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A FINITE ELEMENT METHOD FOR THE STOKES PROBLEM ON QUADRILATERAL

GRIDS YIELDING DIVERGENCE FREE APPROXIMATIONS

Duygu Sap, M.S.

University of Pittsburgh, 2014

In this thesis project, a pair of conforming, stable and divergence free finite elements for the Stokes problem

on two dimensional rectangular grids with no-slip boundary conditions is constructed. Pointwise continuous

Q3,2×Q2,3 polynomials that are partially C1 at the vertices and Q2,2 polynomials that are continuous at the

vertices are used as the functions forming the velocity and pressure spaces, respectively. In the construction

of these finite element spaces, a Stokes complex is formed to verify the incompressibility of the velocity

approximation.

With the definition of appropriate norms and the use of the Piola transform, the inf-sup stability condition

is satisfied on each rectangular element and then in the entire domain. Furthermore, by the application of

Nitsche’s method to the problem, the existence and the uniqueness of the solution to the Stokes problem are

justified and error estimates are obtained.

iv



TABLE OF CONTENTS

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 THE LOCAL FINITE ELEMENT SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 The C1 Bogner-Fox-Schmidt finite element space, Σh(Q) . . . . . . . . . . . . . . . . . . . . 5

2.2 The velocity space, Vh(Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 The pressure space, Wh(Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 A local characterization of the divergence operator . . . . . . . . . . . . . . . . . . . . . . . 8

3.0 THE GLOBAL FINITE ELEMENT SPACES . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 The finite element spaces with homogeneous boundary conditions . . . . . . . . . . . . . . . 17

3.2 Nitsche’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.0 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



LIST OF FIGURES

2.1 The degrees of freedom of Σh(Q). The solid circles represent the function evaluations, larger

circles represent the gradient evaluations, the arrows represent the second order mixed deriva-

tives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The degrees of freedom of Vh(Q). The arrows represent the partial derivatives . . . . . . . . . 7

2.3 The degrees of freedom of Wh(Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

vi



1.0 INTRODUCTION

In this thesis project, the goal is to construct a pair of conforming and stable finite elements for the two

dimensional Stokes problem with no-slip boundary conditions given by:

−γ∆u+∇p = f in Ω, (1.1)

div(u) = 0 in Ω, (1.2)

u = 0 on ∂Ω. (1.3)

Here Ω is assumed to be an open, bounded, simply-connected polyhedral domain, γ > 0 is the viscosity,

f ∈ L2(Ω) is an external force applied to the fluid, u and p are the velocity and the pressure of the fluid,

respectively. For simplicity, we assume that γ is constant.

The conformity of the finite element discretization implies that Vh ⊂ H1(Ω) and Qh ⊂ L2(Ω). The inf-sup

stability condition, which is also known as the Ladyzenskaja-Babuska-Brezzi(LBB) condition, is given by:

α‖q‖L2(Ω)≤ sup
v∈Vh\{0}

∫
Ω
div(v)qdx

‖v‖H1(Ω)
∀q ∈ Qh, (1.4)

where α > 0 is a constant independent of h. The inf-sup condition implies that the spurious pressure modes

are eliminated and a unique finite element solution to the problem is guaranteed. Furthermore, it can be

deduced that the optimal convergence [8],

‖u− uh‖H1(Ω)+‖p− ph‖L2(Ω)≤ c inf
v∈Vh,q∈Qh

(‖u− v‖H1(Ω)+‖p− q‖L2(Ω)) (1.5)

where c > 0 is a constant that depends on γ and α, but not on h, is obtained.

Over the past years, many mixed finite element methods for the Stokes problem on triangular meshes have

been developed. Although conforming and stable approximations have been made by most of these methods,

the incompressibility condition, i.e., div(u) = 0, has been only weakly satisfied. Taylor-Hood elements, the

MINI element [1], the Crouzeix-Raviart elements [10] and the P2 − P0 pair in [5] are among the methods

that belong to this class. On the other hand, in recent years, Scott-Vogelius[18], Neilan-Guzman [15] and

Neilan-Falk[12] have constructed stable and conforming finite element pairs which are divergence free on

triangular meshes. Arnold and Qin showed that Pk − Pk−1 pairs which consist of Pk continuous velocity

and Pk−1 discontinuous pressure fields satisfy the incompressibility condition on certain types of uniform

triangulations[2].
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It is known that the finite element spaces that only satisfy the incompressibility condition weakly may

lead to instabilities in nonlinear problems. Additionally, since the discrete divergence free condition can be

interpreted as the conservation of mass, the inexact satisfaction of the incompressibility condition also leads

to the lack of mass conservation.

The discrete velocity solution is divergence free if and only if the image of the divergence of the discrete

velocity finite element space is a subset of the discrete pressure finite element space. In cases where the image

of the discrete divergence operator is smaller than the discrete pressure finite element space, the kernel of

the discrete gradient operator, gradh, that maps the discrete pressure space with zero mean to the discrete

velocity space is non-trivial. As a result, spurious pressure modes occur and the presence of the spurious

pressure modes in the finite element methods for the incompressible fluid flow problems invalidates both the

uniqueness of the discrete pressure solution and the inf-sup stability condition. For instance, the Q1 − P0

element does not satisfy the inf-sup stabiity condition. This element depends highly on the mesh and global

spurious modes, which can’t be eliminated easily, are observed on some regular meshes. Another example

is the P1 − P0 element. In this case, the dimension of the kernel of the discrete gradient operator, which

defines the spurious modes, grows as the mesh size tends to zero [5].

The first conforming, divergence free element on a rectangular mesh was proposed by Austin, Manteuffel and

McCormick [3]. The finite element space they introduced is a continuous space that is based on the Raviart-

Thomas finite element space, which is a discontinuous finite element space that has a discrete Helmholtz

decomposition. The authors constructed a Q3,2 × Q2,3 finite element space as a direct sum of two L2

orthogonal spaces and they proved the optimal convergence in the energy norm for tensor product grids.

Another conforming, divergence free element on rectangular grids was proposed by Zhang [21]. Here, it is

shown that theQk+1,k×Qk,k+1−Q−k mixed finite element, whereQ−k denotes the discontinuous polynomials of

separated degree k or less with spurious modes filtered, are stable and yield an optimal order of approximation

for the Stokes problem for all k ≥ 2. Furthermore, it’s shown by Stenberg and Suri [19] that the finite element

with different polynomial degrees in different directions, Qk+1,k×Qk,k+1−Qk−1, give the same approximation

results as the element, Qk+1 ×Qk−1.

In 2011, Huang and Zhang introduced a stable, conforming and divergence free mixed finite element, Q2,1×

Q1,2 − Q−1 , for the Stokes problem on rectangular grids [23]. The finite elements in [23] are obtained by

taking k = 1 for the elements defined in [21].

In this project, we construct a pair of conforming and stable finite elements for the Stokes problem on two

dimensional rectangular grids with no-slip boundary conditions. We use pointwise continuous Q3,2 × Q2,3

polynomials that are partially C1 at the vertices of the rectangular elements and Q2,2 polynomials that

are continuous at the vertices of the rectangular elements as the functions forming the velocity and pressure

spaces respectively. Defining appropriate norms and using the Piola transform, we verify the inf-sup stability

condition on each rectangular element and then in the entire domain. In chapter 2, we define the local finite

element spaces, an affine transformation, F (·), mapping a rectangular element to a reference element, which
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is assumed to be the unit square throughout this project, and a scaled Piola transform, P (·), to verify

that the inf-sup stability condition holds. In chapter 3, we define the global finite element spaces with

and without homogeneous boundary conditions and justify the conformity and the inf-sup stability. Then

applying Nitsche’s method to the Stokes problem with homogeneous boundary conditions, we define a bilinear

form, A(·, ·), and prove the coercivity and the continuity of A. We show that the problem at hand has a

unique solution and the convergence is obtained in a H1 type norm.
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2.0 THE LOCAL FINITE ELEMENT SPACES

We assume that Ω is an open, simply connected, bounded polyhedral domain with edges parallel to the

coordinate axes. Let Qh be a quasi-uniform rectangular mesh of Ω discretized by h.

In this chapter, we construct the local finite element spaces for the Stokes problem. We denote the vertices

of a rectangular element in Qh, by {ai}4i=1, and let L1, L2, L3 and L4 denote the edges of a rectangular

element in Qh such that:

L1 = {(x, y0) : x0 ≤ x ≤ x1},

L2 = {(x, y1) : x0 ≤ x ≤ x1},

L3 = {(x1, y) : y0 ≤ y ≤ y1},

L4 = {(x0, y) : y0 ≤ y ≤ y1},

where a1 = (x0, y0), a2 = (x1, y0). a3 = (x1, y1) and a4 = (x0, y1). The space of polynomials of degree m in

x and n in y is denoted by Qm,n.

