
MapReduce Analysis for Cloud-archived Data

Balaji Palanisamy Aameek Singh† Nagapramod Mandagere† Gabriel Alatorre† Ling Liu‡

School of Information Sciences, University of Pittsburgh †IBM Research - Almaden, ‡College of Computing, Georgia Tech
bpalan@pitt.edu, †{aameek.singh, pramod, galatorr}@us.ibm.com, ‡lingliu@cc.gatech.edu

Abstract—Public storage clouds have become a popular choice
for archiving certain classes of enterprise data - for example,
application and infrastructure logs. These logs contain sensitive
information like IP addresses or user logins due to which regula-
tory and security requirements often require data to be encrypted
before moved to the cloud. In order to leverage such data for
any business value, analytics systems (e.g. Hadoop/MapReduce)
first download data from these public clouds, decrypt it and then
process it at the secure enterprise site.

We propose VNCache: an efficient solution for MapReduce
analysis of such cloud-archived log data without requiring an
apriori data transfer and loading into the local Hadoop clus-
ter. VNcache dynamically integrates cloud-archived data into a
virtual namespace at the enterprise Hadoop cluster. Through a
seamless data streaming and prefetching model, Hadoop jobs can
begin execution as soon as they are launched without requiring
any apriori downloading. With VNcache’s accurate pre-fetching
and caching, jobs often run on a local cached copy of the
data block significantly improving performance. When no longer
needed, data is safely evicted from the enterprise cluster reducing
the total storage footprint. Uniquely, VNcache is implemented
with NO changes to the Hadoop application stack.

I. INTRODUCTION

Data Storage requirements have seen an unprecedented
growth in the recent years owing to more stringent retention
requirements. Cloud storage solutions can be an attractive and
cost-effective choice in such cases due to its cost-effective and
on demand nature. However, for certain classes of enterprise
data - application and infrastructure logs, current cloud storage
and analytics architectures do not support them well especially
when there are stringent requirements for data privacy and
security.

Logs often contain sensitive information like IP addresses,
login credentials, etc. which necessitate encrypting the data
before it leaves the enterprise premises. After securely archiv-
ing the data in the storage cloud, extracting any business value
using analytics systems such as MapReduce[2] or Hadoop[17]
is nontrivial. In these cases, using compute resources in the
public cloud is often not an option due to security concerns.
Most state-of-the-art cloud solutions for such cases are highly
sub-optimal requiring all (encrypted) data sets to be first trans-
ferred to the enterprise cluster from remote storage clouds,
decrypted, and then loaded into the Hadoop Distributed File
System (HDFS)[4]. It is only after these steps complete that
the job will start executing. Secondly, this results in extremely
inefficient storage utilization. For example, while the job is
executing, the same dataset will reside in both the public
storage cloud and the enterprise cluster and is in fact replicated

multiple times at both of these places for resiliency purposes,
resulting in higher costs. For example, Hadoop by default will
replicate the data 3 times within the enterprise Hadoop cluster.
This is on top of the storage replication cost incurred at the
public storage cloud.

In this paper, we propose a unique hybrid cloud platform
called VNcache that alleviates the above mentioned concerns.
Our solution is based on developing a virtual HDFS namespace
for the encrypted data stored in the public storage cloud that
becomes immediately addressable in the enterprise compute
cluster. Then using a seamless streaming and decryption
model, we are able to interleave compute with network transfer
and decryption resulting in efficient resource utilization. Fur-
ther by exploiting the data processing order of Hadoop, we
are able to accurately prefetch and decrypt data blocks from
the storage clouds and use the enterprise site storage only as
a cache. This results in predominantly local reads for data
processing without the need for replicating the whole dataset
in the enterprise cluster.

Uniquely we accomplish this without modifying any com-
ponent of Hadoop. By integrating VNCache into the filesystem
under HDFS, we are able to create a new control point which
allows greater flexibility for integrating security capabilities
like encryption and storage capabilities like use of SSDs
(Solid-state drives). Our experimental evaluation shows that
VNCache achieves up to 55% reduction in job execution time
while enabling private data to be archived and managed in
public clouds.

The rest of the paper is organized as follows. Section II
provides the background and the use-case scenario for support-
ing MapReduce analysis for cloud-archived data. In Section
III, we present the design of VNCache and its optimization
techniques. We discuss our experimental results in Section IV
and we present a discussion of alternate solutions and design
choices for VNCache in Section V. In Section VI, we discuss
related work and we conclude in Section VII.

II. BACKGROUND

We consider enterprise applications that perform MapRe-
duce analysis over log data. The logs get generated at the
enterprise site and archived in a public cloud infrastructure.
For example, an application that monitors the status of other
application software and hardware typically generates enor-
mous amounts of log data. Such log data is often associated
with a timestamp and data analysis may need to performed on
them when needed in the future.

With current cloud storage solutions, the logical method
to perform analysis of archived data would be as follows.
Log data generated at the enterprises would be encrypted
and archived at a possibly nearest public storage cloud. Upon
a need to execute a Hadoop analytics job, the enterprise
cluster would download all relevant input data from the public
clouds (time for which depends on network latencies). It will
then create a virtual Hadoop cluster by starting a number of
VMs. Data is then decrypted locally (time for which depends
on CPU/Memory availability on local nodes and denoted by
Decryption Time) and then ingested into HDFS (Hadoop
Distributed Filesystem) of the Hadoop cluster and then the
job can start executing. Upon finishing the job, local copy of
the data and the virtual Hadoop cluster can be destroyed.

Figure 1 shows the breakdown of execution time for running
a grep hadoop job on a 5GB dataset using the conventional
execution model mentioned above. The network latencies
45, 90 and 150 milliseconds represent various degrees of
geographic separation such as co-located datacenters, same
coast data centers, and geographically well-separated data
centers. Results show that data transfer time (the time to
transfer data from the remote storage cloud to the enterprise
cluster) and HDFS load time can have significant impact on
overall execution time, thus making this model inefficient. We
also notice that the data transfer time increases with increase
in network latency.

