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Abstract

Fused in Sarcoma (FUS) proteinopathy is a feature of frontotemporal lobar dementia (FTLD), and mutation of the fus gene
segregates with FTLD and amyotrophic lateral sclerosis (ALS). To study the consequences of mutation in the fus gene, we
created transgenic rats expressing the human fus gene with or without mutation. Overexpression of a mutant (R521C
substitution), but not normal, human FUS induced progressive paralysis resembling ALS. Mutant FUS transgenic rats
developed progressive paralysis secondary to degeneration of motor axons and displayed a substantial loss of neurons in
the cortex and hippocampus. This neuronal loss was accompanied by ubiquitin aggregation and glial reaction. While
transgenic rats that overexpressed the wild-type human FUS were asymptomatic at young ages, they showed a deficit in
spatial learning and memory and a significant loss of cortical and hippocampal neurons at advanced ages. These results
suggest that mutant FUS is more toxic to neurons than normal FUS and that increased expression of normal FUS is sufficient
to induce neuron death. Our FUS transgenic rats reproduced some phenotypes of ALS and FTLD and will provide a useful
model for mechanistic studies of FUS–related diseases.
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Introduction

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar

degeneration (FTLD) are two common neurodegenerative diseases

[1,2]. ALS is characterized by degeneration of motor neurons,

denervation atrophy of skeletal muscles, and progressive paralysis

of limbs [3,4]. FTLD mainly affects cortical neurons and causes

cortical dementia [5]. ALS patients may develop cortical dementia

that overlaps with FTLD in pathology [2,6]. ALS and FTLD share

a common feature of pathology—ubiquitin-positive inclusion [7–

10]. Although selective groups of neurons are primarily affected in

each disease condition [2], increasing evidence suggests that ALS

and FTLD may fall the same disease spectrum.

Fused in Sarcoma (FUS) has recently been linked to both ALS

and FTLD [11,12]. FUS is a highly conserved ribonucleopro-

tein that mainly resides in the nucleus while shuttling between

the cytoplasm and the nucleus [13–15]. Fus was initially

reported to translocate and fuse with one of several genes to

form chimeric oncogenes in leukemia and liposarcoma [16,17].

The N-terminus of the FUS protein is rich in glutamine, serine,

and tyrosine residues, and may be responsible for transactiva-

tion activity of FUS oncogenic fusion [18,19]. The C-terminal

part of the FUS protein contains several structural motifs

important for nucleic acid binding [18,20,21]. FUS may also

play an important role in regulating mRNA [14,22,23].

Deletion of the fus gene results in chromosomal instability and

perinatal death in inbred mice [24], but causes only male

sterility in outbred mice [25]. FUS-positive inclusion is

considered a hallmark of some sporadic FTLD [9,26]. FUS,

Tau, and TDP-43 are the important components of ubiquiti-

nated proteins in FTLD, but exclude one another in ubiquitin-

positive inclusion [8–10,27]. Mutations in the fus gene segregate

with ALS and FTLD [11,12,28,29], implying a pathogenic role

of FUS in these diseases.

Given the importance of FUS in human diseases, the

consequences of mutation in the fus gene must be examined.

Here we show that overexpression of a mutant, but not normal,

human FUS in rats induced progressive paralysis resembling ALS.

Mutant FUS transgenic rats developed severe axonopathy of

motor neurons, denervation atrophy of skeletal muscles, and a

substantial loss of cortical and hippocampal neurons. At advanced

ages, normal FUS transgenic rats displayed deficits in spatial

learning and memory, and a loss of cortical and hippocampal

neurons. Neuronal loss was accompanied by ubiquitin aggregation

and glial reaction. Our FUS transgenic rats recapitulated some

features of ALS and FTLD.
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Results

Overexpression of a mutant, but not normal, human fus
gene causes progressive paralysis in transgenic rats

To study the consequences of mutation in the fus gene, we created

transgenic rats expressing the human fus gene with or without

mutation (Table S1). Most mutations in the fus gene are a single

amino acid alteration, as exemplified by the substitution of arginine

for cysteine at residue 521 (R521C) that is identified in

geographically unrelated patients [11,12,30]. We therefore chose

R521C as an example of fus mutation for our transgenic studies.

The ribonucleoproteins FUS and TDP-43 are both linked to ALS

and FTLD [11,12,31,32]. FUS and TDP-43 are robustly and

ubiquitously expressed in rodents during development [33],

implying an important role for these genes in development.