Our first goal is to construct an exact subcomplex of the Stokes complex defined as [12]:

R ⊂−→ H2(Ω)
curl−−→ H1(Ω)

div−−→ L2(Ω) → 0, (2.1)

where the curl operator is defined as: curl(z) = (− ∂z∂y ,
∂z
∂x )t for z ∈ H2(Ω). The complex (2.1) is exact

provided Ω is simply connected, i.e., the range of each map in the complex is the null space of the succeeding

map. Thus, we wish to construct finite element spaces such that for ∀q ∈ Qh ⊆ L2(Ω), there exists

v ∈ Vh ⊆ H1(Ω) satisfying div(v) = q, and if v ∈ Vh with div(v) = 0, then v = curl(z) for some z ∈ Σh ⊆

H2(Ω). Therefore, our goal is to define finite element spaces (Σh, Vh, Qh) such that the following is an exact

subcomplex of the complex given in (2.1):

R ⊂−→ Σh
curl−−→ Vh

div−−→ Qh → 0. (2.2)
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Figure 2.1: The degrees of freedom of Σh(Q). The solid circles represent the function evaluations, larger circles represent the
gradient evaluations, the arrows represent the second order mixed derivatives.

2.1 THE C1 BOGNER-FOX-SCHMIDT FINITE ELEMENT SPACE, Σh(Q)

For Q ∈ Qh, the local Bogner-Fox-Schmidt space is given by Σh(Q) = Q3,3 [12]. The degrees of freedom of

Σh(Q) illustrated in Figure 2.1 are as follows:

S1 = {z(ai), ∇z(ai),
∂z

∂x∂y
(ai) : i = 1, 2, 3, 4},

where z ∈ Σh(Q). Note that the cardinality of S1 is 8+4+4+16 =dim(Q3,3). Therefore, it suffices to prove

that if z nullifies Σh(Q), then z = 0 to conclude the degrees of freedom form a unisolvent set. If z ∈ Σh(Q),

then we can write z(x, y) = s1(x)s2(y) where s1 and s2 are cubic polynomials in one variable. Then, we have

z(x0, y0) = s1(x0)s2(y0) = z(x1, y0) = s1(x1)s2(y0) = z(x0, y1)

= s1(x0)s2(y1) = z(x1, y1) = s1(x1)s2(y1) = 0,

∂z

∂x
(x0, y0) = s′1(x0)s2(y0) =

∂z

∂x
(x1, y0) = s′1(x1)s2(y0) =

∂z

∂x
(x0, y1)

= s′1(x0)s2(y1) =
∂z

∂x
(x1, y1) = s′1(x1)s2(y1) = 0,

∂z

∂x∂y
(x0, y0) = s′1(x0)s′2(y0) =

∂z

∂x∂y
(x0, y1) = s′1(x0)s′2(y1) =

∂z

∂x∂y
(x1, y0)

= s′1(x1)s′2(y0) =
∂z

∂x∂y
(x1, y1) = s′1(x1)s′2(y1) = 0.

If s′1(x0) 6= 0, then s′2(y0) = s′2(y1) = s2(y0) = s2(y1) = 0. As a result, s2 = 0 and therefore, z|L4
= 0.

Similar computations show z|∂Q= 0. Thus, z = αb where b = L1(x)L2(x)L3(y)L2(y) ∈ Q2,2 is a bubble
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function and α ∈ Q1,1. Suppose ai = a1.

∂z

∂x∂y
(a1) =

∂α

∂x∂y
(a1) · b(a1) +

∂α

∂x
(a1) · ∂b

∂y
(a1) +

∂α

∂y
(a1) · ∂b

∂x
(a1) + α(a1) · ∂b

∂x∂y
(a1)

= 0 +
∂α

∂x
(a1) · (L1(x0)L2(x0)L′3(y0)L4(y0) + L1(x0)L2(x0)L3(y0)L′4(y0))

+
∂α

∂y
(a1) · (L′1(x0)L2(x0)L3(y0)L4(y0) + L1(x0)L′2(x0)L3(y0)L4(y0)) + α(a1) · ∂b

∂x∂y
(a1)

= α(a1) · ∂b

∂x∂y
(a1)

since b(a1) = L1(x0) = L4(y0) = 0. Furthermore, since L′1(x0) 6= 0 and L′4(y0) 6= 0, L2(x0) 6= 0 and

L3(y0) 6= 0, ∂z
∂x∂y (a1) = 0 implies α = 0, i.e. z = 0. Hence, the degrees of freedom form a unisolvent set.

2.2 THE VELOCITY SPACE, Vh(Q)

The local velocity space is given by Vh(Q) = Q3,2 ×Q2,3 and the degrees of freedom Vh(Q) shown in Figure

2.2, are given by:

S2 = {v(ai),
∂v1

∂x
(ai),

∂v2

∂y
(ai),

∫
Q
vp dx, ,

∫
L3

v1ds,

∫
L4

v1ds,

∫
L1

v2ds,

∫
L2

v2ds; p ∈ Q1,1, i = 1, 2, 3, 4},

where v = (v1, v2).

Lemma 1. The degrees of freedom stated by S2 are unisolvent on Vh(Q).

Proof. It suffices to show that if v nullifies the degrees of freedom of Vh, then v = 0, since dim(Vh(Q)) = 24

which equals the number of degrees of freedom [6].

We write v1(x, y) = s1(x)s2(y), where s1 and s2 are cubic and quadratic polynomials, respectively. Then,

we have

v1(x0, y0) = s1(x0)s2(y0) = 0,

v1(x1, y0) = s1(x1)s2(y0) = 0,

∂v1

∂x
(x0, y0) = s′1(x0)s2(y0) = 0,

∂v1

∂x
(x1, y0) = s′1(x1)s2(y0) = 0.

If s2(y0) 6= 0, then s1(x0) = s1(x1) = s′1(x0) = s′1(x1) = 0. This implies s1 = 0. Thus, v1|L1
= 0.

Similar arguments show that v1|L2
= 0. Moreover,

∫
L3
v1ds =

∫
L4
v1ds = 0 implies s2(y∗) = 0 for some

y∗ ∈ (y0, y1). Thus, s2(y) is a quadratic polynomial with three zeros, and therefore s2 = 0 on L3 and

L4, i.e., v1|L3= v1|L4= 0. Hence, v1 ∈ H1
0 (Q) ∩ Q2,3 and therefore we may write v1 = q1bQ, where

bQ = L1(x)L2(x)L3(y)L4(y) ∈ Q2,2 is a bubble function and q1 ∈ Q1,0. Similar computations show v2 = q2bQ

where q2 ∈ Q0,1. Thus, we have shown that v = 0 on the boundary.
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Figure 2.2: The degrees of freedom of Vh(Q). The arrows represent the partial derivatives

In order to show v = 0 in Q, we need to show q1 = q2 = 0. We have
∫
Q v1 pdx = 0 for ∀p ∈ Q1,0 and∫

Q v2 pdx = 0 for ∀p ∈ Q0,1. Consider
∫
Q v1pdx = 0 for ∀p ∈ Q1,0. Letting p = q1, we have∫
Q
v1q1 dx =

∫
Q
q2
1bQ dx = 0.

Since bQ > 0 in Q, q2
1 = 0, i.e., q1 = 0. Thus, v1 = 0 in Q. Similar arguments show that q2 = 0, i.e., v2 = 0

in Q. Therefore, v = 0 in Q.

2.3 THE PRESSURE SPACE, Wh(Q)

The local pressure space denoted by Wh(Q) consists of Q2,2 polynomials. The degrees of freedom of Wh(Q)

illustrated in Figure 2.3 are as follows:

S3 = {q(ai),
∫
Q
q r dx, where r ∈ Q2,2 such that r(ai) = 0 for i = 1, 2, 3, 4}.

Note that the cardinality of S3 is 4 + (2 + 1)2 − 4 = 9, i.e., dim (Q2,2)=card(S3). Since q(ai) = 0 for

∀i = 1, 2, 3, 4 and
∫
Q q r dx = 0 for ∀r ∈ Q2,2 such that r(ai) = 0 for ∀i = 1, 2, 3, 4, we can let r = q. This

yields
∫
Q q

2 dx = 0, therefore, q = 0. As a result, the given set of degrees of freedom determines Wh(Q).

