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Chip multiprocessors with few to tens of processing cores are already commercially available.

Increased scaling of technology is making it feasible to integrate even more cores on a single

chip. Providing the cores with fast access to data is vital to overall system performance.

When a core requires access to a piece of data, the core’s private cache memory is searched

first. If a miss occurs, the data is looked up in the next level(s) of the memory hierarchy,

where often one or more levels of cache are shared between two or more cores. Communi-

cation between the cores and the slices of the on-chip shared cache is carried through the

network-on-chip(NoC). Interestingly, the cache and NoC mutually affect the operation of

each other; communication over the NoC affects the access latency of cache data, while the

cache organization generates the coherence and data messages, thus affecting the communi-

cation patterns and latency over the NoC.

This thesis considers hybrid packet/circuit switched NoCs, i.e., packet switched NoCs

enhanced with the ability to configure circuits. The communication and performance benefit

that come from using circuits is predicated on amortizing the time cost incurred for config-

uring the circuits. To address this challenge, NoC designs are proposed that take advantage

of properties of the cache traffic, namely temporal locality and predictability, to amortize or

hide the circuit configuration time cost.

First, a coarse-grained circuit configuration policy is proposed that exploits the temporal

locality in the cache traffic to periodically configure circuits for the heavily communicating

nodes. This allows the design of a locality-aware cache that promotes temporal commu-
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nication locality through data placement, while designing suitable data replacement and

migration policies.

Next, a fine-grained configuration policy, called Déjà Vu switching, is proposed for lever-

aging predictability of data messages by initiating a circuit configuration as soon as a cache

hit is detected and before the data becomes available. Its benefit is demonstrated for saving

interconnect energy in multi-plane NoCs.

Finally, a more proactive configuration policy is proposed for fast caches, where circuit

reservations are initiated by request messages, which can greatly improve communication

latency and system performance.

Keywords: Multi-core/single-chip multiprocessors, CMP, NoC, packet switching, circuit

switching, Locality-Aware Cache.
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1.0 INTRODUCTION

Chip multiprocessors (CMPs) have processing cores with one or more levels of private caches

and often a shared last level cache. Examples include Intel’s Xeon processor [83] and AMD’s

Opteron processor [27]. One of the primary benefits of CMPs is having fast on-chip com-

munication, which makes them very suitable for running parallel workloads. The threads

of parallel workloads often share data, therefore causing multiple copies of the same data

to simultaneously exist in the private caches of different cores. The NoC allows the com-

munication necessary for exchanging data and ensuring data coherency; thus, both fast-

communication and efficient cache-design are critical to system performance.

1.1 GOAL

Generally, network traffic is either packet switched (PS) or circuit switched (CS). A packet

switched message is examined at each router of the path to make the necessary routing

decisions, such as which router output port and possibly which virtual channel the message

should use. A circuit switched message, on the other hand, does not suffer the overhead

of routing decisions because the circuit is either implemented as a direct point-to-point

connection between the sender and receiver, or if there are routers along the path, the routers

are pre-configured to send the incoming messages through the correct output ports without

incurring routing delays. This thesis considers packet switched NoCs enhanced with the

ability to configure circuits; i.e. hybrid packet/circuit switched NoCs. Circuits are realized

through the latter circuit implementation, in which routers are pre-configured to correctly

route the circuit switched messages.

1



A hybrid NoC may be composed of one or more planes. As illustrated in Fig. 1, a plane

in a hybrid NoC may support either: mixed packet and circuit switching (Unified hybrid

packet/circuit switching), or supports only one of packet or circuit switching (Segregated

hybrid packet/circuit switching).

In an ideal setting, circuits would simultaneously exist between every pair of communi-

cating nodes. However, this requires a huge amount of wiring which is not practical given

the limited chip area. Therefore, only a subset of all the circuits between communicating

nodes can be simultaneously established at any point in time. Further, there is a latency

cost for establishing a circuit, making circuits effective only if the cost can be amortized, for

example, through enough reuse. Given these limitations, this thesis proposes NoC

designs that exploit properties of the cache traffic for better configuring and

utilizing circuits to achieve performance and/or power gains.

Hybrid  
Packet / Circuit 

Switching 

Unified Hybrid PS/CS  
A plane supports both  

packet and circuit switching 

Segregated Hybrid PS/CS  
A plane supports either  

packet or circuit switching 

Network 
Switching 

Packet Switching 

Circuit Switching 

Figure 1: Network switching: packet, circuit, and hybrid packet/circuit switched NoCs.

1.2 OVERVIEW OF THE PROPOSED APPROACHES

The thesis proposes two approaches for better utilizing the hybrid NoCs. The first is a coarse-

grained approach which exploits temporal locality of the cache traffic to increase utilization

of circuits and improve CMP performance (Chapter 3). In particular, since there is a latency

cost for establishing circuits, instead of establishing a circuit on-demand for every message

– an approach that suffers from potential thrashing of conflicting circuit paths and possibly

2



poor utilization of circuits – it is proposed to periodically identify the heavily communicating

nodes and configure circuits for them. The stability of established circuits until the next re-

configuration increases their re-use, and in addition allows speeding-up communication with

destinations not explicitly connected by circuits through routing on parts of established

ones. To further benefit from such a NoC, a locality-aware cache organization that promotes

communication locality is proposed (Chapter 4). With careful data placement, network

traffic can be reduced and communication locality can be increased. Moreover, the proposed

locality-aware cache includes suitable locality-aware data migration and data replacement

policies.

Considering the flow of messages resulting from cache transactions, the data request

messages in an efficient cache design should mostly hit in the on-chip cache resulting in data

reply messages to be sent soon after the requests are received; hence, making reply data

messages predictable for the most part. This predictability can be leveraged to pre-configure

circuits for the data messages; thus hiding part or all of the configuration time cost. This

thesis suggests two fine-grained approaches to circuits configuration that establish circuits

on a per-message basis while avoiding circuit thrashing.

The first approach is Déjà Vu switching, a simple algorithm that initiates circuit config-

uration for a data message once it is confirmed that the corresponding cache request hits in

the cache (Chapter 5). The lead time between detecting a cache hit and reading and sending

the requested cache line allows hiding part or all of the circuit configuration time. Moreover,

since traveling on circuits is faster than packet switching, it is proposed to save power by

operating the circuits at a lower voltage/frequency than the packet switched traffic. Specifi-

cally, power can be saved if instead of having a single interconnect plane, the NoC is split into

two planes: a plane dedicated to the cache requests and control messages; and a slower, more

power efficient plane dedicated to the mostly predictable data messages. However, this split

can be beneficial for saving energy only if system performance is not significantly degraded

by the slower plane. Thus, the criticality of data messages is considered and an analysis of

the constraints that govern how slow the power-efficient plane can operate without hurting

system performance is developed.

The second approach, Red Carpet Routing, is proposed for improving the performance
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of CMPs with fast on-chip caches (Chapter 6). With a fast enough cache, the time between

detecting a cache hit and reading the cache line may not be long enough for Déjà Vu switch-

ing to be effective in hiding the time overhead of circuit configuration. Red Carpet Routing

aims to hide this time overhead by using request messages to reserve the circuits for their

anticipated reply messages. Reserving circuits by requests requires time-based reservations

to avoid holding NoC resources unnecessarily idle which under-utilizes the NoC. However,

variability in network traffic conditions and request processing times make it impossible to

use accurate time-based reservations. To solve this problem, approximate time-based reser-

vations are proposed, where requesting nodes estimate the time length of the round-trip from

the time when a request is sent until its reply is received, and these estimates are used for

ordering the realization of the reserved circuits.

To summarize, this thesis advocates that: “The overhead of circuit switching

is reduced with exploring knowledge of the system” and provides the following

contributions:

1. Leveraging communication locality in cache traffic to design a pinning (coarse-

grained) circuit configuration policy for speeding-up communication and

performance.

2. The introduction of a locality-aware cache organization that promotes com-

munication locality and maximizes the benefit from the pinning circuit con-

figuration policy.

3. Leveraging predictability of data messages in the cache traffic to design two

on-demand (fine-grained) circuit configuration policies for:

a. Reducing power consumption without sacrificing performance ( Déjà Vu

switching) for CMP with relatively slow caches.

b. Improving performance and potentially power consumption of CMPs

with fast caches ( Red Carpet Routing).

The thesis is organized as follows. Related work and necessary background are described

in Chapter 2. Chapters 3 and 4 present the proposed pinning circuit configuration policy
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for the NoC, and the locality-aware cache design, respectively. The proposed fine-grained

circuit configuration policies, Déjà Vu switching and Red Carpet Routing, are presented in

Chapters 5 and 6. Finally, Chapter 7 presents a summary of the contributions, and how

they may be integrated in the CMP design, as well as future work.
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2.0 BACKGROUND AND RELATED WORK

This chapter presents an overview of the tiled CMP architecture, along with a description

of packet switching, an overview of hybrid packet/circuit switched interconnects, and cache

organizations. Afterwards, related work is presented in the areas of improving the perfor-

mance of network-on-chip and its power consumption, as well as related work in the area of

efficient cache design.

2.1 CHIP MULTIPROCESSOR

The thesis considers a homogeneous chip multiprocessor architecture, i.e., all processing cores

are identical. More specifically, a tiled CMP architecture is assumed, where tiles are laid in

a 2D mesh, as in Fig. 2. Each tile consists of a processing core, private L1 cache (instruction

and data), an L2 bank, a directory to maintain coherence, and a network interface (NI).

The NI is the interface point between the tile and on-chip interconnect. It is responsible for

sending and receiving packets. In case there are multiple interconnect planes, the NI decides

on which plane to send each packet.
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Figure 2: Diagram of a tiled CMP having 9 cores. The tiles are laid out in a 2D mesh. Each tile
has a processing core, a private I/D L1 cache, a slice of the L2 cache, a slice of a distributed

directory for maintaining cache coherency, and a network interface (NI). Each NI is connected to
the router(s) of the interconnect plane(s) at the tile.

2.2 NETWORK-ON-CHIP

2.2.1 Packet Switching

In packet switching packets travel to their destinations on interconnect links. After crossing

a link, a packet is received in an interconnect router, which examines the packet and decides

the next link the packet should be sent on. I.e., routers – as the name implies – implement

the logic for forwarding packets to their destinations. The different parts of this logic, which

are described below, are most often implemented as stages of a pipeline that is referred to

as the router pipeline.

Fig. 3 shows a diagram of a typical packet switched router. When the head flit of a packet

arrives at an input port of a router it is first decoded and buffered in the port’s input virtual

channel (VC) buffer during the buffer write (BW) stage of the router pipeline. Second, it

goes through the route computation (RC) stage during which routing logic computes the

output port for the packet. Next, the head flit arbitrates for an output virtual channel (VC)

in the virtual channel allocation (VA) stage. After arbitration succeeds and an output VC
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Figure 3: Diagram of a Packet Switched Router

is allocated, the head flit competes for the switch input and output ports during the switch

allocation (SA) stage. Finally, the head flit proceeds to traverse the crossbar in the switch

traversal (ST) stage, followed by traversing the link in the link traversal (LT) stage. Body

and tail flits of the packet skip the RC and VA stages since they follow the head flit.

Several techniques can be applied to shorten the critical path through the router stages.

Lookahead routing, where route computation occurs in the BW stage, removes RC from

the router’s critical path. Aggressive speculation [71, 76] allows VA and SA stages to occur

simultaneously, where a head flit is allowed to enter SA stage assuming it will succeed in

allocating an output VC in the VA stage, but is not allowed to enter ST stage if it fails in

allocating an output VC, at which case the head flit will have to go through the VA and SA

stages again. Switch and link traversal can be performed together in one stage. Note that

further reduction of the router critical path to only one stage is possible under low loads

through aggressive speculation and bypassing [57].
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2.2.2 Hybrid Packet/Circuit Switching

Hybrid packet/circuit switched interconnects support both packet switched (PS) and circuit

switched (CS) traffic. Packet switching is described above (Section 2.2.1). Circuit switching,

on the other hand, works by configuring a circuit from a source tile, S, to a destination tile,

D. A circuit is configured by specifying at each intermediate router which input port should

be connected to which output port during the SA stage. For unified hybrid packet/circuit

switching, where both packet and circuit switching are supported on the same plane (for

example, [33]), an extra bit, called circuit field check (CFC) may be added to each flit to

indicate whether the flit is circuit or packet switched. The CFC bit is checked when the

flit enters the router. If the CFC bit is set, the flit is allowed to bypass directly to the

switch traversal stage, otherwise it is buffered in the appropriate virtual channel buffer and

routed as packet switched. CS flits have higher priority than PS flits. The switch allocator

receives signals from the input ports indicating the presence or absence of incoming CS flits,

and accordingly determines which input ports can send PS flits. Fig. 4 shows a diagram

of a potential router supporting hybrid packet/circuit switching. It differs from the packet

switching router in Fig. 3 in that there is added logic for configuring circuits (as described in

the next section) and an added virtual channel, V CCS, for buffering circuit switched packets

if they cannot continue traveling on a circuit – for example, if a circuit is reconfigured or

removed when the packet is in flight; more details will be provided in Chapter 3.

2.2.3 Circuit Configuration with an On-Demand Policy

When a circuit is needed, a circuit configuration message must be sent first to configure the

circuit. A configuration message is usually small and travels packet switched configuring

the routers on the circuit path. Configuration messages may be sent on a dedicated setup

interconnect plane, which is the approach taken in [33], and described next:

The NoC may be comprised of one or more interconnect planes. To send a packet, pi,

from tile, S, to tile, D, either pi is sent on an already established circuit from S to D on

one of the interconnect planes, or if there is no such circuit, one of the interconnect planes is

chosen to establish the circuit. S sends a circuit setup request on the setup plane specifying
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Figure 4: Microarchitecture of hybrid packet/circuit switched router.

the destination D and the chosen interconnect plane on which to establish the circuit. S does

not wait for the circuit to be established, but rather sends the packet immediately behind

the circuit setup request. When S wishes to subsequently send another packet, pj, to D, it

can be sent on the established circuit if it is still in place, i.e., if the circuit is not torn down

during the time between the two packets pi and pj are sent.

When an existing circuit, Cold, from S to D is torn down at an intermediate router, Rk,

to allow a new conflicting circuit, Cnew, to be established, Rk asserts a reconfiguration signal

at the input port, ipj, of Cold so that an incoming CS packet at ipj is buffered and routed

as packet switched (the CFC bit is reset). In addition, a circuit removal notification packet

is injected on the setup network and sent to S to notify it of the removal of the circuit.

2.3 CACHE DESIGN

CMP performance greatly depends on the data access latency, which is highly dependent on

the design of the NoC and the organization of the memory caches. The cache organization
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affects the distance between where a data block is stored on chip and the core(s) accessing

the data. The cache organization also affects the utilization of the cache capacity, which in

turn affects the number of misses that require the costly off-chip accesses. As the number of

cores in the system increases, the data access latency becomes an even greater bottleneck.

Static non-uniform cache architecture (SNUCA) [51] and Private [17] caches represent the

two ends of the cache organization spectrum. However, neither of them is a perfect solution

for CMPs. SNUCA caches have better utilization of cache capacity – given that only one

copy of a data block is retained in the cache – but suffers from high data access latency

since it interleaves data blocks across physically distributed cache banks, rarely associating

the data with the core or cores that use it. Private caches allow fast access to on-chip data

blocks but suffer from low cache space utilization due to data replication, thus resulting

in many costly off-chip data accesses. As different workloads may have different caching

requirements, caching schemes have been proposed to dynamically partition the available

cache space among the cores while attempting to balance locality of access and cache miss

rates, for example [37, 63, 5]. Below, the section of related work describes other hybrid

caching schemes that attempt to keep the benefits of both SNUCA and private caches while

avoiding their shortcomings.

2.4 RELATED WORK

2.4.1 NoC: Speeding Communication With Reduced Hop Count

Previous research attempts to reduce communication latency by a variety of ways. Many

designs use high radix routers and enriched connectivity to reduce global hop count. For

example, in the flattened butterfly topology [52, 53, 54] routers are laid out in a mesh topology

such that each router is connected by a direct link to each of the other routers on the same row

and similarly to each of the other routers on the same column. With dimension order routing,

communication between any two routers requires crossing at most two links. Although

crossing long links may require multiple cycles, packets avoid the routing overhead associated
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with going through many routers along their paths. However, the aggregate bandwidth in

either the horizontal or vertical dimensions is statically partitioned between the router ports

on the horizontal or vertical dimensions, respectively, which may reduce utilization of the

aggregate bandwidth and increase the serialization delay of packets. The multidrop express

channels topology [35] also reduces hop count through enriched connectivity. It uses a one-to-

many communication model in which point-to-multipoint unidirectional links connect a given

source node with multiple destinations in a given row or column. Concentrated mesh [8, 19]

reduces the routing overhead by reducing the number of routers in the interconnect through

sharing each router among multiple nodes. For example, four tiles (concentration factor of

4) can share one router to inject and receive messages from the interconnect. Router sharing

necessarily increases the number of router ports to support all the sharing nodes. The

above solutions use high radix routers, which has proven to affect the operating frequency

of routers [78].

Hierarchical interconnects are composed of two or more levels, such that the lower level

consists of interconnects that each connect a relatively small number of physically close

tiles, while the next higher level connects some or all of the lower level interconnects, such

that the higher level uses longer wires and fewer routers to speedup the transmission of

packets between the lower level interconnects. Hierarchical interconnects are beneficial for

highly localized communication, where the mapping of threads or processes to the CMP

tiles attempts to promote spatial locality of communication, i.e., communication occurs

mostly among physically close tiles. For example, hybrid ring/mesh interconnect [16] breaks

the 2D mesh interconnect into smaller mesh interconnects connected by a global ring, and

hybrid mesh/bus interconnect [28] uses buses as local interconnects and uses a global mesh

interconnect to connect the buses.

In 3D stacked chips, a low-radix and low-diameter 3D interconnect [98] connects every

pair of nodes through at most 3 links (or hops). However, achieving the three-hop com-

munication requires an irregular interconnect topology, which can increase the design and

verification effort.
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2.4.2 NoC: Speeding Communication With Reduced Hop Latency

Another approach for reducing communication latency is reducing hop latency. Duato et

al. [32] propose a router architecture for concurrently supporting wormhole and circuit

switching in the interconnections of multicomputers and distributed shared memory mul-

tiprocessors. The router has multiple switches that work independently. One switch imple-

ments wormhole switching while the others implement circuit switching on pre-established

physical circuits. Circuits are established by probes that traverse a separate control network.

Network latency and throughput are improved only with enough reuse of circuits.

Kumar et al. [58] propose express virtual channels to improve communication latency

in 2D mesh NoCs for packets traveling in either the horizontal or vertical directions. A

look-ahead signal is sent ahead of a message that is sent on an express channel so that the

next router configures the switch to allow the flits of the message to immediately cross to

the next router, thus bypassing the router pipeline. An upstream router needs to know of

buffer availability at downstream routers, which is accomplished through a credit-based flow

control. Increasing the number of consecutive routers that can be bypassed by a flit requires

increasing the input buffer sizes to account for the longer credit-return signal from the farther

downstream routers, unless faster global wires are used for communication credits [56].

Jerger et al. [33] configure circuits on-demand between source and destination nodes.

Packet and circuit switched traffic share the NoC’s routers and links, but the later incurs

less router latency by bypassing the router pipeline. However, the on-demand configura-

tion policy is susceptible to circuit thrashing – when established ones are removed to allow

establishing conflicting new circuits – and hence may result in low circuit utilization.

Peh and Dally propose flit-reservation flow control [75] to perform accurate time-based

reservations of the buffers and ports of the routers that a flit will pass through. This requires

a dedicated faster plane to carry the reservation flits that are sent ahead of the corresponding

message flits for which reservations are made. Li et al. [66] also propose time-based circuit

reservations. As soon as a clean data request is received at a node, a circuit reservation is

injected into the NoC to reserve the circuit for the data message, optimistically assuming that

the request will hit in the cache and assuming a fixed cache latency. However, the proposal
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is conceptual and missing the necessary details to handle uncertainty in such time-based

reservations. Cheng et al. [23] propose a heterogeneous interconnect for carrying the cache

traffic of CMPs. Three sets of wires are used with varying power and latency characteristics

to replace a baseline two-level tree NoC. With wide links (75 byte) on the baseline NoC,

the authors report a reduction in both execution time and energy consumption, however,

they report significant performance losses when narrow links (10 byte links on the baseline

NoC and twice the area of 10 byte links allocated to the links of the heterogeneous NoC)

are used. Flores et al. [34] also propose a heterogeneous interconnect similar to [23] for a 2D

mesh topology in which the baseline NoC is replaced with one having two sets of wires; one

set of wires is 2x faster and carries critical messages, while the other set is 2x slower than

the baseline. The authors report results with similar trends to the results in [23].