Constitutive expression of a mutant TDP-43 causes early death to

transgenic founder rats [34], preventing transgenic lines from

establishment. To overcome this potential difficulty, we used a

tetracycline-inducible system to express human fus transgenes in a

controlled manner [34]. From 26 transgenic founders carrying the

normal (12 rats) or the mutant (14 rats) fus transgene, we established

four transgenic lines (line number corresponding to copy number of

the transgenes) that expressed human FUS, under tight control by

Doxycycline (Dox), at substantial levels (Figure 1A, Figure S1, and

Table S1). FUS transgenic rats were crossed with a CAG-tTA

transgenic line to produce double transgenic offspring that

expressed human FUS transgene in the absence of Dox [35].

Breeding female rats were given Dox in their drinking water until

delivery such that expression of the fus transgenes would be

recovered in the offspring after Dox withdrawal (Figures S1 and S2).

Immunoreactivity to human FUS was detected in the brain and

spinal cord (gray and white matter) of FUS transgenic rats

(Figure 1B, 1D, and 1E), but not in tissues of nontransgenic rats

(Figure 1C and 1F). While transgenic rats of lines 16, 20, and 22

expressed human FUS at comparable levels (Figure 1A), only the

mutant FUS transgenic rats (lines 16 and 22) developed paralysis

resembling ALS (Figure 1G-1J and Videos S1 and S2). Similar

disease phenotypes were observed in two independent lines of

mutant FUS transgenic rats (Figure 1G–1J), suggesting that the

disease phenotypes resulted from expression of the mutant fus

gene.

Axonopathy of the motor neurons contributes to
paralysis in mutant FUS transgenic rats

Pathological analysis revealed that few motor neurons in the

spinal cord were undergoing degeneration (Figure 2A–2E).

Degenerating axons were detected in the dorsal corticospinal

tracts (Figure 2G), the ventral roots (Figure 2I and 2M), and the

dorsal roots (Figure 2K) of mutant FUS transgenic rats at paralysis

stages. As a result of motor axon degeneration, groups of skeletal

muscle cells were atrophied (Figure 2O), although there were some

perimysial cells with small nuclei suggestive of inflammation.

These pathological changes were not observed in nontransgenic

rats (Figure 2A) and also not observed in age-matched, wild-type

FUS transgenic rats (Figure 2B, 2D, 2F, 2H, 2J, 2L, and 2N)

expressing human FUS at comparable levels (Figure 1A).

Collectively, these findings suggest that mutation of the fus gene

is pathogenic. Electromyography of the gastrocnemius muscle

revealed fibrillation potential, a characteristic of denervation

atrophy (Figure 2P). Confocal microscopy showed that a

substantial number of neuromuscular junctions were denervated

in paralyzed FUS transgenic rats (Figure 2Q and 2R). Through

stereological cell counting, we estimated the number of spinal

motor neurons and did not detect a significant loss of motor

neurons, although a trend of neuron loss was observed in the

mutant FUS rats at paralysis stages (Figure 2S). Our results suggest

that degeneration of motor axons contributed to paralysis in the

mutant FUS transgenic rats.

Overexpression of mutant human FUS causes a
substantial loss of neurons in the brains of FUS
transgenic rats

ALS and FTLD somewhat overlap in pathology [2], and

mutation of the fus gene is linked to both ALS and FTLD

[28,29]. We therefore examined the pathology in the brains of

mutant FUS transgenic rats. Through stereological cell counting

(Figure S3), we detected a significant loss of neurons in the frontal

cortex and dentate gyrus of mutant FUS transgenic rats at paralysis

stages (Figure 3). This neuronal loss was not observed in age-

matched, normal FUS transgenic rats of line 20, although they

expressed human FUS at comparable levels (Figure 1A and

Figure 3). While cortical neurons are the primary targets of

degeneration in FTLD, hippocampal neurons could be affected

particularly at advanced disease stages [36,37]. Our results show

that overexpression of mutant FUS induced a substantial loss of

cortical and hippocampal neurons in FUS transgenic rats, a

phenotype of FTLD in rat models.

