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Aims Arterial stiffness decreases with weight loss in overweight and obese adults, but the 

mechanisms by which this occurs are poorly understood. We aimed to elucidate these 

mechanisms.  

Methods We evaluated carotid-femoral pulse wave velocity (cfPWV), a measure of aortic 

stiffness, and brachial-ankle pulse wave velocity (baPWV), a mixed measure of central and 

peripheral arterial stiffness, in 344 young adults (mean age 38 yrs, mean body mass index (BMI) 

32.9 kg/m2, 23% male) at baseline, 6 and 12 months in a behavioral weight loss intervention. 

Linear mixed effects models were used to evaluate associations between weight loss and arterial 

stiffness and to examine the degree to which improvements in obesity-related factors explained 

these associations. Pattern-mixture models using indicator variables for dropout pattern and 

Markov Chain Monte Carlo multiple imputation were used to evaluate the influence of different 

missing data assumptions. 

Results At 6 months (7% mean weight loss from baseline), there was a statistically significant 

median decrease of 47.5 cm/s (interquartile range (IQR) -44.5, 148) in cfPWV (p<0.0001) and a 

mean decrease of 11.7 cm/s (standard deviation (SD) 91.4) in baPWV (p=0.049). At 12 months 

(6% mean weight loss from baseline) only cfPWV remained statistically significantly reduced 

from baseline (p=0.02). Change in BMI (p=0.01) was statistically significantly positively 
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associated with change in cfPWV after adjustment for changes in mean arterial pressure (MAP) 

or any other measured obesity-related factor. Common carotid artery diameter (p=0.003) was 

associated and heart rate (p=0.08) and MAP (p=0.07) marginally associated longitudinally with 

cfPWV. Reductions in heart rate (p<0.0001) and C-reactive protein (p=0.02) were associated 

with reduced baPWV, and each removed the statistical significance of the effect of weight loss 

on baPWV. Pattern-mixture modeling revealed several differences between completers and non-

completers in the models for cfPWV, but marginal parameter estimates changed little from the 

original models for either PWV measure. 

Conclusions The public health importance of this thesis is that firstly, weight loss improves 

arterial stiffness in overweight and obese young adults. Secondly, its effect on baPWV may be 

explained by concurrent reductions in heart rate and inflammation. Missing data did not appear 

to bias these results. 
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1.0  INTRODUCTION 

Obesity leads to poor vascular health and an increased risk of cardiovascular disease (CVD) (1-

3). The metabolic requirements of excess weight necessitate increases in total blood volume and 

cardiac output, and these hemodynamic changes elevate arterial wall stress, smooth muscle cell 

proliferation, vessel wall thickness and diameter, and arterial stiffness (1, 4). These 

hemodynamic alterations work together with other features of obesity, including chronic 

inflammation and endothelial dysfunction, to impair vascular structure and function in obese 

individuals (5). Weight loss reverses many adverse vascular changes (6-9) and lowers CVD risk 

(8, 10, 11). Arterial stiffness, often measured non-invasively as pulse wave velocity (PWV), is an 

established measure of vascular health. Carotid-femoral pulse wave velocity (cfPWV), a measure 

of aortic stiffness, and brachial-ankle pulse wave velocity (baPWV), a mixed measure of central 

and peripheral arterial stiffness, are both predictive of incident vascular events and 

cardiovascular and all-cause mortality in the general population (12, 13), though cfPWV has 

been the more frequently reported predictor.  

 Several studies have shown that improvements in arterial stiffness with weight loss in 

overweight and obese adults (14-20) may be  independent of concurrent reductions in blood 

pressure (18), though not all studies agree (21). Few studies have evaluated other mechanisms by 

which weight loss may reduce arterial stiffness, and these studies have included small numbers 

of either middle-aged and older overweight and obese adults (15, 16) or severely obese adults 

(18). Because several common factors, such as elevated inflammation (19, 22, 23), insulin 

resistance (24, 25), and renin-angiotensin-aldosterone system activity (24, 26, 27), have been 
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found to be cross-sectionally associated with greater arterial stiffness and have also been found 

to decrease with weight loss, it is likely that changes in some of these cardiometabolic factors 

explain the association between weight loss and reduced arterial stiffness. The aim of this study 

was to determine the mechanisms by which weight loss reduces arterial stiffness in young 

overweight and obese normotensive adults assessed at 6 and 12 months follow-up during a 

lifestyle weight loss intervention. 
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2.0  SUBJECTS AND METHODS 

To study the mechanisms linking weight loss and arterial stiffness, we measured cfPWV and 

baPWV at baseline and 6 and 12 month visits in overweight and obese adults participating in the 

Slow Adverse Vascular Effects of excess weight study (SAVE), a randomized-controlled trial 

(NCT00366990) evaluating the effects of weight loss, increased physical activity, and reduced 

dietary sodium intake on vascular health.  

2.1 STUDY POPULATION 

Briefly, participants were recruited from June 2007 through May 2009 using mass mailing.  Six-

month and 12-month data were complete as of February 2009 and July 2010, respectively. The 

recruitment goal was 350 participants and was based on 84% power to detect a 17 cm/s 

difference for change in PWV between treatment arms. The study was approved by the 

University of Pittsburgh IRB and all participants provided written informed consent to 

participate in the study.   

 Eligible participants were men and women 20-45 years of age who were overweight or 

obese (body mass index (BMI) 25-39.9 kg/m2) and physically inactive (<8 months of physical 

activity (PA) during the past 12 months).  Exclusions included 1) diabetes, 2) hypertension or 
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average screening blood pressure ≥140/90 mmHg, 3) cholesterol lowering, anti-psychotic, or 

vasoactive medication use and 4) current pregnancy or lactation. 

2.2 INTERVENTION 

All eligible participants received a 1-year lifestyle intervention consisting of diet and physical 

activity (PA). Participants were randomized to either 1) diet and PA alone (Control Na/lifestyle) 

or to 2) diet and PA plus reduced sodium intake (Low Na/lifestyle). The lifestyle intervention 

was delivered in group sessions that occurred weekly for months 1-4, biweekly for months 5-8, 

and monthly for months 9-12. The goal of the intervention was a 10% reduction in body weight 

over 6 months.  Total caloric intake was individualized to promote a 1- to 2-pound/week weight 

loss. Fat was limited to 25% to 30% of calories. A structured meal pattern provided an initial 

framework upon which a personalized plan was built as the participant became more informed 

and skilled. Self-monitoring of dietary intake was encouraged to reinforce the dietary goals. 

Participants were given a nutrient counter to assist in determining food calorie and fat content.  

At the fourth session participants were introduced to progressive PA goals of 150 

(minimum PA goal) to 200 (optimum PA goal) min/week (28), beginning with 60 minutes per 

week and increasing PA by no more than 30 minutes every two weeks until they reached goal.  

Moderate-intensity aerobic activities, such as brisk walking, were the primary types of PA 

recommended. We requested that PA be performed in a minimum of three sessions per week and 

that individual PA bouts last at least ten minutes. Strength training using resistance bands was 

introduced in the latter portion (month 6) of the intervention to complement rather than replace 
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aerobic PA. The goal of the sodium reduction intervention (Low Na) was to perform all of the 

above activities and also to gradually reduce daily sodium intake to approximately 1 mg Na+/1 

kcal/day, an average reduction of about 50% from the participant’s usual diet (29). 

2.3 CLINIC VISITS 

Participants were to complete clinic visits at screening, baseline, 6 months, 12 months and 24 

months following randomization. Self-reported demographic information, self- and interviewer-

administered questionnaires, anthropometric measurements, fasting blood draw, 24-hour urine 

collection, and non-invasive tests of vascular structure and function were collected at these visits.  

The data presented here are from baseline, 6-month and 12-month follow-up visits. 

2.3.1 Demographic and Physical Measures 

Age, race, and smoking status were self-reported.  Race was re-coded as black vs. non-black. 

Smoking status was assessed as current vs. past or never. Weight was measured in kilograms 

using a balance scale. Height was measured in centimeters using a stadiometer.  BMI was 

calculated as weight in kilograms divided by height in meters squared. Waist circumference was 

measured against the participant’s skin at the narrowest part of the torso between the ribs and the 

iliac crest. Blood Pressure (BP) was measured with a mercury sphygmomanometer after 

participants sat quietly for 5 minutes with feet flat on the floor. Final BP was the average of the 

last 2 of 3 readings taken 30 seconds apart. 
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2.3.2 Blood Assays 

Blood analytes were measured at the Heinz Laboratory at the University of Pittsburgh’s 

Graduate School of Public Health. Serum glucose was determined enzymatically with a 

procedure similar to that described by Bondar and Mead (30). Insulin was measured using an 

RIA procedure developed by Linco Research, Inc. Total cholesterol, high density lipoprotein 

cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triglycerides and glucose 

were determined using standard laboratory procedures. Insulin, leptin, adiponectin and total 

ghrelin were measured using radioimmunoassay (Linco Research, Inc.). C-reactive protein 

(CRP) was measured using an enzyme-linked immunoassay (Alpha Diagnostic International, 

Inc.). Aldosterone was measured using an enzyme-linked immunoassay developed by Diagnostic 

Systems Laboratories (Webster, TX). 

2.3.3 Pulse Wave Velocity 

Pulse wave velocity measures were generated using the VP2000 system (Omron Health Care 

Co., Kyoto, Japan), a noninvasive automated waveform analyzer that simultaneously provides 

measures of carotid-femoral and brachial-ankle PWV. Following ten minutes of rest in a supine 

position, the participant had occlusion and monitoring cuffs placed around both arms and ankles, 

ECG electrodes on both wrists and a phonocardiogram on the left edge of the sternum. Occlusion 

cuffs at the brachial and tibial arteries were connected to pressure sensors that measured blood 

pressure and pressure waveforms at these peripheral sites as previously described (31).  

Handheld tonomoters over the right carotid and femoral arterial sites were used to obtain femoral 
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and carotid pulse waveforms simultaneously. PWV (in cm/sec) was calculated as the path length 

between arterial sites of interest divided by the time delay between the foot of the respective 

waveforms. For cfPWV path length, the distance between the carotid and femoral sites was 

measured (in cm) over the surface of the body with a tape measure.  The path length for baPWV 

was calculated using a height-based formula (31).  For baPWV, results for the right and left legs 

were averaged. For all PWV measures, data were collected twice for each participant, and the 

values were averaged. Participants with valid PWV measures (defined as between 300 m/s and 

2500 m/s) were included in analyses.  Intraclass correlation coefficients (ICC) for within 

technologist replicate measures were 0.76 (cfPWV) and 0.97 (baPWV) and for between 

technologists replicates were 0.60 (cfPWV) and 0.87 (baPWV). 

