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ABSTRACT 

 Liver transplantation is the ultimate treatment for patients with end-stage liver diseases. 

Among the primary diagnosis of pediatric liver transplant candidates, biliary atresia is the most 

common cause of liver failure. In this study, we aimed to identify factors associated with 

marginal posttransplant survival among pediatric liver transplant recipients with primary 

diagnosis of biliary atresia. The main event of interest was time from transplant to death. 

Retransplantation was the competing event and alive at the study cutoff was indepenent 

censoring. We analyzed data using five different competing risks regression models and 

compared the results. These models include Cox proportional hazards (PH) model treating 

competing events as censoring, Cox PH model treating competing events as the main event, Fine 

and Gray proportional subdistribution hazards model, random signs censoring regression model, 

and the joint model of time to the main event and time to the competing event. The assumptions 

of each method are described in this thesis. Joint model was used as the gold standard in our 

analysis and the results obtained from other methods were compared to the gold standard. Our 

analysis showed that Cox PH model treating competing event as censoring gave similar results as 

those obtained from the joint model. On ventilator or not, allocation type, split or nonsplit organ, 
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presence of ascites, and presence of portal vein thrombosis at treatment were the risk factors for 

marginal posttransplant survival among pediatric patients with biliary atresia. 

Public health significance: Risk factors of marginal posttransplant survival can be identified 

only if a regression model with appropriate assumption of the dependence structure between the 

event of interest and the competing events is used. We compare the results from three commonly 

used and two newly developed survival regression models for data with competing risks. The 

underlying assumptions of the dependence of the events and the pros and cons of these models 

are described and discussed. Our findings will help a researcher to appropriately choose a 

regression model to identify risk factors when competing risks are present in the data. 
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1.0  INTRODUCTION 

Liver transplantation (LT) is the ultimate treatment for patients with end-stage liver diseases. 

Among the primary diagnosis of pediatric liver transplant candidates, biliary atresia (BA) is the 

most common cause of liver failure. 

BA is a progressive cholangiopathy disorder of infants, characterized by biliary 

obstruction of unknown pathogenesis. This panbiliary disease affects both the intrahepatic and 

extrahepatic biliary trees and can lead to early development of secondary biliary cirrhosis. 

Incidence of BA varies from one in 8,000 to 18,000 live births. The prognosis for untreated BA 

remains extremely poor, with a patient’s median survival ranging from 8 to 16 months. [1-3] 

Although there exists some treatment methods to improve survival of the native liver, LT 

remains the only effective treatment for patients with end-stage BA. After LT, patients still have 

to overcome challenges in fighting with infection, rejection, and a series of complications. 

Unfortunately, 9% to 29% of pediatric LT recipients require retransplantation which offers the 

only chance for survival when a transplanted liver fails. [4] 

 To study the survival of pediatric liver transplantation, retransplantation is an important 

issue which prevents the occurrence of the main event, death. This issue refers to competing risk 

in the survival analysis, characterized that individuals experience either the main event (death, 

T1) or the competing event (retransplantation, T2).  Method selection in analyzing data with 

competing risks depends on different purpose and assumptions. In this thesis, we will focus on 
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analyzing covariate effects on marginal survival, that is, probability of death in the absence of 

competing risks. Under this situation, dependence structure between the failure times (main 

event and competing events) is needed. When the competing event is independent of the main 

event, e.g. death from the disease of interest and death from traffic accident, the competing event 

can be treated as random censoring, as in Cox Proportional Hazards (PH) model, which is the 

most common used method in competing risk analysis. [5] In another situation, when the 

competing event and main event are related. For example, patients on the wait list of 

retransplantation are in high risk of dying. In this case, it is also reasonable to treat competing 

event as the main event by Cox PH model; the relationship between competing event and main 

event is perfectly positive. Another common used method is Fine and Gray model based on the 

cumulative incidence function (CIF). [6] Although this model is applicable to analyzing crude 

probability, the probability of the occurrence of the main event in the presence of competing 

risks, it can also be viewed as a model of marginal survival probabilities in which the main event 

is considered never happen when the competing event occurs. For example, death is a competing 

event for relapse of breast cancer. The effort to reduce death may adversely affect the risk of 

relapse. Moreover, patients who die from breast cancer cannot be at further risk of relapse; 

therefore in this case the competing event can be treated as perfectly negatively related to the 

main event. In another scenario, when the competing event is a protective approach to avoid the 

observation of the main event, e.g. retransplantation and death, a newly developed method, 

random signs censoring (RSC), is applicable in this situation. [7] Since the competing event and 

main event may not be independent, we constructed a joint model to investigate the association 

of the competing event and main event. [8] 
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To date, only a few published works that address the competing risks approach in 

analyzing posttransplant survival for pediatric liver transplantation. Chardot et al. reviewed 588 

BA patients performed LT between the years 1986 and 2009 in France. Although the 

retransplantation rate was 15.3%, indicating that 90 among 588 recipients underwent more than 

one LT, the study did not consider retransplantation as a competing event in the Cox PH model. 

[9] Utterson et al. studied 755 children with BA listed for their first LT from May 1995 to June 

2003. A competing-risk analysis was used to assess the likelihood of death while waiting, death 

after LT, and death after retransplantation. In their analysis of posttransplant survival, 

retransplantation was treated as a covariate, rather than a competing outcome, in the cause-

specific Cox proportional hazards model. [10] 

In this study, we aim to identify factors associated with marginal posttransplant survival 

among pediatric LT recipients with primary diagnosis of biliary atresia, and to compare the 

results from competing risks models which were constructed under different association 

assumption of main event of interest and competing events. 
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2.0  METHODS 

2.1 DATA 

The data used in this study was extracted from the Standard Transplant Analysis and Research 

(STAR) of the United Network of Organ Sharing (UNOS), which includes all liver transplant 

recipients in United States who were on the transplant waiting list between February 28, 2002 

and June 20, 2010. We removed transplant recipients who were 18 years or older at the time of 

listing, and further excluded patients who eventually received multi-organ transplantation or who 

received LT before listing (n=3,471). Based on the cause of liver failure, we selected patients 

whose primary diagnosis were biliary atresia (n=1,489). During the data checking and cleaning 

phase, one transplant recipient was excluded due to large number of missing values. Finally, a 

cohort of 1,488 pediatric liver transplant recipients with primary diagnosis of biliary atresia was 

included in the analysis. 
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Figure 1. Flowchart of data selection 

2.2 COVARIATES 

Among hundreds of variables in the raw data, we selected 26 relevant variables as our potential 

covariates, which can be divided into the following three different types: 

Recipient characteristics: demographics (age at the time of transplant, gender, and 

race); blood type; presence of portal hypertensive bleeding before transplant; laboratory tests at 

the time of transplantation (serum albumin, total bilirubin, International Normalized Ratio [INR], 

and creatinine), split or nonsplit organ, on ventilator or not, presence of encephalopathy, 

presence of ascites, presence of portal vein thrombosis, presence of spontaneous bacterial 

peritonitis, positive cytomegalovirus (CMV) test, growth failure or not, and region of transplant 

center. 
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Donor characteristics: demographics (age, gender, and race), blood type, donor type 

(cadaveric or living), distance from donor hospital to transplant center, and allocation type (local, 

regional, or others). 