Adaptive routing can balance network occupancy and improve network throughput, but

at the cost of additional sophisticated logic and performance degradation due to the routing

decision time. Lee and Bagherzadeh suggest fully adaptive wormhole routers that use a

faster clock for forwarding packet body flits, as they follow the routing decision previously

made for the packet’s head flit [7].

Speculative routing techniques [76, 71, 99, 72, 57, 69] have been proposed to reduce

arbitration latencies, however, misspeculations and imperfect arbitration can waste cycles

and link bandwidth.

2.4.3 NoC: Reducing Communication Power

In the context of off-chip networks that connect processors and memories in multicomputers,

Shang et al. [85] propose a history-based dynamic voltage scaling (DVS) policy that uses past

network utilization to predict future traffic and tune link frequency and voltage dynamically

to minimize network power consumption with a moderate impact on performance. For both

on-chip and chip-to-chip interconnects, Soteriou and Peh [89] propose self-regulating power-

aware interconnection networks that turn their links on/off in response to bursts and dips

in traffic in a distributed fashion to reduce link power consumption with a slight increase in

network latency. Lee and Bagherzadeh also use dynamic frequency scaling (DFS) links [64]
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based on the clock boosting mechanism [7] to save power in the NoC. Their proposal trades

off performance and power by using a history-based predictor of future link utilization to

choose from among several possible link operating frequencies, such that low frequencies are

used during low or idle utilization periods, and high frequencies are used during high link

utilization periods.

This thesis considers a tiled CMP architecture with the regular mesh interconnect topol-

ogy, and proposes circuit configuration policies for amortizing or hiding circuit configuration

overhead, without requiring a faster plane for carrying the circuit configuration messages, to

enable gains in communication latency and/or power consumption.

2.4.4 Cache Design

Flexibility in data placement allows a compromise between placing data close to the accessing

cores and utilization of cache capacity. Beckmann and Wood [14] show that performance

can benefit from gradual block migration. D-NUCA cache for CMPs [44] allows dynamic

mapping and gradual migration of blocks to cache banks but requires a search mechanism to

find cache blocks. Kandemir [49] proposes a migration algorithm for near-optimal placement

of cache blocks but requires the use of some of the cache space for storing information

necessary for making migration decisions. CMP-NuRapid [24] employs dynamic placement

and replication of cache blocks. Locating cache blocks is done through per processor tag

arrays which store pointers to the locations of the blocks accessed by each processor. CMP-

NuRapid suffers from the storage requirements of the tag arrays and the use of a snooping

bus for maintaining these arrays, which may not scale well with many cores on the chip.

Data placement in distributed shared caches can be improved through careful allocation

of the physical memory. Cho and Jin [26] suggest operating system assisted data placement

at the page granularity (page-coloring). This technique is effective for multi-programmed

workloads as well as when each thread allocates its own pages. However, it may not be

as effective when data is allocated by the main program thread - during initialization, for

example - of a multithreaded program. In addition, page granularity may be less effective

for programs with mostly sub-page data spatial locality. Awasthi et al. [6] suggest controlled
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data placement also through page-coloring, but perform page-coloring on-chip instead of by

the operating system. Page migration is performed by periodically invoking an operating

system routine to make migration decisions based on information collected on-chip about the

current placement and accesses of pages. However, amortizing the overhead of running the

OS routine requires invoking it over relatively large time periods (millions of cycles), which

may not be fast enough to adapt to changes in data access patterns.

RNUCA [39] relies on the operating system (OS) to classify data pages as private or

shared. The first access to a page classifies it as private and is therefore mapped to the

local cache bank of the accessing core. A subsequent access to the same page that originates

from another core re-classifies the page permanently as shared. The cache blocks of a shared

page are mapped in the cache using the standard address interleaving and the rotational

interleaving indexing schemes [39]. For multithreaded programs that initialize data in the

main thread, all pages would be re-classified as shared once other threads start operating

on them. In this case, the data placement of the RNUCA becomes similar to that of the

SNUCA.
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3.0 COARSE-GRAIN CIRCUIT CONFIGURATION AND PINNING

This chapter presents the first proposed approach for better utilizing configurable circuits.

This approach proposes to exploit the temporal locality of the cache traffic to increase uti-

lization of circuits and improve CMP performance. In particular, since there is a latency cost

for establishing circuits, instead of establishing a circuit on-demand for every message [33]

(described in Sections 2.2.2 and 2.2.3) – an approach that suffers from potential thrashing

of conflicting circuit paths and possibly poor utilization of circuits – it is proposed to pe-

riodically identify the heavily communicating nodes and configure circuits for them. The

stability of established circuits until the next re-configuration increases circuit re-use.
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circuits from source to destination
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Analysis of the communication traffic of a suite of scientific and commercial workloads

from the SPLASH-2 [91] and PARSEC 1.0 [15] benchmarks on a simulated 16-core CMP

having hybrid packet/circuit switched NoC using on-demand circuit configuration policy [33]

The work in this chapter appeared in [2]

17



shows two interesting points: (1) circuit utilization is limited as evident from Fig. 51, and

(2) the average time between sending two consecutive packets from the same source to

the same destination is large (Fig. 6), which explains the low circuit utilization; often, a

circuit is not there to be reused as it gets torn down to allow other conflicting circuits to

be established. These findings motivate the exploration of circuit pinning, an alternative

that aims at keeping circuits in place, thus promoting their reuse. Moreover, circuit pinning

provides another advantage: stability of the configured circuits, which allows for effective

partial-circuit routing, in which partial as well as complete circuits are used, thus further

improving circuit utilization.

This chapter explores the benefits of circuit pinning and describes how circuits are es-

tablished and reconfigured over time to cope with changes in communication patterns. The

remainder of the chapter is organized as follows:

Section 3.1 presents the details of circuit pinning, while Section 3.2 describes necessary

implementation assumptions. Section 3.3 presents partial circuit routing and how it is en-

abled in light of the implementation assumptions. Evaluation methodology and results are

presented in Sections 3.4 and 3.5. Finally, conclusion is presented in Section 3.6.

3.1 HYBRID PACKET/CIRCUIT SWITCHED INTERCONNECT WITH

PINNED CIRCUIT CONFIGURATION

The tiled CMP architecture described in Section 2.1 is assumed, with a NoC composed of one

or more unified hybrid packet/circuit switched planes. The CMP has N tiles. The network

interface (NI) is the interface point between the tile and the NoC. In the proposed circuit

pinning scheme, the NI keeps statistics about the communication between its tile and other

tiles. Specifically, an NI at tile i, 0 ≤ i < N , tracks the number of packets sent from tile i

to every tile j, j 6= i, 0 ≤ j < N . Thus, each NI has N − 1 storage elements to maintain

the number of packets sent to each unique destination and a single adder per interconnect

1Figures 5 and 6 were produced using the simulator described in Section 3.5 with SNUCA L2 and 1MB
L2 bank size.
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plane for updates. The number of bits, b, required for each storage element depends on the

length of the time interval during which statistics are gathered and the clock frequency of

the interconnect. With N NIs in the system, storage overhead complexity is O(bN2)2.

The goal is to maximize the percentage of on-chip traffic that travels on circuits to im-

prove network latency. Due to limited die area, it is not possible to simultaneously establish

a circuit between every possible pair of communicating tiles. Thus, assuming temporal lo-

cality of communication, time can be divided into intervals, T1, T2, ..., each of equal length,

tp. During each time interval, Ti, communication statistics are gathered at each tile, S, on

the number of packets sent to every other tile, D 6= S. Based on the gathered statistics,

circuits from S to its most frequent tile destinations should be established, if possible. The

new circuit configuration is kept stable for the duration of the next time interval, Ti+1. Peri-

odic reconfiguration of circuits enables coping with changes in traffic patterns, which agrees

with the findings in [29, 30], where synchronization points in multithreaded programs often

indicate the start of a new epoch of communication with identifiable sets of tiles that exhibit

locality of communication.

Assume that setting up the new circuits takes time ts. During ts, the new circuit con-

figurations will only be recorded in the routers of the interconnect planes but will not be

activated, i.e, the old circuit configuration will remain in effect during ts. To ensure that

the transition to the new circuit configuration does not cause incorrect routing, a period of

time, tf , is required to flush in-flight CS packets out of the interconnect. During tf , all tiles

cease to send new CS packets, and only send PS packets. After tf passes, the new circuit

configuration is activated and NI statistics counters are all re-initialized to zero. The new

circuit configuration is kept stable until the end of the time interval. The following section

presents two algorithms for setting up circuits.

3.1.1 Circuit Configuration Algorithms

2In simulations (Section 3.4), 16 bits per storage element are sufficient to keep track of the number of
sent messages per time interval. Thus, in a 256-tile CMP, the total storage overhead would be 512 bytes per
tile.
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3.1.1.1 A Centralized Algorithm This algorithm uses a centralized controller to which

all NIs are connected for handling the configuration of the circuits that will be active during

the next time interval, Ti+1. At the end of a time interval, Ti, every NI sends to the

centralized controller the list of N −1 other tiles, i.e., message destinations, ordered by most

important to least important. In this proposal the most important destination of an NI is

chosen to be the one the NI sent the most number of packets. Similarly, the least important

destination is the one the NI sent the least number of packets. In an implementation this

can be accomplished with one additional storage cell and a comparator per node using a

hardware implementation of bubble sort.

Assuming there are k interconnect planes, the centralized controller performs k iterations.

In each iteration, the controller attempts to create the next important circuit for every NI

on one of the k data planes. If the controller fails to create a circuit for an NI - due to

conflicting resources - it attempts to create the next important circuit of that NI.

The proposed controller is similar to the controller for a time division multiplexed (TDM)

crossbar designed in [31], which receives as input an N × N request matrix specifying the

required circuits to establish between N possible source and destination nodes. To establish

a circuit from S to D, the controller checks that the output port on S and the input port on

D are available, i.e., are not already assigned to other circuits. This is done by checking two

matrices storing availability information of input and output ports. The time slots – on which

circuits are established – of the TDM crossbar [31] correspond to the interconnect planes

comprising the on-chip interconnect. In the proposed controller, the check for input and

output ports availability is replaced by checking the availability of all links on the network

path from S to D, where a link is defined by a pair of router input-output ports. The

proposed controller has matrices storing availability of links on each of the k interconnect

planes. Searching the matrices of all the k planes is done in parallel. For each plane, search

indicates whether the circuit can be established or not. If the circuit can be established on

more than one plane, the least numbered data plane is chosen for establishing the circuit.

3.1.1.2 A Distributed Algorithm Another alternative is using a setup network and al-

lowing tiles to simultaneously establish circuits. Qiao and Melhem [79], and Yuan et. al [100]
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studied distributed circuit reservation for optical networks using time division multiplexing,

and wavelength division multiplexing. A similar distributed two phase circuit reservation al-

gorithm is presented: A tile sends a circuit reservation (CR) message (one control flit) on the

setup network. The source tile indicates in the CR message the list of possible interconnect

planes on which the circuit may be established. Each router on the setup network tracks

the status of the input and output ports on the corresponding routers of the NoC planes.

At the beginning of the algorithm, the status of all input and output ports of the routers of

all the NoC planes is marked as available. When a circuit is established, the status of the

ports on the circuit path is changed to unavailable. The port status is set to reserved while a

circuit is being established. A port marked reserved on plane i would eventually be marked

unavailable if the circuit is established on plane i, or marked available otherwise.

At each router the circuit establishment algorithm performs the following: (1) Identifies

the input and output ports required by a CR message, (2) waits until the status of each of

the required ports is resolved to either available or unavailable (note that a CR message that

will wait is moved to the end of the buffer to avoid blocking other messages), (3) chooses

the available input and output port pairs on the same plane and changes their status to

reserved, and (4) updates the list of planes in the CR message and passes the message to the

next router. If it happens that a CR message cannot proceed, i.e., cannot reserve a complete

circuit on at least one plane, the router drops the CR message and injects a circuit free (CF)

message, which travels the same path as the dropped CR message but in reverse, to free

reserved ports. If a CR message reaches its destination and succeeds in reserving a complete

circuit on at least one plane, one of those planes is chosen to establish the circuit. The

destination router injects a circuit confirmation (CC), which – similar to the CF message

– travels the same path as the CR message in reverse, to confirm the establishment of a

circuit on the chosen plane and free the reserved ports on the other planes. Note that

multiple rounds of the algorithm are executed until each tile exhausts its list of connections

to establish.
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3.2 IMPLEMENTATION ISSUES

This section briefly describes some details regarding the implementation of hybrid packet/circuit

switching. The goal is to clarify and unify the implementation for both on-demand and pin-

ning circuit configuration schemes for fair comparison.

3.2.1 Router Design

When a circuit, Cold, is broken at an intermediate router, Rk, due to the establishment of a

new conflicting circuit, Cnew, a CS packet, p, currently traveling on Cold will have to become

packet switched starting at Rk. This requires buffering the flits of p in one of the virtual

channel buffers at the input port, ipj, through which p enters Rk. Since CS packets bypass

the router VA stage and hence are not associated with a virtual channel id, it is assumed

that CS packets travel on a special channel and a special buffer, V CCS, is added to each

input port of the router. The special buffers store the flits of CS packets that become packet

switched, as shown in Fig. 7.
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Figure 7: Microarchitecture of hybrid packet/circuit switched router.
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3.2.2 Delayed Circuit Reconfiguration at a Router

Given that only the head flit of a packet contains the routing information, i.e., destination

tile and possibly the source tile, while the body and tail flits follow the same route of the

head flit, breaking a configured circuit, Cold – to configure a new conflicting circuit Cnew

– at an intermediate router, Rk, while a CS packet is traversing Rk, would require adding

the routing information to body and tail flits. Additionally, it would complicate the router

design since some non-head flits would require going through the virtual channel allocation

stage. Therefore, if a CS packet, p, traveling on Cold, is traversing Rk, breaking Cold is

delayed until the tail flit of p is seen.

3.2.3 CFC bit versus lookahead signal

As mentioned in Section 2.2.2, a CFC bit is required to differentiate CS and PS flits. Since

a CS flit takes one cycle to traverse a router, a packet consisting of multiple flits cannot be

delayed at any intermediate router unless it will become packet switched. Therefore, CS flits

have higher priority than PS flits. Consequently, when a router detects a CS flit traveling on

circuit, Ci, and in order to allow that CS flit to traverse the router, it may have to preempt

up to two PS packets that were allocated the crossbar input and output ports of Ci at the

SA stage. An alternative to the CFC bit is to send a lookahead signal one cycle in advance of

sending a CS flit so that the next router knows that there is an incoming CS flit. This allows

more efficient switch allocation since only the input ports with no incoming CS packets can

participate in the SA stage of the router packet switching pipeline. For a fair comparison,

the use of a lookahead signal is assumed for all simulated hybrid packet/circuit switched

NoCs.

3.3 ROUTING ON PARTIAL CIRCUITS

Stable circuit configurations provide an opportunity to further improve circuit utilization by

using partial circuit routing. For example, assume tile S wishes to send a packet, p, to tile
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F but there is no circuit from S to F (route SF denotes the route from S to F ). Further

assume there is an established circuit, CSD, from S to some node D, where routes SF and

SD share the path, SK, (note that it may be that K = D or K = F or K /∈ {D,F}).

In this case p can traverse the shared route SK as a CS packet on the circuit CSD. After

exiting CSD at K, the packet is routed to its destination, F , on the PS network, if K 6= F .

Stability of configured circuits allows the NI at each tile S to compute for each circuit, CSD,

originating at S, the destinations that can partially use it. These computations need only be

done once at the end of each round of circuits configuration, then used when sending packets

for the duration of the circuits pinning interval.

Partial circuit routing is used unintentionally with on-demand circuit configuration [33]

when a packet is sent on a broken circuit before the sending tile receives notification of the

circuit removal. However, use of partial circuits can be planned. To enable it, a unary

counter specifying the number of remaining links to be traversed as a CS packet is added

to the lookahead signal. In a 2D square mesh tiled CMP of N processors the maximum

number of hops to reach a destination is 2
√
N − 1. Thus, the unary counter would consist

of 2
√
N − 1 bits. Only one bit of the counter will be set to 1 while the rest are 0s. The

router examines the least significant bit (LSB) of the received counter. If LSB is 0, then

the incoming packet should be routed as a CS packet and the counter bits are shifted right

one bit and sent to the next router. If, on the other hand, the LSB is 1, then the incoming

packet will be buffered in the V CCS buffer of the input port of the router and will be routed

as a PS packet. Note that to send a CS packet all the way to the destination of a circuit,

the unary counter bits should all be set to 0s.

A possible disadvantage with partial circuit routing is that it may reduce the percentage

of packets traveling on complete circuits from source to destination. When a partially circuit

routed packet, pk, becomes packet switched at an input port, ip, of some router, Ri, pk is

written to ip’s V CCS buffer. Similar to the express virtual channel buffer management

technique [58], if there is not enough free space in the V CCS buffer to accept another full

packet, Ri sends a stop signal to op, the output port on the previous router, Rj, connected

to ip. The stop signal indicates that Ri cannot accept any more CS packets at ip. When

flits are sent out of the V CCS buffer and there is enough free space to accommodate at
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least one more full packet, Ri sends a resume signal to op indicating it can now receive CS

packets at ip. Thus, a stop signal temporarily disables a link of a circuit, rendering the rest

of the circuit links unusable until the link is re-enabled by a resume signal. During the time

a circuit link is disabled, other CS packets will become packet switched when they reach

disabled circuit links. However, simulation results show that the benefits gained from partial

circuit routing greatly outweigh this possible disadvantage.

3.4 EVALUATION METHODOLOGY

Cycle accurate simulation is used for comparing four interconnect designs:

Packet Switched Interconnect (PKT)

In the simulations a NoC composed of one packet switched plane with a 64-byte link

width is used. All control and data messages are one flit long. Packet switched routers have

a 3-stage pipeline: BW, VA+SA, ST+LT (see Section 2.2.1). Each input port has 4 virtual

channel buffers, each buffer capable of storing 5 flits.

Hybrid Circuit Switched Interconnect with On-Demand Circuit Configuration

(CSOD)

In the simulations a NoC composed of 4 unified hybrid packet/circuit switching planes

is used, each having a 16-byte link width, for an aggregated 64-byte link width across the 4

planes. Control messages are one flit long, while data messages are 4 flits long. A PS packet

goes through a 3-stage pipeline, while a CS packet traverses the router in one cycle. Each

input port has 5 virtual channel buffers, each buffer capable of storing 5 flits. Four of the

virtual channel buffers are used for PS packets, while the fifth one is used for buffering an

incoming CS packet that would become packet switched until it reaches its destination.

Hybrid Circuit Switched Interconnect with Pinned Circuit Configuration (CS)

The design of CS is similar to CSOD, except that, circuits are established every preset

time interval instead of on-demand. After circuit establishment, they are pinned until it

is time to reconfigure the circuits, as described in Section 3.1. In simulation tf and tp are
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set to 50ns and 100000ns, respectively. The centralized circuit configuration algorithm3

described in Section 3.1.1.1 is used, but ts is set to 8000ns to be large enough to allow for

the distributed circuit configuration algorithm.

Hybrid Circuit Switched Interconnect with Pinned Circuit Configuration and

Partial Circuit Routing (CSP)

This is similar to CS but with the additional use of partial circuit routing as described

in Section 3.3.

All four interconnects use X-Y routing and employ a critical word first approach, in

which a stalling instruction can proceed as soon as the first word of the requested cache line

is received.

The interconnects’ simulators are implemented on top of Simics [86], which is a full

system simulator. Simics is configured to simulate a tiled CMP consisting of 16 SPARC

2-way in-order processors, each clocked at 2 GHz, running Solaris 10 operating system, and

sharing a 4 GB main memory with 55 ns (110 cycles) access latency. The processors are

laid out in a 4 × 4 mesh. Each processor has a 32 KB (divided equally between instruction

and data) private 4-way set associative L1 cache with 64 byte cache lines (access latency:

1 cycle). Interconnect routers are clocked at 1 GHz. Simulated benchmarks are from the

Splash-2 [92] and Parsec 1.0 [15] suites. The parallel section of each benchmark is simulated.