Further, depending upon the amount of data required to be
loaded and connectivity between the enterprise cluster and the
remote storage cloud infrastructure, this step adversely impacts
performance, and while the job is running (often for long
durations) the dataset is duplicated in both the public storage
cloud as well as the local enterprise cluster– along with the
storage cloud original, there is a copy in the enterprise cluster,
leading to higher costs for the enterprise.

Fig. 1: Breakdown of Fullcopy Runtime: 5 GB dataset with
varying network latency

In contrast to this conventional model, VNCache aims at
minimizing the impact of apriori data ingestion and decryption
steps by intelligent pipelining of compute with those steps;
specifically, by creating a virtual HDFS namespace which
lays out the HDFS data blocks across the compute cluster.
Whenever the job needs to access any data block, VNCache
streams it on-demand from the appropriate storage clouds,
decrypting it on-the-fly, and making it available to the job. As
an additional performance optimization, VNCache prefetches

data ahead of processing so that the map tasks read the data
from local storage.

Before presenting the design overview of VNCache and its
various components, we present a brief overview of HDFS and
its interaction with the underlying filesystem.

A. HDFS and underlying filesystem

Hadoop Distributed Filesystem (HDFS) is a distributed user-
space filesystem used as the primary storage by Hadoop
applications. A HDFS cluster consists of a Namenode that
manages filesystem metadata and several Datanodes that store
the actual data as HDFS blocks. HDFS is designed to be
platform independent and can be placed on top of any existing
underlying filesystem (like Linux ext3) on each node of the
cluster. It follows a master/slave architecture. HDFS exposes a
file system namespace and allows user data to be stored in files.
The HDFS Namenode manages the file system namespace and
regulates access to files by clients. The individual Datanodes
manage storage attached to the nodes that they run on. When
a client writes a file into HDFS, the file is split into several
smaller sized data blocks (default size is 64 MB) and stored
on the storage attached to the Datanodes.

Within the cluster, the Namenode stores the HDFS filesys-
tem image as a file called fsimage in its underlying filesystem.
The entire HDFS filesystem namespace, including the mapping
of HDFS files to their constituent blocks, is contained in this
file. Each Datanode in the cluster stores a set of HDFS blocks
as separate files in their respective underlying filesystem1.
As the Namenode maintains all the filesystem namespace
information, the Datanodes have no knowledge about the
files and the namespace. As a HDFS cluster starts up, each
Datanode scans its underlying filesystem and sends a Block
report to the Namenode. The Block report contains the list of
all HDFS blocks that correspond to each of these local files.

When an application reads a file in HDFS, the HDFS
client contacts the Namenode for the list of Datanodes that
host replicas of the blocks of the file and then contacts
the individual Datanodes directly and reads the blocks from
them. We refer the interested readers to [4] for a detailed
documentation on the design and architecture of the Hadoop
Distributed Filesystem. In the next section, we present the
design overview of VNCache and discuss its various compo-
nents

III. VNCACHE OVERVIEW

VNCache is a FUSE based filesystem [7] used as the
underlying filesystem on the Namenode and Datanodes of the
HDFS cluster. It is a virtual filesystem (similar to /proc [6] on
Linux) and simulates various files and directories to the HDFS
layer placed on it. For the Namenode, VNCache exposes
a virtual HDFS namespace with an artificially constructed
fsimage file and for Datanodes, it exposes a list of data files
corresponding to the HDFS blocks placed on that datanode.

1Location in the underlying filesystem is determined by the dfs.data.dir
configuration setting

Disk Cache

Secure Enterprise Cluster

Public Storage Cloud

Create chunks of

HDFS block size

Encrypt

Archiving

process

Fig. 2: System Model

Figure-2 presents the overall framework showing various key
components.

A. Data Archiving Process

In our approach, we pre-process the log data created at
the enterprise cluster to encrypt and make it HDFS friendly
before archiving them in a public cloud. Specifically, large
amounts of log data get chunked into several small files of
HDFS block size (64 MB default), get encrypted, and we label
them with the timestamp information (e.g. 1-1-2013.to.2-1-
2013.data) before uploading to the public storage cloud. The
enterprise site uses a symmetric key encryption scheme to
encrypt the dataset before archiving in the cloud. When log
data belonging to a given time window needs to be analyzed
later on, VNCache can identify all blocks stored in the storage
cloud that contain data relevant to that analysis.

We note that archiving the data in this manner does not
preclude the data being accessed in a non-HDFS filesystem
when needed. In such cases when there is a need to download
the data in a non-HDFS filesystem, VNCache can download
it through a normal Hadoop dfs -get command. Next, we
describe how these data blocks are presented to the HDFS
layer at the enterprise cluster so that jobs can begin execution
right away.

B. Virtual HDFS Creation

When a Hadoop job at the enterprise cluster needs to process
an archived dataset, a virtual cluster is created by starting a
number of VMs including one designated to be the primary
Namenode. Before starting Hadoop in the VMs, a virtual
HDFS namespace is created on the Namenode. It starts by
generating a list of relevant HDFS blocks Bjob for the job
based on the input dataset. For example, for an analysis of
1 month of log data archived in the cloud, all blocks stored
in the storage cloud that contains any data for the chosen
time window would become part of the virtual filesystem2.

2Any unaligned time boundaries are handled in a special manner, details
of which are omitted due to space constraints.

TABLE I: HDFS fsimage

Image Element Datatype
Image version Integer
NAMESPACE ID Integer
NumInodes Integer
GENERATION STAMP Long

TABLE II: HDFS INode

Image Element Datatype
INODE PATH String
REPLICATION Short
MODIFICATION TIME Long
ACCESS TIME Long
BLOCK SIZE Long
numBlocks Integer
NS QUOTA Long
DS QUOTA Long
USER NAME String
GROUP NAME String
PERMISSION Short

A virtual file Fjob is then created to contain |Bjob| HDFS
blocks, where each block is given a unique HDFS identifier
while maintaining its mapping to the filename in the remote
cloud. Similar to HDFS Namenode filesystem formatting, a
fsimage (filesystem image) file is generated and the virtual
file is inserted into this fsimage filesystem image file using
our HDFS virtualization technique described next.

