. This will help other peers to locate and receive the

same content quickly. For the second question, it arranges the supplying peers in such a way

that it will minimize the Rx buffer size of the requesting peer. This ensures the shortest delay

between the content request time and the start of playback time and helps shorten the time

to proliferate the content in the network. Xu, et al. refers the first scheme as Differentiated

Admission Control protocol (DACp2p) and the second as optimal data assignment algorithm

(OTSp2p).

In addition to different and limited Tx bandwidth of peers, Xu, et al. assume the fol-

lowing attributes of the participating peers: 1) Supplying peer, Ps, can service at most one

streaming session at a time, 2) Requesting peer, Pr, requires two or more supplying peers to

reconstruct the entire stream, 3) Each Ps contributes a discrete value of bandwidth in steps

of (Nominal playback rate BW)/2n and a peer is said to belong to class n. 4) Media can

be divided into small and equal seize segments and each segment takes the same amount

of time to transmit and process, 4) Pr can playout a segment only after the entire segment

27

arrives.

DACp2p is briefly described. In DACp2p, each supplying peer maintains an admission

probability vector that favors the requesting peers that have the potential to become a

supplying peer with a greater bandwidth contribution (i.e. higher class peers). Suppose

there are four classes of requesting peers P 1
r , P 2

r , P 3
r , P 4

r and the Ps belongs to Class2. Then,

the admission probability vector of Ps for those Prs would be {1.0, 1.0, 0.5, 0.25}. If Ps

receives a request from a Class1 or Class2 peers, they are always accepted. If a request

comes from Class3 Pr, the service decision is made according to a coin toss. If no request

arrives beyond a predetermined threshold, the probability vector that has a value lower than

1.0 will be doubled in its value.

2.1.2 Schemes Based on Overlay Network Multicast

Vcast [17], Range Multicast [16], Overcast [21], and OMNI [5] are overlay network based

multicast schemes which aim to enhance the scalability of data path in P2P streaming

network. Patching [18] is also described as a predecessor of Vcast. Patching, Vcast, and

Range Multicast offer solutions to on-demand requirement of streaming service. Overcast

optimizes overall bandwidth while OMNI optimizes end-to-end latency in building overlay

network based multicast trees.

2.1.2.1 Patching On-demand delivery of bandwidth intensive streaming media to a

large number of users has two challenges. First, it must immediately service user requests

regardless of their arrival time in relation to the playout of the current streaming session.

Second, it must use media server’s bandwidth effectively since the server must support many

users and each streaming session consumes a significant amount of bandwidth. IP multicast

offers an efficient group communication mechanism without requiring an additional server

bandwidth. Yet, it falls short on the on-demand aspect of the challenge and requires a sep-

arate IP multicast session to be established for each late comer. Patching [18] was designed

to support on-demand requirement of IP multicast based video streaming service. A new

user who wishes to receive a particular video streaming joins a corresponding IP multicast

28

tree that broadcasts the most recent session. The user receives the on-going video stream

from the multicast tree and saves the receiving segments at a local storage area. At the same

time, the user establishes a unicast connection, known as a patching stream, to a patching

server to receive the missed segments. The missed segments will be sent from the patching

server for an immediate playback. Once all missed segments have been played back, the user

starts the playback of the stored content received from the IP multicast tree.

While patching enables efficient on-demand delivery of streaming content, the actual de-

ployment over the Internet is not feasible today because the scheme is based on IP multicast.

2.1.2.2 Vcast Vcast’s [17] goal is to provide an on-demand streaming service by adapting

the IP multicast based patching scheme to an overlay network based multicast scheme.

Overlay nodes in Vcast perform dual-roles: they provide multicast server functionality as

well as caching server functionality. As a multicast server, it participates in the building and

maintenance of multicast trees. As a caching server, it temporarily stores the forwarding

streaming content locally. For subsequent user requests for the same content, relay nodes

(i.e. overlay nodes in the delivery path of a streaming session) can provide the streaming

service on behalf of the media server. This reduces the bandwidth concentration at the

media server and improves latency.

The missed segments will be streamed from the media server as a direct unicast connec-

tion, similar to patching.

When a new overlay node, X, wishes to join the overlay network, it contacts the media

server to learn IDs of all other operating overlay nodes in the network. X contacts each

overlay node to let them know of its existence.

A new client, C, wishing to receive a streaming service sends a request message to the

server. Sever returns a representative node, X, to C, which is chosen in round-robin fashion

out of all the existing overlay nodes. C sends X a join message and requests a streaming

service for the desired content, V . If X is not a relay node, X picks a node Y in round-robin

out of all the overlay nodes known to X and forwards the join message to Y . If Y is a relay

node, Y returns a setup message to X and sends streaming data back the path as recorded

in the join message header. The intent of choosing overlay nodes in a round-robin fashion is

29

to distribute the load evenly.

2.1.2.3 Range Multicast Range Multicast (RM) [16] aims to provide on-demand video

streaming service with VCR-like functionalities without requiring additional bandwidth from

the content server. Its architecture is based on the overlay network based multicast where

selected network nodes perform multicast functionalities along with specific tasks designed

for RM protocol. RM is realized by having each overlay node along the path of a multicast

tree cache blocks of streaming segments as its local storage space permits. An important

characteristics of this approach is that as the number of clients who join a multicast tree to

receive a particular streaming content increases, the total number of video stream segments

being cached within the network increases.

A client wishing to receive a video stream sends a request to a nearby RM overlay node

called representative node. If the representative node is unable to service the client request

from its local buffer, it floods the request to other RM overlay nodes in the network. Overlay

nodes that can satisfy the request returns a response to the representative node and video

stream is forwarded to the client through its near-by RM node. A new multicast session

from the root will only be established when there is no other RM overlay nodes that can

satisfy the client request.

VCR-like functionalities, such as fast forwarding and backward jumping are realized

by requesting needed segments from one of the RM nodes in the distribution tree. They

require no additional streaming session to be established from the content server. The only

exceptions are when the leading client (i.e. clients receiving segments directly from the root)

requests viewing of future segments and the trailing client (i.e. clients receiving segments at

the end of a range multicast tree) requests viewing of past segments beyond what’s found in

the local buffer. Any other clients should be able to find needed segments in one of the RM

overlay nodes, regardless of the viewing direction of the video stream.

2.1.2.4 Overcast Overcast [21] is designed to offer an on-demand delivery of non-interactive,

bandwidth demanding, video streaming service to a self-similar community of users through

overlay network based multicast. The design goal of Overcast is to build single source multi-

30

cast trees that maximize bandwidth availability from the root to each overlay node without

knowing the details of the underlying network topology. It also tries to respond quickly and

efficiently to transient network failures and congestions in the underlying network.

Through a centralized lookup mechanism, a client wishing to receive a video streaming

service finds a root node of a multicast tree that distributes a desired content. The client

requests the root node to help measure the available bandwidth between the client and the

root on a direct connection and saves it as a nominal download bandwidth. The client

also requests the root node for a list of children nodes and their descendant nodes that are

attached to the root node. The client checks the availability of bandwidth from the root

through each one of every descendants and determines which overlay nodes can offer the

same amount of bandwidth as the nominal download bandwidth. The most distant node,

in terms of tree hierarchy, from the root that satisfies the bandwidth requirement will be

selected as the node to which the client will attach itself in the multicast tree.

On-demand service is supported by the notion of archive. Each overlay node buffers data

it forwards in archive and distributes the archival index to participating overlay nodes in a

multicast tree. A user can request the starting point, such as the beginning, when it joins

an archival group of a particular tree.

Since root node holds both the content as well as the distribution tree information, com-

munication failures (e.g. link down, root node down) can jeopardize the entire distribution

system. To cope with this problem, Overcast performs root node replications and forwards

the streaming requests to replicated nodes in round-robin fashion. It also employees a series

of replication nodes cascaded in front of the root node so that any one of them can overtake

the responsibility of the root if necessary. In order to cope with non-root node failures, each

child node maintains a list of ancestors so it can attach to a next higher level parent.

2.1.2.5 OMNI Overlay Multicast Network Infrastructure (OMNI) [5] is designed to sup-

port large-scale, latency sensitive media-streaming applications using overlay network. Since

live-media cannot be pre-delivered to different distribution points, maintaining efficient de-

livery paths are crucial. OMNI’s definition of an efficient path is one that minimizes the

packet delivery delay. It’s goal is to build and maintain a single-source multicast tree that

31

is optimized for degree-constrained minimum average latency using decentralized algorithm.

Given a capacity and degree constrains, overlay nodes are organized into overlay network

which adapts to changes in client distributions and network load by executing sequence of

optimization steps. OMNI assumes that overlay nodes are part of network infrastructure

that they do not appear and disappear suddenly under normal operations. Overlay node

failures are assumed to be rare incidents.

During the initial attempt to bring up OMNI overlay network, a root node performs a

centralized tree building. All overlay nodes measure the latency between the root and them-

selves and send joinRequest<latencyToRoot, DegreeBound> message to the root. Once

joinRequests from the participating nodes are collected, the root constructs the distribution

tree in the order of closest to farthest (in terms of latency). The root selects N number of

closest nodes as its direct children, with each child having N number of next closest set of

children, where N is the DegreeBound of each overlay node. This process repeats until all

nodes belong to a cluster. Once all overlay nodes joined, each node performs local trans-

formation procedures periodically to optimize the minimum average latency. OMNI defines

five set of procedures, such as child promotion to a higher level, child-parent swapping, and

others for the optimization. These operations are executed only after they are determined

to reduce the average latency. In addition, OMNI defines a random swapping of children at

a certain interval and probability. This is an attempt to achieve global latency minimization

since local transformation procedures can only produce local subtree minima.

Those overlay nodes that join after the initial bring-up phase will contact the root node.

The root node determines the best placement of the joining node in the distribution tree

that results in the minimum average latency in the network. The root node then returns

the address of the parent node to which the joining node should attach. A departure of an

overlay node is handled by local transformation.

32

2.2 SEARCH PATH FLEXIBILITY AND SCALABILITY

This section presents overview of schemes that add flexibility and scalability to the search

path of a P2P streaming network. The Review is grouped based on unstructured P2P

architecture (i.e. Gnutella like) or the DHT based P2P architecture.

2.2.1 Schemes Based on Unstructured P2P Model

Associative Overlay [8], Interest-Based Locality [35], YAPPERS [12], and Search-Index

Links [9] are unstructured P2P architecture based search schemes which aim to enhance

the flexibility and scalability of search path in P2P network.

Associative Overlay is designed to add scalability to search operation by restricting search

to selected peers according to predefine rules. YAPPERS divides the peers into a small

number of color coded space and restricts the search within the same color of peers. Interest-

Based Locality prioritizes the peers to which the queries should be sent according to the past

history. Search/Index Links is designed to give flexibility to search operations by allowing

any peer to take on the search proxy server role as well as the client role, depending on the

peers to which it establishes neighbor relationship.

2.2.1.1 Associative Overlays Associative Overlays [8] focuses on two desirable services

of P2P search: 1) the ability to find rare content efficiently, and 2) to execute partial-

match queries. Existing P2P architectures, such as Gnutella [13] and Chord [36], can only

support either one or the other of these properties. Associative Overlays tries to develop a

decentralized P2P architecture that effectively finds rare content. The proposed scheme is

based on an unstructured P2P model, such that it retains many of the desired properties of

Gnutella like P2P search, such as partial match queries and high resiliency to failures.

The search on the Associative Overlays is directed only to those peers that are believed

to have a relevant information without having to physically cluster peers into separate com-

munities. This search is called guided search. The basic premise of the guided search is that

peers that had or would have been able to satisfy previous queries are more likely candidates

33

to answer the current query.

Guided search is driven by a set of rules called guide rules, which is created by the

originating peer. Guide rule defines some predicates regarding the previously visited peers.

A set of peers that belong to same guide rule should contain data items that are semantically

similar. Each peer that belongs to a guide rule maintains a small list of other peers that

belong to the same guide rule. A guided search query is sent to all the peers that are listed

in a guide rule and the query will be forwarded by those peers to their list of peers in their

guide rule. During the guided search, each peer collects and analyzes the results of guided

search. This statistic is used to refine the guide rule.

2.2.1.2 YAPPERS YAPPERS [12] proposes a peer-to-peer content search scheme that

is a hybrid of unstructured and DHT based P2P architectures. Design objectives of the

lookup service in YAPPERS are 1) impose no constraints on overlay topology, 2) optimize

for partial lookups (i.e. an efficient search among a limited set of peers), 3) contact only

those nodes that can contribute to the search result, and 4) minimize the effects of node and

link insertion/deletion within a small area of the network.

YAPPERS partitions a large overlay network into many small and overlapping neighbor-

hoods. Two types of neighborhoods are defined: immediate neighborhood (IN) and extended

neighborhood. Immediate neighborhood of node A, IN(A), is composed of all nodes within

h hops distance from node A in the overlay network. Within IN(A), YAPPERS assigns

the nodes into a small number of color space using the hash value of their IP addresses:

HASH(K) ≡ (HASH(IPx) mod b), where K is the key (e.g. filename), IPx is the IP

address of a node x, and b is the total color space (C0, C(b−1)).

Consider a simplified case where key space is divided into white and gray colors. Every

node in an immediate neighborhood is given a color assignment of either white or gray. When

a white color node A wishes to store a white key item, it stores it locally. If node A wishes

to make a gray key item available, it requests a neighbor gray node to store it. Queries for a

particular color key item will be forwarded to respective color nodes only. To guarantee this

operation, each node will have a knowledge of all nodes within (2h + 1) hops away, where h

is a small constant, such as 3.

34

Suppose node x wishes to store <k, v>. If HASH(k) ≡ (HASH(IPy) mod b) ≡ C(k),

then node y must store the <k, v> pair. If there are other nodes with C(k) in the immediate

neighborhood, x may request any one of those nodes to store the pair. If there is no node

with C(k), the color Ci = C(k) is assigned to a node with color C(i+1)mod b. If multiple

such node exists, the node with the smallest IP address will store the pair.

Extended neighborhood includes those nodes that are (2h + 1) hops or more away from

node x. Suppose node x requests color C(k) items to be retrieved. It first sends a query to

a C(k) = (HASH(IPy) mod b) node in IN(x). Subsequently, node y forwards the query to

a node C(k) in its extended neighborhood, EN(y). This process is repeated until all C(k)

nodes are visited. A unique identity is associated with each query request that a duplicate

request will be dropped at each node.

2.2.1.3 Interest-Based Locality Sripanidkulchai, et al. [35] propose a content loca-

tion solution in which peers loosely organize themselves into an interest-based structure over

Gnutella network. It is built on the premise that if a peer X has a content that a peer

Y is interested in, it is very likely that X will have other items of Y ’s interests. The re-

lationship between peer X and Y is called interest-based locality. Peers that share similar

interests create shortcut to one another, called interest-based shortcut, which efficiently ex-

ploits interest-based locality for content location. Interest-based shortcuts provide a loose

structure on top of Gnutella’s unstructured P2P architecture. The design goal of Interest-

based locality is to preserve the simplicity of Gnutllla network and make it scalable so that

the amount of queries being flooded in Gnutella network may be reduced significantly.

When a peer first joins the P2P network, a normal Gnutella discovery process is used

to discover other peers and their content availability. The newly joined peer randomly

selects one peer being discovered out of the query hit list and adds it to a shortcut list. A

shortcut list is a fixed-size table that contains entries of interest-based shortcuts. Every node

maintains a shortcut list. Each entry in the shortcut list has a rank given to it. Ranks are

based on properties associated with a particular shortcut, such as probability of query hit,

latency of the path, bandwidth availability, the number of content availability, amount of

load, and any combinations of the above. Shortcut list is sorted in ranking order and the

35

queries are sent on the highest ranked shortcut first, followed by entries in the subsequent

ranking order. The entries in the shortcut list are removed as their usage diminishes below

a certain threshold.

2.2.1.4 Search/Index Links As the size of unstructured P2P network grows, the load

on the network and peers becomes increasingly heavy due to flooded control messages. Some

peers can be overwhelmed by the processing of flooded control messages that they can no

longer attend to other important services such as downloading user requested files. To

minimize such effect, some P2P systems, such as KaZaA [23] and Morpheus [25], allow

capable and willing peers (i.e. supper-peers) to provide proxy search service for other peers

(i.e. normal-peers) to forward query requests and content indices. However, in this scheme,

peers must take on either the server or the client role. [9] examines a way to reduce the load

on peers by allowing them to self-organize into a decentralized network where each peer is

allowed to make local decision on whether to take on a supper-peer role or normal-peer role

for query requests and content indices independently.

