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Abstract— A neural network model based on spike-timing-
dependent plasticity (STDP) learning rule, where afferent 
neurons will excite both the target neuron and interneurons 
that in turn project to the target neuron,  is applied to the 
tasks of learning AND and XOR functions. Without 
inhibitory plasticity, the network can learn both AND and 
XOR functions. Introducing inhibitory plasticity can improve 
the performance of learning XOR function. Maintaining a 
training pattern set is a method to get feedback of network 
performance, and will always improve network performance. 

 

I. INTRODUCTION 
 
The computational properties of a network of interconnected 
neurons can be investigated at either a neuronal level or at a 
system/network level. Barlow [1] made a compelling case for 
the former approach, citing the work of Hubel & Wiesel [2], 
in which the dependence of neuronal responses on features 
of environmental stimuli was demonstrated. Analyses of 
cortical neuronal receptive fields continue to dominate our 
understanding of cortical processing. 

The response properties of a neuron are generally 
characterized in terms of some set of stimuli. Whether the 
stimuli in the set are patterns of afferent activity or are 
further removed from the neuron, such as visual patterns 
driving a cell in V1, the response of a neuron is a function of 
the stimuli. The computational nature of these functions 
remains an open question. 

Theoretical accounts have assumed that cortical 
neurons develop response properties by virtue of a synaptic  
modification mechanism [3, 4]. Synaptic efficacies are 
generally assumed to change as a function of pre- and 
postsynaptic activities, as first hypothesized by Hebb [5]. 
Thus, neurons come to compute some function of their 

stimuli that are determined by some (unknown) statistical 
property of their patterned environment. 

The discovery of long-term potentiation (LTP) by Bliss 
and Lømo [6] provided strong support for Hebb’s 
hypothesis. Together with the functional inverse, long-term 
depression (LTD), these forms of longterm synaptic 
plasticity are regarded as endogenous mechanisms for 
changing synaptic weights within neural circuits [7, 8]. 
Typically, both LTP and LTD have been measured as a 
function of average firing rates of the pre- and/or 
postsynaptic neurons. 

STDP is a phenomenon in which repetitive spike pairing 
on the order of milliseconds leads to LTP and LTD. STDP 
has been replicated in multiple laboratories working with 
neural tissues in culture [9], in slice [10-18], and in vivo [19-
22]. Theoretical studies have indicated that STDP is a 
powerful learning rule supporting a range of computational 
functions [23-27]. 

In this paper, we build a feed forward neural network 
based on STDP learning rule, and train this network to 
compute arbitrary functions. In particular, we show that 
AND and XOR tasks can be learned by a network with 
inhibitory inter neurons. 
 

II. NETWORK ARCHITECTURE AND TRAINING 
 
The goal of the work presented in this paper is to study the 
rules that specify the activity-dependence of synaptic 
change in neural tissue, and how the computational 
properties of neurons depend on the statistics of the afferent 
activity patterns.  
 
A. Network Architecture 

The network architecture is shown in Figure 1. A 
postsynaptic output neuron R will be trained to respond to 
stimuli generated by a small number of extracellular 
stimulating electrodes, each driving multiple afferents to the 



target neuron, including interneurons within the cortical 
circuit. Activity and plasticity of these interneuron ‘hidden 
units’ is expected to play a major role in the proposed 
experiments [28-30]. In effect, the target neuron R computes 
a classification function; the stimulus is a member of the 
class if the neuron responds to it. Let Si be the activity level 
(injected current) of the i-th electrode, and let the binary 
vector x(Si) be the pattern of afferent spikes. Since 
increasing Si will increase the number of afferent spikes, the 
effective pattern to the neuron can be adjusted. Since the 
time interval of interest is very short, recurrent connections 
and time delays need not be included in the model. Afferents 
and interneurons are partially connected. Afferents and 
target neuron are partially connected. Interneurons and 
target neuron are fully connected. Only the weight 
connected to the target neuron could be changed. In our 
model, all neurons are integrate-and-fire neurons. 
 

 
Figure 1. Network Architecture. W j , Uk

+ and Uk
- are partial 

connections; Vk
+ and Vk

- are full connections. W j , Vk
+ and Vk

- may be 
adjusted in training procedure. 
 