The HDFS virtualization in VNCache initially creates a
HDFS filesystem image and inserts an INode corresponding
to the new file to be added into the virtual HDFS. The fsimage
file is a binary file and its organization in shown in Tables I
- IV. The spatial layout of the HDFS filesystem is shown
in Figure 3. The fsimage begins with the image version,
Namespace identifier and number of Inodes stored as Integers
and Generation stamp stored as Long. The Generation stamp
is generated by the Namenode to identify different versions of
the Filesystem image. Here the INode represents the HDFS
data structure used to represent the metadata of each HDFS
file. For inserting a virtual file into the virtualized HDFS,
VNCache creates a new INode entry corresponding to the
INode organization described in Table II. The first field in the
INode structure is the INode path stored as a String, followed
by replication factor, modification and access times for the
file. It also contains other fields such as the HDFS block size
used by the file, number of HDFS blocks, namespace and disk
space quotas, user name and group names and permission.
The INode structure is followed by the information of each of
the individual blocks of the file. As shown in Table III, each
block representation consists of a block identifier, number of
bytes and generation stamp. The block generation stamp is a
monotonically increasing number assigned by the Namenode
to keep track of the consistency of the block replicas. Since
these are assigned by the Namenode, no two HDFS blocks
can ever have the same Generation Timestamp. The HDFS
filesystem image also has a list of INodes under construction
(INodesUC) whose description is shown in Table IV.

At the enterprise cluster, the namenode is started using
the virtual HDFS filesystem image which enables Hadoop to

... ...

...

Fig. 3: HDFS: FileSystem Image

TABLE III: HDFS Block

Image Element Datatype
BLOCKID Long
NUM BYTES Long
GENERATION STAMP Long

TABLE IV: INodes Under Construction

Image Element Datatype
INODE PATH String
REPLICATION Short
MODIFICATION TIME Long
PREFERRED BLOCK SIZE Long
numBlocks Integer
USER NAME String
GROUP NAME String
PERMISSION Short
CLIENT NAME String
CLIENT MACHINE String

understand that the required file and its individual blocks are
present in the HDFS.

…

TCP/IP

Enterprise Cluster

Kernel

space

User

space

Public Storage Cloud

Fig. 4: VNCache: Data Flow

Next, we determine the virtual data layout of these HDFS
blocks on the Datanodes. It is done similar to Hadoop’s default
data placement policy with its default replication factor of 3.
Once Hadoop is started on the cluster, Datanodes report these

blocks in the Block report to the Namenode, which assumes all
HDFS blocks in the HDFS filesystem namespace are present
even though initially the data still resides in the public storage
cloud. Thus, from a Hadoop application stack standpoint, the
job execution can begin immediately.

C. On-demand Data Streaming

VNCache enables on-demand streaming and on-the-fly de-
cryption of HDFS data blocks. Once the read request for
a HDFS block reaches the Datanode that (virtually) stores
the block, VNCache on the Datanode looks up the mapping
to its public cloud storage location and begins fetching the
data from the public storage cloud. Once the block has been
downloaded, it is decrypted before returning the data to the
call. The enterprise site uses a symmetric key encryption
scheme to encrypt the dataset before archiving in the cloud
and therefore the downloaded blocks are decrypted using the
same key prior to passing them to HDFS. Please note that the
read requests received by the underlying VNCache may be
for a portion of a data block (e.g. Hadoop often does multiple
128k byte reads while reading a complete 64 MB block). For
our implementation, we have chosen to start downloading the
block when an open call is received and corresponding read
requests are served from that downloaded and decrypted block.

Overall, from the HDFS standpoint, the HDFS data blocks
- stored as files on the VNCache filesystem - are seamlessly
accessible so Hadoop works transparently without the inter-
ference of streaming and decryption happening along this
process. Figure 4 shows the dataflow and the interaction
between the HDFS and the FUSE-based VNCache filesystem.

D. Caching and Pre-fetching

The performance of the VNCache approach can be signif-
icantly improved if HDFS block read requests can be served
from the disks of the enterprise cluster as opposed to streaming
for each access. The goal of the caching algorithm is to
maximize the reads from the local disks on the VMs and
minimize streaming requests from the storage server in order

to minimize the read latency for the jobs. Additionally, a
good caching algorithm is expected to yield high cache hit
ratios even for reasonable size of the cache on the disks
of the VMs and should aim at minimizing the cache space
used. VNCache incorporates a distributed cache prefetching
algorithm that understands the processing order of the blocks
by the MapReduce workflows and prefetches the blocks prior
to processing. For subsequent open and HDFS block read
operations, the data from the disk cache in the enterprise
cluster is used for reading. In case of a cache miss, VNCache
still streams the data block from the remote storage cloud as
explained above.

The cache manager follows a master/slave architecture
where a dynamic workflow-aware prefetch controller monitors
the job progress of the individual jobs in the workflow and
determines which blocks need to be prefetched next and sends
instructions to the slave prefetchers running on individual
Hadoop nodes. Each slave prefetcher is multi-threaded and fol-
lows a worker model where each worker thread processes from
a queue of prefetch requests. Each worker thread prefetches
one HDFS data block file from the storage cloud and replicates
the block within the Hadoop cluster based on the replication
factor.

As mentioned earlier, the cache prefetcher logic needs to be
capable of predicting the processing orders of the individual
HDFS blocks by the MapReduce jobs so that the order of
accesses corresponds to the prefetch order. Secondly, the
caching algorithm needs to be dynamically adaptive to the
progress of the jobs in terms of the map tasks that have been
already launched and the ones that are to be launched next,
thereby it does not attempt to prefetch data for tasks that
have already completed. In addition, the prefetcher should
also be aware of the rate of processing the job in terms of
the average task execution time and as well as on the current
network throughput available between the storage Clouds and
the enterprise site.