Under the proposed scheme, peers are connected by search links and/or index links. A

peer at one end of a search link provides proxy service for the other peer for the exchange

of query requests with the rest of the community members. Similar relationship exists for

content indices exchange on an index link. Those nodes that receive updates of indices from

connected nodes can perform content lookup locally for themselves and for any other queries

that are received.

Through connect() operation, a peer connects to another peer and establish search and/or

index links. Those peers that provide proxy service may use break() operation to drop any

one of their search and index links to lighten the load when necessary.

2.2.2 Schemes Based on Structured P2P Model

eCAN [41] is a DHT based P2P architecture which aims to enhance the scalability of search

path in P2P network. Binning [30] enables a peer to locate a set of near-by peers that host

the desired content. Both eCAN and binning are developed as extensions to CAN [31] and

36

we first describe how CAN works.

2.2.2.1 CAN Content-Addressable Network (CAN) [31] is a hash table based (i.e. a

list of <key, value> pair where key is generated by a hash function) content management

system that can be used to implement large-scale distributed storage systems on the Internet.

CAN divides the network space into a d-dimensional Cartesian space (i.e. a d-torus) with

one or more CAN nodes in each zone as owner(s). The basic operations performed on a

CAN are insertion, lookup, and deletion of <key, value> pairs. The key translates to a

<x, y> coordinate in the Cartesian space and the value is the corresponding content to

the key, such as a music file. Many keys fall on the same CAN zone and the CAN node(s)

in that zone is responsible for the storage of the corresponding values. A CAN node also

holds information regarding four-adjacent neighbor zones. This information is used to take

over the neighboring zones in case any of the CAN nodes in those zones departs or fails.

Requests (i.e. insert, lookup, delete) for a particular key are routed by intermediate CAN

nodes towards the destination CAN node whose zone stores the <key, value>.

CAN requires no form of centralized control, coordination, or configuration. CAN nodes

maintain only a small amount of control state information which is independent of the size

of the system. CAN’s search and insertion operations can route around failure zones.

In spite of its elegance and various merits it brings, CAN faces some important challenges.

First, routing is not optimized, as with all other DHT based P2P search schemes, since the

logical layout of the CAN nodes in the Cartesian space does not reflect their physical layout.

Second, it is intended that each CAN node stores actual values corresponding to the key.

The resource requirements at CAN nodes may become very high. Third, the number of hops

needed to reach the destination increases as the number of CAN zones increase. In other

words, a destination gets farther away as CAN network becomes populated with CAN nodes.

This problem poses a serious question on the scalability of CAN.

2.2.2.2 eCAN To cope with the scalability problem of CAN, eCAN [41] was introduced.

eCAN is an extension to CAN that enables efficient routing to logically distant destinations.

eCan divides the Cartesian space in jk areas, where j is a constant, j > 0, and 0 ≤ k ≤ m.

37

Figure 2.2: A sample eCAN topology and routing paths.

Consider a case where j = 4. Each area created by partitioning the search space in 4m

pieces is a CAN zone. A CAN zone belongs to an order1 zone. An order2 zone is created

by dividing the search space in 4m−1. order2 zone is overlayed on top of four order1 zones.

One of the CAN nodes in the four order1 zones function as an order2 zone leader. This

hierarchical clustering of zone organization repeats till orderm zone is created.

eCAN enables efficient routing by establishing expressways between neighboring zones

in the same order. Figure 2.2 illustrates eCAN with 64 CAN zones. In this example, four

neighboring CAN zones make one order2 zone. Four order2 zones make one order3 zone.

Suppose CAN node 1 represents an order1, order2, and order3 zones. The routing table of

CAN node 1 consists of the default routing table of CAN (represented by the thin arrows

in the figure) that links only to node 1’s immediate CAN neighbors, and high-order routing

tables (represented by the thick arrows) that link to one node in each of node 1’s neighboring

high-order zones. This figure also illustrates how node 1 can reach node 9 using eCAN routing

(1-2-5-9). The expressways help shorten the number of hops required to reach the destination

CAN zone.

38

2.2.2.3 Binning Binning [30] is a landmark based peer positioning scheme to identify

a set of server peers that are close to the requesting peer. One of the challenges of P2P

discovery service is how to locate the nearest server peers among possibly many and globally

spread peers listed at an overlay node. Binning organizes nearby peers in a group known

as a bin. The peer to bin assignment is done as follows. Each peer measures the distance

to several landmark nodes (Binning suggests 8 to 10 landmark nodes to cover the entire

Internet) that are scattered throughout the Internet and order the measured results in the

closest to the farthest ranking. Those peers that have the same order of landmark nodes

will be placed in the same bin. The idea behind this logic is that peers that have the same

or similar landmark-distance-order should reside in the same region of the network. When

a peer requests a content from a CAN zone, it first measures the distance to each landmark

and determines its bin order. This bin order is attached to the query from the peer to the

CAN node. The destination CAN node returns only those server peers that have the same

or similar bin orders to the requesting peer.

2.3 DISCUSSION

We’ve reviewed selected literatures that propose streaming service support over P2P network

with various emphases and focuses. In this section, we highlight their contributions and

discuss the similarities and differences in goals and approaches between our research and

theirs.

2.3.1 Evaluation of Schemes that Improve Data Path Scalability

Under application-layer multicast based schemes that aim to improve the data path scal-

ability, we reviewed NICE, ZIGZAG, PeerCast, CoopNet, and OTS+DAC. Under overlay

network based multicast schemes, we reviewed Vcast, Range Multicast, Overcast, and OMNI.

NICE [4] and ZIGZAG [38] both focus on the building of a delay optimized end applica-

tion multicast tree that requires small tree management overhead and bounded node degree.

39

They both organize multicast tree in hierarchy of clusters whose membership is composed

of nearby peers. NICE uses this tree structure to send both the data and control packets in

order to avoid the maintenance of two separate routing tables. ZIGZAG, on the other hand,

uses this structure for control message exchanges only and it defines separate routing paths

for the data packet delivery. ZIGZAG performs better than NICE in some areas, with the

cost of maintaining an extra set of routing table, while there was no difference in other areas

of overhead costs. The unique data path assignment of ZIGZAG helps peers become more

resilient to node failures than NICE which was demonstrated by failure related experiments

with 2000 peers.

NICE, ZIGZAG, and our research all try to distribute streaming content to very many

users. However, our goals and theirs differ in two major accounts. First, NICE and ZIGZAG

try to support live streaming applications whereas we mainly focus on VoD service support.

In live streaming applications, a subscription of a new user to an on-going session can be

achieved simply by adding the user to an appropriate branch of a multicast tree because

the network is only responsible for the delivery of future content. The missed segments can

be lost forever in live streaming sessions. The problem space where on-demand support is

required is more complicated in this aspect and that a mechanism is needed to ensure that

the new users will receive the streaming content from the beginning regardless of when they

join a distribution community.

Second, NICE and ZIGZAG try to support low bandwidth applications, such as sports

tickers and real-time stock updates, while we focus on the distribution of high bandwidth

content, such as high quality VoD applications. Since the support of low bandwidth stream-

ing content do not induce large amount of stresses on participating peers, resource concerns

are not as sever as the support of high bandwidth streaming content. For example, in both

NICE and ZIGZAG, a cluster-leader must be able to support peers ranging from k to 3k− 1

at each level of cluster hierarchy it belongs to. When distributing a high bandwidth content,

even a small value of k can saturate the access link of the cluster-leader. This argument can

be further extended to make a general statement that the use of end-system multicast may

not provide sufficient node degrees when supporting high bandwidth content.

PeerCast [11]’s layered architecture follows the pattern of existing networking protocols

40

that have successfully demonstrated the establishment of reliable communication paths over

unreliable underlying network. PeerCast is unique in that it is the first of its kind to apply

layered approach to P2P environment. The simulation results indicated that the layered

protocol approach seem to help shielding the unreliable nature of P2P network when serving

mid-size P2P multicast group whose members are highly dynamic. However, PeerCast fo-

cuses only on live media streaming applications — an environment which is quite forgiving of

lost packets. The unreliable behavior of peers in the content delivery path are shielded, not

avoided or adjusted, by the cost of lost packets. The applicability of PeerCast architecture

on non-live streaming applications has not been established yet. Neither does it answer the

challenge posed by the on-demand expectation of users when supporting VoD applications.

CoopNet [27] supplements the client-server based content delivery architecture with

application-layer multicast to provide resilient streaming service. The resiliency is achieved

through the establishment of multiple set of application-layer multicast trees that allow play-

back of the content at a fraction of the total quality by each independent tree using Multiple

Description Coding. This unique approach is noble and promising in an environment where

a lower quality content presentation is preferred over loss of or delayed quality content pre-

sentation for an exchange with the higher cost of increased data and control overhead. In

addition, unlike other application-level multicast schemes, CoopNet tries to support both the

live streaming as well as on-demand streaming services. However, the simulated environment

in which on-demand service was conducted assumes unlimited availability of access band-

width at each end node. This assumption voids the applicability of simulation results in our

proposed research space where each stream consumes a very large amount of bandwidth that

the content server can be overwhelmed with relatively small number of concurrent streams.

OTSp2p and DACp2p [40] investigates a specific and realistic P2P environment where

supplying peers have limited transmit bandwidth availability that a receiving peer needs

to open multiple streaming sessions to different supplying peers. Given a typical transmit

bandwidth of broadband access service in the United States is less than 1Mbps, this follows a

very realistic arrangement of peers in support of high quality streaming content distributions.

For smaller size content distributions, the approach presented in OTSp2p and DACp2p can

be used to answer the following question: “What can be done to make a content distribution

41

more efficient when a desired content is found at multiple servers?”. Peers in OTSp2p and

DACp2p establish connections to multiple servers and download portions of the content in

parallel from each source in order to expedite the distribution process. One of the funda-

mental differences between our research and theirs is in its assumption on the availability

of streamed content. OTSp2p and DACp2p is based on the premise that the total copies of

the available streaming content increases as number of people download it increases. In con-

trast, we seek to design a streaming content distribution network in an environment where

streamed content only come from the content servers and users are allowed to buffer only a

block of segments for both playback and distribution purpose.

Vcast [17] aims to support on-demand delivery of streaming content through the es-

tablishment of overlay network based multicast tree and a unicast connection to the media

server. Two improvements made on Vcast over Patching [18] are 1) increased deployability

due to no reliance on IP multicast, and 2) reduced media server loading through partial

server shadowing at participating overlay nodes (i.e. overlay nodes buffer forwarded content

so they can become the root of a multicast tree of a particular content to off-load the media

server). In spite of these improvements, a unicast connection which was known as the patch-

ing stream continues to extend from the media server to the end user. When high quality

streaming content are distributed by Vcast, a relatively small number of patching streams

can overwhelm the media server.

Range Multicast [16] is similar to Vcast in that the overlay nodes along the distribu-

tion path buffer the forwarding content. It differs from Vcast in that it does not establish

multicast tree for the data delivery path. In stead, it relies only on the partial server shad-

owing technique as described in the Vcast section above. Using this infrastructure, Range

Multicast tries to support VCR-like functionalities. While Range Multicast demonstrated

a feasibility of using overlay network to support VCR-like functionalities, it is questionable

whether the overlay nodes have sufficient bandwidth to support the serious demands required

by the support of high quality streaming content as it has no means to balance the load on

the network. VCR-like functionalities are outside of the scope of our research.

Overcast’s goal is to support VoD applications through the overlay network based mul-

ticast tree that optimizes the overall network bandwidth. Streamed content are buffered at

42

participating overlay nodes, similar to Vcast and Range Multicast, and users are directed to

one of those nodes to receive the service. Overcast uses a simple protocol to find bandwidth

maximized communication paths. The communication paths selection logic, which is based

on “the most distant overlay node from the source which provides the same bandwidth as a

direct connectivity to the root” is a unique optimization algorithm. However, the search for

the most distant node may require a substantial number of measurements when the size of

the overlay network becomes very large since every feasible paths (i.e. having the same band-

width) need to be explored to determine the farthest node(s). While the authors state that

the end-to-end delay is a non-goal, it is an issue that should receive an attention. Overcast

assumes that the on-demand service is offered to a community of users with similar system

capabilities. One of the challenges we try to overcome in our research is how to satisfy the

needs of many user with diverse system capabilities. In this regard, our proposed research’s

operating environment is fundamentally different from the Overcast’s.

OMNI [5] builds a delay optimized multicast tree on overlay network for the support of

streaming service. It is a counter part to NICE which operates over an application-layer

based multicasting. OMNI also differs from NICE in that the root node has the complete

view of the network and is the central authority in the management and organization of

multicast tree whereas NICE uses a distributed algorithm to organize clusters of peers. In

this regard, OMNI lacks robustness and scalability compared to NICE. OMNI assumes that

overlay nodes are part of the network infrastructure and remain in service for an extended

period of time. An OMNI node failure is assumed to be a rare incident. OMNI’s two-stage

multicast tree building process (i.e. all nodes joining at once at the initial stage and individual

nodes are added later) is also an indicative of assumption that addition and removal of OMNI

nodes are infrequent events. Due to these assumptions, OMNI will less likely respond well

in situations where the network must respond quickly to dynamically changing environment,

such as sudden increase in the user requests beyond perceived capacity. An example of

useful OMNI application may be to connect content servers within a CDN. Content servers

function as OMNI overlay nodes and organize themselves into a delay sensitive multicast

tree to distribute streaming content within the CDN efficiently. Content servers in a CDN

fulfills the OMNI nodes assumptions that they are semi-permanently installed, have large

43

capacity, and seldom fails. However, this is a much different application environment than

what our research intends to operate in.

2.3.2 Evaluation of Schemes that Improve Search Path Scalability and Flexi-

bility

Associative Overlays, YAPPERS, Interest-Based Locality, and Search/Index Links were re-

viewed under the unstructured P2P architecture based content search schemes that enhance

the search scalability and flexibility. Under the structured P2P search schemes we reviewed

CAN extensions called eCAN and binning.

Associative Overlay [8]’s goal is to design a search scheme that supports the partial match

queries and the efficient rare content discoveries both at the same time, which is not possible

by the existing unstructured and structured P2P search schemes. Guided search can be

viewed as a middle ground between the blind search and the routed search. Since the routing

decision is based on the the assumption that peers that had been able to satisfy previous

queries are more likely candidates to answer the current query, its effectiveness is determined

by the degree of correlation between the past query results and the current query. If this

assumption holds, guided search can help eliminate unnecessary queries to many unrelated

peers. One of the drawbacks of this scheme is that guided search can diminish the chance to

uncover other peers that may offer superior service (e.g. higher content availability, greater

bandwidth, shorter delay). While guided search may improve one aspect of unstructured

P2P search scheme, it does not address other shortcomings of blind search. For example,

Associative Overlay follows the normal unstructured P2P search process and uses flooding

to discover new peers. This makes Associative Overlay unsuitable for global search due to

limited number of hops the discovery queries can travel in order to contain the amount of

flooded messages.

YAPPERS [12] proposes a noble search scheme based on the hybrid of structured and

unstructured discovery schemes. YAPPERS organizes a neighborhood of peers using un-

structured discovery scheme and supports an efficient content search within a neighborhood

using DHT based discovery. The beauty of YAPPERS is that since every peer organizes its

44

own neighborhood according to a set of rules that every node follows, the network can be

seen and treated as a collection of identical and overlapping cell structure. A search request

originated at a particular neighborhood can be forwarded to and processed at any other

neighborhoods by using the same procedure.

While YAPPERS’ DHT based content storage assignment enables efficient content dis-

covery within a local neighborhood, it brings other challenges that need to be addressed.

First, YAPPERS is not design to locate globally scattered content efficiently since the search

requests are propagated in hop-by-hop manner from one neighborhood to another. Second, it

may not be able to support live streaming service since live streaming media is not generally

considered something that can be copied from one node to another node prior to its broad-

cast. Third, physically copying content from one peer to another can be costly for large size

content, especially considering the fact that peers generally have limited bandwidth availabil-

ity and each peer may not be around for a long time. Fourth, a hash function based content

location assignment can cause uneven distribution of content among the neighborhood peers

and that the resources within a neighborhood may not be used effectively. Fifth, since the

DHT based content assignment does not consider the end user system differences, not all

peers in a neighborhood may be able to provide adequate level of support required for the

distribution of the assigned content. These issues will significantly impair the operation of

YAPPERS when trying to support the distribution of high quality streaming content.

