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TRACHEAL TISSUE ENGINEERING

C.M. Hobson, PhD

University of Pittsburgh, 2014

Large airway defects pose a substantial problem to surgeons in both pediatric and adult

populations. For example, primary tracheal cancers can result in neoplastic lesions, which

are often not diagnosed until the tumor has become inoperable. These patients are palliated,

but have a poor prognosis, with only 5% survival after 5 years. Tissue engineered transplants

offer a life saving new therapeutic option. Recent reports have demonstrated good midterm

results with decellularized human homograft tissue. However, these experiments have been

limited to compassionate use. To achieve efficacy necessary for more widespread use further

study is necessary to investigate alternate approaches and optimize the decellularization

technique. Additionally, clinical application of this technology will require translation to a

decellularized xenograft to obviate human tissue supply limitations. To this end, we compare

the use of 3 alternate detergents (SDS, Triton X-100, and CHAPS) to sodium deoxycholate

in the commonly accepted detergent enzymatic method (DEM). Fresh donor rat tracheas

were decellularized using a modified 9-day DEM protocol. The pre-implant scaffolds were

thoroughly characterized for each experimental group and implanted for 12 weeks using an

orthotopic rat tracheal reconstruction model. It was found that detergent choice strongly

affects the host remodeling response including host cell infiltration and epithelial differenti-

ation. The clinically relevant sodium deoxycholate and Triton X-100 groups were retested

with a final peracetic acid (PAA) rinse. It was determined that the use of PAA greatly

improved the in vivo response of the previously poor performing sodium deoxycholate and

made little improvement to the Triton X-100 scaffold. The optimum configuration, Triton

X-100 with a PAA rinse, was selected for translation to a clinically relevant porcine model.
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Porcine tracheal decellularization was achieved using a modified 14 day DEM protocol with

a novel cyclical pressure approach. The suitability of these porcine tracheas for pre-clinical

large animal testing was verified through mechanical analysis (pressure-diameter and suture

retention) and in vitro seeding experiments with human bronchial epithelial cells.
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1.0 INTRODUCTION

1.1 THE MAMMALIAN TRACHEA

The trachea or windpipe is a cartilaginous and membranous tube, extending from the lower

part of the larynx, on a level with the sixth cervical vertebra, to the upper border of the fifth

thoracic vertebra, where it divides into two bronchi (Figure 1.1). The trachea is a posteriorly

flattened cylinder, measuring about 12 cm in length and approximately 2 cm in diameter.

In children the trachea is approximately 6 cm in length and 1 cm in diameter.

Figure 1.1: Human Trachea, reproduced from Gray’s Anatomy
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1.1.1 Anatomy and Physiology

The trachea is composed of partial circumference rings of hyaline cartilage, fibrous tissue,

muscular fibers, and a mucous membrane. There are typically between sixteen and twenty

cartilage rings occupying the front two-thirds of the trachea. A simple membrane composed

of fibrous tissue muscular fibers completes the c-shaped cartilage rings. The cartilage rings

are horizontally above one another, separated by narrow fibrous regions, the annular liga-

ments (Figure 1.1). Tracheal rings measure about 4 mm in height and 1 mm in thickness.

Often, two or more of the cartilages combine, partially or completely, and may be bifurcated

at their extremities. The first and last tracheal rings are unique, the first is broader and

connected by the cricotracheal ligament to the bottom of the cricoid cartilage (Figure 1.2).

The last cartilage is thick and broad curving downward between the two bronchi. The car-

tilage rings are enclosed in an elastic fibrous membrane, which consists of two layers; the

thicker passes over the outer surface of the ring, the thinner over the inner surface. On

either side of the cartilage the two layers blend together to form a single membrane, which

connects the rings to one another. The mucous membrane consists of loose connective tissue,

with a distinct basement membrane, supporting a stratified epithelium. The surface layer is

comprised of a variety of specialized epithelial cell types, including sensory, secretory, and

ciliated epithelium. The deeper layers are composed of cuboidal basal cells thought to have

some ability to differentiate into other cells types found within the epithelium. Basal cells

can respond to injury of the airway epithelium, migrating to cover a site denuded of epithe-

lial cells, and subsequently differentiating to restore a healthy epithelial cell layer. Beneath

the basement membrane there is a distinct layer of longitudinal elastic fibers with a small

amount of intervening connective tissue. The submucous layer is composed of a loose mesh

work of connective tissue, containing large blood vessels, nerves, and mucous glands with

ducts opening to the surface (Figure 1.3). The trachea is finely tuned to its intended func-

tion. The combination of C-Shaped cartilage rings and the fibrous annular ligaments makes

it circumferentially stiff, but longitudinally compliant. This mechanical anisotropy enables

relative mobility of the head, but also prevents collapse during respiration. In addition to

its mechanical role, the trachea has a vital immunologic role.
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Figure 1.2: Larynx and proximal trachea, reproduced from Gray’s Anatomy

Figure 1.3: Schematic of a transverse tracheal section, reproduced from Gray’s Anatomy
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1.1.2 Barrier to Foreign Antigens

The trachea possesses many exocrine glands and is lined by a pseudo-stratified columnar

epithelium in which ciliated and mucous cells predominate. The ciliated epithelial cells are

interspersed with goblet mucousal cells (named for the similarity in shape to a wine glass).

Goblet cells produce mucous which helps maintain epithelial moisture and traps particulate

matter and pathogens moving through the airway. The ciliated cells then beat in concert,

moving secreted mucus containing trapped foreign particles toward the laryngopharynx, for

either expectoration or swallowing to the stomach where the acidic pH helps to neutralize

microorganisms (Figure 1.4). This system is collectively known as the mucociliary escalator

and serves two functions: to keep the lower respiratory tract sterile, and to prevent mucus

accumulation in the lungs.

1.2 DISEASE STATES

Due to the complexity of the human respiratory system, there are many conditions effecting

the larynx, bronchi, lungs and trachea. However, this overview will focus solely on those

conditions affecting the trachea. While rare, conditions affecting the trachea are particularly

troubling to surgeons. The following sections will present an overview of the important

conditions and their clinical presentation.

1.2.1 Agenesis & Atresia

In children, tracheal agenesis and atresia are almost uniformly fatal and are fortunately

quite rare. The trachea may be completely absent (agenesis), or it may be partially in place

but considerably underdeveloped (atresia). Operative techniques are available to correct the

underlying abnormality, but surgical attempts have yielded poor results, essentially making

this an uncorrectable malformation.
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Figure 1.4: Scanning electron microscope image of lung trachea epithelium. There are both

ciliated and non-ciliated cells in this epithelium. Note the difference in size between the cilia

and the microvilli (on the non-ciliated cell surface). Adapted from ”Bronchiolar epithelium

3 - SEM” by Charles Daghlian
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1.2.2 Tracheal Stenosis

Tracheal stenosis refers to an abnormal narrowing of trachea below the vocal folds, as op-

posed to those present in the main bronchi or larynx. This is often referred to as subglottic

stenosis in children as this is the narrowest region of the trachea and where stenosis is most

likely to present. Stenosis encompasses a wide variety of conditions, including both acquired

and congenital defects. The most common cause for stenosis is post-intubation and tra-

cheotomy related injuries. Stenosis may involve a single cartilage ring, or the entire length

of the trachea (Figure 1.5) Typically all cases of stenosis regardless of cause result in a sim-

ilar clinical presentation, including breathlessness (dyspnea) particularly when undertaking

physical activities (exertional dyspnea). The patient may also experience added respiratory

sounds which in the more severe cases can be identified as stridor (a high-pitched sound

resulting from turbulent air flow in the upper airway) but in many cases can be readily

mistaken for lower respiratory distress. Thus, many patients with tracheal stenosis are in-

correctly diagnosed and treated as asthmatics. In children these conditions are often not

discovered until a secondary cause such as an upper respiratory infection increasingly taxes

the already limited airway.

1.2.3 Tracheomalacia

Tracheomalacia is a condition in which the cartilage rings are not sufficiently stiff to support

the trachea from pressures generated by respiration. During normal function, the trachea

dilates slightly during inspiration and narrows during expiration. In a malacic trachea,

the membranous portion of the trachea compresses inwards markedly reducing the airway

lumen. In severe cases this can result in total collapse of the airway during expiration.

Primary tracheomalacia is a congenital disorder of the tracheal rings and is relatively rare.

On the other hand, secondary tracheomalacia is an acquired disorder in which cartilage

weakness results from an external pressure. Common causes of secondary tracheomalacia

include vascular anomalies, such as innominate artery compression and tracheoesophageal

fistula (abnormal connections between the esophagus and trachea). Clinical presentation

typically involves breathing problems that worsen with coughing, crying, feeding, or upper

6



Figure 1.5: “Laryngotracheal Stenosis” by Rn Cantab licensed under CC 3.0 Unported
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respiratory infections, in severe cases, infants may hyper-extend their necks in order to keep

the airway open.

1.2.4 Tracheal Tumors

Trachea tumors whether benign or malignant can affect respiration through obstruction of

the airway. Malignant primary tracheal tumors are most often smoking related squamous

cell carcinomas (SCC). One quarter of tumors are benign: chondromas from the cartilage

rings, hemangiomas, result from tumors in tiny blood vessels, and papillomas are human

papilloma (HPV) viral tumors. In addition to primary neoplasms, secondary involvement

can occur from tumors of surrounding tissues such as the lungs, larynx, and esophagus.

Typically, tracheal tumors grow slowly. Malignant tumors, specifically squamous cell car-

cinomas, may be ulcerative. Primary tracheal tumors are insidious, often presenting with

signs and symptoms of upper airway obstruction. While readily treatable at early stages,

they are often not diagnosed until 6 months after first symptoms present. In a series of

329 patients with primary tracheal malignancies, dyspnea was the most frequent symptom

(71%), followed by cough (40% with blood (34%), asthma (19.5%), and stridor (17.5%) [1].

The first symptom is usually exertional dyspnea, which gradually worsens. Acute respiratory

difficulty is usually not present until the airway is nearly fully occluded. Delay in diagno-

sis occurs since chest radiograms are the standard diagnostic technique. Patients may also

present with repeated episodes of either unilateral or bilateral pneumonia. A diagnosis of

adult-onset asthma is often made, delaying definitive treatment. In one series, delayed diag-

nosis of more than 6 months after symptoms onset occurred in one third of patients. SCC

metastasizes to regional lymph nodes and can invade the mediastinum in more aggressive

forms or in late stages. Distant metastases are common, most often to bone. Adenoid cystic

carcinoma (ACC) occurs almost as frequently as SCC, collectively comprising two thirds

of primary tracheal malignancy. It is slower in onset than SCC, often having a prolonged

course of clinical symptoms.
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1.3 HISTORY OF TRACHEAL SURGERY

The tracheotomy is arguably the oldest surgical procedure described, evidence as far back

as hieroglyph slabs belonging to King Djer in Abydos and King Aha in Saqqara suggest

the tracheotomy was performed in ancient Egypt around 3100 BC. The tracheotomy is also

mentioned in the Rig Veda, a sacred Hindu medical text written before 1000BC [2]. In the

fourth century, Alexander the Great is said to have saved a soldier choking on a bone by

puncturing his trachea with the point of his sword. Scant mention was made of tracheal

surgery again until the 16th century, it was considered irresponsible and dangerous due to

risk of infection and perceived inability of cartilage to heal. Successful tracheotomies were

only recorded 28 times from 1546 until 1833. In these cases it was used only in emergency

cases of laryngeal abscess, severe respiratory distress, or obstructive blockage (Figure 1.6). In

one report a tracheotomy was used to relieve pressure caused by impingement from gold coins

lodged in the esophagus of a 14-year-old boy who had swallowed them to prevent their theft

[3]. Over time, the tracheotomy became an accepted technique to bypass upper respiratory

obstruction caused by infection or foreign bodies. However, further work remained to refine

the tools and techniques. High incision, improper cannulas, splitting the cricoid cartilage

predisposed patients to complications. The use of a curved cannula removing pressure from

the anterior and posterior surfaces of the trachea prevented lesions and erosion. These

advances significantly decreased mortality and morbidity. Recently it has become clear that

endotracheal intubation is quicker and safer, mostly relegating the use of tracheotomy for

patients requiring long term mechanical ventilation.

1.3.1 Repair & Replacement

Lingering ancient fears were a major obstacle to the development of tracheal surgical pro-

cedures. Up until the late 20th century it was widely believed that the limited inherent

healing capacity of cartilage presented an insurmountable challenge. Hippocrates argued

that“The most difficult fistulas are those which occur in the cartilaginous areas...”. In the

second century AD Aretaeus pronounced ”The lips of the wound do not coalesce, for they are
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Figure 1.6: Julius Casserius - Tracheotomy Tabulae Anatomicae 1601
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both cartilaginous and not of the nature to unite” [3]. Another significant concern was the

long held belief that only a limited segment of trachea could be removed and re-anastomosis

accomplished. Belsey, among many others, believed that roughly 2 cm of the human trachea

could be excised and the trachea re-anastomosed [4]. These various reports sparked a nearly

century long search for a safe and efficacious replacement.

1.4 EXPERIMENTAL AND CLINICAL PROSTHESES

In general, research has been conducted among several parallel avenues

1. Synthetic materials, both solid and porous to encourage host infiltration

2. Nonviable biological tissues, including fixed trachea

3. Autograft transplantation

4. Allograft transplantation

Success has been announced periodically, but so far no single replacement has been safe and

efficacious in the long term.

1.4.1 Synthetic Materials

The apparent simplicity of a tracheal replacement encouraged trials of tubular constructs

throughout the 20th century. These synthetic materials were predominantly simple tubes,

fabricated from inert, biocompatible materials. Problems of migration, dislodgement, in-

fection, and obstruction inevitably arose. Furthermore, these tubes became permanent im-

plants, since connective tissue eventually forms around the grafts, causing obstruction and

stenosis in the absence of a stent [5].

1.4.1.1 Solid Prostheses Synthetic materials were used extensively to form solid, tubu-

lar conduits as replacements for resected trachea. Most often, experimental designs were

tested in dogs. Materials employed include, stainless steel, plastics, cobalt alloys, silicone

rubbers, methacrylates and are listed exhaustively in Table 1.1. Some of these designs were
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even attempted clinically. For example, Borrie and colleagues [6, 7] added fabric cuffs to

silicone tubes to hopefully prevent granulation tissue and to encourage fixation of the pros-

thesis. Neville et al used a similarly cuffed silicone tube clinically [8]. Toomes and Grillo

both experienced obstructive granulation tissue, migration, and vascular erosion with the

same prosthesis [9, 10]. Success was variable, but all grafts eventually tended to migrate,

become dislodged, obstructed and encourage infection at the graft interface. Erosion of the

brachiocephalic artery was periodically present and often fatal. Despite all of these compli-

cations, a rigid prosthesis can maintain an open airway temporarily, even in the absence of

a healing response. Further attempts were made with porous materials to encourage tissue

ingrowth, reepithelization, and prevent dislodgement.

1.4.1.2 Porous Prostheses Meshes fabricated from a wide variety of materials were

employed both experimentally and clinically. Host cell infiltration and deposition of connec-

tive tissue was hoped to better support epithelial migration. Fabric meshes were typically

supported with wire, plastic rings, or coils and wrapped with with biopolymers such as

fibrin or collagen to ensure an air tight seal at implant. Meshes tested experimentally, in-

clude steel, stainless, titanium, polyethylene, Teflon, polyurethane, Dacron (polyester) and

Polyvinyl acetal, but are listed exhaustively in Table 1.2. Meshes were also used clinically,

with attempts using steel wire, tantalum covered with fascia or skin, HDPE sometimes cov-

ered with pericardium; and polyvinyl acetal and steel wire. The deposition of scar tissue in

these grafts often led to obstruction and stenosis. Frequently, large sections of mesh remained

bare, resulting in bacterial colonization. Only those grafts that were sufficiently short were

fully recellularized. As with many solid prostheses, arterial erosion was present with HDPE

replacements in the clinic [30, 31]. Death occurred with steel mesh prosthesis [13]. HDPE

mesh that fails to become fully epithelialized is a haven for environmental bacteria, especially

Pseudomonas aeruginosa, which produces a horrific odor. One patient, over many years had

lost his wife, his job, and friends because of intolerable halitosis. He was finally relieved by

the replacement of his HDPE graft with with a silicone T tube [10].
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Table 1.1: Solid Prostheses

Animal Experimentation

Material Year Publication

Stainless Steel 1948 & 1973 [11, 12]

Steel Coil 1956 [13]

Cobalt Chromium Alloy 1948 & 1961 [11, 14]

Glass 1948 [11]

Polyethylene 1948, 1949, 1953, 1955 & 1968 [5, 15, 16, 17, 18]

PMMA 1956 & 1961 [13, 14]

Silicone Rubber 1969, 1970, & 1973 [6, 7, 19]

Teflon(PTFE) 1963, 1970 & 1973 [12, 20, 21]

Polyvinylacetal 1958 & 1961 [14, 22]

Polyvinylchloride 1958 [23]

Human Implantation

Stainless Steel 1950 & 1952 [24, 25]

Steel Coil 1956 [13]

Silicone Rubber 1985 & 1990 [9, 8]

Polyethylene 1952, 1962 & 1965 [26, 27, 28]

Teflon(PTFE) 1959 [29]

PMMA 1948 [15]
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Table 1.2: Porous Prostheses

Animal Experimentation

Material Year Publication

Steel Wire 1951 - 1970 [5, 13, 18, 21, 32, 33, 34]

Tantalum 1949 - 1968 [35, 36, 13, 18, 21, 37, 38, 39]

Titanium 1984 [40]

High Density Polyethylene (HDPE) 1962 & 1968 [18, 33, 41, 30]

HDPE & Collagen 2000 [42]

Collagen & Polypropylene 1994 & 1997 [43, 44]

Teflon 1965 - 1990 [21, 45, 46, 28]

Polyurethane 1983 [47]

Polyvinyl acetal 1958 & 1961 [14, 48]

Polyester (Dacron) 1988 [49]

Human Implantation

Steel Wire 1951 - 1956 [13, 32]

Tantalum with skin or fascia 1952 [50, 51]

HDPE with pericardium 1965, 1968 & 1975 [30, 52, 31]

Polyvinyl acetal & steel wire 1983 [47]
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1.4.2 Nonviable Biologic Tissues

Given the frustrating results obtained experimentally and clinically from synthetic materi-

als, researchers naturally attempted alternative material sources. A series of studies were

conducted employing cadaver trachea and other tissues, chemically fixed, cryopreserved, or

lyophilized. Scherer et al attempted gluteraldehyde fixed rat and pig trachea. Segments were

implanted as allografts and autografts. As expected, rejection was not observed, but gross

morphological survival of cartilage was only observed in rats [53]. Sterilized and lyophilized

aortic allografts over polyethylene tubes were implanted in dogs, while the stents prevented

stenosis, longitudinal contraction damaged the proximal and distal ends of the trachea [54].