Overexpression of normal FUS is sufficient to induce
neurodegeneration in transgenic rats

FUS proteinopathy is a hallmark of some sporadic FTLD cases

[9,26]. How normal FUS is related to neurodegeneration in the

disease remains to be examined. Our wild-type (line 20) and mutant

(line 16) FUS transgenic rats expressed human FUS at comparable

levels (Figure 1A), but only the mutant FUS transgenic rats

developed paralysis at an early age (Figure 1G–1I). We further

examined the normal FUS transgenic rats at advanced ages

(Figure 4). Although the normal FUS transgenic rats were

asymptomatic by the age of 1 year, they displayed a deficit in

spatial learning and memory at the advanced age (Figure 4J and

4K). By stereological cell counting, we detected a moderate, but

significant, loss of neurons in the frontal cortex and dentate gyrus of

the normal FUS transgenic rats at advanced ages (Figure 4L and

4M). These findings suggest that increased expression of normal

FUS is sufficient to induce neurodegeneration and that mutant FUS

is more toxic to neurons than is normal FUS.

Neuron death is accompanied by ubiquitin aggregation
and glial reaction

Ubiquitin-positive inclusion is a hallmark of ALS and FTLD

[8–10,27]. Accumulated ubiquitin was detected in the cortex

Author Summary

Amyotrophic lateral sclerosis and frontotemporal lobar
degeneration are two related diseases characterized by
degeneration of selected groups of neuronal cells. Neither
of these diseases has a clear cause, and both are incurable
at present. Mutation of the fus gene has recently been
linked to these two diseases. Here, we describe a novel rat
model that expresses a mutated form of the human fus
gene and manifests the phenotypes and pathological
features of amyotrophic lateral sclerosis and frontotempo-
ral lobar degeneration. Establishment of this FUS trans-
genic rat model will allow not only for mechanistic study of
FUS–related diseases, but also for quick development of
therapies for these devastating diseases.

FUS Transgenic Rat Model
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(Figure 5D–5F) and spinal cord (Figure 5J–5L) of mutant FUS

transgenic rats at paralysis stages, but was not detected in the

tissues of age-matched normal FUS transgenic rats (Figure

5A–5C and 5G–5I). In the normal FUS transgenic rats,

ubiquitin aggregates were observed only when neuronal loss

was detected at advanced ages (Figure 4), suggesting that

Figure 1. Progressive paralysis in transgenic rats overexpressing a mutant human FUS. (A) Immunoblotting showed expression of human
FUS in normal (WT) and mutant (R521) fus transgenic rats, but not in nontransgenic controls (NT). Each lane was loaded with 30 mg of total protein in
the lysates of spinal cord. The blotting membrane was probed with an antibody to human FUS (made in-house) and then with an antibody against
GAPDH after stripping. The number of transgenic lines corresponds to the number of FUS transgene copies. * indicates a non-specific band. (B–F)
Immunohistochemistry detected expression of human FUS in the cortex (B) and spinal cord (D, E) of FUS transgenic rats (line 16), but not in tissues of
nontransgenic littermates (C, cortex; F, spinal cord). Expression of human FUS in lumbar spinal cord profiled at a low magnification (D). Human FUS
was diffusely located in the cytoplasm of motor neurons in the ventral horn (E). Scale bars: B–C and E–F: 20 mm; D, 100 mm. (G, H) Representative
photographs of male transgenic rats of line 22 (G, 30 days of age) and line 16 (H, 60 days of age) at paralysis stages. (I, J) Graphs show the probability
of disease onset (I) and survival (J) in FUS transgenic rats. Disease onset was defined as an unrecoverable reduction in the grip strength of fore or hind
paws. Rats were euthanized and counted as dead when two or more legs were paralyzed or body weight was reduced by 30%. All FUS transgenic rats
carried the CAG-tTA transgene. Breeding female rats were given Dox in their drinking water (50 mg/ml) until delivery. Each group contained 13 to 16
rats.
doi:10.1371/journal.pgen.1002011.g001

FUS Transgenic Rat Model
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ubiquitin aggregation accompanied neurodegeneration. Ubiq-

uitin inclusions were detected only in FUS-expressing cells, but

were not colocalized with FUS (Figure 4G–4I and Figure 5).