2.3.4 Carotid Ultrasound 

Common carotid artery (CCA) intima-media thickness (IMT) and adventitial diameter (AD) 

measurements and readings were performed at the Ultrasound Research Laboratory of the 

Department of Epidemiology, University of Pittsburgh using an Acuson Sonoline Antares high 

resolution duplex scanner.  Detailed methodology using the same protocol has been published 

(32).  Two sets of digitized images for later reading were obtained of both near and far walls of 

the right and left distal common carotid arteries (1 cm proximal to the carotid bulb).  Intima-

media thickness measures were obtained by electronically tracing the lumen-intima interface and 

the media-adventitia interface across these 1-cm segments; one measurement was generated for 

each pixel over the area, for a total of approximately 140 measures for each segment.  CCA 

inter-adventitial diameters were measured directly as the distance from the adventitial-medial 



 

8 

interface on the near wall to the medial-adventitial interface on the far wall at end-diastole across 

the same CCA segments used for IMT measurement. The reading software used was the AMS 

system developed by Dr. Thomas Gustavsson (33).  The same reader was used across visits. For 

these analyses, the mean of the average IMT and AD values was used.  Reproducibility of IMT 

measures was excellent with an ICC between sonographers of >0.87 and within reader of >0.90. 

For AD measures, the between-sonographer ICC’s were >0.83 and the within reader ICC’s were 

>0.90. 

2.4 LINEAR MIXED EFFECTS MODELS 

The primary goal of longitudinal analysis is to assess within-individual changes in characteristics 

of interest over time and to determine which factors influence heterogeneity among these within-

individual changes. Mixed models are widely used in health studies for longitudinal analysis. 

Linear mixed effects models can be used to model continuous outcome variables and, as the 

name implies, these models assume that some of the regression parameters vary randomly 

between subjects (random effects) and some are common to all subjects (fixed effects). The 

introduction of random effects induces within-subject correlation among outcomes. Such 

correlation must be accounted for in order to avoid obtaining biased standard errors for both 

within- and between-subject factors (34). Another appealing aspect of linear mixed effect 

models, in addition to their capacity to differentiate within-subject and between-subject sources 

of variation, is their ability to accommodate imbalanced data. Linear mixed effects models, 

unlike univariate or multivariate repeated-measures analysis of variance (ANOVA), require 
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neither the same number of observations nor the same timing of measurement occasions on all 

subjects. Thus, mixed models are particularly convenient for handling unbalanced longitudinal 

data. 

In the simplest case of a linear mixed effects model, only the intercept is treated as 

random, thereby assuming that each subject has a latent underlying level of response that persists 

throughout the study duration: 

Yit = X’itβ + bi + eit 

In this model, bi is the random intercept for subject i and eit is the measurement or 

sampling error for subject i and time t. It is typically assumed that bi ~ N(0,σ2
b) and ei ~ N(0, 

σ2Ini) where Ini is the ni-dimensional identity matrix, though additional within-subject serial 

correlation beyond that accounted for by random effects can be investigated. In addition, bi and 

eij are assumed to be independent of one another. In this model, the conditional mean of Yij given 

the subject-specific effect, is: 

E(Yit|bi) = X’itβ + bi 

and the marginal mean of Yij in the population (averaged over the subject-specific effects) is: 

E(Yit) = X’itβ 

Linear mixed effect models can also include random coefficients. For example, in 

longitudinal studies time is often treated as a random effect. In general, a linear mixed effect 

model is any model that satisfies the four properties below: 

Yi = Xiβ + Zibi + ei 

bi ~ N(0, D) 

ei ~ N(0, Σi) 

b1,…, bN, e1,…,eN independent 
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where Yi is the ni-dimensional response vector for subject i, 1≤i≤N, N is the number of subjects, 

Xi and Zi are (ni x p) and (ni x q) dimensional matrixes of known covariates, β is a p-dimensional 

vector containing the fixed effects, bi is a q-dimensional vector containing the random effects, 

and ei is an ni-dimensional vector of residual components. D is a general (q x q) covariance 

matrix with (i, j) element dij = dji and Σi is a (ni x ni) covariance matrix which depends on i only 

through its dimension ni (35).  

Though the main goal of a longitudinal study is to investigate within-individual changes 

in responses over time, longitudinal studies provide both longitudinal and cross-sectional 

information. These two sources of information can sometimes be at odds. Care must be taken in 

model specification in order to avoid the confounding of longitudinal effects with cross-sectional 

effects when the two differ. This can be accomplished by including separate parameters for the 

cross-sectional (between-subject) and longitudinal (within-subject) effects of time-varying 

variables in the model, as shown below: 

Yij = Z’iβ0 + X’i1β(C) + (X’ij – X’i1)β(L) + eij 

where X’ij is the row vector of q time-varying covariates for the jth response on the ith subject and 

Z’i is the row vector of p – q time-stationary covariates. This model allows the simultaneous 

estimation of both cross-sectional effects, β(C), and longitudinal effects, β(L). When investigating 

the associations between time-varying covariates and an outcome of interest during an 

intervention, such as in the present study, it is mainly β(L) that is of interest (34). 
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2.5 MISSING DATA 

Although mixed models for longitudinal data have many advantages, they are not guaranteed to 

produce unbiased parameter estimates in studies with missing data. Missing data are ubiquitous 

in longitudinal biomedical research, in which missing data usually occur in the form of dropouts. 

Since the form of the non-response process can never be fully known, assumptions must be made 

in any analysis of available data (36). According to widely used terminology first conceived by 

Rubin (37), missing data are missing completely at random (MCAR) if missingness is 

independent of both unobserved and observed outcome and covariate data, and missing at 

random (MAR) if, conditional on the observed outcome and covariate data, missingness is 

independent of the unobserved data. Missing data that is neither MCAR nor MAR is termed 

missing not at random (MNAR). In the context of likelihood inference, which is used in linear 

mixed effects modeling, when the parameters describing the measurement process are 

independent of the parameters describing the missingness process, MCAR and MAR processes 

are ignorable whereas an MNAR missingness process is non-ignorable. Thus, as long as the 

observed outcome and covariate data included in a linear mixed effects model are sufficient to 

bring about a MAR mechanism for the missing data, the parameter estimates of the model will 

be unbiased. This is not the case for frequentist methods such as repeated-measures ANOVA, 

which require the missing data to be MCAR (36). In the past, simple methods for dealing with 

missing data, such as last observation carried forward (LOCF), single imputation, and complete 

case analysis have been popular. However, given the commercial software available today, there 

is little reason to use these simple, typically biased methods (36).  
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To examine the non-response process, one must first assume that the outcome vector, Yi 

= (Yi1, . . . ,Yin), contains a sequence of responses designed to be measured at occasions j = 1, . . . 

, n for all subjects i = 1, . . . , N. Next, one can define a dropout indicator Di for the occasion at 

which dropout occurs and assert that Di = n + 1 for a complete sequence. Yi can be split into 

observed (Yoi) and missing (Ymi) components. Generally the aim is to examine the full data 

density f(yi,di|θ,ψ), in which the parameter vectors θ and ψ describe respectively the 

measurement and missingness processes. To examine the full data, several different methods can 

be used. One method is selection modeling, which uses the following factorization of the full 

data density: 

f(yi,di|θ,ψ) = f(yi|θ)f(di|yi,ψ) 

in which the first factor is the marginal density of the measurement process and the second factor 

is the density of the missingness process, conditional on the observed and unobserved outcomes. 

A second method to examine the full data is pattern-mixture modeling, which is based on the 

reversed factorization: 

f(yi,di|θ,ψ) = f(yi|di,θ)f(di|ψ) 

Pattern-mixture models can easily be seen to be a mixture of subpopulations each 

characterized by a distinct non-response pattern. Both of these methods assume that covariates 

included in the analysis are fully observed, often not the case for time-varying covariates in 

longitudinal studies (36). Using multiple imputation, however, both missing covariate and 

outcome data can be imputed consistent with an a priori hypothesis for the missing data process, 

often called an identifying restriction, for pattern-mixture modeling.  

An important problem with pattern-mixture models is that they are always under-

identified. There are two main strategies used for pattern-mixture modeling, and they handle the 
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problem of under-identification quite differently (38). Little, Thijs, and others have advocated 

the use of identifying restrictions, in which data that are unavailable for a particular pattern are 

borrowed from a pattern or patterns in which such data are available (38, 39). Alternatively, 

model simplification can be used to identify parameters. With this technique, parameters are 

made to vary across patterns in a controlled parametric way by including pattern as a covariate in 

the pattern-mixture model. Though the second strategy is computationally simple, it requires the 

untestable assumption that it is appropriate to extrapolate time trends beyond the point of 

dropout. The first strategy, on the other hand, can accommodate a greater variety of hypotheses 

about the missing data mechanism through the use of multiple imputation (38).  

Multiple imputation is a valuable tool for longitudinal biomedical research studies, 

especially in the area of sensitivity analysis. In multiple imputation, the imputation model can be 

easily changed to reflect hypothesized departures from the MAR assumption and the analytical 

model subsequently refitted to the imputed data (40). With a general (non-monotone) pattern of 

missingness, such as occurs in many clinical trials and observational epidemiologic studies, 

Bayesian methods based on Markov Chain Monte Carlo (MCMC) can be used to impute missing 

covariate and outcome data. This method assumes that the missing data, given the observed data, 

follows a multivariate normal distribution. The method constructs a Markov chain long enough 

for the distributions of the imputed variables to stabilize to a stationary distribution (40). Finally, 

one issue that applies to both pattern-mixture modeling strategies is that the models do not 

always yield marginal parameter estimates and standard errors. Hogan and Laird provide a 

method of averaging over the missing data patterns that involves using the delta method to 

approximate standard errors of marginal quantities of interest (41). 
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2.6 STATISTICAL ANALYSIS 

Descriptive statistics were calculated to summarize study variables at baseline, 6 months, and 12 

months and were presented as median/inter-quartile range (IQR) or mean (SD) for continuous 

variables and frequency and percentages for categorical variables. Whether the changes in body 

size, cardiometabolic factors, and PWV were statistically significantly different from zero at 

each follow-up visit was determined by testing the coefficient for time, as a nominal variable, in 

a linear mixed model for the measure of interest. Non-normally distributed variables were 

transformed as necessary before mixed modeling. Though the additional sodium reduction 

intervention did not statistically significantly affect any outcome in the trial except urinary 

sodium excretion, intervention arm was included as a covariate in every model for consistency 

with trial design. Interaction between intervention arm and time since baseline were tested and 

included only if statistically significant at p<0.10. The main analysis began with a separate 

mixed model for each PWV measure at all three time points, with age, sex, race (black/non-

black), smoking status (current vs. past/never), and time (in years since baseline) evaluated for 

inclusion in the model and kept if statistically significant at p<0.10. Time since baseline and all 

possible second order interactions were evaluated and kept if statistically significant at p<0.10 in 

this and subsequent models. The statistical significance of each fixed effect parameter estimate 

was determined using the Satterthwaite-type approximate t-test. Random intercepts and slopes 

were included if found to be statistically significant at p<0.10 using likelihood ratio tests under 

the appropriate mixture of chi-squared distributions.  