Marrangoni and Greenberg observed that lyophilized canine tracheal allografts lost their car-

tilage and were replaced by scar tissue [55, 56]. Bjork and Rodriguez implanted lyophilized,

formalin fixed and ethanol treated allografts. These grafts were uniformly fatal [22]. In

general, nonviable biological tissues are eventually degraded and replaced over time by scar

tissue. Clinically, human tracheal grafts fixed in formalin and stored in merthiolate were

implanted and observed for more than 13 months. These scaffolds demonstrated minimal

allogencity, but also visible degredation [57].“Pickled” cadaver homografts were also used in

both adult and pediatric patients. These grafts were fixed with 4% formalin, treated with

thimerosal, and stored in acetone. During implantation, pickled scaffolds were supported

with silicone stents. Bronchoscopic removal of granular tissue was necessary after stent

removal, but complete epithelization was observed. Out of 6 patients, none had positive

outcomes, 1 died due to an arterial fistula, 2 had recurrent tracheomalacia requiring stents,

and 2 underwent stenting with a tracheostomy tubes [58]. Somewhat better results were

cited for 18 of 31 children [59]. For all of these pickeld grafts, epithelialization may occur,

but cartilage degradation is inevitable, resulting in stenosis and malacia [60].

1.4.3 Autograft Transplantation

The inability of non-viable tracheal grafts to encourage host cell infiltration and remodel

into a viable tissue presented researchers with few new avenues. Luckily, during the 1950s

and 60s there were significant strides in tissue and organ transplantation, including the first
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successful kidney, liver, and heart transplants. Coupled with preliminary surgical experience

employing autogenous tissues to seal synthetic prostheses during transplantation, there was

an obvious next step. Much of the next 20 years was spent on a new wave of transplants

composed of free grafts, tissue flaps, and tubes assembled, much like Frankenstein’s monster,

from a hodge-podge of autogenous tissues.

1.4.3.1 Free Grafts Experimental constructs implanted in dogs, pigs, and rats have

used fascia [11, 35, 38, 61], cartilage [13, 62], dermal grafts [14, 56], pericardium [63], free pe-

riosteum wrap [64, 65, 66], bone strips [21], stented cartilage and perichondrium [67], costal

cartilage, periosteum and rib [68], composite patches of buccal mucosa and auricular carti-

lage, [69] dura mater with wire [70], bladder mucosa [51, 71, 72, 73], jejunal patches [74], and

perichondrium from ear and rib[75]. For all of these attempts, it was found that autogenous

patches generally results in fibrotic contraction with patchy epithelization. Clinically, steel

coil supported fascia has been employed in malignant tumors resections [26]. Larger dermal

grafts for tracheal repair were mostly unsuccessful [51, 76], but limited patch reconstructions

were moderately successful [77, 78]. Auricular cartilage [79], free bronchial grafts [80], costal

cartilage, and pericardium were attempted. The final two were employed successfully for

treatment of long congenital stenosis. Re-epithelization and only occasional necrosis was

observed[81, 82, 83, 84]. Cartilage patches mostly resorbed and replaced with mature scar

tissue [85]. In all pediatric cases it was noted that somatic growth was reduced [86]. Many

of the authors argued that insufficient revascularization was a major obstacle to successful

remodeling and further attempts were made to maintain blood perfusion through transplan-

tation of tissue flaps.

1.4.3.2 Tissue Flaps The use of vascularized autografts was achieved through preserva-

tion of native vasculature or by anastomosis of a nearby vascular supply. Many studies show

that a vascularized patch is less likely to necrose than a free patch. Vascularized repair of

window defects have included pedicled intercostal muscle [87], periosteum [64], bronchus[88],

and rib transfer with re-anastomosis [89]. Clinically, skin flaps have been used extensively to

close cervical tracheal defects. Other flaps such as pedicled intercostal muscle and pleura [90],
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periosteum on a muscular pedicle [91], rotated bronchus [92], pedicled diaphragm [93], and

pedicled pericardium supported by HDPE [10] were used. While effective for small defects,

none of these readily permitted treatment of long segment stenosis or repair after malignant

tumor excision. To accomplish these goals, surgeons fabricated tubes from similar pedicled

autogenous tissues reinforced with cartilage or bone.

1.4.3.3 Tubular Constructs Edgerton and Zovickian [51] reviewed early attempts at

tubular graft construction. They describe many multi-staged cutaneous tubes used for cervi-

cal trachea reconstruction [94, 95, 96, 97, 98, 99, 100, 101, 102]. Other grafts have employed

tubular dermis pedicles, supported with rib or costal cartilage and sometimes lined with

split grafts. Serrano and colleagues [103] inserted a series of c-shaped cartilage rings carved

from costal arch to provide support when a skin trough was closed anteriorly. Papp and

colleagues, unsuccessfully, wrapped intercostal muscle, stiffened with cartilage and lined

with skin around a stent, in dogs [104]. Krespi and colleagues wrapped a periosteal flap

around a silicone elastomer stent and after 6 weeks in a subcutaneous location, moved the

tube to an orthotopic location [105]. Kon and Van den Hooff also produced cylinders of

cartilage by wrapping rib perichondrium around a silicone rod implanted in tissue [106].

Another line of experimental reconstruction with host tissue has been the use of adjacent

esophagus to replace a long segment of trachea. Placement of c-shaped polypropylene rings

failed when the adjacent supported segments caused obstruction. Attempting this proce-

dure simply to enclose a silicone t-tube substitutes the challenge of a tracheal repair for an

esophageal repair [107]. In an effort to avoid the necessity of a major operation for later

esophageal replacement, re-vascularized segments of small intestine have also been used ex-

perimentally [108]. Given the lack of mechanical rigidity, it’sunclear how the patient was

able to breath. With any of these approaches, the complexity of the construction, in vivo

culture, and final surgery can result in fatal mediastinitis. Additionally, for each autograft

approach the patient faces significant concerns with graft failure as with non biological ap-

proaches, but must then also contend with donor site morbidity. For example in the case of

costal cartilage, the most widely used clinical graft, there are numerous reports of resultant

pneumothorax (collapsed lung) and pneumonia. Whole organ allografting was attempted
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to avoid the problems with autograft tissue, unfortunately, they suffer from many of same

issues and even create new ones.

1.4.4 Whole Organ Transplantation

Preliminary research demonstrated that even immediate orthotopic re-implantation of an

animals own trachea was unsuccessful because neovascularization is too slow to maintain

tissue metabolism [6, 22, 36, 109, 110, 111]. As discussed above, omentum has been used

to successfully revascularize autografts tissue effectively allowing the graft to recover from

early ischemia [111]. However, even with omental revascularization, canine autografts longer

than 4 cm frequently showed stenosis or dissolution in their central portions [112]. These

findings were supported by Balderman who showed that omental wrapping was incapable

of sustaining chondrocyte viability in canine long segment tracheal autografts [113]. The

totality of these findings conclusively demonstrate the necessity of a blood supply at implant.

1.4.4.1 Revascularization Revascularization of an orthotopic whole tracheal graft has

been most sucessful through direct vascular reanastomosis. Unfortunately, due to their

small size and distribution, the arterial and venous supply of the trachea do not easily lend

themselves to direct revascularization. Researchers have combated this problem through

the preparation of thyrotracheal grafts, anastomosing the thyroid artery to the common

carotid artery [114]. In the absence of immunosuppressive therapy, cartilage was preserved

but tracheal soft tissues necrosed. With cyclosporin and hydrocortisone, all tracheal tissues

survived. In a conflicting finding, Macchiarini and colleagues observed preservation of tra-

cheal grafts, including epithelium, in a heterotopic pig model using cyclosporin with both

arterial and venous anastomosis [115]. Macchiarini found that venous infarction occurred

in the absence of a venous anastomosis [116]. Macchiarini also experimented with thyrotra-

cheoesophageal transplantation, adding perfusion of the arterial system of the graft with a

hypothermic flushing solution [117]. Strome and associates described fresh laryngeal trans-

plantation, which included a five-ring segment of trachea, thyroid, and parathyroids, plus

both superior laryngeal nerves to replace a traumatically scarred larynx. Arterial, venous,
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and neural anastomoses was accomplished and perfusion was established. 40 months after

surgery,the patient was healthy with functional vocal chords [118]. This one off success has

not been repeatable and led to further work assessing the immunosupressive therapeutics

and tissue pre-treatment.

1.4.4.2 Implant Modification Fresh tracheal allografts typically initiate a strong, acute

immune rejection upon implantation [119, 120, 121, 122]. A study by Beigel at al identi-

fied antigens within the rodent mucosa which mediate this rejection [120]. This work was

further supported by findings that human tracheal mucosa was the major antigenic struc-

ture responsible for immunogenic action of tracheal allografts [121]. Combined these studies

demonstrated that tracheal transplants are not weakly antigenic as originally posited [123].

Long segment fresh tracheal allografts have only systematically worked when revascularized

and in the presence of strong immunosuppresants. [113, 124, 125, 126, 127, 128]. To avoid

costly HLA matching, and therapeutic complications, various treatments including cryop-

reservation and irradiation were attempted to modulate the immune response of allografts.

Cryopreservation seems to partially inhibit allogenicity while promoting neovascularization.

Cryopreserved allografts with omental flap revascularization survived without immunosup-

pressive therapy [124, 125, 129]. Mukaida observed gradual replacement of graft epithe-

lium by recipient epithelial cells after sixty days in a cryopreserved tracheal allograft [130].

However, Moriyama and associates found that cryopreservation of allografts reduced acute

rejection and permitted early revascularization, but eventually resulted in chronic rejection

and atrophy [131]. Tojo and coworkers found that after transplantation, cryopreserved tra-

cheal allografts in rats without immune suppression were colonized by host epithelium, but

the chondrocytes were of donor origin [132]. Inutsuka and colleagues noted the feasibility of

cryopreservation (for 3 weeks at -80 C) of tracheocarinal allografts in dogs and subsequent vi-

ability without immunosuppressive therapy [133]. Throughout these studies the mechanism

for the reduced allogenicity due to cryopreservation is unclear.
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Table 1.4: Requirements for a Suitable Tracheal Replacement

General Prosthetic Characteristics

Readily available or minimal fabrication time required

Airtight at implant

Appropriate Mechanical Features - longitudinal compliance and circumferential rigidity

Minimal Inflammatory Response

Incorporate into surrounding tissue, no migration or dislodgement

Support growth and differentiation of respiratory epithelium

Readily vascularized to minimize stenosis and necrosis

1.4.5 Next Steps

From the extensive failures it is possible to develop a list of desirable characteristics for

a potential tracheal prosthetic (Table 1.4). To date all sucessful surgical prostheses have

been implanted within mesenchymal tissue. Within the airway an interface inevitably per-

sists among foreign material, chronically repairing connective tissue, and epithelium, which

is a perpetual source of bacterial contamination. Trials of one material after another can-

not be expected to solve this basic biological incompatibility. Macchiarini summarized it

as:“tracheal allografts necrose whatever the conservation procedure. Only a living substi-

tute, therefore vascularized, can pretend to fulfill the anatomic mechanical and anti-infectious

functions of the trachea.” The recent advances in fields as diverse as stem cell biology, bio-

materials, and biomechanics has made the possibility of a living prosthetic composed of a

patients own cells a reality. Tissue engineering, may provide the revolutionary, rather than

evolutionary, next step necessary to produce a truly efficacious tracheal graft.
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1.5 A LIVING PROSTHETIC: TISSUE ENGINEERED TRACHEA

First described by Langer and Vacanti, Tissue engineering is an:“an interdisciplinary field

that applies the principles of engineering and life sciences toward the development of biolog-

ical substitutes that restore, maintain, or improve tissue function or a whole organ” [134].

In effect, tissue engineering harnesses the body’s ability to regenerate through the appro-

priate application of mechanical and biological cues. In native, healthy tissue, cells are

interspersed in a complex network of fibrous proteins and proteoglycans. This extracellular

matrix (ECM) provides 3-dimensional support and organization to the cells. They exist in

a symbiotic relationship, cells respond to biological signals contained within the ECM and

in turn alter the organization and composition of the ECM. An external factor such as an

injury can perturb the system, resulting in changes to both the cells and ECM. When a

foreign object is implanted into the body, these same interactions take place, essentially the

structure, mechanics, and biology of these objects dictate the host reponse. Tisue engineer-

ing aims to design an implant to mimic the native biological milieu and encourage host cells

to assume an appropriate phenotype. Several pioneers demonstrated reserach culminating

in a tissue engineered human tracheal transplants. The first paper reported on a decellu-

larized tracheal allotransplant which was repopulated ex vivo by use of a complex air-liquid

bioreactor. The second involved a synthetic tracheal prosthesis that had been repopulated

by use of an in vivo tissue-engineering technique. The third paper switched to a decellu-

larised allotransplant with in vivo repopulation. However, the working mechanism of the

tissue engineered airway remains unclear. The sucess of these three trial studies, conducted

under compassionate use, has prompted pre-clinical work to lay the foundation for future,

controlled human trials There have been many approaches, but in general, researchers em-

ploy a porous scaffold which supports and directs the cellular population. These scaffolds

may be synthetic or biologically derived, but are mostly designed to be readily resorbed

in vivo. These constructs may be seeded with one or more cell types, precultured prior to

implantation, or even in some cases implanted without cells.
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1.5.1 Synthetic and Biologically Derived Polymers

The first generation of tissue engineered devices were mostly synthetic. As with any syn-

thetic material, biocompatibility and immune response of the polymer and it’s degredation

products are a significant concern. To this end, initially only well characterized polymers

were attempted. They were fabricated through a variety of techniques, including electrospin-

ning, weaving, felting, TIPS, and salt leaching. The polymers were mostly designed to be

hydrolytically degraded in vivo into easily removed fragments. Materials used include polyg-

lycolic acid (PGA) [135, 136, 137], polylactic acid and polyglycolic acid mixture (PLA/PGA)

and poly(lacticcoglycolic acid) PLGA [138], polyester urethane [139], poly(ethylene oxide)-

terephthalate/poly(butylene terephthalate)(PEOT/PBT) [140, 141], and gelatin sponge [142].

Vacanti et al. observed no immune response to PGA in nude mice [137]; however, Kojima

et al. observed poor cartilage formation in the same PGA constructs in sheep after 7 days,

which the authors concluded was likely due to an inflammatory response [136]. A similar

immune response was observed in PLA/PGA constructs in rabbits [138]. Pre-culturing the

PLA/PGA construct for 2 weeks prior to implantation improved the in vivo response. The

authors hypothesized this was due to immune modulation caused by cultured cells prevent-

ing blood entering the construct [138]. Further work was conducted using naturally inspired

materials. For example, hyaluronan-based scaffolds were been shown to support chondro-

cyte growth in bioreactor culture [143], however, in vivo rabbit implantation of allogeneic

chondrocyte-seeded hyaluronan-based scaffolds (12 weeks) caused a nonspecific foreign body

response and eventual degradation of tissue-engineered cartilage [144]. As this reaction is

not observed in knee articular cartilage, the authors hypothesized that the vascularity in the

neck may create an unfavorable immune microenvironment. Silk fibroin has also been shown

to be biocompatible in rabbit tracheas for 12 weeks, with fibroblasts and capillary vessels

integrating into the material [145].

1.5.2 Decellularized Tissue

After removal of cellular antigens and debris by decellularization, ECM grafts retain a va-

riety of proteins including, growth factors, proteoglycans, and other matrix proteins in a
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mostly native configuration. ECM grafts mimic the unique structure and function of each

tissue, providing potent cues to infiltrating host cells. Additionally, when degraded in vivo

they release peptides that possess bioactivity distinct from that of the parent molecule,

including bacteriostasis, chemotaxis, and mitogenesis. Thus, decellularized tissue scaffolds

have been used in multiple areas of tissue engineering. Most importantly, Macchiarini et al.

showed that decellularized human trachea could also be used in a clinical tissue engineering

paradigm [146]. Decellularized aortic grafts[147], jejunum [148, 149, 150], bladder [151], and

trachea [151, 152, 153, 146] have been utilized for tracheal replacement. These scaffolds have

been used with or without cells; however, Go et al. observed contamination and infection in

constructs not seeded with epithelial cells after 11 days in a swine model [152]. Remlinger

et al. observed scaffold degradation after implantation of hydrated xenogeneic decellularized

trachea extracellular matrix in dog tracheas for 8 weeks [154]. For future studies, the au-

thors suggest adding chondrocytes to the scaffolds, with the goal of replacing the degrading

scaffold with cartilage. Preservation methods of such scaffolds also seem to have an effect on

regeneration. Gilbert et al. did not observe any cartilage formation in their decellularized

trachea and bladder constructs when implanted in dogs for 6 months, and they hypothesized

this may possibly have been due to lyophilization and freeze-drying of their construct before

implantation [151].