B. Input Pattern 

Input to the model is  a vector corresponding to a set of 
afferents near the stimulating electrode(s). We assume an 
array of afferents, each generating a spike with a probability 
that is a function of distance from the electrode tip (Fig. 2). 
Each electrode induces action potentials with a probability 
that is near one within a small radius (shaded region). 
Outside this region, the probability decays to zero with 
distance.  

Thus, the resulting input patterns tend to be noisy 
images of the pattern of electrode firing. The afferent stimuli 
will excite both the target neuron and interneurons that in 
turn project to the target neuron. The firing of the target 
neuron will depend upon the net input from the direct 
afferents as well as the interneurons. The parameters of the 
model will be fit according to experimental data. The 

simulations are thus an indirect approach to investigating 
the activity dependence of synapses throughout the 
network, excitatory as well as inhibitory. 

In the simulations described in this paper, we also use a 
fixed coverage condition. That is , all afferents within some 
distance to the electrode tip will definitely fire; all other 
afferents will not fire. We call this fixed coverage condition. 
Similarly, we call the condition in which afferents fire with 
some probability unfixed coverage condition. 
 

 
Figure 2. Stimulus patterns induced by electrodes. The simulated 
region is circular for a single electrode (left). Two or more electrodes 
may have overlapping regions of different sizes. Contours indicate 
probability of spike firing. Afferents (small dots) fire a spike with 
probability that is a function of distance from the electrode tip(s) 
(white Xs). 
 
C. Training Method 

In a manner derived from the conventional STDP 
induction procedure, we pair S1 and S2 with a postsynaptic 
spike evoked directly in cell R with depolarizing current 
through the whole-cell electrode (Fig. 3). Three sets of 
pairings will be performed and interleaved in a pseudo-
random sequence. For AND function (study 1 of Figure 3), 
separate activation of S1 and S2 will be paired with a spike in 
R at a negative (post_pre) time interval of –5 ms (pairing one: 
R_S1, pairing two: R_S2), and S1+S2 will be paired with R at a 
positive (pre_post) interval of 5 ms (pairing three: S1+S2_R). 
For XOR function (study 2 of Figure 3), separate activation 
of S1 and S2 will be paired with a spike in R at a positive 
(pre_post) time interval of 5 ms (pairing one: S1_R, pairing 
two: S2_R), and S1+S2 will be paired with R at a negative 
(post_pre) interval of –5 ms (pairing three: R_S1+S2).  The 
three training set is shown in Table 1. 

The model is based on the assumption that plasticity 
will be induced on controlled pairs of individual pre and 
postsynaptic spikes operating at two fixed time delays, one 
for post following pre and one vice versa. The feed-forward 
processing of the model will be given by probabilistic feed-
forward functions (f, g, and h in Table 2) and the plasticity 
will be computed according to functions corresponding to 
excitatory synapses (F) and inhibitory synapses (G). The 
parameters of the model will be tuned to test hypotheses 
about the form of the underlying plasticity functions, F and 



especially G (since little is known about the activity-
dependence of inhibitory plasticity). If we look at the target 
neuron R, there are three inputs, weighted sum from all 
afferent neurons Aa, weighted sum from all excitatory 
interneurons Ae, and weighted sum from all inhibitory 
interneurons Ai. The output of target neuron R depends on 
these three inputs and the activity function h in Table 2. 
Generally, we use Atype

i,j to represent all the inputs to the 
target neuron, where type can be a (afferent neurons), e 
(excitatory interneurons), or i (inhibitory interneurons), i and 
j can be 0 or 1, represent the electrode pattern. For example, 
Aa

0,1 represents the weighted sum from afferent neurons 
when input pattern is 0, 1 (only the 2nd electrode is active). 

 
Figure 3. Training the network to learn the AND and XOR functions. 
Study 1, the AND function of two binary inputs S1 and S2. Study 2, 
the XOR function. Note that the training procedure for XOR is 
opposite that of AND, since the (0, 0) case is not included.  
 