Next, baseline BMI and change in BMI (or weight or waist circumference) were added to 

the mixed model for each PWV measure to determine the cross-sectional and longitudinal 
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relationships between measures of body size and arterial stiffness. The measure of change in 

body size showing the most statistically significant association with each PWV measure was 

kept in the model for additional analyses. Baseline mean arterial pressure (MAP) and change in 

MAP were then added to the model to determine whether the changes in PWV that occurred with 

weight loss could be explained by blood pressure change. Next, other factors that could explain 

the relationship between weight loss and arterial destiffening were added individually to the 

model for each PWV measure. Variables of interest included cardiovascular and metabolic risk 

factors known to be associated with subclinical cardiovascular disease that also showed changes 

that were associated with the amount of weight lost during the intervention. Linear mixed models 

for these factors of interest were used to determine whether their changes were associated with 

changes in BMI or waist circumference after adjustment for age, sex, race (black/non-black), and 

intervention arm; only those factors showing longitudinal associations statistically significant at 

p<0.10 with one or both measures of body size were evaluated in subsequent models. The 

separate within-subject and between-subject effects of each of these factors were evaluated by 

including the baseline level and change from baseline as distinct variables. The determination of 

the degree to which various within-subject changes explained the relationship between body size 

reduction and PWV reduction was accomplished by establishing which factors removed the 

statistical significance of the change in body size variable when included in each mixed model 

for PWV.  

Because participants who were not as successful with weight loss during the intervention 

may have been more likely to drop-out, non-ignorable mechanisms for the missing data were 

considered by evaluating pattern-mixture models as a sensitivity analysis. Linear mixed effects 

pattern-mixture models were used to evaluate the influence of non-completion of the intervention 
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on the analysis (42). This method required the stratification of study subjects by their missing 

data pattern, then the evaluation of the influence of each missing data pattern on the outcome. A 

dichotomous variable for completion versus non-completion was included as a covariate in the 

mixed models. This variable’s interactions with within-subject factors in the final mixed models 

were then evaluated (pattern-mixture model 1). The parameter estimates of the pattern-mixture 

model were averaged over the missing data patterns to obtain marginal estimates that accounted 

for missing data patterns.  Because this simple extrapolation method of pattern-mixture modeling 

may be inaccurate, identifying restrictions were also used to enable the estimation of effects that 

were under-identified for non-completers (38). Markov Chain Monte Carlo (MCMC) multiple 

imputation was used to impute missing data for time-varying covariates and outcomes using two 

different identifying restrictions for the imputation. First, the available case missing values 

(ACMV) restriction (38) was used (pattern-mixture model 2) and second, the assumption was 

made that the conditional multivariate distribution of missing data for all continuous time-

varying variables, given the observed data, followed the corresponding distribution in the 

subgroup of subjects who either 1) had some missing follow-up data or 2) had no missing data 

but achieved less than the 6 month mean weight loss percentage in the total sample (pattern-

mixture model 3). Finally, using these “complete” datasets derived from multiple imputation, the 

marginal parameter estimates from each pattern-mixture model were evaluated by averaging 

over the missing data patterns and using the delta method to approximate standard errors (41). In 

all sensitivity analyses, subjects with intermittent missing data (PWV data missing at 6 months 

only, n=6) were treated as if they had complete data. Values of p<0.05 were considered 

statistically significant. All analyses were performed using SAS (Statistical Analysis Software 

release 9.2, Cary, NC, USA). 
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3.0  RESULTS 

The study population consisted of 344 participants in the SAVE clinical trial who had baseline 

cfPWV and/or baPWV data. The sample had a mean age of 37.9 years (SD 6.1) at baseline and 

consisted of 23% males and 16% African-Americans. Nine percent of the study population 

identified themselves as current smokers at baseline. Mean values of key study measures over 

the course of the intervention are shown in Table 1. After 6 months an average weight loss of 

7.1% was achieved and there were statistically significant mean and median decreases in cfPWV 

of 58.1 cm/s (SD 233) and 47.5 cm/s (IQR -44.5, 148) respectively (p<0.0001). Carotid-femoral 

PWV was log transformed to normalize its skewed distribution for further analyses. At 6 months 

there was a mean reduction of 11.7 cm/s (SD 91.4) in baPWV (p=0.049), which showed a 

normal distribution. At the conclusion of the one year intervention, average weight loss was 

6.4% and the decrease from baseline was statistically significant for cfPWV (mean 44.0 cm/s 

(SD 274), median 32.5 cm/s (IQR -84.5, 140.5), p=0.02) but not baPWV (mean 2.6 cm/s (SD 

97.4)) (Figure 1). The only measured changes over time that differed at least marginally 

statistically significantly by intervention arm were 24-hour urinary sodium and serum 

aldosterone. Mean urinary sodium was 186.1 meq/day at baseline in the total sample and 

decreased by 48.9 meq/day (SD 80.4) at 6 months and 38.3 meq/day (SD 78.4) at 12 months in 

the Low Na/lifestyle arm but decreased by only 8.6 meq/day (SD 78.2) at 6 months and 21.1 
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meq/day (SD 85.7) at 12 months in the Control Na/lifestyle arm (p<0.001 and p=0.20 

respectively for between-arm comparisons).  Median serum aldosterone was 107.0 pg/mL at 

baseline in the total sample and increased by 15.0 pg/mL (IQR -28.0, 50.0) at 6 months and 5.2 

pg/mL (IQR -30.7, 38.0) at 12 months in the Low Na/lifestyle arm but changed by only 1.0 

pg/mL (IQR -32.0, 28.4) at 6 months and 2.1 pg/mL (IQR -37.0, 24.4) at 12 months in the 

Control Na/lifestyle arm (p=0.06 and p=0.37 respectively for between-arm comparisons).   

Those participants with missing PWV data at 6 months were more likely than those with 

non-missing 6 month data to be male and in the low sodium intervention arm (p<0.05 for both). 

Study subjects missing PWV data at 12 months were more likely to be male, to have higher 

baseline BMI, and to have achieved lesser weight and BP reductions at 6 months than those with 

available 12 month data (p<0.05 for all). All evaluated associations between changes in body 

size and changes in cardiometabolic and vascular parameters were statistically significant with 

the exception of those involving aldosterone, ghrelin, and carotid intima-media thickness (Table 

2).  

In linear mixed models for log cfPWV, reductions in weight (p<0.0001), waist 

circumference (p=0.002), and BMI (p<0.0001) were all associated with decreases in log cfPWV 

during the lifestyle intervention.  BMI was kept in subsequent models for log cfPWV because its 

longitudinal association with log cfPWV had the greatest statistical significance of the three 

body size measures. When baseline MAP (p<0.0001) and change in MAP (p=0.02) were added 

to the model including BMI, reduction in BMI (p=0.0003) remained a statistically significant 

determinant of decrease in log cfPWV during the intervention. When each factor hypothesized to 

partially explain the relationship between BMI reduction and cfPWV reduction was added to the 

model, only change in heart rate (p=0.08) and change in common carotid artery (CCA) 
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adventitial diameter (AD) (p=0.003) were individually associated at p<0.10 with change in log 

cfPWV. However, neither of these factors removed the statistical significance of the association 

between change in BMI and change in log cfPWV (Table 3).  

In linear mixed models for baPWV, reductions in weight (p=0.002), waist circumference 

(p=0.0009), and BMI (p=0.005) were all associated with decreases in baPWV during the lifestyle 

intervention. Waist circumference was kept in subsequent models for baPWV because its 

longitudinal association with baPWV showed the greatest statistical significance of the three 

body size measures. When baseline MAP (p<0.0001) and change in MAP (p<0.0001) were 

added to the model including waist circumference, reduction in waist circumference (p=0.02) 

remained a statistically significant determinant of decrease in baPWV during the intervention. 

When other variables potentially explaining the relationship between waist circumference 

reduction and baPWV reduction were added to the model, only change in heart rate (p<0.0001) 

and change in CRP (p=0.005) were individually associated with change in baPWV. Both of these 

factors, separately or together, removed the statistical significance of the association between 

change in waist circumference and change in baPWV (Table 4). Change in BMI was similarly 

not statistically significant (p=0.99) in place of change in waist circumference in the fully-

adjusted model for baPWV. No statistically significant interactions were detected in any model. 

As a sensitivity analysis, linear mixed effects pattern-mixture models were used to 

examine the influence of several hypothesized non-ignorable missing data mechanisms on the 

results. In the first pattern-mixture model for log cfPWV, in which a dichotomous variable for 

completion versus non-completion of the study as well as its interactions with within-subject 

changes were added to the fully adjusted model, it appeared that participants who dropped out of 

the study after the six month visit showed a stronger positive association between change in BMI 
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and change in log cfPWV than participants who completed the study. In this model, it also 

appeared that non-completers showed a negative association between change in MAP and 

change in log cfPWV whereas completers showed a positive association (Table 5). In the second 

pattern-mixture model for log cfPWV, in which an available case missing values identifying 

restriction was evaluated using multiple imputation, it appeared that participants who dropped 

out of the study after either the baseline or six month visit did not differ from completers with 

regard to their parameter estimates in the fully adjusted model for log cfPWV (Table 6). In the 

third pattern-mixture model, the conditional multivariate distribution of missing data for all 

continuous time-varying variables, given the observed data, was assumed to follow the 

corresponding distribution in the group of subjects who had some missing data or achieved less 

than the mean weight loss at six months. Under this pessimistic hypothesis for the missing data 

mechanism, participants who dropped out of the study did not differ statistically significantly 

from completers in terms of their parameter estimates in the fully adjusted model except that 

subjects who dropped out after the six month time point showed a negative association between 

change in MAP and change in log cfPWV whereas completers showed a positive association 

(Table 6).  Marginal parameter estimates from each of the pattern-mixture models for log cfPWV 

differed little from those in the original fully-adjusted model for log cfPWV with the exception 

of those for change in heart rate and change in MAP, which remained marginally significant only 

in the second pattern-mixture model (Table 7). 

In the first pattern-mixture model for baPWV, when a dichotomous variable for 

completion versus non-completion of the study as well as its interactions with within-subject 

changes were added to the final model for baPWV, there were no significant differences between 

completers and non-completers in terms of their parameter estimates in the fully adjusted model 
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(Table 8). In the second pattern-mixture model for baPWV, which invoked an available case 

missing values identifying restriction, it appeared that participants who dropped out of the study 

after either the baseline or six month visit did not differ from completers with regard to their 

parameter estimates in the fully adjusted model for baPWV (Table 9). The third pattern-mixture 

model, in which missing data was imputed under the assumption that it came from subjects who 

achieved less weight loss success than completers, appeared to show that participants who 

dropped out of the study did not differ from completers with regard to their parameter estimates 

in the fully adjusted model (Table 9).  Marginal parameter estimates from each of the pattern-

mixture models for baPWV differed little from those in the original fully-adjusted model for 

baPWV (Table 10). 
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4.0  DISCUSSION 

This study showed that weight loss is statistically significantly associated with aortic PWV 

reduction in normotensive overweight and obese young adults, and that this association is 

independent of concurrent improvements in obesity-associated cardiometabolic and 

hemodynamic factors. In addition, diameter reduction of the elastic common carotid artery is 

strongly associated with aortic stiffness reduction; this longitudinal association is statistically 

stronger than those between changes in aortic stiffness and either blood pressure or heart rate. In 

contrast, the associations between weight loss or waist circumference reduction and reduction in 

baPWV, a mixed measure of aortic and peripheral arterial stiffness, appear to be explained not 

by concurrent blood pressure changes but by changes in heart rate and inflammation.   