1.5.3 Cell Lines in Tracheal Tissue Engineering

From literature it is clear that the success of a tracheal graft depends on it’s structure,

mechanics and antigenicity, however, the cellular component must not be overlooked. Various

groups have attempted to seed a range of cell types, from chondrocytes to mesenchymal stem

cells, obtained from a number of donor tissues. Three main strategies have been undertaken:

acellular, single, and multiple cell types.

1.5.3.1 Acellular Constructs Acellular constructs rely on the biomaterial and any

added growth factors to harness the bodys ability to allow cells to populate and integrate

into the material. The influence of growth factors on tissue ingrowth is significantly more
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important for acellular constructs and has been investigated with some promising results

[142, 155]. However, it is unlikely that this approach can be successful clinically since all

cells must migrate into the material from the surrounding native tissue. This strategy is

most often used for decellularized materials as a proof of concept since the necessary growth

factors to modulate immune response and trigger a positive healing response are present at

implant.

1.5.3.2 Single Cell Type To date, tracheal research has primarily employed a single

cell type strategy. Chondrocytes were used in Vacantis first attempt at tracheal tissue en-

gineering [137] and have been used extensively since. It is clear from the many failures,

that creating or maintaining functional cartilage is critical to the most basic function of

the trachea [156]. While native epithelial cells have been shown to migrate onto the lu-

men of tissue-engineered constructs, full reepithelialization takes considerably longer. For

large segment reconstruction, full epithelialization occurs slowly, if at all. Nevertheless, it

is clear that an intact epithelium is vital to bacterial resistance, prevention of granulation

tissue and stenosis [157]. The source of chondrocytes and epithelial cells is crucial to this

end. While an autologous source is preffered to limit antigencity, donor site morbidity is a

concern. Human tracheal chondrocytes may have the chondrogenic potential to form tissue-

engineered cartilage for clinical use [158]. Unfortunately, obtaining tracheal chondrocytes

is invasive, so the clinical relevance is limited. Comparisons of chondrocyte sources (nasal,

articular, auricular, tracheal, and costal) [143, 159, 149], indicate that donor site morbidity

seems to be the only difference. Ideally, it would be possible to easily obtain a single cell

type capable of differentiating into the multiple required cell types. Adipose-derived stem

cells [160], bone marrow stromal cells [161, 162, 146, 163, 150, 164], and amniocytes [165]

have been utilized for chondrogenesis in the tissue engineered trachea. Cell sources for air-

way epithelium include respiratory tract endogenous cells and exogenous cells from other

tissues in the body (embryonic, bonewalles marrow, amniotic fluid, etc.) [166]. For example,

fully differentiated airway epithelium has been generated from embryonic stem cells through

an in vitro culture process [167]. Increased research into stem cell technologies such as iPS

presents a new avenue for tracheal tissue engineering. However, regulatory challenges will
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likely postpone their introduction into mainstream use, thus the leading cell source is most

likely the patients own bone marrow mesenchymal cells.

1.5.3.3 Multiple Cell Types The most complex approach involves the seeding of mul-

tiple cell types, either simultaneously or serially. Prior to adding the cells to the scaffolding,

researchers have cultured the cells together or separately. One study evaluated the perfor-

mance of epithelial cells on chondrocyte pellets, epithelial cells on native cartilage explants,

and coculture on opposite sides of collagen membranes [168]. Immunostaining staining re-

vealed expansion and differentiation in the epithelial layer only is the final method. The

authors concluded a basal lamina equivalent, fibroblast conditioned medium, and air-liquid

interface were required for epithelial cell proliferation and differentiation. Another group

cultured human respiratory epithelial cells and chondrocytes separately on 3D scaffolds,

and then fused the two constructs together with fibrin surgical adhesive. After 5 days in

culture, the constructs remained viable and the layers were appropriately adhered to each

other [169]. Chondrocyte and epithelial cell constructs have been seeded abluminally and

luminally, respectively. These constructs have been introduced into subcutaneous pockets of

nude mice [170, 171]. At the conclusion of 6 weeks, the ECM content of the tissue-engineered

cartilage was similar to native cartilage, and histology revealed mature cartilage and pseudos-

tratified columnar epithelium [170]. The function of these constructs must still be evaluated

in vivo. However, this biomimetic seeding strategy has had some success in humans, when

seeding chondrocytes differentiated from MSCs on the exterior surface and epithelial cells on

the interior surface[146]. Other combinations of cells utilized for trachea repair are epithe-

lial cells and fibroblasts [172], endothelial cells and epithelial cells [173], chondrocytes and

fibroblasts [136], fibroblasts and muscle cells [148], and bone marrow stromal cell-derived

chondrocytes and epithelial cells [152, 146]. Walles et al. evaluated an even greater number

of cell types; seeding chondrocytes, bone marrow-derived smooth muscle cells, bone marrow-

derived endothelial cells, or respiratory epithelium on a decellularized matrix[150]. More

research is needed to determine whether multiple cell types can be incorporated onto one

construct at one time and whether this approach is clinically beneficial or practical (i.e.,

multiple biopsy sites).
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1.5.4 In Vitro Culture

Once cells are seeded on a scaffold, the constructs can then be exposed to various in vitro

culture before implantation. Bioreactor and static culture have been used independently

and in conjunction. One group showed that bioreactor versus static culture did not have an

effect on the GAG content and mechanical properties of scaffold-free chondrocyte constructs

[174]. Luo et al. suggested that in vitro preculture of constructs may reduce inflammation

of constructs and promote better ECM formation after implantation in vivo [138]. Another

example employed a chondrocyte seeded collagen/PCL tube in a rotating wall bioreactor

in vitro, followed by orthotopic implantation in rabbits, unfortunately, granulation tissue

caused stenosis in all animals [138].

1.5.5 Surgical Implantation

While constructs have been extensively evaluated in static or dynamic in vitro culture, ulti-

mately they must be placed in an in vivo model to determine functionality and performance

in a living organism. Animal models used for tracheal tissue engineering vary from mice to

pigs, but as of yet a standard animal model has not been established [175]. The size and

location of implantation also differs. Some studies implanted the tissue-engineered trachea

subcutaneously [159]. In these cases, survival rates were usually high and tissue in-growth

was observed; however, the functionality of the construct cannot be analyzed with subcuta-

neous implantation. A majority of the tracheal tissue engineering studies placed the construct

in a patch or circumferential defect in the trachea. Survival rate and performance of the

constructs were typically good in patch (or window) defects, while lower survival rates and

more complications occurred in circumferential defect repair. Interestingly, some researchers

have implanted grafts in a heterotopic location to harness the body as an in vivo bioreactor

prior to final implant. One approach implanted the graft subcutaneously to precondition the

construct, and then transplanted the construct orthotopically[176]. An intricate approach

was recently introduced, where tracheal constructs were cultured in a perfusion bioreactor

in vitro, followed by paratracheal implantation, and finally implanted orthotopically [177].

This complex approach was an abject failure, stenosis was observed in all cases, potentially

due to the lack of an established endothelial lining.
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1.5.6 Hurdles to a Tissue Engineered Trachea

Incredible time and effort has been invested into developing a tracheal prosthetic, the tissue

engineered constructs developed so far demonstrate promise for a clinically useful tissue-

engineered replacement. However, many problems have arisen, such as how to maintain

structural support of the tissue-engineered construct, controlling the scaffold degredation,

minimizing immune mediated rejection, optimizing re-epithelialization, and promoting revas-

cularization. Even the first clinically transplanted tissue-engineered trachea, which has func-

tioned successfully in patients thus far, was limited by a long-preparation time, and reliance

on donor tissue. With that being said, current therapeutics are a necessary stop gap measure,

helping patients with the most devastating tracheal diseases. The reliance on donor tissue,

however, for the decellularized scaffolds is a major limitation, and a xenogeneic scaffold is a

better long-term goal. In addition, the biological activity of a biological matrix is a double-

edged sword, capable of promoting positive remodeling or catalyzing acute inflammation

and rejection. Since decellularization dramatically alters tissue structure, mechanics, and

composition, it is vitally important to unravel the effect of decellularization on ECM struc-

ture and biology gaining insight into the host response to better engineer a viable tracheal

replacement.

1.6 RESEARCH GAP & SPECIFIC APPROACH

Tracheal repair procedures were first attempted in the late 19th century and after more than

one hundred years of research; no curative treatments for large tracheal defects have been

established. The use of prosthetic materials, stents, tissue flaps, autografts, or a combination

of these methods have been reported, but complications are pervasive: migration, dislodge-

ment, material degradation/failure, bacterial infection, granulation tissue, stenosis, necrosis,

anastomosis failure, erosion of major blood vessels, need of life-long immunosuppression, lack

of appropriate donor sources, and lack of adequate vascularization. For example, primary

tracheal cancers result in neoplastic lesions, which are often not diagnosed until the tumor
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exceeds 6 cm of the tracheal length and becomes inoperable. These patients are palliated, but

have a poor prognosis, with reports of five-year survival between 5% and 13%. Thus, there is

a clear and present need for improvement in the treatment of severe congenital and acquired

tracheal defects; tissue engineering presents the most promising avenue to create safe and

efficacious tracheal graft. Preliminary studies have demonstrated the use of decellularized

human trachea clinically with excellent short-term results [148]. In this approach, cellular

material was removed from a human donor trachea with detergent and enzymatic rinses. The

remaining extracellular matrix (ECM), was then reseeded with the patients own cells and

implanted. Wider adoption of this approach has been hampered by significant donor tissue

limitations. Since xenogeneic ECM are well tolerated during transplant due to conservation

between species, the goal of this application is to engineer a decellularized porcine trachea

suitable for human transplantation. We hypothesize that the ECM scaffold features are de-

termined by tissue processing parameters, which in turn direct the host response. Further,

we believe that by more fully characterizing the effect of detergent based decellularization

on in vivo biological function in a small animal model; we may ultimately develop a better

porcine trachea decellularization protocol resulting in a safer and more efficacious tracheal

graft. To accomplish this goal, three specific aims are addressed.

Specific Aim 1 Characterize the effect of alternate rat tracheal decellularization protocols

in terms of structural and compositional changes.

Specific Aim 2 Test the functional tissue remodeling potential of the previously charac-

terized decellularized trachea in an established orthotopic rat tracheal transplant model.

Assess host mediated remodeling through clinical and functional metrics including scaf-

fold recellularization and epithelial differentiation.

Specific Aim 3 Translate findings from aims one and two to a clinically relevant xenogeneic

scaffold. The scaffold will be validated through mechanical testing and it’s ability to

support human epithelial cells in vitro.
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2.0 CHARACTERIZATION OF DECELLULARIZED RAT TRACHEA

2.1 INTRODUCTION

When employed for tissue engineering, extracellular matrix (ECM) scaffolds are desirable for

many reasons. They are readily repopulated by host cells, degraded in vivo and replaced with

de novo tissue deposited by the invading host cell population. Unlike polymeric scaffolds,

they also contain remnant proteins and signaling molecules, which can provide very potent

cues for regeneration. These decellularized matrices may be obtained through treatment

with detergents, acids/bases, enzymes, alcohol, or even mechanical disruption. Unfortu-

nately, there is no universal protocol, the most effective decellularization agents must be

identified for each tissue due to the specificity of structure, composition and geometry. It

is generally accepted that no tissue may be decellularized without disruption of the native

structure. Therefore, given our current tissue engineering paradigm the minimization of

these perturbations must be the goal. Recently, researchers have begun to explore the trans-

plantation of tissue engineered whole organs [178, 179]. The translation from a single tissue

to a larger, more complex structure has created many new challenges. Nevertheless, great

strides have been made. Due to it’s relative simplicity compared to a heart, liver, or lungs,

the trachea was one of the first clinical applications of a whole organ tissue engineering.

Preliminary clinical studies have employed a decellularized human trachea graft to engineer

a living prosthesis [148]. Despite the early clinical success there remain many outstanding

questions. For example, it’s clear that the decellularization approach is vitally important,

yet there has been surprisingly little preclinical work justifying their particular selection.

Instead it seems the authors simply translated the first working protocol. The current clin-

ical protocol, the detergent enzymatic method (DEM), employs repeated treatments with
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detergent washes and enzymatic DNA degradation. In general, detergents are the most com-

monly utilized decellularization agents due to their unique amphilic properties. Amphiphiles

are interesting molecules which possess both polar and non-polar characteristics. Typically

they are long chains containing a bulky polar head group and a non polar tail. In aqueous

solution they form micelles, where the detergent molecules self assemble into spheroids to

minimize their surface energy. In a micelle all of the non polar tails face inwards and the

polar head groups shield them from the surrounding aqueous solvent. These micelles are

able to diffuse into a tissue, whereby individual detergent molecules are able to integrate

into the phospholipid bilayer of the cell membrane. Due to the smaller tail groups, these

detergent molecules increase the flexibility of the cell membrane and eventually cause the

cell to rupture. After lysis, remnant phospholipids from the cell membrane and membrane

bound non polar proteins are solubilized through incorporation into the detergent micelles.

While there are an enormous number of different detergents, they are most often cat-

egorized into three types. Ionic, meaning they have a permanent charge, non-ionic those

without, and zwitter ionic, those that have an equilibrium state with both charged and un-

charged states. In general ionic detergents are considered to be more harsh, they have strong

monomer affinity to proteins, the non polar tail can bind to non polar regions of the protein,

which alters the tertiary folding. This in turn allows more detergents to bind, known as

cooperative binding, which can completely denature the higher order structure of the pro-

tein and effectively destroy it’s biological function. For example, sodium deoxycholate, the

detergent employed clinically, is often used to denature proteins prior to enzymatic degra-

dation for proteomic analysis [180]. Ionic detergent monomer affinity also makes it harder

to remove residual detergent from a decellularized tissue after processing. Non-ionic and

zwitter ionic detergents are considered to be less harsh, they are typically non-denaturing

and are often used for isolation of biologically active proteins. Triton X-100 and CHAPS

are common examples of non-ionic and zwitter ionic detergents respectively. In the current

clinical paradigm, Macchiarini et al employ repeated washes with sodium deoxycholate, a

harsh ionic detergent, over six weeks to effect decellularization. Many previous experimental

studies have attempted sodium deoxycholate decellularization on a host of different tissues,

including cornea [181], urinary bladder [182], ligament [183], and peripheral nerve [184].
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These publications have reported mixed results in vivo, but generally have shown exten-

sive ECM disruption. We hypothesize that this prolonged deoxycholate exposure

unnecessarily damages the trachea and that alternative decellularization agents

may result in more effective tissue engineering scaffold. Therefore, we propose to

evaluate three alternate, commonly employed detergents, CHAPS, Triton X-100, and SDS.

In addition to traditional detergent decellularization, we also propose to test peracetic acid

(PAA), a commonly employed agent. Previous work has shown that PAA effectively re-

moves cells and remnant DNA while having a minimal effect on ECM composition and

structure[185, 186, 187]. However, given the broad applicability and success in the decel-

lularization of membranes and thin planar tissues, there is surprisingly little quantitative

data on PAA’s benefit when compared to detergent based decellularization in larger, denser

tissues. Oblique references in literature and anecdotal evidence suggests that it may improve

the in vivo response of scaffolds. We wish to specifically answer this question by directly

comparing tracheas processed solely with the detergent enzymatic method to those that are

identically processed, but additionally receive a final PAA rinse. We further hypothesize

that PAA treatment will have a minimal effect on scaffold properties. In this aim,

all decellularized scaffolds will be thoroughly assessed to identify morphological, histological,

and compositional differences resulting from the processing.

2.2 MATERIALS & METHODS

2.2.1 Animals

All animal experiments were reviewed and approved by the University of Pittsburgh Institu-

tional Animal Care and Use Committee and were performed in compliance with the Guide

for the Care and Use of Laboratory Animals as published by the NIH. Age-matched female

Lewis rats (approximately 150g in weight) were used in the study as donors.
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2.2.1.1 Tissue Collection Lewis rats were anesthetized with a cocktail of ketamine

hydrochloride (100 mg/kg) and xylazine hydrochloride (10mg/kg) administered intraperi-

toneally. An incision was made in the abdominal cavity and the abdominal aorta was

transected to exsanguinate the animal. The entire length of the trachea was exposed via a

sternotomy with concomitant midline cervical incision. The trachea from the larynx to just

proximal to the bifurcation was excised with the use of a surgical microscope.

2.2.2 Scaffold Preparation

After explantation, specimens were thoroughly rinsed with deionized (DI) water and cleaned

of extraneous tissue under a Zeiss DV4 dissecting scope. Samples were frozen at -80◦C

until use. Specimens were categorized into one of four detergent groups: 3% triton X-

100, 1% SDS, 8mM CHAPS, or 4% Sodium Deoxycholate. Tracheas were then exposed

to a nine day decellularization protocol. Cycles consisted of treatment for 2 hours on a

rocker at room temperature with their associated detergent. Tracheas were thoroughly rinsed

and treated with 2,000 KU DNAse-I in 1M saline for 3 hours at room temperature on a

rocker. Specimens were then rinsed in phosphate buffered saline (PBS) with 1% antibiotic-

antimycotic (anti/anti, Gibco Life Technologies) for 10 minutes and stored overnight in PBS

with 1% anti/anti. This process was repeated 8 times. Half of the specimens from Triton

X-100 and sodium deoxycholate detergent groups were exposed to a single 0.1% PAA and

4% ethanol treatment for 90 minutes followed by three 30 minutes rinses in PBS. Finally,

all trachea were individually packaged in physiologic saline and gamma irradiated to ensure

terminal sterilization. (Figure 2.1)

2.2.3 Differential Scanning Calorimetry

Decellularized tracheal matrices (minimum n = 5) in PBS were blot-dried with Kimwipes

(Kimberly-Clark, Neenah, WI) to remove excessive surface water. Samples were hermetically

sealed in Tzero crucibles (TA Instruments, New Castle, DE), loaded onto Q2000 differential

scanning calorimeter (TA Instruments, New Castle, DE) between 20◦C and 30◦C. Specimens

were then pre-cooled at 3◦C/min to 2◦C before samples were scanned at 3◦C/min up to 125◦C
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Figure 2.1: Decellularization schematic derived from the clinically accepted detergent enzy-

matic method. Each day specimens were subjected to two hours in the specified detergent

and three hours in 1M sodium chloride with 2,000 KU DNAse I with gentle agitation at

20◦C. Scaffolds were rinsed and stored overnight in PBS with 1% antibiotic/antimycotic.