Table 1. Training set for AND and XOR functions 

AND Electrode 1 Electrode 2 Target 
Pattern 1 0 1 0 
Pattern 2 1 0 0 
Pattern 3 1 1 1 
XOR Electrode 1 Electrode 2 Target 
Pattern 1 0 1 1 
Pattern 2 1 0 1 
Pattern 3 1 1 0 

 
In simulation, two types of learning rule are used. One is 

additive learning rule, the weight change is constant, and 
there is no limit on weight: 
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where 0, 0dw dw+ −> < .The other is multiplicative rule, the 
weight change is proportional to the difference between 
maximum weight and current weight if the weight will be 
increased, the weight change is proportional to the 
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In both cases, the weight change is irrelevant to the network 
responser .  

Since little is known about the activity-dependence of 
inhibitory plasticity, we propose a model for inhibitory 
plasticity. The weight change of inhibitory connection is just 
the opposite to that of excitatory connection. Corresponding 
to Eqn. (1.1), under additive learning rule, we have: 
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Table 2. Model variables and dynamics 

Connectivity(anatomy) 
Si = current strength of electrode i 
dij = distance from electrode i to afferent j 
Ukj = influence of afferent j on interneuron k 
Wj = influence of afferent j on target neuron 
Vk

+ = synaptic influence of excitatory interneuron k  
Vk

- = synaptic influence of inhibitory interneuron k  
Processing and plasticity (physiology) 
xj = spiking of afferent j {0, 1} 
Ik = spiking of inhibitory interneuron k  
Em = spiking of excitatory interneuron m 
r = “natural” spiking of target neuron 
T = forced spiking of target neuron 
Processing 
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Plasticity 
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Corresponding to Eqn. (1.2), under multiplicative 

learning rule, we have: 
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There are two methods to choose the next pattern to 
feed to the network. The first one is randomly choosing a 
pattern from all three patterns. The second one is more 
complex. A training set is maintained, the next pattern is 
randomly chosen in the training set. At the beginning of the 
learning, it contains all patterns. After several epochs of 
training, there will be a testing period for all patterns. There 



will not be forced spikes in the target neuron in testing 
period; output of the target neuron will be recorded. If a 
pattern is computed correctly in ten trials (this number could 
be adjusted), then it will be removed from the training set. 
The training and testing will continue until maximum training 
epochs is reached or all patterns are learned. 

The results presented in the remainder of the paper all 
pertain to networks with 625 afferents in 25×25 grids, the 
positions of the two electrodes are (0.6, 0.6) and (0.4, 0.4), the 
stimulus radius is 0.2, the number of excitatory interneurons 
is 60, the threshold of the excitatory interneurons are 
randomly between 0 and 80, the number of inhibitory 
interneurons is 60, the threshold of the inhibitory 
interneurons are randomly between 0 and 80, the connection 
density between afferents and interneurons is 0.6, the 
connection density between afferents and target neuron is 
0.2(there are cases that there is no connection between 
afferents and target neuron), the threshold of target neuron 
is 10. 

 
III. RESULTS 

 
Since little is known about the activity-dependence of 
inhibitory plasticity, at first, we suppose there is no 
inhibitory plasticity, which means, the weight between 
inhibitory interneurons and target neuron will not be 
changed during training period.  

 
Figure 4. Training results in different conditions without  inhibitory 
plasticity. Above: learning AND function. Below: learning XOR 
function. Meaning of the numbers: for example, “6/10” means in 6 
out of 10 trials the network learn the function successfully. 
 

Figure 4 outlines the training results in different 
parameter combinations. The network can learn AND 
function in all conditions except the combination of 

multiplicative rule and no training set. The network can not 
learn XOR function under no training set condition, even 
using training set the network still can not learn XOR 
function very well.  

Figure 5 shows how the average voltage of target 
neuron changes in training XOR function. The voltage is the 
weighted sum from afferents plus the weighted sum from 
excitatory interneurons minus weighted sum from inhibitory 
interneurons. If the voltage is larger then the threshold of 
target neuron, the output is 1; otherwise, the output is 0. 
Multiplicative learning rule is used, the electrode coverage is 
unfixed, and training set is used. At the beginning of 
training, the average voltage of pattern 3 is larger than that 
of pattern 1 and 2. Along with training, the average voltage 
difference between pattern 3 and pattern 1 or 2 is decreasing. 
At the final stage of the training, average voltage of pattern 
3 is below the threshold, average voltage of pattern 1 and 2 
are above the threshold. 
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Figure 5. Average voltage of target neuron vs. training epochs in 
learning XOR function. Voltage of target neuron: 