Interest-based locality [35] seeks improved scalability in Gnutella network by directing

queries to a list of peers that satisfied queries in the past. Queries are flooded only after none

of the peers in the list can return the requested content. The concept is similar to Associative

Overlay [8], but the interest-based shortcuts are much more simple and easy to implement.

However, its usefulness is limited to those peers that are one-hop away which had been

uncovered through flooding in one of the queries in the past. The proposed scheme gives

a slight improvement over the existing Gnutella network but it does not solve fundamental

issues associated with the unstructured P2P search.

Search/Index Links (SIL) [9] offers a simple and flexible solution to the supper-peer

concentration/overloading problem of KaZaA and Morpheus. It also decouples the search

query exchange service and the content index exchange service, which are currently offered

45

as one unit of service by supper-peers. SIL improves the supper-peer scalability and gives

resiliency to the query paths. While SIL gives important enhancements to KaZaA and

Morpheus, does not address many other fundamental issues associated with the unstructured

P2P search, such as how to find rare content more effectively and how to reach those peers

many hops away.

eCAN [41] overcomes the hop count increase problem of CAN as the number of CAN

zones increases. eCAN groups adjacent CAN zones in layers of hierarchy to create larger CAN

zones in increasing order. The shortcuts between zones at each layer are called expressways

which reduce the number of hops to reach the destination CAN zone. The approach is elegant

and effective, though it comes with an increased overhead cost. The proposed scheme can

only be applied to CAN. However, other DHT based P2P overlay networks provide a similar

search cost performance as eCAN without special enhancements. Expressways supplement

the deficiency of CAN, rather than putting CAN ahead of game with other DHT based

schemes.

Binning [30] is a simple yet effective mechanism to lead a requesting peer to a set of

nearby server peers. Though it was developed by CAN researchers, the concept is applied to

any DTH based P2P overlay networks. While the goal of binning is not to lead a requesting

peer to “the closest” server peer, but to find nodes in proximity, it is possible to find the

closest peer by a simple modification to the logic. Binning relies on the presence of fixed

and perpetual landmarks. The placement of landmarks also plays an important role in the

accuracy and evenly distributed assignments of peers to bins. Due to the way in which

binning uses the landmark measurement information, addition or migration of landmarks

may be difficult to handle. Since network grows and shrinks in time, it is inevitable that

addition and/or migration of landmarks will be needed in some future time. There is no

simple way to handle these events other than re-measuring and re-labelling the each peer in

the network

46

2.4 CONCLUSION

This section provided selected literature review on peer-to-peer streaming systems that try

to achieve data path scalability and search path scalability.

Schemes that aid in the data path scalability are further divided in two groups depending

on their multicasting approach. One group develops their schemes based on application layer

multicast while the other group builds their schemes on overlay network based multicast.

Under application layer based multicast schemes, we reviewed NICE, ZIGZAG, Peer-

Cast, CoopNet, and OTSp2p & DACp2p. NICE and ZIGZAG aim to support live-streams

with small payload to a large number of users. PeerCast’s goal is to support live-streams

among dynamically changing peers. CoopNet enhances resiliency of streaming service by

sending multiple streams that are independently playable. OTSp2p & DACp2p considered an

environment with limited Tx bandwidth capabilities at supplying peers.

Under overlay network based multicast schemes, we reviewed Patching, Vcast, Range

Multicast, Overcast, and OMNI. Patching, Vcast, and Range Multicast proposed solutions

to on-demand requirement of streaming service. Network-wide bandwidth optimization tech-

nique as well as end-to-end latency optimization scheme were discussed in Overcast and

OMNI respectively.

We reviewed schemes that add flexibility and scalability in the search path of a P2P

streaming network. Reviewed schemes are grouped into two types based on their underlying

P2P architecture.

Schemes based on unstructured P2P architecture included Associative Overlay, Interest-

Based Locality, YAPPERS, and Search/Index Links [9]. Associative Overlay adds scalability

to search query by restricting search to selected peers according to guide rules. YAPPERS

partitioned search space into many and overlapping neighborhoods that are logically identical

in their construct so that query in one neighborhood can be easily extended to another

neighborhood. Interest-Based Locality keeps track of search results and use this information

to prioritize the peers to whom the next query should be directed to. Search/Index Links adds

flexibility to the designation of supper-peer and normal-peer relationship among neighbor

peers.

47

Under structured P2P architecture based search schemes, we reviewed CAN, eCAN, and

Binning. CAN uses a form of distributed hash table to store and locate <key, value> pair in

a d-dimensional space. CAN search scheme has a scalability problem that the number of hops

required to route to the destination increases as the number of CAN zones increase. eCAN

overcomes this limitation by employing expressways which bypasses many intermediate CAN

nodes. Binning enabled a requesting peer to find nearby server peers.

While some noble ideas were proposed in the reviewed literatures, none was able to

provide the complete solution to the problems we try to solve. Specifically, we seek to enable

an on-demand distribution of high quality streaming content to a large number of dynamic

and diverse users. Schemes reviewed in this section share similar goals as our research in

some aspects, yet we differ in various other ways. For instance, most schemes that try

to improve the data path scalability support live-streaming applications only. When VoD

support is considered, they are not designed to distribute high quality movies or to a very

large and dynamic user community. In addition, reviewed schemes all rely on multicasting

to achieve data path scalability. This approach is acceptable for small- to mid-sized content

distribution, yet it does not resolve the bandwidth shortage problem at forwarding nodes’

access link when distributing high quality streaming content.

Schemes that aim to provide scalable and flexible search paths we reviewed generally

focus on achieving overhead reductions by restricting peer selections based on certain as-

sumptions. These assumptions lead to actions such as contacting the peers that satisfied

previous requests or seem to have similar interests as the requesting user. While these actions

may lead to a better hit ratio and reduced overhead among certain groups of users, they do

not solve may other issues fundamental to P2P search, such as finding globally spread peers.

There is a need and a research opportunity for designing a content distribution network

that supports high quality VoD applications to a large and diverse users f Internet.

48

3.0 ARCHITECTURE DESIGN

This chapter presents the architectural overview of Virtual Theater Network, identifies its

components, and describes their functionalities, and presents the formal definition of the

model.

Virtual Theater Network is a network model designed to support a large-scale, on-

demand, peer-to-peer, stored-video streaming service over the Internet. It is based on a

hybrid architecture between a traditional client-server model and an emerging peer-to-peer

computing paradigm. Central to this model is a set of Virtual Theaters. A Virtual Theater

provides a means to mass distribute video streams to users in a certain geographical area,

similar in function to that of movie theaters and video rental shops. Within each Virtual

Theater, there exists a content distributor, known as VT Distributor, which receives video

feeds from content providers (e.g. Disney, MGM, Paramount). A VT Distributor organizes

one or more VT Rooms to service local video distribution needs. A VT Room is a group

of peers who form a P2P community to receive and distribute a video stream at a specific

playback rate and in a specific encoding format. A cyber-cinema created by a VT Distributor

and a set of VT Rooms constitute a Virtual Theater.

3.1 ARCHITECTURE COMPONENTS

The proposed streaming distribution network model consists of a two-tier hierarchy of net-

work, connecting three types of network nodes, forming one virtual network space.

• Types of Network Nodes

49

– Content Producer

– Content Distributor (VT Distributor)

– Community of Content Consumers (VT Room)

• Virtual Network Space

– Virtual Theater

• Connectivity Between the Nodes

– Content-Producer-to-Content-Distributor Network

– Content-Distributor-to-Content-Consumer Network (Virtual Theater Network)

A brief description of each entity follows.

Content Producer is a content server which owns the copyright of streaming content (e.g.

MGM, Disney, Paramount). It is the origin of the streaming distribution service and occupies

the highest level of the distribution hierarchy. A limited number of content producers are

assumed to exist over the Internet.

Content Distributor (VT Distributor) is a media server which has the right to distribute

content from the content producers. A VT Distributor distributes streaming videos from

multiple content producers. Many VT Distributors, both independent and affiliated, exist

throughout the Internet. They provide a means to mass distribute streaming content to

users in different geographical areas. VT Distributors are committed to remain in service

for extended period of time. Each VT Distributor organizes Virtual Theater Rooms (VT

Rooms) to distribute a streaming video in each room to service local consumer demands.

A Community of Content Consumers (VT Room) is a group of users who form a P2P

community to receive and distribute a video stream among them. It is also known as a

Virtual Theater Room (VT Room). Each VT Room is managed by a VT Distributor and

receives the streaming feed from it. For “popular” streaming content there will be many VT

Rooms with members in close proximity, organized by different VT Distributors throughout

the Internet. Only one streaming content is distributed in each VT Room.

Virtual Theater is a cyber-cinema created by a VT Distributor and a set of VT Rooms.

A Virtual Theater provides a means to mass distribute video streams to users in a certain

geographical area of the network, similar in function to that of movie theaters and video

rental shops.

50

Content Providers

Content Distributors

Communities of
Content Consumers

CP2CP1

VT Room 1

VT Room 2
VT Room 4

VT Room 3

VT Room 5

Virtual
Theater 1

Virtual
Theater 2

Virtual
Theater 3

:Content A

:Content B

VT Distributor 1 VT Distributor 2 VT Distributor 3

Figure 3.1: Virtual Theater Network

51

Content-Producer-to-Content-Distributor Network is the higher-tier network and sup-

ports business-to-business (B2B) video distribution service. It offers video feeds from content

providers to content distributors. The design of this network is outside of the scope of this

research. While it is an important part of distribution service as a whole, this network can

be created separately without affecting the lower-tier network. Since we assume a limited

number of content producers and many but stable content distributors that are committed

to be in service for a long-term, the existing video distribution mechanisms, such as Content

Delivery Networks (CDNs), can be used to support this service. In contrast, the problem

on the lower-tier network is much more difficult and interesting since existing solutions only

address part of the issues and more complete solution is needed.

Content-Distributor-to-Content-Consumer Network (Virtual Theater Network) is the lower-

tier network which provides business-to-consumer (B2C) streaming video distribution ser-

vice. It enables the distribution of streaming video from a content distributor (i.e. Virtual

Theater) to a group of content consumers (i.e. users in a VT Room). This network along

with its supporting network entities and control services is called the Virtual Theater Net-

work. The focus of our research is to design the video distribution and discovery schemes

for the Virtual Theater Network.

Figure 3.1 illustrates the Virtual Theater Network model. In this example, two content

providers, CP1 and CP2, supply video feeds to a set of content distributors. CP1 provides

a video feed to VT Distributors 1, 2, and 3. CP2 provides a video feed to VT Distributors 1

and 2. VT Distributor 1 and 2 manage two instances of VT Rooms (i.e. VT Rooms 1, 2, and

3, 4 respectively) while VT Distributor 3 only manages one VT Room (i.e. VT Room 5).

Small circles within each VT Room represent peers. With the support from a respective VT

Distributor, users of each VT Room work together to sustain the distribution of a streaming

video.

The keystone of our proposed streaming service architecture is a dynamic and distributed

resources available at the members of a VT Room. To take advantage of this architecture, a

video stream is divided into blocks of segments and dispersed at the caches of user systems

at various locations in a VT Room. Users playback the video by locating and retrieving

the segments in their playback sequence. As video segments are being downloaded, the user

52

makes them available for others to access.

Initially, when a VT Room is organized, users receive streaming feed from the VT Dis-

tributor. Once a sufficient number of cached and replicated video segments become available

within the community, the distribution of streaming content becomes self-sustainable. Only

those occasions where the needed video segments are unavailable within a VT Room, will

the user request the missing segments from the VT Distributor.

The main challenge in the design of video distribution service based on the proposed

architecture is twofolds: 1) how to organize dynamically changing video segment availability

information over the network to provide effective video segment advertisement and discovery

service, and 2) how to manage the reception of video segments that ensures the orderly and

timely delivery of video segments and contributes to the self-sustainability of a VT Room.

3.2 FORMAL DEFINITION OF VIRTUAL THEATER NETWORK

Formally, the Virtual Theater Network’s hierarchical structure and the relationship among

its components are defined as follows:

Let V TD(t) be the set of all VT Distributors in the network at time t.

V TD(t) = {V TDi, i = 1, 2, . . .}

Each VT Distributor has one or more streaming videos in its local storage and makes

them available for distribution. Let Ci(t) be the set of streaming content available at V TDi

at time t. Then, the set of all content that are available and may be distributed by all VT

Distributors throughout the network is given by:

C(t) =
⋃

i∈V TD(t)

Ci(t)

The content distributed at each VT Distributor may not be unique. In deed, we expect

that many of the content will be available at multiple VT Distributors.

53

∃i,∃j | Ci(t)
⋂

Cj(t) 6= ∅

VT Distributor provides video streaming through one of its managing VT Rooms. Let

V TRj
i be the jth VT Room being managed by V TDi. Then, V TDi and the set of all VT

Rooms that V TDi is responsible for at time t constitute a Virtual Theater, V Ti(t) and is

given by:

V Ti(t) = {V TRj
i , j = 1, 2, . . .}

A VT Room is defined as, in a most generic sense, a set of users or a group of peers, P ,

that participate in the reception and distribution of segmented streaming video and whose

membership change in time.

V TRj
i (t) = {Pn, n = 1, 2, . . .}

A streaming video, V , is divided into blocks of segments, Sm, and each segment is

composed of blocks of frames, Fi.

V = (Sm, i = 1, 2, . . . N)

Sm = (fl, l = 1, 2, . . . F)

On this hierarchical structure of Virtual Theater Network, two main services are offered

to facilitate an efficient, scalable, and versatile on-demand peer-to-peer video distribution

service: Video Segment Reception Management and Video Segment Advertisement and Dis-

covery Service.

3.3 TARGET OPERATING ENVIRONMENT

The proposed video distribution network architecture, with its accompanying video segment

discovery and distribution schemes, are designed with a specific operating environment. It

is suited for an environment where a moderate to high rate of segment distribution requests

54

Figure 3.2: Target Operating Environment

arrive to the media server. The schemes are also designed for the distribution of moderate-

to large-size video. The colored oval in Figure 3.2 depicts this region in two-dimensional

(streaming request arrival rate vs. video size) space. For the remaining regions of the

map, other approaches may be more suitable. For example, when distributing a small

volume of video to a small number of users, a traditional client-server network works best

for its simplicity. As the rate of streaming requests increases as well as the volume of video

stream increases, the proposed distribution model becomes more practical video distribution

approach. Once the streaming requests reach an extremely high rate, processing of streaming

requests in batches becomes feasible and point-to-multipoint (P-MP) based streaming service

is considered more practical. Under such environment, when the volume of video stream is

very small, client-server based P-MP streaming service would provide adequate support.

When the size of video is not very small, peer-to-peer based P-MP service is more suitable.

In the following chapters, we describe the design of video segment discovery scheme,

Virtual Chaining, and video segment reception management scheme, Sliding Batch, and its

55

variant, Restrained Sliding Batch. Virtual Chaining and Sliding Batch work hand-in-hand

to achieve segmented video distribution service within a VT Room. The details of Sliding

Batch is given first followed by the descriptions of Virtual Chaining.

56

4.0 VIDEO SEGMENT RECEPTION MANAGEMENT

This chapter describes Sliding Batch, a video segment reception scheme used in a VT Room.

It allows users of a VT Room to retrieve a video stream as a sequence of small video segments

from multiple distribution sources. It allows users with excess receive bandwidth and buffer

space to prefetch future segments at rates below the nominal streaming rate. This enables

users with limited transmit bandwidth to become contributing sources and helps ease the

load on the VT Distributor. The scheduling algorithm defined in Sliding Batch determines

the timing and the rate of each video segment reception to ensure an orderly and timely

video playback. This chapter provides the definition of the key concepts in Sliding Batch

and describes how they relate to the management of the available receive bandwidth and

buffer space to determine the scheduling of segment receptions.

4.1 DEFINITION OF KEY CONCEPTS

The video segment reception scheme in Sliding Batch is expressed in terms of segments,

epochs, and batches. This section provides their definitions.

4.1.1 Segments

A video stream is a continuous flow of a sequence of compressed video frames transmitted

over a network so that the recipient may playback the video frames as they arrive. In Sliding

Batch, a block of a sequence of video frames makes up a Segment, Si. In turn, a sequence of

segments constructs a video, V . Si is a logical unit in V , similar to a chapter in a DVD, and

57

may vary in size and length. The number and the sizes of segments in a video are VT Room

specific parameters. The segment is also a unit of blocks of video frames being exchanged

among the users of a VT Room.

Segment Si is characterized by its sequence position, i, in V , a sequence of frames that

belongs to Si, its starting playback time, α(Si), and a batch it belongs to, β(ej).