Prefetching order: The cache prefetcher logic in VNCache
is capable of predicting the processing order of the individual
HDFS blocks. From the Hadoop design, we note that the
default processing order of the blocks in a Hadoop job is
based on the decreasing order of the size of the files in the
input dataset and within each individual file, the order of
data processed is based on the order of the blocks in the
HDFS filesystem image file - fsimage. While this ordering is
followed in the default FIFO scheduler in Hadoop, some other
sophisticated task placement algorithms ([16], [3]) may violate
this ordering to achieve other goals such as higher fairness
and locality. One direction of our ongoing work is focused
on developing cache-aware task placement algorithms that
achieve the goals of these sophisticated scheduling algorithms
in addition to being aware of the blocks that are already
cached.

Dynamic rate adaptive prefetching: VNCache’s pre-
fetching algorithm is adaptive to the progress of the jobs
so that it does not attempt to prefetch data for tasks that
have already completed or likely to start before prefetching is

complete. The algorithm constantly monitors the job progress
information from log files generated in the logs/history di-
rectory of the master Hadoop node. It parses the Hadoop
execution log file to obtain the Job SUBMIT TIME and Job
LAUNCH TIME and looks for task updates related to map
task launching and completion. Based on the differences in
the speed of job progress (primarily dictated by the type of
job) and the time being taken to prefetch a block (dependent on
connectivity between the enterprise site and the public storage
cloud), the algorithm aims to pick the right offset for fetching
a block. For example, if a job is progressing quickly and is
currently processing block-4, the prefetcher may choose to
prefetch blocks from an offset 20; in contrast, it may start
from an offset 5 for a slow job.

To further react dynamically to the prefetching requests,
the prefetch controller obtains the list of all tasks that are
launched since the beginning of the job and the set of tasks
that have already completed. Thus, based on the task start
time and completion time, the caching algorithm understands
the distribution of the task execution times of the current job.

In a similar manner, the slave prefetchers periodically report
the average time to prefetch and replicate an HDFS block and
the bandwidth observed by them from the storage cloud to the
enterprise site. Based on these reports, the cache controller
understands the average time for a block prefetch operation
and accordingly makes the prefetching decision. If map task
is launched for an input split whose block is not prefetched, the
prefetch controller understands that the prefetchers are unable
to prefetch at a rate similar to the rate of processing the blocks
and hence makes an intelligent decision to skip prefetching the
next few blocks and start prefetching blocks that are n blocks
after the currently processing block in the prefetch ordering.
Concretely, if mtimeavg represents the average map execution
time of a job running on a cluster with M map slots on each
task tracker and if ptimeavg represents the average time to
prefetch a block, then upon encountering a task launch for a
map task t whose data block Bi is not prefetched, the cache
controller skips the next few blocks and starts prefetching
blocks after block Bi+n where

n =
ptimeavg
mtimeavg

×M

The pseudocode of the prefetch controller is shown in Algo-
rithm 1.

Cache eviction: Additionally, VNCache implements a
cache eviction logic that closely monitors the job log and
evicts the blocks corresponding to tasks that have already com-
pleted execution. It thus minimizes the total storage footprint
resulting in a fraction of local storage used as compared to
the conventional model in which the entire data set has to be
stored in the enterprise cluster. Similar to cache prefetching,
the cache manager sends direction to the slave daemons for
evicting a data block upon encountering a task completion
status in the job execution files. The daemons on the VMs
evict the replicas of the block from the cache creating space
in the cache for prefetching the next data block.

Algorithm 1 Distributed Cache Prefetching
1: J : a currently running MapReduce job
2: V : set of all Hadoop nodes in the system
3: Snodes: a subset of Hadoop nodes holding the replica of a data block
4: v: a variable representing a Hadoop node
5: Mi: number of Map slots in tasktracker of Hadoop node vi
6: datablock: a variable storing the Data block object
7: tasklist: an array of map tasks to be launched by the job tracker
8: completedtasks: an array of map tasks that just completed execution
9: procedure PREFETCHCONTROLLER(J)

10: tasklist = getOrderedTasks()
11: // get the list of tasks in the predicted order of execution
12: for i = 1 to |tasklist| do
13: datablock = tasklist[i].getDatablock()
14: Snodes = datablock.getStorageNodes()
15: for v ∈ Snodes do
16: sendprefetchsignal(v, tasklist[i])
17: //signal slave prefetchers to prefetch data for task in tasklist[i]
18: end for
19: end for
20: while (J.running() == true) do
21: lasttask = getlastlaunchedtask(J)
22: //check the last launched task by the job tracker
23: mtime = getavgmaptime(J)
24: // obtain the average map execution time for the Hadoop execution logs
25: for i = 1 to |V | do
26: prefetchtask = getPrefetchTask(vi)
27: if lasttask > prefetchtask then
28: ptime = getPrefetchTime(vi)
29: //obtain the average prefetching time at the Hadoop node vi
30: n = ptime

mtime × Mi

31: sendskipsignal(vi, n)
32: //send signal to skip n blocks
33: end if
34: end for
35: end while
36: completedtasks = getcompletedtasks(J)
37: for i = 1 to |completedtasks| do
38: datablock = completedtasks[i].getDatablock()
39: Snodes = datablock.getStorageNodes()
40: for v ∈ Snodes do
41: sendevictsignal(v, completedtasks[i])
42: //send signal to evict the blocks for the completed task
43: end for
44: end for
45: end procedure

Workflow-awareness: When dealing with workflows (mul-
tiple back-to-back jobs processing a set of data), the cache
manager understands the input and output data of the indi-
vidual jobs and makes prefetch and eviction decisions based
on the flow of data within the workflows. If a workflow has
multiple jobs each processing the same input dataset, the cache
prefetch logic recognizes it and prefetches the data blocks only
once from the storage cloud and subsequent accesses to the
data is served from the disk cache. Thus, the workflow-aware
cache eviction policy makes its best effort to retain a data
block in the cache if the workflow is processing that data
block through another job in the future.