Ubiquitinated aggregates were positive for the mitochondrial

marker COXIV (Figure S4), suggesting that damaged mito-

chondria may be ubiquitinated for degradation. No typical

FUS inclusion was detected in FUS transgenic rats (Figure 1B

and 1E, and Figure 5). FUS mainly resided in the nucleus, but

was also diffusely located in the cytoplasm (Figure 1E). The C-

terminus of FUS contains a nuclear localization signal that is

necessary for the nuclear import of FUS. Most mutations occur

within the C-terminus of FUS and disrupt this nuclear

localization signal [38], leading to cytoplasmic accumulation

of FUS. The R521C mutation tested in our transgenic studies

affects FUS distribution to a minimal extent [38], and may be

less potent in eliciting redistribution and aggregation of FUS in

transgenic rats. Glial cells are key players in neurodegeneration

[39]. Here we found that astrocytes and microglia proliferated

in the brain (Figure 6A–6F) and spinal cord (Figure 6H–6K) of

FUS transgenic rats at paralysis stages. Our results indicate

that neurodegeneration was accompanied by ubiquitin aggre-

gation and glial reaction.

Figure 2. Motor neuron degeneration accompanied by denervation atrophy of skeletal muscle. (A–C) Cresyl violet staining of motor
neurons in the L3 ventral horn of mutant FUS transgenic (C, line 16), age-matched nontransgenic (A), and normal FUS transgenic (B, line 20) rats. (D, E)
Bielschowsky silver staining detected degenerating neurons (arrows) in the spinal cord of mutant FUS transgenic rats at paralysis stages (E, line 16),
but not in that of age-matched normal FUS transgenic rats (D, line 20). Note that degenerating neurons were rare in the mutant FUS transgenic rats
even at paralysis stages. (F–K) Toluidine blue staining of axons of the dorsal corticospinal tract (F, G), L3 ventral roots (H, I), and L3 dorsal roots (J, K).
Degenerating axons were seen in paralyzed mutant FUS transgenic rats of line 16 (G, I, K), but not in age-matched normal FUS transgenic rats of line
20 (F, G, J). (L, M) Electron microscopy of the motor axons in the L3 ventral roots of paralyzed mutant FUS (M, line 16) and age-matched normal FUS
transgenic rats (L, line 20). Arrows point to degenerating axons. (N, O) H&E staining showed group atrophy (arrows) of the gastrocnemius muscle in
paralyzed mutant FUS (O), but not in age-matched normal FUS (N) transgenic rats. (P) Electromyography of gastrocnemius muscles revealed
fibrillation (arrows) and fasciculation (arrow head) potentials in a mutant FUS transgenic rat (R521C), but not in its nontransgenic littermate (NT). (Q)
Confocal microscopy of the focal structures of neuromuscular junctions (NMJ) in gastrocnemius muscles. Compared to the NMJ of a nontransgenic
littermate (NT), the NMJ of a mutant FUS transgenic rat (R521C) was denervated. While axon terminals were visualized by immunostaining for
synaptophysin (SYN) and neurofilament (NF), postsynaptic nicotinic receptors were visualized with Alexa fluor 555-conjugated a-bungarotoxin (a-
BTX). (R) Quantification of NMJ revealed a reduction of intact NMJ in the mutant FUS (lines 16 and 22), but not in the normal FUS (line 20), transgenic
rats. Twenty NMJs were examined for each animal (5-6 rats per genotype). *p,0.05, transgenic rats vs. nontransgenic rats. (S) Stereological cell
counting revealed the number of large neurons (.25 mm in diameter) in the ventral horn of L3 spinal segments taken from nontransgenic (NT) or
transgenic (TG) rats. Data are presented as means 6 SD (n = 9–11). Scale bars: A–E, 50 mm; F–K, 20 mm; L, M, 5 mm; N, O, 30 mm.
doi:10.1371/journal.pgen.1002011.g002
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Discussion

ALS and FTLD are two related neurodegenerative diseases

[2,6] and may fall within the same disease spectrum. While a

subset of FTLD patients develop motor neuron disease [40], ALS

patients may develop the symptoms and pathology of FTLD [41–

43]. FUS and TDP-43 are two ribonucleoproteins and their

mutant forms are linked to both ALS and FTLD [7–10,27,29]. We

obtained two FUS transgenic lines expressing a mutant or normal

human fus transgene at comparable levels. Transgenic rats

expressing a mutant FUS developed progressive paralysis

secondary to axonal degeneration and displayed a substantial loss

of neurons in the cortex and hippocampus, reproducing some

phenotypes of ALS and FTLD. While the mutant FUS transgenic

rats developed some phenotypes of ALS and FTLD, the age-

matched normal FUS transgenic rats were asymptomatic. Our

findings in FUS transgenic rats confirm that mutation of the fus

gene is related to these two diseases and suggest that mutation of

the fus gene is pathogenic.