V = (Si, i = 1, 2, · · · , N)

Si =

(fk, k = 1, 2, · · · , ni, ni ≤ F) if i = 1

(fk, k = ni−1 + 1, ni−1 + 2, · · · , ni, ni ≤ F) if 2 ≤ i ≤ N

Si ∩ Sj = ∅

α(Si) =

t0 if i = 1

α(Si−1) + δ(Si−1) if 2 ≤ i ≤ N

Si ∈ β(ej)

where N is the total number of segments in V , t0 is the time the user joined the VT Room

and began playing back the first segment, S1, and δ(Si) is the playback duration of Si.

Let |V | and |Si| be the size of V and Si respectively. Let δ(V) be the total duration of

video playback time. Then, η, the nominal streaming rate of a video is given by:

η =
|V |

δ(V)

|V | =
N∑

i=1

|Si|

Accordingly, the playback duration of Si, δ(Si), is defined as

δ(Si) =
|Si|
η

While every segment may have the same number of frames, each frame may have a

different size depending on the mode of encoding being used. If it is encoded in CBR mode,

the size of each frame will be the same, whereas in VBR mode, each frame may have a

different number of bits. In practice, a streaming video is encoded using CBR mode to

58

facilitate the steady flow of data required for a smooth playback. Sliding Batch, as described

in this paper, assumes a CBR mode of encoding.

The detail of β(ej) in relation to segments is given later.

4.1.2 Epochs

In Sliding Batch, a life-time of a video streaming is divided into a sequence of time intervals,

known as epochs. There are N epochs in a V and their durations may vary from epoch

to epoch. Both the number and the durations of epochs in a video are VT Room specific

parameters. An epoch, ei, is characterized by its starting epoch time, α(ei), its duration,

δ(ei), and its associated batch, β(ei). An ei is closely related to the playback property of Si

as shown below:

α(ei) = α(Si)

α(ei+1) = α(ei) + δ(ei)

δ(ei) =
|Si|
η

= δ(Si)

Each epoch is associated with a batch, β(ei), and the detail of their relationship is given

next.

4.1.3 Batches

A batch, β(ei), is a set of segments whose downloading is initiated at the same time at the

beginning of ei. There are total of N batches in a video and each batch consists of a set of

segments that are unique to itself, except for those batches with an empty set of segments.

β(ei) is characterized by an associated epoch, ei, a set of associated video segments, and a

set of streaming sessions that are initiated at epoch ei with rate rj each.

β(ei) =

{Sj, j = 1, 2, · · · , ni, ni ≤ N} if i = 1

{Sj, j = ni−1 + 1, ni−1 + 2, · · · , ni, ni ≤ N} if 2 ≤ i ≤ N and ni−1 < N

∅ otherwise

β(ei) ∩ β(ej) = ∅

59

Figure 4.1: Relationship among segments, epochs, and batches

Segments that belong to the same batch all start downloading at the same time at the

beginning of the associated epoch.

A(Sj) = α(ei), ∀Sj, Sj ∈ β(ei)

where A(Sj) is the starting download time of Sj.

The ending download time of segment j, Ω(Sj), differs from segment to segment and it

is the ending playback time of segment j.

Ω(Sj) = A(Sj) +
‖Sj‖
rj

= α(ej) + δ(ej)

where ‖Sj‖ is the size of Sj in number of bits and rj is the rate of Sj being downloaded. rj

is given by:

60

rj =
‖Sj‖

Ω(Sj)− A(Sj)
, Sj ∈ β(ei)

Figure 4.1 illustrates the relationship among segments, epochs and batches in a simplified

video reception scenario. In this example, a video is divided into N = 4 segments of varying

lengths. Batch β(e1) consists of segments S1 and S2. Segment downloading for β(e1) was

initiated at time α(e1) for both S1 and S2 at rates r1 and r2 respectively. Batch β(e2) consists

of segments S3 and S4. Segment downloading for β(e2) was initiated at time α(e2) at rates

r3 and r4 respectively. No segment is associated with β(e3) or β(e4).

4.2 SCHEDULING OF SEGMENT RECEPTIONS

This section presents the scheduling algorithm used in Sliding Batch. It describes how a

batch size relates to the scheduling of segment downloads and how the available receive

bandwidth and buffer space are incorporated into the batch size determination process.

4.2.1 Batch Size Determination

One of the important parameters of Sliding Batch is the number of segments that belong

to each batch, or the size of a batch, |β(ei)|. To determine the size of a batch means to

decide on which set of segments will begin downloading simultaneously in that same batch

and at what rates. In other words, it serves as a key factor in the scheduling of segment

downloads. The size of each batch is a user specific parameter and is driven by the user’s

available receive bandwidth and buffer space.

Lemma 4.2.1. Let N(ei) be the number of remaining segments yet to be received by a

user at time α(ei). Let |βR(ei)| be the “rate-limited” batch size at time α(ei). It is the

maximum number of segments a user may begin downloading in a batch given the available

receive bandwidth is the only limiting factor to be considered in determining the batch size.

Let |βB(ei)| be the “buffer-limited” batch size at time α(ei). It is the maximum number of

61

segments a user may begin downloading in a batch given the available buffer space is the

only limiting factor to be considered in determining the batch size. Then, the size of a batch

|β(ei)| is given by:

|β(ei)| = min(N(ei), |βR(ei)|, |βB(ei)|)

Proof. By applying the commutative law, consider the min(|βR(ei)|, |βB(ei)|) portion of

the above equation first. It states that the lesser of the two values, the“rate-limited” batch

size or the “buffer-limited” batch size, will be further considered. In other words, the smaller

batch size dictated by the availability of receive bandwidth or buffer space will be used in the

next stage of min() operation. The selected smaller batch size value will be further capped

by N(ei), the number of remaining segments yet to be received at time α(ei). The final

value constitutes the total number of segments a user may begin receiving concurrently at

the beginning of the associated epoch. The formal definitions of N(ei), |βR(ei)|, and |βB(ei)|
are given below.

The number of remaining segments, N(ei), is defined as:

N(ei) =

N if i = 1

N −∑i−1
k=1 |β(ek)| if 2 ≤ i ≤ N

The rate-limited batch size, |βR(ei)|, refers to the size of a batch being computed based

solely on the available receive bandwidth, RA, and is determined by the maximum number

of concurrent segment downloading sessions that can be sustained given the available receive

bandwidth at time α(ei).

|βR(ei)| =

m1, if i = 1

∃max(m1)|
∑m1

k=1 rk ≤ RT , m1 ≤ N

mi −mi−1, if 2 ≤ i ≤ N

∃max(mi)|
∑mi

k=mi−1+1 rk ≤ RA(ei), mi ≤ N

Similarly, the buffer-limited batch size, |βB(ei)|, is computed based solely on the available

buffer size, BA, at time α(ei), as if there were infinite amount of receive bandwidth available.

62

|βB(ei)| is determined by the maximum number of concurrent segment downloading sessions

that can be sustained given BA at α(ei).

|βB(ei)| =

m1, if i = 1

∃max(m1)|
∑m1

k=1 ‖Sk‖ ≤ BA(e1), m1 ≤ N

mi −mi−1, if 2 ≤ i ≤ N

∃max(mi)|
∑mi

k=mi−1+1 ‖Sk‖ ≤ BA(ei), mi ≤ N

4.2.2 Receive Bandwidth Management

The receive bandwidth available at the beginning of the first epoch, RA(e1), is defined as the

total receive bandwidth, RT , that can be set aside for the support of the streaming service.

The available receive bandwidth for the beginning of the subsequent epoch is determined by

how much bandwidth has been consumed in the previous epoch, RU(ei−1), and how much

bandwidth has just been added due to the release of a segment reception session, ri−1.

RA(ei) =

RT if i = 1

RT −RU(ei−1) + ri−1 if 2 ≤ i ≤ N
(4.1)

The used received bandwidth, RU(ei), during epoch ei is given by

RU(ei) =

∑m1

k=1 rk, if i = 1

∃max(m1)|
∑m1

k=1 rk ≤ RT , m1 ≤ N

RT −RA(ei) +
∑mi

k=mi−1+1 rk, if 2 ≤ i ≤ N

∃max(mi)|
∑mi

k=mi−1+1 rk ≤ RA(ei), mi ≤ N

(4.2)

Figure 4.2 depicts a sample segment downloading scenario under the rate-limited batches.

In this example, the video is divided into 24 equal-length segments. A sufficient amount of

segment downloading buffer is available to allow storing of all 24 segments simultaneously.

The total available receive bandwidth is limited to twice as much as the nominal streaming

rate. Under this condition, six batches are needed to begin retrieving all 24 segments. The

rate of segment downloading varied from the nominal rate to as little as one-eighteenth of

the nominal rate.

63

Figure 4.2: Sample segment retrievals under the rate-limited batches

64

4.2.3 Buffer Management

The total buffer space, BT , consists of two buffer areas: the downloading buffer area, BD,

and the post-playback buffer area, BH . The downloading buffer area is used as a temporal

storage space to buffer segments that are being downloaded and played back. The size

of downloading buffer, |BD|, determines the maximum number of segments that can be

downloaded at the same time.

The post-playback buffer area is used to retain segments that have finished playing back.

The size of post-playback buffer, |BH |, determines the duration of time the segments will be

held in a user system after their playback. The total buffer size, |BT |, downloading buffer

size, |BD|, and post-playback buffer size, |BH |, have the following relationship:

|BT | = |BD|+ |BH |

For a simplicity of operation, a fixed size buffer space is allocated for BD and BH .

Snapshots of a conceptual view of a sample buffer space usage with |BT | = 10, |BD| = 7,

and |BH | = 3 during e1 through e5 are depicted in Figure 4.3. At e1, segments S1 through

S7 begins occupying BD. BH is empty. At e2, S1 finishes playing back and is logically moved

to BH . S8 begins downloading and uses space in BD. At e3, S2 finishes playing back and is

logically moved to BH . S1 and S2 are in BH . S9 begins downloading and uses space in BD.

The same process repeats at e3. At e4, S1 is being dropped from BH . S4 finishes playing

back and is logically moved to BH . S11 begins downloading and uses space in BD. The

process repeats at e5.

Let ‖BD‖ be the size of downloading buffer area in number of bits. The available buffer

space, BA(ei), at time α(ei) is given by

BA(ei) =

‖BD‖ if i = 1

‖BD‖ − BU(ei−1) + ‖Si−1‖ if 2 ≤ i ≤ N

The used buffer space, BU(ei), during epoch ei is given by

65

Figure 4.3: A sample buffer space usage

66

BU(ei) =

∑m1

k=1 ‖Sk‖, if i = 1

∃max(m1)|
∑m1

k=1 ‖Sk‖ ≤ BA(e1), m1 ≤ N

‖BD‖ −BA(ei) +
∑mi

k=mi−1+1 ‖Sk‖, if 2 ≤ i ≤ N

∃max(mi)|
∑mi

k=mi−1+1 ‖Sk‖ ≤ BA(ei), mi ≤ N

Figure 4.4 depicts a sample segment downloading scenario under the buffer-limited

batches. As with the previous example, the video is divided into 24 equal-length segments.

A sufficient amount of receive bandwidth exists to allow retrievals of all 24 segments simul-

taneously. The download buffer space is limited to 10 segments. Under this condition, 15

batches are needed to receive all 24 segments. The segments 10 through 24 are all received

at 1/10 of the nominal streaming rate.

Figure 4.5 illustrates an example of how a user may receive segments under both rate-

limited as well as buffer-limited batches in real life. As with the previous examples, a

streamed video consists of 24 equal-size segments. The total receive bandwidth, RT , of the

user is twice as much as the nominal streaming rate of the video segment. The total download

buffer space, BD, can accommodate a maximum of 10 simultaneous segment downloads.

Segments are received in a total of 15 batches. Notice that the first two batches are rate

limited, the next eight batches, β(e3) through β(e15), are buffer limited, and the final nine

batch sizes are determined by the remaining number of segments, N(ei), yet to be received.

The algorithm for the segment reception scheduling is given in Appendix B.

4.3 RESTRAINED SEGMENT RECEPTIONS

The receive bandwidth and buffer management scheme of Sliding Batch allows users of a

VT Room to prefetch future video segments as much as their resources permit. While this

approach contributes to a greater segment availability within a VT Room, the greedy nature

of Sliding Batch can induce a high bandwidth demand on a VT Distributor. This condition

can be observed when a VT Room consists of many users with a limited transmit bandwidth

67

Figure 4.4: Sample segment retrievals under the buffer-limited batches

68

Figure 4.5: Sample segment receptions: bandwidth and buffer limited case

69

capacity, yet they have a large amount of available receive bandwidth and buffer space.

Under such environment, the majority of segment distribution requests will be directed to

and supported by the VT Distributor.

In order to avoid a concentration of segment requests at the VT Distributor, Sliding

Batch will need to be tamed and become more moderate in its segment prefetching behavior.

Restrained Sliding Batch aims to reduce bandwidth demand on VT Distributor by imposing

an upper limit on the amount of segment downloads users may request.

For a VT Room to be highly self-sustainable (i.e. low degree of reliance on VT Dis-

tributor) in distributing video segments among its users, there must be sufficient transmit

bandwidth available among its members to sustain the total needs. Let TA(t) and RA(t) be

the available transmit and receive bandwidth of a user at time t. To be self-sustaining, the

following condition must be satisfied.

∑
Ui

TA(t) ≥
∑
Ui

RA(t), ∀i, i ∈ VTR

One simple way to ensure the above condition is to limit the use of receive bandwidth

at or below their initial available transmit bandwidth. In other words, a user is allowed to

download segments if the total segment downloading rate does not exceed the initial available

transmit bandwidth.

TA(e1) ≥ RU(ei), 1 ≤ i ≤ N

The exception to the above rule is when the user’s initial available transmit bandwidth is

less than the nominal streaming rate, TA(e1) < η. Users that fall in this category are allowed

to receive one segment at a time in sequence at the nominal streaming rate. Accordingly, the

value of RT in equations (4.1) and (4.2) for the receive bandwidth management is initialized

as follow:

RT = min{η, max{RT , TT}}

The analysis of the performance gain achieved by the Restrained Sliding Batch over

Sliding Batch is detailed in Chapter 7.

70

4.4 USER PROFILE AND VT ROOM PROFILE

The parameters used in Sliding Batch for the computation of batch sizes belong to two types

of profiles. VT Room profile describes the attributes of a video being distributed in a VT

Room. They include parameters such as the size of a streaming video, |V |, its playback

duration, δ(V), the total number of segments, N , and the size of each segment in number

of bits {‖Si‖, i = 1, 2, · · · , N}. VT Room profile is given to all users in each VT Room at

their join time by the VT Distributor.

User profile describes the attributes of an individual user, primarily its resource avail-

ability, and consists of the following parameters: the time a user joined a VT Room, t0,

the total receive bandwidth set aside for the streaming service, RT , the downloading buffer

size, |BD|, which dictates the maximum number of concurrent segment downloads, and the

size of post-playback buffer space, |BH |, which determines how long a segment will remain

in buffer after its playback. Users in a VT Room advertise their user profile through the

advertisement and discovery scheme described in the next chapter.

Sliding Batch significantly simplifies the advertisement of segment reception states of

users. It enable users to express their complete segment reception order, timing, and rates

from the first epoch to the last in one advertisement at the time of their VT Room join.

Similarly, one query is sufficient to know the entire video segment download and playback

sequences of another user. In the following chapter, the details of how the user profile is

shared among the users of a VT Room are given.

71

5.0 SEGMENT ADVERTISEMENT AND DISCOVERY

This section describes the video segment advertisement and discovery scheme used in a VT

Room. Virtual Chaining allows users of a VT Room to cooperatively maintain a collection of

user profiles, known as a state table, to share the segment reception state information of users.

Through a selection process, users identify a set of prospective distribution sources from the

state table. Virtual Chaining also defines a mechanism through which users communicate the

changes in their transmit bandwidth availability. The details of the state table maintenance

and distribution source identification procedures are described.

5.1 STATE TABLE

A state table is a collection of user profiles maintained cooperatively among the members of

a VT Room. It describes each user’s segment reception state and the transmit bandwidth

availability. An entry in the state table consists of the following fields: IP address of the user

advertising its state, parameters of the user profile (t0, RT , |BB|, |BH |), available transmit

bandwidth (TA), and the time of its entry. This is depicted in Figure 5.1.