Recipient-donor match variables: blood type compatibility. 

2.3 MODELS 

In this section, we introduce the models that will be used in analyzing marginal postransplant 

survival. Suppose there are n  independent patients included in the study, and k competing 

events ( 1k = indicating the main event and 2k = indicating competing events). Let iT , 1,...,i n=  

be the failure time with respect to subject i . The observed values for individual i

include{ , , }i i iX Zδ , where iX is the observed failure time; 0,1, 2iδ =  is the event indicator for 

censoring, main event, and competing event, respectively; and iZ  is a p-dimensional vector of 

covariates. 

Cox Proportional Hazards Model 

Cox PH model is a widely used semiparametric survival regression model based on the 

PH assumption. Let ( | )k t Zλ be the kth cause-specific hazard rate at time t with risk vector Z for 

an individual. The Cox PH model has the following form: 

,0( | ) ( ) exp( )T
k kt Z t Zλ λ β= ,        (2.3.1) 

where ,0 ( )k tλ is an unknown baseline hazards rate for cause k; and ( )1, , pβ β β ′= … is a vector of 

unknown regression parameters. The hazard ratio (HR) of two individuals with covariate values 
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Z and Z* can be derived as HR = 
1

( | ) exp[ ( * )]
( | *)

p

k k k
k

t Z Z Z
t Z

λ β
λ =

= −∑ . The unknown regression 

coefficients β are estimated by the score equation 

** *
10

1
( ) { ( , )} ( )

n

i i
i

U Z Z t dN t
τ

β β
=

= −∑∫ ,           (2.3.2) 

where 
*(1)

*
*(0)

( , )( , )
( , )

S tZ t
S t

ββ
β

= , 

*( ) 1 *

1
( , ) ( ) exp( )

n
k T k

j j j
j

S t n Y t Z Zβ β− ⊗

=

= ∑ , 

*
1 ( )iN t is the indicator function of whether main event occurs for individual i ( *

1 1( ) ( )i iN t I T t= ≤ ), 

*
1 ( )iY t is the indicator function of whether individual i is at risk ( *

1 1( ) ( )i iY t I T t= ≥ ), and τ  is any 

time point greater than the maximum observed main event time. 

In this study, we built two Cox PH models: treating competing risk (retransplantation) as 

an event, and treating competing risk as censoring. The former model assumes that competing 

event is perfectly positively correlated with the event of interest (death), while the later one treats 

retransplantation as independent censoring.  

Fine and Gray Model 

Fine and Gray model is a semiparametric proportional subdistribution hazards model. 

Subdistribution is defined as the cumulative incidence function (CIF) for the corresponding 

cause of failure, i.e., the probability of experiencing a particular cause of failure up to time t, in 

the presence of all the other possible causes. The CIF at time t for cause j can be written as the 

form: 
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0
( ) ( , ) ( ) ( )

t

k kF t P X t j h u S u du     .                               (2.3.3) 

The hazard of subdistribution is a function of the cumulative incidence and can be 

represented as: 

log(1 ( ))
( ) k

k

d F t
t

dt



  .                                             (2.3.4) 

Given a vector of risk factors Z, the Fine and Gray model of the subdistribution hazards 

for cause k has the form  

,0( | ) ( )exp( )T

k k kt Z t Z   ,                                       (2.3.5) 

where ,0 ( )k t is the baseline subdistribution hazards function; and 
k  is a vector of unknown 

regression parameters. As the cumulative incidence defined and treating it as a marginal 

probability, the event of interest and the competing events can be viewed as perfectly negatively 

associated because the event of interest would never occur if one of the k competing events 

happened. 

 

Random Signs Censoring Model 

Random signs censoring (RSC) posits that the potential failure time of the event of 

interest is independent of the sign: competing event happens before the main event. There exists 

a signal prior to failure, for example, failure of the transplanted organ, leading to some actions to 

prevent the occurrence of the main event, e.g. death. The RSC assumption requires that the 

normalized subdistribution function of the main event is stochastically lower than that of the 

competing event. It can be checked from the survival curves, showing that the curve of main 

event is above that of competing event (
1 2( ) ( )S t S t ). Let T1 be the failure time of the main 



event and T2 be the failure time of the competing event. Suppose T1 follows a Cox PH model. 

Then, the hazard *
1 ( | )t Zλ of T1 has the form * *

1 10( | ) ( ) exp( )t Z t Zλ λ β ′= . If data does not contain 

independent right censoring, unknown regression parameters β can be estimated by the partial 

likelihood estimating equation (2.3.2) by removing individuals with competing events from the 

dataset. When data contains independent right censoring, the estimating equation of the RSC 

regression model incorporates inverse probability of censoring weights (IPCW): 

0
1

( ) { ( , )} ( )
( )

n
i

i i
i i

U Z Z t dN t
G X

τ δβ β
=

= −∑∫ , (2.3.6) 

where ( )I T Cδ = ≤ , C is the random variable of censoring time which assumed to be 

independent of T1 and T2; ( ) Pr( )G t C t= > is the underlying survival distribution of C;  

(1)

(0)

( , )( , )
( , )

S tZ t
S t

ββ
β

= ; 

( ) 1
1

1
( , ) ( ) exp( )

( )

n
jk k

j j j j
j j

S t n Y t Z Z
G X
δ

β ε β− ⊗

=

′= ∑ ; 

ε1 = I(T1≤ T2); and X = min(C, T). In practice, G(t) has to be replaced by a consistent estimator 

(e.g., Kaplan-Meier estimator of censoring). 