Figure 2.3: The degrees of freedom of Wh(Q)
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2.4 A LOCAL CHARACTERIZATION OF THE DIVERGENCE OPERATOR

We now define local finite element spaces with imposed boundary conditions and prove the stability properties

at the local level. To this end, we define for each Q ∈ Qh,

• Σh,0(Q) = H2
0 (Q) ∩Q3,3(Q).

• Vh,0(Q) = (H1
0 (Q))2 ∩ (Q3,2(Q)×Q2,3(Q)).

• Wh,0(Q) = {q ∈ Q2,2(Q) :
∫
Q q dx = 0, q(ai) = 0, i = 1, 2, 3, 4}.

Lemma 2. The space Σh,0(Q) is the trivial set, i.e.,

Σh,0(Q) = {0}.

Proof. If z ∈ Σh,0(Q), then z = b2Qw where b2Q ∈ H2
0 (Q) is a biquadratic bubble function. Since b2Q ∈ Q4,4(Q)

and z ∈ Q3,3(Q), we conclude that w = 0, i.e., z = 0.

Lemma 3. There holds

div(Vh,0(Q)) ⊆Wh,0(Q).

Proof. Let r ∈ div(Vh,0(Q)). Then ∃v ∈ Vh,0(Q) such that div(v) = r. By the divergence theorem and

since v ∈ (H1
0 (Q))2, ∫

Q
r dx =

∫
Q
div(v) dx =

∫
∂Q

v · n ds = 0,

where n denotes the unit outward normal vector of ∂Q. Moreover, at each vertex ai,

r(ai) = div(v(ai)) =
∂v1

∂x
(ai) +

∂v2

∂y
(ai) = 0

since ∂v
∂x (ai) = ∂v

∂y (ai) = ~0 as a result of v|∂Q= 0. Thus, r ∈Wh,0(Q).

Lemma 4. The kernel of the divergence operator acting on Vh,0(Q) is given by

Ker(div(Vh,0(Q))) = curl(Σh,0(Q)).

Proof. Clearly,

curl(Σh,0) ⊆ Ker(div(Vh,0)).

since Σh,0 = {0} and div(0) = 0.

We need to show

Ker(div(Vh,0)) ⊆ curl(Σh,0),

to complete the proof.

Let v ∈ Ker(div(Vh,0)) such that div(v) = 0. This implies v = curl(z) for some z ∈ H2
0 (Q) [13]. Since

v ∈ Q3,2 ×Q2,3, we must have z ∈ Q3,3 and therefore z ∈ Σh,0(Q). Thus, Ker(div(Vh,0)) = curl(Σh,0).

8



Theorem 1. The mapping div : Vh,0(Q)→Wh,0 is bijective, i.e.,

div(Vh,0(Q)) = Wh,0(Q) and Ker(div(Vh,0(Q))) = {0}.

Proof. By Lemmas 2 − 4, it suffices to show that dim(div(Vh,0(Q))) = dim(Wh,0) to conclude that the

divergence map is bijective.

Since there are 5 linearly independent constraints imposed on the space Wh,0(Q), we have dim(Wh,0) =

32 − 5 = 4. Furthermore, by Lemmas 2-4,

dim(div(Vh,0(Q)) = dim(Vh,0(Q))− dim(Ker(div(Vh,0(Q)))

= dim(Vh,0(Q))− dim(curl(Σh,0(Q)))

= dim(Vh,0(Q))− 0 = dim(Q1,0 ×Q0,1)− 0 = 4.

Hence, div(Vh,0(Q)) = Wh,0(Q), i.e., for ∀q ∈ Wh,0(Q), ∃v ∈ Vh,0(Q) such that div(v) = q and since

Ker(div(Vh,0(Q))) = {0}, this v is unique. Therefore, div : Vh,0(Q)→Wh,0 is bijective.

Consider the affine transformation F : Q̂ → Q such that F (x̂) = Bx̂ + b, where Q̂ is the unit square, B is

an (2 × 2) matrix and b is a two dimensional vector. Then it is easy to show that DF = B. Furthermore,

since F maps edges to edges, we can define F as follows:

F (x̂, ŷ) = (x0 + x̂(x1 − x0), y0 + ŷ(y1 − y0)) = (x, y),

Let hx = x1 − x0 and hy = y1 − y0. Then,

B =

(
hx 0
0 hy

)
, b =

(
x0

y0

)
.

Note that B is diagonal. Therefore, if v ∈ Vh,0(Q), then v(F (x̂)) ∈ Vh,0(Q̂).

Theorem 2. Let w ∈ Vh,0(Q) and q ∈Wh,0(Q) such that div(w) = q. Then,

‖w‖H1(Q)≤ c‖q‖L2(Q), (2.5)

where c is h-independent. Thus, the local inf-sup condition is satisfied:

sup
w∈Vh,0(Q)\{0}

∫
Q qdiv(w)dx

‖q‖L2(Q)‖w‖H1(Q)
≥ α, ∀q ∈Wh,0(Q). (2.6)

Proof. Firstly, we consider the Piola transformation of v given by the following formula:

P (v̂)(x̂) = v(x) := Bv̂(x̂). (2.7)

9



We then have,

Dv(x) =
BDv̂(F−1(x))

det(B)
=
BD̂v̂(x̂)DF−1(x)

det(B)
=
BD̂v̂(x̂)B−1

det(B)
.

Since div(v) = tr(Dv) and tr(BD̂v̂B−1) = tr(D̂v̂) as the trace is similarity invariant, we get div(v) = ˆdiv(v̂).

Then, we define |‖v̂‖|= ‖ ˆdiv(v̂)‖L2(Q̂) where P (v̂) = v. By the following argument, we can see that |‖v̂‖|

defines a norm on Vh,0(Q̂).

1. (Positivity) Trivially, |‖v̂‖|≥ 0. Suppose |‖v̂‖|= 0, then ˆdiv(v̂) = 0 i.e. div(v) = 0. Due to the construc-

tion of the finite element spaces, this implies v = curl(z) for some z ∈ Σh,0(Q). Since Σh,0(Q) = {0},

v = 0, and therefore, v̂ = 0. Thus, |‖v̂‖|= 0 iff v̂ = 0.

2. (Scalar multiplication) |‖ĉv‖|= ‖ ˆdiv(ĉv)‖L2(Q̂)= c‖ ˆdiv(v̂)‖L2(Q̂)= c|‖v̂‖|.

3. (Triangle Inequality) |‖v̂ + ŵ‖|= ‖ ˆdiv(v̂ + w)‖L2(Q̂)≤ ‖ ˆdiv(v̂)‖L2(Q̂)+‖ ˆdiv(ŵ)‖L2(Q̂)= |‖v̂‖|+|‖ŵ‖|.

By the equivalence of the norms in finite dimension, there exist a constant c such that

‖ŵ‖H1(Q̂) ≤ c|‖ŵ‖|= c‖ ˆdiv(ŵ)‖L2(Q̂), (2.8)

where ŵ is the Piola transformation of w.

Let q̂ be defined by the relation q(x) = q̂(x̂) with x = F (x̂). It can be shown that q̂ ∈ Wh,0(Q̂) by the

following argument.

Since q ∈ Q2,2(Q) and q̂(x̂) = q(x), there holds q̂ ∈ Q2,2(Q̂) as a consequence of B’s diagonality. By a

change of variables,

0 =

∫
Q
q(x)dx =

∫
Q̂
q̂(x̂)|JF−1|dx̂.

Since F is an invertible affine mapping and |JF−1|> 0,∫
Q̂
q̂(x̂)dx̂ = 0.

Moreover, q(ai) = 0 for ∀i ∈ {1, 2, 3, 4} implies q̂(âi) = 0 for ∀i ∈ {1, 2, 3, 4}, since affine transformations

maps vertices to vertices. Hence, q̂ ∈Wh,0(Q̂).

By a scaled Piola transform, we can write

d̂iv(ŵ(x̂)) = div(w(x)) = q(x) = q̂(x̂).

Therefore, by (2.8),

‖ŵ‖H1(Q̂)≤ c‖q̂‖L2(Q̂) (2.9)

Recall the scaling estimates [9]:

|ŵ|Hm(Q̂) ≤ c‖B‖
m(det(B))−1/2|w|Hm(Q), (2.10)

|w|Hm(Q) ≤ c‖B−1‖m(det(B))1/2|ŵ|Hm(Q̂). (2.11)
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for w(x) = ŵ(x̂) and x = F (x̂).

Since we have w(x) = Bŵ(x̂),

|w|Hm(Q)≤ c‖B−1‖m(det(B))1/2|ŵ|Hm(Q̂)≤ ch
−mh|ŵ|Hm(Q̂)= ch−m+1|ŵ|Hm(Q̂).