An entry is added to the state table when a new user joins a VT Room. It is removed when

the last video segment is dropped from the user’s buffer. This condition can be determined

by the current time, tc, exceeding the expected time of the final video segment departure

from the post-playback buffer, |BH |.

tc > t0 + δ(V) +
|BH |

η

72

Figure 5.1: Entry fields of a state table

5.2 STATE TABLE SHARING

The state table is shared among the users of a VT Room as follows. VT Distributor maintains

the tail-end portion of the state table, which contains user profiles of the last n users who

joined the VT Room. A newly arriving user Ui receives the tail-end portion of the state table

from the VT Distributor and reports its profile. The VT Distributor adds Ui’s profile in the

state table and drops the oldest entry if the table becomes greater then n. VT Distributor

waits for the next user arrival. In the mean time, Ui examines the tail-end portion of the state

table and tries to identify other users who may be able to provide segment distributions.

If more users needed to be discovered, Ui requests Ui−n, the oldest entry in the tail-end

portion of the state table, to send the subsequent portion or portions of the state table

Ui−n maintains, which contains the user profiles of Ui−n through Ui−2n and beyond if Ui−n

had requested further information from other users. This process is repeated until qualified

distribution sources are located. If no qualified distribution source is found after iterating

through the chain of state tables, Ui requests VT Distributor to transmit the needed segment.

Figure 5.2 illustrates a sample trace of state table sharing process. In this figure, circles

represent users and shaded boxes represent portions of the state table maintained by the

user directly above them. While all users have a portion of overlapping state table, this

figure only shows ones maintained by users whose user ID is a multiple of n. Each shaded

box contains n entries of user profiles. The user pointed to by the oldest entry in the box

is denoted by the dashed arrow extending from the box to the user. Solid arrows represent

the transfer of state table entries.

A newly arrived user, Uk, joins a VT Room and receives the tail-end portion of the state

table from the VT Distributor (step (1)), which contains the user profiles of Uk−1 through

73

Figure 5.2: A sample view of state table sharing instances

74

Uk−n. Uk requests the next portion of the state table from the oldest entry, Uk−n, in the

received state table (step (2)). Uk−n maintains the user profiles of Uk−n−1 through Uk−2n,

which where received from VT Distributor at its join time. Uk−n also has the user profiles

of Uk−2n−1 through Uk−4n, which was received from Uk−2n. All of these entries are sent

from Uk−n to Uk (step (3)). Uk determines that it needs to discover other users and requests

Uk−4n to send its portion of the state table (step (4)). Uk−4n sends the user profiles of Uk−4n−1

through Uk−7n to Uk (step (5)).

If no response were received from a requested user (i.e. Uk−n), the next oldest entry in

the state table (i.e. Uk−n+1) would have been contacted.

5.3 DISTRIBUTION SOURCE IDENTIFICATION

The selection of a distribution source from the state table is a two-step process. First, Ui

identifies a set of prospective distribution sources. This is executed once at the time of the

VT Room join. Second, Ui identifies a qualified distribution source among the prospective

sources. This process is executed for each segment download at the beginning of each epoch.

To be considered for a prospective distribution source, an entry in the state table must

satisfy the following two requirements: playback distance requirement and segment avail-

ability requirement. The playback distance requirement states that Ui can receive a video

segment from another user, Uj, only if Ui begins playing back the first video segment after

Uj and before it is being dropped from Uj’s post-playback buffer. Let tUi
0 and t

Uj

0 be the

time Ui and Uj joined the VT Room respectively. Let |BUj

H | be the size of the post-playback

buffer allocated at Uj. To meet the playback distance requirement, the following condition

must be met:

t
Uj

0 < tUi
0 ≤ t

Uj

0 +
|BUj

H |
η

The segment availability requirement states that Ui can receive a segment from Uj only

if Uj began downloading the segment before Ui. Let AUi(Sk) and AUj(Sk) be the starting

75

download time of segment Sk by Ui and Uj respectively. To meet the segment availability

requirement, the following condition must hold:

AUi(Sk) > AUj(Sk)

To be qualified for and selected as an actual distribution source, the transmit bandwidth

availability requirement must be satisfied. It states that Ui can receive Sk from Uj only if

Uj has the sufficient transmit bandwidth to support a segment distribution session at rate

rk, as required by Ui. Let rUi
k be the rate at which Ui must download Sk. Let T

Uj

A (em) be

the transmit bandwidth available at Uj at time α(em). To satisfy the transmit bandwidth

availability requirement, the following condition must be true:

T
Uj

A (em) ≥ rUi
k , Sk ∈ β(em)

When multiple users qualify, the user who departs first from the VT Room will be

selected. This is done to minimize the loss of unused resources in a VT Room.

5.4 TRANSMIT BANDWIDTH AVAILABILITY UPDATES

In order for Ui to be able to identify a qualified distribution source, the time-varying transmit

bandwidth availability of prospective distribution sources must be known. To achieve this,

Ui subscribes to a state change notification service at each prospective distribution source

using a publish-subscribe method. Each time a change in transmit bandwidth occurs at a

prospective distribution source, a notification message is sent to each subscriber through a

point-to-multipoint link.

5.5 MOBILITY SUPPORT EXTENSION

The distribution source selection algorithm can be extended to include location and move-

ment information to provide mobility support. Mobility extension of the distribution source

76

selection algorithm requires four additional parameters to be supplied by mobile users: 1)

time of mobility information update, t, 2) location (i.e. (x, y) coordinate of GPS) of the

mobile user at time t, (xt, yt), 3) general direction of the mobile user movement, θ, and 4)

average rate of mobile user movement, r. We assume that each mobile user is capable of de-

tecting and expressing its location and movement information. This information is included

in the user profile and advertised to other users through the state table sharing scheme. The

mobility information updates are made at the beginning of every epoch to those users who

have subscribed to the state change notification service as described in the previous section.

Using the above parameters, the scheme computes the mean distance from the requesting

user, Ui, to each prospective distribution source, Uj. Ui selects the one with the minimum

mean distance. To compute the mean distance, Ui estimates the distances to Uj for the

duration of the segment reception and takes the average. Let di,j(t, t + ∆(Sk)) be the mean

distance between users Ui and Uj from time t to t + ∆(Sk), where ∆(Sk) is the time it takes

to download segment Sk. Ui selects the distribution source Uj user the following condition:

∃Uj | min(di,j(t, t + ∆(Sk)), j ∈ χi

di,j(t, t + ∆(Sk)) =

∑∆(Sk)
m=0 di,j(t + m)

∆(Sk)

di,j(t + m) =

√
(xi

t+m − xj
t+m)2 + (yi

t+m − yj
t+m)2

where χi is the set of prospective distribution sources maintained by Ui and di,j(t + m) is

the distance from Ui to Uj at time t + m.

In practice, estimates from several discrete points in time will be used in the determina-

tion of the mean distance. At minimum, the distances at present time, t, and at the segment

download finish time, t + ∆(Sk), will be included in the computation.

di,j(t, t + ∆(Sk)) =
di,j(t) + di,j(t + ∆(Sk))

2

Figure 5.3 illustrates a conceptual view of sample distance estimations from Ui to three

other nodes. In this example, Ui takes two samples of distance estimation to other nodes.

Ui is located at (xt, yt) at time t and needs segment Sk. By examining the state table, Ui

identifies three prospective distribution sources, Uj, Uk, and Um. This is depicted in Fig 3(a),

77

(a) Distance from Ui to Uj (b) Distance from Ui to Uk

(c) Distance from Ui to Um

Figure 5.3: Sample distance estimations from Ui to three other nodes at time t and at time

t + ∆(Sk)

78

Fig 3(b), and Fig 3(c) respectively. Note that Um is a stationary node in this example. From

the parameters of the user profiles of the prospective distribution sources, Ui determines their

locations and estimates the distances, di,j(t), di,k(t), and di,m(t) respectively. By the time

t+∆(Sk), Ui finishes downloading Sk and will have migrated to location (Xt+∆(Sk), yt+∆(Sk)).

Ui determines the locations of Uj, Uk, and Um at time t+∆(Sk), and estimates the distances,

di,j(t + ∆(Sk)), di,k(t + ∆(Sk)), and di,m(t + ∆(Sk)). Ui computes the mean distance of each

prospective node and selects the node with the minimum mean distance as the distribution

source for Sk.

In addition, users may select a distribution source according to some priorities associated

with the parameters of the user profile, as determined by the user. Each parameter, m, is

associated with a weight, 0.0 ≤ αm ≤ 1.0, with 1.0 being the most preferred. The value

associated with the parameter, βm, is transposed and scaled to a value between 0.0 to 1.0,

with 1.0 being the best possible value. The user selects the distribution source who maximizes

the weighted sum of the evaluated parameters.

∃Uj | max (
∑

(αm
j · βm

j)), j ∈ χi

0.0 ≤
∑

(αm
j · βm

j) ≤ 1.0

1.0 =
∑

αm
j

For example, a user may give a weight of α1 to the parameter for the rate of user

movement, α2 to the current distance between the two nodes, α3 to the mean minimum

distance, and α4 to the available transmit bandwidth. The user who scores the highest in

the summation of the weighted and scaled values will be chosen as the distribution source.

∃Uj | max ((α1
j · r) + (α2

j · di,j(t)) + (α3
j · di,j(t, t + ∆(Sk))) + (α4

j · TA)), j ∈ χi

Due to its simple operation, Virtual Chaining is relatively easy to implement, deploy,

and study its behavior. A distributed and redundant state table available at participating

users offers resiliency such that a loss of a few users do not break the segment advertisement,

discovery, or distribution operation. Virtual Chaining is fair, in terms of the carried workload

79

among the users, that no single user is expected to perform more work than others. Virtual

Chaining is also scalable in that the workload placed upon each user remains a constant

regardless of the size of the membership in the P2P community.

80

6.0 QOS SUPPORT

For a smooth playback of a streaming video, a timely reception of video frames is essential.

Video freezing and other perceptual quality losses result when video frames do not arrive in

time. Although attempts have been made in the past to control and minimize packet delays

(e.g. IntServ, DiffServ), the Internet remains to be a best-effort network today. Due to lack

of delay control in the underlying network, users may observe a wide range of fluctuating

delays. Furthermore, users may experience excessively large delays due to sudden loss of

distribution sources, which is a likely event in peer-to-peer based distribution service.

To provide a level of performance assurance necessary to support a smooth playback of

a streaming video in a VT Room, delays that are inherent in the best-effort network as well

as delays caused by the loss of distribution sources will need to be addressed.

This chapter presents a QoS scheme which aims to provide a level of assurance in pre-

venting an interruption of video viewing while users experience diverse levels of delays. First,

a delay coping mechanism of existing streaming applications is presented, followed by a de-

scription of a set of challenges faced by Sliding Batch in applying the existing mechanism.

Second, an overview of the proposed QoS scheme is presented, followed by a description of

key mechanisms used to mitigate the impacts of delays in our proposed QoS scheme.

6.1 EXISTING DELAY COPING MECHANISM

Streaming applications that operate over a traditional video distribution network employ

playout buffer, BP , to cope with fluctuating network delays. The goal of BP is to prevent

video frame starvations during playback. This is achieved by prefetching an initial portion

81

of a video stream and withholding its playback for a predetermined duration of time. The

delay incurred by this operation is referred to as a playout delay, DP , or a start-up delay. In

exchange for inducing DP , it is hoped that the subsequent delays during the life-time of a

video playback may be absorbed by BP . DP should be long enough to be able to cope with

typical delays, yet short enough for users to tolerate the initial waiting time.

Two issues need be considered when incorporating a traditional delay coping mechanism

in Sliding Batch. First, the playout buffer was never designed to cope with an excessive

delay caused by a loss of a distribution source. As such, once BP becomes empty, rebuffering

of video stream is necessary to handle the future delays, which interrupts the playback of a

video for the duration of DP . Simply increasing the size of BP does not solve the problem

as it only induce a longer interruption period.

Second, a detection of a distribution source loss in Sliding Batch is not as straightfor-

ward as in the traditional video distribution network. Under the conventional delay coping

mechanism, the loss of distribution source may be declared when BP becomes empty. In

contrast, it may not be practical to wait until BD becomes empty to declare the loss of a

distribution source in Sliding Batch. When a segment is downloaded over multiple epochs, as

it is often the case in Sliding Batch, the draining of video frames from BD begins only during

the last epoch that a substantial waiting time may be involved before the distribution loss

decision can be made. A mechanism which allows timely detection of a distribution source

loss condition to quickly switch to an alternate qualified distribution source is needed.

To address these issues, a set of delay management mechanisms are proposed. Delay

Monitor (DM) provides timely detection of excessive delay condition. Extended Playout De-

lay (EPD) offers protection against a loss of distribution sources by sacrificing the immediate

playback. Expedited Segment Reception (ESR) protects against a loss of distribution sources

by sacrificing the bandwidth. They work together to prevent buffer underrun conditions dur-

ing multiple instances of distribution source losses. The details of Delay Monitor, Expended

Playout Delay, and Expedited Segment Reception are presented next.

82

Figure 6.1: A Sample Delay Monitor

6.2 DELAY MONITOR

Delay Monitor, DM, monitors the flow of data arriving to BD and detects an excessive delay

condition. An excessive delay condition is declared when the arrival rate of data drops below

a certain threshold. DM uses a leaky bucket for the monitoring and detection of excessive

delay condition. At each data arrival, a token equivalent to the size of arriving data is added

to the bucket. After the start-up delay period has elapsed, the tokens are removed from the

bucket at rate ri, the nominal downloading rate of Si. When the bucket becomes empty,

an excessive delay is declared and a new connection will be established with a different

distribution source.

Figure 6.1 depicts a conceptual view of a DM which monitors data arrival for Si, whose

expected arrival rate, λ, is ri. Tokes are removed exactly at rate ri from the bucket with the

depth of DP · ri.

The value of playout delay, DP , should be selected in such a way that it is long enough

to absorb typical delay fluctuations, yet short enough for users to tolerate the initial delay.

Furthermore, it should not be too long before switching to a new distribution source; however,

it should not be too short to cause unnecessary distribution source switches.

83

Figure 6.2: A sample extended playout buffer

6.3 EXTENDED PLAYOUT DELAY

Extended Playout Delay (EPD) is designed to prevent a buffer starvation condition after

an excessive delay is detected. This is achieved by having users wait extra time before the

initial video playback can begin. EPD decouples the excessive delay detection period (i.e.

DP) from the initial playout delay period (i.e. extended playout delay, DE) and the following

relationship exists between the two:

DE = n ·DP =
n ·BP

η

where n is the level of protection against excessive delays and corresponds to the num-

ber of times a user may encounter excessive delays but not experience video presentation

interruptions.

Figure 6.2 displays a logical view of a sample extended playout buffer, BE, with the

excessive delay protection level of n = 4.

Let DEn be the start-up latency introduced by EPD to provide nth level of excessive

delay protection. At DE1 = 1 × DP , EPD only provides delay absorptions up to DP with

no protection against a distribution source loss, just as a traditional playout buffer does.

At DE2 = 2 × DP , EPD offers a one-time distribution source loss protection during the

life-time of a segment download, in addition to delay absorptions up to DP . It provides an

uninterrupted video presentation if a user looses a distribution source and begins receiving

the segment from a new distribution source. However, if the user looses the new distribution

source, there will be a playback interruption. At DE3 = 3 × DP , a two-time distribution

84

source losses can be tolerated during the life-time of a segment download, in addition to

delay absorptions up to DP . By extending the start-up delay, the level of protection against

multiple instances of distribution source losses over the life-time of a segment download can

be increased. In other words, a higher degree of protection can be archived if a user is willing

to wait for a longer initial playout delay.

Sample segment receptions with EPD is depicted in Figure 6.3. In this example, start-

up delay has been extended to DE3 = 3 × DP . The dotted arrow lines running diagonally

across the middle of the figure represent the nominal streaming rate and show the playback

positions of the streamed video at various levels of protections, ranging from none to the

3rd. S1 and S3 both experience an excessive delay twice during their download, which is

depicted by a horizontal line with a diamond shaped starting point. After DP period of

time, the user begins retrieving the affected segment from another distribution source. Note

that, even after moving to a new distribution source twice, a sufficient amount of data has

been prefetched in buffer to provide the absorption of delays up to DP .

6.4 EXPEDITED SEGMENT RECEPTION

Expedited Segment Reception (ESR) provides a protection against a loss of distribution source

by increasing the segment downloading rate. By expediting the ending time of a segment

download, ESR attempts to gain enough time to recover the time loss experienced by the

detection of excessive delays.