Joint Modeling 

Joint modeling method was used to account for informative dropouts. Basically, it jointly 

models the process of the time to the main event of interest, and the process of the dropouts due 

to competing risks. The dependence between the main event and competing risks is captured via 

random effects terms. The likelihood function of the joint model with shared random effects has 

the following form: 
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0
1 1

( ; , , , , ) ( ; , | ) ( )
i

n

i ki k k i i k ki ki i i iv
i k

L T Z l T Z f dβ λ θ υ υ υ υ
= =

= Ω∏ ∏∫ ,                 (2.3.7) 

where ( )if υ is the probability density function of the random terms iυ ; 0{ , , }k kβ λ θΩ = ; θ is a 

vector of parameters in the density function of the random terms, and 2θ σ= when assuming the 

random terms iυ  follows a normally distribution with mean zero and standard deviation 

2σ ; kl denotes the marginal likelihood function of event k with the following form 

0
( | ) { ( | )} exp{ ( ( | ) }ki

t

k i ki i ki il t t t dtδυ λ υ λ υ= −∫ . (2.3.8) 

The hazards function specified here is assumed to follow a proportional hazards two-

parameter Weibull distribution with baseline hazards function of the form: 

1 ( 2)( ) exp{ }T I k
ki k ki it t Zαλ λα β φ υ− == + ,                                 (2.3.9) 

where ( 2)I k =  is an indicator function of competing event (k = 2); theλ and α are the scale and 

shape parameters, respectively; and φ  is the coefficient of the shared random effect term, which 

reflecting the direction of the association between the main event and competing event. The main 

challenge of parameter estimation is the multidimensional integration towards the random terms. 

The Gaussian quadrature method can be used to solve the estimating equations. 

In modeling marginal survival for data with competing risks, it is important to make 

assumptions about the dependence structure between the potential failure times. Peterson (1976) 

states that there exist lower and upper bounds for the marginal survival function ( )iS t , when the 

risks are dependent. [11] When the competing event is equivalent to the main event, the marginal 

survival function ( )iS t becomes the total survival function ( )TS t . On the other hand, when the 

risks are perfectly negatively related, the marginal survival function ( )iS t becomes one minus the 
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cumulative incidence function,1 ( )iF t− . These lower and upper bounds can be achieved if we 

analyze data using a Cox PH model treating competing events as the main event and using a Fine 

and Gray model, respectively.  

2.4 STATISTICAL ANALYSIS 

We first checked each variable for missing values, and removed variables from the candidate list 

if they had great amount of missing. Recipients age was divided into three groups, less than one, 

one to two, and greater than two years old; while Donors age was categorized into less than one 

and greater than or equal to one years old. Dummy variables were created for categorical 

variables, e.g. recipients’ race of white or other, CMV test positive or negative, on ventilator or 

not at the time of transplant, etc.  

Variables retained were included in the univariable analysis which consists of five 

models. The results of univariable analysis were used to select variables into the final 

multivariable model if a variable was significant at the level of 0.15 in at least one model among 

the five. To compare the differences of the models, we fit the five models using the same set of 

selected variables. As the sensitivity test, we repeated the univariable and multivariable analysis 

steps restricted only to patients received cadaveric liver transplants. All data management and 

analysis were implemented in SAS 9.3 and R version 2.14.1. 

11 



3.0  RESULTS 

3.1 DESCRIPTIVE ANALYSIS 

Table 1 shows the descriptive statistics for the covariates considered in the univariable analysis. 

Among 1,488 LT recipients, 93 (6.25%) died, 127 (8.53%) received retransplantation, and the 

rest 1,268 (85.23%) were alive at the study cutoff date. The median follow-up time was 764 days 

(approximately 2.09 years). 

In the initially selected variables (see Section 2.2), three of them were excluded due to 

large percentage of missing values: presence of portal hypertensive bleeding before transplant 

(missing=998, 67.1%), presence of spontaneous bacterial peritonitis at transplant (missing=703, 

47.2%), and growth failure or not (missing=139, 9.3%). Moreover, encephalopathy was removed 

because of collinearity with positive CMV test.  

Table 1. Characteristics of the covariates considered in the univariable models 

Characteristics 
All Recipients Patient Outcome 

(N = 1488) Alive Retransplant Died 
(N = 1268) (N = 127) (N = 93) 

Recipient Characteristics 

Time follow-up, median, 
mean ± SD(days) 764, 981 ± 822 1069, 1107 ± 805 15, 243 ± 451 27, 275 ± 487 

Demographics 

Age, median, mean ± SD 
(years) 0, 1.88 ± 3.66 0, 1.97 ± 3.75 0, 1.51 ± 3.37 0, 1.09 ± 2.50 

Gender, No. (%) 
Female 852 (57.26) 720 (56.78) 76 (59.84) 56 (60.22) 
Male 636 (42.74) 548 (43.22) 51 (40.16) 37 (39.78) 

Race / ethnicity, No. (%) 
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White 721 (48.45) 606 (47.79) 70 (55.12) 45 (48.39) 
Other 767 (51.55) 662 (52.21) 57 (44.88) 48 (51.61) 

Medical/Clinical Covariates 

Blood type, No. (%) 
A 510 (34.27) 432 (34.07) 49 (38.58) 29 (31.18) 
AB 70 (4.70) 63 (4.97) 5 (3.94) 2 (2.15) 
B 190 (12.77) 166 (13.09) 9 (9.68) 9 (9.68) 
O 718 (48.25) 607 (47.87) 58 (45.67) 53 (56.99) 

On ventilator, No. (%) 
Yes 64 (4.30) 56 (3.63) 6 (4.72) 12 (12.90) 
No 1424 (95.70) 1222 (96.37) 121 (95.28) 81 (87.10) 

Laboratory values, Median , Mean ± SD  

Albumin (g/dl) 3.0, 3.03 ± 0.77 3.0, 3.03 ± 0.78 3.0, 3.01 ± 0.66 3.0, 3.01 ± 0.72 

Bilirubin (mg/dl) 10.9, 12.75 ± 10.63 10.8, 12.71 ± 10.67 8.1, 11.30 ± 9.49 13.5, 15.38 ± 11.20 
Serum creatinine 
(mg/dl)* 0.3, 0.33 ± 0.26 0.3, 0.33 ± 0.27 0.3, 0.31 ± 0.23 0.3, 0.30 ± 0.20 

INR 1.4, 1.74 ± 2.61 1.4, 1.75 ± 2.80 1.4, 1.67 ± 1.08 1.5, 1.74 ± 0.96 

Positive cytomegalovirus (CMV) test, No. (%) 
Yes 482 (32.39) 415 (32.73) 38 (29.92) 29 (31.18) 
No 1006 (67.61) 853 (67.27) 89 (70.08) 64 (68.82) 

Presence of ascites, No. (%) 
Yes 730 (49.06) 603 (47.56) 71 (55.91) 56 (60.22) 
No 390 (26.21) 351 (27.68) 23 (18.11) 16 (17.20) 
Unknown 368 (24.73) 314 (24.76) 33 (25.98) 21 (22.58) 