FUS proteinopathy characterizes a subset of sporadic FTLD, in

which ubiquitin-positive inclusions are negative for TDP-43 and

tau but positive for FUS protein [27,44]. However, it is not known

how normal FUS is related to neurodegeneration in these diseases.

While overexpression of mutant FUS induced severe phenotypes

in young animals, overexpression of the normal FUS also induced

neuron death as well as learning and memory deficits in aged rats.

Mutated FUS appeared more toxic in transgenic rats, but an

increase in the expression or function of the fus gene may elicit

neurotoxicity. The effects of gene mutation include gain-of-

function, loss-of-function, and dominant-negative effects. Overex-

pression of either the mutant or wild-type FUS induced disease

phenotypes in transgenic rats, suggesting that mutation of the fus

gene may cause the disease by a gain of toxic properties. Since

gain-of-function and dominant-negative mutations can induce

similar effects in transgenic models, more sophisticated genetic

approaches, such as gene knockin, may be required for

determining the nature of FUS mutations.

FUS and TDP-43 show a similarity in disease induction.

Mutant forms of these genes are more toxic than the normal genes

[34], and increased expression of the normal genes is sufficient to

induce neurodegeneration [45,46]. Both FUS and TDP-43 are

ribonucleoproteins and may have overlapping functions. Indeed,

FUS and TDP-43 are found in one protein complex regulating

HDAC6 mRNA [47]. Like TDP-43, FUS predominantly resides

Figure 3. Loss of neurons in the cortex and hippocampus of mutant FUS transgenic rats. (A–C) Cresyl violet staining of hippocampus (A–B
and E–F) and cortex (C–D and G–H) showed faint staining in the tissues of mutant FUS transgenic rats at disease end-stages (B, D, F, and H) compared
to age-matched nontransgenic rats (A, C, E, and G). Scale bars: A–B, 400 mm; C–D, 50 mm; and E–H, 20 mm. (I, J) Stereological cell counting revealed a
loss of neurons in the cortex (I) and dentate gyrus (J) of mutant FUS transgenic rats (lines 16 and 20). The CAG-tTA single transgenic rats and
nontransgenic rats were combined as control rats (NT) because no difference was observed between these rats. Mutant FUS transgenic rats were
killed at disease end-stages and paired control rats were killed at matched ages. Normal FUS transgenic rats and their paired controls were killed at 70
days of age, by which time mutant FUS transgenic rats had reached disease end-stages. Data are presented as means 6 SD (n = 5–7). *p,0.05.
doi:10.1371/journal.pgen.1002011.g003

FUS Transgenic Rat Model
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Figure 4. Neuron loss accompanied by ubiquitin aggregation in aged rats overexpressing the normal human fus gene. (A–C) Double-
fluorescence staining for human FUS (A, red) and the neuronal marker NeuN (B, green) in the frontal cortex of normal human FUS transgenic rats (line
20). Most FUS-positive cells expressed NeuN, but some did not (C). (D–I) Immunofluorescence staining revealed ubiquitin aggregation in aged (G–I; 1
year of age), but not young (D–F; 3 months of age), normal FUS transgenic rats. Coronal sections of frontal cortex were immunostained with
antibodies to ubiquitin (D, G: green) and human FUS (E, H: red). Scale bars: A–C, 100 mm; D–I, 20 mm. (J, K) Barnes maze analysis revealed spatial
learning deficits in normal FUS transgenic rats of line 20 at advanced ages. One year old transgenic rats (TG) and their nontransgenic littermates (NT)
were tested in a Barnes maze and time spent to locate the fixed escape hole (latency) and the number of errors made before escaping were recorded.
(L, M) Stereological cell counting revealed a loss of neurons in the cortex (J) and dentate gyrus (K) of normal FUS transgenic rats at advanced ages
(line 20). Coronal sections of one hemisphere were stained with Cresyl violet and the number of neurons in the frontal cortex and dentate gyrus was
estimated by stereological cell counting. Normal FUS transgenic rats and their nontransgenic controls were killed at the age of 1 year. Data are
presented as means 6 SD (n = 5). * p,0.05.
doi:10.1371/journal.pgen.1002011.g004