Let rEn
i be the rate of ESR for downloading Si at nth level of protection against excessive

delay. At rE1
i = ‖Si‖/(∆(Si)−1×DP), where ∆(Si) = α(ei)+σ(ei)−α(Si), one-time distri-

bution source loss protection can be offered during the life-time of Si download. It provides

an uninterrupted video presentation if a user looses a distribution source and begins receiv-

ing the segment from a new distribution source. However, if the user looses the distribution

source the second time, there will be a playback interruption. At rE2
i = ‖Si‖/(∆(Si)−2×DP),

a two-time distribution source loss protection can be offered during the life-time of Si down-

load. At rE3
i = ‖Si‖/(∆(Si)− 3×DP), a three-time distribution source loss protection can

85

Figure 6.3: Sample Segment Receptions with Extended Playout Delay

86

be offered during the life-time of Si download. A higher degree of protection can be achieved

with relatively small amount of additional receive bandwidth.

Figure 6.4 shows an example of how video segments may be received under ESR. In

this example, S1 is protected against one-time distribution source loss by receiving data at

rE1
i . S2 and S3 are protected against two-time losses by increasing the reception rate to

rE2
i . At rE3

i ,S4 can withstand three-time distribution source losses. The example shows

that excessive delays have been observed while downloading S1 and S3, but they have not

affected the performance of video playback due to a sufficient amount of data prefetched

through ESR.

Each segment downloading session can be associated with a different degree of protec-

tion through ESR. For example, if a measurement shows that a significantly higher rate of

distribution source loss is experienced in downloading Si, a higher level of protection can be

associated with the reception of Si. Let Li be the maximum number of distribution source

losses a user anticipates when downloading a segment Si. The expedited rate of reception,

rEL
i , that protects against L number of distribution losses is given by

rEL
i =

‖Si‖
∆(Si)− Li ×DP

In order to determine the level of protection needed for each segment download, the

statistic on the loss of distribution source must be collected. This is achieved by informing the

VT Distributor every time a user experiences a distribution source loss. The VT Distributor

keeps the statistical information of distribution source losses for each segment and shares

it when users join the VT Room. The user determines the required level of protection for

a successful segment downloading by consulting the distribution source loss statistic being

supplied by the VT Distributor.

Let Pi be the probability of a user experiencing a distribution source loss when down-

loading Si, assuming loss of distribution sources are IID. To achieve a successful download

of Si at or above a protection goal, g, such as g = 0.95, the following condition must be met:

g ≥ 1− PLi
i

The level of protection needed for Si download can be computed by solving for Li.

87

Figure 6.4: Sample Segment Receptions with Expedited Segment Reception

88

The user executes the Excessive Delay Protection Algorithm, as depicted in Algorithm 1,

to determine the amount of Extended Playout Delay and the rate of Expedited Segment

Reception. The strategy used in this algorithm is to let the user wait as long as it is

willing at the initial playback time through EPD. If necessary, expedite individual segment

receptions through ESR. Let L be the maximum level of protection required to meet g.

Initially, L is set to the maximum value of Li, the greatest level of protection required

among all segment receptions. Let w be the maximum time a user is willing to wait for the

start-up latency. If the extended playout delay, DE = L×DP , is greater than w, L is set to

dw/PDe. This is the level of protection offered by EPD. For each segment that belongs to

a batch, β(ei), a need for an additional level of protection through ESR is investigated. If

the level of protection, Li, required for downloading Si is greater than the level of protection

provided by the EPD (i.e. L), the rate at which the segment is downloaded will be increased

to rE
i = ‖Si‖/(∆(Si) − (Li − L) × DP). If not enough receive bandwidth is available, the

segment download will not be initiated.

Algorithm 1 Excessive Delay Protection algorithm
1: // initialize
2: L = max(Li)
3: // let user wait as long as it is willing
4: if (L×DP > w) then
5: L = dw/DP e
6: end if
7: for each segment ∈ β(ei) do
8: // increase the download rate as needed
9: if (Li > L) then

10: rE
i = ‖Si‖/(∆(Si)− (Li − L)×DP)

11: end if
12: // not enough RxBW to meet the protection requirement
13: if (rE

i > RA) then
14: print warning and break
15: end if
16: end for

89

7.0 SIMULATION DESIGN AND ANALYSIS

This chapter describes the design and analysis of experiments performed on Virtual Theater

Network. A software model was created to simulate the behavior of a VT Room. Two types

of experiments were conducted. The focus of the first sets of experiments was to study how

well the proposed video distribution scheme would alleviate the load on the VT Distributor

under different operating environment. Specifically, the peak transmit bandwidth usage of

a VT Distributor is measured under different user inter-arrival times, nominal streaming

rates, video segment sizes, and user receive bandwidth availability. We call these sets of

experiments “Sliding Batch” experiments. The second sets of experiments focused on how

well the proposed QoS scheme would mitigate the impact of distribution sources losses on

the video presentation. The average number of video presentation interruptions is collected

at participating users under different rate of distribution source losses. We call this group of

experiments “QoS extension” experiments. The description of the model, the design of the

experiments, and the analysis of simulation results are given below.

7.1 THE MODEL DESCRIPTION

The simulated VT Room consists of a VT Distributor and a series of user processes that

arrive to the VT Room. VT Distributor supplies the parameters defined in VT Room profile

to the newly joining users, such as the total video playback time (120 minutes)1, the nominal

streaming rate (1.0 Mbps), and the total number of segments (24) in the video. The video

is divided into equal length of segments and equal duration of playback time (5 minutes).

1The value in the parenthesis denotes the default value used in the experiments

90

The user processes simulate the behavior of peers joining the VT Room, discovering other

users, identifying possible distribution sources, receiving video segments, distributing video

segments as requests arrive, and departing from the VT Room. The inter-arrival time of user

processes is exponentially distributed (mean 10 seconds). To reflect the asymmetrical nature

of the transmit and receive bandwidth capacity of typical broadband access technologies, and

the diversity in the amount of transmit bandwidth availability, each user is equipped with

a fixed receive bandwidth (2.0 Mbps) and varying transmit bandwidth (30% to 100% of the

receive bandwidth; uniformly distributed). Each user executes Virtual Chaining to identify

possible distribution sources and implements Sliding Batch to receive video segments. All

experiments simulate the bandwidth-limited network environment where sufficient amount

of downloading buffer exists at each user (|BH | ≥ N). The default post-playback buffer size

allows a segment to remain in buffer for a finite period of time (15 minutes) after its playback.

The first group of experiments allows all users to receive needed segments successfully and

complete the viewing of the entire video. In the second group of experiments, a set of users

departs from VT Room prematurely.

7.2 EXPERIMENTAL DESIGN AND ANALYSIS

Four sets of experiments are conducted in the Sliding Batch experiments, each measuring the

effectiveness of proposed schemes in mitigating the bandwidth demand on the VT Distribu-

tor. The experiments focus on the following areas: 1) the effects of user arrival patterns, 2)

the effects of nominal streaming rates, and 3) the effects of user receive bandwidth availabil-

ity, and 4) the effects and interactions of video segment sizes and the post-playback buffer

sizes on the VT Distributor load.

For each set of experiments, the measurements are taken on the peak transmit bandwidth

usage of VT Distributor using the following schemes: a traditional client-server video dis-

tribution scheme, Sliding Batch, Restrained Sliding Batch, and Chaining [34]. A traditional

client-server video distribution refers to a scheme where all users receive video feeds from a

central server. The measurements taken from this scheme are used as the base-line and the

91

measurements from other schemes are normalized to the base-line values when graphed. Re-

strained Sliding Batch is a variant of Sliding Batch and it limits the use of receive bandwidth

at or below their initial available transmit bandwidth. In other words, a user is allowed to

prefetch segments if the total segment downloading rate does not exceed the initial available

transmit bandwidth. It tames the greedy nature of the Sliding Batch and further reduces the

bandwidth demand on the VT Distributor. The simulation results from Chaining are used

as a reference point. Chaining is a peer-to-peer based streaming video distribution scheme.

A major difference between Chaining and Sliding Batch is that Chaining distributes video

stream in its entirety from one user to another at the nominal playback rate while Sliding

Batch distributes video stream in multiple segments at or below the nominal playback rate.

The fourth set of experiments, which studies the effects and interactions of video segment

sizes and the post-playback buffer sizes, incorporates 22 factorial design and conducts the

analysis of variations (ANOVA). The details of its purpose and the results of the analysis is

given in the respective subsection.

Each experiment is repeated 20 times to compute the mean and the variance. 90% confi-

dence interval is used to establish the significance in the computed means for all experiments.

When no statistical differences are observed between two means, it will be stated as such

in the analysis section. Otherwise, a statistical significance has been verified and the null

hypothesis, H0 : µ1 = µ2, has been rejected for all experiments.

The first set of experiments studies the effects of user inter-arrival times on the load at

VT Distributor. The mean inter-arrival times of user processes are varied from 5.0 to 60.0

seconds while other parameters were kept constant. The simulation results are shown in

Figure 7.1. Restrained Sliding Batch offers as much as 90% of bandwidth reduction at the

VT Distributor. Sliding Batch and Chaining achieved roughly 80% and 70% of bandwidth

reductions respectively at their peaks. A common and assuring trend observed among the

three schemes was that the greater the rate of user arrivals, the greater the bandwidth

reductions at VT Distributor. This is most apparent in Restrained Sliding Batch and is a

sign of scalability.

The second set of experiments studies the effects of playback rates on the load at VT

Distributor. The nominal playback rate of a video stream was varied from 0.5 to 2.0 Mbps.

92

 0

 0.1

 0.2

 0.3

 0.4

 0 10 20 30 40 50 60

P
ea

k
T

ra
ns

m
it

B
an

dw
id

th
 D

em
an

d
on

 V
T

D
 (

N
or

m
al

iz
ed

)

User Inter-Arrival Time (seconds)

Chaining
Sliding Batch

Restrained Sliding Batch

Figure 7.1: Effects of user arrival pattern

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
ea

k
T

ra
ns

m
it

B
an

dw
id

th
 D

em
an

d
on

 V
T

D
 (

N
or

m
al

iz
ed

)

Nominal Streaming Rate (Mbps)

Chaining
Sliding Batch

Restrained Sliding Batch

Figure 7.2: Effects of streaming rate

93

Under Chaining, the load on the video server increased linearly as the playback rate increased.

Sliding Batch and Restrained Sliding Batch both have a milder incline when the playback

rates are below the mean available transmit bandwidth of users. Chaining performed the

best among the three schemes when the playback rate is very low. There was no statistical

significance observed at 1.5 Mbps between Chaining and Sliding Batch. In all other regions

of playback rates, Sliding Batch and Restrained Sliding Batch both achieved a greater load

reduction. This is depicted in Figure 7.2.

The third set of experiments focuses on the effects of the amount of available receive

bandwidth at users. As expected, a sharp increase in the bandwidth demand at VT Dis-

tributor is observed on Sliding Batch when users have a large amount of excess receive

bandwidth. This is due to the greedy nature of Sliding Batch that it will prefetch a series

of segments until all available receive bandwidth is consumed. In contrast, both Chaining

and Restrained Sliding Batch maintain a constant level of transmit bandwidth demand at

VT Distributor regardless of how much receive bandwidth is available at each user. Fig-

ure 7.3 shows that Restrained Sliding Batch requires roughly one-third of bandwidth at VT

Distributor than Chaining.

The fourth set of experiments evaluates the impact of segment sizes to the load on

VT Distributor. It also evaluates the interactions between the segment sizes (i.e. segment

playback duration) and the post-playback buffer sizes (i.e. duration of time a segment is

held in post-playback buffer).

Segment size is a parameter, within the VT Room profile, that the provider of the video

distribution service may be able to engineer to achieve performance gain. Other parameters

of the VT Room profile, such as the total video length and the nominal streaming rate, are

either fixed or undesirable to be altered as they pertain to the fundamental property of the

video distribution service. On the User Profile side, the size of the post-playback buffer is a

parameter that the user may be able to adjust to achieve performance gain relatively easily,

compared to other parameters such as the total transmit bandwidth and receive bandwidth.

It is of our interest to discover an optimal combination of segment size and post-playback

buffer size in a given environment or unfavorable combinations that should be avoided. We

are also interested in interactions between the segment sizes and the post-playback buffer

94

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4

P
ea

k
T

ra
ns

m
it

B
an

dw
id

th
 D

em
an

d
on

 V
T

D
 (

N
or

m
al

iz
ed

)

User Receive Bandwidth Availability (Mbps)

Chaining
Sliding Batch

Restrained Sliding Batch

Figure 7.3: Effects of user bandwidth availability

sizes.

In order to achieve these goals, experiments are designed with 22 factorial design with

20 replications. Segment size is designated as factor A and post-playback buffer size is

designated as factor B. Factor A has two levels, three minutes per segment (i.e. 40 total

segments in a video) and 15 minutes per segment (i.e. 8 total segments in a video). Factor

B also has two levels, five minutes worth of post-playback buffer size and 15 minutes worth

of post-playback buffer size for each segment being downloaded. Each test is run 20 times

to allow computation of mean square error. Table 7.1 shows the collected data with the

factorial design.

The results of the experiments are summarized as ANOVA in Table 7.2. This table

shows that the post-playback buffer has the largest influence on the performance of the

video distribution service. The size of segments follows closely after the post-playback buffer

in the influence it has on the outcome of the experiments. A strong interaction between the

size of segment and the size of post-playback buffer is shown. By evaluating F0 values, we

95

Table 7.1: Collected data with 2k factorial design

Post- Segment Size

Playback 3 Min. 15 Min.

Buffer Size (40 total segments) (8 total segments)

5 Min. 0.348 0.323 0.352 0.339 0.351 0.336 0.345 0.357

0.364 0.346 0.349 0.357 0.345 0.362 0.335 0.340

0.341 0.348 0.322 0.347 0.329 0.364 0.362 0.342

0.343 0.339 0.345 0.325 0.344 0.343 0.350 0.366

0.378 0.332 0.329 0.335 0.348 0.345 0.346 0.343

15 Min. 0.217 0.202 0.223 0.234 0.351 0.336 0.345 0.357

0.218 0.247 0.217 0.205 0.345 0.362 0.335 0.340

0.209 0.202 0.215 0.215 0.329 0.364 0.362 0.342

0.220 0.205 0.201 0.214 0.344 0.343 0.350 0.366

0.211 0.202 0.213 0.243 0.348 0.345 0.346 0.343

Table 7.2: ANOVA for segment size and post-playback buffer size interactions

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F0

Segment Size 0.0812 1 0.0812 574.9671

Post-Playback Buffer Size 0.0932 1 0.0932 660.0043

Interaction 0.0812 1 0.0812 574.9671

Error 0.0107 76 0.0001

Total 0.2664 79

96

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 15 3

P
ea

k
T

ra
ns

m
it

B
an

dw
id

th
 U

sa
ge

 o
n

V
T

D
 (

N
or

m
al

iz
ed

)

Segment Size (min)

Post-playback buffer size: 5 min
15 min

Figure 7.4: Interaction between segment size and post-playback buffer size

conclude that both the main effects as well as the interactions between the size of segment

and the size of post-playback buffer means are significant, meaning the changes in the size

of segment and post-playback buffer resulted in significant improvement in the offered load

on the VT Distributor and this outcome is strongly influenced by each other. Segment size

and post-playback buffer size plot of this experiment is depicted in Fig 7.4. Note that the

strong interaction between two factors are displayed as two lines crossing or converging at

the segment size of 15 minutes. Also note that there is a trend in the decrease in the VT

Distributor load as the size of the segment becomes smaller and as the size of post-playback

buffer increases.

Further experiments have been conducted to verify the above findings and to gain further

knowledge of the behavior and interaction of segment sizes and post-playback buffer sizes. In

addition to 5-minute and 15-minute post-playback buffer size, experiments with 30-minute

post-playback buffer size are included in the new set of tests. Further more, observations

with segment sizes of one minute, five minutes, 30 minutes, and 60 minutes are added to

97

 0.1

 0.2

 0.3

 0.4

1 3 5 15 30 60

P
ea

k
T

ra
ns

m
it

B
an

dw
id

th
 U

sa
ge

 o
n

V
T

D
 (

N
or

m
al

iz
ed

)

Segment Size (min)

Post-playback buffer size

5 min
15 min
30 min

Figure 7.5: Effects of segment size and post-playback buffer size

the new set of experiments. Fig 7.5 shows the test results in graphs. The outcome verifies

that, in generally, lower bandwidth demand is placed on VT Distributor when segments are

held in buffer for a longer duration of time after their playback. When the segment size

is larger than the post-playback buffer size, the same amount of load is placed on the VT

Distributor regardless of how long the segments are kept in post-playback buffer. A decrease

in the bandwidth demand at VT Distributor is observed once the segment size becomes

smaller than the post-playback buffer size. With 15-minute and 30-minute post-playback

buffer experiments, a substantial amount of bandwidth decrease is observed for segment

sizes down to 5 minutes; however, very little load change is observed beyond that point. We

conclude from these observations that the optimum balance between the segment size and

the post-playback buffer size lies in the vicinity of 1:2 ratio (e.g. 15 minute segment size vs

30 minute post-playback buffer size). Any post-playback buffer configuration that are at or

below the segment size should be avoided.