Benchmark input parameters are listed in Table 1. To promote communication locality,

thread binding to processors was enforced for all benchmarks except for Canneal, because it

required extensive code changes than the other benchmarks.

Since cache organizations as well as cache sizes affect the communication traffic on chip,

the benefits of circuit pinning is demonstrated through a variety of configurations. Two

cache organizations are simulated: distributed shared L2 (SNUCA) [51] and private L2 [17].

For the SNUCA L2, the physical memory address space is statically mapped to L2 banks in

granularity of a cache line. For the private L2, a distributed directory is used for maintaining

data coherence. Directory banks are 16-way set associative (access latency: 8 cycles). The

directory bank size is set so that it has a number of entries twice the number of cache lines

3The authors of [31] report that their controller takes ts = 76ns on an FPGA to configure a set of
non-conflicting circuits for a system of 16 processors, which is the same system size in the simulations.
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Table 1: Benchmarks Description

Parsec Benchmarks
Benchmark Input Parameters
Blackscholes 16384 options.
Swaptions 32 swaptions, 10K simulations.
Canneal 16 15000 2000 200000.nets.
Bodytrack sequenceB 2 4 2 2000 5 0 16.
Fluidanimate 16 5 in 35K.fluid.

SPLASH-2 Benchmarks
Barnes 32K particles.
Ocean 514x514.
Radiosity Large room model.
Raytrace Car input.
LU -n1024 -p16 -b16.

of an L2 bank4.

The L1 and L2 caches are write-back and maintain the inclusion property. Cache coher-

ence is maintained through a MESI protocol. Given that the size of available cache on chip

may vary depending on how much die area is allocated to cores and caches, results are shown

for two L2 bank sizes: (1) 16-way set associative 1 MB (access latency: 15 cycles), and (2)

8-way set associative 256 KB (access latency: 8 cycles). An L2 cache line is 64 bytes, and

an L2 bank is located at each tile.
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Figure 8: SNUCA L2 (1MB) - Normalized
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Figure 9: Private L2 (1MB) - Normalized
average flit latency

4Because the caches are inclusive, setting the number of directory bank entries greater than the number
of an L2 bank cache lines reduces L2 evictions when replacing directory bank entries.
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3.5 EVALUATION RESULTS

This section presents simulation results for 16 possible system configurations using: the 4

interconnects PKT, CSOD, CS, and CSP, the 2 cache organizations: SNUCA L2 and Private

L2, and two L2 bank sizes: 1 MB and 256 KB.
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Figure 11: Private L2 (256KB) - Normalized
average flit latency

3.5.1 Average Flit Latency

Figures 8 - 11 show the average flit latency (AFL) of the four interconnects normalized to

the flit latency for the PKT interconnect. With respect to AFL, order of the interconnects

from best to worst is: CSP, CS, CSOD, and PKT. The AFL of CS is worse than CSOD
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Figure 12: SNUCA L2 (1MB) - Normalized
execution time
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only in Blackscholes and Swaptions (in private L2 - 1MB). According to [15], Blackscholes

has a small working set and low degree of data sharing among threads. This was reflected

in the simulation runs of Blackscholes where it was noticed that the number of messages

communicated on the interconnects is significantly smaller than the other benchmarks. This

led to less thrashing of circuits on CSOD, where the on-demand circuit configuration policy

adapted better to communication characteristics than the pinning policy. This is also con-

firmed by Blackscholes having the highest percentage of flits traveling on complete circuits

in Fig. 5.
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Figure 16: SNUCA L2 (1MB) - % Flits using
complete circuits
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Figure 17: Private L2 (1MB) -% Flits using
complete circuits

3.5.2 Execution Time

Benchmarks execution times normalized to PKT execution times are depicted in Fig. 12 - 15.

Different communication latencies due to the different interconnects can affect the execution
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path of multi-threaded benchmarks causing variations in the number of executed instructions

among the different simulated system configurations. For most benchmarks, CSP provides

better system performance than CS, and system performance using either CSP or CS is bet-

ter than using PKT or CSOD. Fig. 13 and 15 show that Radiosity exhibits some anomalous

behavior. It was noticed that in system configurations with Private L2 cache organizations,

Radiosity simulations execute many more system instructions5 when the CS and CSP inter-

connects are used than when the PKT and CSOD interconnects are used. The result is the

increase of the execution time of the corresponding system configurations using CS and CSP

interconnects. This increase in system instructions may be due to synchronization structures

(e.g. locks).
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Figure 19: Private L2 (256KB) -% Flits using
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Figure 20: SNUCA L2 (1MB) - % Flits using
partial circuits

0%

10%

20%

30%

40%

50%

60%

b
ar
n
es lu

o
ce
an

ra
d
io
si
ty

ra
yt
ra
ce

b
la
ck
sc
h
o
le
s

b
o
d
yt
ra
ck

ca
n
n
ea
l

fl
u
id
an
im

at
e

sw
ap

ti
o
n
s

A
ve
ra
ge

CSOD CSP

Figure 21: Private L2 (1MB) - % Flits using
partial circuits

5As opposed to benchmark instructions.
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Figure 23: Private L2 (256KB) - % Flits using
partial circuits

3.5.3 Circuits Utilization

The charts in Fig. 16 - 19 show the percentage of flits traveling on complete circuits from

source to destination. Percentage of flits traveling on partial circuits are shown in Fig. 20 -

23. These figures indicate that circuit utilization improves with pinned circuits configuration

policy and use of partial circuit routing. Applying partial circuit routing in CSP puts more

pressure on circuits. As a result, a slightly higher percentage of flits travel on complete

circuits in CS than CSP. However, because of the extensive use of partial circuits, the overall

performance of CSP is better than CS.

3.6 CONCLUSION

The proposed pinning circuit configuration policy attempts to improve communication la-

tency by exploiting communication locality, where there are pairs of frequent communication

nodes, while coping with changes in communication patterns through periodic reconfigura-

tion. Combining partial circuit routing with pinned circuit configuration further boosts the

utilization of circuits, achieving better communication latency. Simulations demonstrate the

potential benefits of these techniques. On average, the pinned circuit configuration policy

alone improves flit latency over the on-demand circuit configuration policy by 10%, with par-

tial circuit routing adding another 10% for a total of 20% improvement over the on-demand
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circuit configuration policy. These improvements in communication latency translate into

improved execution time.

Caching schemes that promote locality of access through smart placement of data near

to where they are accessed, for example [37, 63], can greatly benefit from the pinning circuit

configuration policy. In fact, the next chapter proposes a locality-aware cache organization

for promoting communication locality in the NoC to boost the benefit from the pinning

circuit configuration policy, which results in faster data access and execution time.
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4.0 LOCALITY-AWARE CACHE DESIGN TO MAXIMIZE THE

BENEFITS OF COARSE GRAINED CIRCUIT CONFIGURATION

As described in the related work (Chapter 2) and the proposed pinning circuit configuration

policy in Chapter 3, many NoC designs exploit communication locality to reduce commu-

nication latency by configuring circuits on which communication is faster than the rest of

the NoC. Communication patterns are directly affected by the cache organization. How-

ever, many cache organizations are designed in isolation of the underlying NoC or assume a

simple NoC design, thus possibly missing optimization opportunities. This chapter presents

a locality-aware cache design that creates a symbiotic relationship between the NoC and

cache to reduce data access latency, improve utilization of cache capacity, and improve over-

all system performance. Specifically, considering a NoC designed to exploit communication

locality, this chapter proposes a caching scheme, dubbed Unique Private, that promotes lo-

cality in communication patterns. In turn, the NoC exploits this locality to allow fast access

to remote data, thus reducing the need for data replication and allowing better utilization

of cache capacity. The Unique Private cache stores the data mostly used by a processor

core in its locally accessible cache bank, while leveraging dedicated high speed circuits in

the interconnect to provide remote cores fast access to shared data. Simulations of a suite

of scientific and commercial workloads show that the proposed design achieves a speedup

of 15.2% and 14% on a 16-core and a 64-core CMP, respectively, over the state-of-the-art

NoC-Cache co-designed system which also exploits communication locality in multithreaded

applications [33].

The work in this chapter appeared in [4]
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4.1 MOTIVATION

Static non-uniform cache architecture (SNUCA) [51] and Private [17] caches represent the

two ends of the cache organization spectrum. However, neither of them is a perfect solution

for CMPs. SNUCA caches have better utilization of cache capacity – given that only one

copy of a data block is retained in the cache – but suffers from high data access latency

since it interleaves data blocks across physically distributed cache banks, rarely associating

the data with the core or cores that use it. Private caches allow fast access to on-chip data

blocks but suffer from low cache capacity utilization due to data replication, thus resulting

in many costly off-chip data accesses. Many researchers suggest hybrid cache organizations

that attempt to keep the benefits of both SNUCA and private caches while avoiding their

shortcomings [36, 39, 24, 101, 5, 21, 13, 44, 37, 63]. Most of these cache proposals assume a

simple 2-D packet switched mesh interconnect. Such interconnects can be augmented with

the ability to configure circuits [58, 33, 2]. However, not all these cache organizations may

equally benefit from an improved interconnect as the following example shows.

0

0.2

0.4

0.6

0.8

1

1.2

b
ar
n
es lu

o
ce
an

ra
d
io
si
ty

ra
yt
ra
ce

b
la
ck
sc
h
o
le
s

b
o
d
yt
ra
ck

fl
u
id
an
im

at
e

sw
ap
ti
o
n
s

sp
e
cj
b
b

ge
o
m
e
tr
ic

m
ea
n

O2000P RNUCA

P
e
rf
o
rm

an
ce
  S
p
e
e
d
u
p

Figure 24: Performance speedup of each cache with the hybrid packet/circuit switched and
on-demand circuit establishment NoC, relative to the same cache with the packet switched NoC

Fig. 24 compares the performance of two L2 cache organizations executing a set of paral-

lel benchmarks on 16-core CMPs1. The cache organizations are: (a) A distributed shared L2

1Simulation parameters are described in Section 4.3
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cache with an Origin 2000 based coherence protocol that is designed to promote and com-

munication locality [33] (referred to as O2000P and described in Section 4.3.1) and (b) The

RNUCA cache organization [39], which attempts to optimize data placement through clas-

sifying memory pages into private and shared. For each of the two caches, the results shown

in Fig. 24 are for a configurable hybrid packet/circuit switched NoC with on-demand circuit

establishment (Sections 2.2.2 and 2.2.3) normalized to a packet switched NoC (Section 2.2.1).

The system with the O2000P L2 shows benefits from the configurable interconnect, while

the circuit switched RNUCA shows some performance degradation compared to the packet

switched RNUCA due to circuit thrashing and minimal reuse of the circuits in the system.

Considering communication locality in the cache design can help benefit from circuit

switched NoCs. As a result, this chapter proposes a locality-aware cache design that retains

the fast access of private caching while extending it to both effectively utilize cache capacity

and retain locality of communication, thereby maximizing the benefit from circuit switched

NoCs, especially with the pinning circuit configuration policy (proposed in Chapter 3), as

the evaluation section demonstrates.

The remainder of this chapter is organized as follows. Section 4.2 presents the proposed

locality-aware cache design. Section 4.3 presents evaluation and necessary background on

the state-of-the-art NoC-Cache co-designed system compared with. Finally, conclusion is

presented in Section 4.4.

4.2 UNIQUE PRIVATE: A LOCALITY-AWARE CACHE

Parallelization and multithreaded programs harness the performance capabilities of CMPs.

The proposed Unique Private cache is designed to suit a workload consisting of a multi-

threaded program running on the CMP cores. As mentioned in the introduction, Unique

Private is a locality-aware cache organization targeting NoCs that exploit communication

locality to reduce communication latency – however, the proposed design works correctly

with any NoC. The design goals are: (a) Improve communication latency through decreas-

ing NoC traffic volume and promoting communication locality, and (b) Improve data access
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latency and utilization of cache capacity. These goals guide the design choices for the data

placement and lookup, data migration, and even data replacement policies.

A tiled CMP architecture is assumed with n cores laid in a 2D mesh. Each tile has a

processor core, a private level 1 (L1), and a level 2 (L2) cache banks. The Unique Private

organization is proposed for the shared last level cache, the L2. Note that the terms data

block, cache block, and cache line, are used interchangeably.

The utilization of Unique Private’s cache capacity is maximized through keeping only

a single – unique – copy of each cache block in L2. Controlled data replication has been

shown to reduce data access latency [39, 21, 13, 80], particularly for read-only data, e.g.

instructions. Support for replication can be added to the cache design. However, this work

does not study replication. Similarly, data replication is not used in the last level cache of

the state-of-the-art NoC-Cache co-designed system [33] which Unique Private is evaluated

against.

4.2.1 Data Placement and Lookup

Consolidating the working set of a thread in its locally accessible cache bank serves two

important goals: (1) allows fast access by the thread to its working set, and (2) decreases

the volume of traffic injected into the NoC due to increased hits in the local banks. Further,

prior research [9, 84, 20] showed that in parallel applications a thread may share data with

often a small number of other threads. Hence, with the consolidation of the threads’ working

sets, each thread (or equivalently core) would need to get most of its remote data from only

a small number of other cache banks, therefore creating locality of communication.

Often, a cache block is first accessed, or touched, by the core that is going to operate on

that block. I.e., the first-touch accesses define most or all of the working set of each core.

Thus, Unique Private employs first-touch as its data placement policy. Specifically, when

a miss occurs in L2 for a data block, that block is brought from the off-chip memory and

stored in the local L2 bank of the requesting core Pi. This policy allows any cache block

to reside at any L2 bank (We refer to the L2 bank storing a cache block as the block’s host

node). Consequently, there is a need for a method to lookup cache blocks in the L2. The

36



Unique Private cache uses a distributed directory (i.e., there is a directory bank located at

each tile of the CMP) for this purpose. For each cache block, there is exactly one directory

bank, which we call the block’s home node, that keeps track of the block’s host node. The

home node is determined based on the block’s physical address.

Core 
Pi 

L1i  $ 

L2i  $ Di   

Core 
Pk 

L1k $ 

L2k $ Dk 
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2 

Pi wants to  
read bj 

bj is not on-chip, so get it, and become its host node  

(a) Cache block bj is not on-chip
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Copy of bj 

(b) L2m is the host node of bj

Figure 25: Example of core Pi accessing cache block bj in L2

Example 1

Examples are used to explain how the directory is used during a data block access. Some

terminology is needed, first. Let Pi denote the processor core located at tile i, 1 ≤ i ≤ n.

Similarly, let L1i, L2i, and Di denote the L1 bank, L2 bank, and directory bank, located at

tile i, respectively. Note that since Pi, L1i, L2i, and Di, are all located at the same tile i,

communication among them does not go over the NoC. Consider the example in Fig. 25(a).

Pi needs to read some data block bj. Pi first probes its local L1 bank, L1i, but misses, i.e.,

does not find bj. Pi next probes its local L2 bank, L2i, for bj. Assume there is also a miss

in L2i. The data read request is then sent to bj’s home node, Dk. Assume Dk does not have

an entry for bj. Dk adds an entry for bj and records L2i as the host node of bj, and sends a

reply to Pi instructing it to retrieve bj from memory and store it locally in L2i. Note that

the numbers in Fig. 25 are used to clarify the sequence of the example’s events.

Example 2

Consider the same example but assume bj already exists in some L2 bank, L2m (Fig. 25(b)).
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In this case Dk already knows that L2m is bj’s host node. Upon receiving the data read re-

quest, Dk forwards it to L2m. When L2m receives the request, it sends a data reply message

to Pi containing a copy of bj, which will then be stored in L1i.

Maintaining Data Coherence

The information necessary for maintaining coherence, i.e., each cache block’s status (e.g.,

shared, exclusive ...) and the L1 banks sharing it, may be tracked in either the block’s home

node or host node. Tracking this information in the home node requires that all data requests

go through the directory to both update the requested blocks’ information and to properly

order the requests before forwarding them to the blocks’ host nodes. The Unique Private

cache uses the other alternative, which is tracking the information in the block’s host node.

This way, the host node orders and processes requests to the cache block similar to the way

static non-uniform cache architectures (SNUCA) [51] maintain data coherence. As a result,

the home node needs to only store the cache block’s tag and host node; effectively making

the distributed directory act as a location service for finding cache blocks.

To reduce the number of lookup operations through the directory, each L1 bank is aug-

mented with a separate small cache for storing the ids of the remote hosts that previously

sourced cache lines. This local cache of hosts is similar to the one proposed in [38] and will

be referred to as the local directory cache (LDC). Whenever Pi, receives a data block, bj,

from a remote host node, L2m,m 6= i, the LDC at tile i adds an entry containing bj’s tag

and the id of its host node, m. The next time Pi needs to access bj and misses in both its

local L1 and L2 banks, the LDC is consulted and if an entry for bj existed, the data access

request is sent directly to the cached host node, L2m, instead of through the directory.

Note that due to data migration (explained below), the LDC may contain stale infor-

mation – since it is only updated when a block is received from a remote host node. Thus,

a request could be sent to a cached host node, L2m, that is no longer the host node of the

cache block. This is remedied by having L2m forward the request to the block’s home node

as if the requester itself sent the request to the home node.
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4.2.2 Data Migration

The first-touch data placement policy is based on the assumption that a cache block is first

accessed by its owner thread, i.e. the block is part of the thread’s working set. However,

this assumption is not always true, and data usage may change over time. For example, in a

multithreaded program the main thread may first initialize all the data before spawning the

other program threads. While the data is being initialized, it will be brought to the local

L2 bank, L2i, of the core Pi on which the main thread is running. When the other threads

are spawned, it would be beneficial to migrate the data blocks comprising the working set

of each thread from L2i to the corresponding locally accessible L2 bank of the core each

thread runs on. Another example occurs in the producer-consumer and pipeline parallel

programming models, where data may be passed from one thread to another. In such a case,

it would also be beneficial to move the data to the local L2 bank accessible to the current

thread manipulating the data. Thus, data migration is necessary for better data placement.

Prior research [50, 44, 49, 14] proposed and evaluated gradual migration policies and

algorithms for near-optimal placement of cache blocks. A gradual block migration policy

attempts to reduce a block’s access latency by gradually moving the block nearer to its fre-

quent sharer(s). However, gradual data migration can possibly have negative effects such

as: (1) Increased traffic volume due to the gradual movement of data blocks. (2) Decreased

communication locality: frequent migrations may make it difficult for each tile to have an

identifiable subset of other tiles with whom most or all of data sharing occurs. Additionally,

sharers may already have configured circuits to where the block is located and may suffer

from increased access time to the block if it is migrated. (3) Reduced effectiveness of the

local directory caches. Therefore, in addition to evaluating the gradual migration policy for

the Unique Private cache, an alternate policy is proposed that migrates a block directly –

instead of gradually – to its most frequent sharer.

Direct Migration

Specifically, the direct migration policy migrates a block, bj, to L2m, only if Pm accesses the

block more frequently than other sharers. To determine to where bj should be migrated, the
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status of bj would ideally be augmented in its host node, L2i, with n counters, c1, c2, ...cn,

where each counter ck, 1 ≤ k ≤ n, tracks the number of accesses of Pk to bj in L2i. When

a counter, cm, satisfies the condition cm − ci = th, where th is a pre-specified migration

threshold, and ci is the counter for Pi (the local sharer), bj is migrated to L2m and a

message is sent to bj’s home node to notify it that L2m is the new host node of bj.

Obviously, having n counters per cache block is a huge overhead and is not scalable.

Hence, a practical approximation of this migration scheme is proposed. A cache block is

considered for migration if there is only one other sharer, Pm, besides the local sharer, Pi,

otherwise migration of the cache block is not considered. This approximate scheme requires

using only one counter, c, per cache block. The migration mechanism works as follows: c is

reset to 0 every time Pi accesses bj in L2i. c is incremented by 1 whenever the only remote

sharer, Pm, accesses bj in L2i. Migration of bj to L2m occurs when the condition c = th is

satisfied. c can be implemented with a th-bit shift register. Evaluation of the gradual and

direct migration policies (Section 4.3) finds that the approximate direct migration scheme is

the most appropriate one for the proposed cache design.

4.2.3 Data Replacement Policy

When a cache block, bj, is brought from the off-chip memory to be stored in an L2 bank,

L2i, an existing block bx ∈ L2i is chosen for replacement. It was found that the least recently

used (LRU) replacement policy may not be always adequate for the Unique Private cache.