IV. EXPERIMENTAL EVALUATION

We present the experimental evaluation of VNCache based
on three key metrics: (1) job execution time: this metric
captures the response time of the jobs. It includes data transfer
time, data loading and decryption time, and job processing
time. (2) cache hit-ratio: this metric captures the effectiveness
of the VNCache’s caching algorithm. It measures the amount
of data read from the local disks of the enterprise site as com-
pared to streaming from the public storage cloud. (3) Cache

size: this metric captures the total storage footprint required
at the enterprise site for processing a remotely archived data.
It thus indirectly captures the storage equipment cost at the
enterprise cluster.

We compare three techniques primarily:
• Full copy + Decrypt Model: This technique downloads

the entire dataset prior to processing and decrypts it and
loads it onto the HDFS of the enterprise cluster. Therefore
it incurs higher delay in starting the job.

• VNCache: Streaming: This technique incorporates the
HDFS virtualization feature of VNCache and enables
Hadoop jobs to begin execution immediately. It streams
all data from the public storage cloud as blocks need to
be accessed.

• VNCache: Streaming + Prefetching: It incorporates
both the HDFS virtualization and streaming feature of
VNCache and in addition, incorporates the VNCache
prefetching and workflow-aware persistent caching mech-
anisms to improve job performance.

We begin our discussion with our experimental setup.

A. Experimental setup

Our cluster setup consists of 20 CentOS 5.5 physical
machines (KVM as the hypervisor) with 16 core 2.53GHz
Intel processors and 16 GB RAM. Out of these 20 servers, we
considered 10 of them as the secure enterprise cluster nodes
and used 5 other servers for functioning as public storage
cloud servers. Our enterprise cluster had VMs having 2 2 GHz
VCPUs and 4 GB RAM and by default we artificially injected
a network latency of 90 msec (using the tc Linux command)
between the public storage cloud and the enterprise cluster
nodes to mimic the geographically separated scenario. Based
on our cross-datacenter measurement experiments on Amazon
EC2 and S3 (details explained in Section IV-B1), this latency
setting mimics the scenario where the public storage cloud
and the enterprise cluster are present within the same coast
(Oregon and Northern California datacenters) but physically
separated.

The FUSE-based VNCache filesystem is implemented in C
using FUSE 2.7.3. Our Virtual HDFS and VNCache cache
manager are implemented in Java. We use DES symmetric
key encryption scheme for encrypting the blocks. We use four
kinds of workloads in our study including the grep and sort
workloads and the Facebook workload generated using the
Swim MapReduce workload generator [9] that richly represent
the characteristics of the production MapReduce traces in
the Facebook cluster. The workload generator uses a real
MapReduce trace from the Facebook production cluster and
generates jobs with similar characteristics as observed in the
Facebook cluster. The trace consists of thousands of jobs
depending upon the trace duration. Out of these, we randomly
pick up 5 jobs and use that as a representative sample. Each
job processes 5 GB of data by default and uses 5 VMS,
each having 2 2 GHz VCPUs and 4 GB RAM. In addition
we consider two workflow-based workloads namely (i) tf-idf
workflow and (ii) a workflow created as a combination of the

0

200

400

600

800

1000

1200

1400

1600

45 90 150

E
x
e

cu
ti

o
n

 t
im

e
 (

se
c)

Network Latency (msec)

Fullcopy + Decrypt Model

VNCache: Streaming

VNCache: Streaming + Prefetching

(a) Execution time

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

45 90 150

C
a

ch
e

 H
it

 R
a

ti
o

Network Latency (msec)

VNCache: Streaming + Prefetching

(b) Cache hit ratio

Fig. 5: Performance of Grep Workload

jobs in the facebook workload trace. While the tf-idf workflow
is reasonably compute-intensive, the facebook workflow is
more data-intensive.

B. Experimental Results

Our experimental results are organized in the following
way. We first present the comparison of VNCache Streaming
+ Prefetching model with the basic full copy + decrypt
model and the VNCache streaming model for the single job
workloads. We analyze the job performance enhancements of
VNCache under a number of experimental setting by varying
the network latency between the public storage cloud and
enterprise site, the size of the archived dataset, the size
of the disk cache present in the enterprise site. We show
the impact of both the HDFS virtualization and streaming
techniques in VNCache as well as its caching and prefetching
mechanisms on the overall job performance. We then present a
performance study of our techniques by considering workflow-
based workloads and show that VNCache performs better than
the full copy + decrypt model even in such cases.

1) Impact of Network Latency: We study the performance
of the VNCache approach for several network latencies rep-
resenting various geographical distance of separation between
the public storage cloud and the enterprise site. In order to sim-
ulate the scenarios of various degrees of geographic separation,
we did cross-datacenter measurement experiments on Amazon
EC2 and S3. As Amazon blocks ICMP packets and does not
allow Ping based network measurements, we measured the
average transfer time for transferring a file of HDFS block size
(64 MB) between the datacenters and used that measurement
to set our network latencies to obtain similar block transfer
times. For example, with S3 server in Oregon and EC2 in
Northern California, a 64 MB HDFS block file takes 11
seconds to get transferred. Here, the 90 msec network latency
scenario represents the public storage cloud and enterprise
site located within the same coast (Northern California and
Oregon datacenters corresponding to 11 second transfer time
in our measurements) and a 250 msec scenario would represent
another extreme scenario where the public storage cloud at
the west coast (Oregon site) and the compute site at the east
coast (Virginia datacenter). Therefore, we use the 150 msec
setting to represent a geographic separation that is in between
these two extremes. In Figure 5(a), we present the execution
time of the Grep workload at various latencies. We find that

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

2000.0

45 90 150

E
x
e

cu
ti

o
n

 t
im

e
 (

se
c)

Network Latency (msec)

Fullcopy + Decrypt Model

VNCache: Streaming

VNCache: Streaming + Prefetching

Fig. 6: Performance of Sort workload - Execution time

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

FB1 FB2 FB3 FB4 FB5

E
x
e

cu
ti

o
n

 t
im

e
 (

se
c)

Workload

Full Copy + Decrypt Model

VNCache: Streaming

VNCache: Streaming + Prefetching

(a) Execution time

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

FB1 FB2 FB3 FB4 FB5

C
a

c
h

e
 H

it
 R

a
t
io

Workload

VNCache: Streaming + Prefetching

(b) Cache hit ratio

Fig. 7: Performance of Facebook workload

with increase in network latency, the execution time of the
jobs increase for both the Fullcopy + decrypt model and the
VNCache approaches. Here, VNCache: Streaming consistently
performs better than the Fullcopy + decrypt model at various
latencies showing an average reduction of 42% in execution
time. Further, the execution time of the streaming approach is
reduced by more than 30% by the prefetch optimization. As
evident from the figure, this improvement comes from both
the virtual HDFS based streaming model as well as through
VNCache’s intelligent prefetching. The cache hit ratios shown
in Figure 5(b) illustrate that a significant amount of the input
data (more than 45 %) were prefetched and read locally from
the enterprise cluster.