This process was repeated for nine days. Scaffolds were then individually packaged and

subjected to terminal gamma ray sterilization
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for thermo-physical analysis under a pure nitrogen purge flow rate of 50 mL per min. After

scanning, small holes were punched on the lids of crucibles and samples were dried in a vac-

uum oven at 105◦C for at least for 4 hours to determine dry mass. Data were analyzed with

the Universal Analysis software (Version 4.5A). Thermograms were obtained through back-

ground subtraction. Relevant quantitative values for total enthalpy, main peak temperature

and main peak shoulder onset temperature were computer for each thermogram.

2.2.4 Pressure Diameter Testing

The effects of decellularization on the mechanical behavior of decellularized rodent trachea

was assessed by pressure diameter testing before and after decellularization. A custom built

mecahnical testing system based upon previously published devices was used to evaluate

tracheal pressure-diameter response [188, 189, 190]. The pressure-diameter testing system

was comprised of a testing chamber, adjustable adapters machined to accommodate rat

trachea, an optical LED micrometer, pressure sensor, and syringe pump (Figure 2.2). The

system was controlled via a custom designed LabVIEW program (National Instruments

v8.6.1, Austin, TX). Each trachea was first submerged in the 3L saline tank and retained on

the notched adapter with silk ligature. Upon mounting, a small tension was placed on the

tissue along the length of the graft to simulate physiologic tension. The luminal pressure

was increased or decreased by pumping air into or out of the trachea using a 60 ml syringe

connected to a syringe pump (Harvard Apparatus, Model 11 Plus, Philadelphia, PA). A

downstream pressure sensor (Honeywell Sensotec Model FPA, Columbus, OH) was monitored

with a USB DAQ card (National Instruments, Austin, TX). An optical LED micrometer

(Keyence Model LS 7070MT, Wood Dale, IL) positioned orthogonal to the sample was used

to measure the outer diameter (OD) of the trachea continuously as the pressure was varied.

Diameter measurements were made in the center region of the tracheal tissue. Tracheas

underwent 10 preconditioning cycles at 20% of maximal load, from -6 mmHg to 12mmHg

prior to testing. Trachea were then tested for 10 cycles from -30 mmHg to 60mmHg at flow

rate of 4ml/min. Custom matlab code automatically identified each cycle, aligns each cycle’s

extrema, and computes a binned average (Figure 2.3).
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Figure 2.2: A custom built device designed to simultaneously test the pressure and diameter

response of tracheas under physiologically relevant levels of air loading.
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Figure 2.3: Screenshot from custom matlab code. A: Automated cycle identification and data

smoothing, excluded data is shown in red. B: Extraction of average pressure and diameter

curves.
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2.2.5 Histology

Traditional histology was conducted on 10% neutral buffered formalin fixed and paraffin

embedded specimens. Movats Pentachrome was employed to visualize fiber structure, Alcian

blue to evaluate glycoaminoglycan retention within the cartilage, and Herovici’s to assess

collagen cross-linking and relative maturity.

2.2.6 Statistics

Statistical analysis was conducted using a multivariate analysis of variance (MANOVA) em-

ploying Tukey’s post hoc test. For values lacking a subset data point (DSC main peak

measurements), one way ANOVA with Tukey’s correction was employed. Statistical signifi-

cance was gained at p<0.05.

2.3 RESULTS AND DISCUSSION

2.3.1 All Treatment Groups Effectively Decellularize Rat Trachea

All groups, including PAA treated specimens, maintained organ shape and structure, but

appeared translucent, consistent with successful decellularization. The thyroid cartilage and

larynx often appeared to be incompletely decellularized, but this tissue was dissected away

and discarded prior to gamma irradiation. CHAPS and deoxycholate specimens appeared

slightly yellow, the mechanism for the odd coloration is unclear (Figure 2.4). After nine, 5

hour treatment cycles with detergent and DNAse I the tracheal mucosa is fully decellularized.

Hematoxylin and eosin (H&E) staining demonstrates complete removal of the epithelial layer

and absence of cells and nuclear debris in the cartilaginous segments of the tracheal wall.

However, minimal nuclear material was maintained within the condrocyte lacunae of the

cartilaginous rings. Cartilage has been shown to be highly immune privileged due to it’s

denisty and lack of blood supply [191, 192]. As the mucosa is major antigenic structures

within the trachea, we did not believe this minimal residual DNA would negatively impact
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implants. PAA seems to have minimal effect on gross appearance, except for a slight chemical

bleaching effect on the deoxycholate specimens. There did not appear to be any observable

tactile differences in either circumferential compliance or longitudinal compliance among any

of the groups.

Figure 2.4: Gross morphology of rat tracheas after DEM decellularization prior to gamma

sterilization. Decellularization preserved organ level structure and shape. Translucent ap-

pearance suggests successful decellularization.
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2.3.2 Cartilage Mechanics, Structure and Composition are Maintained

The airway performs a critical mechanical role for which a mechanically and structurally

sound cartilage is vital. Upon implantation a trachea must operate under full physiological

loading immediately. Therefore, to evaluate the retention of native cartilage mechanics

and structure, Alcian blue staining and pressure diameter testing were employed. From

stained sections it is clear that glycoaminoglycans (GAGs) are maintained within the hyaline

cartilage of all decellularized scaffolds (Figure 2.5 and 2.6). Additionally, decellularization

appears to have minimal effect on cartilage structure. Decreased staining intensity was

observed in PAA treated specimens, but this is likely this is due to histological processing

differences as opposed to further removal of GAGs by PAA. One limitation of Alcian blue

staining must be considered, it is a highly sensitive stain as even small amounts of GAGs

will stain intensely. Therefore, staining is typically used assess structure as opposed to

qualitatively or quantitatively assessing GAG content [193].

2.3.3 Trachea Mucosal Structure is Maintained Despite Cellular Removal

Contrary to original findings, the mucosa of the trachea is the predominant immunogenic

structure [123, 120, 121]. For this reason complete removal of the epithelial layer is vital,

however, presence of an intact basement membrane is extremely important to epithelial

reconolonization after implant. From the Movat’s pentachrome staining, we can see that

Triton and CHAPS appear to retain a basement membrane in a generally native configuration

(Figure 2.7). SDS and to less of an extent, deoxycholate, demonstrate some removal of

the basement membrane and associated elastic fibers. This finding is consistent with our

hypothesis that ionic detergents will have greater impact on ECM structure and composition.

PAA acid treated specimens demonstrated basement membrane and elastic fibers similar to

their non PAA treated counterparts (Figure 2.8). However, collagen and muscle staining was

conspicuously absent. It is not immediately clear whether this is as a result of histology or

processing.
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Figure 2.5: 10X Alcian blue stained detergent decellularized trachea scaffolds. Glycoamino-

glycans are stained blue with nuclear material in purplish red. All grafts demonstrate main-

tenance of GAGs within intact cartilage rings. As seen in the CHAPS, SDS, Triton, and

deoxycholate groups, nuclei and nuclear material are absent in all decellularized specimens
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Figure 2.6: 10X Alcian blue stained PAA treated decellularized trachea. Grafts demonstrate

retention of GAG within intact cartilage rings.

2.3.4 Detergents Differentially Influence Collagen Microstructure and Matrix

Associated Proteins

A variety of detergents have been widely employed for decellularization of cartilaginous tis-

sues, a number of these studies have shown histologic retention of native-like microstructure

with both ionic and non-ionic detergents [194, 195]. However, few studies employ more in

depth analysis techniques. It was originally planned that biochemical assays (Blyscan, etc.)

would be employed to specifically measure ECM constituents. It was found commercially

available assays for collagen, elastin, and GAGs were imprecise due to complex user input

requirements. For example, one step requires manually blot drying residual fluid from an

eppendorf tube, where excess fluid can dramatically effect the assay result. It addition,

biochemical assays only measure removal, they are generally not capable of detection of dis-

ruption or denaturation. For these reasons, an alternate technique was sought. Differential

scanning calorimetry (DSC) presented an excellent alternative, it is a sensitive technique

whereby differences in the amount of enthalpy required to increase the temperature of a

sample compared to a reference is measured as a function of temperature. DSC been used
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Figure 2.7: 10X Movat’s pentachrome staining of non PAA treated, decellularized rat tra-

cheas. Black: nuclei and elastic fibers, Yellow: collagen, Blue: mucin, Bright Red: fibrin,

Red: Muscle. Partial removal or denaturation of basement membrane and elastic fibers is

evident within ionic detergent groups (SDS and sodium deoxycholate)
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Figure 2.8: 10X Movat’s pentachrome staining of PAA treated, decellularized rat tracheas.

Black: nuclei and elastic fibers, Yellow: collagen, Blue: mucin, Bright Red: fibrin, Red:

Muscle.

widely in the polymer and pharmaceutical industries, but is a relatively unused technique

to investigate the thermal stability of proteins within an extracellular matrix scaffold. Vari-

ous components within a scaffold have remarkably different denaturation temperatures, thus

DSC can be used to not only assess compositional changes, but also, differences in protein

cross linking, hydrogen bonding, and hydration states. Previously, to probe these questions

detailed transmission electron microscopy (TEM) studies were necessary. As with any elec-

tron microscopy technique, TEM require extensive sample processing which may result in

structural artifacts. The application of DSC to our tracheal scaffold enables us to assess

micro-structural and compositional changes with each step of the decellularization process

in a high throughput manner. In DSC, the main collagen peak appears at roughly 60◦C, with

mature highly cross-linked fibers stable up to 75 or 80◦C. Matrix associated proteins including

elastin and GAGs are represented as a broad shoulder from 35◦C [196, 197]. Unsurprisingly,

there are clear differences between detergent treatment groups. Most interestingly, results

(Figure 2.9) suggest that SDS completely denatures the higher order collagen structures in

both the fibrous and cartilaginous portion of the trachea. The shoulder above 70◦C in the
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Figure 2.9: Differential scanning thermograph of non PAA treated decellularized rat tracheas.

Primary collagen peak is located at 60◦C, with mature highly cross-linked fibers stable up

to 75 or 80◦C. Matrix associated proteins including elastin and GAGs are represented as a

broad shoulder from 35◦C
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CHAPS and Triton X-100 indicates preservation of mature collagen cross-linking which is

partially lost during deoxycholate treatment potentially explaining the resulting larger main

collagen peak. We can also see that PAA treatment has a much more marked effect on the

sodium deoxycholate group (Figures 2.9 and 2.10). Most commercially available PAA uses

hydrogen peroxide as a stabilizer(up to 35% v/v), which can result in artificial crosslinking

of collagen structures, partially restoring the shoulder above 70◦C. Unpublished data has

shown that increased PAA treatment times will eventually create a second distinct peak. In

both PAA treatment groups, matrix associated proteins, and proteoglycans are denatured

or removed, evidenced by the comparitive loss of the shoulder below 60◦C. These results

are confirmed by histological analysis employing Herovici’s stain, which differentially stains

immature or uncrosslinked collagen. We can see from Figure 2.11 that SDS has a noticeably

less intense mature collagen staining, while Triton X-100 and CHAPS maintain a much more

native-like distribution and intensity of differential collagen staining.

Extracted data including, main peak temperature, and total enthalpy were assessed quan-

titatively. While shoulder onset temperature is a good measure of the retention of the less

stable matrix bound proteins such as GAGs and laminin, statistical analysis found only a

few significant differences between detergent groups, but broader trends are evident (Fig-

ure 2.12). Ionic detergents demonstrate a lower onset temperature and increased enthalpy

(area under the curve) within this region. While seemingly counter-intuitive, it is possible

that some of this effect may be driven by denaturation of collagen to a more gelatinous

form (especially in SDS). For main peak temperature, the most notable finding is the lack

of a SDS main collagen peak, which resulted in statistically significant differences between

SDS and the remaining non PAA and PAA treated groups (p¡0.05). There were also signif-

icant differences observed between Triton, sodium deoxycholate, CHAPS and the two PAA

treated groups. This finding is logical, given the conserved cartilage structure in Triton, de-

oxycholate and CHAPS, we would not expect a significant alteration in the thermal stability

of fibrillar collagen within the scaffold. However, we would expect the total enthalpy to be

significantly different for various processing parameters (Figure 2.13). Statistical differences

were found between both PAA treated groups and all non PAA groups. Additionally, SDS

was found to be significantly different that all of the non PAA treated specimens. Counter
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Figure 2.10: Differential scanning thermograph demonstrating comparison between PAA

treated and untreated detergent decellularized rat tracheas.
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Figure 2.11: 10X Herovivi’s staining of non PAA treated, decellularized rat tracheas, pri-

marily esed to differentiate young and mature collagen. Herovici’s stains young collagen and

reticulum blue and mature collagen red while providing a yellow cytoplasm counterstain.

Nuclei are stained blue to black.
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to our hypothesis, PAA seemed to have an strong, negative effect on the thermal stability of

the ECM scaffolds as evidenced by the similarity between total enthalpy for PAA and SDS

treated specimens. The hypothesized PAA cross-linking did not appear to globally increase

tissue stability.

2.3.5 Tracheal Mechanics

Employing our existing apparatus, differences were not detected between decellularized

groups or between acellular scaffolds and the native tissue. This was partly due to challenges

associated with diameter detection and compounded by non-homogeneous deformation along

the tracheal length. It is proposed that by employing a CCD camera to simultaneously im-

age the entire length of the trachea instead of a single diameter some of these complexities

may be overcome. Another potential approach could employ a pressure volume relation to

compute an associated global ”compliance” measure. This is a well established approach

in cardiovascular biomechanics, especially for larger vessels and the myocardium[198]. How-

ever, unlike the vasculature, the complex geometry and lack of circular symmetries make this

approach more mathematically challenging. Another, simpler, approach could avoid quan-

tifying the pressure diameter relationship of decellularized trachea and instead measure the

collapse and burst pressures, which are likely more predictive of poor in vivo performance.

Another suggested improvement is to incorporate suture retention testing prior to implant

to avoid a predictable graft failure mechanism.

2.3.6 Limitations and Future Work

Due to the extraordinarily complex biological milieu, mechanistic studies optimizing a spe-

cific decellularization procedure are not yet possible. Not only is the complexity of native

extracellular matrix not fully understood, but work is still ongoing to better characterize

the decellularization process itself. With our current level of understanding empirical stud-

ies are necessary, but care must be taken to avoid needless experimentation. The tracheal

tissue engineering literature is filled with claims of success and failure, but little is learned

from each of these experiments, since often studies assess only a single empirically derived
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Figure 2.12: Main collagen peak and shoulder onset temperature computed from DSC ther-

mogram, presented as mean plus/minus standard deviation (minimum n=3 for each group).

Top: Main peak temperature representing the maximal value for the largest peak, computed

as the global minimum of the zero first derivative, SDS did not have a clear peak and was

therefore, excluded. Bottom: Shoulder onset temperature for the main peak. Computed as

the temperature at which a 5 degree moving average first deviated from a linear baseline.
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Figure 2.13: Total enthalpy, computed from DSC thermogram, presented as mean

plus/minus standard deviation (minimum n = 3 for all groups). Computed as the total

area between the curve and a fitted linear baseline. Statistical significance was calculated

with a MANOVA and post hoc Tukey’s test, significant differences were found between all

detergent only specimens and both PAA treated groups. A significant difference was also

found between SDS and the remaining detergent only specimens.
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scaffold [153, 199, 200]. Clearly we cannot claim to have developed a comprehensive design

space, but this work definitely represents an incremental improvement in the understanding

of tracheal decellularization.

Compounding this confusion in the literature is the lack of currently established metrics to

characterize successful decellularization of the trachea. General guidelines for decellulariza-

tion as a whole simply suggest complete removal of cellular nuclei, reduction of DNA to less

than 5 ng/mg of tissue with lengths less than 200 base pairs [201]. Further compositional

characterization of tracheal scaffolds could be enormously beneficial to predict and interpret

in vivo findings. Immunofluorescence, visualizing basement membrane constituents might

also be highly predictive of in vivo epithelial recolonization. Further, proteomics or western

blotting to assess remnant proteins, either cellular or matrix bound might predict poten-

tial immune response and shed light on signaling cascades involved in remodeling. Finally,

functional assays may be employed to assess the biological activity of specific proteins of

interest.

2.4 CONCLUSIONS

Patients diagnosed with primary tracheal cancers were historically palliated in the absence of

any effective treatment options. Recent preliminary clinical studies have shown ECM scaf-

folds provide a viable option for patients who previously had none [148]. This approach uti-

lizes decellularized human tracheas prepared via a detergent enzymatic method with sodium

deoxycholate. In addition to dire supply limitations, sodium deoxycholate is harsh ionic

detergent known to denature proteins both in vitro and in vivo [180, 181, 182, 183, 184].

