Norton, JD
(2005)
Eaters of the lotus: Landauer's principle and the return of Maxwell's demon.
Studies in History and Philosophy of Science Part B - Studies in History and Philosophy of Modern Physics, 36 (2).
375 - 411.
ISSN 1355-2198
Abstract
Landauer's principle is the loosely formulated notion that the erasure of n bits of information must always incur a cost of k ln n in thermodynamic entropy. It can be formulated as a precise result in statistical mechanics, but for a restricted class of erasure processes that use a thermodynamically irreversible phase space expansion, which is the real origin of the law's entropy cost and whose necessity has not been demonstrated. General arguments that purport to establish the unconditional validity of the law (erasure maps many physical states to one; erasure compresses the phase space) fail. They turn out to depend on the illicit formation of a canonical ensemble from memory devices holding random data. To exorcise Maxwell's demon one must show that all candidate devices - the ordinary and the extraordinary - must fail to reverse the second law of thermodynamics. The theorizing surrounding Landauer's principle is too fragile and too tied to a few specific examples to support such general exorcism. Charles Bennett's recent extension of Landauer's principle to the merging of computational paths fails for the same reasons as trouble the original principle. © 2005 Elsevier Ltd. All rights reserved.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Metrics
Monthly Views for the past 3 years
Plum Analytics
Altmetric.com
Actions (login required)
|
View Item |