Specifically, it is necessary to distinguish between shared and non-shared cache blocks (i.e.,

private blocks accessed only by the local core). Naturally, accesses to private blocks by the

local core are faster than accesses of remote cores to shared blocks since the remote accesses

have to go over the NoC. This difference in access latencies of private and shared blocks

may result in biasing the LRU policy towards replacing shared blocks and retaining private

blocks, especially in the case of poor initial placement of a shared block by the first-touch

policy (i.e., if the local processor stops accessing the shared block).

Shared cache blocks are typically more “valuable” to retain in cache as they are accessed

by more than one processor core. When a shared block, bx, is replaced and then later re-
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quested, the latency to service that miss could potentially affect more than one requester.

This intuition is supported by the work in [49], which showed that for the multithreaded

benchmarks they use, although the percentage of shared blocks to private blocks is small,

shared blocks are accessed more than private blocks. Consequently, a modification of the

LRU scheme is proposed to make it biased towards replacing private cache blocks and re-

taining shared ones.

Specifically, a Shared Biased LRU Policy (SBLRU) is proposed for selecting the cache

line to evict from an associative set, S. Depending on a parameter α, if the number of

private cache lines, m, within S satisfies m ≥ α, then the LRU private cache line is selected

for replacement. If m < α, then the LRU cache line, irrespective of being shared or private,

is replaced. Note that SBLRU can be applied to any shared caching policy. Simulations

(Section 4.3) show that SBLRU has a significant impact on the performance of the Unique

Private cache.

4.3 EVALUATION

This section first provides a brief background about the relevant state-of-the-art co-designed

NoC-Cache scheme which Unique Private is evaluated against. Then simulation environment

is described, and finally simulation results are presented.

4.3.1 Background: The Circuit Switched Coherence Co-designed Scheme

Jerger et al. [33] co-designed a NoC-Cache scheme that exploits communication locality in

multithreaded applications to provide fast data access and improve system performance.

They proposed the hybrid circuit/packet switched NoC with the on-demand circuit config-

uration policy described in Sections 2.2.2 and 2.2.3. Their co-designed caching scheme is

described next.

The on-chip cache is composed of three levels. The first two levels, i.e., L1 and L2, are

private, while the third level, L3, is organized as a distributed shared cache. Data coherence
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is maintained through an adaptation of the Origin 2000 [60] protocol specifically co-designed

with the NoC. A distributed directory is stored alongside the shared last level cache, L3.

For each cache block, bj, L3 keeps track of the L2 banks that have copies of bj. The Origin

2000 protocol employs the request forwarding of the DASH protocol [65] for three party

transactions, which target a cache block that is owned by another processor.

To promote communication locality on the NoC and reduce data access latency, the

authors in [33], augment the base Origin 2000 [60] protocol with a scheme for predicting

owners of requested cache blocks. A cache block can then be directly requested from the

owner rather than experience an indirection through the home directory node. The prediction

scheme is address-region-based; it assumes that if a tile D supplied a cache block bj, then D

can probably supply other cache blocks with physical addresses close to the physical address

of bj. Each tile is augmented with a local cache for predicting the owners of missed cache

blocks. When a cache block, bj, is received from D, an entry with the address of the memory

region containing bj and the id of D is cached in the local prediction cache. The prediction

cache is checked on an L2 miss. If an entry for the memory region that the missed cache

block belongs to is found, a request is sent to the L2 tile recorded in that entry. Otherwise,

the request is sent to the cache block’s home directory bank. The distributed directory in

L3 keeps the information for maintaining coherence of each cache block, including the sharer

L2 banks. Thus, whenever a data request is sent directly to a predicted owner, the requester

must also send a notification message to the cache block’s home directory bank. More details

are provided in [33]. We call this cache organization Origin 2000 with Prediction, and refer

to it as O2000P for short.

In the evaluation, the memory hierarchy of the simulated systems is assumed to be

composed of an on-chip level 1 and level 2 caches and an off-chip memory. Thus, to simulate

O2000P, the private L1 and L2 of O2000P are lumped together in the assumed on-chip

private level 1 cache, while the shared L3 of O2000P is represented by the assumed on-chip

shared level 2 cache (note that there is no data replication in the level 2 cache).
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4.3.2 Evaluation Environment

Simulation is used for evaluating the Unique Private cache. The functional simulator Sim-

ics [86] is configured to simulate a tiled CMP consisting of either 16 or 64 SPARC 2-way

in-order processors, each clocked at 2 GHz, running the Solaris 10 operating system, and

sharing a 4 GB main memory with 55 ns (110 cycles) access latency. The processors are laid

out in a square mesh. Each processor has a 32 KB (divided equally between instruction and

data) private 4-way L1 cache (access latency: 1 cycle). The following L2 cache organizations

are compared: (1) Origin 2000 with Prediction (O2000P) (Section 4.3.1), (2) RNUCA [39]

which is described in Section 2.4.4. As mentioned in Section 4.1, RNUCA is chosen because

it is a cache organization that attempts to optimize data placement through classifying mem-

ory pages into private and shared. And (3) Unique Private cache (Section 4.2). The following

NoCs are simulated: (1) A purely packet switched NoC (used in the motivating example of

Fig.24), (2) A hybrid packet/circuit switched NoC with an on-demand circuit configuration

policy (Sections 2.2.2 and 2.2.3), and (3) The hybrid packet/circuit switched NoC with a

pinning circuit configuration policy and partial circuit routing (Chapter 3).

Cycle accurate simulators of the NoCs and cache schemes were built on top of Simics,

and then execution driven simulation of benchmarks from the Splash-2 [92], Parsec [15], and

SPECjbb2005 [90] suites was carried out. For the 16-core CMP, the parallel section of each

benchmark is simulated. Benchmark input parameters are listed in Table 2. Due to the

long simulation time on the 64-core CMP, only 400 Million instructions of each benchmark

is simulated. The purpose of simulations on the 64-core CMP is to demonstrate scalability.

The Unique Private cache has an additional storage overhead due to its distributed

directory, while O2000P and RNUCA do not have this overhead since they are SNUCA

based schemes where the directory and cache entries are located together and use the same

tag. For a fair comparison, that overhead is accounted for by increasing the cache capacity

of both O2000P and RNUCA. Cache blocks are 64 bytes in the L1 and L2 cache banks. For

a 48-bit address space the distributed directory’s overhead is calculated to be about 1/4th

the size of the L2. Directory banks are 16-way associative (access latency: 2 cycles2).

2CACTI [18] with 45 nm technology was used to estimate access latencies.
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The distributed banks of the Private L2 and Unique Private L2 caches are each 16-way 1

MB, while the banks of the O2000P L2 and RNUCA L2 are each 20-way 1.25 MB. L2 bank

access latency is 6 cycles. O2000P uses a local prediction cache (regions of 512 bytes are

used) and Unique Private uses a local directory cache (LDC). The number of entries of both

of these local caches is set to be 1/2 the number of lines an L1 bank can cache, which makes

the size of each of these caches to be about 1/16th the size of an L1 cache bank. They are

4-way associative with 1 cycle access latency and are accessed in parallel with the L1 cache

access.

The parameters of the simulated NoCs are similar to those in Section 3.4:

The packet switched NoC (PKT) is composed of one plane with a 64 byte link

width. All control and data messages are one flit long. The routers have a 3-cycle pipeline.

Each router has 5 input and output ports. Each input port has 4 virtual channel buffers,

with each buffer capable of storing 5 flits.

Hybrid packet/circuit switched NoC with an on-demand circuit configura-

tion policy (CSOD) is composed of 4 planes, each with 16 byte links. Control and data

packets are 1 and 4 flits long, respectively. The router is similar to that of the PKT NoC

with the addition of: (1) Support for CS packets which traverse the router in one cycle and

(2) one more virtual channel buffer per input port for buffering incoming CS packets if they

become packet switched (due to circuit reconfiguration, for example).

Hybrid packet/circuit switched NoC with a pinning circuit configuration

policy (CSP) is similar to CSOD but uses a circuit pinning configuration policy and partial

circuit routing. The pinning time interval is 100µsec while circuits configuration time is

8µsec. During configuration time only packet switching is available.

All NoCs are clocked at 1 GHz and use X-Y routing. Private, O2000P and RNUCA, use

the LRU replacement policy. Unless otherwise is specified Unique Private uses the SBLRU

replacement policy with α = 3 (Section 4.2.3) and the approximate direct migration policy

(ADM) with a migration threshold of 3.
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Table 2: Benchmarks Description

Benchmark Input Parameters
Parsec / Blackscholes 16384 options.
Parsec / Bodytrack sequenceB 2 4 2 2000 5 0 16.
Parsec / Fluidanimate 16 5 in 35K.fluid.
Parsec / Swaptions 32 swaptions, 10K simulations.
SPLASH-2 / Barnes 16K particles.
SPLASH-2 / LU -n1024 -p16 -b16.
SPLASH-2 / Ocean 514x514.
SPLASH-2 / Radiosity Large room model.
SPLASH-2 / Raytrace Car input.
Specjbb 16 warehouses - 3200 requests.

4.3.3 Evaluation Results

Performance Comparison

Simulations compare 16-core CMP systems that promote and exploit communication locality

in the on-chip cache and interconnect. Each of the CMPs has one of the caches: Unique

Private (UP), O2000P, or RNUCA, and one of the two interconnects: CSOD and CSP. Fig.

26 shows the speedups of the six systems relative to the system with O2000P+CSOD.

The figure shows that RNUCA+CSOD performs worst overall showing a slight degra-

dation over the baseline likely due to circuit thrashing and minimal reuse of circuits in the

system. RNUCA actually benefits the most from the CSP NoC making it nearly competitive

with O2000P+CSP. In contrast, UP+CSOD outperforms RNUCA+CSP demonstrating the

impact a locality-aware cache design can have. There are some cases where RNUCA slightly

outperforms UP such as Barnes, LU, Radiosity, and Bodytrack; however, when UP outper-

forms RNUCA it is typically by a significant margin, as is the case with Ocean, Raytrace,

Blackscholes, Swaptions, and Specjbb.

Considering the CSOD NoC, Fig. 26 shows that the UP+CSOD system achieves a 16.5%

speedup over O2000P+CSOD, on average. Similarly, considering the CSP NoC, the system

UP+CSP achieves a 15.2% speedup over O2000P+CSP, on average. Note that LU performs

better with O2000P than with UP. This is due to the imbalance of the sizes of the threads’

working sets, in which O2000P’s uniform distribution of the memory space across the L2
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banks allows better utilization of the aggregate cache capacity. Employing a cooperative

scheme for managing cache capacity [21, 80] may improve the performance of workloads

with imbalanced working sets.

Since this comparison shows that RNUCA is outperformed by both co-designed schemes

and shows that CSP allows the systems to perform better than with a CSOD NoC, in the

following evaluations we use only O2000P and UP with CSP for all simulated systems.
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Figure 26: Performance speedup relative to the
system with O2000P cache + CSOD NoC
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Figure 27: Effect of Migration and LDC -
Performance speedup relative to the system

with O2000P cache + CSP NoC

Data Migration and the Local Directory Cache

The effect of migration and the local directory cache (LDC) on the performance of systems

using the Unique Private cache is studied using the approximate direct migration policy

(ADM) with th = 3 (the gradual and direct migration policies are compared later in this

section). Fig. 27 shows the speedups of four systems relative to the system with O2000P.

UP with No Migration and No LDC (UP): First, consider the performance of a

system using UP without both migration and the LDC. It was found that on average the

performance of this system is similar to the baseline system which uses O2000P. This is

mainly due to the big slowdown experienced by Raytrace and Swaptions. In fact, excluding

Raytrace and Swaptions, the rest of the benchmarks show that the system with UP achieves

an average speedup of 10.6% in this case. This speedup is due mainly to each thread having

a large portion of its working set closely accessibly in its local L2 bank.
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UP with LDC and No Migration (UP + LDC): Second, consider the effect of

the LDC in the absence of migration. In this case, the system with UP achieves a 7.5%

speedup, on average, over the baseline.

UP with Migration and No LDC (UP + Migration): Third, consider the effect

of migration in the absence of the local directory cache. The system with UP achieves an

average speedup of 12.4% over the baseline.

UP with Migration and LDC (UP + Migration + LDC): Finally, consider the

effect of employing both the migration policy and the LDC. The system with UP achieves

an average speedup of 14% over the baseline. These results show that migration has a bigger

effect than the local directory cache on the performance of the Unique Private cache, but

using both of them allows an even better performance.
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Figure 28: Comparing Migration Policies:
Performance speedup relative to the system

with O2000P cache + CSP NoC
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Figure 29: Comparing Migration Policies:
Percentage of the traffic volume used for

migration messages

Migration Policies

This section studies the effect of the gradual migration (GM), approximate direct migration

(ADM), and exact direct migration (EDM) on the performance of Unique Private. Fig. 28

shows the speedup of five systems using UP relative to the baseline system which uses

O2000P. Systems using UP and a GM policy with th = 5, 3 (denoted GM5 and GM3,

respectively), achieve average speedups of 13.3% and 13.8%, respectively, over the baseline
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system. While systems using UP and an ADM policy with th = 5, 3 (denoted ADM5

and ADM3, respectively), both achieve a speedup of about 15.2%, on average, over the

baseline system. The difference in performance between the GM and ADM policies is small;

however, the two policies differ significantly with regard to the NoC traffic overhead, which

is considered below. We note that in Fig. 28, Raytrace benefits more from gradual migration

than either the exact or the approximate direct migration. With exact direct migration,

although the new host enjoys fast access to the block, other sharers suffer increased access

latency such that it would be better not to migrate the block – which would be the decision

of the approximate direct migration (ADM): effectively, instead of migrating the block, the

sharers access the blocks through established circuits. Gradual migration works better in

this case because of the partial circuit routing in the NoC, which still allows the block to

reside in an intermediate location relative to all sharers and still benefit from established

circuits.

Fig. 29 shows the percentage of the NoC traffic that is used for migrating blocks. On

average, systems applying GM5 and GM3 use 5.2% and 8.3%, respectively, of the NoC

traffic for migrating blocks. On the other hand, the average percentage of NoC traffic for

migrating blocks on the systems using ADM5 and ADM3 is 0.2% and 0.4%, respectively.

In addition, direct migration requires less hardware resources: one counter per cache block

versus 4 counters for gradual migration, for the 4 directions a block can be moved into.

These results show that approximate direct migration better suits the Unique Private cache

than gradual migration.

Moreover, Fig. 28 compares the performance of systems using the approximate and exact

direct migration policies with th = 3, denoted ADM3 and EDM3, respectively. The systems

using ADM3 and EDM3 achieve an average speedup of 15.2% and 18%, respectively. How-

ever, this difference in performance pales in comparison to the huge overhead of required

hardware resources to implement the exact direct migration policy.

Effect on the NoC

This section studies the effect of O2000P and UP on traffic volume, communication locality,

and communication latency on the NoC.
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Figure 30: Effect on NoC: Traffic volume
normalized to the system with O2000P cache +
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Figure 31: Effect on NoC: Average number of
most important circuits created

Traffic Volume: Fig. 30 shows the traffic volume of five systems normalized to the

system with O2000P. On average, systems with UP inject at least 40% less traffic than the

baseline system and depending on scheme, 13-28% less traffic than RNUCA. Specifically, UP

with the GM policy injected 42.2% to 44.7% less traffic than the baseline, while UP with the

ADM policy injected 52% less traffic than the baseline system. This is due to the first-touch

data placement policy which allows many misses from the private L1 to be satisfied by the

local L2 bank. As traffic volume is an indicator of NoC dynamic power consumption, in

addition to the performance benefits, these results indicate that UP provides a potential

power advantage over O2000P.

Communication Locality: Statistics were collected on the average number of most

important circuits that get created at the beginning of each pinning interval in the CSP

NoC. At the beginning of the next pinning time interval, the circuits on the NoC are re-

configured, and each NI at each tile has the list of the other 15 destinations in descending

order of importance. Since in the design CSP consists of 4 interconnect planes, at most 4

circuits can originate from each tile. Therefore, when the circuits are re-configured each tile

should ideally get circuits configured to its top 4 most important destinations. However, this

is not always possible since there must be no conflicts between configured circuits. Hence,

some of the circuits that get configured are to less important destinations, but they all satisfy
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the no conflicts condition.

We are interested in the number of the most important circuits that get created (there can

be a maximum of 4 x 16 = 64 circuits) at the beginning of each network reconfiguration period

(Fig. 31). On average, both O2000P and RNUCA establish 32 most important circuits, while

the two systems of UP establish 36.8. This 15% increase is due to the communication locality

achieved by UP’s data placement and migration policies.
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Figure 32: Effect on NoC - Average flit latency
normalized to the system with O2000P + CSP
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Figure 33: Performance speedup of systems
using SBLRU relative to corresponding systems

using LRU
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Figure 34: Performance speedup (for 64 cores) relative to the system with O2000P cache + CSP
NoC

Communication Latency: Communication locality positively reflects on communi-

cation latency. Fig. 32 shows the average flit latencies of the four systems normalized to

the system with O2000P. With increased communication locality, communication becomes

faster. We find that the systems with the Unique Private cache enjoy about 11% and 9%
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reduction in flit latency, on average, compared to the O2000P and RNUCA, respectively.

Note, however, that Radiosity shows a small (3-5%) increase in average flit latency with our

proposed scheme. This is due to queuing delay as in this case many messages are injected

into the NoC at close times; hence suffering additional delays at the buffers. However, the

impact of this increase on performance is minimal – due to the reduced traffic volume in-

jected by UP compared to the traffic volume of O2000P and RNUCA.

SBLRU policy

This section compares the speedup of a system with UP and SBLRU (Section 4.2.3) to the

same system using the traditional LRU policy. The same comparison is also performed for

O2000P, too. For the UP cache, six of the ten benchmarks show more than 11% speedup

with the SBLRU policy (Fig. 33). On average, the system with UP and SBLRU achieves a

21.9% speedup over the same system with the regular LRU policy. As explained in Section

4.2.3, SBLRU offsets the bias of the traditional LRU policy towards replacing poorly placed

shared blocks. For the systems with O2000P, it does not matter whether LRU or SBLRU is

applied; almost the same performance is obtained with both policies.

Scalability

This section compares the performance of UP and O2000P on 64-core systems (Fig. 34).

Again, the imbalance of the working sets of LU’s threads caused it to show a 20% slowdown

with UP. However, the system with UP achieves an average speedup of 14%, which demon-

strates that larger systems would benefit from the Unique Private cache.

4.4 CONCLUSION

This chapter proposes a locality-aware cache design, Unique Private, to maximize the benefit

from NoCs that exploit communication locality to optimize the NoC performance. The goal

is to create a positive interaction between the cache and NoC that results in reducing the
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traffic volume and promoting communication locality on the interconnect; thereby allowing

the processing cores to enjoy faster on-chip communication and faster data access. These

requirements affect the design choices for the cache data placement and migration policies.

Additionally, it is demonstrated that the traditional least-recently-used replacement policy

may have a negative effect on performance, which is mitigated by the proposed shared-

biased-least-recently-used policy. Finally, through simulation, the effects of the different

design choices are studied and the merits and scalability of the proposed locality-aware

cache design are demonstrated.

Up to this point, the thesis proposed NoC and cache designs that exploit temporal com-

munication locality to improve performance. The next chapters explore message predictabil-

ity and propose fine grained circuit configuration policies for leveraging this predictability

to achieve performance and/or power gains.
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5.0 DÉJÀ VU SWITCHING: FINE-GRAINED CIRCUIT

CONFIGURATION FOR MULTIPLANE NOCS

So far general cache traffic has been considered to propose circuit switching and cache design

solutions for speeding up data access. Taking a closer look into the cache traffic reveals that

some of the traffic is actually predictable. Notably, the majority of data requests in an

efficient cache design should hit in the on-chip cache; thereby causing data reply messages

to be sent soon after the requests are received. This predictability of data messages can

be leveraged to pre-configure circuits on-demand. Specifically, this chapter proposes a fine-

grained approach to circuits configuration that establish circuits on a per-message basis while

avoiding circuit thrashing.

The proposed approach is named Déjà Vu switching ; it is a simple algorithm that initiates

circuit configuration for a data message once it is confirmed that the corresponding cache

request hit in the cache. The lead time between detecting a cache hit and reading and

sending the requested cache line allows hiding part or all of the circuit configuration time.