Presence of portal vein thrombosis, No. (%) ** 

Yes 53 (3.62) 41 (3.29) 5 (3.97) 7 (7.53) 
No 1362 (93.10) 1166 (93.65) 116 (92.06) 80 (86.02) 
Unknown 48 (3.28) 38 (3.05) 5 (3.97) 6 (6.45) 

Previous abdominal surgery, No. (%) ** 

Yes 1077 (73.62) 921 (73.98) 87 (69.05) 69 (74.19) 
No 336 (22.97) 281 (22.57) 34 (26.98) 21 (22.58) 
Unknown 50 (3.42) 43 (3.45) 5 (3.97) 3 (3.23) 

Other Characteristics 

Donor type, No. (%) 
Deceased 1250 (84.01) 1053 (83.04) 114 (89.76) 83 (89.25) 
Living 238 (15.99) 215 (16.96) 13 (10.24) 10 (10.75) 

Donor age, median, mean ± 
SD (years) 8, 12.19 ± 12.71 9, 12.43 ± 12.63 2, 9.25 ± 12.70 9, 12.83 ± 13.36 

Donor gender, No. (%) 
Female 707 (47.51) 603 (47.56) 56 (44.09) 48 (51.61) 
Male 781 (52.49) 665 (52.44) 71 (55.91) 45 (48.39) 

Donor race / ethnicity, No. (%) 
White 863 (58.00) 736 (58.04) 76 (59.84) 51 (54.84) 
Other 625 (42.00) 532 (41.96) 51 (40.16) 42 (45.16) 

Donor blood type, No. (%) 
A 499 (33.53) 427 (33.68) 47 (37.01) 25 (26.88) 
AB 26 (1.75) 24 (1.89) 1 (0.79) 1 (1.08) 
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B 160 (10.75) 135 (10.65) 16 (12.60) 9 (9.68) 
O 803 (53.97) 682 (53.79) 63 (49.61) 58 (62.37) 

ABO compatible, No. (%) 
Yes 1448 (97.31) 1232 (97.16) 124 (97.64) 92 (98.92) 
No 40 (2.69) 36 (2.84) 3 (2.36) 1 (1.08) 

Transplantation Related Characteristics 

Center location (region), No. (%) 
1: CT, ME, MA, NH, 
RI 42 (2.82) 41 (3.23) 0 (0.00) 1 (1.08) 

2: DC, DE, MD, NJ, 
PA, WV 150 (10.08) 128 (10.09) 17 (13.39) 5 (5.38) 

3: AL, AR, FL, GA, 
LA, MS, PR 188 (12.63) 154 (12.15) 19 (14.96) 15 (16.13) 

4: OK, TX 156 (10.48) 125 (9.86) 17 (13.39) 14 (15.05) 
5: AZ, CA, NV, NM, 
UT 324 (21.77) 287 (22.63) 23 (18.11) 14 (15.05) 

6: AK, HI, ID, MT, 
OR, WA 32 (2.15) 29 (2.29) 2 (1.57) 1 (1.08) 

7: IL, MN, ND, SD, WI 126 (8.47) 104 (8.20) 13 (10.24) 9 (9.68) 
8: CO, IA, KS, MO, 
NE, WY 149 (10.01) 128 (10.09) 13 (10.24) 8 (8.60) 

9: NY, VT 94 (6.32) 79 (6.23) 10 (7.87) 5 (5.38) 
10: IN, MI, OH 136 (9.14) 116 (9.15) 7 (5.51) 13 (13.98) 
11: KY, NC, SC, TN, 
VA 91 (6.12) 77 (6.07) 6 (4.72) 8 (8.60) 

Allocation type, No. (%) 
Local 700 (47.58) 608 (47.95) 60 (47.24) 40 (43.01) 
Regional 556 (37.37) 476 (37.54) 38 (29.92) 42 (45.16) 
Other 224 (15.05) 184 (14.51) 29 (22.83) 11 (11.83) 

Procurement distance,
Median, Mean ± SD (miles) 128, 270 ± 400 124, 268 ± 401 158, 316 ± 448 141, 239 ± 301 

Partial or split donor organ, No. (%) 
Partial or split 699 (46.98) 601 (47.40) 46 (36.22) 52 (55.91) 
Whole 789 (53.02) 667 (52.60) 81 (63.78) 41 (44.09) 

Abbreviation: SD (Standard Deviation). 
* Serum creatinine values were missing for 72 children: 61 alive, 6 retransplanted and 5 dead.
** Both portal vein thrombosis and previous abdominal surgery have missing values in 25 subjects: 23 alive, 1 
retransplanted, and 1 dead.  
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3.2 UNIVARIABLE ANALYSIS 

Table 2 shows the univariable analysis results from the five models. Age of recipients, on 

ventilator, presence of ascites, and presence of portal vein thrombosis were significant in all five 

models at the level of 0.15. For donor age and serum total bilirubin, the Cox PH models with 

retransplant as event had the opposite results with other models. Donor’s age was only 

significant in the former, while bilirubin was significant in the latter ones rather than the former. 

It may be caused by the inflating of sample size of event (death) in the Cox model where 

competing event (retransplant) was also considered as the main event.  

Figure 2 shows the survival curves of main event and competing event without censoring, 

indicating that the RSC assumption is satisfied. However, the RSC univariable models had quite 

different results from other models. Beside of the variables mentioned above, some factors were 

significant with p-value less than 0.15, including recipient race, procurement distance, serum 

creatinine, CMV test positive, and allocation type. Moreover, hazard ratios (HRs) were also 

inconsistent with other models in 7 variables among the 21 factors in total. For example, the HR 

of serum creatinine was no greater than 0.8 in the Cox, Fine and Gray and joint model, while it 

was 5.57 in the RSC model. The joint modeling result showed not only HR, but φ estimates, 

which indicates the relationship between main event and competing event. All theφ estimates 

were greater than zero and p-values were larger than 0.05, indicating a non-significant positive 

association of death and retransplantation in this data. 
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Figure 2. Check the RSC assumption: Survival curves for death and retransplant 



Table 2. Univariable analysis 

Cox - Retransplant as event Cox - Retransplant as censor Fine & Gray model RSC Joint Modeling 