Obesity has been found to impair arterial structure and function in numerous studies (1, 4, 

43). Weight loss, through either lifestyle modification or bariatric surgery, can reverse these 

vascular alterations (6-9, 14-20), but the precise mechanisms by which this occurs are poorly 

understood. Only a few studies have evaluated mechanisms other than blood pressure reduction 

by which weight loss may reduce arterial stiffness, and these studies have not focused on young 

adults (15, 16, 18). In a sample of middle-aged obese adults who achieved dietary or surgical 

weight loss, Rider et al. found that only BMI reduction, not concurrent hormonal or metabolic 

factor changes, independently correlated with aortic PWV reduction (15). In a study of middle-
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aged and older overweight and obese adults, only BMI reduction, total weight loss, or total fat 

loss were independently associated with cfPWV reduction when other adiposity-related measures 

were included in a multivariable model (16). Similarly, Ikonomidis et al. found that BMI 

reduction was the strongest independent determinant of reduction in thoracic aortic stiffness 

index in severely obese young and middle-aged adults who underwent bariatric surgery; 

concurrent changes in blood pressure, lipids, glucose, or indices reflecting elevated circulating 

blood volume were not as strong determinants (18). However this study, similarly to our study, 

found a significant association between BMI reduction and reduction in diastolic aortic diameter, 

suggesting that a reduction in circulating blood volume with weight loss may have some effect 

on arterial destiffening (18). Evidence from these studies and the present investigation point to 

weight loss having an impact on aortic destiffening that is independent of concurrent changes in 

established cardiometabolic and hemodynamic risk factors.  

In addition to the cardiometabolic and hemodynamic factors and vascular geometry 

measures reported in this study, micro-structural properties of the aortic wall, for example the 

extent of cross-linking of extracellular matrix proteins or the balance between matrix protein 

synthesis and degradation, may be altered by weight loss and aerobic exercise and in turn 

influence arterial stiffness (14, 44). However, an understanding of whether such relationships 

exist will require additional animal studies. Furthermore, neurohumoral modulation of vascular 

smooth muscle tone plays a role in short term changes in arterial stiffness, and improvements in 

sympathovagal balance that occur with weight loss may influence arterial destiffening (45). 

Improvements in other obesity-associated characteristics, such as nitric oxide bioavailability and 

local and/or circulating angiotensin II levels, may also contribute to improvements in aortic 

stiffness with weight loss (45). Though changes in serum aldosterone were not found to be 
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associated with PWV changes in this study, changes in serum aldosterone were mainly driven by 

changes in dietary sodium intake and moreover, some of the effects of angiotensin II on the 

arterial wall are independent of aldosterone (45). Finally, the finding that weight loss drove 

aortic destiffening independently of concurrent risk factor changes in this and other studies might 

be partially explained by the heterogeneous effects of obesity and obesity-related factors on 

different segments of the aorta (15, 46). Some studies have shown that the effect of weight loss 

on aortic stiffness in obese adults is greater in the abdominal aorta than in more proximal 

segments (15, 46). Thus, although changes in cardiometabolic factors and carotid artery 

geometry did not explain the association between weight loss and aortic stiffness reduction in 

this study, it is possible that these factors might better explain the association in the abdominal 

aorta specifically. 

In addition to the possible segment-specific effects of obesity on aortic stiffness, there 

appear to be differences in the effects of obesity on peripheral as compared to central arterial 

stiffness. In the present study, weight loss produced a greater and more sustained reduction in 

cfPWV than baPWV, and the effect of weight loss was independent of concurrent risk factor 

changes for cfPWV only. This finding is similar to that of another study in which a small group 

of healthy middle-aged males participated in an aerobic exercise intervention that promoted 

weight loss; in that study cfPWV decreased statistically significantly (mean = 58 cm/s) whereas 

the decrease in baPWV was not significant (47). In contrast, a longitudinal observational study of 

healthy middle-aged Japanese men found that weight gain over a three year period led to a 

significant increase in baPWV in those who were overweight at the start of the study (48). Cross-

sectionally, greater BMI or total body fat has been found to be associated with greater arterial 

stiffness of both muscular and elastic arteries, and the association for elastic arteries may be 
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strongest in young adults (1, 49). However, the direction of the association between excess 

weight and arterial stiffness has been found to be negative for the muscular brachial artery in at 

least one study (49). Our findings, together with these studies, seem to suggest that obesity plays 

a role in arterial stiffening throughout the arterial tree, but that in young overweight and obese 

adults, weight loss may be particularly beneficial for reducing central arterial stiffness. This is 

not unexpected, given that cfPWV is considered by many to be the gold-standard measure of 

arterial stiffness and has been repeatedly associated with incident vascular events, cardiovascular 

mortality, and all-cause mortality in the general population (12).  

Brachial-ankle PWV is highly correlated with cfPWV and exhibits similar associations 

with cardiovascular risk factors in some studies (47, 50, 51). Brachial-ankle PWV has also been 

found to predict cardiovascular and total mortality in community-dwelling older Japanese adults 

(13) and total mortality in a general population of middle-aged and older Japanese adults (52), 

though larger studies with longer follow-up times are needed to substantiate these findings. 

There have been few longitudinal studies using baPWV, and to our knowledge none of these 

studies have attempted to determine the mechanisms by which weight change may influence 

baPWV (47, 48). However, similar to the present findings for baPWV, an observational cohort 

study that followed over 800 older men found that, besides blood pressure, cumulative exposure 

to CRP and long term cyclic stress, defined as the product of heart rate and pulse pressure, are 

important predictors of cfPWV at 20 years of follow-up (53). It has been found that functional 

polymorphisms in the gene encoding CRP are not associated with aortic PWV in the general 

population, which seems to indicate that CRP is not a causal factor in arterial stiffening (54). 

However, it remains possible that the chronic inflammation present in obese individuals plays a 

causal role in arterial stiffening, and it is possible that this role may be more evident in peripheral 
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arteries given the known effects of elevated circulating CRP levels on vascular endothelial and 

smooth muscle cells (55). One recent observational cohort study found that higher baseline heart 

rate and an increase in heart rate were associated with a greater increase in baPWV over 5-6 

years (56). The relationship between reduced heart rate and reduced PWV may reflect concurrent 

decreases in sympathetic activation, improvements in physical fitness, and reduced cyclic 

stretching of the arteries, or it may simply reflect the frequency dependence of the viscoelasticity 

of the arterial walls (57). In light of the associations between reductions in inflammation or heart 

rate and reduced baPWV, additional studies should investigate whether these factors play causal 

roles in arterial stiffening in overweight and obese individuals.  

In sensitivity analysis using pattern-mixture modeling, there were few differences from 

the original results. Using the extrapolation method of pattern-mixture modeling, those 

participants who dropped out after the six month visit showed a stronger association between 

weight loss and cfPWV reduction, which is not unexpected given that most of the weight loss 

during the intervention occurred during the first six months. In this pattern-mixture model and 

the third pattern-mixture model, in which it was supposed that dropouts achieved less weight loss 

than completers, individuals who dropped out after the six month visit showed an unexpectedly 

negative association between MAP change and cfPWV change. This finding appeared to be 

partially due to the influence of measurement error on this small subgroup, but it also suggests 

that weight loss and other concurrent changes independently influenced arterial destiffening 

more strongly than blood pressure changes in this group. The differences in parameter estimates 

in the pattern-mixture models as compared to those from the original mixed model for cfPWV 

indicated that, under each of the assumptions for non-ignorable missing data, the longitudinal 

associations between cfPWV and MAP or heart rate were no longer statistically significant 
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whereas the longitudinal associations between cfPWV and either BMI or common carotid artery 

adventitial diameter remained significant. These results indicated that weight loss and reduced 

circulating blood volume may be the strongest drivers of aortic destiffening during lifestyle 

modification, regardless of the degree of weight loss. The negligible differences in parameter 

estimates from all pattern-mixture models for baPWV as compared to those from the original 

mixed model indicate that, regardless of the degree of success with weight loss, changes in blood 

pressure, heart rate, and inflammation are strongly associated with changes in baPWV during 

lifestyle modification. 

 This study had several strengths. First, many obesity-associated cardiometabolic risk 

factors and vascular parameters were measured, such that numerous mechanisms for the 

reduction in arterial stiffness with weight loss could be explored. Still, some additional 

measurements may have proven useful in this study. For example, we did not measure aortic 

diameter, which has been found to increase markedly with increased blood flow (58). It could be 

that the association between weight loss and aortic destiffening is better explained by aortic 

diameter reduction than common carotid artery diameter reduction. A second strength of this 

study was the stability of the results under various hypothesized mechanisms for the missing 

data. Though the amount of missing data was substantial (17% and 26% dropout at 6 months and 

12 months respectively), the sensitivity analyses indicated that this missing data likely did not 

influence the validity of the results. Another strength of this study was that all participants were 

normotensive and not on any antihypertensive or vasoactive medications, thus ensuring that 

these findings were not confounded by treatment effects. One limitation of this study, in addition 

to the missing data, was the relatively small number of males and non-white participants, which 

limited the power available to detect subgroup effects by sex or race, though no significant 
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interactions were detected with these factors. Another limitation was that no adjustment was 

made for multiple comparisons. However, this study included only two outcomes and was 

mainly an exploratory analysis to find any potential mechanisms by which weight loss might 

reduce arterial stiffness. 
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5.0  CONCLUSIONS 

In conclusion, we have shown that weight loss reduces aortic stiffness independently of 

concurrent changes in cardiometabolic factors and common carotid artery geometry in young 

normotensive overweight and obese adults. However, reduced common carotid artery diameter, 

an indicator of reduced circulating blood volume, is a strong independent determinant of 

decreased aortic stiffness. In addition, reductions in heart rate and inflammation are strongly 

associated with reduced baPWV, and these factors may drive the effect of weight loss on 

baPWV. Though PWV reductions were not as large in this study as some others (15, 16), likely 

due to the young age and overall good health of the participants, the predictive power of both 

cfPWV and baPWV for cardiovascular and overall mortality in the general population suggests 

that these small reductions made early in adulthood may be clinically meaningful in the long-

term. 
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APPENDIX A: TABLES AND FIGURES 

Table 1. Body size, cardiometabolic factors, and common carotid artery geometry across the 

intervention 

 
Mean (SD) or median (IQR) are shown. *P<0.05 versus baseline in a linear mixed model with time since 
baseline as a nominal variable and with adjustment for intervention arm. Insulin, triglycerides, CRP, and 
ghrelin were log transformed. IMT = common carotid artery intima-media thickness. AD = common 
carotid artery adventitial diameter. 