Moreover, since the traffic traveling on circuits avoids the overhead of routing decisions,

it is proposed to save power by operating the circuits at a lower voltage/frequency than

the packet switched traffic. Specifically, power can be saved if instead of having a single

interconnect plane, the NoC is split into two planes: a control plane dedicated to the cache

requests and control messages; and a slower, more power efficient data plane dedicated to

the mostly predictable data messages. However, this split can be beneficial for saving energy

only if system performance is not significantly degraded by the slower plane. Thus, the

criticality of the data messages is analyzed to derive the constraints that govern how slow

the power-efficient plane can operate without hurting system performance.

The work in this chapter appeared in [3]
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5.1 MOTIVATION

Although fast communication is critical, not all messages need to be urgently delivered. In

particular, consider the interconnect traffic comprised of cache coherence and data messages.

When an instruction needs to access a data word but misses in the local private cache(s),

a request for the cache line containing the required word is sent to the line’s home node

in the next level(s) of shared cache. Depending on the cache coherence protocol, different

coherence messages may be exchanged such as invalidations to the current sharers of the

line, acknowledgments to the invalidation requests, and sending a copy of the cache line to

the requesting core. The instruction remains stalled until it is able to access the required

data word. The request message along with the other coherence messages and finally the

required data word are all on the critical execution path of the instruction. Conversely, the

rest of the words in the requested cache line are not critical to the execution of the stalled

instruction.

The above observation intuitively suggests that instead of having one interconnect plane

serving all the cache traffic, the NoC may be physically split into two planes: A control plane

for serving the critical traffic, and a power-efficient data plane that operates at a lower voltage

and frequency and serves the non-critical traffic. However, how slow the power-efficient plane

can operate is contingent upon not degrading performance, since any of the slowly traveling

non-critical words of a requested cache line may actually become critical for a subsequently

executing instruction. Interestingly, the relation between performance and energy – energy

is power integrated over time – is not a simple tradeoff; if performance drops, execution time

increases, possibly causing more energy consumption, which is counterproductive.

This chapter addresses this challenge in two steps: First, Déjà Vu switching is proposed, a

simple algorithm that compensates for the speed reduction of the power-efficient data plane

by: 1) Simplifying the data plane’s design to be circuit switched while using the control

plane to do all the routing decisions, and 2) Speeding up circuits’ configuration through a

novel resource reservation scheme that allows reserving conflicting circuits while guaranteeing

correct routing. Second, how slow the power-efficient plane can operate is studied by deriving

the constraints that relate the plane’s speed to system performance.
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This chapter is organized as follows. Section 5.2 presents an overview of the split-plane

NoC design and motivates the need for the timely delivery of the “non-critical” traffic.

Section 5.3 describes Déjà Vu switching and the associated resource reservation scheme.

Section 5.4 studies the constraints that govern the speed of the slow plane. Evaluation

results are presented in Section 5.5. Finally, the conclusion is presented in Section 5.6.
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Figure 35: Percentage of delayed hits out of all L1 misses using the baseline NoC.

5.2 SPLIT-PLANE INTERCONNECT DESIGN

A split-plane NoC design can be beneficial for both performance and power improvement.

The baseline link bandwidth can be physically partitioned into two planes: A control plane

that is dedicated to the critical messages, and a data plane dedicated to the data messages.

For example, 16-byte links may be split into 6-byte links for the control plane and 10-byte

links for the data plane.

The segregation of the network alone allows more efficient use of resources. Data mes-

sages (e.g. cache lines) are large, while control messages (e.g. data requests, invalidations,

acknowledgments, etc.) are much smaller. Thus, data messages benefit from wider links; the

wider the links the fewer flits that are transmitted, leading to less traffic contention and seri-

alization delay. In contrast, control messages need links that are just wide enough to fit any

message in a one-flit packet. In a single plane configuration, control messages waste power

in buffers and links due to the underutilized link width. Hence, sending control and data
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messages on two different planes utilizes buffers and bandwidth resources more efficiently.. In

addition, reducing the data plane’s voltage and frequency enables power savings. However,

slowing the data plane raises the following question: How important to performance

are the latencies of the messages that travel on the data plane?

To answer this question, different parallel benchmarks are simulated on a 16-core tiled

CMP. The assumed CMP architecture has a private L1 cache for each core, and a distributed

shared L2 cache, with a single plane packet switched 2D mesh interconnect of 16-byte links

(simulation details can be found in Section 5.5). The requests and coherence messages are

all one-flit long while data messages are five-flits long. The critical word first technique is

applied to the data messages, i.e., the first word received in a data message is the required

data word by the instruction that suffered the local cache miss. The other words of the cache

line are ordered in the data message in ascending order of physical address.

Once the critical word is received, the pending instruction is granted access to the word

to complete execution. A subsequent instruction may miss in the same cache line before

the line is completely received. When such a miss occurs, the pending instruction is allowed

access to the required word once received instead of waiting until the entire line is received.

To differentiate it from regular cache misses, this miss will be referred to as a delayed cache

hit. Specifically, a delayed cache hit is a miss for an already requested cache line. The latency

to service such a miss is longer than a cache hit but shorter than a regular miss.

Figure 35 shows the percentage of L1 misses that are delayed cache hits. Although

the percentage varies for different benchmarks, it can be seen that in general delayed hits

represent a significant percentage of the misses. Accordingly, it is important to consider how

much the data plane is slowed down; ideally, the last flit should arrive without delay. In

Section 5.4 the constraints that limit how slow the data plane can operate without degrading

performance are studied, but first the routing of the data plane traffic is explained next.
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5.3 DÉJÀ VU SWITCHING FOR MULTI-PLANE INTERCONNECTS

Déjà Vu switching is proposed for routing traffic on the slow data plane, while regular packet

switching (Section 2.2.1) is used for routing traffic on the control plane; i.e., segregated hy-

brid packet/circuit switching. Figure 36 shows the control and data planes’ router models.

Assuming a mesh topology, each router has 5 input/output ports: north, east, south, west,

and local and uses credit-based flow control. Although X-Y routing is used and the control

plane is designed such that all types of control packets are one-flit long, virtual channels

(VCs) are still used for different cache protocol message types to avoid protocol deadlocks.

Conversely, the data plane carries only data messages, which are consumed at their destina-

tions. Depending on the routing algorithm, the data plane may not require VCs, as is the

case, for example, in mesh X-Y routing.
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Figure 36: Diagrams of the control and data plane’s routers (not to scale).
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To reduce communication latency on the data plane, it is designed as a reconfigurable

express switching plane such that data packets travel on circuits without suffering the delays

of making routing decisions at every router.

A circuit is composed of a set of consecutive network links and the crossbar connections

that join these links. A crossbar connection connects an input port of a router to an output

port. A circuit starts with the connection joining the source node’s local input port to

the path’s first network link, and similarly ends with the connection joining the path’s last

network link to the destination node’s local output port.

Circuits are established through the help of the control plane. Before sending a data

packet the source node sends a reservation packet (r-packet) on the control plane to the

data packet’s destination node. The r-packet establishes the circuit on the data plane by

reserving the crossbar connections along the path. When a crossbar connection is realized

in a data plane router, it remains intact until the tail flit of the data packet that crosses the

connection leaves the output port; at which time the crossbar connection is removed, making

the input and output ports of the connection available again. Note that routing an r-packet

slightly differs from routing other types of messages on the control plane; in addition to

competing for the output port of the control plane router, an r-packet needs to successfully

reserve the required crossbar connection on the corresponding data plane router. If the

required connection cannot be reserved, the r-packet waits at the router until it successfully

reserves the connection.

Since data packets carry cache lines that are mostly supplied by the last level shared

cache1, the r-packet can be sent as soon as a cache hit is detected. Using separate tag and

data arrays in the cache enables early detection of cache hits since the tag match operation

requires fewer cycles than reading the contents of a cache line. However, the benefit of sending

the r-packets early is reduced if a packet has to wait to reserve a crossbar connection because

one or both ports of the connection on the data plane are in use by another active crossbar

connection. Déjà Vu switching is designed to overcome this problem by supporting advance

sequential reservations of conflicting circuits, thus allowing r-packets to continue making

1The first level(s) private caches can also send data packets (write-back messages) containing the modified
version of an evicted cache line.

58



progress towards their destinations, while making provisions for a crossbar connection on

the data plane to be established when both ports become available. Essentially, at any point

in time, a port of a data plane router can be part of multiple reserved connections that are

to be sequentially realized. These reserved connections route different data packets, which

traverse the port some time after their r-packets traverse the corresponding port on the

control plane. Thus, the data plane always experiences déjà vu; data messages replay the

history of the reservation packets by traversing router ports in the same order in which the

r-packets traversed the corresponding ports on the control plane.

Déjà Vu switching can be applied, in general, to interconnects in which reservations are

done on a plane separate from the data plane. All packets that travel on plane Pd, which uses

Déjà Vu switching, travel on circuits that are established by reservation packets that travel

on a separate plane, Pc. The packets on Pd mimic the paths traveled by their corresponding

r-packets – thus placing no restrictions on the routing algorithm of Pc. The advantage of

Déjà Vu switching is that it simplifies the design of Pd’s routers and does not stall or drop a

circuit reservation due to a conflicting earlier one. Rather, it allows reservations to proceed,

hence speeding up the reservation process and improving the communication latency on Pd

(see Section 5.5), while guaranteeing correct routing as described below.

5.3.1 Connection Reservation and Realization with Head of Queues Duo Match-

ing (HQDM)

Intuitively, each input port of a data plane router should track the reserved connections it

is part of. In particular, an input port needs to keep track of the reserved output ports

to which the input port should be connected in the future. However, this is not enough to

guarantee correct routing of data packets. For example, consider two reservation packets, ra

and rb and their corresponding data packets da and db. Assume ra arrives at the west input

port of the control plane router Ri, and rb arrives at the east input port of Ri, and that

each of ra and rb make a future reservation for the north output port of Ri. When the north

output port becomes available, the question arises: which connection should be realized next,

is it the west-north or the east-north? The answer depends on which of ra and rb reserved
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the output port first, because the r-packet that reserves the port first will also traverse it

first. Hence, if ra did, then ra arrives at the south input port of the neighbor router, Rj,

before rb. Consequently, Rj routes ra before rb, i.e., the south input port of Rj records the

connection reservation of ra before that of rb. Therefore, correct routing requires that da

traverses the north output port of Ri on the data plane before db.

Table 3: Pseudo-code summarizing the routing actions performed on the control and data planes
as part of Déjà Vu switching.

Routing r-packets from input port pi to output port po on the
control plane

Wait until Qout(pi) and Qin(po) are not full.
Compete for port po on the control plane router
When po is granted:

- Add pi to the end of Qin(po).
- Add po to the end of Qout(pi).

Routing on the data plane

If input port pi is Free then
Let po be at the head of Qout(pi).
Wait until po is Free and pi is at the head of Qin(po) then

- Realize the crossbar connection pi − po
- Change status of pi and po to Busy
- Dequeue the head of the reservation queues of pi and po

If input port pi is connected to an output port, p
′

o

When tail flit is seen change status of the input port pi
and the output port p

′

o to Free.

In general, to guarantee correct routing of data packets, a number of conditions must

be satisfied: (1) Since a connection is reserved by simultaneously reserving an input and

an output ports, each input and output port needs to independently track its reserved

connections. (2) If two r-packets, ra and rb, share part or all of their paths, the order

in which they traverse the shared links must be the same for all their shared links; this

guarantees that each data packet mimics the movements of the correct r-packet. (3) Finally,

since data packets follow the footsteps of their r-packets, every node must inject data packets

onto the data plane in the same order their corresponding reservation packets are injected

onto the control plane.

To satisfy condition (1) each input port, pi, of a data plane router maintains an ordered

queue, Qout(pi), of the reserved future output ports to which pi should connect. Similarly

each output port, po, maintains an ordered queue, Qin(po), of the future input ports to which
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po should connect. Reserving the input-output port connection pi - po is accomplished by

adding po to the end of Qout(pi), and adding pi to the end of Qin(po). If either queue is full,

the reservation cannot be completed at this time. Note that the length of all reservation

queues maintained by all ports is the same, and is equal to the number of allowed future

reservations.

Satisfying condition (2) can be achieved by allowing r-packets to travel only on one

virtual channel (VC). Note that a VC may be dedicated for r-packets to avoid blocking

other types of messages. Finally, condition (3) can be easily satisfied by using a queue to

keep track of the order of sent r-packets whose data packets are not yet sent.

Realizing a crossbar connection: The input-output port connection pi - po is realized in

the crossbar of the data plane router only when both: (a) pi and po are free (not part of any

current connections) and (b) the output port at the head of Qout(pi) is po and the input port

at the head of Qin(po) is pi, i.e., a matching of the input and output ports takes place. Once a

connection is realized, its reservation is removed from Qin(po) and Qout(pi). The connection

remains active until the tail flit of the data packet that traverses this connection exits through

po. This reservation scheme will be referred to as Head of Queues Duo Matching (HQDM).

Table 3 presents pseudo-code that summarizes the actions taken on the control and data

planes as part of the Déjà Vu routing algorithm.

5.4 ANALYSIS OF ACCEPTABLE DATA PLANE SLOWDOWN

This section studies the constraints that limit how slow the data plane can operate without

negatively impacting performance. First, since a data packet cannot move ahead of its

reservation packet, it is inefficient to have data packets catch-up with their r-packets; rather,

the data plane should be further slowed down to save power. Second, the transmission time,

tc, of critical words on the two-plane NoC should be no longer than tc on the baseline NoC.

Developing this constraint depends on which of the two planes critical words are sent. For

simplicity we choose to keep the critical word as part of the data packet such that it is

the first word in the packet – note that there is no critical word for a write-back message.
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Finally, since delayed cache hits represent a significant percentage of cache misses (see Fig.

35), the transmission time, tl, of a cache line on the data plane should be no longer than tl

on the baseline NoC.

These constraints help compute the factor S by which the data plane can be slowed

relative to the baseline NoC.

5.4.1 R-packet arrives at a router before the data packet

Assume that an r-packet (one flit) is sent on the control plane k cycles in advance of the cor-

responding data packet (Note that k depends on the cache design). The following inequality

compares the time the r-packet takes to traverse h routers relative to when the data packet

is injected (right-hand side), with the time it takes the data packet’s head flit to traverse h

routers (left-hand side):

hcS + hβcS > (h− k

x
)xc⇒ S >

(xh− k)

h(1 + β)
(5.1)

Where c is the cycle time on the control plane, S is the slow-down factor to be computed,

such that cS is the cycle time on the data plane and is enough to traverse one network link;

β is the average delay cycles incurred per router due to contention with existing reservations

on the data plane, and x is the number of cycles incurred per hop (routing + link traversal)

on the control plane. Specifically, in the left-hand side, hcS is the time needed for traversing

h routers and links by the data packet’s head flit, in the absence of contention delays and

assuming that the required crossbar connection at each router is realized before the head

flit needs to cross it. hβcS is the total contention delay suffered by the head flit while

traversing h routers. In the right-hand side, k
x

is the number of routers traversed by the

r-packet during k cycles, and xc is the time needed by an r-packet to traverse one hop on the

control plane. Notice that r-packets should experience minimal contention delays since they

either travel on a dedicated plane or share a plane with only the cache coherence request

and control messages, and are allowed to make future reservations and continue advancing

to their destinations.

In the rest of the analysis we assume that this constraint is already met, i.e., we assume

that an r-packet is always ahead of the corresponding data packet.
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5.4.2 Critical words are not delayed

Assuming the head flit carries the critical word, the transmission time, th, of the data packet’s

head flit on the data plane should not be longer than on the baseline NoC, that is:

hcS + hβcS ≤ hxc+ hβc⇒ S ≤ x+ β

1 + β
(5.2)

In the first inequality the left-hand side computes th across h routers on the data plane and

the right-hand side computes th on the baseline interconnect also across h routers.

5.4.3 Delayed cache hits are not overly delayed

A delayed cache hit needs access to a word which is part of an already requested cache line.

In developing this constraint the worst case is assumed; that the last word in a data message

is critical for a delayed cache hit. Thus, consider the transmission time of the data packet’s

tail flit, tt. In the following inequality, the left-hand side computes tt across h routers on the

data plane, while the right-hand side computes tt on the baseline NoC:

hcS + hβcS + (f ′ − 1)cS < hxc+ hβc+ (f − 1)c

Where f and f ′ are the number of flits of the data packet on the baseline NoC and data

plane, respectively, such that (f − 1)c and (f ′− 1)cS are the serialization delays of the body

and tail flits on the baseline NoC and data plane, respectively. Solving for S gives:

S ≤ hx+ hβ + f − 1

h+ hβ + f ′ − 1
(5.3)

Given that f < f ′, it is clear that constraint (5.3) subsumes constraint (5.2). Each of

the three constraints implies a range of S, however, a situation may arise where for a set

of design parameters there is no range of S that satisfies all three. Consider what happens

when S violates any of the constraints. If (5.1) is violated, then data packets move faster

than necessary that they often catch-up with their r-packets, thus wasting power that could

be saved by further slowing the data plane. If (5.2) is violated, then critical words may be

overly delayed causing system performance to suffer resulting in longer execution time and

possibly more system energy consumption. Similarly, violating (5.3) may negatively impact

performance if the service times of delayed cache hits are significantly impacted. However,
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the impact depends on the data access patterns, which may not always require the last words

in data messages to satisfy delayed cache hits. This analysis suggests that if no value of S

that satisfies all three constraints exists, maintaining system performance requires that we

choose S that satisfies constraint (5.3).

5.4.4 Computing the slow-down factor

The above constraints are used to compute S for a 4x4 and a 8x8 CMPs. First, however, the

value of β, the average contention delay cycles incurred per router, needs to be determined.

Contention delay depends on the volume of traffic injected onto the NoC. Hence, synthetic

traces of random traffic are generated and simulated on a 4x4 and a 8x8 CMP, using the

baseline NoC to empirically measure β with different traffic injection rates (explanation of

trace generation, injection rates, and simulation parameters are in Section 5.5). It was found

that 0.39 ≤ β ≤ 0.64, and 0.27 ≤ β ≤ 0.54, for the 4x4 and 8x8 CMPs, respectively. Thus,

in calculating S, the average value of β for each CMP is used, i.e., β = 0.5 for the 4x4 CMP

and β = 0.4 for the 8x8 CMP.

For the remaining parameters, x = 3 and k = 5 are used. For 64-byte cache lines, a data

packet on the baseline NoC consists of five 16-byte flits (i.e., f = 5) or seven 10-byte flits

on the data plane (i.e., f ′ = 7). For h, the average path length which is 3.33 is used for

the 4x4 CMP and 6 for the 8x8 CMP. Plugging these numbers yields: 1 ≤ S ≤ 1.42 and

1.55 ≤ S ≤ 1.69 for the 4x4 and 8x8 CMPs, respectively. These ranges of S guide the choice

of the clock frequencies used in the evaluation in Section 5.5.

Table 4: Specifications of virtual channels

VC usage Baseline NoC Proposed NoC - Proposed NoC -
(16-byte links) Control Plane (6-byte links) Data Plane (10-byte links)

For coherence request 3 VCs, each 2 flits 3 VCs, each 2 flits N/A
and control messages (2 packets) wide (2 packets) wide
For r-packets N/A 1 VC, 2 flits N/A

(2 r-packets) wide
For data packets 1 VC, 10 flits N/A 1 VC , 14 flits

(2 packets) wide (2 packets) wide
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5.5 EVALUATION

The functional simulator Simics [86] is used for evaluating the proposed two-plane NoC

design with Déjà Vu switching for 16- and 64-core CMPs. For workloads, synthetically

generated traces are used, which allow varying the traffic load injected into the NoC, as well

as execution driven simulation of scientific and commercial benchmarks from the Splash-

2 [92], Parsec [15], and Specjbb [90] suites. Execution driven simulation inherently captures

the effects of the spatial locality of data accesses, thus exposing the misses due to delayed

hits.

The simulated cores are UltraSPARC III, in-order, clocked at 4GHz, with an instruction

issue width of 2. Each core has private 16 KB L1 data and instruction caches (access time:

1 cycle). The L2 cache is distributed shared with a 1 MB bank at each core (access time: 10

cycles – access time is estimated using Cacti [18]). Cache coherency is maintained through a

directory-based MESI protocol. The baseline NoC is a single plane 2D mesh with one router

per core and 16-byte links. Control messages are one flit long while data messages, which

carry 64-byte cache lines, are five flits long. Table 4 shows the VCs and their sizes for the

baseline and the proposed NoC.