We next consider the Sort workload. Figure 6 shows the
execution time of the sort workload for the three approaches.
Here we notice that VNCache achieves a reasonable improve-
ment of 25% for even a compute-intense workload such as
Sort.

2) Performance of Facebook workload: Our next set of
experiments analyze the performance of VNCache for the
Facebook workload. Figure 7(a) shows the comparison of
the execution time of the 5 Facebook jobs for streaming and
streaming + prefetching techniques in VNCache and the basic
Full copy + decrypt model. Here each job processes 5 GB of
data and the network latency between the public storage cloud
and enterprise cluster is 90 msec. We note that since the basic
Full copy + decrypt model copies the entire (encrypted) dataset
from the public storage cloud, decrypts and loads it into HDFS
of the enterprise cluster, the jobs take longer time to execute.

VNCache streaming technique on the other hand uses its
Virtual HDFS to start the job immediately while streaming the

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

45 90 150

E
x
e

cu
ti

o
n

 t
im

e
 (

se
c)

Network Latency (msec)

Full copy + Decrypt Model

VNCache: Streaming

VNCache: Streaming + Prefetching

(a) Execution time

50.0%

55.0%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

45 90 150

C
a

ch
e

 H
it

 R
a

ti
o

Network Latency (msec)

VNCache: Streaming + Prefetching

(b) Cache hit ratio

Fig. 8: Performance of workflow (facebook jobs)

required data on demand. We find that the streaming approach
consistently achieves higher performance than the Fullcopy +
decrypt model showing an average reduction of 52.3 % in
job execution time for the jobs. Additionally, the VNCache
prefetching techniques give further performance benefits to the
jobs achieving an average reduction of 25.8% in execution
time compared the VNCache streaming approach.

We present the obtained cache hit ratios for the VNCache:
streaming + prefetching technique in Figure 7(b). We find
that the prefetching optimization achieves an average cache
hit ratio of 43.5% and thus serves 43.5% of the data from the
local disks at the enterprise site as compared to streaming from
the public storage clouds. These local reads contribute to the
reduction in job execution times shown in Figure 7(a). We also
notice that FB4 job has a higher cache hit ratio compared to
the other jobs as its running time (excluding the data loading
and loading time) is longer which gives more opportunity to
interleave its compute and data prefetching resulting in higher
local reads from prefetched data.

3) Performance of Job Workflows: Next, we study the
performance of VNCache for job workflows that constitutes
several individual MapReduce jobs. We first study the per-
formance for a I/O intensive workflow composed of three
randomly picked facebook jobs that process the same in-
put dataset. As the three jobs in this workflow process the
same dataset as input, we notice in Figure 8(a) that the
VNCache:Streaming model is not too significantly better than
the full copy model especially at some higher latency such as
150 msec. Here, since three individual jobs of the workflow
use the same input dataset, streaming the data blocks for each
of the three jobs becomes less efficient. Instead, the workflow-
aware persistent caching approach in VNCache: Streaming +
Prefetching caches the prefetched data at the enterprise site
for the future jobs in the workflow and thereby achieves more
than 42.2% reduction in execution time compared to the Full
copy model. The cache hit ratios shown in Figure 8(b) shows
that VNCache enables more than 88.8% of data to be read
locally from the enterprise cluster for this workflow. Thus, the
workflow-aware persistent caching avoids multiple streaming
of the same block and helps the individual jobs read data
within the enterprise cluster.

For a compute-intensive workflow, we use the tfidf work-
flow which computes the term frequency - inverse document
frequency (tf-idf) for the various words in the given dataset.

0.0

500.0

1000.0

1500.0

2000.0

2500.0

45 90 150

E
x
e

cu
ti

o
n

 t
im

e
 (

se
c)

Network Latency (msec)

Fullcopy + Decrypt Model

VNCache: Streaming

VNCache: Streaming + Prefetching

(a) Execution time

68.0%

68.5%

69.0%

69.5%

70.0%

70.5%

71.0%

71.5%

72.0%

45 90 150

C
a

ch
e

 H
it

 R
a

ti
o

Network Latency (msec)

VNCache: Streaming + Prefetching

(b) Cache hit ratio

Fig. 9: Performance of Tfidf workflow

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

5 GB 10 GB 15 GB

E
x
e

cu
ti

o
n

 t
im

e
 (

se
c)

Dataset size

Full copy + Decrypt Model

VNCache: Streaming

VNCache: Streaming + Prefetching

(a) Execution time

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

5 GB 10 GB 15 GB

C
a

c
h

e
 H

it
 R

a
t
io

Dataset size

VNCache: Streaming + Prefetching

(b) Cache hit ratio

Fig. 10: Performance of Grep with different data size

It consists of three jobs, the first two of which read the input
dataset while the third job reads the output of the first two
jobs. In Figure 9(a), we find that the job execution time for this
workflow is again significantly reduced (by more than 47%)
by VNCache. Also, the cache hit ratio in this case (Figure
9(b)) suggests that VNCache is able to prefetch a significant
fraction (more than 70%) of the data.

4) Impact of Data size: Our next set of experiments vary
the input dataset size for the jobs and study the performance
of the individual jobs as well as the workflows. We present the
execution time of Grep workload in Figure 10(a) for different
input dataset size. We find that the techniques perform effec-
tively for various datasets achieving an average reduction of
50.6% in execution time. We also find a good average cache
hit ratio of 47% in Figure 10(b).