Here we have used the following estimates: ‖B‖≤ h and det(B) = |Q|
|Q̂| ≤ h2 [9]. Therefore, by (2.9), (2.10)

and (2.11), we have:

‖w‖2H1(Q)= ‖w‖
2
L2(Q)+‖∇w‖

2
L2(Q) ≤ ch

2‖ŵ‖2
L2(Q̂)

+ch2‖ŵ‖2
H1(Q̂)

≤ ch2‖ŵ‖2
H1(Q̂)

≤ ch2‖q̂‖2
L2(Q̂)

≤ c‖q‖2L2(Q).

since ‖ŵ‖H1(Q̂)≤ c‖q̂‖L2(Q̂). Thus, we get

‖w‖H1(Q)≤ c‖q‖L2(Q).
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3.0 THE GLOBAL FINITE ELEMENT SPACES

In this chapter, we define the global finite element spaces. By the use of Scott-Zhang interpolant, inverse

inequalities, a new norm defined on the global vector space Vh and Nitsche’s method, we prove the conformity

and stability constraints on the domain Ω for the global problem with and without boundary conditions.

The global finite element spaces without boundary conditions are defined as follows:

• Σh ={ z ∈ H2(Ω): z|Q∈ Q3,3, ∂2z
∂x∂y is continuous at the vertices,}.

• Vh={ v ∈ (H1(Ω))2: v|Q∈ Q3,2 ×Q2,3, ∂v1
∂x and ∂v2

∂y are continuous at the vertices }.

• Wh= { q ∈ L2(Ω) : q|Q∈ Q2,2: q is continuous at the vertices}.

Lemma 5. There holds

Ker(div(Vh)) = curl(Σh). (3.1)

Proof. Firstly, we show curl(Σh) ⊆ Ker(div(Vh)).

Let v ∈ curl(Σh). Then there exists z ∈ Σh such that curl(z) = v. It is easy to see that v ∈ Vh. Since

the divergence of the curl operator is zero, we have div(v) = 0, i.e., v ∈ Ker(div(Vh)). Therefore, we have

curl(Σh) ⊆ Ker(div(Vh)).

Then, we need to show Ker(div(Vh)) ⊆ curl(Σh).

Let v ∈ Ker(div(Vh)), then div(v) = 0. Then, there exists z ∈ H2
0 (Ω) such that v = curl(z) [13]. Since

v|Q∈ Q2,3 × Q2,3, we have z|Q∈ Q3,3. Furthermore, since ∂v1
∂x and ∂v2

∂y are continuous at the vertices.

Therefore, z ∈ Σh. This implies Ker(div(Vh)) ⊆ curl(Σh).

Remark 1. By the rank nullity theorem, we conclude:

dim(div(Vh)) = dim(Vh)− dim(curl(Σh)).

Theorem 3. The Stokes complex given in (2.2) is exact.

Proof. By Lemma 5, it suffices to show div : Vh → Qh is surjective. Since div(Vh) ⊆Wh, it suffices to show

dim(div(Vh)) =dim(Wh). By the rank-nullity theorem,
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dim(div(Vh)) = dim(Vh)− dim(curl(Σh)) = dim(Vh)− (dim(Σh)− 1)

= (2(2T + 2V) + E)− 4V + 1

= 4T + 4V + E− 4V + 1

= 4T + E + 1.

where T, V and E denote the number of faces, vertices and edges of the rectangular elements in the mesh,

respectively. Thus, dim(Wh)−dim(div(Vh)) = (V+5T)−4T−E−1 = V+T−E−1 = 0 by Euler’s formula,

i.e., div(Vh) = Wh, and the result follows.

Lemma 6. For any q ∈Wh, there exists v(1) ∈ Vh such that (q − div(v(1)))|Q∈Wh,0(Q) for all Q ∈ Qh.

Proof. For q ∈Wh, there exists w ∈ H1(Ω) such that div(w) = q and ‖w‖H1(Ω)≤ c‖q‖L2(Ω) [13].

Define v(1) ∈ Vh such that it satisfies the following conditions:

1. v(1)(a) = Ihw(a) at all vertices a in Qh, where Ihw is the Scott-Zhang interpolant of w [17].

2.
∂v

(1)
1 (a)
∂x =

∂v
(1)
2 (a)
∂y = q(a)

2 at all vertices a ∈ Qh.

3.
∫
Q v

(1) · sdx =
∫
Q w · sdx for s ∈ Q1,0 ×Q0,1 and Q ∈ Qh.

4.
∫
L3,L4

v
(1)
2 ds =

∫
L3,L4

w2 ds,
∫
L1,L2

v
(1)
1 ds =

∫
L1,L2

w1 ds.

Note that (4) yields
∫
∂Q v

(1) ds =
∫
∂Q wds for all Q ∈ Qh. Also, from (1) we get div(v(1)(a)) = q(a) at all

vertices a, i.e., (q − div(v(1)))(a) = 0 at all vertices a.

We need to show that
∫
Q(q− div(v(1)))dx = 0 for all Q ∈ Qh to complete the proof, since (q− div(v(1)))|Q∈

Q2,2.

Applying (3) and (4) and the divergence theorem twice yields:∫
Q

(q − div(v(1)))dx =

∫
Q
q dx−

∫
Q
div(v(1))dx

=

∫
Q
q dx−

∫
∂Q

v(1) · ndx

=

∫
Q
q dx− (

∫
L3,L4

v(1) · ndx+

∫
L1,L2

v(1) · ndx)

=

∫
Q
q dx− (

∫
L4

v(1) d(−x) +

∫
L3

v(1) dx+

∫
L1

v(1) d(−y) +

∫
L2

v(1) dy)

=

∫
Q
q dx− (

∫
L4

wd(−x) +

∫
L3

wdx+

∫
L1

wd(−y) +

∫
L2

wdy)

=

∫
Q
q dx−

∫
∂Q

w · nds

=

∫
Q

(q − div(w))dx = 0.

Thus,
∫
Q(q − div(v(1)))dx = 0, and therefore (q − div(v(1)))|Q∈Wh,0(Q) .
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By Lemma 6, for any q ∈ Wh, there exists v(1) ∈ Vh satisfying (q − div(v(1)))|Q∈ Wh,0(Q). On the other

hand, by Theorem 2, for each Q ∈ Qh, there exists v
(2)
Q ∈ Vh,0(Q) such that div(v

(2)
Q ) = (q− div(v(1))|Q and

‖v(2)
Q ‖H1(Q)≤ c‖q − div(v(1))‖L2(Q)≤ c(‖q‖L2(Q)+‖v(1)‖H1(Q)). (3.2)

Lemma 7. Let v
(2)
Q be defined as above and v(2) be such that v(2)|Q:= v

(2)
Q ∈ Vh,0(Q). Then, v(2) ∈ Vh and

‖v(2)‖H1(Ω)≤ c(‖q‖L2(Ω)+‖v(1)‖H1(Ω)).

Proof. If v
(2)
Q ∈ Vh,0(Q), then v

(2)
Q ∈ (H1

0 (Q))2 ∩ (Q3,2(Q) × Q2,3(Q)) by definition. Since ∇v(2)
Q (ai) = 0,

where Q is an arbitrary rectangle with vertices ai,∇v(2)(ai) = 0. Therefore, ∇v(2) is continuous at the

vertices. Consequently, v(2) ∈ Vh. Additionally, (3.2) yields ‖v(2)‖H1(Ω)≤ c(‖q‖L2(Ω)+‖v(1)‖H1(Ω)).

Theorem 4. For any q ∈Wh, there exists v ∈ Vh such that div(v) = q and

‖v‖H1(Ω)≤ c‖q‖L2(Ω).

Proof. For q ∈Wh, let v(1) and v(2) be given by Lemma 6 and Lemma 7 respectively and let v := v(1) + v(2).

Then, we have,

‖v‖H1(Q)≤ c(‖v(1)‖H1(Q)+‖v(2)‖H1(Q)) ≤ c(‖v(1)‖H1(Q)+‖q‖L2(Q)) (3.3)

By scaling,

‖v(1)‖H1(Q)≤ c‖v̂(1)‖H1(Q̂) (3.4)

where v̂(1)(x̂) = v(1)(x), x = F (x̂) and F is the affine transformation defined in Section 2.4.