The above four sets of experiments have confirmed that peer-to-peer based streaming

98

service can alleviate load on the video server in significant amount. They also gave an assur-

ance that splitting a video stream into multiple segments and distributing them concurrently

at rates below the nominal playback rate allow further reductions in the transmit bandwidth

demand on the video server. Additional load reduction was achieved by taming the greedy

nature of Sliding Batch by restraining the amount of segment prefetching.

The next three sets of experiments study the effectiveness of QoS scheme in mitigating the

video presentation interruptions when users experience excessive delays while receiving video

segments. An excessive delay is defined as absence of frame arrival beyond playout delay

such that it results in playout buffer starvation. An excessive delay may be caused by various

reasons, such as unexpected departure of a distribution source from the service, persistent

or sever network congestions, or a loss of connectivity due to user mobility. Regardless of

the cause, an excessive delay introduces a video presentation interruption, at least for the

duration of playout delay, since the playout buffer will need to be rebuilt. This is true when

absence of video frame arrivals are dealt with a traditional playout buffer mechanism. On

the other hand, the QoS scheme used in VT Room is designed to reduce the occurrences of

video presentation interruptions. The sets of experiments being conducted allows the study

of the proposed QoS scheme in reducing the number of interruptions and the load on the

VT Distributor under varied extended playout delays and distribution source losses.

The first set of experiments studies the effects of the size of the extended playout delay

in reducing the video presentation interruptions under different rates of premature user

departures from the VT Room. Extended playout delay are varied from 1× playout delay

to 4× playout delay. The probability of premature node departure, P , was varied from

0.1 to 0.4 and the duration of time a node may spend before its premature departure is

uniformly distributed during the playback time of the entire video. The The total number

of video presentation interruptions experienced by participating users are normalized to the

total number of distribution source losses being detected in the VT Room. In Chaining,

all distribution source losses being detected by the users resulted in the video presentation

interruptions, as it uses the traditional playout buffer mechanism, regardless of the rate

of user departures from the VT Room. This is depicted in Figure 7.6 by the horizontal

line drawn at the 1.0 mark. In Sliding Batch and Restrained Sliding Batch, through the

99

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 1.5 2 2.5 3 3.5 4

V
id

eo
 P

re
se

nt
at

io
n

In
te

rr
up

tio
ns

(N
or

m
al

iz
ed

 to
 th

e
nu

m
be

r
of

 d
is

tr
ib

ut
io

n
so

ur
ce

 lo
ss

es
)

Extended Playout Delay
(Normalized to playout delay)

Chaining, P = 0.1, 0.2, 0.3, 0.4
RSB, P = 0.1
RSB, P = 0.2
RSB, P = 0.3
RSB, P = 0.4

Figure 7.6: Effects of extended playout delay - I

implementation of proposed QoS scheme, not all distribution source losses being detected

may result in the interruption of the video presentation. The user may potentially experience

interruptions only if a downloading of a segment encounters a greater number of distribution

source losses than all other segments in the same batch (i.e. maximum distribution source

losses of a batch, Lβ(ei)). Further more, a video presentation interruption can occur only if

the sum of the maximum distribution source losses of all batches results in the accumulated

delay beyond the extended playout delay. Let Γ be the total number of video presentation

interruptions being experienced by a user for the duration of the video playback. Γ is defined

as:

Γ =

⌈∑N
i Lβ(ei) × playouot delay

extended playout delay

⌉

In Restrained Sliding Batch (RSB), at 1× playout delay, 15% to 26% of distribution

source losses being detected resulted in actual video presentation interruptions when 10%

to 40% of nodes prematurely depart from the VT Room. At extended playout delay of 2×

100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 1.5 2 2.5 3 3.5 4

V
id

eo
 P

re
se

nt
at

io
n

In
te

rr
up

tio
ns

(N
or

m
al

iz
ed

 to
 th

e
nu

m
be

r
of

 n
od

e
de

pa
rt

ur
es

)

Extended Playout Delay
(Normalized to playout delay)

Chaining, P = 0.1
Chaining, P = 0.2
Chaining, P = 0.3
Chaining, P = 0.4

RSB, P = 0.1
RSB, P = 0.2
RSB, P = 0.3
RSB, P = 0.4

Figure 7.7: Effects of extended playout delay - II

playout delay, the rate of video presentation interruptions decreased to 4% to 10% when P

is varied from 0.1 to 0.4. When the size of extended playout buffer size is increased to 4×
playout delay, less than 1% of all distributions source losses being detected by users resulted

in the actual video presentation interruptions when 10% of total nodes prematurely leave

the VT Room. At 40% of premature node departure rate, roughly 1% of detected source

losses resulted in video presentation interruptions.

Another way to express the effects of extended playout delay on the video presentation

interruptions under different node departure rates is shown in Figure 7.7. In this figure,

the total number of video presentation interruptions is normalized to the total number of

premature node departures under the same settings as the previous set of experiments. Note,

in Sliding Batch and Restrained Sliding Batch, a premature user departure may result in

multiple instances of distribution source losses being experienced by other users. Figure 7.7

shows, on average, how many instances of video presentation interruptions are introduced

when one node departs prematurely from the service. In Restrained Sliding Batch, every

101

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4

P
ea

k
T

ra
ns

m
it

ba
nd

w
id

th
 D

em
an

d
on

 V
T

D
 (

N
or

m
al

iz
ed

)

Probablility of Premature Node Departure

Chaining, IAT=5,10,30,60
RSB, IAT=5

RSB, IAT=10
RSB, IAT=30
RSB, IAT=60

Figure 7.8: Effects of node departure rate

premature node departure resulted in a video presentation interruption at the rate of 48%

to 65% at 1× playout delay when P is varied from 0.1 to 0.4. When the size of extended

playout buffer is doubled, the interruption rates have halved at P = 0.4 and quartered at

P = 0.1. When the extended playout delay is at 4× playout delay, less than 1% of premature

node departure resulted in a video presentation interruption when P = 0.1 and roughly 3%

of of premature node departure resulted in a video interruptions when 40% of users depart

from the service prematurely.

In Chaining, every premature node departure resulted in a video presentation interrup-

tion at the rate of 55% to 39% when P is varied from 0.1 to 0.4. The first look of the

simulation result is counter intuitive in that the rate of video interruptions decreases as the

rate of node departure increases. This is because, in Chaining, as the rate of node departure

increases, a large percentage of users begin relying on the central server for video distribution

feeds, rather than their peers. The next set of experiments proves this point.

The last set of experiments studies the effects of premature node departure rate on the

102

load on the VT Distributor under varied user arrival rate to the VT Room. The results are

shown as bar graphs in Figure 7.8. As before, the peak transmit bandwidth demand on VT

Distributor is normalized to the peak transmit bandwidth demand on a traditional client-

server based video distribution network. At P = 0, no node prematurely departs from the

VT Room and the results gained this simulation are used as reference. For 0.1 ≤ P ≤ 0.4,

both Chaining and Restrained Sliding Batch have the similar rate of load increase on VT

Distributor as the rate of premature node departure increases. The main difference between

the two schemes is that Restrained Sliding Batch with QoS extension requires only a third or

less of resources from the central server compared to the Sliding Batch. Another difference

is that the Chaining did not exhibit statistical differences when varying the arrival rate of

users where as Restrained Sliding Batch clearly performed better when more users arrive at

the VT Room than otherwise.

This section presented the design and analysis of simulation studies. Seven sets of ex-

periments were designed to study the behavior of users in a VT Room. The first four sets

of experiments focused on the load on the VT Distributor while varying various parameters

of Sliding Batch. The simulation results showed a trend in the load reduction in the VT

Distributor as the rate of user arrival increased. This is an indication that a scalable stored

video distribution network may be built on Virtual Theater Network and accompanying dis-

tribution and discovery schemes. The last three sets of experiments verified the effectiveness

of QoS scheme in reducing the number of video presentation interruptions when users de-

part from the network prematurely. Linearly increase in the size of playout buffer resulted in

logarithmic decrease in the rate of video presentation interruptions. Further more, relatively

small increase in the VT Distributor load was observed when the probability of premature

node departure was raised. These simulation results suggest that Sliding Batch QoS scheme

has a potential in reducing the impacts of excessive delays on the presentation of video to

receiving users.

103

8.0 CONCLUSION

This research work aims to enable distribution of high-volume, on-demand, stored-video

distribution service to a large number of users with diverse system needs.

To address these challenges, we proposed the design of a new streaming video distribution

network model, called Virtual Theater Network, which allows organization of peer-to-peer

communities (VT Rooms) to support the distribution of streaming videos among the mem-

bers in each VT Room. The model employs a segmented video stream reception scheme

with its accompanying scheduling algorithm for an orderly and timely video segment re-

trieval that allows contribution from users with limited resource availability. QoS extension

of the distribution scheme allows reduction in the number of video presentation interruptions

when excessive delays are observed. The model also employs a video segment availability

advertisement and discovery scheme which incorporates the parameters of segmented video

reception scheduling algorithm and made possible the advertisement and query of ever chang-

ing segment availability information of each user in one advertisement and one query. The

distribution source selection scheme allows incorporation of mobility information to select a

source who could best satisfy the user needs.

The seven sets of experiments were conducted to study the feasibility of the proposed

network architecture in supporting a large-scale stored-video streaming service and to verify

the effectiveness of the proposed distribution scheme and its QoS extension. The first four

sets of experiments focused on the scalability aspect of the network design and measured the

peak demand on the transmit bandwidth usage at VT Distributor. The simulation results

showed a decline in the load demand at the VT Distributor as the user arrival rate increased,

which is a sign of scalability. The remaining experiments focused on the resiliency aspect of

the network design and studied the effects of premature node departure from the service on

104

the number of video presentation interruptions at the receiving users. By increasing the size

of playout buffer, a significant decrease in the number of video presentation interruptions

were observed through simulation study, including cases where more than a third of the

participating users were prematurely departing from the service.

8.1 FUTURE WORK

Several areas to which this research study can be extended as future work. Incorporation of

security and digital right management features in the advertisement and distribution schemes

to allow protection of network service from malicious users and copy righted materials from

illegal usage. These are important issues in P2P based content distribution network as there

has not been a practical solution available. Improvements in video distribution efficiency

and scalability through VT Room merges/splits and load balancing among VT Distributors

are another area of future study. Lastly, as there has been growing interests in the delivery

of TV signals over IP based network (i.e. IPTV), a need exists that allows distribution of

both the real-time and the stored video streams in a single network. Addition of a real-time

streaming support on Virtual Theater Network is another area of future work.

105

APPENDIX A

NOTATIONS

Symbol Meaning

V Video

Si ith segment

fi ith frame

η Nominal streaming rate

α(Si) Starting playback time of Si

δ(Si) Playback duration of Si

|x| Size of x (e.g. segment, buffer) in number of frames

‖y‖ Size of y (e.g. segment, buffer) in number of bits

ei ith epoch

α(ei) Starting epoch time of ei

δ(ei) Epoch duration of ei

β(ei) Batch associated with ei

A(Si) Starting download time of Si

Ω(Si) Ending download time of Si

N(ei) Number of segments yet to be received at α(ei)

|βR(ei)| Rate-limited batch size at α(ei)

|βB(ei)| Buffer-limited batch size at α(ei)

106

Symbol Meaning

RT Total receive bandwidth

RA(ei) Available receive bandwidth at α(ei)

RU(ei) Used receive bandwidth during ei

BT Total buffer space

BD Buffer space allocated for segment downloading and playback

BH Buffer space allocated for segments that finished playing back

BA(ei) Available buffer space at α(ei)

BU(ei) Used buffer space during ei

TA(ei) Available transmit bandwidth at α(ei)

di,j(t1, t2) Mean distance between node i and j during time t1 and t2

∆(Si) Time it takes to download Si

di,j(t) Distance between node i and j at t

Dp Playout delay (start-up latency)

ri Downloading rate of Si

DEn Start-up latency introduced by providing the nth level of protection

against excessive delay

rEn
i Downloading rate of Si by providing the nth level of protection against

excessive delay

Li Maximum number of distribution source losses a user may anticipate

Pi Probability of distribution source loss when downloading Si

107

APPENDIX B

VIDEO SEGMENT RECEPTION SCHEDULING ALGORITHM

1 // a scheduler template
2 typedef struct {
3 int user_id;
4 int seg_id;
5 int batch_id;
6 double seg_size;
7
8 // targeted or nominal downloading times
9 double t0;

10 double start_dl_tm;
11 double end_dl_tm;
12 double dl_rate;
13
14 // targeted or nominal playback times
15 double start_pb_tm;
16
17 } segment_reception_info_t;
18
19 // data structure for the scheduling of segment receptions
20 segment_reception_info_t _seg_rcpt_info[MAX_MUM_OF_SEGMENTS];
21
22 // initialized at the beginning
23 double _RT; // total receive bandwidth (bps)
24 double _RA; // available receive bandwidth (bps)
25 double _BD; // downloading buffer (in number of bits)
26 double _t0; // the time a user joined the VT Room
27
28 User::_scheduling_algorithm()
29 {
30
31 double RA, RU = 0.0, BA, BU = 0.0;
32 double RU_in_this_batch, BU_in_this_batch;

108

33 int i, j = 0, m_i = -1;
34
35 // figure out the size of batch at each epoch
36 for (i = 0; i < num_of_epochs; i++) {
37
38 // determine the rate-limited batch size
39
40 // find RA
41 if (i == 0)
42 RA = _RT;
43 else {
44 RA = _RT - RU + _seg_rcpt_info[i-1].dl_rate;
45 }
46
47 // find RU
48 if (i == 0) {
49 for (j = 0; j < num_of_segments; j++) {
50 double dl_rate = nominal_rate / (j + 1);
51 if (RU + dl_rate > RA) {
52 break;
53 } else {
54 RU += dl_rate;
55 }
56 }
57 } else {
58 RU_in_this_batch = 0.0;
59 for (j = m_i + 1; j < num_of_segments; j++) {
60 double end_pb_tm = _t0 + seconds_per_segment * (j + 1);
61 double beg_dl_tm = _t0 + seconds_per_segment * i;
62 double dl_rate = bits_per_segment / (end_pb_tm - beg_dl_tm);
63 if (RU_in_this_batch + dl_rate > RA) {
64 break;
65 } else {
66 RU_in_this_batch += dl_rate;
67 }
68 }
69 RU = _RT - RA + RU_in_this_batch;
70 }
71
72 j--;
73 int rate_limited_batch_size = j - m_i;
74
75 // figure out the buffer-limited batch size
76
77 // find BA
78 if (i == 0)
79 BA = _BD;

109

80 else {
81 BA = _BD - BU + bits_per_segment;
82 }
83
84 // find BU
85 if (i == 0) {
86 for (j = 0; j < num_of_segments; j++) {
87 if (BU + bits_per_segment > BA) {
88 break;
89 } else {
90 BU += bits_per_segment;
91 }
92 }
93 } else {
94 BU_in_this_batch = 0.0;
95 for (j = m_i + 1; j < num_of_segments; j++) {
96 if (BU_in_this_batch + bits_per_segment > BA) {
97 break;
98 } else {
99 BU_in_this_batch += bits_per_segment;
100 }
101 }
102 BU = _BD - BA + BU_in_this_batch;
103 }
104
105 j--;
106 int buffer_limited_batch_size = j - m_i;
107
108 // min(rate_limited_batch_size, buffer_limited_batch_size)
109 int batch_size;
110 (rate_limited_batch_size < buffer_limited_batch_size)

? batch_size = rate_limited_batch_size : batch_size
= buffer_limited_batch_size;

111
112 // min(N_bar, min(rate_limited, buff_limited))
113 if (num_of_segments < m_i + batch_size + 1)
114 batch_size = num_of_segments - m_i - 1;
115
116
117 // initialize RU and BU for this batch
118 RU_in_this_batch = 0.0;
119 BU_in_this_batch = 0.0;
120
121 // compute start downloading time of each segment
122 for (j = m_i + 1; j <= m_i + batch_size; j++) {
123
124 _seg_rcpt_info[j].user_id = _user_id;

110

125 _seg_rcpt_info[j].seg_id = j;
126 _seg_rcpt_info[j].batch_id = i;
127 _seg_rcpt_info[j].seg_size = bits_per_segment;
128 _seg_rcpt_info[j].t0 = _t0;
129 _seg_rcpt_info[j].start_dl_tm = _t0 + i * seconds_per_segment;
130 _seg_rcpt_info[j].start_pb_tm = _t0 + j * seconds_per_segment;
131 _seg_rcpt_info[j].end_dl_tm = _seg_rcpt_info[j].start_pb_tm +

seconds_per_segment;
132 _seg_rcpt_info[j].dl_rate = bits_per_segment /

(_seg_rcpt_info[j].end_dl_tm - _seg_rcpt_info[j].start_dl_tm);
133
134 // update RU_in_this_batch and BU_in_this_batch
135 RU_in_this_batch += _seg_rcpt_info[j].dl_rate;
136 BU_in_this_batch += _seg_rcpt_info[j].seg_size;
137 }
138
139 // compute RU and BU
140 RU = _RT - RA + RU_in_this_batch;
141 BU = _BD - BA + BU_in_this_batch;
142
143 // bump up m_i
144 m_i += batch_size;
145 }
146 }

111

BIBLIOGRAPHY

[1] A. Aggarwal and M. Rabinovich, “Performance of dynamic replication schemes for an
internet hosting service,” AT & T Labs, Tech. Rep., October 1998. [Online]. Available:
citeseer.ist.psu.edu/aggarwal98performance.html

[2] C. Aggarwal, J. Wolf, and P. Yu, “A permutation-based pyramid broadcasting scheme
for videoon -demand systems,” in IEEE International Conference on Multimedia Com-
puting and Systems, June 1996.