HR 
95% CI 

p-value HR 
95% CI 

p-value HR 
95% CI 

p-value HR 
95% CI 

p-value HR 
95% CI p-

value 

phi sigma 

LL UL LL UL LL UL LL UL LL UL EST p-
value EST p-

value 

Recipient 
age 

1--2 0.92 0.66 1.26 0.589 0.87 0.53 1.43 0.577 0.87 0.53 1.43 0.590 1.72 1.08 2.74 0.021|| 0.83 0.47 1.45 0.504 1.17 0.198 1.75 0.050 
> 2 0.61 0.42 0.89 0.010|| 0.57 0.32 1.02 0.059|| 0.58 0.33 1.05 0.070|| 1.62 0.94 2.78 0.081|| 0.53 0.27 1.02 0.056|| 

Donor age 0.46 0.34 0.62 <0.001|| 0.75 0.44 1.28 0.292 0.82 0.48 1.40 0.460 0.88 0.55 1.42 0.607 0.78 0.42 1.45 0.435 1.11 0.435 1.80 0.222 
Recipient gender 1.12 0.85 1.47 0.412 1.13 0.74 1.71 0.573 1.12 0.74 1.69 0.590 0.80 0.54 1.17 0.243 
Donor gender 0.98 0.75 1.28 0.903 1.17 0.78 1.76 0.453 1.18 0.79 1.78 0.410 0.91 0.64 1.31 0.624 1.23 0.63 2.40 0.553 0.82 0.846 2.15 0.708 
Recipient race 
(White/Other) 1.17 0.90 1.53 0.243 1.00 0.67 1.50 0.995 0.99 0.66 1.48 0.950 1.38 0.95 2.02 0.094|| 
Donor race 
(White/Other) 0.99 0.75 1.29 0.914 0.88 0.58 1.32 0.528 0.88 0.58 1.32 0.520 1.14 0.79 1.64 0.492 
ABO compatible 1.41 0.52 3.79 0.498 2.40 0.33 17.19 0.385 2.39 0.33 17.30 0.390 0.40 0.06 2.78 0.352 2.28 0.25 20.52 0.461 0.93 0.570 2.01 0.315 

Recipient 
blood type 

A 0.99 0.74 1.32 0.927 0.77 0.49 1.20 0.249 0.76 0.48 1.19 0.230 1.01 0.68 1.51 0.960 0.73 0.43 1.26 0.261 1.06 0.421 1.85 0.191 
B 0.82 0.53 1.27 0.372 0.64 0.32 1.30 0.219 0.64 0.32 1.30 0.220 1.00 0.55 1.84 0.991 0.62 0.28 1.40 0.253 
AB 0.64 0.30 1.36 0.244 0.38 0.09 1.55 0.177 0.38 0.09 1.53 0.170 1.20 0.32 4.48 0.787 0.37 0.08 1.74 0.209 

Donor blood 
type 

A 0.98 0.73 1.31 0.872 0.70 0.44 1.13 0.144 0.70 0.44 1.11 0.130 0.90 0.60 1.36 0.623 0.69 0.40 1.20 0.191 1.08 0.499 1.83 0.277 
B 1.05 0.69 1.62 0.808 0.79 0.39 1.59 0.507 0.78 0.39 1.56 0.480 0.96 0.52 1.75 0.888 0.77 0.34 1.73 0.527 
AB 0.49 0.12 1.98 0.317 0.51 0.07 3.69 0.505 0.52 0.07 3.69 0.510 1.24 0.19 8.05 0.823 0.59 0.07 4.96 0.630 

On ventilator 2.23 1.38 3.62 0.001|| 3.73 2.03 6.84 <0.001|| 3.67 1.98 6.79 <0.001|| 2.61 1.42 4.79 0.002|| 6.18 1.42 26.83 0.015|| 0.91 0.361 2.03 0.108 
Procurement distance 1.00 1.00 1.00 0.411 1.00 1.00 1.00 0.575 1.00 1.00 1.00 0.430 1.00 1.00 1.00 0.048|| 
Albumin 0.96 0.81 1.15 0.659 0.96 0.73 1.26 0.771 0.96 0.74 1.25 0.770 1.00 0.74 1.34 0.984 0.94 0.66 1.34 0.728 0.83 0.678 2.14 0.424 
Bilirubin 1.00 0.99 1.01 0.693 1.02 1.00 1.04 0.016|| 1.02 1.01 1.04 0.007|| 1.00 0.99 1.02 0.654 1.02 1.00 1.04 0.047|| 1.42 0.375 1.51 0.213 
INR 0.99 0.93 1.06 0.867 1.00 0.93 1.08 0.966 1.00 0.97 1.04 0.920 1.02 0.85 1.22 0.819 1.00 0.89 1.13 0.559 0.75 0.661 2.26 0.368 
Serum creatinine * 0.72 0.39 1.33 0.291 0.76 0.30 1.91 0.553 0.78 0.35 1.75 0.550 5.57 1.87 16.66 0.002|| 0.69 0.24 2.00 0.489 1.02 0.252 1.92 0.060 
CMV positive 0.89 0.66 1.18 0.408 0.92 0.59 1.42 0.700 0.93 0.60 1.43 0.730 0.57 0.37 0.86 0.008|| 
Allocation type 
(Local/Other) 0.85 0.65 1.10 0.219 0.76 0.51 1.15 0.197 0.78 0.52 1.17 0.230 0.45 0.30 0.67 <0.001|| 0.67 0.40 1.12 0.130|| 0.97 0.270 1.97 0.059 
Ascites 1.32 1.01 1.72 0.043|| 1.46 0.96 2.22 0.074|| 1.46 0.96 2.21 0.077|| 1.68 1.12 2.50 0.011|| 1.53 0.91 2.58 0.110|| 0.96 0.284 1.98 0.065 
Split donor organ 0.87 0.67 1.14 0.320 1.38 0.92 2.08 0.124 1.42 0.95 2.14 0.091|| 0.58 0.40 0.86 0.007|| 1.33 0.69 2.57 0.397 2.75 0.904 0.91 0.885 
Portal vein 
thrombosis ** 1.58 0.88 2.82 0.125|| 2.23 1.03 4.83 0.041|| 2.21 1.00 4.87 0.050|| 3.49 1.60 7.62 0.002|| 3.27 0.69 11.10 0.057|| 0.88 0.299 2.08 0.057 
Previous abdominal 
surgery ** 0.92 0.69 1.24 0.602 1.10 0.68 1.76 0.699 1.10 0.69 1.77 0.680 0.74 0.48 1.15 0.188 

Abbreviation: CI (Confidence Interval), LL(Lower Limit), UL(Upper Limit), HR(Hazard Ratio), EST(Estimate). 
* Serum creatinine values were missing for 72 children: 61 alive, 6 retransplanted and 5 dead.
** Both portal vein thrombosis and previous abdominal surgery have missing values in 25 subjects: 23 alive, 1 retransplanted, and 1 dead. 
||Statistically significant at the level of 0.15.
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3.3 MULTIVARIABLE ANALYSIS 

Table 3 shows the multivariable analysis results. On ventilation was significant in all 

models, while donor age and presence of ascites were only significant in the Cox model 

with retransplant as the event of interest (Model 1). Fine and Gray (Model 3) shared the 

same list of significant covariates with the Cox model which treated competing event as 

censoring (Model 2), as well as the joint model (Model 5), including on ventilator, 

allocation type, and the presence of portal vein thrombosis. RSC (Model 4) had the 

greatest number of significant covariates than others.  