 

 

 

Characteristic Baseline 
(N=344) 

6 Months 
(N=284) 

12 Months 
(N=255) 

Weight (kg) 92.2 (14.9) 85.7 (15.0)* 85.5 (15.1)* 

BMI (kg/m2) 32.9 (3.8) 30.4 (4.2)* 30.4 (4.5)* 
Waist Circumference (cm) 100.4 (11.2) 95.4 (11.5)* 95.4 (12.2)* 
SBP (mmHg) 113.5 (10.5) 110.2 (9.6)* 110.1 (9.9)* 
DBP (mmHg) 72.9 (8.7) 71.1 (8.4)* 72.0 (8.2) 
Glucose (mg/dL) 97.7 (8.0) 98.0 (8.5) 98.0 (8.3) 
Insulin (µU/mL)  12.5 (9.6, 17.4) 11.6 (9.0, 15.6)* 11.7 (9.4, 15.2)* 
LDL-C (mg/dL) 123.3 (33.2) 121.6 (30.4) 124.4 (30.9) 
HDL-C (mg/dL) 52.7 (13.5) 53.4 (13.1) 55.9 (14.2)* 
Triglycerides (mg/dL) 115.5 (78.0, 170.0) 93.0 (68.0, 138.0)* 88.0 (69.0, 137.0)* 
CRP (mg/dL) 2.6 (1.3, 5.8) 2.0 (1.0, 4.4)* 2.0 (0.9, 4.1)* 
Leptin (ng/mL) 25.9 (13.3) 18.5 (11.8)* 20.7 (13.3)* 
Adiponectin (µg/mL) 11.8 (5.9) 11.9 (5.3) 12.0 (5.4) 
Ghrelin (pg/mL) 672 (547, 874) 746 (608, 1011) 832 (639, 1102) 
Heart Rate (bpm) 64.1 (9.1) 62.3 (8.3)* 63.9 (9.0) 
Mean IMT (mm) 0.60 (0.08) 0.61 (0.08) 0.61 (0.09)* 
Mean AD (mm) 6.91 (0.53) 6.86 (0.52)* 6.83 (0.56)* 
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Table 2. Longitudinal associations between changes in body size and changes in cardiometabolic 

factors and common carotid artery geometry 

 Change in BMI Change in Waist Circumference 
Dependent Variable Estimate Standard 

Error 
P Estimate Standard 

Error 
P 

MAP 0.66 0.12 <0.0001 0.21 0.04 <0.0001 
LDL-C 2.12 0.43 <0.0001 0.74 0.14 <0.0001 
HDL-C -0.39 0.15 0.01 -0.12 0.05 0.02 
Triglycerides 0.05 0.007 <0.0001 0.02 0.002 <0.0001 
Insulin 0.06 0.006 <0.0001 0.02 0.002 <0.0001 
Aldosterone -0.006 0.009 0.53 -0.001 0.003 0.68 
Adiponectin -0.41 0.06 <0.0001 -0.13 0.02 <0.0001 
Leptin 2.45 0.14 <0.0001 0.71 0.05 <0.0001 

Ghrelin -0.009 0.007 0.18 -0.004 0.002 0.09 

CRP 0.11 0.01 <0.0001 0.03 0.005 <0.0001 
24-hour Urinary Sodium* 5.84 1.34 <0.0001 1.37 0.46 0.003 
IMT 0.001 0.0009 0.20 5.9 x 10-6 0.0003 0.98 
AD 0.03 0.005 <0.0001 0.006 0.002 0.0001 
 
Each dependent variable is the outcome in a linear mixed effects model. Random intercept and years 
since baseline effects were included in each model. Intervention arm, baseline age, race (black/non-
black), sex, and baseline BMI or waist circumference were included as fixed effects. Triglycerides, 
insulin, aldosterone, CRP, and ghrelin were log transformed. MAP = mean arterial pressure. IMT = 
common carotid artery intima-media thickness. AD = common carotid artery adventitial diameter. 
Number of subjects = 344. Number of observations = 882. *Number of subjects = 324. Number of 
observations = 674.  
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Table 3. Fully- adjusted multivariable linear mixed effects model for log cfPWV 

Random intercept and years since baseline effects were included in this model. Intervention arm was 
included as a fixed effect. Between-subjects factors were determined at baseline. Within-subject factors 
were evaluated as changes from baseline at the time of the subject’s follow-up measurements. MAP = 
mean arterial pressure. AD = common carotid artery adventitial diameter. Number of subjects = 326. 
Number of observations = 804. 
 

 

 

 

Variable Estimate Standard Error P 
Between-subject factors    
Age 0.009 0.001 <0.0001 
Race (black vs. non-black) 0.03 0.02 0.17 
Sex (male vs. female) -0.002 0.02 0.95 
Baseline MAP 0.004 0.001 <0.0001 
Baseline Heart Rate 0.005 0.001 <0.0001 
Baseline BMI 0.01 0.002 <0.0001 
Baseline AD 0.03 0.02 0.18 
Within-subject factors    
Change in MAP 0.002 0.001 0.07 
Change in Heart Rate 0.002 0.001 0.08 
Change in BMI 0.01 0.004 0.01 
Change in AD 0.11 0.03 0.001 
Years -0.001 0.02 0.93 
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Table 4. Fully-adjusted multivariable linear mixed effects model for baPWV 
Variable Estimate Standard Error P 

Between-subject factors    
Age 7.32 0.95 <0.0001 
Race (black vs. non-black) 59.87 15.96 0.0002 
Sex (male vs. female) 55.24 17.50 0.002 
Baseline MAP 3.82 0.72 <0.0001 
Baseline Heart Rate 3.73 0.66 <0.0001 

Baseline Waist Circumference -0.22 0.68 0.74 

Baseline CRP 18.87 6.13 0.002 
Within-subject factors    
Change in MAP 2.59 0.55 <0.0001 
Change in Heart Rate 2.42 0.50 <0.0001 

Change in Waist Circumference 0.38 0.60 0.53 

Change in CRP 10.43 4.68 0.03 
Years 6.28 5.47 0.25 
 
A random intercept was included in this model. Intervention arm was included as a fixed effect. Between-
subjects factors were determined at baseline. Within-subject factors were evaluated as changes from 
baseline at the time of the subject’s follow-up measurements. MAP = mean arterial pressure. CRP = C-
reactive protein. CRP was log transformed. Number of subjects = 335. Number of observations = 832. 
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Figure 1. Boxplots of Pulse Wave Velocity Across the Intervention for (A) cfPWV and (B) baPWV 
 
P values are for follow-up versus baseline measures in linear mixed models with adjustment for age, sex, 
race (black/non-black), and intervention arm. Median values are shown at each time point.
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Table 5. Multivariable pattern-mixture linear mixed effects model for log cfPWV using simple extrapolation 

 Pattern Mixture Model 1 
Variable Estimate Standard Error P 

Between-subject factors 
Age 0.01 0.001 <0.0001 
Race (black vs. non-black) 0.03 0.02 0.14 
Sex (male vs. female) 0.001 0.02 0.96 
Baseline MAP 0.004 0.001 <0.0001 
Baseline Heart Rate 0.005 0.001 <0.0001 
Baseline BMI 0.01 0.002 <0.0001 

Baseline AD 0.02 0.02 0.29 

Dropout (Non-completers vs. Completers) -0.006 0.02 0.80 
Within-subject factors 
Change in MAP 0.003 0.001 0.01 
Change in MAP x Dropout (reference: Completers) -0.02 0.005 0.0005 
Change in Heart Rate 0.003 0.001 0.04 
Change in Heart Rate x Dropout (reference: Completers) -0.005 0.004 0.29 
Change in BMI 0.007 0.004 0.09 
Change in BMI x Dropout (reference: Completers) 0.04 0.02 0.01 
Change in AD 0.11 0.03 0.001 
Change in AD x Dropout (reference: Completers) 0.07 0.13 0.61 
Years -0.006 0.02 0.71 
Years x Dropout (reference: Completers) 0.12 0.08 0.12 
Random intercept and years since baseline effects were included in this model. Intervention arm was included as a fixed effect. Between-subjects 
factors were determined at baseline. Within-subject factors were evaluated as changes from baseline at the time of the subject’s follow-up 
measurements. AD = common carotid artery adventitial diameter. MAP = mean arterial pressure. Number of subjects = 326. Number of 
observations = 804.
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Table 6.  Multivariable pattern-mixture linear mixed effects models for log cfPWV using multiply imputed datasets 

 Pattern-Mixture Model 2 Pattern-Mixture Model 3 
Variable Estimate Standard 

Error 
P Estimate Standard 

Error 
P 

Between-subject factors 
Age 0.009 0.001 <0.0001 0.01 0.001 <0.0001 
Race (black vs. non-black) 0.04 0.03 0.15 0.03 0.02 0.14 
Sex (male vs. female) -0.01 0.02 0.69 -0.01 0.02 0.60 
Baseline MAP 0.004 0.001 0.0002 0.004 0.001 <0.0001 
Baseline Heart Rate 0.005 0.001 <0.0001 0.005 0.001 <0.0001 
Baseline BMI 0.01 0.002 <0.0001 0.01 0.003 <0.0001 

Baseline AD 0.03 0.02 0.14 0.03 0.02 0.14 

Dropout (reference: Completers) 
      Baseline only 

-0.007 0.03 0.82 -0.007 0.03 0.81 

      Baseline and 6 months only -0.005 0.03 0.88 0.05 0.05 0.84 
Within-subject factors 
Change in MAP 0.003 0.001 0.01 0.003 0.001 0.01 
Change in MAP x Dropout (reference: Completers) 
      Baseline only 

 
-0.0009 

 
0.004 

 
0.83 

 
-0.003 

 
0.003 

 
0.32 

      Baseline and 6 months only -0.008 0.004 0.07 -0.01 0.004 0.01 
Change in Heart Rate 0.002 0.001 0.06 0.002 0.001 0.048 
Change in Heart Rate x Dropout (reference: 
Completers) 
      Baseline only 

 
-0.0009 

 
0.004 

 
0.81 

 
-0.001 

 
0.004 

 
0.80 

      Baseline and 6 months only -0.002 0.004 0.64 -0.004 0.004 0.28 
Change in BMI 0.007 0.004 0.09 0.008 0.004 0.07 
Change in BMI x Dropout (reference: Completers) 
      Baseline only 