Figure 5. Accumulation of ubiquitin in mutant FUS transgenic rats. (A–L) Double-fluorescence staining revealed accumulation of ubiquitin in
the cortex (D–F) and spinal cord (J–L) of the mutant FUS transgenic rats (line 16) at paralysis stages, but not in tissues of the age-matched normal FUS
transgenic rats (line 20) (A–C: cortex; G–I: spinal cord). Coronal sections of the frontal cortex and traverse sections of the lumbar cord were
immunostained with antibodies to ubiquitin (green) and human FUS (red). Scale bars: A–F, 20 mm.
doi:10.1371/journal.pgen.1002011.g005

FUS Transgenic Rat Model
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in the nucleus, but also shuttles between the nucleus and the

cytoplasm to perform multiple functions [13]. Similar to results for

TDP-43 [34], we found that FUS was diffusely located in the

cytoplasm in transgenic rats. Possibly, redistribution of FUS may

alter the functions of this multifunctional protein, incurring

cellular toxicity.

In summary, our results suggest that mutant FUS is more toxic

to neurons than normal FUS and that increased expression of

normal FUS is sufficient to induce neuron death. Our FUS

transgenic rats reproduced some phenotypes of ALS and FTLD.

The establishment of these FUS transgenic rat lines will allow for

more detailed studies of FUS-related diseases.

Material and Methods

Ethics statement
Animal use followed NIH guidelines. The animal use protocol

was approved by the Institutional Animal Care and Use

Committees (IACUC) at Thomas Jefferson University.

Transgenic rat production
The open reading frame (ORF) of the normal human fus gene

was PCR-amplified from a human cDNA pool (Invitrogen) and

the mutation was introduced by site-directed mutagenesis

(Stratagene). The normal and mutant human FUS ORF were

inserted downstream of the TRE promoter as described previously

[34]. Linearized transgenic DNA was purified from agar gel and

injected into the pronuclei of fertilized eggs of Sprague-Dawley

(SD) rats to produce transgenic founder rats [34,35]. Transgenes

were maintained on the SD genomic background and were

identified by PCR analysis of rat’s tail DNA.

Animal behavior tests
Grip strength of the rat’s fore and hind paws was measured

twice a week (Columbus Instruments) and used for determining

disease onset and progression. Disease onset was defined as an

unrecoverable reduction in the grip strength of fore or hind paws.

Disease end-stage was defined as paralysis in two or more legs or

as a 30% reduction in body weight.

Spatial learning and memory tasks were examined with a

Barnes Maze (Med Associates). Compared to Morris Water Maze

or Radial Arm Maze, the Barnes Maze not only avoids dietary

restriction and intense stress, but also gives comparable results on

rodent’s spatial learning and memory tasks [48,49]. The Barnes

Maze consists of a white, acrylic, circular disk (122 cm diameter)

with 18 holes (9.5 cm diameter) spaced every 20u and a high stand

(140 cm height) supporting the disk that is designed to discourage

animals from jumping to the floor. Rats were given one training

session and four test sessions for 5 consecutive days. During

training or testing sessions, rats were placed in the same initial

orientation inside a transparent cylinder (start box) that was

located at the center of the maze disk and the rats remained in the

start box for 1 minute such that a standard starting context was

ensured. When a lamp above the maze was turned on to make the

surface of the maze aversive, the start box was removed to allow

the animal to escape the maze surface by locating and crawling

through the correct hole under which a black safe box was located.

When the animal entered the safe box, the light was turned off and

the safe box was covered with a black sheet. The animal was

allowed to stay in the safe box for 1 minute before it was placed

back to its home cage. Before training, each rat was given 2

minutes to explore the maze and then placed inside the safe box

for 1 minute for habituation. During training, each rat was guided

to the safe box twice and then given two trials to locate the safe

box by itself. During the test, rats were placed inside the start box

for 1 minute to locate the fixed safe box. The number of incorrect

hole pokes (error) and the latency to locate the safe box were

recorded. An incorrect hole poke was indicated when an animal

closely approached and visually inspected a wrong hole. Latency

to locate the safe box was calculated from the time testing started

to the time when the animal entered, or its four paws touched, the

safe box. The maze was wiped clean with 70% ethanol and then

with dry paper towel after each test to prevent animals following

odor trails.

Antibody production
An antibody to human FUS was produced by immunizing

rabbits with a synthetic peptide (Genemed): (N-terminal)-

SYGQPQSGSYSQQPS. Antiserum was affinity-purified with a

peptide-affinity column (Pierce).