Most of the HRs in Model 1, 2, 3, and 5 were close to each other, except two 

covariates, on ventilator and the presence of portal vein thrombosis, whose HRs were 

greater in Model 2, 3 and 5 than in Model 1. HRs in Model 4 were far apart from those in 

other models, especially the HR of serum creatinine which changed from 0.6 to 0.8 in 

Model 1 - 3, and to 9.3 in Model 4.  

The estimated φ  from Model 5 was 1.02 with a p-value of 0.054, reflecting a non-

significant positive relationship between retransplant and death. 

Allocation type in Model 1 and presence of portal vein thrombosis in Model 2 

violate the PH assumption, which indicates that HR of the variable varies over time. The 

HR obtained from a proportional hazards regression model gave a weighted average of 

the time-varying HR. We can fit a Gray time-varying coefficients model to check how 

HR changes over time. [12] 
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Table 3. Multivariable analysis 

Cox - Retransplant as event Cox - Retransplant as censor Fine & Gray model RSC - W1 Joint Modeling 

HR 
95% CI 

p-value HR 
95% CI 

p-value HR 
95% CI 

p-value HR 
95% CI 

p-value HR 
95% CI p-

value 
phi sigma 

LL UL LL UL LL UL LL UL LL UL est 
p-

value est 
p-

value 

Recipient 
age 

1 -- 2 0.89 0.62 1.26 0.502 0.91 0.53 1.56 0.732 0.92 0.52 1.63 0.780 1.52 0.85 2.72 0.161 0.89 0.48 1.66 0.719 

1.02 0.054 1.93 0.002 

> 2 0.80 0.52 1.22 0.297 0.86 0.44 1.67 0.658 0.88 0.45 1.70 0.700 1.38 0.64 2.99 0.411 0.79 0.37 1.70 0.554 

Donor age 0.48 0.32 0.71 <0.001|| 0.71 0.36 1.43 0.343 0.75 0.37 1.52 0.430 1.36 0.64 2.87 0.425 0.81 0.37 1.78 0.601 

Recipient race 
(White/Other) 1.22 0.92 1.60 0.168 1.03 0.67 1.58 0.895 1.01 0.65 1.57 0.970 1.02 0.60 1.74 0.944 0.96 0.58 1.57 0.859 

Bilirubin 0.99 0.98 1.00 0.141 1.01 0.99 1.03 0.271 1.01 0.99 1.03 0.230 0.97 0.94 0.99 0.015|| 1.01 0.98 1.03 0.527 

Serum creatinine * 0.84 0.45 1.56 0.575 0.69 0.25 1.85 0.456 0.69 0.29 1.63 0.400 9.31 2.43 35.61 0.001|| 0.61 0.19 1.94 0.399 

Procurement 
distance 1.00 1.00 1.00 0.904 1.00 1.00 1.00 0.180 1.00 1.00 1.00 0.110 1.00 1.00 1.00 0.312 1.00 1.00 1.00 0.107 

On ventilator 2.41 1.44 4.03 0.001|| 3.16 1.62 6.18 <0.001|| 3.12 1.57 6.20 <0.001|| 4.40 2.09 9.23 <0.001|| 5.64 1.86 17.11 0.002|| 

CMV positive 0.97 0.72 1.30 0.832 1.03 0.65 1.62 0.903 1.03 0.65 1.64 0.890 0.76 0.47 1.21 0.241 0.99 0.57 1.72 0.982 

Allocation type 
(Local/Other) 0.87 0.62 1.22 0.433 0.53 0.32 0.90 0.019|| 0.53 0.32 0.88 0.015|| 0.39 0.20 0.76 <0.001|| 0.42 0.21 0.82 0.011|| 

Ascites 1.36 1.02 1.81 0.033|| 1.38 0.88 2.15 0.156 1.38 0.87 2.18 0.170 1.64 1.00 2.71 0.052 1.53 0.89 2.66 0.127 

Split donor organ 1.12 0.79 1.60 0.524 1.56 0.90 2.71 0.110 1.60 0.93 2.76 0.090 1.45 0.76 2.77 0.256 1.48 0.78 2.80 0.226 

Portal vein 
thrombosis ** 1.42 0.79 2.55 0.247 2.50 1.14 5.48 0.022|| 2.54 1.11 5.79 0.027|| 5.76 2.32 14.30 <0.001|| 3.88 1.25 12.09 0.019|| 

Abbreviation: CI (Confidence Interval), LL(Lower Limit), UL(Upper Limit), HR(Hazard Ratio), EST(Estimate). 
* Serum creatinine values were missing for 72 children: 61 alive, 6 retransplanted and 5 dead.
** Portal vein thrombosis has missing values in 25 subjects: 23 alive, 1 retransplanted, and 1 dead. 
||Statistically significant at the level of 0.05.
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3.4 SENSITIVITY ANALYSIS 

Data of recipients who had cadaveric donor was included in this sensitivity 

analysis. Among 1250 recipients, there were 83 (6.64%) died, 114 (9.12%) 

retransplanted, and 1,053 (84.24%) were alive at the study cutoff date. Table 4 shows the 

univariable results. Covariate selection was the same as that in models using the entire 

data, although some covariates were significant in sensitivity test and not in the entire 

data study. These covariates included presence of portal vein thrombosis in the Cox 

model with retransplant as event, and split or nonsplit organ in the Cox model with 

retransplant as censoring and in the joint model. In addition, all the univariable models in 

the joint model were converged in the sensitivity analysis.  