Consider the norm:

‖|v̂‖|:= (

4∑
j=1

(|v̂(âj)|2+

2∑
i=1

| ∂̂v̂i(âj)
∂x̂i

|2) +

2∑
i=1

|
∫
xi=const

v̂i dŝ|2+ sup
D
|
∫
Q̂
v̂ r̂ dŝ|2)1/2,

where D = {r̂ ∈ Q1,0×Q0,1 : ‖r̂‖L2(Q̂)= 1} and x1 = x, x2 = y. By Lemma 1, ‖|v̂‖| is a norm on Q3,2×Q2.3.

Let Ihw : (H1(Ω))2 → Vh be the Scott-Zhang interpolant of w [17]. By the triangle inequality and equivalence

of norms,

‖v̂(1)‖H1(Q̂)≤ ‖v̂
(1) − Îhw‖H1(Q̂)+‖Îhw‖H1(Q̂)≤ c|‖v̂

(1) − Îhw‖|+‖Îhw‖H1(Q̂). (3.5)

Estimating the first term in the right-hand side expression,

‖|v̂(1) − Îhw|‖2=

4∑
j=1

(|(v̂(1) − Îhw)(âj)|2+

2∑
i=1

| ∂̂(v̂(1) − Îhw)(i)(âj)

∂x̂i
|2) +

2∑
i=1

|
∫
x̂i=const

(v̂(1) − Îhw)(i)dŝ|2

+ sup
D
|
∫
Q̂

(v̂(1) − Îhw)r̂dŝ|2. (3.6)
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Since D is a finite dimensional space, it is closed. Therefore, r̂ attains a supremum over D.

Let r̂∗ = supQ̂ r̂(x̂). Then,

sup
D
|
∫
Q̂

(v̂(1) − Îhw) r̂ dŝ|2= |
∫
Q̂

(v̂(1) − Îhw) r̂∗ dŝ|2.

By using a change of variables, the inequality |Q|≤ h2, the Cauchy-Schwarz inequality and the property 3

of v(1) stated in Lemma 6,

|
∫
Q̂

(v̂(1) − Îhw) r̂∗ dŝ|2 ≤ c

|Q|2
|
∫
Q

(v(1) − Ihw) r∗ ds|2≤ ch−4|
∫
Q

(v(1) − Ihw) r∗ ds|2

≤ ch−4|
∫
Q
v(1) r∗ ds−

∫
Q
Ihwr

∗ ds|2= ch−4|
∫
Q
wr∗ ds−

∫
Q
Ihwr

∗ ds|2

≤ ch−4|
∫
Q

(w − Ihw) r∗ ds|2

≤ ch−4‖w − Ihw‖2L2(Q)‖r
∗‖2L2(Q).

By definition, ‖r̂∗‖L2(Q̂)= 1 and a change of variables yields:

‖r∗‖2L2(Q)=

∫
F (Q̂)

|r∗(x)|2dx = 2|Q|
∫
Q̂
|r̂∗|2(x̂)dx̂ = 2|Q|.

Thus,

sup
D
|
∫
Q̂

(v̂(1) − Îhw) r̂ dŝ|2 ≤ ch−4‖w − Ihw‖2L2(Q)|Q|≤ ch
−2‖w − Ihw‖2L2(Q). (3.7)

Now consider the second part of the first term of (3.6), by a change of variables, equivalence of norms and

the property 2 of v(1) stated in Lemma 6,

4∑
j=1

(|(v̂(1) − Îhw)(âj)|2+

2∑
i=1

| ∂̂(v̂(1) − Îhw)i

∂̂x̂i
(âj)|2) ≤

4∑
j=1

2∑
i=1

| ∂̂(v̂(1) − Îhw)i

∂̂x̂i
(âj)|2

≤
4∑
j=1

2∑
i=1

(| ∂̂v̂
(1)
i

∂̂x̂i
(âj)|2+| ∂̂Îhw

∂̂x̂i
(âj)|2)

≤
4∑
j=1

2∑
i=1

| ∂̂v̂
(1)
i

∂̂x̂i
(âj)|2+c‖Îhw‖2H1(Q̂)

≤
4∑
j=1

ch2|q̂(âj)|2+c‖Ihw‖2H1(Q)

≤ c(h2‖q̂‖2
L2(Q̂)

+‖Ihw‖2H1(Q))

≤ c(‖q‖2L2(Q)+‖Ihw‖
2
H1(Q))

(3.8)

Now we will evaluate the line integrals that appear as the third term in (3.6) on each of the lines in the

boundary, ∂Q, separately. Consider the lines where x is constant, namely, L3 and L4. Since B is diagonal,

F preserves paralelism, x̂1 = x̂ is constant implies x1 = x is constant. By the Cauchy-Schwarz inequality, a
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change of variables and the property 4 of v(1) stated in Lemma 6,

|
∫
x̂i=const

(v̂(1) − Îhw)idŝ|2 ≤ |h−1

∫
xi=const

(v(1) − Ihw)ids|2

= |h−1(

∫
xi=const

v
(1)
i ds−

∫
xi=const

(Ihw)i ds)|2

= |h−1(

∫
xi=const

wi ds−
∫
xi=const

(Ihw)i ds)|2

≤ |h−1

∫
xi=const

(w − Ihw)i ds|2

≤ h−2|
∫
xi=const

12ds|·
∫
xi=const

|(w − Ihw)i|2ds

≤ ch−2 · h
∫
xi=const

|(w − Ihw)i|2 ds

= ch−1

∫
xi=const

|(w − Ihw)i|2 ds.

Thus,

2∑
i=1

|
∫
x̂i=const

(v̂(1) − Îhw)idŝ|2≤ ch−1‖w − Ihw‖2L2(∂Q). (3.9)

Note that by the trace theorem,

ch−1‖w − Ihw‖2L2(∂Q) ≤ ch
−1(h−1‖w − Ihw‖2L2(Q)+h‖w − Ihw‖

2
H1(Q))

= ch−2‖w − Ihw‖2L2(Q)+‖w − Ihw‖
2
H1(Q).

As a result, (3.9) gives:

2∑
i=1

|
∫
x̂i=const

(v̂(1) − Îhw)idŝ|2≤ ch−2‖w − Ihw‖2L2(Q)+‖w − Ihw‖
2
H1(Q). (3.10)

Hence, combining (3.4)− (3.10),

‖v(1)‖2H1(Q)≤ c(‖q‖
2
L2(Q)+‖Ihw‖

2
H1(Q)+h

−2‖w − Ihw‖2L2(Q)+‖w − Ihw‖
2
H1(Q)). (3.11)

Since
∑
Q∈Qh

h−2‖w − Ihw‖2L2(Q)≤ ‖w‖
2
H1(Ω) and

∑
Q∈Qh

‖Ihw‖2H1(Q)≤ ‖w‖
2
H1(Ω) [17], by scaling and summing

over the rectangles Q in Qh, from (3.11), we get:

∑
Q∈Qh

‖v(1)‖2H1(Q)≤ c‖w‖
2
H1(Ω)≤ c‖q‖

2
L2(Ω).

Consequently, by (3, 3) we have

‖v‖H1(Ω)≤ c‖q‖L2(Ω).
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3.1 THE FINITE ELEMENT SPACES WITH HOMOGENEOUS BOUNDARY

CONDITIONS

In this chapter, we impose homogeneous boundary conditions on the finite element spaces we have defined

in Chapter 2.

Consider the following finite element spaces as candidates:

• Σh,0 = Σh ∩H2
0 (Ω).

• Vh,0 = Vh ∩ (H1
0 (Ω))2.

• Wh,0 = Wh ∩ L2
0(Ω) = {q ∈Wh;

∫
Ω
q dx = 0}.

Note that z ∈ Σh is in Σh,0 if and only if:

1. z(a) = 0, ∀a ∈ Vb.

2. ∇z(a) = 0, ∀a ∈ Vb.

3. ∂z
∂y∂x (a) = 0, ∀a ∈ Vb.

where Vb denotes the boundary vertices. The number of constraints imposed on Σh,0 is 4Vb. Thus, we have,

dim(Σh,0) = dim(Σh)− 4|Vb|= 4|V|−4|Vb|.

Also, v ∈ Vh,0 if and only if:

1. v(a) = 0, ∀a ∈ Vb,

2. ∂v1
∂x (a) = 0, ∀e ∈ Vb,y ∪ Vc,

3. ∂v2
∂y (a) = 0, ∀e ∈ Vb,x ∪ Vc,

4.
∫
e
v1ds = 0, ∀e ∈ Ebx,

5.
∫
e
v2ds = 0, ∀e ∈ Eby,

where Vc denotes the corner vertices,Vb,x and Vb,y denote the vertices among Vb \ Vc, where x is constant

and where y is constant, respectively, and Ebx are the edges where x is constant and Eby are the edges where

y is constant. Therefore, we can write Vb = Vb,x ∪ Vb,y ∪ Vc and Eb = Ebx ∪ Eby.