The proposed NoC is composed of a control and data planes. The control plane is clocked

like the baseline at 4GHz and has 6-byte links, where each control message is one flit long.

The data plane has 10-byte links and carries data messages composed of seven flits. The

data packets on both the baseline and the proposed NoC carry the critical word (eight bytes)

as the first word in the packet. A stalled instruction that is waiting for a critical word is

allowed to proceed as soon as the word is received. Similarly, when the word required for

a delayed cache hit arrives, the stalled instruction is allowed to proceed without waiting to

receive all the words in the data packet.

5.5.1 Evaluation with synthetic traces

First, synthetic traces are used for studying the communication latency, performance, and

energy consumption with varying traffic loads. Synthetic traces are generated such that
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Table 5: Voltage and frequency of the evaluated data planes.

Slow-down Factor (S) 1 1.33 1.5 2
Frequency (GHz) 4 3 2.66 2
Voltage (V) 1.0 0.8 0.733 0.6

each node sends 20K data request messages to random destinations. When a data request

is received, a reply data packet is sent by the receiving node to the requesting node. The

data reply is sent 10 cycles (time to access the L2 cache) after the data request is received,

while the r-packet is sent 5 cycles (time for a tag match) after the request is received. The

pending request is satisfied once the critical word is received in the data packet. Generated

traces have varying request injection rates: 0.01, 0.03, and 0.05 requests per cycle per node.

Different data plane speeds are evaluated ( listed in table 5). Note that the voltage/frequency

range is similar to [41] except that 2GHz is used instead of 1.9 GHz. Orion-2 [48] is used

for estimating the static and dynamic power of routers’ components and wires (assuming

1.5mm hops) in 45 nm technology.

Effect of future reservations

Figure 37(a)2 shows the average latency of the head flit of the data packets on the baseline

and proposed NoCs on a 64-core CMP (simulations of a 16-core CMP exhibit similar trends),

with one future reservation, while Fig. 37(b) shows the average saved cycles along the path

of a data packet with one future reservation compared to zero future reservations (cycles

shown are 0.25 ns corresponding to the 4GHz frequency). With one future reservation, the

head flit’s communication latency improves by 8% to 22% for the evaluated configurations

(for a 16-core CMP, observed improvements are in the range 7% to 21%). The effect of

using more future reservations is also studied (not shown in the figures) and showed that

one future reservation is sufficient to keep the r-packets ahead of the data packets.

Execution time and energy consumption

For synthetic traces, execution completion time is the time required to inject all the

2In Figs. 37-41, the notation x/y GHz indicates the frequencies of the control and data planes of a split-
plane NoC. For example, 4/3 GHz indicates the control and data planes are clocked at 4GHz and 3GHz,
respectively. Also, in Figs. 37-40, 4GHz indicates the frequency of the baseline single plane NoC.
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Figure 37: Synthetic traffic - Communication latency on a 64-core CMP.

request messages into the NoC and to receive all the corresponding reply data messages.

Figure 38 shows the NoC energy consumption and the execution completion time using the

baseline and proposed NoC normalized to the system with the baseline NoC.

Just splitting the NoC into two planes without slowing the data plane allows more

efficient use of resources resulting in energy savings. Specifically, when the planes are split

and the data plane becomes circuit switched the buffer resources are considerably reduced.

The data plane does not require virtual channels. The control plane is packet switched and

we assume the control plane has the same number of VCs as the original packet switched

single plane concept, but with much smaller buffers due to the plane split. The removal

of these buffers incurs considerable savings. In addition, with the split-plane design the

short control messages consume less dynamic power traveling on the narrower control plane

than on the wider baseline NoC, and enjoy better latency due to not competing with data

messages on the same plane. Further, because the crossbar area and power are quadratically

proportional to the link width, having two smaller crossbars reduces power consumption.

With a slower data plane less energy is consumed in the NoC, but the execution time

may increase, for example, when the data plane is clocked at 2 GHz in Fig. 38(b). This may

increase the overall energy consumed by the CMP due to more energy being consumed by

the cores.
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Figure 38: Synthetic traffic - Normalized execution completion time and NoC energy consumption
on a 64-core CMP.
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Figure 39: 16 core CMP - Normalized execution time and NoC energy consumption.

Interestingly, although the average latency of the data packet’s head flit may be longer

on the proposed NoC than on the baseline, the completion time with the proposed NoC can

be better, such as the 64-core CMP with the data plane clocked at 3 GHz in Fig. 37(a)

and Fig. 38(b). The reason is that the two-plane design allows a control and a data flit to

simultaneously cross the link between two neighboring cores, instead of serializing the link

access as on the baseline NoC.
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Figure 40: 64 core CMP - Normalized execution time and NoC energy consumption.

5.5.2 Evaluation with benchmarks

Second, the proposed design is evaluated with execution-driven simulation, which – unlike

synthetic traces – results in exchanging all kinds of cache coherence messages such as inval-

idations, acknowledgments, write-backs, etc. and exposes the misses due to delayed cache

hits. Further, communication is not always evenly distributed throughout a program’s exe-

cution; often programs exhibit alternating compute intensive and communication intensive

periods.

For evaluation on a 16-core CMP, the entire parallel section of each benchmark is simu-

lated, except for Specjbb, for which simulation is stopped after 3200 transactions have been

executed. For a 64-core CMP it takes a very long time to run the entire parallel section, thus

after cache warm-up, simulation is topped when core 0 completes executing 10M benchmark

instructions3 (not counting the system instructions).

Figures 39 and 40 show the normalized execution time and NoC energy consumption rela-

tive to the baseline CMP for 16- and 64-core CMPs, respectively. Similar trends of execution

time and energy consumption are observed for the two CMPs. It was noticed that slowing

down the data plane to half the frequency of the control plane (i.e., 2GHz) prolongs execu-

tion time for most benchmarks, but when clocked at 2.66 GHz (2/3 the speed of the control

3Raytrace was too small to give meaningful results on the 64-core CMP.
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plane), the execution time shows no increase4, while reducing the NoC energy by an average

of 43% and 53% on the 16-core and 64-core CMPs, respectively. These results demonstrate

the benefit of exploiting the predictability of data messages in saving NoC energy. The

benefits of predictability is also demonstrated by the case study of MAESTRO [25], which

is a proposed self-adaptive multicore system framework that attempts to enable intelligent

and predictive resource management. The case study demonstrates that energy savings are

achievable by predictively applying NoC dynamic voltage and frequency scaling to different

program epochs based on previously collected profile information.
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Figure 41: Comparing performance on a 16-core CMP with split-plane NoCs, with and without
Déjà Vu switching (Y-axis starts at 0.9)

Split-plane NoC comparison: To isolate the effect of Déjà Vu switching from just

splitting the baseline NoC into a control and data planes, three split-plane packet switched

NoCs are considered with their Déjà Vu counterparts for a 16-core CMP. The results are

shown in Fig. 41 normalized to the baseline packet switched NoC without split planes oper-

ating at 4 GHz (the highlighted grid line at 100%). Splitting the planes (PKT 4/4) provides

negligible change over the baseline; however, when using Déjà Vu switching (DV 4/4), perfor-

mance improvement is observed. Additionally, the stated goal was to reduce network energy

without impacting performance. When reducing the speed of the data plane to 2.66 GHz in a

split packet switch (PKT 4/2.66) the performance reduces considerably. Sending the critical

word on the faster control plane (PKT+CW 4/2.66) [34] was also evaluated; it provided a

4Specjbb’s execution time increases by only 1%
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slight benefit but did not approach the speed of the baseline. Finally, the proposed Déjà Vu

switched network (DV 4/2.66) restores the performance of the baseline and is comparable

with PKT 4/4, while providing the energy reductions of reducing the data plane speed as

enumerated in Fig. 39(b). This demonstrates that Déjà Vu switching is a critical component

of a split-plane NoC approach for reducing energy without penalizing performance.

5.6 CONCLUSION

This chapter proposes Déjà Vu switching, a fine-grained approach for configuring circuits on-

demand, and applies it for saving power in multi-plane NoCs. Starting with a baseline single

plane NoC and splitting it into two planes: (1) a control plane dedicated for the coherence and

control messages, and (2) a data plane dedicated for the data messages. Déjà Vu switching

simplifies the design of the data plane’s routers and enables reducing the data plane’s voltage

and frequency to save power. The chapter analyzes the constraints that govern how slow the

data plane can operate without degrading performance, and uses the results of this study

to guide the evaluation of the design. The viability of the proposed design is confirmed by

simulations of both synthetically generated message traces and execution-driven simulations.

In the simulations, running the data plane at 2/3 the speed of the control plane maintained

system performance while allowing an average savings of 43% and 53% of the NoC energy

in 16-core and 64-core CMPs, respectively.

The next chapter builds on the proposed HQDM and considers also a CMP with a split-

plane NoC design but with a fast cache, and proposes another fine-grained approach of circuit

configuration for speeding up communication and system performance.
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6.0 RED CARPET ROUTING: A FINE-GRAINED PROACTIVE CIRCUIT

ALLOCATION IN MULTIPLANE NOCS

In the last chapter, Déjà Vu switching relied on early hit/miss detection in the cache. This

chapter, on the other hand, considers the problem of speeding-up communication on systems

with fast cache, where forward reservations may not be beneficial in hiding the overhead of

configuring circuits.

To address this problem a more proactive circuit allocation scheme, named Red Carpet

Routing, is proposed for hiding the time cost of circuit establishment by using request mes-

sages to reserve the circuits for their anticipated reply messages (think of request messages

as rolling out the red carpet for their anticipated data messages). In this setting accurate

time-based reservations as in the flit reservation flow control [75] are impractical, since at

the time that a request is reserving a circuit, there is no certainty about the actual time at

which the reply message will be injected in the NoC, as other network traffic may cause un-

foreseen delays. Moreover, simple First-Come-First-Serve (FCFS) reservations as in the Déjà

Vu Switching scheme can under-utilize the NoC by delaying the realization of circuits for

data messages that have already arrived, as explained later. Rather, the proposal combines

the ideas of both queued and time-based circuit reservations; reservations are still queued

but instead of an FCFS ordering for realizing circuits, reservations are ordered based on

estimates of circuit utilization times.

This chapter is organized as follows. Section 6.1 describes the proposed circuit pre-

allocation scheme. Sections 6.2 and 6.3 explain how to ensure correct routing on reserved

circuits and avoiding deadlock, respectively. Section 6.4 discusses improving the estima-

tions of time-based reservations. Section 6.5 discusses handling the cases when circuit pre-

The work in this chapter appeared in [1]
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allocation is not possible. Section 6.6 discusses implementation issues. Section 6.7 discusses

using Red Carpet Routing for reducing power consumption. Simulation environment and

evaluation results are presented in Section 6.8. Finally, conclusion is presented in Section

6.9.

6.1 PROACTIVE CIRCUIT ALLOCATION

This section describes the proposed proactive circuit allocation scheme. First, the network

architecture is described, then how data requests reserve circuits, and finally how circuits

are realized.

6.1.1 Network Architecture

The network architecture is similar to the one in Chapter 5, but a brief description is provided

here for convenience. The interconnect is composed of two planes1 organized in a regular two

dimensional mesh topology, where every router is connected with its four neighboring routers

via bidirectional point-to-point links and with a single processor tile via the local port. One

plane is packet switched while the other is circuit switched. Control and coherency messages

such as data access requests (e.g. read and exclusive requests), invalidation messages, and

acknowledgments travel on the packet switched plane, which is referred to as the control

plane. Data messages carrying cache lines, whether replies to data requests or write-back

messages of modified cache lines, travel on the circuit switched plane, which is referred to as

the data plane.

Data request messages travel on the control plane making circuit reservations at the

corresponding data plane routers for their anticipated data reply messages, while data plane

routers inform their corresponding control plane routers of space availability in the circuit

reservation buffers.

1The interconnect may be composed of more than two planes but here it is assumed to be composed of
two.
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6.1.2 Reserving Circuits

The purpose of circuit pre-allocation by request messages is to completely hide the circuit

configuration overhead from the reply data messages. To be able to reserve circuits for

their replies, a request and its reply should travel the same path but in opposite directions ;

hence the circuits reserved by requests are referred to as reverse or backward circuits. To

avoid delaying request messages if they attempt to reserve previously reserved ports, routers

support storing and realizing multiple reverse circuit reservations. However, the order of

realizing reverse circuits cannot be FCFS since it can poorly utilize the interconnect resources

as it may delay the realization of circuits even when their data messages are ready.

For example, in Fig. 42 the data request ReqA is traveling to a far node, RN , and reserves

a circuit, CA, at routers R1 and R2, for its anticipated reply. On the other hand, ReqB is

traveling to a near node, R2, and reserves a circuit CB also at routers R1 and R2 immediately

after ReqA. In this example, ReqB arrives at R2 much earlier than the time at which ReqA

arrives at RN . Assuming both requests hit in the cache, ReplyB, the reply to ReqB, becomes

ready much earlier than ReplyA, the reply to ReqA. However, with FCFS ordering, circuit

CA would be realized before CB, thus delaying the ready message ReplyB. Conversely, if

circuits are realized based on their expected utilization times, CB would be realized before

CA, and ReplyB would not suffer unnecessary delay. The proposed circuit pre-allocation

improves the circuits realization order using approximate predictions of the arrival times of

reply messages as described next.

Approximate Time-Based Circuit Reservation

Consider the following example. Router R1 sends a data request to RN and this request

has to traverse 10 routers on the path to RN . Assume that a hop takes 3 cycles on the packet

switched control plane. Assume that the request will hit in the cache and that it takes 5

cycles to read the cache line. On the circuit switched data plane communication latency is 1

cycle per hop. Thus, assuming the request and reply face no delays, the minimum duration

of the round-trip since sending the request and until receiving the first flit of the reply is: the

request travel time + cache processing time of the request + the reply travel time = 3x10

+ 5 + 1x10 = 45 cycles. Assume that R1 sends the request at cycle 100. Then the request
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is realized after CA is utilized 
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Figure 42: Example showing that realizing reverse circuits in a FCFS order can result in poor
utilization of the NoC resources (See Section 6.1.2)

reserves the circuit at R1 with expected utilization cycle = 145, and on the next router,

R2, the request reserves the circuit with expected utilization cycle = 144 and so on, until

it reaches RN and reserves the circuit with expected utilization cycle = 136. Essentially,

the request carries the estimate, c, of the cycle number at which the circuit is expected

to be utilized at the next router, R, where the circuit will be reserved. After the circuit

reservation is successfully added to R, the request’s carried estimate is decreased by one to

become c = c − 1, and the request message advances to the next router on the path to the

request’s destination.

In the example, the expected circuit utilization cycle is based on the minimum time for the

round-trip that starts with injecting the request and ends with receiving the reply message.

Unfortunately, the three components that make up the round-trip time: request travel time,

request processing time, and reply travel time, will not always take the minimum time, nor

can they be precisely determined. The travel time of the request and reply messages may be

affected by other traffic in the NoC. Similarly, the processing time may vary depending on

whether the cache can process the request immediately, whether the request hits or misses

in the cache, the cache may forward the request to the requested cache line’s owner, or the

cache may even reply with a negative acknowledgment indicating that the request should be
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retried.

Since determining the round-trip precisely is not possible, the next best thing is to

estimate how long a round-trip would take, and include with the circuit’s reservation at

each router the circuit’s estimated utilization cycle at that router. Routers would then

realize circuits in ascending order of their estimated circuit utilization cycles, which need

not exactly coincide with the actual cycles that the reply messages traverse the routers as

long as the traversal order is preserved.

An intuitive way to estimate the round-trip time from R1 to RN is to assume it is similar

to the observed round-trip time when R1 last sent a request to RN . However, large variability

in request processing times can adversely affect the round-trip estimation. Better estimates

can be derived by averaging or using the median of previously observed round trip times,

which is discussed later in Section 6.4. The next section describes how reservations are

ordered and realized.

6.1.3 Realizing Reserved Circuits

When a circuit is reserved at a router, the expected utilization cycle (EUC ) of the circuit is

included in the reservation. Each port – whether input or output – has a separate reservation

buffer (RB) to store its circuit reservations. Rather than realizing circuits in the order

they were added to the reservation buffers, routers realize circuits in ascending order of

their expected utilization cycles. Specifically, each port maintains a pointer, pmin to the

reservation, resmin, having the earliest EUC. When a new reservation, resnew is added to

RB, its expected utilization cycle, EUCnew, is compared to EUCmin, the EUC of resmin,

and pmin is updated if necessary (Fig. 43). Circuits are realized by matching the reservations

pointed to by pmin pointers in each of the RBs of the input and output ports, as the following

example demonstrates.

Consider for example that at some router two data request messages, r1 and r2, reserve

the crossbar connections: west-east (i.e., west output port and east input port) and south-

east, respectively, such that the EUC of r1’s reservation is earlier than that of r2’s. Assume

both reservations become the ones with the earliest EUCs in the RBs of the west and south
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Figure 43: Checking if the new reverse reservation has the earliest EUC among existing
reservations.

input ports (Fig. 44). Because the EUC of r1’s reservation is earlier than that of r2’s, the

east output port realizes r1’s reservation before r2’s, i.e., the west-east crossbar connection

gets realized before the south-east.
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Local 
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I/P Ports  
Reservation Buffers 

O/P Ports  
Reservation Buffers 
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EUCs I/P Port 
Name 
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Name 

Figure 44: Example: Realizing circuit reservations in ascending order of their EUCs. The
west-east connection is realized before the south-east connection.

Once a circuit’s connection is realized at a router, the connection remains active until the

tail flit of the message traveling on the circuit traverses the crossbar, at which time the input

and output ports of the connection become free to participate in realizing subsequent circuit

reservations. Correct routing requires that each node injects data messages in the data plane

in ascending order of the their circuit reservations’ EUCs. Further, the EUCs of any two

circuit reservations ensure a consistent realization order of the circuits in all the ports they

share on their paths (Section 6.6 discusses ensuring consistent ordering of realizing circuits).

Note that since EUCs are only estimates that may not coincide with the cycles at which

packets traverse routers, and since there is always the chance that a new reservation having
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Figure 45: Updating the pmin pointer by finding the next reservation with the earliest EUC.

an earlier EUC than all reservations in a port’s RB may be added, circuits are realized only

after a packet is incoming to an input port, which can be detected through a look-ahead

signal: each output port matched during switch allocation signals its corresponding input

port on the next router that a packet is incoming. Once a circuit is realized, its input and

output ports update their pmin pointers to point to the next reservation with the earliest

EUC. Each port updates its pmin pointer by sequentially going through its reservation buffer

to find the next reservation with the earliest EUC (Fig. 45). The sequential search occurs

while the flits of the packet traveling on the recently realized circuit traverse the crossbar.

Obviously, the longer the packet, the more of the search’s latency is hidden. The latency of

the search can be reduced by, for example, examining two or more reservation entries in the

port’s reservation buffer in one cycle. However, in this work, only one entry is examined per

cycle.

6.2 ENSURING CORRECT ROUTING ON RESERVED CIRCUITS

Similar to Déjà Vu switching, there are two conditions to ensure that each message travels

on the right circuit from source to destination. The first is that each node injects the data

plane messages in the same order in which the reserved circuits at the local input port will
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be realized. The second is maintaining a consistent order of realizing any two circuits that

share routers relative to each other in all the shared routers. In other words, for any two

circuits, C1 and C2, that share a sub-path, p, either C1 is realized before C2 in all the ports

on p, or C2 is realized before C1 (see Fig. 46). The later condition ensures that a message

does not jump from one circuit to another.

C1 

C2 

m1 

m2 

Figure 46: The solid line represents the shared sub-path between circuits C1 and C2. C1 is
scheduled before C2, thus m1 crosses the shared sub-path before m2

Infrequently, a circuit request may arrive that includes a shared sub-path with a circuit

already in use, but with the new request having an earlier EUC. Consider Fig. 47. The two

circuits C1 and C2 share the sub-path, p, which starts at router Ri and ends at Rk. C2 is

already in use. Let m2 be the message traveling on C2, and assume that C1’s EUC is earlier

than C2’s. If C1 is reserved at all the routers on p before m2 starts traversing p, then m2

cannot be mistakenly routed on C1, since the situation would be similar to the one in Fig. 46;

m2 will be held in Ri until the message m1 traveling on C1 traverses the sub-path, p.