Table 5 shows the multivariable results which appeared to have more significant 

covariates than that in the model using entire data. The difference came from two 

covariates, presence of ascites and split organ, which were significant in models with 

recipients of cadaveric organs, but not in the models with all recipients. From the joint 

model, estimated φ  was positive and its p-value was less than 0.05, indicating that 

retransplant and death were significantly positively related. 
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Table 4. Sensitivity analysis - univariable analysis 

Cox - Retransplant as event Cox - Retransplant as censor Fine & Gray model Random Signs Censoring Joint Modeling 

HR 
95% CI p-

value HR 
95% CI p-

value HR 
95% CI p-

value HR 
95% CI p-

value HR 
95% CI p-

value 
phi sigma 

LL UL LL UL LL UL LL UL LL UL est 
p-
value est 

p-
value 

Recipient 
age 

1 -- 2 0.86 0.62 1.21 0.395 0.69 0.40 1.20 0.190 0.70 0.40 1.20 0.190 1.79 1.09 2.95 0.022|| 0.63 0.35 1.15 0.134|| 1.36 0.153 1.54 0.048 
> 2 0.54 0.37 0.80 0.002|| 0.49 0.27 0.91 0.023|| 0.51 0.28 0.93 0.029|| 1.93 1.09 3.42 0.025|| 0.45 0.23 0.88 0.019|| 

Donor age 0.49 0.36 0.67 <0.001|| 0.81 0.47 1.39 0.440 0.88 0.51 1.51 0.640 0.83 0.51 1.34 0.443 1.19 0.67 2.12 0.548 1.01 0.237 1.88 0.052 
Recipient gender 1.04 0.78 1.38 0.807 1.06 0.69 1.64 0.789 1.06 0.68 1.64 0.800 0.74 0.49 1.10 0.139 1.04 0.64 1.69 0.889 1.10 0.241 1.78 0.069 
Donor gender 1.01 0.76 1.34 0.951 1.11 0.72 1.71 0.640 1.12 0.73 1.72 0.610 0.85 0.58 1.25 0.409 1.14 0.70 1.86 0.603 1.07 0.251 1.81 0.070 
Recipient race 
(White/Other) 1.21 0.92 1.60 0.178 0.99 0.64 1.52 0.958 0.97 0.63 1.49 0.880 1.47 0.98 2.18 0.061|| 0.97 0.60 1.57 0.889 1.10 0.238 1.79 0.066 
Donor race 
(White/Other) 0.99 0.75 1.31 0.943 0.85 0.55 1.30 0.445 0.84 0.55 1.30 0.430 1.18 0.80 1.73 0.407 0.83 0.51 1.34 0.442 1.12 0.213 1.76 0.057 
ABO compatible 1.44 0.53 3.87 0.472 2.42 0.34 17.40 0.379 2.41 0.33 17.45 0.380 0.36 0.05 2.56 0.309 2.39 0.30 19.20 0.412 1.13 0.231 1.75 0.067 

Recipient 
blood type 

A 1.01 0.74 1.37 0.956 0.73 0.46 1.18 0.201 0.72 0.45 1.16 0.180 0.99 0.65 1.49 0.947 0.71 0.42 1.20 0.198 1.65 0.424 1.32 0.296 
B 0.77 0.48 1.24 0.280 0.52 0.24 1.15 0.107 0.52 0.24 1.15 0.110 1.11 0.56 2.20 0.764 0.52 0.22 1.19 0.123 
AB 0.46 0.19 1.14 0.095 0.19 0.03 1.36 0.097 0.19 0.03 1.34 0.096 1.29 0.20 8.42 0.787 0.20 0.03 1.46 0.112 

Donor blood 
type 

A 0.93 0.69 1.26 0.645 0.62 0.37 1.01 0.056 0.61 0.37 1.00 0.048 0.87 0.57 1.34 0.533 0.59 0.34 1.03 0.065 1.41 0.313 1.49 0.166 
B 0.90 0.56 1.43 0.651 0.60 0.27 1.33 0.211 0.60 0.27 1.32 0.200 1.07 0.54 2.10 0.853 0.60 0.26 1.40 0.237 
AB 0.44 0.11 1.78 0.250 0.44 0.06 3.20 0.420 0.45 0.06 3.22 0.430 1.25 0.19 8.09 0.818 0.50 0.06 3.91 0.505 

On ventilator 2.00 1.18 3.38 0.010|| 2.96 1.48 5.92 <0.001|| 2.90 1.45 5.87 <0.001|| 2.60 1.31 5.19 <0.001|| 4.38 1.39 13.78 0.012|| 0.99 0.184 1.90 0.029 
Procurement distance 1.00 1.00 1.00 0.944 1.00 1.00 1.00 0.306 1.00 1.00 1.00 0.210 1.00 1.00 1.00 0.017|| 1.00 1.00 1.00 0.313 1.02 0.218 1.88 0.044 
Albumin 0.94 0.78 1.13 0.485 0.94 0.71 1.25 0.682 0.94 0.71 1.26 0.690 1.01 0.74 1.37 0.957 0.91 0.64 1.29 0.610 1.09 0.241 1.79 0.067 
Bilirubin 1.00 0.99 1.01 0.763 1.02 1.00 1.04 0.055|| 1.02 1.00 1.03 0.026|| 1.00 0.98 1.02 0.896 1.02 1.00 1.04 0.126 1.41 0.300 1.49 0.154 
INR 0.99 0.93 1.06 0.869 1.00 0.91 1.09 0.931 1.00 0.95 1.04 0.840 1.02 0.85 1.24 0.809 0.99 0.88 1.13 0.936 1.10 0.240 1.78 0.068 
Serum creatinine* 

0.63 0.32 1.23 0.174 0.62 0.22 1.75 0.367 0.66 0.26 1.66 0.370 6.23 1.91 20.30 0.002|| 0.54 0.17 1.72 0.297 1.21 0.157 1.69 0.039 
CMV positive 0.79 0.58 1.08 0.139 0.79 0.49 1.27 0.331 0.80 0.50 1.29 0.360 0.51 0.32 0.81 0.004|| 0.72 0.40 1.29 0.269 1.02 0.223 1.88 0.047 
Allocation type 
(Local/Other) 0.99 0.74 1.31 0.918 0.86 0.55 1.35 0.517 0.88 0.56 1.36 0.560 0.36 0.23 0.56 <0.001|| 0.81 0.48 1.37 0.425 1.12 0.218 1.77 0.057 
Ascites 1.43 1.07 1.90 0.014|| 1.75 1.12 2.74 0.014|| 1.74 1.11 2.73 0.015|| 1.87 1.20 2.90 0.005|| 1.85 1.09 3.14 0.024|| 1.23 0.186 1.66 0.055 
Split donor organ 1.03 0.77 1.37 0.847 1.71 1.11 2.64 0.014|| 1.76 1.14 2.70 0.010|| 0.51 0.34 0.77 0.002|| 1.69 1.08 2.66 0.023|| 2.41 0.551 0.97 0.474 
Portal vein 
thrombosis** 1.65 0.92 2.95 0.094|| 2.34 1.08 5.07 0.032|| 2.31 1.04 5.12 0.040|| 3.63 1.65 7.98 0.001|| 3.35 1.07 10.56 0.039|| 1.01 0.168 1.89 0.024 
Previous abdominal 
surgery** 0.88 0.64 1.20 0.410 1.05 0.64 1.72 0.849 1.06 0.65 1.73 0.820 0.71 0.45 1.12 0.139 1.19 0.67 2.12 0.548 1.01 0.237 1.88 0.052 