The number of constraints imposed on Vh,0 is 3|Vb|+|Vc|+|Eb| , we then have:

dim(Vh,0) = dim(Vh)− 3|Vb|−|Vc|−|Eb|= (4|T|+4|V|+|E)|)− 3|Vb|−|Vc|−|Eb|.

On the other hand.

dim(Wh,0) = dim(Wh)− 1 = (4|T|+|E|+1)− 1 = 4|T|+|E|.

Lemma 8. There holds

Ker(div(Vh,0)) = curl(Σh,0).
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Proof. Firstly, we show that

curl(Σh,0) ⊆ Ker(div(Vh,0)).

Let v ∈ curl(Σh,0). Then there exists z ∈ Σh,0 such that curl(z) = v. Since the divergence of the curl operator

is zero, we have div(v) = 0, i.e., v ∈ Ker(div(Vh,0)). Therefore, we have curl(Σh,0) ⊆ Ker(div(Vh,0)).

Then we show

Ker(div(Vh,0)) ⊆ curl(Σh,0).

Let v ∈ Ker(div(Vh,0)) so that div(v) = 0. Then, there exists z ∈ H2
0 (Ω) such that v = curl(z). Since

v|Q∈ Q2,3 ×Q2,3, we have z|Q∈ Q3,3. Furthermore, since ∂v1
∂x and ∂v2

∂y are continuous at the vertices, ∂2z
∂x∂y

is continuous at the vertices. Therefore, z ∈ Σh,0, and this implies Ker(div(Vh,0)) ⊆ curl(Σh,0). Hence,

curl(Σh,0) = Ker(div(Vh,0)).

By Lemma 8 and the rank-nullity theorem,

dim(Wh,0)− dim(div(Vh,0)) = dim(Wh,0)− (dim(Vh,0)− dim(Ker(div(Vh,0))))

= dim(Wh,0)− (dim(Vh,0)− dim(curl(Σh,0)))

= dim(Wh,0)− (dim(Vh,0)− dim(Σh,0)). (3.12)

From the above calculations, it is easy to see that:

dim(Σh,0) + dim(Wh,0)− dim(Vh,0) = (4|V|−4|Vb|) + (4|T|+|E|)− 4|T|−4|V|−|E|+3|Vb|+|Vc|+|Eb|

= −|Vb|+|Vc|+|Eb|= |Vc|> 0

since |Eb|= |Vb|. As a result, (Σh,0, Vh,0,Wh,0) does not form an exact sequence.

Note that dim(Wh,0) > dim(div(Vh,0)), i.e., the pressure space is larger than desired.

Now, consider the following candidate finite element spaces:

• Σh,0 = Σh ∩H1
0 (Ω).

• Vh,0 = {vh ∈ Vh; (vh · n)|∂Ω= 0}.

• Wh,0 = Wh ∩ L2
0(Ω) = {q ∈Wh;

∫
Ω
q dx = 0}.

Note that z ∈ Σh is in Σh,0 if and only if:

1. z(a) = 0, ∀a ∈ Vb,

2. ∂z
∂x (a) = 0, ∀a ∈ Vb,y ∪ Vc,

3. ∂z
∂y (a) = 0, ∀a ∈ Vb,x ∪ Vc.

The number of constraints imposed on Σh,0 is: |Vb|+|Vb,y|+|Vc|+|Vb,x|+|Vc|= 2|Vb|+|Vc|. As a result,

dim(Σh,0) = dim(Σh)− 2|Vb|−|Vc|= 4|V|−2|Vb|−|Vc|.

Next, we note that vh ∈ Vh,0 if and only if:
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1. v1(a) = 0, ∀a ∈ Vb,x ∪ Vc,

2.
∫
e
v1ds = 0, ∀e ∈ Ebx,

3. v2(a) = 0, ∀a ∈ Vb,y ∪ Vc,

4.
∫
e
v2ds = 0, ∀e ∈ Eby.

The number of constraints imposed on Vh,0 is: |Vb,x|+|Vb,y|+2|Vc|+|Eb|= |Vb|+|Vc|+|Eb|. Thus,

dim(Vh,0) = dim(Vh)− |Vb|−|Vc|−|Eb|= 4|T|+4|V|+|E|−|Vb|−|Vc|−|Eb|.

where E denotes the number of edges.

Lemma 9. There holds

Ker(div(Vh,0)) = curl(Σh,0). (3.13)

Proof. Firstly, we show that

curl(Σh,0) ⊆ Ker(div(Vh,0)).

Let v ∈ curl(Σh,0). Then there exists z ∈ Σh,0 such that curl(z) = v. Since the divergence of the curl operator

is zero, we have div(v) = 0, i.e., v ∈ Ker(div(Vh,0)). Therefore, we have curl(Σh,0) ⊆ Ker(div(Vh,0)).

Then we show

Ker(div(Vh,0)) ⊆ curl(Σh,0).

Let v ∈ Ker(div(Vh,0)) so that div(v) = 0. Then, there exists z ∈ H1
0 (Ω) such that v = curl(z). Since

v|Q∈ Q2,3 ×Q2,3, we have z|Q∈ Q3,3. Furthermore, since ∂v1
∂x and ∂v2

∂y are continuous at the vertices, ∂2z
∂x∂y

is continuous at the vertices. Therefore, z ∈ Σh,0, and this implies Ker(div(Vh,0)) ⊆ curl(Σh,0). Hence,

curl(Σh,0) = Ker(div(Vh,0)).

As a result of Lemma 9, we have,

dim(div(Vh,0)) = dim(Vh,0)− dim(Σh,0)

= (4|T|+4|V|−|Vb|−|Vc|−|Ebh|+|E|)− (4|V|−2|Vb|−|Vc|)

= 4|T|+|Vb|−|Ebh|+|E|.

It is easy to see that |Vb|= |Eb|. Thus, dim(div(Vh,0)) = 4|T|+|E|.

Also, by Euler’s formula

dim(Wh,0) = dim(Wh)− 1

= |V|+5|T|−1

= |V|+5|T|−(|V|+|T|−|E|)

= 4|T|+|E|.
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Theorem 5. div : Vh,0 →Wh,0 is a surjective map.

Proof. Note that div(Vh,0) = {r : r ∈ Q2,2 ∩ L2
0, ∃v ∈ Vh,0, div(v) = r}. Let r ∈ div(Vh,0). Then ∃v ∈ Vh,0

such that div(v) = r. Then, by the divergence theorem,∫
Ω

r dx =

∫
Ω

div(v)dx =

∫
∂Ω

v · nds = 0.

since v ∈ Vh,0. Moreover, v = 0 on ∂Ω, i.e. r = 0 on ∂Ω and r is continuous at the vertices since v ∈ Vh.

Therefore, r ∈ Wh,0 and as a result, div(Vh,0) ⊆ Wh,0. From the dimension argument, it follows that

div(Vh,0) = Wh,0.

The dimension arguments above give:

dim(Σh,0) + dim(Wh,0) = dim(Vh,0).

By (3.13) and Theorem 5, it is easy to see that the complex (Σh,0, Vh,0,Wh,0) is exact.

Following the same method used in the proof of Theorem 4, we see that for ∀q ∈Wh,0, there exists v ∈ Vh,0
such that div(v) = q and ‖v‖h≤ c‖q‖L2(Ω), where ‖·‖h is the H1 type norm defined in the next section.

Lemma 10. There holds

‖v‖2H1(Q)+
∑
e∈∂Q

1

he
‖v‖2L2(e)≤ c(‖v̂‖

2
H1(Q̂)

+
∑
ê∈∂Q̂

1

he
‖v̂‖2L2(ê)).

for ∀v ∈ Vh,0. As a result, the newly defined finite element spaces satisfy the inf-sup stability condition for

the problem with the homogeneous boundary conditions.

inf
q∈Wh,0

sup
v∈Vh,0\{0}

B(v, q)

‖v‖h‖q‖L2(Ω)
≥ c > 0

Proof. By scaling, we have

‖v‖H1(Q)≤ c‖v̂‖H1(Q̂).

By a change of variables, it’s easy to show that for e ∈ ∂Q,∫
e

|v|2ds = he

∫
ê

|v̂|ds.

Therefore, ∑
e∈∂Q

1

he
‖v‖2L2(e)=

∑
ê∈∂Q̂

1

he
‖v‖2L2(ê).