Histology and immunostaining
Anesthetized rats were transcardially perfused with 4%

paraformaldehyde (PFA) dissolved in 1X PBS buffer and tissues

Figure 6. Proliferation of astrocytes and microglia in mutant FUS transgenic rats. (A–K) Immunofluorescence staining for the microglia
marker Iba-1 (A–F) and the astrocyte marker GFAP (H–K) in the mutant FUS transgenic rats of line 16 at the paralysis stage (R521C) and in their
nontransgenic age-matched littermates (NT). Coronal sections of the frontal cortex and traverse sections of the lumbar spinal cord were
immunostained with antibodies to Iba-1 (red) or GFAP (green). Scale bars: 100 mm.
doi:10.1371/journal.pgen.1002011.g006

FUS Transgenic Rat Model
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were dissected after perfusion. Tissues were cryopreserved in 40%

sucrose and cut into sections on a Cryostat. Tissue sections of

12 mm were immunostained with the following antibodies: rabbit

polyclonal antibody to human FUS (made in-house), chicken

antibody to ubiquitin (Sigma), mouse monoclonal antibodies

against Iba-1 (Wako Chemical) or GFAP (Millipore), and mouse

monoclonal antibody against NeuN (Millipore). For histochemis-

try, immunostained sections were visualized with an ABC kit in

combination with diaminobenzidine (Vector) and counterstained

with hematoxylin to display nuclei. For immunofluorescent

staining, tissue sections were incubated first with specific primary

antibodies and then with secondary antibodies labeled with

fluorescent dyes (Jackson Immunoresearch). Primary antibodies

were diluted at 1:1000 and secondary antibodies diluted at 1:200.

The primary antibodies were incubated overnight at 4uC and the

secondary antibodies were incubated for 2 hours at room

temperature. For detection of degenerating neurons, paraffin-

embedded spinal cords were cut into transverse sections of 10 mm

and stained using a protocol for Bielschowsky silver staining [34].

As described in a previous publication [34], neuromuscular

junctions (NMJ) were visualized by immunofluorescent staining

and confocal microscopy. PFA-fixed gastrocnemius muscles were

cut into sections of 100 mm on a Cryostat. Muscle sections were

incubated with a-bungarotoxin (Invitrogen) for 30 minutes at

room temperature and subsequently immunostained with mouse

monoclonal antibodies to neurofilament (Sigma) and synaptophy-

sin (Millipore). Both primary and secondary antibodies were

diluted at 1:1000. The primary antibodies were incubated

overnight at 4uC and the secondary antibodies were incubated

for 2 hours at room temperature. NMJ images were captured with

a Zeiss LSM510 META confocal system and the NMJ was

reconstructed through z-stack projections from serial scanning

every 1 mm.

Toluidine blue staining and electron microscopy
As described previously [34], anesthetized rats were perfused

with a mixture of 4% PFA plus 2% glutaraldehyde. Cervical spinal

cords and L3 ventral and dorsal roots were dissected and post-

fixed in the same fixative at 4uC overnight. Fixed tissues were

embedded in Epon 812 (Electron Microscopic Sciences, PA) and

cut into semithin and thin sections. Semithin sections (1 mm) were

stained with 1% toluidine blue and visualized under a light

microscope. Thin sections (80 nm) were stained with uranyl

acetate and lead citrate and observed under a transmission

electron microscope (Hitachi H7500-I).

Electromyography (EMG)
Anesthetized rats were examined by EMG. Fibrillation and

fasciculation potentials of gastrocnemius muscles were recorded

with an EMG machine (CMS6600; COTEC Inc.) as previously

described [34].

Stereological cell counting
Motor neurons in the ventral horn of the L3 lumbar cord

were stereologically counted as previously described [34].

Neurons larger than 25 mm in diameter were counted in the

ventral horns on both sides. For estimation of neurons in the

frontal cortex and dentate gyrus, one hemisphere of the brain

was used for cell counting. The forebrain was cut into coronal

sections of 30 mm between the apical rostral part of the brain

and the first occurrence of hippocampus, and every 12th section

(a total of 15 to 18 sections) was counted for neurons in the

defined frontal cortex (Figure S3). The portion of the brain

containing the dentate gyrus was cut into consecutive sections

(20 mm) and every 12th section (a total of 16 to 21 sections) was

counted for neurons in the dentate gyrus. Tissue sections were

stained with Cresyl violet and mounted in sequential order

(rostral-caudal). The number of targeted neurons was estimated

using a fractionator-based unbiased stereology software pro-

gram (Stereologer) run on a PC computer that was attached to a

Nikon 80i microscope fitted with a motorized XYZ stage (Prior).