C1 

C2 m2 

Rk Rj Ri 

Figure 47: Circuit C1 is scheduled before C2, but the right part of C1 in the dotted line is not yet
reserved. Message m2 starts traversing the shared sub-path between C1 and C2 before C1 is
completely reserved on it. If no corrective measure is taken, m2 would wrongly travel on C1

instead of remaining on C2.

In contrast, if m2 starts traversing p while C1 is only reserved at some but not all of p’s

routers, then at the first router Rj ∈ p where m2 meets the reservation of C1 (remember that
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circuits are reserved backwards, from destination to source), C1 would be realized instead of

C2, thus misrouting m2 on C1. The above misrouting problem occurred due to a reservation

conflict between two circuits sharing a sub-path.

In practice, misrouting is very rare (on average, reservation conflicts represented less

than 2% of circuit reservations; see simulation results in Section 6.8). However, misrouting

should be detected and corrected. This section starts with a high level description of the

detection and handling of a reservation conflict then a detailed decription is provided.

The situation in Fig. 47 involves three components: the two circuits C1 and C2, and the

message m2. Of these 3 components, the active components are the circuit C1, which is still

being reserved, and the message m2, which is currently traveling to its destination.

The detection of a reservation conflict is thus performed at two times:

1) When C1 is reserved at a router, such that C1 becomes the reservation with the earliest

EUC, while the last realized circuit, C2
2 had a later EUC than C1. This situation represents

a reservation conflict, since m2 may be routed on C1 instead of C2 at the next shared router

on C1 and C2’s path.

2) When m2 is about to traverse a router, the realized circuit may be C1 instead of C2

if C1’s reservation was recently added to the router. Thus there is a need to make sure that

the currently realized circuit matches the one m2 should be traveling on.

Once a reservation conflict is detected, the corrective action taken is to preempt the

partially reserved new circuit, C1, by injecting a small remove circuit packet (one flit) to

consume and remove C1. Simultaneously, the request message, Req1, reserving C1 continues

to its destination but without reserving the remainder of C1’s path. Finally, since the data

plane is circuit switched, there is still a need to configure a circuit for the reply of Req1. The

proposed solution is to fallback to using a forward circuit reservation (Chapter 5).

Before getting into a detailed description of the detection and handling mechanisms

of reservation conflicts, some notation is needed first. Continuing with the assumed two

dimensional mesh topology, each router, Ri, on the data plane has five ports. Each port, π,

where π ∈ {Local, North, West, South, East}, has: an input flit buffer, FBi
π, for storing the

2Message m2 may either be still traversing the circuit C2 or have completely traversed C2 and C2 was
removed.
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flits of incoming messages; an input reservation buffer, RBi
in,π, for storing the reservations of

circuits at the π input port; and similarly an output reservation buffer, RBi
out,π, for storing

the reservations of circuits at the π output port. Note that below input and output ports

are used from the perspective of circuits, i.e., input and output ports, respectively, of data

plane routers.

6.2.1 Detecting and Handling a Reservation Conflict While Reserving a New

Circuit

Consider the example in Fig. 48. Circuit C2 passes through the two consecutive routers Rj

and Rj+1, where Rj precedes Rj+1 on C2’s path, and message m2 is traveling on C2. The

data request Req1 is reserving a new circuit, C1, which shares the routers Rj and Rj+1 with

C2. In particular, C1 and C2 share RBj
out,West and its corresponding RBj+1

in,East. Req1 has

arrived at Rj, which indicates C1’s reservation was successfully added to RBj+1
in,East. Before

reserving C1 at Rj, the conflict detection mechanism compares C1’s EUC with that of the

last realized circuit at C1’s required output port (i.e., the west output port). In the example,

the detection mechanism compares C1’s EUC with C2’s EUC. If C1 has a later EUC, then

no conflict is detected, but if C1 has an earlier EUC, then a conflict is detected.

Corrective Action: A reservation conflict indicates there is a potential of misrouting

a message on the new circuit. To be safe, the partially reserved new circuit is removed and

the request that was reserving this new circuit is allowed to proceed but without reserving

the remainder of the circuit path.

Consider again the example in Fig. 48, upon detecting the conflict, Rj signals RBj+1
in,East,

the last RB where C1 was reserved, to remove C1’s reservation. A reservation is removed by

injecting a one-flit remove conflicting circuit message to travel on the already reserved part

of C1 to utilize and remove it.

To simplify the process of identifying which reservation should be removed, each input

port may receive a one bit signal that means: remove the last added circuit to the input port’s

RB – which in this example is RBj+1
in,East. Since it is possible that another circuit reservation

may arrive and result in a reservation conflict, it must be guaranteed that the remove the

81
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Simultaneously, m2 is traveling on C2 and 
just traversed the west output port of Rj 

East 

Req1 reserves C1 in the east input 
port of Rj+1 

C2 m2 

Req1 

C1 

(a)

Rj+1 Rj East West 

East 

Req1 wants to reserve C1 in the west output 
port of Rj, but a reservation conflict is 
detected since the last realized circuit at the 
port, C2, has a later EUC than C1.  

m2 arrived in the east input port of Rj+1. 
Since C1 has an earlier EUC than C2, m2 
would mistakenly travel on C1 unless  
corrective action is taken. 

C2 

C1 

Req1 

m2 

(b)

Figure 48: Detecting a reservation conflict: In the example request Req1 is reserving circuit C1

and message m2 is traveling on circuit C2. (a) The last successful reservation of C1 at router
Rj+1, and m2 successfully traverses Rj while correctly traveling on C2. (b) Reservation conflict is
detected upon attempting to reserve C1 at router Rj , and a corrective action is required to avoid

misrouting m2 on C1.

last added circuit signal refers to the intended circuit. This is achieved by preventing any

other reservation to be added to RBj+1
in,East until Rj indicates that C1’s reservation does not

cause a conflict, which requires another one bit signal.

82



6.2.2 Detecting a Reservation Conflict While a Message is Traversing a Circuit

In Fig. 48 it is possible that m2 – which is traveling on C2 – arrives at FBj+1
East before Rj

signals RBj+1
in,East to remove C1’s reservation. In this case, C1 may get realized at Rj+1,

thereby misrouting m2 on C1.

To prevent misrouting, Rj+1’s east input port should check that m2 is traveling on the

correct circuit. In general, at any router, Ri, each input port, π, checks that both the

destination and the id of the outstanding request that reserved the currently realized circuit

match those of the next message in FBi
π. To retain one cycle per hop latency on the data

plane, the comparisons of the destination and the id of the outstanding request are performed

in parallel to the message’s head flit traversing the switch to the next router.

Corrective Action: In Fig. 48 if the comparisons indicate that m2 is being misrouted,

Rj+1 stops sending m2 and does not remove m2’s head flit from FBj+1
East. As for the input

port on the next router on C1’s path, it will be signaled to discard m2’s head flit as follows:

each router’s input port receives a data valid signal, which indicates whether a flit is being

received during the current cycle. The results of comparing the destination and the id of the

outstanding request are logically ANDED with the data valid signal of the next input port

on the realized circuit’s path. Because the comparison failed, the data valid signal would be

cleared causing the next input port to discard m2’s head flit.

Further, Section 6.2.1 indicates that RBj+1
in,East will receive a signal from Rj to remove C1.

However, if misrouting is detected before receiving the signal, the one-flit remove conflicting

circuit message can be sent at the next cycle instead of waiting for the signal from Rj. With

this optimization, RBj+1
in,East would have to ignore the next remove circuit signal that Rj

sends.

After sending the remove conflicting circuit message, normal operation of Rj+1 resumes,

which includes: RBj+1
in,East finding the next reservation with the earliest EUC (C2 in the

example), realizing that circuit, and sending the buffered message on the circuit (sending m2

on C2).
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(a)

(b)

Figure 49: A circular dependency that causes deadlock. The events are numbered to help explain
how the deadlock develops.
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6.3 AVOIDING DEADLOCK

In the proposed scheme, each of the control and data planes can be designed to avoid

deadlock. A 2D mesh topology is assumed where the control plane uses X-Y routing and

the data plane uses Y-X routing. The routers of the data plane have two different kinds

of buffers: flit buffers for storing messages (or packets), and reservation buffers for storing

circuit reservations. These two types of buffers have a dependence relationship. On the

data plane, messages travel on circuits, which require space in the circuit reservation buffers.

Similarly, new reservations require free space in the RBs. RB space becomes available only

when messages are able to advance so that circuit reservations are utilized and removed

from the RBs. Because circuits are reserved backwards; from destination to source, a circular

dependency may develop causing potential deadlock in the NoC, as in the following scenario:

In Fig. 49, a data request is attempting to reserve a new circuit, C1. Unfortunately, when

the request arrives at router Ra, there is no free space in the RB of C1’s required input port,

RBa
in,North. If the request waits, free space may become available allowing C1 to be reserved

and allowing the request to advance to its destination. Free space becomes available only if

the next message, m, in FBa
North is able to exit Ra, thus making room for C1’s reservation.

However, m may be blocked and unable to advance due to a full buffer at the input port

of the next router on m’s path. Let m2 be the message at the head of the chain of blocked

messages and assume that m2 is stopped at router Rz and is traveling on circuit C2. A

circular dependency occurs if m2 is unable to move because C2 cannot be realized at Rz

before the new circuit being reserved, C1, is consumed at the same router, Rz. An example

of this might be if C1 and C2 share the west output port at Rz, and C1 has an earlier EUC

than C2. It can be detected that a deadlock may have developed if a request is unable to

reserve a circuit due to unavailability of RB space and this situation persists for a specified

number of cycles (i.e., a timeout mechanism).

Resolving this potential deadlock is similar to handling a reservation conflict (Sec-

tion 6.2.2): the router at which the request is unable to make the reservation (Ra in Fig. 49)

signals the last input port’s RB at which C1 was successfully reserved to mark C1 for re-

moval, and the request is allowed to proceed to its destination without reserving C1, thus
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breaking the deadlock. Note that C1’s reservation in the signaled RB is not necessarily the

one with the earliest EUC. Consequently, C1’s reservation may not be released immediately;

rather it is marked for removal so that when it becomes the earliest one in the RB, a remove

conflicting reservation message is injected to consume the partially reserved C1.

6.4 IMPROVING QUALITY OF ESTIMATION

Inaccuracy in estimating circuit utilization times may hurt resource utilization and intercon-

nect performance. Specifically, if an estimation is too optimistic assuming that a circuit, Ci,

would be utilized much sooner than actually occurs, a message traveling on another circuit

sharing a sub-path with Ci but scheduled later than Ci may be delayed until Ci is utilized.

Conversely, if an estimation is too pessimistic assuming Ci would be utilized much later

than what actually happens, the message traveling on Ci may suffer delays if circuits sharing

sub-paths with Ci but having earlier EUCs are reserved; as these circuits would be realized

before Ci on the shared sub-paths even though Ci arrives first.

Obtaining an accurate EUC can be reduced to determining a good mechanism for esti-

mating round-trip times for satisfying requests. The request and reply travel times depend

on network conditions, while the request processing time depends on the status of the re-

quested line in the cache, which can cause great variability in the request processing time.

For example, a request that hits in the cache takes much less time to send the data reply

than if the request misses and the line has to be retrieved from the off-chip memory. Large

variability in request processing times can greatly affect the accuracy of EUCs. Therefore,

it is better to restrict estimates to the cases of short request processing times, which should

be the the typical case for an efficient cache design.

When the request requires long processing due to the memory system (e.g., a cache

miss), a release circuit message is immediately dispatched in place of the data reply message

to release the circuit reservation. In this case, another method (e.g., traditional packet

switching) can be used to send the data reply message. To keep the data plane circuit

switched, a forward FCFS reservation (Déjà Vu switching; Chapter 5) is used for reserving
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the reply’s circuit when the reply is ready (supporting forward circuits as a fallback for

reverse circuits is discussed in Section 6.5). Focusing on replies with short processing times

reduces the variability in round-trip times primarily induced by the memory system, and

makes estimates dependent mainly on network conditions.

An intuitive estimate of the round-trip time from node A to node B utilizes previously

observed round-trip times. Alternative methods exhibit different trade-offs between quality

of estimation and hardware resources. For example, each node may keep a per hop estimate

that is the average of: the current per hop estimate and the last observed per hop latency

(the last observed round-trip time to any destination normalized per hop). Similarly, a node

may keep a running average per destination, or even more information.

However, when high traffic load causes the estimated round-trip times to be large, inaccu-

racy of the EUC can become amplified. In such cases, the benefit of early circuit reservation

is often outweighed by the potentially poor resource preallocation due to the inaccuracy in

the round-trip time estimation. Therefore, it is proposed to cap estimates by a factor of the

minimum round-trip time, such that an estimate greater than the cap value does not reserve

a circuit for the reply. For example, if the zero-load round-trip time from A to B is 30 cycles

and the maximum cap factor is two, then for any estimate greater than 60, A’s request does

not reserve the circuit for the reply. In these cases Déjà Vu switching is chosen as a fallback

for reserving the reply’s circuit.

6.5 HANDLING CASES WHEN CIRCUIT PRE-ALLOCATION IS NOT

POSSIBLE

There are cases when circuit pre-allocation is not possible. For example, write-back messages

sent upon evicting a dirty cache line are not preceded by a request, hence there are no pre-

allocated circuits for such messages. Additionally, data request messages may not always

reserve circuits. For example, when sending a data request if there is not a good estimate for

when the reply data message will arrive at the requester, it may be better not to pre-allocate

a circuit (Section 6.4).
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Figure 50: Diagrams of the control and data plane’s routers with support for both forward and
reverse reservations.

There are also cases when a circuit is partially or completely reserved but should be

removed. For example, when a request misses in the cache, the requested cache line is

fetched from the off-chip memory, which takes a relatively long time. If this request’s circuit

is kept until the line is fetched, it can delay the realization of other circuits, which hurts

performance; instead a message should be dispatched in place of the data reply message

to utilize and remove the circuit. Another example is a reservation conflict (see Section

6.2), which – although rare – may occur while reserving a new circuit. If not handled, a

reservation conflict can cause misrouting of already in-flight data messages; thus the partial

reservation of the new circuit need to be removed. In all the above cases the data messages

still need to be sent, and because the data plane is designed to be circuit switched, Déjà Vu
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switching is chosen as the fallback mechanism for reserving circuits. This section explains

how the reverse and forward reservations are simultaneously supported in the NoC.

There are two main distinctions between reverse and forward reservations: the direction

of reserving the circuit and the order of circuit realization. These distinctions require the

reverse and forward reservations be separated and require that the packets traveling on these

two types of reserved circuits be separated as well. I.e., each port maintains future reverse

and forward reservations in separate buffers, and two virtual channels (VCs) are required

on the data plane, one for packets traveling on reverse circuits and the other for packets

traveling on forward circuits. Configuring the crossbar of a data plane router is based on

the result of matching either: reverse reservations having the earliest EUCs in the RBs of

the input and output ports (Section 6.1.3), or the heads of forward reservation queues of

input and output ports – since the forward reservations are already queued in their order

of realization. To improve the quality of matching, in each cycle separate matching of the

reverse and forward reservations is carried out with priority given to the decisions of one

of them based on a particular arbitration policy such as round robin. Fig. 50 shows the

architecture of the control and data plane routers which support both kinds of reservations.

The top router depicts the control plane router which is packet switched, and communicates

to the data plane router reverse and forward circuit reservations made by data request and

r -packet (Chapter 5) circuit reservation messages, respectively. The bottom router depicts

the data plane router connected to the control plane router at the same node. It is circuit

switched and has reservation buffers for both reverse and forward circuits, and has two VC

flit buffers at each input port, one for the packets traveling on reverse circuits and one for

packets traveling on forward circuits.

6.6 IMPLEMENTATION ISSUES

To demonstrate hardware implementation feasibility, this section discusses the representation

of EUC and a scheme for keeping track of the current cycle number, as well as breaking ties

between reservations that have equal EUCs.
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6.6.1 EUC Representation

To minimize the number of bits for representing EUC, time is considered to be composed

of consecutive time intervals of equal lengths, with a counter, CLOCK, recording the cycle

number in the current interval. EUC is a cycle number which is relative to either: the

current (I0), previous (I−1), or the next time interval (I+1) – thus, two bits are sufficient to

represent an interval. At the end of the current interval, I0, CLOCK is reset to 0 and the

intervals of EUCs are shifted, such that EUCs in Ii are now considered to be in Ii−1, where

i ∈ {+1, 0,−1}. For example, assume that the length of the time interval is 1024 cycles and

assume that a router, Ra, on the data plane has a reservation, Resk, with EUC = 1020 in

I0. Also, assume that when I0 ends, some router, Rb, on the control plane has a request,

Reql, carrying an EUC of 26 in I+1. When I0 ends, CLOCK is reset to 0, Resk’s EUC in Ra

becomes 1020 in I−1, and the EUC carried by Reql becomes 26 in I0.

I-1 I0 I+1 I-2 

Current Interval 

Figure 51: Tracked time intervals. All reservations falling in I−2 are maintained in ascending
order in the reservation buffers.

To handle the case that a circuit reservation may age to be in a time interval older that

I−1, the time before I−1 is considered as one infinite interval, I−2 (See Fig. 51). Reservations

in I−2 are realized before the reservations in other time intervals. Reservations that age

and become in I−2 are kept in the sequential order of their realization while their EUCs are

discarded. I.e., if at an RB one or more circuit reservations age and become in I−2, these

reservations are ordered relative to each other using their EUCs, and then added after any

reservations that are already in I−2.

Because EUCs for reservations held in I−2 are not retained, it is necessary to guarantee

that no data request can insert a new reservation in I−2. The first step to achieve this

guarantee is choosing an appropriate length, T , of the time intervals. Let M be the maximum
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acceptable round-trip time (in cycles) between any two nodes. By choosing T to be at least

M cycles, no request can insert a reservation in an interval beyond I+1 in the future, and

choosing T to be at least 2M cycles reduces the probability that a request will attempt to

insert a reservation in I−2. To eliminate this probability, a request should stop reserving a

circuit if the reservation will be in I−2, as follows.

A request’s carried EUC continues to be decremented by one cycle per hop as the request

advances to its destination. When a request is sent, its initial carried EUC can be in either

I+1 or I0. Thus, if the current time interval ends and the request’s carried EUC becomes

in I−2 due to a severely delayed reservation packet, this indicates that the request’s carried

EUC is now very inaccurate. In such a case, the request’s partially reserved circuit should

be removed while allowing the request to proceed without reserving the remainder of the

circuit. The partial circuit is removed in the same way a circuit is removed when a potential

deadlock is detected (Section 6.3).

6.6.2 Breaking Ties

It may happen that two different requests reserve two circuits with equal EUCs across the two

circuits’ shared ports. There is a need to guarantee a consistent ordering of realizing these

two circuits on their shared sub-path. To enforce a total ordering, two pieces of information –

besides the EUC – are associated with a circuit’s reservation: (1) the number of the circuit’s

destination node, dnode ∈ {d0, ..., dN−1}, where N is the number of nodes in the network;

and (2) the id, rid, of the outstanding request at dnode that reserved the circuit, such that

rid ∈ {0, ..., s}, where a node can have at most s outstanding requests. If two circuits C1 and

C2 have equal EUCs, the tie can be broken by comparing their destination nodes (there is

a total ordering of destination nodes), and if they share the same destination, tie is broken

by comparing their request ids. Tie breaking can be simplified to having to compare only

destination nodes when EUCs are equal while enforcing that a requesting node does not

issue two or more requests with identical EUCs.
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6.7 DISCUSSION: USING RED CARPET ROUTING FOR SAVING

POWER

Chapter 5 demonstrates the use of Déjà Vu switching for reducing power consumption with-

out sacrificing performance. Section 5.4 presents the analysis relating performance to the

reduced data plane speed. The same analysis can be applied to Red Carpet Routing for

saving power. However, the are differences that should be considered: (1) Circuits reserved

by data requests inherently satisfy the first constraint (Section 5.4.1), which requires that

data packets do not catch up to their circuit reservations. (2) With Red Carpet Routing

there are still cases when forward reserved circuits (i.e., Déjà Vu switching) need to be used

(Section 6.5). Therefore, the slow down of the data plane must ensure that forward reserved

circuits also satisfy the first constraint (Section 5.4.1). (3) In the case of a cache optimized

for speed, the relatively small lead time of detecting a cache hit over reading the cache line

may require a relatively large slow-down factor to ensure that data packets do not catch up to

their forward reservations. (4) In a system where power consumption is an important design

constraint, it is less likely that the cache be optimized for speed, in which case using Déjà Vu

switching – as demonstrated in Chapter 5 – alone is probably more efficient in saving power

since there is no overhead for supporting the backward reservations. For these reasons, this

chapter focuses on evaluating the performance benefit of Red Carpet Routing in a CMP

with a fast cache, while also providing an evaluation of the effect on power consumption of

such a system.