More than simply removing cellular antigens and debris, ECM grafts processed with sodium

deoxycholate may not retain the growth factors, proteoglycans, and other matrix proteins in

a native configuration capable of providing cues to infiltrating host cells. Therefore, we have

tested alternative approaches and demonstrated that an abbreviated detergent enzymatic

method possible may be successfully employed in a relevant mammalian model. As hy-

pothesized, alternative, less harsh decellularization agents were equally capable of producing
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an acellular trachea ECM. However, there were clear differences in tracheal microstructure

and composition. Interestingly, our hypothesis that PAA would have a minimal effect on

ECM structure was also shown to be incorrect. While the gross and histologic appearance

of PAA treated specimens is nearly identical to untreated specimens, DSC demonstrated a

significant impact on graft structure and composition, further necessitating the use of more

sensitive analysis techniques. The observed differences described in this aim will be vital in

specific aim 2, when these grafts will be implanted in vivo and salient ECM features will be

correlated with scaffold remodeling and fate.
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3.0 SUCCESSFUL ORTHOTOPIC TRANSPLANTATION OF

DECELLULARIZED RAT TRACHEA

3.1 INTRODUCTION

In the previous chapter it was observed that even simple variations to a single decellular-

ization procedure can have significant effects on scaffold properties. These properties likely

drive host response and dictate implant fate. Employing an in vivo rodent model allows

us to couple similarities in mammalian airway structure and biology with the relative ease

of a small animal model. Additionally, a rodent model allows future mechanistic studies

utilizing mutant strains to investigate specific relevant signaling cascades. To date, many of

the preclinical studies evaluating tracheal transplants have been heterotopic, typically im-

planted in a sub-dermal position [200, 199, 202]. Heterotopic grafts are useful for verification

of biological and immunologic compatibility, however, their predictive ability for orthotopic

implantation is limited. Other studies have employed orthotopic implantation, but have

tested only a single experimental group, often controlling for in vitro cell seeding rather

than processing conditions [151, 152, 153]. Of those, many were window patches which have

increased survival compared to full circumference grafts, but fail to address the underlying

clinical need. To avoid this myriad of concerns, we propose to employ an orthotopic rat

transplantation model to test the several group of decellularized tracheas characterized in

specific aim 1. Given the measured scaffold degredation and denaturation data is specific aim

one we hypothesize that ionic detergent use and PAA treatment will be highly

correlated with degraded performance in vivo. To specifically test this claim, full

circumference grafts will be implanted for 12 weeks in vivo. Upon explant, the tissue will

be thoroughly characterized, taking special care to evaluate cellular infiltration, epithelial

differentiation, and site specific function.
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3.2 MATERIALS & METHODS

3.2.1 Implant

Lewis rats were anesthetized with intraperitoneal injections of ketamine hydrochloride (100

mg/kg) and xylazine hydrochloride (10mg/kg). Animals were placed in a supine position

with extremities secured. The surgical site was treated with betadine and aseptic surgical

technique was utilized. Intraoperative body temperature was maintained with a heating pad.

A midline cervical incision was created with visualization through a surgical microscope. The

graft was prepared by removing fluid from the lumen and any extraneous tissue. Proximal

distal orientation was maintained. The cervical esophagus and other vascular structures were

sharply dissected from the trachea with care not to damage the recurrent laryngeal nerves.

The trachea was transected three or four rings distal to the epiglottis and two rings were

removed. Meticulous hemostasis was performed to limit fluid entering the airway, and signs

of respiration were continually monitored. The animals were able to maintain spontaneous

ventilation through the tracheostomy. A 5-ring donor tracheal graft was transplanted with

end-to-end anastomoses starting distally with care to align the membranous portion of the

tracheal graft with the membranous portion of the recipient trachea. The cartilaginous

portions were secured with interrupted 7-0 Prolene sutures, two near the dorsal ends of the

cartilage rings and two placed on the ventral aspect of the tracheal repair as seen in Figure

3.1. The strap muscles were approximated and the skin was closed with 5-0 PDS suture.

Surgery averaged approximately 20 minutes.

3.2.2 Post-operative Care

After surgery, animals were ear punched for identification and allowed to fully recover from

anesthesia. Rats were individually housed in standard cages. Food and water was supplied

ad libitum. The following medications were administered as subcutaneous injections for five

days following surgery: buprenorphine (0.05 mg/kg) twice daily for pain relief, gentamicin

(8 mg/kg) once daily for infection prophylaxis. In the days following implant procedure

the animals were monitored daily for infection, inflammation, or delayed healing of the site.
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Figure 3.1: Intraoperative images of orthoptopic transplantion. Top: Decellularized tra-

chea after graft reanastomosis prior to strap muscle reapproximation and closure. Bottom:

Zoomed image demonstrating careful separation of the neurovascular bundle and graft align-

ment
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Special care was taken to monitor for any apparent respiratory distress, pain, or general

discomfort. Visual monitoring of food intake was made daily. After 14 days, animals were

socially housed.

3.2.3 Explant and Tissue Processing

Twelve weeks after surgery, rats were anesthetized with intraperitoneal injections of ketamine

hydrochloride (100 mg/kg) and xylazine hydrochloride (10mg/kg). An incision was made in

the abdominal cavity and the abdominal aorta was transected to exsanguinate the animal.

The entire length of the trachea was exposed via sternotomy with concomitant mid-line

cervical incision. The trachea from the larynx to just proximal to the bifurcation were

excised with the use of a surgical microscope. Grafts were mildly flushed with and stored in

cold Leibovitz’s L-15 medium (L15) supplemented with 10% FBS for immediate ciliary beat

analysis with differential interference contrast microscopy.

3.2.4 Ciliary Beat Frequency

Each trachea was trimmed of extraneous tissue under a dissecting microscope. Gross histo-

logical images were captured during dissection. Trachea were then cut longitudinally, half

was fixed for scanning electron microscopy while the other half was secured luminal side

down on a 35-mm glass-bottomed culture dish (Willco Wells) using a glass coverslip cov-

ered with a silicone sheet containing a small window to form a chamber (Figure 3.2). Cilia

dynamics were captured at room temperature with a 100X differential interference contrast

(DIC) oil objective and a Leica inverted microscope (Leica DMIRE2). Movies were made

with a Phantom v4.2 camera (Vision Research) at 200 frames/s (fps). To quantify ciliary

beat frequency (CBF), ImageJ was used to examine cyclic variations in pixel intensities cor-

responding to ciliary strokes (Figure 3.2). Specifically, at least 400 frames of cilia motion

were imported into ImageJ and a line was manually drawn through the beating cilia. The

video was then re-sliced along the line by time, resulting in a plot with pixel intensity plotted

along the x axis for each video frame. CBF was then computed manually by measuring cyclic

pixel variation over time. For each specimen more than three randomly selected areas were
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imaged from each trachea in order to calculate mean CBF for each treatment group. After

analysis, specimens were removed from the silicone chamber and fixed in neutral buffered

formalin for histological analysis.

3.2.5 Scanning Electron Microscopy

Tissue was fixed in 2.5% glutaraldehyde in 0.1 M PBS (pH 7.4) for 60 minutes. It was then

thoroughly rinsed in 3 changes of 0.1M PBS for 15 minutes each. Tissue was then fixed in

1% osmium tetraoxide in 0.1 M PBS for 60 minutes followed by 3 rinses in 0.1 M PBS for 15

minutes each. Specimens were then dehydrated in graded series of alcohol (in PBS) for 15

minutes each: 30, 50, 70, and 90% ethanol followed by 3 rinses in 100% ethanol. Specimens

were then mounted on studs with silver paste and sputter coated with palladium/gold and

stored in a dessicator until imaging. Images were obtained at several magnifications to

visualize epithelial coverage, ciliation, and lumen topology.

3.2.6 Histology

H&E and Movat’s Pentachrome staining was performed on explant tissue using standard

paraffin histological techniques.

3.2.7 Statistics

For survival curves, a log-rank test was employed to evaluate statistical significance. Sta-

tistical comparisons between cilia function was accomplished via one-way ANOVA analysis

with bonferroni correction. Significance was gained for all tests at p <0.05.
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Figure 3.2: Schematic of ciliary beat frequency analysis. Top: The freshly explanted and

transected trachea is sandwiched between a glass coverslip and glass culture well, silicone

sheeting is used as a spacer. Middle: DIC microscopy is used to capture at least 400 frames

of cilia motion. The video is imported into ImageJ and a line is manually drawn through

the beating cilia. Bottom: The video is re-sliced along the line by time, resulting in a plot

with pixel intensity plotted along the x axis for each video frame. Ciliary beat frequency is

computed manually by measuring cyclic pixel variation over time
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3.3 RESULTS AND DISCUSSION

3.3.1 Animal Survival Varies with Treatment, PAA Correlated with Positive

Outcomes

In general, animals tolerated surgery well and recovered quickly, resuming normal activity

levels within 12 hours. All deaths, except one, occurred within 10 days of surgery. Results

demonstrate increased survival trends (non significant) of Triton X-100 and SDS groups com-

pared to deoxycholate. Oddly, CHAPS decellularized grafts performed significantly worse

(Figure 3.3) than any of the other 3 non PAA treated detergent groups. There were no deaths

in the PAA treatment groups, demonstrating similar performance to the best untreated grafts

(Figure 3.4). More interestingly, the simple addition of a PAA rinse significantly improves

survivial of deoxycholate recipient animals at the 12 week time point.

Figure 3.3: Post-operative survival curves demonstrating increased survival among SDS and

Triton X-100 experimental groups.
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3.3.2 Mortality Driven by Obstruction

The observed deaths were likely not due to immediate surgical complications such as lumen

misalignment or inadequate anastomosis since necropsy of Triton, CHAPS, and sodium de-

oxycholate grafts demonstrate excellent anastomosis, however, there was substantial mucous

observed within the grafted sections. Therefore, it was concluded that mucuous obstruc-

tion was the most probable cause of death (Figures 3.5). Interestingly, neither stenosis nor

malacia was observed in any of the early deaths. Given the invasive nature of the pro-

cedure excess mucuous production is probably unavoidable with any graft, however, it is

possible that many, if not all, of the early mortalities would be avoidable in a clinical set-

ting. For example, it is known that patients who received tissue engineered transplants

required significant post-operative care including temporary stenting and endoscopic mucu-

ous removal [203]. Increased mucous production is also present during bacterial or fungal

infection, but this possibility was eliminated due to lack of symptoms and normal histologi-

cal analysis. The natural next supposition is that increased mucous production is correlated

with a stronger acute inflammatory response, which would suggest that CHAPS specimens

have poorer in vivo cytocompatibility. This directly contradicts the results we initially pre-

dicted given in vitro ECM analysis and implies that we cannot simply employ similarity to

native tissue as the metric for sucessfull decellularization. This is further supported by the

lack of deaths within the PAA treatment groups. The combination of these non-intutitive

findings oppose traditional wisdom in the tissue engineering field, which generally suggests

that during decellularization the less a tissue is disturbed, the more likely it is to result

in positive and physiologic remodeling. Other reports have confirmed these findings, for

example, Carruthers demonstrated poor in vitro compatibility of several tissue types after

CHAPS decellularization [204]. They suggests these results are, in part, due to loss of ECM

constituents and denaturation of the collagen fiber network. That explanation is based on

limited histological analysis and directly contradicts our more precise DSC findings from

chapter 2. Instead, we believe that the poor survivial is more likely due to inadequate re-

moval of the detergent or remnant cellular proteins. However, due to the early nature and
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small number of these deaths, the reepithelialization and cellular differentiation of animals

surviving the full 12 weeks is likely substantially more indicative of overall host reponse.

Figure 3.4: Post-operative survival curves showing 100% survival among both PAA post-

treated experimental groups.

3.3.3 Processing Conditions Predetermines Host Mediated Remodeling

All animals surviving to study end had patent grafts with intact and mechanically sound

cartilage. The tissue was elastic in the longitudinal direction, while appearing to maintain na-

tive like circumferential stiffness. When dissected for ciliary beat frequency analysis the graft

lumens appeared to have been fully reepithelialized, however, stenosis was readily apparent

in many of the CHAPS and sodium deoxycholate specimens (Figure 3.6). Interestingly,

SDS explants did not demonstrate stenosis, but fibrotic strictures were observed luminally

between the cartilage rings. All non-PAA treated grafts demonstrated a yellow hue, poten-

tially suggesting the onset of necrosis. Visible neovasculature similar to the flanking native

segments was not observed in the CHAPS, SDS, or Triton X-100 groups. Treatment with

PAA seems to dramatically improve the gross morphology effectively decreasing stricture
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Figure 3.5: Top: Gross appearance of CHAPS graft at necropsy. Middle CHAPS necropsy

H&E section demonstrating mucous obstruction in red, Bottom: Triton necropsy also demon-

strating lack of stenosis and muscous obstruction in red.
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formation and stenosis, which we believe are metrics predictive of longer term in vivo per-

formance. PAA treated grafts also demonstrate a healthy, native appearance with distinct

vasculature. These findings in combination with the mortality data further contradict our

initial hypotheses. Overall, it appears that PAA is strongly correlated with revascu-

larization and tissue integration, while CHAPS treatment is highly predictive of

poor performance. Most interestingly, PAA seems to ”rescue” the previously lackluster

sodium deoxycholate specimens, as measured by mortality and gross appearance.

From the review of clinical and experimental literature, we believe that the lack of revas-

cularization is the largest single hurdle for tracheal reconstruction and replacement. Many

earlier studies demonstrated that insufficient revascularization was a major obstacle to suc-

cessful remodeling in living tissue transplantation. Further attempts demonstrated vascu-

larized grafts are much less likely to necrose than free patches [90, 91, 92, 93, 10]. It is likely

that the necrosis resulting from non-vascularized cells causes a chronic inflammatory response

driving the negative surgical outcomes in these historic studies. One significant benefit of

decellularized tissue is that the slow colonization of the graft lumen with metabolically active

epithelial cells occurs in parallel with the restoration of vascular supply. Immediately at im-

plant the decellularized graft is simply a structural element and does not require significant

vascularity to support it’s function. Thus, we believe that the demonstrable improvement

in PAA treated specimens is largely due to improved revascularization. While it is not

necessarily possible to decouple revascularization from broader in vivo cytocompatibility,

distinguishing the timeline of the epithelial and vascular regeneration may be beneficial to

establish a preliminary causal structure. This structure would be best investigated through

detailed histological anlyses at study mid points, preferably at 4 and 8 weeks.

Unfortunately, another limitation of the current study is that we are unable to specif-

ically determine the mechanisms underpinning these findings, but will instead endeavor to

make educated guesses given prior ECM characterization and the existing body of literature.

For example, it is known that upon ECM implantation, host macrophages begin immedi-

ately infiltrating the scaffold. Recent studies have shown that these macrophages are potent

modulators of disease and tissue remodeling following injury. M1 and M2 macrophages have

also been shown to play distinct roles in tissue remodeling following injury and differential
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macrophage phenotype may catalyze either positive or negative tissue remodeling. Effec-

tively, the biochemical and structural characteristics of the implanted device influence the

host macrophages, altering the polarization profile and effectively predermining the host

response. Differential macrophage staining may be employed in future studies to further

investigate the host immune response [205, 206, 207]. Non-polar membrane bound proteins

are involved with cell to cell recognition and are most likely to influence macrophage polar-

ization and thus drive a negative immune response. Since CHAPS is the weakest detergent

with the smallest micelle it may simply be incapable of properly solubilizing and removing

many remnant membrane bound proteins. This inability to remove non-polar membrane

bound proteins may have contributed to the lack of revascularization, eventually leading to

stenosis and necrosis. Given the weaker monomer affinity and low molecular weight micelles

we can most likely eliminate insufficient removal of CHAPS as a significant factor.

When considering PAA, there are several potential mechanisms which may be respon-

sible for the notable improvement in longer term grafts. First, PAA has been shown in

some studies to aid in removal of remnant detergent and enzymes [208], which may substan-

tially improve the host cellular response. This would potentially explain the improvement

in sodium deoxycholate and Triton X-100 groups, but unfortunately, since we did not test

CHAPS and SDS with a PAA rinse we cannot specifically confirm this supposition. Second,

PAA treatment has been shown to increase porosity in a number of dense collagenous tis-

sues, including the tendon [209], which could improve cellular infiltration and subsequently

increase angiogenesis. This supposition could be readily examined by the mid point anal-

yses proposed earlier to assess rate of revascularization. It is also possible that PAA may

have acted to partially eliminate endotoxins that may have resulted from bacterial growth

during processing. It has been suggested that endotoxin present within the ECM may also

affect signalling through the TLR4 pathway, resulting in a pro-inflammatory response [210].

To test this hypothesis, we could simply assess endotoxin levels before and after the PAA

processing step.
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Figure 3.6: Gross morphology of representative explanted tracheal grafts. Significant stenosis

in CHAPS and sodium deoxycholate groups. All non-PAA treated grafts demonstrated

a yellow hue, potentially suggesting the onset of necrosis. Neovasculature is not readily

apparent in the CHAPS, SDS, or Triton X-100 groups. Treatment with PAA dramatically

improves graft appearance at explant. PAA treated grafts demonstrate a healthy, native

appearance with distinct vasculature
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3.3.4 Decellularized Grafts Support Epithelial Growth and Differentiation

As discussed above, all grafts were fully epithelialized by 12 weeks, however, there were

significant differences in the level of appropriate cellular differentiation between treatment

groups. This is to be expected given the extraordinary differences observed in the gross

morphology. Unsurprisingly, reepithelialization mirrored gross observational findings in all

the experimental groups. CHAPS explants were uniformly coated in squamous epithelium

(Figure 3.8), while SDS specimens showed mostly squamous coverage with localized patches

of ciliated epithelium (Figure 3.9). Among the non PAA treated grafts, only Triton X-100

demonstrated any significant and uniform epithelial differentiation with cilia development.

As we can see from Figures 3.10 and 3.11, PAA treated groups demonstrated excellent

ciliation compared to their untreated counterparts, with the most pronounced difference

between the sodium deoxycholate groups. It was hoped that immunofluorescent (IF) and

histological analysis would be possible to probe the relative prevalence of ciliated epithelium

and goblet mucosal cells to better establish the presence of all lineages of differentiated

epithelium. However, once it became clear that the functional analysis effectively prevented

further histological analysis it was determined that observing and quantifying ciliary beat

frequency was more vital to overall study goals.