, , , ,i j i j i j i j

a e i
V A A A= + − (see Eqn.(1.5)). Threshold of target neuron is 

10. The conditions are: use training set, multiplicative rule, and 
unfixed coverage. 
 

Afferent neurons, excitatory interneurons, and 
inhibitory interneurons all have contributions to the voltage 
of target neuron. Their contributions before and after 
learning XOR function are shown in Figure 6 and 7 
respectively. Before training, the voltage of target neuron is 
larger than the threshold for every pattern. After training, the 
voltage for pattern 1 and 2 are larger than threshold while 
that of pattern 3 is smaller than threshold. The network 
learned the XOR function. The contribution from afferent 
neurons doesn’t change much after training. The 
contribution from inhibitory interneurons is almost 
unchanged after training since there is no inhibitory 
plasticity in this simulation; the only uncertainty is from 
randomly generated electrode coverage. But the contribution 
from excitatory interneurons changed a lot. Before 



training, 1,1 0,1 0,1 1,02* ,  
e e e e

A A A A≈ ≈ , after training, 
1,1 0,1 1 , 0

e e e
A A A≈ ≈ . 

In the next simulation, we introduce inhibitory plasticity 
as Eqn. (1.3) and (1.4). Figure 8 outlines the training results 
in different parameter combinations. The network can learn 
AND function perfectly in all conditions except the 
combination of additive rule and no training set. The 
network can also learn XOR function when using training 
set. 
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Figure 6. Contributions to target neuron voltage before learning XOR 
function for different input pattern. Threshold of target neuron is 10.  
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Figure 7. Contributions to target neuron voltage after learning XOR 
function for different input pattern. Threshold of target neuron is 10. 
The conditions are: using training set, multiplicative rule, and unfixed 
coverage. 
 

IV. DISCUSSION 
 
Since the target neuron is an integrate-and-fire neuron, we 
have: 
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To perform AND function, the following condition must 
be met: 
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Eqn. (1.6) can be simplified to:  
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Similarly, to perform XOR function, the following condition 
must be met: 
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Figure 8. Training results in different conditions with inhibitory 
plasticity. Above: learning AND function. Below: learning XOR 
function. Meaning of the numbers: for example, “8/10” means in 8 
out of 10 trials the network learn the function successfully. 

 
If there is no plasticity on the weights from inhibitory 

interneurons to target neuron, that means ,j k
iA∆ is fixed, no 

matter what value iA∆ is, the network can still learn AND 

function if other weights to target neuron could be trained 
properly. Even if there is no inhibitory interneurons, AND 
function could still be learned. But for XOR function, if there 
is no plasticity on the weights from inhibitory interneurons 

to target neuron, ,j k
iA∆ must not be zero for the network to 

learn XOR function. If there is no inhibitory interneuron, that 

is , 0j k
iA∆ = , XOR function could not be learned. 

As shown in Figure 5, before learning XOR function, 
0,1 0,1 0,115.07 10.98 13.07 24.05i a eA A A∆ = < ∆ + ∆ = + = , 
1,0 1,0 1,013.57 10.90 13.93 24.86i a eA A A∆ = < ∆ + ∆ = + = . As 

shown in Figure 6, after learning XOR function, 



0,1 0,1 0,112.55 6.31 1.71 8.02i a eA A A∆ = > ∆ + ∆ = + = , 
1,0 1,0 1,013.55 7.52 2.02 9.54i a eA A A∆ = > ∆ + ∆ = + = . 

Comparing Figure 4 and Figure 8 shows inhibitory 
plasticity improves the network performance of learning 
XOR functions.  

Another conclusion we can make is using training set 
always improves network performance of learning AND and 
XOR functions. Using training set is a method to get 
feedback of network performance and refine training method 
by updating training set. 

Our results show that a network based on STDP 
learning rule can learn AND and XOR functions even 
without inhibitory plasticity. In future, we expect some 
experiments on training cortical circuits could be done, so 
that the results from experiments and computer simulation 
could be combined. 
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