 
0.006 

 
0.01 

 
0.71 

 
0.003 

 
0.01 

 
0.86 
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      Baseline and 6 months only 0.01 0.01 0.27 0.02 0.01 0.13 
Change in AD 0.12 0.04 0.0007 0.12 0.03 0.001 

Change in AD x Dropout (reference: Completers) 
      Baseline only 

 
 

-0.01 

 
 

0.10 

 
 

0.93 

 
 

-0.01 

 
 

0.09 

 
 

0.87 
      Baseline and 6 months only 0.005 0.12 0.97 -0.002 0.12 0.99 
Years -0.005 0.02 0.75 -0.006 0.02 0.73 
Years x Dropout (reference: Completers) 
      Baseline only 

 
0.01 

 
0.05 

 
0.84 

 
0.008 

 
0.04 

 
0.86 

      Baseline and 6 months only -0.005 0.03 0.61 0.05 0.05 0.35 
Random intercept and years since baseline effects were included in this model. Intervention arm was included as a fixed effect. Between-subjects 
factors were determined at baseline. Within-subject factors were evaluated as changes from baseline at the time of the subject’s follow-up 
measurements. AD = common carotid artery adventitial diameter. MAP = mean arterial pressure. Number of subjects = 326. Number of 
observations = 978. 
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Table 7.  Marginal parameter estimates from multivariable pattern-mixture linear mixed effects models for log cfPWV  

 Pattern-Mixture Model 1 Pattern-Mixture Model 2 Pattern-Mixture Model 3 
Variable Estimate Standard 

Error 
P Estimate Standard 

Error 
P Estimate Standard 

Error 
P 

Between-subject factors 
Age 0.01 0.001 <0.0001 0.009 0.001 <0.0001 0.01 0.001 <0.0001 
Race (black vs. non-black) 0.03 0.02 0.14 0.04 0.03 0.15 0.03 0.02 0.14 
Sex (male vs. female) 0.001 0.02 0.96 -0.01 0.02 0.69 -0.01 0.02 0.60 
Baseline MAP 0.004 0.001 <0.0001 0.004 0.001 0.0002 0.004 0.001 <0.0001 
Baseline Heart Rate 0.005 0.001 <0.0001 0.005 0.001 <0.0001 0.005 0.001 <0.0001 
Baseline BMI 0.01 0.002 <0.0001 0.01 0.002 <0.0001 0.01 0.003 <0.0001 

Baseline AD 0.02 0.02 0.29 0.03 0.02 0.14 0.03 0.02 0.14 

Within-subject factors 
Change in MAP -0.001 0.002 0.44 0.002 0.001 0.12 0.002 0.001 0.22 

Change in Heart Rate 0.001 0.002 0.51 0.002 0.001 0.10 0.002 0.001 0.20 
Change in BMI 0.02 0.006 0.0007 0.01 0.004 0.02 0.01 0.004 0.01 
Change in AD 0.13 0.05 0.003 0.12 0.04 0.0006 0.11 0.03 0.0004 
Years 0.03 0.03 0.28 0.0001 0.02 0.99 0.002 0.02 0.91 
Random intercept and years since baseline effects were included in this model. Intervention arm was included as a fixed effect. Between-subjects 
factors were determined at baseline. Within-subject factors were evaluated as changes from baseline at the time of the subject’s follow-up 
measurements. AD = common carotid artery adventitial diameter. MAP = mean arterial pressure. Number of subjects for model 1 = 326. Number 
of subjects for models 2 and 3 = 326. Number of observations for model 1 = 804. Number of observations for models 2 and 3 = 978. 
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Table 8.  Multivariable pattern-mixture linear mixed effects model for baPWV using simple extrapolation 

 Pattern-Mixture Model 1 
Variable Estimate Standard Error P 

Between-subject factors 
Age 7.34 0.95 <0.0001 
Race (black vs. non-black) 60.49 15.96 0.0002 
Sex (male vs. female) 55.62 17.72 0.002 
Baseline MAP 3.79 0.72 <0.0001 
Baseline Heart Rate 3.75 0.66 <0.0001 
Baseline Waist Circumference -0.26 0.68 0.70 

Baseline CRP 19.30 6.13 0.002 

Dropout (Non-completers vs. Completers) 0.42 13.95 0.98 
Within-subject factors 
Change in MAP 2.79 0.57 <0.0001 
Change in MAP x Dropout (reference: Completers) -2.75 2.34 0.24 
Change in Heart Rate 2.40 0.51 <0.0001 
Change in Heart Rate x Dropout (reference: Completers) 0.54 2.03 0.79 
Change in Waist Circumference 0.54 0.62 0.39 
Change in Waist Circumference x Dropout (reference: 
Completers) 

-1.84 2.84 0.52 

Change in CRP 9.74 4.87 0.046 
Change in CRP x Dropout (reference: Completers) 12.69 18.34 0.49 
Years 6.73 5.68 0.24 
Years x Dropout (reference: Completers) 4.85 30.31 0.87 

A random intercept was included in this model. Intervention arm was included as a fixed effect. Between-subjects factors were determined at 
baseline. Within-subject factors were evaluated as changes from baseline at the time of the subject’s follow-up measurements. CRP was log 
transformed. MAP = mean arterial pressure. CRP = C-reactive protein. Number of subjects = 335. Number of observations = 832. 
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Table 9.  Multivariable pattern-mixture linear mixed effects models for baPWV using multiply imputed datasets 

 Pattern-Mixture Model 2 Pattern-Mixture Model 3 
Variable Estimate Standard 

Error 
P Estimate Standard 

Error 
P 

Between-subject factors 
Age 7.23 0.96 <0.0001 7.17 0.95 <0.0001 
Race (black vs. non-black) 57.05 15.80 0.0003 58.20 15.84 0.0002 
Sex (male vs. female) 60.88 17.65 0.0006 58.55 17.78 0.001 
Baseline MAP 3.94 0.71 <0.0001 3.82 0.72 <0.0001 
Baseline Heart Rate 3.72 0.65 <0.0001 3.77 0.65 <0.001 
Baseline Waist Circumference -0.45 0.69 0.51 -0.31 0.69 0.65 

Baseline CRP 19.48 6.07 0.001 19.00 6.18 0.002 

Dropout (reference: Completers) 
      Baseline only 

-4.91 16.22 0.76 -6.24 16.66 0.71 

      Baseline and 6 months only 6.80 18.96 0.72 8.08 19.39 0.68 
Within-subject factors 
Change in MAP 2.60 0.59 <0.0001 2.68 0.59 <0.0001 
Change in MAP x Dropout (reference: Completers) 
      Baseline only 

0.02 1.78 0.99 -1.8 2.06 0.39 

      Baseline and 6 months only -1.07 2.01 0.60 -2.15 2.23 0.34 
Change in Heart Rate 2.40 0.53 <0.0001 2.48 0.53 <0.0001 
Change in Heart Rate x Dropout (reference: Completers) 
      Baseline only 

0.07 1.62 0.96 -0.11 2.03 0.96 

      Baseline and 6 months only 0.31 1.76 0.86 0.23 1.86 0.90 
Change in Waist Circumference 0.40 0.64 0.53 0.42 0.64 0.51 
Change in Waist Circumference x Dropout (reference: 
Completers) 

-0.52 2.00 0.80 -1.12 2.29 0.63 
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      Baseline only 
      Baseline and 6 months only -1.35 2.34 0.56 0.62 2.35 0.79 
Change in CRP 11.40 5.04 0.02 9.75 5.06 0.05 
Change in CRP x Dropout (reference: Completers) 
      Baseline only 

4.50 13.42 0.74 3.67 16.02 0.82 

      Baseline and 6 months only 6.19 16.02 0.70 6.15 15.65 0.70 
Years 4.78 5.68 0.40 5.15 5.76 0.37 
Years x Dropout (reference: Completers) 
      Baseline only 

4.74 16.43 0.77 8.53 15.63 0.59 

      Baseline and 6 months only 2.12 21.77 0.92 6.24 24.00 0.80 
A random intercept was included in this model. Intervention arm was included as a fixed effect. Between-subjects factors were determined at 
baseline. Within-subject factors were evaluated as changes from baseline at the time of the subject’s follow-up measurements. CRP was log 
transformed. MAP = mean arterial pressure. CRP = C-reactive protein. Number of subjects = 339. Number of observations = 1017. 
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Table 10.  Marginal parameter estimates from multivariable pattern-mixture linear mixed effects models for baPWV  

 Pattern-Mixture Model 1 Pattern-Mixture Model 2 Pattern-Mixture Model 3 
Variable Estimate Standard 

Error 
P Estimate Standard 

Error 
P Estimate Standard 

Error 
P 

Between-subject factors 
Age 7.34 0.95 <0.0001 7.23 0.96 <0.0001 7.17 0.95 <0.0001 
Race (black vs. non-black) 60.49 15.96 0.0002 57.05 15.80 0.0003 58.20 15.84 0.0002 
Sex (male vs. female) 55.62 17.72 0.002 60.88 17.65 0.0006 58.55 17.78 0.001 
Baseline MAP 3.79 0.72 <0.0001 3.94 0.71 <0.0001 3.82 0.72 <0.0001 
Baseline Heart Rate 3.75 0.66 <0.0001 3.72 0.65 <0.0001 3.77 0.65 <0.001 
Baseline Waist 
Circumference 

-0.26 0.68 0.70 -0.45 0.69 0.51 -0.31 0.69 0.65 

Baseline CRP 19.30 6.13 0.002 19.48 6.07 0.001 19.00 6.18 0.002 

Within-subject factors 
Change in MAP 1.99 0.78 0.01 2.48 0.55 <0.0001 2.11 0.67 0.002 
Change in Heart Rate 2.56 0.68 0.0002 2.45 0.51 <0.0001 2.48 0.60 <0.0001 
Change in Waist 
Circumference 

0.00 0.93 1.00 0.16 0.63 0.80 0.29 0.82 0.72 

Change in CRP 13.45 6.25 0.03 12.91 4.66 0.006 11.11 5.27 0.04 
Years 8.14 9.58 0.40 5.86 5.56 0.29 7.38 5.70 0.20 
A random intercept was included in this model. Intervention arm was included as a fixed effect. Between-subjects factors were determined at 
baseline. Within-subject factors were evaluated as changes from baseline at the time of the subject’s follow-up measurement. CRP was log 
transformed. MAP = mean arterial pressure. CRP = C-reactive protein. Number of subjects for model 1 = 335. Number of subjects for models 2 
and 3 = 339. Number of observations for model 1 = 832. Number of observations for models 2 and 3 = 1017. 
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APPENDIX B: SAS CODE 

SAS v9.2 code used for fully-adjusted linear mixed models, pattern-mixture models, and 

multiple imputation: 

 

I. Final linear mixed models for log cfPWV and baPWV 

 
PROC mixed data= save_longform_2152 covtest method=reml;  
class ID randomization_group;  
model logcfpwvcol =age racedich male avgmapbl mapdiff bmiBL bmidiff prbl prdiff adavgbl adavgdiff 
years / solution ddfm=satterthwaite; 
random intercept  years/type=un subject=ID;  
run; 
 