It is entirely possible that alteration or removal of basement membrane constituents as

a result of decellularization disrupts the mechanical and biological cues that assist with site

specific differentiation. However, the anomalous improvement in sodium deoxycholate and

Triton X-100 after PAA treatment would make this argument less compelling. Instead it

may be better explained by removal of residual detergent. Since sodium deoxycholate has a

much higher monomer affinity to proteins, it might also explain the differential improvement

between Triton X-100 and sodium deoxycholate. Our proposition that increases in porosity

leading to improved vascularity may also have a synergistic effect. This would explain the

sparser ciliation and decreased cilia function in non PAA treated specimens.
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Figure 3.7: Left: Scanning electron micrograph (1000X) of the native rat trachea. Right:

Expanded view (5000X) of dense mature ciliated epithelium

Figure 3.8: Representative scanning electron micrograph (25X) of 12 week CHAPS explant.

Right frame shows expanded view (500X) of squamous epithelium
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Figure 3.9: Representative scanning electron micrograph of 12 week SDS explant. Left:

100X magnification Right frame shows expanded view (1,000X) of squamous epithelium

with several ciliated cells in the bottom right corner

3.3.5 PAA treated Grafts Regenerate a Functional Immunological Barrier

In addition to it’s vital mechanical function, the trachea also acts as the first immunological

barrier to environmental pathogens. Mucous traps inhaled particles and the ciliated epithe-

lium beat in concert to remove the foreign particles (Figure 3.7). Therefore, to quantify the

success of our implants, we must assess their function as an immunological barrier. Unfor-

tunately, current techniques used to study airway cilia motility are limited. Clinically, brush

biopsies and simple transverse airway sections are utilized, but these techniques are not vi-

able in rodent specimens due to excessive damage upon removal. Alternatively, some groups

employ various cell culture techniques to obtain sheets of differentiated ciliated epithelia from

harvested airway cells. This technique requires significant time and the relevance to in vivo

performance is questionable. Real time DIC imaging allows quick and simple determination

of airway cilia function in a large number of different treatment groups. While being an in

vitro technique the airway epithelium remains attached with its underlying and supporting
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Figure 3.10: Representative scanning electron micrographs of 12 week Triton X-100 explants

with expanded views. Top: Non-PAA treated control showing a patent lumen with good ep-

ithelial recolonization and differentiation. Bottom: PAA treated Triton X-100 graft showing

excellent epithelial coverage with mature cilia.
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Figure 3.11: Representative scanning electron micrographs of 12 week sodium deoxycholate

explants with expanded views. Top: Non-PAA treated control showing squamous epithelium

with distributed patches of bare ECM (100X) . Bottom: PAA treated Triton X-100 graft

showing excellent epithelial coverage with mature cilia. Right frame shows expanded view

of squamous epithelium
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Figure 3.12: Ciliary beat frequencies computed from 12 week non PAA treated Triton X-100

explants (n = 5). Explanted tracheal sections, both graft and native, have cilia function

significantly lower than naive controls.

tissues which closely mimics its natural in vivo tissue environment.

Upon DIC imaging, it became clear that among the non PAA treated grafts, only Tri-

ton X-100 showed any significant cilia function. The sparse ciliation observed with SEM

among SDS, CHAPS, and sodium deoxycholate groups was confirmed with DIC microscopy.

The patchy regions of motile cilia in SDS and sodium deoxycholate grafts was insufficient

for analysis. The non PAA treated Triton X-100 grafts showed beat frequency similar to

the flanking native segments, however, these values were significantly depressed compared

to naive controls (Figure 3.12). Remarkably, both Triton X-100 and sodium deoxy-

cholate grafts treated with PAA showed ciliary beat frequency comparable to

both flanking native sections and naive controls (Figure 3.13). Unfortunately, we

were not able to preserve specimen orientation during imaging, therefore, we are unable

to quantify global beat orientation. However, it is possible to qualitatively assess the beat

coordination and uniformity of beat direction. It is clear within PAA treated groups there

is significant coordination among neighboring cells, with PAA treated Triton X-100 grafts
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Figure 3.13: Ciliary beat frequencies computed from 12 week PAA treated Triton X-100 and

sodium deoxycholate explants (n = 5 each). Naive cilia function is restored among all PAA

treated grafts

demonstrating the longest range cilia coordination. Further work could be conducted to

quantify this finding with particle image velocimetry (PIV) techniques. In this approach,

tracer particles, are dispersed within the fluid and their motion is correlated to fluid flow

characteristics. Since fluorescent particles may be employed within our existing setup, we

could utilize lower magnification videos to gain longer range data on flow patterns and veloc-

ity rather than simply ciliary beat frequency. This approach has been previously employed

in mutant murine models to assess features of cilia development and function, but would

be a novel addition to the tissue engineered literature [211]. Regardless of our inability

to quantify the fluid transport, this report is the first demonstration of cilia

regeneration and restoration of native-like function within a tissue engineered

transplant.
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3.3.6 Limitations and Future Work

In this study, we employed a relatively short graft, which in clinical settings would have

simply been reanastomosed. While we suggest that the lack of initial cell seeding may

improve outcome by temporarily slowing healing, the lack of an antigen barrier immediately

at implant is a potentially serious concern. Given that there were no infections detected in

over 30 animals, it seems that suitable prophylactic antibiotic administration can significantly

hedge this risk. Unfortunately, the progression to a larger graft may require us to reevaluate

this risk and develop more sophisticated approaches. Another major concern which has been

partially addressed in previous section is our inability to specifically identify the mechanism

of PAA improvement. Further studies are necessary to improve upon the in vivo analysis

through more mechanistic studies of tracheal reepithelialization. For example, a recent study

from our group has examined proliferation of various populations of tracheal basal cells over

time [212]. The kinetics of epithelial healing was shown in murine tracheal reconstruction

via immunofluorescent labeling of K5+/K14+ basal cells. Histological data demonstrates a

correlation between the depletion of the K5+/K14+ cell population and the generation of a

mature differentiated epithelium (Figure 3.13 and 3.14). This finding confirms other studies

which have shown that K5+/K14+ basal cells represent a precursor cell population with

the capacity to develop into ciliated (ACT+) and secretory (CCSP+) cells. Potentially, this

more detailed approach could shed light on the relationship between altered scaffold basement

membranes seen in specific aim 1, differential basal cell proliferation and eventually epithelial

differentiation in vivo.

3.4 CONCLUSIONS

It was found that there were dramatic differences in vivo among the various detergent de-

cellularized groups. Bearing in mind that the current clinical protocol employs sodium

deoxycholate, these findings are extremely concerning. Of the tested specimens sodium de-

oxycholate performed among the worst. Our hypothesis that treatment with milder non-ionic
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Figure 3.14: Histologic examination of basal cell protein expression within decellularized

mouse tracheal grafts. Tracheas were explanted at 1, 4, and 8 weeks following surgery and

were examined for expression of keratins 5 (K5, red) and 14 (K14, green), followed by DAPI

staining (blue). Dual-positive cells are highlighted in yellow. Scale bar 200 microns.

75



Figure 3.15: Explants of mice one, four, or eight weeks following surgery and immunofluores-

cent labeling for markers of mature epithelial cells was performed, followed by DAPI-staining

(blue). Images are shown at a mid-graft location. Cells expressing acetylated tubulin (ACT,

red) and Clara cell secretory protein (CCSP, green) are shown
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or zwitter-ionic detergents would improve host mediated remodeling was partially confirmed.

Triton X-100 seemed to perform the best among the non PAA treated specimens, however,

CHAPS performed most poorly, potentially due to it’s weak amphiphilic character or it’s

small micelle size. Our other hypothesis suggesting a degradation in scaffold performance

with PAA post treatment was strongly refuted. It was found that PAA treatment signif-

icantly improved epithelial differentiation and restored a native-like immune barrier. In

conclusion, it’s clear that simple divergence from native structure is not a good metric for

predicting scaffold performance. Second, simply picking an appropriate detergent is insuffi-

cient to ensure a positive implant outcome. While our current study is unable to establish a

clear mechanism for this result, the empirical results are impressive. There are likely to be

further challenges when translating to a large mamlian trachea, but our results suggest that

employing Triton X-100 with a PAA post-treatment may dramatically improve the perfor-

mance of the ECM implants through improvements in graft revascularization. Therefore, in

specific aim 3 we will endeavor to translate this approach to a relevant large animal model.
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4.0 TRANSLATING TO A CLINCIALLY RELEVANT XENOGENEIC

SCAFFOLD

4.1 INTRODUCTION

Preliminary studies have demonstrated the use of decellularized human trachea clinically

with excellent short-term results [148]. In this approach, cellular material was removed from

a human donor trachea with detergent and enzymatic rinses. The remaining extracellular

matrix (ECM), was then reseeded with the patient’s own cells and implanted. Unfortunately,

wider adoption of this approach has been hampered by significant donor tissue limitations,

which has only been exacerbated during the past decade due to the increased incidence of

vital organ failure. The increasing shortfall of adequate organs, largely driven by an aging

population, has resulted in major organ shortages, not only significantly increasing in the

number of patients on transplant waiting lists, but also wait time and mortality. In the

United States, for example, a patient is added to the organ waiting list every 10 minutes.

On average 79 people receive organ transplants daily, however, 18 people will die waiting

for those same transplants [213]. Given this critical dearth of suitable human tissue for

transplantation, it’s not surprising that there is even less human donor tissue available for

use in the wider adoption of the current clinical tissue engineering paradigm. In the infancy

of the tissue engineering field, this limitation became immediately obvious and significant

work was attempted to assess the feasibility of polymeric scaffolds and ECMs derived from

xenogeneic sources. In the case of xenogeneic ECMS, thankfully, it was found that with

proper processing conditions they were well tolerated during transplant and applied with

enormous success to repair damaged tissues such as muscle[214], epidermis [215], bone [216],

and tendon [217]. This success is evident in the extraordinary growth rate in the number of
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procedures. By 2002 more than 200,000 human patients had been implanted with xenogeneic

ECM scaffolds [218]. This number quickly grew to exceed 1 million patients by 2007 [219].

Since the end-goal of this study is to engineer a decellularized porcine trachea suitable for

human transplantation, we propose translating the optimum protocol identified in specific

aim 2 (Triton X-100 with a PAA post treatment) to a clinically relevant porcine scaffold. Due

to the obvious size differences among species it is not necessarily possible to directly trans-

late an existing protocol. Often, translation requires harsher treatments or longer contact

times, potentially negating the improvements produced as a result of optimized processing.

Therefore, a previously developed novel cyclical pressure device will be implemented to aid

in the most direct translation to porcine tracheal tissue.

4.1.1 Cyclical Pressure Decellularization

Since its inception as a field, there has been significant work to characterize the structure

and biology of ECM scaffolds and their effect in vivo; yet, the chemicals and techniques

employed during decellularization have remained relatively unchanged. There have been sev-

eral novel approaches employing using ultrahigh pressure [220] or even supercritical carbon

dioxide [221]. However, these have shown minimal improvements for the substantial increase

in complexity and cost. Other than hypo- and hypertonic solutions, traditional treatments

do not dramatically improve perfusion into and out of the tissue. Therefore, cyclical hydro-

static pressure was tested to improve infiltration of decellularization chemicals and removal

of cellular debris. In order to test this hypothesis, a device was assembled from commer-

cially available parts including a vacuum pump, cryotrap, pressure chamber and solenoid

valve (Figure 4.1). Custom LabView software was written to control the rotary vane vac-

uum pump and 3-way solenoid valve. Cycle rate, number, and duty cycle were controlled

independently. Pressurization and depressurization rates also were controlled through the

proportional solenoid valve. Through extensive empirical testing, it was found that when

tissues were submerged in decellularization solutions and exposed to negative pressures with

high pressure ramp rates the efficacy of standard decellularization chemicals was dramati-

cally improved. To demonstrate the efficacy and logic of this approach and we will present
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three studies. Two explore the retention of native tissue mechanics during extended decel-

lularization of dermis and vocal fold compared to traditional agitation controls. The third,

demonstrates the ability of cyclical pressure decellularization to fully decellularize aorta and

successfully perform in long-term large animal implants.

4.1.1.1 Pressured Assisted Decellularization Improves Retention of Native Me-

chanical Properties

Porcine Dermis. The thickness, density, and complexity of the dermis has historically

required the use of a variety of mechanical and chemical methods during tissue harvest and

decellularization. Hot water sanitation and liming are common practices prior to decellu-

larization. Hot water treatment sanitizes the skin and aids in hair removal, while liming

serves the dual purpose of disinfection and hair removal. Further decellularization steps

have employed harsh enzymatic treatments with trypsin and long contact times with strong

detergents such as SDS [222]. We have attempted to demonstrate that none of these steps

are necessary with suitable perfusion resulting from cyclical pressure decellularization. In

our study porcine dermis was obtained in PBS at 4◦C from Tissue Source. The tissue was

then frozen at -80◦C overnight. Dermis was thawed in DI water and subjected to decellular-

ization with 60 second alternating vacuum cycles submerged in DI water, 3% Triton X-100,

3M NaCl, then 2,000KU DNAse each for 30 minutes. This process was repeated twice, then

the specimens were rinsed overnight in PBS at 4◦C. This whole protocol was conducted 7

more times. Traditional H&E sections of the specimens were obtained to evaluate structure

and removal of intact nuclei and cellular debris with the cyclical pressure decellularization

approach. As we can see from Figure 4.2, a 7 day decellularization protocol employing

these steps appears to be capable of complete nuclear removal with almost no structural

disruption. To confirm the structural findings observed in histological sections, we sought

to obtain mechanical properties in response to a ball-burst test of native, agitation control,

and vacuum decellularized dermis. Specimens were cut into square samples 25 x 25 mm and

examined using an American Society of Testing and Materials (ASTM) standard ball-burst

apparatus with a ball diameter of 9.52 mm and a sample surface area of 216 mm. The tissues
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Figure 4.1: Cyclical pressure device comprised of a PC controlled vacuum pump, solenoid

valves, pressure sensor, and vacuum chamber. Pressure is cyclically pulsed with tissue sub-

merged in a detergent to effect decellularization
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Figure 4.2: H&E sections of: Native porcine dermis (Top) and Cyclical Pressure Decellular-

ization (Bottom)
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were secured between two flat clamps with interlocking triangular grooves and mounted onto

a custom stand, which attaches to the base of an Instron 4502 (Instron, Norwood, MA). The

ball was connected in series with a load cell (Honeywell, 5 kN) and a movable cross-head.

Prior to testing, a small pre-load of 1N was applied to ensure contact between the dermis

and the ball while minimizing tissue deformation. Each sample was then loaded to failure

at a rate of 10 mm/min. The resulting load-elongation curves were analyzed to determine

the structural properties of each tissue. Failure load (N) and maximum extension (mm)

corresponding to the ball breaking through the specimen were recorded. To calculate stiff-

ness (N/mm), the maximum slope over a running window of 20% of the failure elongation

was used. As evident in Figure 4.3, there is a significant retention of native mechanics in

the vacuum decellularized scaffolds compared to agitated controls, confirming our original

hypothesis.

Porcine Vocal Fold. Unlike dermis, the vocal fold’s function is dependent on a series

of very fine and highly specific mechanical properties. Past studies raise concern that the use

of harmful chemical and mechanical agitation disrupts the internal matrix structure, causing

the scaffold to become significantly more elastic than the properties of native tissue. Thus,

the current generation of decellularized vocal fold scaffolds do not possess the correct viscous

mechanical properties and over-exaggerate vibratory functions [223]. As with the dermis,

our goal with vocal fold was to assess the relative retention of appropriate mechanics during

decellularization. To this end, we employed linear shear analysis, which is a physiologically

relevant testing modality that mimics the vibratory function of the vocal folds.

Larynxes were harvested and received from TissueSource. Tissues were rinsed with Type

I water and frozen at -80◦C until use. Vocal folds were isolated from the larynx in approxi-

mately 6 mm by 6 mm sections using a scalpel and forceps. Each specimen was subjected to

three 10 minute washes of Type I water, 3% Triton X-100, and 3M NaCl. During each wash

the vacuum chamber containing the specimens was evacuated for 30 seconds at 1 minute

intervals. Between each 10 minute cycle, specimens were rinsed with Type I water. Be-

tween vacuum treatments, tissues were stored at 4◦C on an orbital shaker at 200 rpm in

solutions of Type I water, 3% Triton x-100, and 3M NaCl for each respective night. Lasting

for 4 days, the protocol exposed tissues to 12 cycles of all three solutions. Upon comple-
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Maximum Stiffness

Failure Stress

Figure 4.3: Plots comparing maximum stiffness and failure stress for cyclical pressure de-

cellularized, agitation controls, and native vocal folds. Please note the significant difference

between agitation controls and both cyclical pressure decellularized and native tissue for

both measured parameters.
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tion of vacuum decellularization, the remaining decellularized connective tissue matrix was

characterized as VF-ECM. 0.1% (v/v) peracetic acid was used to disinfect the tissues. The

disinfected VF-ECM was washed twice for 15 minutes with PBS (pH 7̄.4) and twice for 15

minutes with Type I water. The VF-ECM was then packaged in physiologic saline and ter-

minally sterilized through gamma irradiation. Assessment of the viscoelastic properties held

by the cyclical pressure decellularized scaffold, the agitated control, and native tissue was

completed via linear shear analysis using an EnduraTEC Electro-Force Mechanical Testing

System (Model ELF 3200, Bose, Minnetonka, MN). Capable of strain oscillations of up to

200 Hz, a frequency sweep was performed from 0.1 to 175 Hz in 5 Hz increments. Prior

to applying any load, compression was set to 40% to ensure an adequate and representa-

tive tissue response. Properties of native tissue were collected to establish a baseline for

comparison. Scaffolds were attached to the lower, stationary plate by mounting them on

sand paper. As the upper plate oscillated, values of mechanical properties were assessed and

collected within an Excel file. Upon completion of the data acquisition phase, the Excel

files were sent to a Mathematica code, which characterized the viscoelastic properties of the

specimen. Mann-Whitney statistics were conducted to assess significance between the me-

chanical parameters of native and decellularized tissues, significance was gained at p<0.05.