At low magnification, the targeting area was outlined and a

random sampling grid was created. At high magnification, an

optical dissector probe in the designated area was randomly

generated by the program. The presence of clearly definable

neurons was noted according to defined inclusion and exclusion

limits of the dissector. This process was repeated on all selected

sections. The total number of defined neurons was calculated by

the software according to the result of random counts as

previously described [34].

Statistical analysis
The number of defined neurons in the defined region was

statistically compared between groups of transgenic rats and

comparison among experimental groups was performed by one-

way ANOVA followed by Tukey’s post-hoc test. The null

hypothesis was rejected at the level of 0.05.

Supporting Information

Figure S1 Recovery of FUS transgene expression after Dox

withdrawal. Female rats of lines 20 (normal human FUS) and 22

(human FUS with R521C substitution) were mated with CAG-

tTA homozygous male rats. The breeding rats were constantly

given Dox in drinking water (50 mg/ml) and were deprived of Dox

upon delivery. Forebrain of double transgenic offspring was

collected at defined time and homogenized for immunoblotting

analysis. Each lane was loaded with 20 mg of total protein in brain

lysate. Immunoreactivity to human FUS was detected with a

peptide antibody (made-in-house). After stringent stripping, the

same membrane was probed with an antibody against GAPDH

and the immunoreactivity to GAPDH was used as an internal

control for equal loading. The symbol * indicates a non-specific

band on FUS immunoblotting.

(TIF)

Figure S2 Expression profile of human FUS in FUS transgenic

rats. Transgenic rats of lines 20 22 (human FUS with R521C

substitution) were mated with CAG-tTA homozygous male rats to

produce double transgenic offspring that was examined for FUS

expression by immunoblotting. Each lane was loaded with 20 mg

of total protein in tissue lysates. Immunoreactivity to human FUS

was detected with a peptide antibody (made-in-house).

(TIF)

Figure S3 Partial frontal and parietal cortices were defined as

the "frontal cortex" region for stereological counting of neurons.

Olfactory bulb was cut away and one hemisphere was cut into

coronal sections of 30 mm from the rostral to the caudal. Between

the apical rostral part and the first occurrence of corpus callosum,

the whole cortex was included in ‘‘frontal cortex’’. The first

occurrence of hippocampus was considered the caudal border of

‘‘frontal cortex’’. Between the first occurrence of corpus callosum

and the first occurrence of hippocampus, a line was drawn in

parallel to the medial side of hemisphere and then the first vertical

line was drawn (green). In parallel to the first vertical line, the

second vertical line (red) was drawn to pass by the top of corpus

callosum and was used to define the frontal and parietal cortex.

Representative photos show the delineation (red circle) of ‘‘frontal
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cortex’’ for neuron counting. About 200 sections were collected for

each hemisphere and every twelfth section was counted for

neurons. Scale bars: 800 mm.

(TIF)

Figure S4 Colocalization of ubiquitinated aggregates with

mitochondrial marker in FUS transgenic rats. a-c, Double-

fluorescence labeling shows that ubiquitinated aggregates (a) were

colocalized with the mitochondrial marker COXIV (b) in the

frontal cortex of a mutant FUS transgenic rat at paralysis stage.

Arrows point to COXIV stained structures inside a cortical

neuron. Scale bars: 10 mm.

(TIF)

Table S1 A summary of human FUS transgenic rat lines

created. Multiple lines of transgenic rats were created by

pronuclear injection of human FUS transgene and two mutant

FUS transgenic lines developed disease phenotypes.

(DOC)

Video S1 This video recorded four mutant FUS transgenic rats

of line 22 and one non-transgenic littermate at the age of 30 days.

The mutant FUS transgenic rats were at varying disease stages and

all were paralyzed by the age of 40 days. A photo of the paralyzed

rat was shown in Figure 1G.

(WMV)

Video S2 This video recorded one mutant FUS transgenic rat of

line 16 and one non-transgenic littermate at the age of 56 days.

The mutant FUS transgenic rat was paralyzed 4 days later. A

photo of the mutant rat was taken 4 days later and was shown in

Figure 1H.

(WMV)
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