Abbreviation: CI (Confidence Interval), LL(Lower Limit), UL(Upper Limit), HR(Hazard Ratio), EST(Estimate). 
* Serum creatinine values were missing for 72 children: 61 alive, 6 retransplanted and 5 dead.
** Both portal vein thrombosis and previous abdominal surgery have missing values in 25 subjects: 23 alive, 1 retransplanted, and 1 dead. 
||Statistically significant at the level of 0.15.
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Table 5. Sensitivity analysis - multivariable analysis 

Cox - Retransplant as event Cox - Retransplant as censor Fine & Gray model RSC - W1 Joint Modeling 

HR 
95% CI 

p-value HR 
95% CI p-

value HR 
95% CI p-

value HR 
95% CI 

p-value HR 
95% CI p-

value 
phi sigma 

LL UL LL UL LL UL LL UL LL UL est 
p-
value est 

p-
value 

Recipient 
age 

1 -- 2 0.84 0.58 1.22 0.373 0.72 0.40 1.31 0.281 0.73 0.39 1.37 0.320 1.48 0.77 2.81 0.236 0.68 0.35 1.33 0.260 

1.06 0.036 1.87 0.001 

> 2 0.74 0.47 1.16 0.191 0.77 0.39 1.56 0.474 0.79 0.39 1.59 0.510 1.37 0.59 3.21 0.466 0.70 0.31 1.56 0.382 

Donor age 0.48 0.32 0.72 <0.001|| 0.71 0.35 1.42 0.332 0.75 0.37 1.53 0.430 1.27 0.58 2.78 0.542 0.81 0.37 1.78 0.603 

Recipient race 
(White/Other) 1.24 0.92 1.66 0.152 0.99 0.63 1.57 0.975 0.97 0.61 1.53 0.880 0.95 0.52 1.72 0.857 0.93 0.55 1.58 0.787 

Bilirubin 0.99 0.97 1.00 0.126 1.01 0.99 1.03 0.524 1.01 0.99 1.03 0.470 0.97 0.94 0.99 0.020|| 1.00 0.98 1.03 0.836 

Serum creatinine * 0.81 0.42 1.59 0.542 0.66 0.22 1.96 0.454 0.68 0.26 1.74 0.420 11.22 2.51 50.10 0.002|| 0.57 0.16 2.02 0.383 

Procurement 
distance 1.00 1.00 1.00 0.895 1.00 1.00 1.00 0.167 1.00 1.00 1.00 0.100 1.00 1.00 1.00 0.393 1.00 1.00 1.00 0.104 

On ventilator 2.18 1.24 3.82 0.007|| 2.52 1.18 5.39 0.017|| 2.47 1.10 5.52 0.028|| 4.26 1.87 9.69 0.001|| 4.20 1.36 12.94 0.013|| 

CMV positive 0.87 0.64 1.20 0.410 0.87 0.54 1.42 0.585 0.88 0.54 1.44 0.610 0.68 0.41 1.14 0.147 0.81 0.45 1.46 0.481 

Allocation type 
(Local/Other) 0.99 0.70 1.40 0.959 0.61 0.36 1.06 0.079 0.61 0.35 1.04 0.067 0.34 0.16 0.71 0.004|| 0.50 0.25 0.99 0.046|| 

Ascites 1.48 1.09 2.01 0.012|| 1.69 1.04 2.74 0.034|| 1.68 1.02 2.77 0.042|| 1.70 0.97 2.99 0.065 1.99 1.09 3.63 0.026|| 

Split donor organ 1.26 0.87 1.80 0.220 1.72 0.99 3.00 0.053 1.76 1.01 3.05 0.044|| 1.47 0.76 2.84 0.253 1.69 0.89 3.23 0.110 

Portal vein 
thrombosis ** 1.47 0.81 2.66 0.201 2.62 1.19 5.79 0.017|| 2.69 1.16 6.22 0.021|| 6.29 2.43 16.25 <0.001|| 4.24 1.34 13.37 0.014|| 

Abbreviation: CI (Confidence Interval), LL(Lower Limit), UL(Upper Limit), HR(Hazard Ratio), EST(Estimate). 
* Serum creatinine values were missing for 72 children: 61 alive, 6 retransplanted and 5 dead.
** Portal vein thrombosis has missing values in 25 subjects: 23 alive, 1 retransplanted, and 1 dead. 
||Statistically significant at the level of 0.05.
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4.0  DISCUSSION 

We studied five different models in analyzing marginal posttransplant survival when 

some patients received retransplantats. One of the commonly used approaches is Fine and 

Gray model, which assumes that the main event would never occurs if the competing 

event is observed. Obviously this assumption is not applicable for analyzing 

posttransplantation survival, where recipients may die even after retransplantation. On the 

other hand, patients on the wait list of retransplantation could die due to graft failure or 

other complications. Since the competing events could overtake the occurrence of the 

main event, the RSC method can be applied in this situation. Opposite to the Fine and 

Gray method, the main event and competing event is positively associated in a RSC 

model. Although in our study of posttransplantation survival, the RSC model is more 

suitable than the Fine and Gray model according to the scientific explanation, the results 

of the RSC model were inconsistent with other methods. It could be the performance of 

the IPCW estimators used in the RSC method is only acceptable under low or moderate 

censoring percentage (<35%). Unfortunately, the censoring rate in our data was as high 

as 85.23%. We then devised the joint modeling approach, which was used as the gold 

standard to test the relationship of the main and the competing events. The estimated 

value of φ  was positive but not significant, which indicates that there is no evidence to 

reject the independence claim of the two events. It is worth noting that working with joint 
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modeling could be challenging if one cannot make it convergence, and the model fitting 

is time consuming. Based on the assumption that death and retransplant are independent, 

the Cox PH model treating competing event as censoring was the best choice.   

In conclusion, Fine and Gray model will perform the best if the competing event 

is perfectly negatively associated to the main event. If the events are positively 

associated, the RSC method could the model of choice but only when the censoring 

percentage is below 35%. Meanwhile, the joint modeling approach could be used as a 

standard to verify the relationship between the main and competing events, although it 

may have convergence issue. If unfortunately neither of these models fit well, one may 

choose to fit a Cox PH model treating competing event as censoring.  
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