[3] American National Standard for Telecommunications, “Telecom Glossary 2000 T1.523-
2001,” 2001.

[4] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application
layer multicast,” UMIACS TR-2002,” Tech. Rep., 2002. [Online]. Available:
citeseer.ist.psu.edu/banerjee02scalable.html

[5] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller, “Construction
of an efficient overlay multicast infrastructure for real-time applications,” in Proceedings
of IEEE INFOCOM, 2003.

[6] T. C. Chiueh and C. H. Lu, “A periodic broadcasting approach to video-on-demand
service,” in Proceedings of SPIE, 1996, pp. 162–169.

[7] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed anonymous
information storage and retrieval system,” Lecture Notes in Computer Science, vol.
2009, pp. 46+, 2001. [Online]. Available: citeseer.ist.psu.edu/clarke00freenet.html

[8] E. Cohen, H. Kaplan, and A. Fiat, “Associative search in peer to peer networks:
Harnessing latent semantics,” in Proceedings of IEEE INFOCOM, Apr. 2003. [Online].
Available: citeseer.ist.psu.edu/562084.html

[9] B. Cooper and H. Garcia-Molina, “Ad hoc, self-supervising peer-to-peer search net-
works,” Stanford University,” Technical Report, Feb. 2003.

[10] K. Delgadill, “Distributed Director. White paper,” Cisco Sytems, Inc.
http://www.cisco.com/, 1999.

112

citeseer.ist.psu.edu/aggarwal98performance.html
citeseer.ist.psu.edu/banerjee02scalable.html
citeseer.ist.psu.edu/clarke00freenet.html
citeseer.ist.psu.edu/562084.html

[11] H. Deshpande, M. Bawa, and H. Garcia-Molina, “Streaming live media over peers,” CS
Dept., Stanford University, Tech. Rep. 2001-31, 2001.

[12] P. Ganesan, Q. Sun, and H. Garcia-Molina, “YAPPERS: A peer-to-peer lookup service
over arbitrary topology,” in Proceedings of IEEE INFOCOM, 2003. [Online]. Available:
citeseer.ist.psu.edu/ganesan03yappers.html

[13] Gnutella, “http://gnuella.wego.com.”

[14] L. Golubchik, J. C. S. Lui, and R. R. Muntz, “Adaptive piggybacking: A novel
technique for data sharing in video-on-demand storage servers,” Multimedia Systems,
vol. 4, no. 3, pp. 140–155, 1996. [Online]. Available: citeseer.ist.psu.edu/article/
golubchik96adaptive.html

[15] K. Hua, D. Tran, and R. Villafane, “Caching multicast protocol for on-demand video
delivery,” in ACM/SPIE Conference on Multimedia Computing and Networking, 2000.
[Online]. Available: citeseer.ist.psu.edu/hua00caching.html

[16] K. Hua and D. A. Tran, “Range multicast for video on demand,” Journal of Multimedia
Tools and Applications, 2003. [Online]. Available: citeseer.ist.psu.edu/hua03range.html

[17] K. Hua, D. A. Tran, and R. Villafane, “Overlay multicast for video on demand on the
internet,” in Proceedings of ACM SIGAPP Symposium on Applied Computing (SAC
2003), March 2003. [Online]. Available: citeseer.ist.psu.edu/hua02overlay.html

[18] K. A. Hua, Y. Cai, and S. Sheu, “Patching : A multicast technique for true
video-on-demand services,” in Proceedings of ACM Multimedia, 1998, pp. 191–200.
[Online]. Available: citeseer.ist.psu.edu/hua98patching.html

[19] K. A. Hua and S. Sheu, “Skyscraper broadcasting: A new broadcasting scheme for
metropolitan video-on-demand systems,” in SIGCOMM, 1997, pp. 89–100. [Online].
Available: citeseer.ist.psu.edu/hua97skyscraper.html

[20] S. Jamin, C. Jin, A. R. Kurc, D. Raz, and Y. Shavitt, “Constrained mirror
placement on the internet,” in INFOCOM, 2001, pp. 31–40. [Online]. Available:
citeseer.ist.psu.edu/jamin01constrained.html

[21] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O’Toole, Jr.,
“Overcast: Reliable multicasting with an overlay network,” in In Proceedings of the
Fourth Symposium on Operating System Design and Implementation (OSDI), October
2000, pp. 197–212. [Online]. Available: citeseer.ist.psu.edu/jannotti00overcast.html

[22] M. Kalman, E. Steinbach, and B. Girod, “Adaptive playout for real-time media stream-
ing,” in IEEE International Symposium on Circuits and Systems, ISCAS-2002, May
2002.

[23] KaZaA, “http://www.kazaa.com.”

113

citeseer.ist.psu.edu/ganesan03yappers.html
citeseer.ist.psu.edu/article/golubchik96adaptive.html
citeseer.ist.psu.edu/article/golubchik96adaptive.html
citeseer.ist.psu.edu/hua00caching.html
citeseer.ist.psu.edu/hua03range.html
citeseer.ist.psu.edu/hua02overlay.html
citeseer.ist.psu.edu/hua98patching.html
citeseer.ist.psu.edu/hua97skyscraper.html
citeseer.ist.psu.edu/jamin01constrained.html
citeseer.ist.psu.edu/jannotti00overcast.html

[24] P. Liu, S. Battista, F. Casalino, and C. Lande, “MPEG-4: a multimedia standard for
the third millennium, part 1,” IEEE Multimedia, October 1999.

[25] Morpheus, “http://www.morpheus.com/.”

[26] Olson, Camarillo, and Roach, “Support for IPv6 in Session Description Protocol (SDP),”
RFC 3266, June 2002.

[27] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Distributing streaming
media content using cooperative networking,” in Proceedings of ACM/IEEE NOSSDAV,
2002. [Online]. Available: citeseer.ist.psu.edu/padmanabhan02distributing.html

[28] C. Perkins, O. Hodson, and V. Hardman, “A survey of packet loss recovery techniques
for streaming audio,” IEEE Network, vol. 12, pp. 40–48, Sep/Oct 1998. [Online].
Available: citeseer.ist.psu.edu/perkins98survey.html

[29] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the placement of
web server replicas,” in INFOCOM, 2001, pp. 1587–1596. [Online]. Available:
citeseer.ist.psu.edu/qiu01placement.html

[30] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-aware overlay
construction and server selection,” in Proceedings of IEEE INFOCOM’02, 2002.
[Online]. Available: citeseer.ist.psu.edu/ratnasamy02topologicallyaware.html

[31] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content
addressable network,” in Proceedings of ACM SIGCOMM, 2001. [Online]. Available:
citeseer.ist.psu.edu/ratnasamy01scalable.html

[32] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems,” in IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), November 2001, pp. 329–350.

[33] Schulzrinne, Casner, Frederick, and Jacobson, “RTP: A transport protocol for real-time
applications,” RFC 3550, July 2003.

[34] S. Sheu and K. A. Hua, “Virtual batching: A new scheduling technique for
video-on-demand servers,” in Database Systems for Advanced Applications, 1997, pp.
481–490. [Online]. Available: citeseer.ist.psu.edu/sheu97virtual.html

[35] K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient content location using
interest-based locality in peer-topeer systems,” in Proceedings of IEEE INFOCOM,
Apr. 2003. [Online]. Available: citeseer.ist.psu.edu/sripanidkulchai03efficient.html

[36] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord:
A scalable peer-to-peer lookup service for internet applications,” in Proceedings of
the 2001 conference on applications, technologies, architectures, and protocols for
computer communications. ACM Press, 2001, pp. 149–160. [Online]. Available:
citeseer.ist.psu.edu/stoica02chord.html

114

citeseer.ist.psu.edu/padmanabhan02distributing.html
citeseer.ist.psu.edu/perkins98survey.html
citeseer.ist.psu.edu/qiu01placement.html
citeseer.ist.psu.edu/ratnasamy02topologicallyaware.html
citeseer.ist.psu.edu/ratnasamy01scalable.html
citeseer.ist.psu.edu/sheu97virtual.html
citeseer.ist.psu.edu/sripanidkulchai03efficient.html
citeseer.ist.psu.edu/stoica02chord.html

[37] W. tian Tan and A. Zakhor, “Real-time internet video using error resilient scalable
compression and TCP-friendly transport protocol,” IEEE Transactions on Multimedia,
vol. 1, no. 2, pp. 172–186, 1999. [Online]. Available: citeseer.ist.psu.edu/tan99realtime.
html

[38] D. Tran, K. Hua, and T. Do, “Zigzag: An efficient peer-to-peer scheme for
media streaming,” in Proceedings of IEEE INFOCOM, 2003. [Online]. Available:
citeseer.ist.psu.edu/tran03zigzag.html

[39] A. Vetro, C. Christopoulos, and huifang Sun, “Video Trnascoding Architectures and
Techniques: An Overview,” IEEE Signal Processing Magazine, March 2003.

[40] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava, “On peer-to-peer media
streaming,” Purdue Computer Science,” Tech. Rep., April 2002. [Online]. Available:
citeseer.ist.psu.edu/xu02peertopeer.html

[41] Z. Xu, M. Mahalingam, and M. Karlsson, “Turning heterogeneity into an advantage in
overlay routing,” in Proceedings of IEEE INFOCOM 2003, 2003. [Online]. Available:
citeseer.ist.psu.edu/574255.html

[42] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An infrastructure for fault-
tolerant wide-area location and routing,” UC Berkeley, Tech. Rep. UCB/CSD-01-1141,
Apr. 2001. [Online]. Available: citeseer.ist.psu.edu/zhao01tapestry.html

115

citeseer.ist.psu.edu/tan99realtime.html
citeseer.ist.psu.edu/tan99realtime.html
citeseer.ist.psu.edu/tran03zigzag.html
citeseer.ist.psu.edu/xu02peertopeer.html
citeseer.ist.psu.edu/574255.html
citeseer.ist.psu.edu/zhao01tapestry.html

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1.1. Summary of challenges and focus areas of existing streaming content distribution networks.
	7.1. Collected data with 2k factorial design
	7.2. ANOVA for segment size and post-playback buffer size interactions

	LIST OF FIGURES
	1.1. Architectural Components of Streaming Network
	1.2. Relationship of problem space in streaming content distribution networks
	2.1. Sample data paths of ZIGZAG.
	2.2. A sample eCAN topology and routing paths.
	3.1. Virtual Theater Network
	3.2. Target Operating Environment
	4.1. Relationship among segments, epochs, and batches
	4.2. Sample segment retrievals under the rate-limited batches
	4.3. A sample buffer space usage
	4.4. Sample segment retrievals under the buffer-limited batches
	4.5. Sample segment receptions: bandwidth and buffer limited case
	5.1. Entry fields of a state table
	5.2. A sample view of state table sharing instances
	5.3. Sample distance estimations from Ui to three other nodes at time t and at time t + (Sk)
	(a). Distance from Ui to Uj
	(b). Distance from Ui to Uk
	(c). Distance from Ui to Um
	6.1. A Sample Delay Monitor
	6.2. A sample extended playout buffer
	6.3. Sample Segment Receptions with Extended Playout Delay
	6.4. Sample Segment Receptions with Expedited Segment Reception
	7.1. Effects of user arrival pattern
	7.2. Effects of streaming rate
	7.3. Effects of user bandwidth availability
	7.4. Interaction between segment size and post-playback buffer size
	7.5. Effects of segment size and post-playback buffer size
	7.6. Effects of extended playout delay - I
	7.7. Effects of extended playout delay - II
	7.8. Effects of node departure rate

	PREFACE
	1.0 INTRODUCTION
	1.1 Video Streaming Overview
	1.1.1 System Components

	1.2 Existing Streaming Networks
	1.2.1 Web Based Distribution Networks
	1.2.1.1 Caching and Replication
	1.2.1.2 Content Delivery Network

	1.2.2 On-Demand Multimedia Streaming Networks
	1.2.2.1 Session Aggregation
	1.2.2.2 Session Alignment

	1.2.3 Peer-to-Peer Networks
	1.2.3.1 End Application Based Content Discovery
	1.2.3.2 Overlay Network Based Content Discovery

	1.2.4 Summary

	1.3 Research Goals
	1.3.1 Research Objective
	1.3.2 Functional Design Requirements
	1.3.3 Performance Design Requirements

	1.4 Methodology
	1.5 Contributions
	1.6 Document Overview

	2.0 LITERATURE REVIEW
	2.1 Data Path Scalability
	2.1.1 Schemes Based on Application Layer Multicast
	2.1.1.1 NICE
	2.1.1.2 ZIGZAG
	2.1.1.3 PeerCast
	2.1.1.4 CoopNet
	2.1.1.5 OTSp2p and DACp2p

	2.1.2 Schemes Based on Overlay Network Multicast
	2.1.2.1 Patching
	2.1.2.2 Vcast
	2.1.2.3 Range Multicast
	2.1.2.4 Overcast
	2.1.2.5 OMNI

	2.2 Search Path Flexibility and Scalability
	2.2.1 Schemes Based on Unstructured P2P Model
	2.2.1.1 Associative Overlays
	2.2.1.2 YAPPERS
	2.2.1.3 Interest-Based Locality
	2.2.1.4 Search/Index Links

	2.2.2 Schemes Based on Structured P2P Model
	2.2.2.1 CAN
	2.2.2.2 eCAN
	2.2.2.3 Binning

	2.3 Discussion
	2.3.1 Evaluation of Schemes that Improve Data Path Scalability
	2.3.2 Evaluation of Schemes that Improve Search Path Scalability and Flexibility

	2.4 Conclusion

	3.0 ARCHITECTURE DESIGN
	3.1 Architecture Components
	3.2 Formal Definition of Virtual Theater Network
	3.3 Target Operating Environment

	4.0 VIDEO SEGMENT RECEPTION MANAGEMENT
	4.1 Definition of Key Concepts
	4.1.1 Segments
	4.1.2 Epochs
	4.1.3 Batches

	4.2 Scheduling of Segment Receptions
	4.2.1 Batch Size Determination
	4.2.2 Receive Bandwidth Management
	4.2.3 Buffer Management

	4.3 Restrained Segment Receptions
	4.4 User Profile and VT Room Profile

	5.0 SEGMENT ADVERTISEMENT AND DISCOVERY
	5.1 State Table
	5.2 State Table Sharing
	5.3 Distribution Source Identification
	5.4 Transmit Bandwidth Availability Updates
	5.5 Mobility Support Extension

	6.0 QOS SUPPORT
	6.1 Existing Delay Coping Mechanism
	6.2 Delay Monitor
	6.3 Extended Playout Delay
	6.4 Expedited Segment Reception

	7.0 SIMULATION DESIGN AND ANALYSIS
	7.1 The Model Description
	7.2 Experimental Design and Analysis

	8.0 CONCLUSION
	8.1 Future Work

	APPENDIX A. NOTATIONS
	APPENDIX B. VIDEO SEGMENT RECEPTION SCHEDULING ALGORITHM
	BIBLIOGRAPHY