6.8 EVALUATION OF PROACTIVELY ALLOCATED CIRCUITS

The proposed proactive circuit allocation scheme, or Red Carpet Routing (RCR) is evaluated

through simulations of benchmarks from the SPLASH-2 [92], PARSEC [15], and Specjbb [90]

suites using the functional simulator Simics [86]. The simulated CMP has 16-core with 3 GHz

UltraSPARC III in-order cores with instruction issue width of three. Each core has private

16 KB L1 data and instruction caches with an access latency of one cycle. The CMP has a
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distributed shared L2 with 1MB per core. Cache lines are 64 bytes, and each is composed

of eight 8-byte words. Cache coherency is maintained with the MESI protocol. A stalled

instruction waiting for an L1 miss to be satisfied is able to execute once the critical word

is received, which is sent as the first word in the data reply packet. The cache is assumed

to be optimized for fast access. From Cacti [18], at 3 GHz and 32nm technology the access

cycles of the L2 tag and data arrays are two and four cycles, respectively, for a 1MB L2 per

tile partitioned into two banks. The NoC’s topology is a 2D mesh.

A CMP with the RCR NoC is evaluated against CMPs with: (1) a purely packet switched

NoC (PKT), (2) the Déjà Vu switching NoC (DV), which uses forward circuit reservations

(Chapter 5), and (3) a zero-overhead Ideal NoC. Each of the evaluated NoCs is composed of

two planes: a control plane that carries control and cache coherency messages, and a data

plane that carries data messages. The control plane is packet switched in all four NoCs,

while the data plane is only packet switched in the PKT NoC and circuit switched in the

other three NoCs. In the data plane of the Ideal NoC all possible circuits are assumed to

simultaneously exist, such that all the circuit switched flits experience only one-cycle per hop

without suffering any network delays due to contention. The configuration of the simulated

NoCs is described below.

Packet Switching and Message Sizes The simulated packet switched routers have

a three cycle router pipeline. In general, messages on the control plane are one flit long,

while messages on the data plane are five flits long. For RCR, data request messages may

be composed of either one or two flits. If the request will reserve a circuit for its reply, the

request message is composed of two flits due to the additional space required to carry the

circuit’s EUC; otherwise it is composed of one flit.

Virtual Channels The control plane has four virtual channels (VCs). Control plane

routers have a FIFO buffer for two packets per VC per input port. The data plane of PKT,

DV, and the Ideal NoCs, each has only one channel for data messages, while the data plane

of the proposed RCR NoC has two VCs, one for the messages traveling on reverse circuits

and one for the messages traveling on forward circuits. The routers of the data plane have

a FIFO buffer for two data packets per input port. In the case of RCR, the FIFO buffer of

each VC can hold one data packet.
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Circuit Reservation Buffers In the RCR NoC, each router port has two circuit reser-

vation buffers, one for the reverse and one for the forward reservations. The buffers can hold

12 reverse reservations and 5 forward reservations, per port. In the DV NoC, each port has

only one buffer for forward reservations with size set to 17, the total number of reservations

a port on the RCR NoC can store.

Estimating Round-Trip Time At the requesting node the round-trip time is estimated

by computing the median of the last observed three round-trip times for the request message’s

destination. However, large estimates tend to be inaccurate which hurts performance (See

Section 6.4). To reduce such inaccurate estimates, a data request message reserves a circuit

only if the estimate is at most X times the minimum round-trip time. After experimenting

with the design space, X is set to 2.
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Figure 52: Average L2 hit latency normalized
to the purely packet switched system (the

Y-axis starts at 0.7).
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Figure 53: Identification of communication
sensitive benchmarks by examining the

execution time speedup using the Ideal NoC
(the Y-axis starts at 1.0)

6.8.1 Performance Evaluation

The parallel section of each benchmark is simulated. First comparison considers the average

latency of satisfying an L1 miss that hits in the L2, or simply the average L2 hit latency,

which is essentially the average round-trip time for sending a request that hits in the L2 and

receiving its reply. Fig. 52 shows the average L2 hit latency of the three CMPs: (1) with

the DV NoC; (2) with the RCR NoC; and (3) with the Ideal NoC. The results displayed in

all the figures are relative to the CMP with the purely packet switched NoC (PKT). With
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the DV NoC there is only a modest improvement in the L2 hit latency, while with the RCR

NoC there is a significant improvement for almost all the benchmarks except for a couple of

benchmarks (the contiguous version of LU and Water Spatial did not benefit from the RCR

NoC).

Since the execution time of each benchmark may not be sensitive to the communication

latency over the NoC, the execution time speedup achievable with the Ideal NoC (Fig. 53) is

examined and the benchmarks are classified into two groups: communication sensitive with

a speedup of at least 4% and communication insensitive with a speedup of less than 4%.

Based on this classification the execution time speedup achievable with the DV and RCR

NoCs is compared in Fig. 54. The speedups of the communication sensitive benchmarks

are displayed on the right side of the chart. The system with DV achieves an average

speedup of only 2% over the system with PKT. The system with RCR achieves up to 16%

speedup (Raytrace and Specjbb), with an average of 8% over the system with DV, and an

average of 10% over the system with PKT. On the left side of the chart the speedups of the

communication insensitive benchmarks are displayed. With DV there is almost no speedup,

while with RCR there is a nominal speedup (2%, on average).
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Figure 54: Execution time speedup of CMPs
with the DV and RCR NoCs (the Y-axis starts
at 1.0). Communication sensitive benchmarks

are displayed on the right of the chart.
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Figure 55: Percentage achieved of the
performance of the CMP with the ideal NoC.

Fig. 55 shows how much of the potential execution time speedup achievable with the

Ideal NoC that the systems with the DV and RCR NoCs achieve. The CMP with DV gains
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only between 1% to 24%, with an average of 12%, compared with the ideal case, while the

CMP with RCR gains much more; between 40% and 89%, with an average of 68%.

6.8.1.1 Round-Trip Time Estimation This section compares three different methods

for estimating round-trip times: (1) MedianOf3: the requesting node estimates the round-

trip time as the median of the last three observed round-trip times to the destination.

(2) DestinationAvg: each node maintains a running average of the round-trip latency per

destination and uses these averages as the estimates for the round-trip times. (3) HopAvg:

a requesting node maintains a running average of the round-trip latency normalized per hop

for all messages returning to the requesting node, and uses it to estimate the round-trip

latency to any destination. Fig. 56 compares the execution time speedup of the proposed

scheme using each of the three methods for the communication sensitive benchmarks. Little

differences are observed between the three estimation methods, except in the case of Specjbb

where the MedianOf3 greatly out performs the other two.
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Figure 56: Comparing the execution time
speedup with different round-trip times

estimation methods.
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Figure 57: Percentage of released circuits
relative to the number of requests performing

circuit reservations.

6.8.1.2 Forward Circuits as a Fallback As mentioned in Section 6.5, there are situ-

ations that require releasing reverse circuit reservations. Fig. 57 examines the percentage

of released circuits relative to the number of circuit reservations. It was found that the

majority of circuits are released due to long processing times (upon a cache miss to the off-

chip memory), which can reach more than 25% for several applications. The percentage of
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circuits released due to potential deadlocks and reservation conflicts represent a very small

percentage of less than 3% and 2% of circuit reservations, respectively.

When reverse circuits are released, forward circuits are used. Additionally, forward

circuits are used when data requests do not reserve circuits due to round-trip estimates

that exceed the stated threshold (2 times the minimum round trip time) and for write-back

messages of modified cache lines. Sending messages to release circuits can increase the traffic

volume, however, it was found that this increase is small. Specifically, assuming flit sizes of

6- and 16-bytes on the control and data planes, respectively, the percentage increase in traffic

volume in the RCR NoC compared to the DV NoC is 2%, on average, for the communication

sensitive benchmarks (Fig. 58).
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Figure 58: Percentage increase of flits sent over the RCR NoC compared to the DV NoC.

Fig. 59 compares the energy of the RCR NoC normalized to the energy of the DV NoC.

The communication insensitive benchmarks (left of the chart) experience increased NoC en-

ergy with the RCR scheme. The reason for the increase is due to the power overhead of the

RCR scheme, such as the circuit reservation buffers and the roundtrip time estimations, but

the benefit in execution time is modest (1.5% on average). On the other hand, the communi-

cation sensitive benchmarks (right of the chart) sometimes show an increase and sometimes

a decrease in NoC energy with the RCR scheme. The increase or decrease in energy depends

on whether the power overhead of the RCR scheme is outweighed by the gain in execution

speedup. Note, however, that the chart compares only the NoC energy, not the CMP energy

consumption, which is estimated next. Considering that the average increase in NoC energy
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Figure 59: Normalized energy of the RCR NoC to the DV NoC.

is about 0.6% and 5.5%, for the communication sensitive and insensitive benchmarks, respec-

tively, and that their average speedups are about 8% and 1.5%, respectively, and assuming

that the NoC power budget is about 25%, on average, of the CMP power budget [42, 73], the

CMP energy is estimated to decrease by 5.4% for the communication sensitive benchmarks,

and increase by 0.27% for the communication insensitive benchmarks.

6.9 CONCLUSION

Circuit switching is effective in speeding up communication when the overhead of setting up

circuits is reduced or amortized with re-use of circuits. This chapter proposes a proactive

scheme for circuit allocation to completely hide the circuit setup overhead for reply messages

by having the request messages reserve the circuits for their anticipated replies. Reserving

circuits by requests requires time-based reservations to avoid holding NoC resources unnec-

essarily idle which under-utilizes the NoC. However, variability in network traffic conditions

and request processing times make it impossible to use accurate time-based reservations.

Hence, approximate time-based reservations are used by estimating the round-trip time

from the time when a request is sent until its reply is received. The benefit of the design is

demonstrated through simulations of parallel benchmarks. For a CMP with a fast on-chip
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cache the proposed scheme enables execution time speedup of up to 16% and an average of

about 10% over the purely packet switched NoC; and performs better than the proposed for-

ward reservations scheme (Chapter 5) by up to 16% and an average of 8%. In addition, this

execution speedup translates into an average 5.4% decrease in the CMP energy consumption

over the Déjà Vu switching NoC.
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7.0 SUMMARY AND CONCLUSION OF THE THESIS

The network-on-chip is critical to both the performance and power consumption of chip

multiprocessors since it carries the data and cache coherency traffic exchanged among the

processing cores and on-chip cache memory. In general purpose CMPs any pair of inter-

connect nodes may need to communicate, hence supporting all-to-all communication is a

definite requirement of the network-on-chip. Packet switching achieves this requirement,

but as its name suggests, requires each interconnect node to examine each passing packet

and make appropriate routing decisions. Unfortunately, examining and routing packets adds

a communication latency overhead. Circuit switching, on the other hand, does not suffer

from this routing overhead once circuits are established. However, configuring circuits incurs

time overhead, making circuits only beneficial if the configuration overhead is removed or

amortized. This thesis proposes different techniques that exploit properties of the on-chip

cache traffic to efficiently pre-configure circuits and demonstrates their benefits in improving

performance and/or power consumption.

More specifically, the thesis first proposes a pinned circuit configuration policy for exploit-

ing communication locality in the traffic – where there are pairs of frequently communicating

nodes – to improve communication latency, while coping with changes in communication pat-

terns through periodic reconfiguration. In simulations the pinned circuit configuration policy

improves communication latency by 10%, on average, over on-demand circuit configuration.

In addition, the stability of circuit configurations over a period of time allows routing on par-

tial circuits, which further boosts the utilization of circuits, adding another 10% for a total of

20% improvement in communication latency over the simple on-demand circuit configuration

policy.

Next, the thesis proposes a locality-aware cache design, Unique Private, specifically tar-
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geting NoCs that exploit communication locality to optimize the NoC performance. The

goal is to create a positive interaction between the cache and NoC that results in reducing

the traffic volume and promoting communication locality in the interconnect, consequently

allowing the processing cores to enjoy faster on-chip communication and faster data ac-

cess. Simulations of scientific and commercial workloads show that using the Unique Private

cache organization and a hybrid NoC employing the pinning circuit configuration policy en-

ables a speedup of 15.2% and 14% on a 16-core and a 64-core CMP, respectively, over the

state-of-the-art NoC-Cache co-designed system which also exploits communication locality

in multithreaded applications.

Third, the thesis proposes Déjà Vu switching, a fine-grained circuit configuration ap-

proach that leverages the predictability of data messages to configure circuits on-demand,

and is applied for saving power in multi-plane NoCs. With a control plane dedicated for

the coherence and control messages, and a data plane dedicated for the data messages, a

circuit configuration message is sent as soon as a cache hit is detected and before the cache

line is read. The lead time of the circuit configuration message helps hide the configuration

overhead. By making the data plane completely circuit switched, the faster communication

on these on-demand circuits enables reducing the data plane’s voltage and frequency to re-

duce the NoC’s power. An analysis of the constraints that govern how slow the data plane

can operate without degrading performance is presented and used to guide the evaluation of

the proposed design. In simulations, running the data plane at 2/3 the speed of the control

plane maintained system performance while allowing an average savings of 43% and 53% of

the NoC energy in 16-core and 64-core CMPs, respectively.

Finally, because Déjà Vu switching is not as effective for improving performance of a

CMP with a fast on-chip cache, the thesis proposed improving CMP performance using a

more proactive approach of on-demand circuits configuration. The CMP is assumed to have

a fast enough on-chip cache such that the time between detecting a cache hit and reading the

cache line is not long enough for Déjà Vu switching to hide the circuit configuration overhead.

Instead, a proactive scheme for circuit allocation is proposed in which data request messages

reserve circuits for their anticipated reply data messages; thus hiding the circuit configuration

overhead from the anticipated reply messages. Reserving circuits by requests requires time-
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based reservations to avoid holding NoC resources unnecessarily idle which under-utilizes the

NoC. However, variability in network traffic conditions and request processing times make

it impossible to use accurate time-based reservations. To solve this problem, approximate

time-based reservations are proposed, where requesting nodes estimate the time length of

the round-trip from the time when a request is sent and until its reply is received, and

these estimates are used for ordering the realization of circuits in the data plane routers.

Simulations demonstrate the benefit of the proposed proactive circuit allocation scheme.

communication sensitive benchmarks show execution time speedup of up to 16% and an

average of about 10%, over purely packet switched NoC, and an average of 8% over pre-

configuring circuits using Déjà Vu switching. In addition, this execution speedup translates

into an average 5.4% decrease in the CMP energy consumption compared to using the Déjà

Vu switching NoC.

The above proposed coarse- and fine-grained circuit configuration policies, along with

the proposed locality-aware cache design, can all be integrated in the design of the uncore

of chip-multiprocessors. Specifically, a multi-plane NoC architecture can be adopted, where

the NoC is composed of one or more control planes that are dedicated to the cache coherency

and control traffic, and one or more data planes that are dedicated to the data traffic. The

pinning circuit configuration policy can speedup the control planes, since the control traffic

may exhibit locality in communication patterns, which can be further promoted by adopting

the locality-aware Unique Private cache. The data planes, on the other hand, can benefit

from the on-demand or fine-grained circuit configuration policies: Déjà Vu switching or Red

Carpet Routing due to the mostly predictable data traffic.

In conclusion, this thesis presents solutions that harmoniously support both packet and

circuit switching, while being applicable to a wide range of CMP design points. The pinning

circuit configuration policy and the locality-aware cache solutions are applicable to general

cache traffic; speeding-up data delivery and CMP performance. On the other hand, the on-

demand circuit configuration solutions, ( Déjà Vu switching and Red Carpet Routing), are

applicable to the predictable cache traffic; with the former exploiting circuits for saving power

without sacrificing performance, and the later utilizing circuits for improving performance,

without expanding power consumption. These solutions open up a myriad of future research
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avenues and applications, as described in the next section.

7.1 FUTURE WORK

This section presents possible research opportunities building on the solutions provided by

the thesis:

Adaptive Routing in NoC Adaptive routing, for example [43, 55, 67, 81, 68], can help

avoid or reduce traffic congestion in the NoC by diversifying the paths between senders and

destinations; thus more evenly distributing traffic on the network links. It may be beneficial

to study applying adaptive routing to circuit switched traffic, such that diverse paths may

alleviate pressure on circuits in the case where few circuits are heavily utilized. An interesting

situation arises when there is interaction between the traffic on different interconnect planes.

For example, in Red Carpet Routing, data requests travel on the control plane reserving

circuits for messages traveling on the data plane.

On-demand configuration of circuits in optical NoCs The continued scaling of

technology enables the integration of many more processing cores on a single chip. Future

chip-multiprocessors may have hundreds or thousands of cores on a single chip, which puts

a greater pressure on both off-chip and on-chip interconnects to provide the cores with the

necessary bandwidth to keep them running. Optical interconnects are considered for both

off- and on-chip communication [40, 61, 12, 77, 11, 10] due to their speeds and wide range

of frequencies [96], which enables very high bandwidths through the use of wave division

multiplexing (WDM) [88, 45, 22, 70, 59].

In such networks, the sender first coverts the electronic packet into light, or the optical

signal, which is then routed through waveguides and microring resonators [96, 95, 62]. Each

waveguide is coupled with one or more microring resonators. When the wavelength of an in-

cident optical signal propagating within the waveguide overlaps a resonant wavelength mode

of a coupled microring, the signal can be partially or entirely removed from the waveguide.

At the receiver, the optical signal is converted back to an electronic packet. Communication

over optical networks requires setting up optical circuits between senders and receivers by
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setting the appropriate wavelengths of the microring resonators along the circuits paths.

Similar to circuit switching in electronic interconnects, hiding or amortizing the circuit

configuration overhead is crucial to benefiting from optical NoCs. The overhead may be

amortized over a large transfer [77], or through the pinning circuit configuration policy, but

on-demand circuit configuration may also be possible through Déjà Vu switching and Red

Carpet Routing. With Déjà Vu switching, the sender would need to know that the circuit

has been completely setup by the reservation packet before starting the transmission of the

optical signal, while with Red Carpet Routing the sender will already know whether a data

request has already configured a circuit. The number of available wavelengths would corre-

spond to the size of the reservation buffers in the proposed on-demand circuit configuration

schemes. However, an optical circuit differs in that it must use the same wavelength in all

the microring resonators on the circuit’s path, which is equivalent to adding a circuit reser-

vation in a particular entry in the circuit reservation buffers in the proposed on-demand

circuit configuration schemes. Thus, successful reservation of circuits requires developing a

mechanism to avoid collision of reservations if more than one attempts to reserve the same

wavelength; otherwise performance may suffer if reservation messages are forced to retry or

drop circuit configurations.

Using emerging memory technologies Static random-access memory (SRAM) is

typically used for on-chip memory. Recently, however, Spin-Torque Transfer Magnetic RAM

(STT-MRAM) has emerged as a promising candidate for on-chip memory in future comput-

ing platforms due to its higher density and lower leakage power characteristics. However,

SRAM exhibits faster access latency, especially for write operations than STT-MRAM [94].

To overcome the performance limitation of STT-MRAM, several approaches have been pro-

posed, for example: hybrid memory designs combining the fast SRAM and denser STT-

MRAM for both on-chip caches [93] and NoC buffers [46]; microarchitecture designs for

trading off retention times for better energy and faster access [74, 47]; and replacing SRAM

for the lower level caches (L2/L3 or the last level cache) with STT-MRAM [82, 97, 87] since

access latencies of lower level caches are typically higher and the bigger sized cache offered

by the higher density of STT-MRAM can have an overall positive effect on performance.

An interesting approach that may be investigated is the effect of faster communication
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through circuit switching in reducing the effect of higher access times of STT-MRAM, and

even potentially enabling a greater retention time if needed. In particular, packets traveling

on circuits only need to be buffered when blocked by earlier circuit reservations or packets

ahead of them. Thus, the leakage power of the buffers can be significantly reduced if the

SRAM buffers are replaced with STT-MRAM, while circuit switching can help maintain the

same system performance despite the higher access latencies of the buffers in this case.
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