Similarly, for a compute-intensive workflow, we present
the tfidf workflow performance for different dataset size. We
find in Figure 11(a) that the VNCache techniques continue
to perform well at even bigger dataset sizes with an average
reduction of 35.9% in execution time. The performance im-
provement is further explained by the high average cache hit
ratio (61.2 %) in Figure 11(b).

5) Impact of Cache Size: Next we study the impact of cache
size at the enterprise cluster on the running time of the jobs.
We vary the disk cache size on each VM in terms of the
number of HDFS blocks that they can hold. Each HDFS block
in our setting is 64 MB and we vary the cache size on the VMs
from 10 to 100 blocks representing a per-VM cache of 640
MB to 6400 MB. We first study the performance of the Grep
workload with cache sizes 10, 40, 100 blocks in Figure 12(a)
and we find that the execution time of the VNCache:Streaming
+ Prefetching approach decreases with increase in cache

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

5 GB 10 GB 15 GB

E
x
e

cu
ti

o
n

 t
im

e
 (

se
c)

Dataset size

Full copy + Decrypt Model

VNCache: Streaming

VNCache: Streaming + Prefetching

(a) Execution time

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

5 GB 10 GB 15 GB

C
a

c
h

e
 h

it
 r

a
t
io

Dataset size

VNCache: Streaming + Prefetching

(b) Cache hit ratio

Fig. 11: Performance of Tf-idf workflow with different data
size

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

E
x
e

cu
ti

o
n

 t
im

e
 (

se
c)

Cache size

(a) Execution time

0%

20%

40%

60%

80%

100%

120%

C
a

c
h

e
 h

it
 R

a
t
io

Cache size

(b) Cache hit ratio

Fig. 12: Impact of Cache size - Grep workload

size as a larger cache gives enough opportunity to hold the
prefetched data blocks. Here the cache size of 0 blocks refers
to the VNCache’s pure streaming approach. We find that even
with a cache size of 10 blocks, VNCache achieves significantly
lower execution time (Figure 12(a)) compared to the Fullcopy
+ decrypt model with a reasonable cache hit ratio (more than
35%) as shown in Figure 12(b).

The performance tradeoffs with cache size for the tfidf
workflow shown in Figure 13(a) also shows that with a
reasonable cache, the privacy-conscious enterprise can tradeoff
job performance to save storage cost at the local cluster.

6) Effect of number of VMs: Our next set of experiments
studies the performance of VNCache under different number
of VMs in the Hadoop cluster. In Figure 14 we vary the
Hadoop cluster size from 5 VMs to 10 VMs and compare
the performance of VNCache (streaming + prefetching model)
with the full copy + decrypt model. We find that VNCache
continues to perform well at different cluster sizes achieving
an average reduction of 51%.

V. DISCUSSIONS

VNCache is developed with the goals of providing on-
demand streaming and prefetching of encrypted data stored
in public clouds. Here we discuss some of the merits of
the design choice of implementing VNCache streaming and
prefetching techniques at the Filesystem layer. We note that
as an alternate solution, the Hadoop Distributed Filesystem
(HDFS) can be modified to add the caching and prefetching
techniques of VNCache. In a similar manner, HDFS can be
also modified to implement additional functionalities such as
encryption support for handling privacy-sensitive data. How-
ever, we argue that such an implementation suffers from two
drawbacks. First, it can not seamlessly operate with Hadoop

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

E
x
e

cu
ti

o
n

 t
im

e
 (

se
c)

Cache size

(a) Execution time

0%

20%

40%

60%

80%

100%

120%

C
a

c
h

e
 h

it
 R

a
t
io

Cache size

(b) Cache hit ratio

Fig. 13: Impact of Cache size - Tfidf workflow

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

2000.0

5 7 10

E
x
e

cu
ti

o
n

 t
im

e
 (

se
c)

No. of VMs

Full copy + Decrypt Model

VNCache: Streaming + Prefetching

Fig. 14: Effect of number of VMs

as it requires changes to the Hadoop stack. Also, it makes it
difficult to implement any changes to caching and prefetching
policies as it requires modifying the Hadoop source each
time. Additionally, implementing the HDFS virtualization
and caching techniques at the Filesystem layer provides a
seamless control point to introduce further optimizations such
as dealing with storage hierarchies. For instance, VNCache
can be easily extended to deal with in-memory processing
of blocks by caching the blocks in a memory location and
using a memory cache in addition to the disk cache. In a
similar way, VNCache can also provide support to optimize
for introducing SSDs into the solution where the data blocks
can be moved between memory, SSDs and disks based on
a prefetch/evict plan. One direction of our future research
is focused on extending VNCache to optimize job latency
through in-memory computations.

VI. RELATED WORK

Hybrid Cloud solutions for MapReduce: There is
some recent work on hybrid cloud architectures for security-
conscious MapReduce applications [13], [14] that use public
clouds for storing and processing non-private data while using
a secure enterprise site for storing and processing private
data. VNCache on the other hand addresses the challenge of
processing archived (encrypted) data stored in public clouds in
a privacy-conscious manner by providing a seamless interface
for Hadoop to process the data within the enterprise site.
Heintz et. al. [15] propose a solution to process geographically
distributed data by scheduling map tasks close to their data. We
note that such solutions are not suitable for security-conscious
applications that prohibit the use of public clouds for data
processing. Another direction of research is represented by

stream processing systems based on Hadoop such as Storm
[19] and MapReduce Online [8] that stream data online
instead of batch processing. However such solutions are not
directly applicable in the context of privacy-conscious data
processing and lack the caching angle of VNCache and hence
these techniques stream all data during job execution without
prefetch optimization.