It was shown that traditional agitation based decellularization approaches were incapable

of producing VF-ECM with appropriate mechanical properties, whereas, there were no sig-

nificant differences between cyclical pressure decellularization and native specimens (Figure

4.4).

4.1.1.2 Demonstrated Success of Cyclical Pressure Technique in Three Month

Large Animal Implants

Porcine Aorta. Given the benefits observed in other tissues known to be notoriously

difficult to decellularize, it was felt that the cyclical pressure device could be beneficial if

applied sucessfully to porcine aorta. In this study, we sought to demonstrate decellulariza-

tion without the trypsin or other harsh detergents employed in other studies, which have

been shown to have a strong effect on the resulting mechanical properties [224, 225]. To
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Figure 4.4: Viscoelastic properties of cyclical pressure decellularized, agitated controls, and

native vocal folds. Agitated controls were found to be significantly different than both

cyclical pressure decellularized specimens and the native control. No significant difference

was observed between native and cyclical pressure decellularized specimens.
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Native

Agitated Control

Cyclical Vacuum Decellularization

Figure 4.5: Comparison of hematoxylin and eosin staining for native, agitation control, and

cyclical pressure decellularized porcine aorta demonstrating improved retention of tissue

micro-structure in pressure assisted techniques compared to standard agitation decellular-

ization.
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accomplish this, porcine aorta was obtained in PBS at 4 C from Tissue Source. The tissue

was then frozen at -80◦C overnight. The aorta was thawed in DI water and subjected to

decellularization with 60 second alternating vacuum cycles submerged in DI water, 3% Tri-

ton X-100, 3M NaCl, then 2,000KU DNAse each for 30 minutes. This process was repeated

twice, then the specimens were rinsed overnight in PBS at 4◦C. This whole protocol was

conducted 12 more times, to ensure complete decellularization as determined by DNA gel

electrophoresis and histology (Figure 4.5). The aortic tissue was then packaged in physi-

ologic saline and terminally sterilized through gamma irradiation. Patch aortaplasty was

conducted on 15kg piglets under anesthesia and aseptic conditions - shaved skin, sterile sur-

gical fields, preparation with Betadine. A left thoracotomy was performed in the fourth

intercostal space. Vascular clamps were placed across the descending aorta separated by 4

cm. The aortic clamp was maintained for approximately 20 minutes. A 4cm long, 50% cir-

cumferential segment of the descending aorta was resected and substituted with an arterial

graft to repair the surgical defect with polypropylene 5/0 suture. The clamps were released

with appropriate deairing of the anastamosis and hemostasis assured (Figure 4.6). The ribs

were reapproximated with heavy vicryl suture, the lung fully expanded, and the peritoneal

layer and skin closed in two layers. A chest tube was placed with a purse string suture, if

necessary, and removed within 48 hours depending on drainage. After 12 weeks, animals

were euthanized and the aorta was excised with several cm of flanking native tissue. At

explant, the patches had become remarkably well integrated with no thrombosis or evidence

of an ongoing inflammatory response (Figure 4.7). The patch had also appeared to have

completely reendothelialized.

4.2 MATERIALS & METHODS

4.2.1 Tissue Collection

The trachea from Whiteshire Hamroc pigs were harvested immediately following euthanasia

(Tissue Source). The animals were of similar genetic heritage, and were raised and kept
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Preimplant

Prior to Closure

Figure 4.6: Surgical images demonstrating the graft prior to implant (top) and completed

surgery immediately before closure (bottom)
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Figure 4.7: 12 week explanted cyclical pressure decellularized specimens
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in identical husbandry conditions including diet and vaccination history. All tissues were

harvested on the same day and stored on ice during overnight shipping.

4.2.2 Porcine Trachea Vacuum Decellularization

Specimens were thoroughly rinsed with deionized (DI) water and cleaned of extraneous tissue

under a Zeiss DV4 dissecting scope. Samples were frozen at -80◦C until use. Porcine trachea

were decellularized in 14 days with overnight rinses. Each day, tracheas were submerged

in four separate solutions (DI water, 3% triton X-100 3M, and 2,000 KU DNAse I in 1M

NaCl) each for 30 minutes. During submersion in each solution, the pressure within the sur-

rounding chamber was cycled once a minute (evacuate chamber from 0.1 MPa to 0.006MPa

in 30 seconds, hold 25 seconds, pressurize 0.006 MPa to 0.1 MPa in 5 seconds, Figure 4.8).

Overnight, specimens were stored in 1% anti/anti in PBS. After 14 days of decellularization,

specimens were exposed to a single 0.1% PAA and 4% ethanol treatment for 90 minutes

followed by three 30 minutes rinses in PBS. Finally, all trachea were individually packaged

in physiologic saline and gamma irradiated to ensure terminal sterilization.

Figure 4.8: Chart demonstrating programmed pressure profile for three decell cycles taking

approximately one minute each
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4.2.3 Suture Retention Testing

Tracheas were transversely dissected and reanastomosed using 2-0 chromic gut in 5 equally

spaced, interrupted sutures. The proximal and distal ends of the trachea were clamped

between between two flat clamps with interlocking triangular grooves (Figure 4.2). A uni-

axial Instron 4502 (Instron, Norwood, MA) with 5kN load cell (Honeywell) and a moveable

crosshead was employed for testing. Prior to testing, a small preload of 1 N was applied. Each

sample was then loaded to failure at a rate of 50 mm/min. The resulting load-elongation

curves were analyzed to determine the suture retention properties of the decellularized tra-

chea compared to native controls. Average maximum failure load (N) was computed.

4.2.4 Pressure Diameter Testing

The effects of decellularization on the mechanical behavior of the decellularized graft was de-

termined by performing pressure diameter testing employing the device described in Specific

Aim 1. Three porcine tracheas were tested both before and after decellularization. Trachea

were installed and retained on the notched adapter with zip ties. Upon mounting, a small

tension was placed on the tissue along the length of the graft to simulate physiologic ten-

sion. Tracheas undwent 10 preconditioning cycles, from -10 mmHg to 60 mmHg to simulate

physiological respiration. Trachea were then tested quasistatically at -200 mmHg and 200

mmHg to confirm structural integrity at sub and supra-physiologic pressures [226].

4.2.5 In vitro Cell Culture

Human brochial epithelial cells were obtained from excess pathological tissue remaining after

lung transplantation under a protocol approved by the University of Pittsburgh Investiga-

tional Review Board. Tissue was obtained following lung transplantation for a variety of

pathological conditions including bronchiectasis, emphysema, primary pulmonary hyperten-

sion, pulmonary fibrosis, and alpha1-antitrypsin deficiency. Tissues was acquired by care-

fully removing 2-3 cm pieces of airway from lungs with sterile scissors and forceps. Excess

parenchyma was removed and the airway opened lengthwise. The airway lumen was cleaned
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by wiping on the sterile field. The airway was then placed in sterile, cold EMEM/HEPES

+ sodium bicarbonate pH 7.41,8 (referred to as EMEM/HEPES) on rocker at 4C overnight.

Media was then aspirated, excess tissue was removed from outside of airway, the tissue

was then rinsed aggressively in EMEM/HEPES and blotted on a sterile towel. Tissue is

then placed in 1mg/mL Protease media containing type XIV: Bacterial, From Streptomyces

griseusin in EMEM/HEPES media for 36-48h at 4C. After culture, tissue in gently scraped

with a scalpel blade. After scraping all tissue pieces, the petri dish is washed with fresh,

cold EMEM/HEPES media to collect cells. Cells are spun down cells for 5 minutes at 900

RPM and resuspended in Accutase for 10 minutes on rocker at 4C. Accutase is supplemented

with 1% FBS and spun down for 5 minutes at 900 RPM. Supernatant is removed and cells

are resupsended in Lifeline media containing antibiotics as necessary. Cells are plated onto

collagen coated flasks at approximately 4 millions cells per flask and stored at 37C and 5%

CO2. After 24h of seeding if there are still floating cells, add 8mL of fresh LifeLine media

without removing any media. Cells are fed daily with fresh warm LifeLine media. Upon

reaching 80% confluence, cell culture plates are prepared by placing small picces of decel-

lularized tracheal mucosa in the wells. Cells are trypsinized from the flasks, spun down at

900RPM for five minutes and resuspended in LifeLine media. LifeLine media is added to the

well and approximately 250,000 cells are added to the apical mucosal surface. Tissue was

cultured in an incubator at 37C and 5% carbon dioxide. Three days later cells were fixed

with 10% neutral buffered formalin for imaging.

4.2.6 Histology

Fixed porcine tissue was embedded in parrafin for traditional hemotoxylin and eosin staining

of 5 micron sections. Fixed tracheal mucosa was imaged with differential interference contrast

microscopy to visualize epithelial coverage and phenotype. To visualize cytoskeletal structure

a FITC conjugated phalloidin stain was also employed. Specimens were permeabilized in

0.1% Triton X-100 in PBS for 1 hour prior to staining with 1:200 dilutions of phalloidin

(Molecular Probes, Life Technologies)
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4.2.7 Statistics

Statistical comparisons between ultimate load at failure during suture retention was accom-

plished via t-test. Significance was gained for all tests at p <0.05.

4.3 RESULTS AND DISCUSSION

4.3.1 Cyclical Vacuum Capable of Successful Porcine Tracheal Decellularization

Cyclic pressure variation was hypothesized to accelerate and improve tissue decellularization

through increased tissue perfusion. The removal of mechanical agitation necessary in many

of the previous approaches is also believed to contribute to an improvement in the tissue

properties. Additional work was conducted employing this technique on a host of other

tissues, including aorta, dermis, vocal fold, brain, optic nerve, and urinary bladder matrix.

Cyclical pressure was shown to be efficacious for both dense fibrous tissues, as well as delicate

nervous tissue such as brain. Figure 4.9 demonstrates hematoxylin and eosin staining of

decellularized porcine trachea processed with the device. Protocol was capable of cellular

removal from the mucosa and intercartilaginous segments as with rodent trachea. However,

as before, some residual nucelar material was maintained within the chondrocyte lacunae.

4.3.2 Xenogeneic Scaffold is Mechanically Suitable for Transplant

Suture retention testing demonstrated little to no difference in load to failure or stiffness of

decellularized and native porcine trachea. Interestingly there was a pronounced toe region

within the uniaxial data suggesting a loosening of the fibrillar structure which may in turn

delay full fiber recruitment (Figure 4.10). However, it is not expected that this effect will

alter the physiological function in any way. Additionally, pressure diameter testing at both

highly supra- and sub-physiologic pressures demonstrated a safety factor >3.
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Figure 4.9: Hemotoxylin & Eosin staining of native (top) and vacuum decellularized (bottom)

porcine trachea
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Figure 4.10: Left: Suture retention curves showing load elongation. Mean and standard de-

viation for each group is presented. Right: Suture retention setup showing a reanastomosed

trachea clamped prior to uniaxial load to failure testing on a Instron 4502
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4.3.3 Porcine Scaffolds Support Healthy Human Respiratory Epithelium

After 72 hours in vitro human bronchial epithelial cells showed good attachment with excel-

lent coverage (Figure 4.11). A control specimen for the cells was also seeded onto a transwell

filter for full air liquid interface culture to demonstrate the ability of this particular pa-

tient’s epithelial cells to fully differentiate. Results demonstrated full differentiation with

cilia production, as evaluated by phase contrast microscopy.

4.3.4 Limitations and Future Work

As discussed, one of the main concerns with the translation to a large scaffold is the necessity

of quick vascular restoration upon implantation. The grafts to date have survived with a

combination of omental wrapping and in vitro seeding of bone marrow derived mesenchy-

mal stem cells. Autologous MSC retrieval is mostly non-invasive and likely necessary to

maintain cartilage structure and function in a larger implant. Additionally, MSC seeding

is relatively straight forward and would not require complex rotating air liquid culture. To

address concerns with reepithelialization over a longer implant length, we propose an intra-

operative epithelial seeding process as first tested clinically by Macchiarini et al. to simplify

the preculture process and expedite implantation[117, 148]. Given the dramatic improve-

ment seen with Triton X-100 and PAA treatment in a rodent model, epithelial seeding may

eventually be found to be unnecessary.

4.4 CONCLUSIONS

Decellularization with Triton X-100 and PAA was identified as the optimum procedure in

specific aim 2, however, due mostly to size differences, direct translation to a porcine tissue

was not possible. Therefore, a cyclical pressure device was developed and employed. The

resultant decellularization process was efficacious, demonstrating cellular removal from the

mucosa and intercartilaginous segments. Additionally, the cyclical pressure approach obvi-

ated the need for long treatment times with harsh detergents, our 14 day protocol is nearly
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Figure 4.11: Histology of fixed tracheal mucosa after 72 hours seeding in vitro with human

bronchial epithelial cells. Top: Differential interference microscopy stack showing confluent

epithelium. Bottom: FITC conjugated phalloidin stained epithelial cells
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300% faster than existing clinical protocols. The use of decellularized xenografts is of fur-

ther benefit when the ability to stock pre-sized grafts eliminates the need for lengthy graft

preparations for each patient. However, most importantly, our development of a xenogeneic

graft obviates the need for any of the critically needed human donor tissue. It is hoped that

after suitable large animal implants we may eventually progress towards a first in human

trial.
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5.0 SUMMARY AND CONCLUSIONS

Patients diagnosed with primary tracheal cancers were historically palliated in the absence

of any effective treatment options. Thankfully, landmark studies from European clinicians

have demonstrated success in limited trials of decellularized human trachea grafts [148].

These ECM implants offer a wonderful opportunity for patients with no other viable options.

However, there are significant barriers to more widespread implementation of this life saving

technology. Current standards employ harsh ionic detergents in a long, drawn out process.

Sodium deoxycholate, the most commonly employed detergent, is known to denature proteins

both in vitro and in vivo [180, 181, 182, 183, 184]. More than simply removing cellular

antigens and debris, ECM grafts processed in this way may not retain the growth factors,

proteoglycans, and other matrix proteins in a native configuration capable of providing cues

to infiltrating host cells, potentially degrading performance and outcomes. In addition to

the harsh processing there are prohibitive preparation times and dire supply limitations

associated with human donor tissue. In this study we have sought to evaluate a number of

approaches to develop a clinically viable xenogeneic tracheal graft. It was hoped that the

use of such a xenograft would eliminate many of the challenges associated with the current

generation of devices.

5.1 NOVEL FINDINGS AND FUTURE DIRECTIONS

Through improved pre-implant characterization, empirical testing in small animal models,

and translation to a porcine derived xenogeneic scaffold using a novel decellularization ap-

proach, we have demonstrated that improvements to existing prosthetics are eminently at-
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tainable with minor modifications to well accepted existing protocols. While further work

is obviously necessary to prove efficacy in a large animal model prior to human trials, we

believe that this work has demonstrated that a clinical xenograft is certainly realistic and

potentially attainable. The following synopsis is a concise summary of the notable findings.

5.1.1 Structural and Compositional Characterization of Decellularized Scaffolds

is Vital to Tissue Engineering Success

When employed for tissue engineering, extracellular matrix (ECM) scaffolds are desirable

for many reasons. They are readily repopulated by host cells, degraded in vivo and re-

placed with de novo tissue deposited by the invading host cell population. Unlike polymeric

scaffolds, they also contain remnant proteins and signaling molecules, which can provide

very potent cues for regeneration. These decellularized matrices may be obtained through

treatment with detergents, acids/bases, enzymes, alcohol, or even mechanical disruption.

Unfortunately, there is no universal protocol so the most effective decellularization agents

must be identified for each tissue due to the specificity of structure, composition and geom-

etry. It is generally accepted that no tissue may be decellularized without disruption of the

native structure. Therefore, the processing conditions and disruptions which drive negative

functional outcomes must be identified and avoided. Unfortunately, the clinically employed

protocol, the detergent enzymatic method (DEM) was not generated based on a rational

and structured approach. Rather, they have simply employed the first protocol which ap-

peared to work well-enough in large animal testing. Sadly, this is in line with much of the

literature. A variety of detergents have been widely employed for decellularization of carti-

laginous tissues and a number of these studies have shown histologic retention of native-like

microstructure [194, 195]. However, few studies employ head-to-head comparisons in the

same animal model under controlled circumstances. Therefore, we took a step back and

expanded the process design space in the hopes of identifying a more efficacious approach,

or at least correlating a wider range of scaffold parameters to functional outcomes.

In addition to the sodium deoxycholate employed in the DEM, we evaluated three alter-

nate, commonly employed detergents: CHAPS, Triton X-100, and SDS. We also tested per-
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acetic acid (PAA), since previous work had shown that PAA effectively removes cells and rem-

nant DNA while having a minimal effect on ECM composition and structure [185, 186, 187].

It was found after processing that all groups were capable of successful decellularization,

effectively maintaining organ shape and structure. Unfortunately, traditional metrics em-

ployed to assess decellularization were ineffective. H&E staining between groups was highly

similar and both DNA content and fragment length were virtually identical. Other histolog-

ical stains (Movat’s, etc.) were basically indistinguishable, showing only minor differences in

some protein levels. Traditionally employed biochemical assays (Blyscan, etc.) that specifi-

cally measure ECM constituents were found to be imprecise due to their complex user input

requirements. These results all suggested that more complex analysis was required. To

this end we employed differential scanning calorimetry (DSC), a sensitive technique whereby

differences in the amount of enthalpy required to increase the temperature of a sample com-

pared to a reference is measured as a function of temperature. It allowed us to probe the

thermal stability of proteins within an extracellular matrix scaffold. Various components

within a scaffold have remarkably different denaturation temperatures, thus DSC can be

used to not only assess compositional changes, but also differences in protein cross linking,

hydrogen bonding, and hydration states. Previously, probing these questions required de-

tailed transmission electron microscopy (TEM) studies. As with any electron microscopy

technique, TEM require extensive sample processing, which may result in structural arti-

facts. The application of DSC to our tracheal scaffolds enabled us to assess micro-structural

and compositional changes with each step of the decellularization process in a bulk, high

throughput manner.