PROC mixed data= save_longform_2152 covtest method=reml; 
class ID randomization_group;  
model bapwv =age randomization_group racedich male avgmapbl mapdiff  waistBL waistdiff  prbl prdiff 
logcrpbl logcrpdiff years / solution ddfm=satterthwaite;   
random intercept /type=un subject=ID;  
run; 
 

 

II. Pattern-mixture model 1 (cfPWV) 

 

PROC mixed data= save_longform_2152 covtest method=reml;  
class ID randomization_group;  
model logcfpwvcol =age racedich male avgmapbl mapdiff mapdiff*cfPWVcoldropout 
bmiBL bmidiff bmidiff*cfPWVcoldropout prbl prdiff prdiff*cfPWVcoldropout adavgbl adavgdiff 
adavgdiff*cfPWVcoldropout years cfPWVcoldropout years*cfPWVcoldropout randomization_group / 
solution ddfm=satterthwaite;   
random intercept  years /type=un subject=ID; 
ESTIMATE 'avg int' INTERCEPT 1 racedich 0 male 0 avgmapbl 0 mapdiff 0 mapdiff*cfPWVcoldropout 
0 bmiBL 0 bmidiff 0  
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bmidiff*cfPWVcoldropout 0 prbl 0 prdiff 0 prdiff*cfPWVcoldropout 0 adavgbl 0 adavgdiff 0 
adavgdiff*cfPWVcoldropout 0 
years 0 cfPWVcoldropout 0.307 years*cfPWVcoldropout 0; 
ESTIMATE 'avg years' INTERCEPT 0 racedich 0 male 0 avgmapbl 0 mapdiff 0 
mapdiff*cfPWVcoldropout 0 bmiBL 0 bmidiff 0  
bmidiff*cfPWVcoldropout 0 prbl 0 prdiff 0 prdiff*cfPWVcoldropout 0 adavgbl 0 adavgdiff 0 
adavgdiff*cfPWVcoldropout 0 
years 1 cfPWVcoldropout 0 years*cfPWVcoldropout 0.307; 
ESTIMATE 'avg bmidiff' INTERCEPT 0 racedich 0 male 0 avgmapbl 0 mapdiff 0 
mapdiff*cfPWVcoldropout 0 bmiBL 0 bmidiff 1  
bmidiff*cfPWVcoldropout 0.307 prbl 0 prdiff 0 prdiff*cfPWVcoldropout 0 adavgbl 0 adavgdiff 0 
adavgdiff*cfPWVcoldropout 0 
years 0 cfPWVcoldropout 0 years*cfPWVcoldropout 0; 
ESTIMATE 'avg mapdiff' INTERCEPT 0 racedich 0 male 0 avgmapbl 0 mapdiff 1 
mapdiff*cfPWVcoldropout 0.307 bmiBL 0 bmidiff 0  
bmidiff*cfPWVcoldropout 0 prbl 0 prdiff 0 prdiff*cfPWVcoldropout 0 adavgbl 0 adavgdiff 0 
adavgdiff*cfPWVcoldropout 0 
years 0 cfPWVcoldropout 0 years*cfPWVcoldropout 0; 
ESTIMATE 'avg prdiff' INTERCEPT 0 racedich 0 male 0 avgmapbl 0 mapdiff 0 
mapdiff*cfPWVcoldropout 0 bmiBL 0 bmidiff 0  
bmidiff*cfPWVcoldropout 0 prbl 0 prdiff 1 prdiff*cfPWVcoldropout 0.307 adavgbl 0 adavgdiff 0 
adavgdiff*cfPWVcoldropout 0 
years 0 cfPWVcoldropout 0 years*cfPWVcoldropout 0; 
ESTIMATE 'avg adavgdiff' INTERCEPT 0 racedich 0 male 0 avgmapbl 0 mapdiff 0 
mapdiff*cfPWVcoldropout 0 bmiBL 0 bmidiff 0  
bmidiff*cfPWVcoldropout 0 prbl 0 prdiff 0 prdiff*cfPWVcoldropout 0 adavgbl 0 adavgdiff 1 
adavgdiff*cfPWVcoldropout 0.307 
years 0 cfPWVcoldropout 0 years*cfPWVcoldropout 0; 
run; 
 

III. Pattern-mixture model 2 and corresponding multiple imputation (cfPWV) 
 
data cfpwv_miss; 
set save_longform_2152; 
where logcfpwvcolbl ne .; 
keep ID randomization_group randgrp_num timeclass logcfpwvcol age racedich male avgmapbl mapdiff 
bmiBL bmidiff prbl prdiff adavgbl adavgdiff years logcfpwvcol6 logcfpwvcol12;  
run; 
 
data wide; 
  set cfpwv_miss; 
  array logcfpwvcolt(3); 
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  array mapdifft(3); 
  array bmidifft(3); 
  array prdifft(3); 
  array adavgdifft(3); 
  array yearst(3); 
  by id; 
  retain logcfpwvcolt mapdifft bmidifft prdifft adavgdifft yearst; 
  if first.id then do i = 1 to 3; 
     logcfpwvcolt(i) = .; 
  mapdifft(i) = .; 
   bmidifft(i) = .; 
    prdifft(i) = .; 
    adavgdifft(i) = .; 
  yearst(i) = .; 
  end; 
  logcfpwvcolt(timeclass) =  logcfpwvcol; 
  mapdifft(timeclass) = mapdiff; 
  bmidifft(timeclass) = bmidiff; 
  prdifft(timeclass) = prdiff; 
  adavgdifft(timeclass) = adavgdiff; 
  yearst(timeclass) = years; 
  if last.id; 
  drop timeclass logcfpwvcol mapdiff bmidiff prdiff adavgdiff years i; 
run; 
proc mi data = wide out=wide_imputed nimpute=20 seed=1213445 ; 
var logcfpwvcolt: mapdifft: bmidifft: prdifft: adavgdifft: yearst: age racedich male avgmapbl 
bmiBL prbl adavgbl randgrp_num; 
mcmc timeplot(mean(logcfpwvcolt2 logcfpwvcolt3)) acfplot(mean(logcfpwvcolt2 logcfpwvcolt3)); 
mcmc plots=acf(wlf) plots=acf(mean) nbiter=1000 timeplot(mean); 
run; 
data long_imputed; 
  set wide_imputed; 
  array logcfpwvcolt(3) logcfpwvcolt:; 
  array mapdifft(3) mapdifft:; 
  array bmidifft(3) bmidifft:; 
  array prdifft(3) prdifft:; 
  array adavgdifft(3) adavgdifft:; 
  array yearst(3) yearst:; 
  do timeclass = 1 to 3; 
   logcfpwvcol = logcfpwvcolt(timeclass); 
   mapdiff = mapdifft(timeclass); 
   bmidiff = bmidifft(timeclass); 
   prdiff = prdifft(timeclass); 
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   adavgdiff = adavgdifft(timeclass); 
   years = yearst(timeclass); 
  output; 
  end; 
  drop logcfpwvcolt: mapdifft: bmidifft: prdifft: adavgdifft: yearst:; 
run; 
proc sort data = long_imputed; 
  by _imputation_ ID timeclass; 
run; 
data long_imputed; 
set long_imputed; 
if logcfpwvcol6=. and logcfpwvcol12=. then cfPWVcoldropout=0; 
else if logcfpwvcol6 ne . and logcfpwvcol12=. then cfPWVcoldropout=1; 
else cfpwvcoldropout=2; 
run; 
proc mixed data = long_imputed covtest method=reml; 
by _imputation_; 
class ID cfpwvcoldropout randomization_group;  
model logcfpwvcol =age racedich male avgmapbl mapdiff mapdiff*cfPWVcoldropout 
bmiBL bmidiff bmidiff*cfPWVcoldropout prbl prdiff prdiff*cfPWVcoldropout adavgbl adavgdiff 
adavgdiff*cfPWVcoldropout years cfPWVcoldropout years*cfPWVcoldropout 
randomization_group/solution ddfm=satterthwaite; 
random intercept years /subject=id type=un; 
ESTIMATE 'avg int' INTERCEPT 1 cfPWVcoldropout 0.181 0.120 0.699; 
ESTIMATE 'avg years' years 1 years*cfPWVcoldropout 0.181 0.120 0.699; 
ESTIMATE 'avg mapdiff' mapdiff 1 mapdiff*cfPWVcoldropout 0.181 0.120 0.699; 
ESTIMATE 'avg bmidiff' bmidiff 1 bmidiff*cfPWVcoldropout 0.181 0.120 0.699; 
ESTIMATE 'avg prdiff' prdiff 1 prdiff*cfPWVcoldropout 0.181 0.120 0.699; 
ESTIMATE 'avg adavgdiff' adavgdiff 1 adavgdiff*cfPWVcoldropout 0.181 0.120 0.699; 
ods output CovParms = cov solutionf= mixparms estimates=est;  
run; 
data mixparms; 
set mixparms; 
if Effect='bmidiff*cfPWVcoldrop' and cfPWVcoldropout=0 then Effect='bmidiff_cfPWVcoldro0'; 
if Effect='bmidiff*cfPWVcoldrop' and cfPWVcoldropout=1 then Effect='bmidiff_cfPWVcoldro1'; 
if Effect='mapdiff*cfPWVcoldrop' and cfPWVcoldropout=0 then Effect='mapdiff_cfPWVcoldro0'; 
if Effect='mapdiff*cfPWVcoldrop' and cfPWVcoldropout=1 then Effect='mapdiff_cfPWVcoldro1'; 
if Effect='prdiff*cfPWVcoldropo' and cfPWVcoldropout=0 then Effect='prdiff_cfPWVcoldrop0'; 
if Effect='prdiff*cfPWVcoldropo' and cfPWVcoldropout=1 then Effect='prdiff_cfPWVcoldrop1'; 
if Effect='adavgdiff*cfPWVcoldr' and cfPWVcoldropout=0 then Effect='adavgdiff_cfPWVcold0'; 
if Effect='adavgdiff*cfPWVcoldr' and cfPWVcoldropout=1 then Effect='adavgdiff_cfPWVcold1'; 
if Effect='years*cfPWVcoldropou' and cfPWVcoldropout=0 then Effect='years_cfPWVcoldropo0'; 
if Effect='years*cfPWVcoldropou' and cfPWVcoldropout=1 then Effect='years_cfPWVcoldropo1'; 
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run; 
proc mianalyze parms(classvar=full)=mixparms; 
class randomization_group cfPWVcoldropout; 
modeleffects Intercept age racedich male avgmapbl mapdiff mapdiff_cfPWVcoldro0 
mapdiff_cfPWVcoldro1bmiBL bmidiff bmidiff_cfPWVcoldro0 bmidiff_cfPWVcoldro1 prbl prdiff 
prdiff_cfPWVcoldrop0 prdiff_cfPWVcoldrop1 adavgbl adavgdiff adavgdiff_cfPWVcold0 
adavgdiff_cfPWVcold1 years cfPWVcoldropout years_cfPWVcoldropo0 years_cfPWVcoldropo1 
randomization_group; 
where estimate ne 0; 
run; 
proc sort data = est; 
by label _imputation_; 
run; 
ods select parameterestimates; 
proc mianalyze data = est; 
  by label; 
  modeleffects estimate; 
  stderr stderr; 
run; 
 