Let v, v(1) and v(2) be defined as in the proof of Theorem 4 and v(x) = v̂(x̂), where x = F (x̂).

‖v(1) − Ihw‖2H1(Q)+
∑

e∈(∂Q∩∂Ω)

1

he
‖v(1) − Ihw‖2L2(e) ≤ ‖v

(1) − Ihw‖2H1(Q)+
∑
e∈∂Q

1

he
‖v(1) − Ihw‖2L2(e)≤ ‖|v̂

(1) − Îhw|||

≤ c(‖q‖2L2(Q)+‖Ihw‖
2
H1(Q)+h

−2‖w − Ihw‖L2(Q)+‖w‖H1(Q)).
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Since Ihw = 0 on ∂Ω, the triangle inequality yields

‖v(1)‖2H1(Q)+
∑

e∈(∂Q∩∂Ω)

1

he
‖v(1)‖2L2(e)≤ c(‖q‖

2
L2(Q)+‖Ihw‖

2
H1(Q)+h

−2‖w − Ihw‖L2(Q)+‖w‖H1(Q)).

Define the following H1-type norm,

‖v‖2h:= ‖∇v‖2L2(Ω)+
∑
e∈Eb

he‖
∂v

∂ne
‖2L2(e)+

∑
e∈Eb

1

he
‖v‖2L2(e). (3.14)

Note that

‖v(1)‖2h≤ c(‖v(1)‖2H1(Q)+
∑

e∈(∂Q∩∂Ω)

1

he
‖v(1)‖2L2(e))

Therefore,

‖v(1)‖2h≤ c(‖q‖2L2(Q)+‖Ihw‖
2
H1(Q)+h

−2‖w − Ihw‖L2(Q)+‖w‖H1(Q)) ≤ c‖q‖L2(Ω).

From Lemma 7, we know that ‖v(2)‖H1(Ω)≤ c(‖q‖L2(Ω)+‖v(1)‖H1(Ω)), by the equivalence of the norms, on

Vh,0,

‖v‖h≤ c‖q‖L2(Ω).

As a result,

inf
q∈Wh,0

sup
v∈Vh,0\{0}

B(v, q)

‖v‖h‖q‖L2(Ω)
≥ c > 0

3.2 NITSCHE’S METHOD

In this section, we apply Nitsche’s method to the two-dimensional Stokes problem and show that there exists

a unique solution. In this aspect, we define two bilinear forms A and B and restate the problem. Then, we

verify that coercivity and continuity constraints are satisfied and therefore the existence of a unique solution

is guaranteed.

Let Ω, u, f , p and γ be defned as in section 2, i.e.,

−γ∆u+∇p = f in Ω,

div(u) = 0 in Ω,

u = 0 on ∂Ω. (3.15)

Multiplying (3.12) by vh, integrating over Ω and applying an integration by parts formula gives us:∫
Ω

∇u : ∇vhdx−
∫
∂Ω

∂u

∂n
· vhds−

∫
Ω

p div(vh)dx+

∫
Ω

p vh · nds =

∫
Ω

f · vhdx, ∀vh ∈ Vh,0, (3.16)

where ”:” denotes the Frobenius inner product. Let n and t denote the outward unit normal and the unit

tangent vectors, respectively. Since vh ∈ Vh,0, (vh ·n)|∂Ω= 0, and therefore vh = (vh ·n)·n+(vh ·t)·t = (vh ·t)·t
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and
∫
∂Ω
p vh · nds = 0. Moreover,

(
∂u

∂n
· vh)|∂Ω=

∂u

∂n
· (vh · t)t = ((

∂u

∂n
· n)n+ (

∂u

∂n
t) · t))(vh · t)t,

= (
∂u

∂n
· t)t · (vh · t)t = (

∂u

∂n
· t)(vh · t).

Thus, (3.14) becomes:∫
Ω

∇u : ∇vhdx−
∫
∂Ω

(
∂u

∂n
· t)(vh · t)ds−

∫
Ω

p div(vh)dx =

∫
Ω

f · vhdx. (3.17)

Let B denote the bilinear form and F denote the linear operator defined by the following formulas:

B(vh, p) = −
∫

Ω

p div(vh)dx,

F (vh) =

∫
Ω

f · vhdx,

Then (3.16) can be written as:∫
Ω

∇u : ∇vhdx−
∫
∂Ω

∂u

∂n
· vhds−

∫
Ω

p div(vh)dx+B(vh, p) = F (vh), (3.18)

∀vh ∈ Vh,0. Since u|∂Ω=0, we can symmetrize and stabilize (3.17) as follows:∫
Ω

∇u : ∇vhdx−
∑
e∈Eb

∫
e

((
∂u

∂ne
· t)(vh · t) + (

∂vh
∂ne
· t)(u · t)− σ

he
u · vh)ds+B(vh, q) = F (vh), (3.19)

where he denotes the length of the edge e and σ is a penalization parameter.

Let A denote the bilinear form defined as follows:

A(v, w) =

∫
Ω

∇v : ∇wdx−
∑
e∈Eb

∫
e

((
∂v

∂ne
· t)(w · t) + (

∂w

∂ne
· t)(v · t)− σ

he
v · w)ds.

Note that A(u, vh) +B(vh, p) = F (vh), since u = 0 on ∂Ω and div(u) = 0 in Ω. Thus, the problem of finding

the solution u to (3.14) reduces to finding u satisfying:

A(u, vh) +B(vh, p) = F (vh),

B(u, qh) = 0 (3.20)

∀vh ∈ Vh,0 and ∀qh ∈Wh,0.

The finite element method applied to the problem given by (3.14) can be stated as:

Find (uh, ph) that satisfy the following.

A(uh, vh) +B(vh, ph) = F (vh),

B(uh, qh) = 0 (3.21)

∀vh ∈ Vh,0 and ∀qh ∈Wh,0.

To verify the existence and uniqueness of the solution, u, to this system, we need to show that B is contin-

uous and coercive on Vh,0.
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Lemma 11. With respect to the H1-type norm given by (3.14), A is a continuous bilinear form on (
∏
Q∈Qh

H2(Q))2∩

(H1(Q))2. Moreover, A is coercive on Vh,0, provided σ is sufficiently large.

Proof. To prove the coercivity of A, we need to show A(v, v) ≥ c‖v‖2h holds for ∀v ∈ Vh,0. By definition, we

have:

A(v, v) =

∫
Ω

|∇v|2dx− 2
∑
e∈Eb

∫
e

(
∂v

∂ne
v −

∫
e

σ

he
|v|2)ds,

=

∫
Ω

|∇v|2dx− 2
∑
e∈Eb

∫
e

∂v

∂ne
v +

∑
e∈Eb

∫
e

σ

he
|v|2ds.

By trace and inverse inequalities,
∑
e∈Eb

he‖ ∂v∂ne
‖2L2(e)≤ c‖∇v‖

2
L2(Ω). Therefore, we have,

2|
∑
e∈Eb

∫
e

∂v

∂ne
vds| ≤ 2

∑
e∈Eb

|
∫
e

(h−1/2
e v)(h1/2

e

∂v

∂ne
)ds|

≤ 2(
∑
e∈Eb

h−1
e ‖v‖2L2(e))

1/2(
∑
e∈Eb

he‖
∂v

∂ne
‖2L2(e))

1/2

≤ 2c(
∑
e∈Eb

h−1
e ‖v‖2L2(e))

1/2‖∇v‖L2(Ω)

≤ 2c(
1

2ε

∑
e∈Eb

h−1
e ‖v‖2L2(e)+

ε

2
‖∇v‖2L2(Ω))

=
c

ε

∑
e∈Eb

(h−1
e ‖v‖2L2(e)+cε‖∇v‖

2
L2(Ω)).

This yields:

A(v, v) ≥ ‖∇v‖2L2(Ω)+σ
∑
e∈Eb

1

he
‖v‖2L2(e)−2|

∑
e∈Eb

∂v

∂ne
vds|

≥ (1− cε)‖∇v‖2L2(Ω)+(σ − c

ε
)
∑
e∈Eb

1

he
‖v‖2L2(e).

If we choose ε = 1
2c , then we have σ − c

ε = σ − 2c2. Thus, for σ ≥ 4c2,

A(v, v) ≥ 1

2
‖∇v‖2L2(Ω)+2c2

∑
e∈Eb

1

he
‖v‖2L2(e)≥ min{

1

2
, 2c2}(‖∇v‖2L2(Ω)+

∑
e∈Eb

1

he
‖v‖2L2(e)) ≥ c min{

1

2
, 2c2})‖v‖2h.

Thus, we get A(v, v) ≥ c‖v‖2h and have proven the coercivity of A.