The DSC results demonstrated enormous differences in scaffolds which had previously

seemed remarkably similar. SDS was shown to completely denature the higher order col-

lagen structures in both the fibrous and cartilaginous portion of the trachea, while Triton

X-100 and CHAPS demonstrated preservation of mature collagen cross-linking and matrix-

associated proteins. Sodium deoxycholate treatment demonstrated partial denaturation,

somewhere between SDS and Triton X-100. This is to be expected given it’s relative strength

compared to these detergents. Through DSC analysis it also became clear that PAA treat-

ment has a much more marked effect than originally anticipated. This contradicts existing
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literature [185, 186, 187] and is yet another testament to the importance of increasingly

sophisticated analysis techniques, especially those capable of bulk tissue analysis. Through

quantification of total enthalpy, a measure of overall thermal stability and higher order struc-

ture, we were able to determine that PAA significantly reduces thermal stability compared

to all non-PAA groups. Additionally, SDS was found to be significantly different than all of

the non-PAA treated specimens.

Further work is necessary to contextualize these DSC findings and identify the classes of

proteins and other structural elements that may be retained or removed. Proteomic analysis

is an ideal tool to investigate this question and is a logical next step. The ability to cross

reference a database of retained proteins with a specific DSC curve would be enormously

valuable moving forward. In conjunction with targeted immunofluorescent stains it may be

possible to build a model employing informatics techniques to predict host remodeling in

a specific tissue. We also recognize that filtration and characterization of discarded decel-

lularization solutions may be a tractable approach to investigate the time-varying removal

of protein during processing. In conjunction with experiments assessing the bioactivity of

retained growth factors, especially those correlated with cell survival and proliferation in

vitro, we could develop a combined dataset which would allow an increasingly holistic study

of the scaffold.

5.1.2 Processing Conditions Predetermines Host Mediated Remodeling

It is well understood that upon ECM implantation, host macrophages begin immediately

infiltrating the scaffold. Recent studies have shown that these macrophages are potent mod-

ulators of disease and tissue remodeling following injury. M1 and M2 macrophages have

also been shown to play distinct roles in tissue remodeling following injury and differential

macrophage phenotypes may catalyze either positive or negative tissue remodeling. Effec-

tively, the biochemical and structural characteristics of the implanted device influence the

host macrophages, altering their polarization profile and predetermine the host response.

In Chapter 3 we observed this exact effect through the remarkable differences in host sur-

vival and remodeling outcomes among the various treatment groups. Animal survival was
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strongly correlated with treatment regimen. Results demonstrated increased survival trends

(non-significant) of Triton X-100 and SDS groups compared to sodium deoxycholate. Oddly,

CHAPS decellularized grafts performed significantly worse than any of the other three non-

PAA treated groups. Counter to our original hypothesis, the PAA treatment groups demon-

strated no deaths, indicating similar performance to the best untreated grafts. Perhaps the

most interesting result is that the simple addition of a PAA rinse significantly improves the

survival of sodium deoxycholate recipient animals at the 12 week time point. Given the

histological finding that mucous obstruction was the most likely cause of death, our initial

supposition that acute inflammation is mediated by an infiltrating macrophage population

is highly probable. For animals surviving to end point, chronic inflammation and poor host

response was more prevalent among those specimens with increased mortality. While all

surviving implanted rodents had patent grafts with intact and mechanically sound cartilage,

stenosis was readily apparent in many of the CHAPS and sodium deoxycholate specimens.

SDS, which had demonstrated the greatest level of scaffold disruption, had excellent survival

and minimal stenosis, but fibrotic strictures were observed luminally between the cartilage

rings. PAA treatment seems to dramatically improve the gross morphology with decreased

stricture formation and stenosis, which we believe is predictive of longer term in vivo per-

formance.

From the review of clinical and experimental literature, lack of revascularization seems

to be the largest hurdle for tracheal reconstruction and replacement. Many earlier studies

demonstrated that insufficient revascularization was a major obstacle to successful remodel-

ing in living tissue transplantation. Further attempts demonstrated that vascularized grafts

were much less likely to necrose than free patches [90, 91, 92, 93, 10]. It is possible that the

necrosis resulting from non-vascularized cells causes a chronic inflammatory response that

drives the negative surgical outcomes in these historic studies. While not directly applicable,

the concurrent restoration of a viable vascular supply after implant is vital to the success of

a tissue engineered graft. From the gross histology we were able to observe that PAA treated

specimens demonstrate a healthy, native appearance with distinct vasculature. Overall, it

appears that PAA is strongly correlated with revascularization and tissue integration, while

CHAPS treatment is highly predictive of poor performance. One significant limitation of the
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current study is that we are unable to specifically determine the mechanisms underpinning

these findings. However, there are several potential mechanisms which may be responsible

for the notable improvement. Since we know that CHAPS is the weakest detergent with the

smallest micelle, it may simply have been incapable of properly solubilizing and removing

larger membrane-bound proteins after cell lysis. It’s known that membrane-bound proteins

are largely responsible for cell-to-cell recognition, and their retention may have triggered a

more potent inflammatory response. This stronger response might have subsequently con-

tributed to the lack of revascularization, eventually leading to stenosis and necrosis.

PAA, on the other hand, has been shown in some studies to aid in removal of remnant

detergent and enzymes [208], which may substantially improve the host cellular response.

This would potentially explain the improvement in sodium deoxycholate, but since we did

not test CHAPS and SDS with a PAA rinse we cannot confirm this supposition. This is a

logical follow-up experiment. Second, PAA treatment has been shown to increase porosity

in a number of dense collagenous tissues, including the tendon [209], which could improve

cellular infiltration and subsequently increase angiogenesis. This supposition could be readily

examined by mid-point analysis to assess the rate of revascularization. Finally, it is possible

that PAA may have acted to partially eliminate endotoxins that may have resulted from

bacterial growth during processing. It has been suggested that endotoxins present within the

ECM may also affect signalling through the TLR4 pathway, resulting in a pro-inflammatory

response [210]. To test this hypothesis, we could simply assess endotoxin levels before and

after the PAA processing step. Other potential avenues of research might yield further

information which would allow us to better interpret these results. For example, differential

macrophage staining may be employed to further investigate the host immune response [205,

206, 207].

5.1.3 Peracetic Acid (PAA) Treated Grafts Regenerate a Functional Immuno-

logical Barrier

In addition to its vital mechanical function, the trachea also acts as the first immunological

barrier to environmental pathogens. Therefore, to quantify the success of our implants, we
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chose to assess their function as an immunological barrier. Unfortunately, current techniques

used to study airway cilia motility are limited. Brush biopsies and simple transverse airway

sections are utilized, but these techniques are not viable in rodent specimens due to excessive

damage upon removal. Other groups employ various cell culture techniques to obtain sheets

of ciliated epithelia from harvested airway cells, but the relevance to in vivo performance is

questionable. Real-time DIC imaging allows quick and simple determination of airway cilia

function in a large number of different treatment groups. While this is an in vitro technique

the airway epithelium remains attached to its supporting tissues which closely mimics its

natural in vivo tissue environment. It is important to note that while many studies have

been conducted to assess cilia development and function in native and mutant rodent species,

no studies to date have shown restoration of functional cilia in a tissue engineered graft.

Therefore, the findings presented in Chapter 3 demonstrating regeneration of a fully mature

and differentiated epithelium with restoration of native cilia function are unprecedented.

In summary, it was found that the non-PAA treated grafts, excepting Triton X-100,

demonstrated sparse ciliation with little to no function. In these specimens, the patchy

regions of motile cilia in SDS and sodium deoxycholate grafts were insufficient for analysis.

Interestingly, Triton X-100 grafts showed well-distributed functional cilia, but had frequency

values that were significantly depressed compared to naive controls. Remarkably, both Triton

X-100 and sodium deoxycholate grafts treated with PAA showed ciliary beat frequency

comparable to both flanking native sections and naive controls. It is important to note that

among the PAA specimens there was also substantial beat coordination and uniformity of

beat direction. Since we believe that restoration of cilia function, in terms of both frequency

and coordination, is vital to long term graft survival, more in-depth analysis should be

undertaken. For example, particle image velocimetry (PIV) is a novel technique in this

application. In this approach, tracer particles are dispersed within the fluid and their motion

is correlated to fluid flow characteristics. Since fluorescent particles may be employed within

our existing setup, we could utilize lower magnification videos to gain longer range data on

flow patterns and velocity. We believe this global orientation and fluid flow would be highly

predictive of in vivo function and might correlate to the number of re-operations in the

mid-term for clinical implants. The lack of functional data accessible through this technique
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and others in the pre-clinical literature is surprising, but simply mirrors the lack of rigor

demonstrated by studies culminating in clinical applications. We believe that continuing to

employ functional metrics is vital to progressing the field.

Overall, we have made great strides in bringing more complex and sophisticated ap-

proaches to processing, scaffold analysis, and explant characterization. The head-to-head

comparison of multiple treatment groups coupled with functional analysis is a major step

forward. Nevertheless, more work is required to develop a more mechanistic understanding

of our findings. It was hoped that immunofluorescent (IF) and histological analysis would

be possible to probe the relative prevalence of ciliated epithelium and goblet mucosal cells

to better establish the presence of all lineages of differentiated epithelium. However, once it

became clear that the functional analysis effectively prevented further histological analysis

it was determined that observing and quantifying ciliary beat frequency was more vital to

overall study goals. It is entirely possible that alteration or removal of basement membrane

constituents as a result of decellularization disrupts the cues that assist with proliferation

and site-specific differentiation. However, the anomalous improvement in sodium deoxy-

cholate and Triton X-100 after PAA treatment make this argument less straight-forward.

Instead, as described above, it may be better explained by removal of residual detergent.

Since sodium deoxycholate has a much higher monomer affinity to proteins, it might also

explain the differential performance between non-PAA treated Triton X-100 and sodium

deoxycholate. Our proposition that PAA-driven increases in porosity leading to improved

vascularity may also have a synergistic effect. This would explain the sparser ciliation and

decreased cilia function in non-PAA treated specimens. While it may not be possible to

decouple revascularization from broader in vivo cytocompatibility, distinguishing the time

line of the epithelial and vascular regeneration may be beneficial to establish the temporal

sequence of events. This would be best investigated through detailed histological analyses at

study mid points, preferably at 4 and 8 weeks. We would also propose supplemental studies

evaluating relative proliferation in populations of tracheal basal cells over time [212]. It is

known that K5+/K14+ basal cells represent a precursor cell population with the capacity

to develop into ciliated and secretory cells in native trachea. This more detailed approach

could shed light on the relationship between the altered scaffold basement membranes seen
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in Chapter 2, differential basal cell proliferation, and eventual epithelial differentiation in

vivo.

5.1.4 Cyclical Pressure Synergistically Improves Detergent Based Decellular-

ization

There has been significant work to characterize the structure and biology of ECM scaffolds

and their effect in vivo, yet the chemicals and techniques employed during decellularization

have remained relatively unchanged. There have been several novel approaches employing

ultrahigh pressure [220] or supercritical carbon dioxide [221]. However, these have shown

minimal improvements for the substantial increase in complexity and cost. Other than hypo-

and hypertonic solutions, traditional treatments do not dramatically improve perfusion into

and out of the tissue. Therefore, cyclical hydrostatic pressure was tested to improve in-

filtration of decellularization chemicals and removal of cellular debris. The efficacy of this

approach was presented in three studies prior to translation to the trachea. Two explored

the retention of native tissue mechanics during extended decellularization of dermis and

vocal fold compared to traditional agitation controls. The third demonstrated the ability

of cyclical pressure to fully decellularize aorta and perform successfully in long-term large

animal implants. In all three experiments, remarkable results were observed. In vocal fold,

dermis, and aorta, decellularization was accomplished extraordinarily quickly under mild

processing. All specimens demonstrated significant retention of native mechanics compared

to traditional decellualrization controls. For the implanted aortas, the grafts were well in-

tegrated with no thrombosis or evidence of a chronic inflammatory response at 12 weeks.

Even more importantly, these implanted aortas performed substantially better than cryop-

reserved specimens, the current clinical gold standard. The summation of these findings

gave us the confidence to employ the cyclical pressure approach in translating our rodent

findings to porcine tissue. However, due to the obvious size differences among species it

may not be possible to directly translate the best protocol from Chapter 3. Translation to a

larger animal may require harsher treatments or longer contact times, potentially negating

the improvements produced as a result of optimized processing. It was our hope that the
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cyclical pressure approach would ease this transition given the promising results in other

organ systems. Unfortunately, we are unable to specifically address this disjoint given our

experimental structure, but in many respects the work conducted in our rodent models is

still highly informative. We have been able to conclusively determine the appropriate testing

modalities and moving forward will conduct the proposed experiments in the porcine model

to ensure direct applicability.

5.1.5 Xenogeneic Scaffolds are Suitable for Further Preclinical Testing

As discussed in Chapter 4, the cyclical pressure approach was adopted with little trouble.

Notably, the cyclical pressure approach obviated the need for long treatment times and

resulted in a 300% improvement over existing clinical approaches to a 14-day protocol. The

resultant decellularization process was efficacious, demonstrating cellular removal from the

mucosa and intercartilaginous segments. However, similar to rodent scaffolds there was some

residual nuclear material maintained within the chondrocyte lacunae. Given findings that

the human tracheal mucosa was the major antigenic structure of tracheal allografts [121], we

do not believe this is a major concern.

There is no consensus in the literature regarding the necessity of cellular seeding prior

to graft implantation. It is clear that the success of a tracheal graft depends on its struc-

ture, mechanics, and antigenicity; however, the cellular component may be relevant. Various

groups have attempted to seed a range of cell types, from chondrocytes to mesenchymal

stem cells, obtained from a number of donor tissues. As discussed, one of the main concerns

with the translation to a large scaffold is the necessity of quick vascular restoration upon

implantation. The clinical grafts to date have survived with a combination of omental wrap-

ping and in vitro seeding of bone marrow derived mesenchymal stem cells. Autologous MSC

retrieval is mostly non-invasive and may be necessary to maintain cartilage structure and

function in a larger implant. However, we believe that with improved processing conditions

the need for in vitro seeding may be eliminated.

In the rodent study a relatively short graft was employed and the lack of initial cell seeding

may have improved outcomes by temporarily slowing healing; however, the lack of an antigen
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barrier immediately at implant may be a serious concern. Given that there were no infections

detected in over 30 rodents, it seems that suitable prophylactic antibiotic administration can

significantly hedge this risk. Nevertheless, the progression to a larger graft may require us

to develop more sophisticated approaches to quickly restore an immunological barrier after

implant. To address these concerns, we propose an intraoperative epithelial seeding process

as first tested clinically by Macchiarini et al. to simplify the preculture process and expedite

implantation [117, 148]. If it becomes necessary to employ extended cell seeding, ideally we

would obtain a single cell type capable of differentiating into the multiple required cell types.

Adipose-derived stem cells [160], bone marrow stromal cells [161, 162, 146, 163, 150, 164], and

amniocytes [165] have been utilized for chondrogenesis in the tissue engineered trachea. Cell

sources for airway epithelium include respiratory tract endogenous cells and exogenous cells

from other tissues in the body (embryonic, bonewalles marrow, amniotic fluid, etc.) [166].

For example, fully differentiated airway epithelium have been generated from embryonic stem

cells through an in vitro culture process [167]. Increased research into stem cell technologies

such as iPS presents a new avenue for tracheal tissue engineering. However, regulatory

challenges will likely postpone their introduction into mainstream use, thus the leading cell

source is most likely the patients own bone marrow mesenchymal cells.

In order to de-risk further pre-clinical studies we have employed a myriad of in vitro

tests to assess the suitability of a porcine xenograft for eventual human implantation. We

know the trachea must operate on several levels simultaneously, as a mechanical tube to

support ventilation as well as a front-line immune barrier. Suture retention demonstrated

no significant difference in load to failure or stiffness of decellularized and native porcine

trachea. A pronounced toe region suggested a loosening of the fibrillar structure which

may in turn delay full fiber recruitment. It is not expected that this mechanical feature

will alter the physiological function in any way. Additionally, pressure diameter testing at

both highly supra- and sub-physiologic pressures demonstrated a safety factor >3. The

removal of mechanical agitation necessary in many of the previous approaches is believed

to have contributed to this improvement in mechanical properties. When considering the

immune role, human bronchial epithelial cells were shown to readily attach and proliferate

on decellularized porcine tracheal mucosa. This suggests that host cells will be capable of
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infiltrating and recolonizing a porcine graft. Further work is necessary to demonstrate that

air-liquid interface culture can drive differentiation of human bronchial epithelial cells to a

mature ciliated form.

In conclusion, the use of xenograft material is of enormous benefit. The ability to stock

pre-sized grafts eliminates the need for lengthy graft preparations for each patient. More

importantly, our development of a xenogeneic graft obviates the need for any of the critically

needed human donor tissue. It is hoped that after suitable large animal implants we may

test the feasibility of this approach and eventually progress towards a first in human trial.

5.2 CLOSING REMARKS

Due to the extraordinarily complex biological milieu, mechanistic studies optimizing a spe-

cific decellularization procedure are not yet possible. Not only is the complexity of native

extracellular matrices not fully understood, but work is still ongoing to better characterize

the decellularization process itself. With our current level of understanding empirical studies

are necessary, but care must be taken to avoid needless experimentation. The tracheal tissue

engineering literature is filled with claims of success and failure, but little is learned from

each of these experiments since studies often assess a single experimental group. Clearly we

cannot claim to have developed a comprehensive design space, but this work represents an

incremental improvement in the understanding of tracheal decellularization. In a broader

sense, this dissertation aims to address a question inherent to all decellularized tissue en-

gineered products: how does processing influence host remodeling and graft survival? We

believe that the techniques and approaches utilized in this study will inform a more rational

approach to the design and development of tissue engineered transplants and hope we have

laid the groundwork for the success of those efforts.
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