Caching Solutions: Recently, caching techniques have been
shown to improve the performance of MapReduce jobs for
various workloads [11], [12]. The PACMan framework [11]
provides support for in-memory caching and the MixApart
system [12] provides support for disk based caching when
the data is stored in an enterprise storage server within the
same site. VNCache differentiates from these systems through
its ability to seamlessly integrate data archived in a public
cloud into the enterprise cluster in a security-conscious manner
and through its seamless integration with Hadoop requiring
no modifications to the Hadoop stack. Furthermore, VNCache
provides a flexible control point to seamlessly introduce ad-
ditional security-related functionality and other performance
optimizations for storage hierarchies.

Locality Optimizations: In the past, there have been several
efforts that investigate locality optimizations for MapReduce.
Zaharia et al. [16] developed delay scheduler that attempts
to improve job performance through increased task locality.
Mantri [3] identifies that cross-rack traffic during the reduce
phase of MapReduce jobs is a crucial factor for MapReduce
performance and optimizes task placement. Quincy [18] is a
resource allocation system for scheduling concurrent jobs on
clusters considering input data locality. Purlieus [10] solves
the problem of optimizing data placement so as to obtain a
highly local execution of the jobs during both map and reduce
phases. These above mentioned systems assume that the data
is collocated with compute within the same Hadoop cluster
and thus do not provide solutions for decoupled storage and
compute clouds.

Resource Allocation and Scheduling: There have been
several efforts that investigate efficient resource sharing while
considering fairness constraints [23]. For example, Yahoo’s
capacity scheduler uses different job queues, so each job
queue gets a fair share of the cluster resources. Facebook’s
fairness scheduler aims at improving the response times of
small jobs in a shared Hadoop cluster. Sandholm et al [24]
presented a resource allocation system using regulated and
user-assigned priorities to offer different service levels to
jobs over time. Zaharia et al. [21] developed a scheduling
algorithm called LATE that attempts to improve the response
time of short jobs by executing duplicates of some tasks in a
heterogeneous system. Herodotou et al. propose Starfish that
improves MapReduce performance by automatically tuning
Hadoop configuration parameters [22]. The techniques in
VNCache are complementary to these optimizations.

VII. CONCLUSIONS

This paper presents an efficient solution for privacy-
conscious enterprises that deal with cloud-archived log data.

We showed that current solutions are highly inefficient as
they require large encrypted datasets to be first transferred to
the secure enterprise site, decrypted, and loaded into a local
Hadoop cluster before they can be processed. We present our
filesystem layer called VNcache that dynamically integrates
data stored at public storage clouds into a virtual namespace
at the enterprise site. VNCache provides a seamless data
streaming and decryption model and optimizes Hadoop jobs
to start without requiring apriori data transfer, decryption,
and loading. Our experimental results shows that VNCache
achieves up to 55% reduction in job execution time while
enabling private data to be archived and managed in a public
cloud infrastructure.

In future, we plan to extend the principles and techniques
developed in VNCache to deal with performance optimization
for collocated compute and storage infrastructures where we
plan to leverage VNCache to seamlessly introduce storage
hierarchies including SSD based storage into the solution.

VIII. ACKNOWLEDGEMENTS

This work is partially supported by an IBM PhD fellowship
for the first author. The fifth author acknowledges the partial
support by grants under NSF CISE NetSE program, SaTC
program and I/UCRC FRP program, as well as Intel ISTC on
cloud computing.

REFERENCES

[1] B. Igou “User Survey Analysis: Cloud-Computing Budgets Are Growing and
Shifting; Traditional IT Services Providers Must Prepare or Perish”.

[2] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In OSDI, 2004.

[3] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha
and E. Harris. Reining in the Outliers inMap-Reduce Clusters using Mantri. In
OSDI, 2010.

[4] Hadoop DFS User Guide. http://hadoop.apache.org/.
[5] Hadoop Offline Image Viewer Guide. http://hadoop.apache.org/docs/hdfs/current/

hdfs imageviewer.html
[6] Proc Filesystem. http://en.wikipedia.org/wiki/Procfs.
[7] FUSE: Filesystem in User Space http://fuse.sourceforge.net/.
[8] T. Condie, N. Conway, P. Alvaro and J. M. Hellerstein MapReduce Online

NSDI, 2010.
[9] Y. Chen, A. Ganapathi, R. Griffith, R. Katz The Case for Evaluating MapReduce

Performance Using Workload Suites In MASCOTS, 2011.
[10] B. Palanisamy, A. Singh, L. Liu and B. Jain Purlieus: locality-aware resource

allocation for MapReduce in a cloud. In SC, 2011.
[11] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula, S.

Shenker, I. Stoica PACMan: Coordinated Memory Caching for Parallel Jobs. In
NSDI, 2012.

[12] M. Mihailescu, G. Soundararajan, C. Amza MixApart: Decoupled Analytics for
Shared Storage Systems In FAST, 2013.

[13] K. Zhang, X. Zhou, Y. Chen, X. Wang, Y. Ruan Sedic: Privacy-Aware Data
Intensive Computing on Hybrid Clouds In CCS, 2011.

[14] S. Ko, K. Jeon, R. Morales The HybrEx model for confidentiality and privacy
in cloud computing In HotCloud, 2011.

[15] B. Heintz, A. Chandra, R. Sitaraman Optimizing MapReduce for Highly
Distributed Environments University of Minnesota, Technical Report TR12-003,
2012.

[16] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, I. Stoica
Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in
Cluster Scheduling EuroSys, 2010.

[17] Hadoop. http://hadoop.apache.org.
[18] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg.

Quincy: fair scheduling for distributed computing clusters. In SOSP, 2009.
[19] Storm http://storm.incubator.apache.org/
[20] Amazon Elastic MapReduce. http://aws.amazon.com/elasticmapreduce/
[21] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I. Stoica. Improving

MapReduce Performance in Heterogeneous Environments. In OSDI, 2008.
[22] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, S. Babu

Starfish: A Selftuning System for Big Data Analytics. In CIDR, 2011.
[23] Scheduling in hadoop. http://www.cloudera.com/blog/tag/scheduling/.
[24] T. Sandholm and K. Lai. Mapreduce optimization using dynamic regulated

prioritization. In ACM SIGMETRICS/Performance, 2009.