IV. Pattern-mixture model 3 and corresponding multiple imputation (cfPWV) 

 
data cfpwv_miss1; 
set save_longform_2152; 
if logcfpwvcol6 ne . and logcfpwvcol12 ne . and (weight6-weightbl)/weightbl lt -0.072 then delete; 
keep ID randomization_group randgrp_num timeclass logcfpwvcol age racedich male avgmapbl mapdiff 
bmiBL bmidiff prbl prdiff adavgbl adavgdiff years logcfpwvcolbl logcfpwvcol6 logcfpwvcol12;  
run; 
  
data cfpwv_miss2; 
merge save_longform_2152(in=ina) cfpwv_miss1(in=inb); 
by ID timeclass; 
if ina and not inb; 
keep ID randomization_group randgrp_num timeclass logcfpwvcol age racedich male avgmapbl mapdiff 
bmiBL bmidiff prbl prdiff adavgbl adavgdiff years logcfpwvcolbl logcfpwvcol6 logcfpwvcol12;  
run; 
 
data wide; 
  set cfpwv_miss1; 
  array logcfpwvcolt(3); 
  array mapdifft(3); 
  array bmidifft(3); 
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  array prdifft(3); 
  array adavgdifft(3); 
  array yearst(3); 
  by id; 
  retain logcfpwvcolt mapdifft bmidifft prdifft adavgdifft yearst; 
  if first.id then do i = 1 to 3; 
     logcfpwvcolt(i) = .; 
  mapdifft(i) = .; 
   bmidifft(i) = .; 
    prdifft(i) = .; 
    adavgdifft(i) = .; 
  yearst(i) = .; 
  end; 
  logcfpwvcolt(timeclass) =  logcfpwvcol; 
  mapdifft(timeclass) = mapdiff; 
  bmidifft(timeclass) = bmidiff; 
  prdifft(timeclass) = prdiff; 
  adavgdifft(timeclass) = adavgdiff; 
  yearst(timeclass) = years; 
  if last.id; 
  drop timeclass logcfpwvcol mapdiff bmidiff prdiff adavgdiff years i; 
run; 
proc print data = wide (obs=10) noobs; 
run; 
 
proc mi data = wide out=wide_imputed nimpute=20 seed=1213445; 
  var logcfpwvcolt: mapdifft: bmidifft: prdifft: adavgdifft: yearst: age racedich male avgmapbl 
bmiBL prbl adavgbl randgrp_num; 
mcmc plots=acf(wlf) nbiter=1000; 
run; 
data long_imputed; 
  set wide_imputed; 
  array logcfpwvcolt(3) logcfpwvcolt:; 
  array mapdifft(3) mapdifft:; 
  array bmidifft(3) bmidifft:; 
  array prdifft(3) prdifft:; 
  array adavgdifft(3) adavgdifft:; 
  array yearst(3) yearst:; 
  do timeclass = 1 to 3; 
   logcfpwvcol = logcfpwvcolt(timeclass); 
   mapdiff = mapdifft(timeclass); 
   bmidiff = bmidifft(timeclass); 
   prdiff = prdifft(timeclass); 
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   adavgdiff = adavgdifft(timeclass); 
   years = yearst(timeclass); 
  output; 
  end; 
  drop logcfpwvcolt: mapdifft: bmidifft: prdifft: adavgdifft: yearst:; 
run; 
data cfpwv_miss2imp1; 
set cfpwv_miss2; 
_imputation_=1; 
run; 
data cfpwv_miss2imp2; 
set cfpwv_miss2; 
_imputation_=2; 
run; 
data cfpwv_miss2imp3; 
set cfpwv_miss2; 
_imputation_=3; 
run; 
data cfpwv_miss2imp4; 
set cfpwv_miss2; 
_imputation_=4; 
run; 
data cfpwv_miss2imp5; 
set cfpwv_miss2; 
_imputation_=5; 
run; 
data cfpwv_miss2imp6; 
set cfpwv_miss2; 
_imputation_=6; 
run; 
data cfpwv_miss2imp7; 
set cfpwv_miss2; 
_imputation_=7; 
run; 
data cfpwv_miss2imp8; 
set cfpwv_miss2; 
_imputation_=8; 
run; 
data cfpwv_miss2imp9; 
set cfpwv_miss2; 
_imputation_=9; 
run; 
data cfpwv_miss2imp10; 
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set cfpwv_miss2; 
_imputation_=10; 
run; 
data cfpwv_miss2imp11; 
set cfpwv_miss2; 
_imputation_=11; 
run; 
data cfpwv_miss2imp12; 
set cfpwv_miss2; 
_imputation_=12; 
run; 
data cfpwv_miss2imp13; 
set cfpwv_miss2; 
_imputation_=13; 
run; 
data cfpwv_miss2imp14; 
set cfpwv_miss2; 
_imputation_=14; 
run; 
data cfpwv_miss2imp15; 
set cfpwv_miss2; 
_imputation_=15; 
run; 
data cfpwv_miss2imp16; 
set cfpwv_miss2; 
_imputation_=16; 
run; 
data cfpwv_miss2imp17; 
set cfpwv_miss2; 
_imputation_=17; 
run; 
data cfpwv_miss2imp18; 
set cfpwv_miss2; 
_imputation_=18; 
run; 
data cfpwv_miss2imp19; 
set cfpwv_miss2; 
_imputation_=19; 
run; 
data cfpwv_miss2imp20; 
set cfpwv_miss2; 
_imputation_=20; 
run; 
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data long_imputed; 
set long_imputed cfpwv_miss2imp1 cfpwv_miss2imp2 cfpwv_miss2imp3 cfpwv_miss2imp4 
cfpwv_miss2imp5 cfpwv_miss2imp6 cfpwv_miss2imp7 
cfpwv_miss2imp8 cfpwv_miss2imp9 cfpwv_miss2imp10 cfpwv_miss2imp11 cfpwv_miss2imp12 
cfpwv_miss2imp13 cfpwv_miss2imp14 
cfpwv_miss2imp15 cfpwv_miss2imp16 cfpwv_miss2imp17 cfpwv_miss2imp18 cfpwv_miss2imp19 
cfpwv_miss2imp20; 
run; 
proc sort data = long_imputed; 
  by _imputation_ ID timeclass; 
run; 
data long_imputed; 
set long_imputed; 
if logcfpwvcol6=. and logcfpwvcol12=. then cfPWVcoldropout=0; 
else if logcfpwvcol6 ne . and logcfpwvcol12=. then cfPWVcoldropout=1;  
else cfpwvcoldropout=2; 
run; 
 
proc mixed data = long_imputed method=reml; 
by _imputation_; 
class ID cfpwvcoldropout randomization_group;  
model logcfpwvcol =age racedich male avgmapbl mapdiff mapdiff*cfPWVcoldropout 
bmiBL bmidiff bmidiff*cfPWVcoldropout prbl prdiff prdiff*cfPWVcoldropout adavgbl adavgdiff 
adavgdiff*cfPWVcoldropout  
years cfPWVcoldropout years*cfPWVcoldropout randomization_group/solution ddfm=satterthwaite; 
random intercept years /subject=id type=un; 
ESTIMATE 'avg int' INTERCEPT 1 cfPWVcoldropout 0.187 0.120 0.693; 
ESTIMATE 'avg years' years 1 years*cfPWVcoldropout 0.187 0.120 0.693; 
ESTIMATE 'avg mapdiff' mapdiff 1 mapdiff*cfPWVcoldropout 0.187 0.120 0.693; 
ESTIMATE 'avg bmidiff' bmidiff 1 bmidiff*cfPWVcoldropout 0.187 0.120 0.693; 
ESTIMATE 'avg prdiff' prdiff 1 prdiff*cfPWVcoldropout 0.187 0.120 0.693; 
ESTIMATE 'avg adavgdiff' adavgdiff 1 adavgdiff*cfPWVcoldropout 0.187 0.120 0.693; 
ods output CovParms = cov solutionf= mixparms estimates=est;  
run; 
data mixparms; 
set mixparms; 
if Effect='bmidiff*cfPWVcoldrop' and cfPWVcoldropout=0 then Effect='bmidiff_cfPWVcoldro0'; 
if Effect='bmidiff*cfPWVcoldrop' and cfPWVcoldropout=1 then Effect='bmidiff_cfPWVcoldro1'; 
if Effect='mapdiff*cfPWVcoldrop' and cfPWVcoldropout=0 then Effect='mapdiff_cfPWVcoldro0'; 
if Effect='mapdiff*cfPWVcoldrop' and cfPWVcoldropout=1 then Effect='mapdiff_cfPWVcoldro1'; 
if Effect='prdiff*cfPWVcoldropo' and cfPWVcoldropout=0 then Effect='prdiff_cfPWVcoldrop0'; 
if Effect='prdiff*cfPWVcoldropo' and cfPWVcoldropout=1 then Effect='prdiff_cfPWVcoldrop1'; 
if Effect='adavgdiff*cfPWVcoldr' and cfPWVcoldropout=0 then Effect='adavgdiff_cfPWVcold0'; 
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if Effect='adavgdiff*cfPWVcoldr' and cfPWVcoldropout=1 then Effect='adavgdiff_cfPWVcold1'; 
if Effect='years*cfPWVcoldropou' and cfPWVcoldropout=0 then Effect='years_cfPWVcoldropo0'; 
if Effect='years*cfPWVcoldropou' and cfPWVcoldropout=1 then Effect='years_cfPWVcoldropo1'; 
run; 
proc mianalyze parms(classvar=full)=mixparms; 
  class randomization_group cfPWVcoldropout; 
  modeleffects Intercept age racedich male avgmapbl mapdiff mapdiff_cfPWVcoldro0 
mapdiff_cfPWVcoldro1 
bmiBL bmidiff bmidiff_cfPWVcoldro0 bmidiff_cfPWVcoldro1 prbl prdiff prdiff_cfPWVcoldrop0 
prdiff_cfPWVcoldrop1 
adavgbl adavgdiff adavgdiff_cfPWVcold0 adavgdiff_cfPWVcold1 years cfPWVcoldropout 
years_cfPWVcoldropo0  
years_cfPWVcoldropo1 randomization_group; 
where estimate ne 0; 
run; 
proc sort data = est; 
 by label _imputation_; 
run; 
ods select parameterestimates; 
proc mianalyze data = est ;  
  by label; 
  modeleffects estimate; 
  stderr stderr; 
run; 
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