To prove the continuity of A, we need to show that |A(v, w)|≤ c‖v‖h‖w‖h. Applying the Cauchy-Schwarz
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inequality, we obtain

|A(v, w)|2 = |
∫

Ω

∇w : ∇vdx−
∑
e∈Eb

∫
e

(
∂w

∂ne
v +

∂v

∂ne
w − σ

he
wv)ds|2

≤ c(|
∫

Ω

∇w : ∇vdx|2+
∑
e∈Eb

|
∫
e

(
∂w

∂ne
v +

∂v

∂ne
w +

σ

he
w · v)ds|2)

≤ c(‖∇v‖2L2(Ω)‖∇w‖
2
L2(Ω)+

∑
e∈Eb

|
∫
e

∂w

∂ne
vds|2+

∑
e∈Eb

|
∫
e

∂v

∂ne
wds|2+

∑
e∈Eb

|
∫
e

σ

he
w · v)ds|2)

≤ c(‖∇v‖2L2(Ω)‖∇w‖
2
L2(Ω)+

∑
e∈Eb

(he‖
∂w

∂ne
‖2L2(e))(

1

h e
‖v‖2L2(e)) +

∑
e∈Eb

(he‖
∂v

∂ne
‖2L2(e))(

1

h e
‖w‖2L2(e))

+
∑
e∈Eb

| σ
he
|2‖w‖2L2(e)‖v‖

2
L2(e))

≤ c(‖∇v‖2L2(Ω)+
∑
e∈Eb

he‖
∂v

∂ne
‖2L2(e)+

∑
e∈Eb

1

he
‖v‖2L2(e))(‖∇w‖

2
L2(Ω)+

∑
e∈Eb

he‖
∂w

∂ne
‖2L2(e)+

∑
e∈Eb

1

he
‖w‖2L2(e))

= c‖v‖2h‖w‖2h.

As a result |A(v, w)|≤ c‖v‖h‖w‖h.

Define the continuous and discrete kernels of B:

Z = {v ∈ (H1
0 (Ω))2 : (v · n)|∂Ω= 0, B(v, q) = 0, ∀q ∈ L2

0(Ω)},

Zh = {vh ∈ Vh,0 : B(vh, qh) = 0, ∀qh ∈Wh,0}.

Note that Zh ⊆ Z and (3.20) implies,

A(uh, vh) = F (vh),

∀vh ∈ Zh. Since on Zh, A is a symmetric, elliptic and continuous bilinear form and F is a continuous linear

form, by Lax-Milgram theorem, there exists a unique solution u ∈ Zh satisfying (3.20). Furthermore, the

inf-sup condition [4]:

inf
q∈Wh,0

sup
v∈Vh,0\{0}

B(v, q)

‖v‖h‖q‖L2(Ω)
≥ α > 0

holds.

Suppose u is the solution of the system given by (3.19).

By the Galerkin orthogonality,

A(u− uh, vh) = A(u, vh)−A(uh, vh) = F (vh)− F (vh) = 0, (3.22)

∀vh ∈ Zh. Furthermore, by the coercivity and the continuity of A, we have:

‖u− uh‖2h ≤ A(u− uh, u− uh) = A(u− uh, u− vh) +A(u− uh, vh − uh)

= A(u− uh, u− vh) ≤ C‖u− uh‖h‖u− vh‖h, ∀vh ∈ Zh
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since (vh − uh) ∈ Zh.

As a result, we have,

‖u− uh‖h≤ C‖u− vh‖h, ∀vh ∈ Zh.

Therefore, since the inf-sup condition holds, we see that [9]

‖u− uh‖h≤ C inf
vh∈Zh

‖u− vh‖h≤ C inf
vh∈Vh

‖u− vh‖h. (3.23)

From (3.22) − (3.23), we conclude that (u − uh) is orthogonal to Zh with respect to the bilinear form, A.

Using the trace and inverse inequalities given below, we can derive the following lemma and approximate an

upper bound on the error in the velocity and pressure approximations. Any polynomial v satisfies [11]:

‖v‖Hm(Ω) ≤ chl−m‖v‖Hl(Ω),

‖v‖2L2(e) ≤ c(
1

h
‖v‖2L2(Ω)+h‖v‖

2
H1(Ω)),

‖ ∂v
∂n
‖2L2(∂Ω) ≤

c

h
‖∇v‖2L2(Ω).

Theorem 6. There holds

‖u− uh‖h≤ ch2‖u‖H3(Ω), ‖p− ph‖L2(Ω)≤ ch2(h ‖p‖H3(Ω)+‖u‖H3(Ω)).

Proof. Let Ih : (H1
0 (Ω))2 → (Q3,2 ×Q2,3) ∩ (H1

0 (Ω))2 denote the nodal interpolant and Ph : L2 →Wh,0 the

interpolant satisfying: ∫
Ω

Ph p dx =

∫
Ω

p q dx, ∀q ∈Wh,0.

Then,

‖u− Ihu‖2h = ‖∇(u− Ihu)‖2L2(Ω)+
∑
e∈Eb

he‖
∂(u− Ihu)

∂ne
‖2L2(e)+

∑
e∈Eb

h−1
e ‖u− Ihu‖2L2(e)

≤ ch2s‖u‖2Hs+1(Ω)+
∑
e∈Eb

c · he(h−1‖∂(u− Ihu)

∂ne
‖2L2(Ω)+h‖

∂(u− Ihu)

∂ne
‖2H1(Ω))

+
∑
e∈Eb

h−1
e (h−1‖(u− Ihu)‖2L2(Ω)+h‖(u− Ihu)‖2H1(Ω))

≤ ch2s‖u‖2Hs+1(Ω)+h
2‖(u− Ihu)‖2H2(Ω)+ch

−2‖u− Ihu‖2L2(Ω)+‖u− Ihu‖
2
H1(Ω)

≤ ch2s‖u‖2Hs+1(Ω)+ch
2h2(s−1)‖u‖2Hs+1(Ω)+ch

−2h2(s+1)‖u‖2Hs+1(Ω)

≤ ch2s‖u‖2Hs+1(Ω),

where 1 ≤ s ≤ 2. Taking s = 2 gives,

‖u− Ihu‖h≤ ch2‖u‖H3(Ω).

Using (3.23) and Ihu ∈ Vh,0, we see that the error in the velocity approximation of this scheme is as follows:

‖u− uh‖h≤ ch2‖u‖H3(Ω). (3.24)
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On the other hand, by the triangle inequality,

‖p− ph‖L2(Ω)≤ ‖p− Php‖L2(Ω)+‖Php− ph‖L2(Ω)≤ ch3‖p‖H3(Ω)+‖Php− ph‖L2(Ω). (3.25)

The inf-sup stability and the continuity of B in the H1-type norm yields:

c‖ph − Php‖L2(Ω)≤ sup
vh∈Vh,0\{0}

B(vh, ph − Php)
‖vh‖h

. (3.26)

Since Php ∈Wh,0, we have

A(uh, vh) +B(vh, Php) = F (vh).

A(u, vh) +B(vh, ph) = F (vh).

Subtracting the two equations yields,

A(u− uh, vh) +B(vh, ph − Php) = 0.

The continuity of A in the weighted norm gives:

|B(vh, ph − Php)| = |A(u− uh, vh)|

≤ ‖u− uh‖h‖vh‖h. (3.27)

Using (3.26) in (3.27), we get:

‖ph − Php‖L2(Ω)≤
c‖u− uh‖h‖vh‖h

‖vh‖h
≤ c‖u− uh‖h≤ ch2‖u‖H3(Ω)

As a result, by (3.25),

‖p− ph‖L2(Ω) ≤ ch2(h ‖p‖H3(Ω)+‖u‖H3(Ω)).
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4.0 CONCLUSION

In this thesis project, we have constructed a pair of divergence free, conforming and stable finite elements

for the Stokes problem on two dimensional rectangular grids with no-slip boundary conditions. We used

pointwise continuous Q3,2×Q2,3 polynomials that are partially C1 at the vertices and Q2,2 polynomials that

are continuous at the vertices as the functions forming the velocity and pressure spaces, respectively.

By defining appropriate norms and using an affine transformation and a scaled Piola transform, we showed

that the inf-sup stability condition holds for the finite elements on each rectangular element and then in the

entire domain with and without homogeneous boundary conditions.

By applying Nitsche’s method to the problem and verifying that the related bilinear form is coercive and

continuous, we proved that there exists a unique solution to the two-dimensional Stokes problem and proved

the convergence of the finite element solution in a H1-type norm.
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