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Abstract

Fatty liver disease is an emerging public health problem without effective therapies, and chronic hepatic inflammation is a
key pathologic mediator in its progression. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to
biologically active epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory effects. Although promoting the
effects of EETs elicits anti-inflammatory and protective effects in the cardiovascular system, the contribution of CYP-derived
EETs to the regulation of fatty liver disease-associated inflammation and injury is unknown. Using the atherogenic diet
model of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH), our studies demonstrated that
induction of fatty liver disease significantly and preferentially suppresses hepatic CYP epoxygenase expression and activity,
and both hepatic and circulating levels of EETs in mice. Furthermore, mice with targeted disruption of Ephx2 (the gene
encoding soluble epoxide hydrolase) exhibited restored hepatic and circulating EET levels and a significantly attenuated
induction of hepatic inflammation and injury. Collectively, these data suggest that suppression of hepatic CYP-mediated EET
biosynthesis is an important pathological consequence of fatty liver disease-associated inflammation, and that the CYP
epoxygenase pathway is a central regulator of the hepatic inflammatory response in NAFLD/NASH. Future studies
investigating the utility of therapeutic strategies that promote the effects of CYP-derived EETs in NAFLD/NASH are
warranted.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is a rapidly growing

public health problem that is prevalent in approximately 30% of

the United States general population [1]. NAFLD begins with

simple steatosis, and may progress to non-alcoholic steatohepatitis

(NASH), and ultimately to advanced fibrosis and cirrhosis of the

liver [2]. Although the progression from NAFLD to NASH is

poorly understood, the development and progression of hepatic

inflammation is a key pathological mediator in this transition and

is associated with the development of comorbid conditions [3,4].

In the early stages of NAFLD, an imbalance between uptake

and export of lipids by hepatocytes leads to lipid accumulation

within the liver. Increased hepatic saturated fatty acids and

cholesterol activate toll-like receptors (TLRs) that drive activation

of nuclear factor-kB (NF-kB)-mediated inflammatory responses

[5]. Sustained activation of the hepatic inflammatory response

drives macrophage infiltration into the liver, ultimately causing

fibrosis and hepatic injury [6]. Consistent with this pathological
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progression of NAFLD/NASH, the high-fat/high-cholesterol

‘‘atherogenic’’ diet model of steatohepatitis induces dyslipidemia,

hepatic inflammation, and fibrosis, through an innate immune-

mediated mechanism [7,8].

Arachidonic acid is metabolized by cyclooxygenases, lipoxy-

genases, and cytochromes P450 (CYP) to biologically active

eicosanoids, which are critical regulators of numerous biological

processes including inflammation [9]. CYP enzymes are abun-

dantly expressed in the liver where they catalyze the oxidative

biotransformation of xenobiotics [10]. In addition, certain CYP

isoforms metabolize endogenous substrates. Notably, CYP epox-

ygenase enzymes from the CYP2C and CYP2J subfamilies

metabolize arachidonic acid to biologically active epoxyeicosa-

trienoic acids (EETs) [11]. However, EETs are rapidly hydrolyzed

by soluble epoxide hydrolase (sEH, Ephx2) to their corresponding

dihydroxyeicosatrienoic acid (DHETs), which are generally less

biologically active [11]. Previous studies have shown that acute,

lipopolysaccharide (LPS)-evoked activation of the innate immune

response suppresses hepatic CYP epoxygenase expression and

EET biosynthesis [12]. Moreover, increased endothelial EET

biosynthesis, or decreased global sEH-mediated EET hydrolysis,

attenuates NF-kB activation and the acute vascular and systemic

inflammatory response to LPS [12,13,14].

Collectively, these studies demonstrate that hepatic EET

biosynthesis is suppressed in response to activation of the innate

immune system, and potentiation of the CYP epoxygenase

pathway attenuates innate immune-dependent acute inflammatory

responses [15]. However, the functional relevance of the CYP

epoxygenase pathway in the development and progression of

sustained, fatty liver disease-associated hepatic inflammation and

injury has not been investigated. Therefore, the objective of our

study was to 1) evaluate the impact of atherogenic diet-induced

NAFLD/NASH on hepatic CYP epoxygenase expression and

EET biosynthesis; and, 2) determine if promoting the effects of

CYP epoxygenase-derived EETs attenuates fatty liver disease-

associated hepatic inflammation and injury.

Materials and Methods

Ethics Statement
All studies were completed in accordance with the Public

Health Service Policy on Humane Care and Use of Laboratory
Animals, and were approved by the Institutional Animal Care and

Use Committee at the University of North Carolina-Chapel Hill

(UNC) and the National Institute of Environmental Health

Sciences.

Reagents
Reagents were obtained from ThermoFisher Scientific (Wal-

tham, MA) unless otherwise indicated.

Animals
All experiments were performed in adult male mice on a

C57BL/6J background that were 11–20 weeks of age at the

initiation of the experiments. Wild-type (WT) C57BL/6J mice

were purchased from Jackson Laboratory (Bar Harbor, ME). Mice

with targeted disruption of Ephx2 (Ephx22/2) were backcrossed

onto a C57BL/6J genetic background for more than 10

generations, as described [16]. All mice had free access to food

and water and were housed in temperature and humidity

controlled rooms using a 12 hour light/dark cycle.

Experimental Protocol
Mice were fed ad libitum a commercially available atherogenic

(ATH) diet [17,18] containing 40% kilocalories from fat, 1.25%

cholesterol and 0.5% cholic acid (D12109c, Research Diets Inc.,

New Brunswick, NJ) or a standard chow (STD) diet containing

14% kilocalories from fat and 0.02% cholesterol (ProLab RMH

3000, PMI Nutrition International, Brentwood, MO). An initial

time-course experiment was conducted to assess the relative

induction of hepatic inflammation and injury following two, four,

or eight weeks of atherogenic diet administration. All subsequent

studies were conducted over four weeks.

The first series of experiments evaluated the effect of

atherogenic diet feeding on hepatic CYP epoxygenase expression

and EET biosynthesis in WT mice (Jackson Laboratory). The

second series of experiments evaluated the effect of disruption of

sEH-mediated EET hydrolysis on atherogenic diet induced

hepatic inflammation and injury in Ephx22/2 and corresponding

WT control mice. At the termination of each experiment, mice

were euthanized by CO2 asphyxiation. Blood was collected via

cardiac puncture, and plasma was separated by centrifugation.

Liver tissue was harvested; one part was snap-frozen in liquid

nitrogen and stored at 280uC pending analysis, while the

Figure 1. Plasma and hepatic lipid levels increase in response to atherogenic diet administration. (A) Plasma total cholesterol levels, (B)
liver total cholesterol levels, and (C) liver triglyceride levels were significantly higher in mice administered the atherogenic diet for 4 weeks compared
to mice administered the STD diet (STD diet: n = 6–10, atherogenic diet: n = 13–22). *P,0.05 vs. STD diet group.
doi:10.1371/journal.pone.0110162.g001
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remainder was fixed in 4% paraformaldehyde and embedded in

paraffin for histological analysis.

Hydrodynamic Delivery of Ephx2 to Ephx22/2 Mice
In order to characterize the contribution of hepatic sEH to

circulating EET levels in vivo, the hydrodynamic injection-based

transfection method was utilized to restore hepatic Ephx2
expression in Ephx22/2 mice. In this well-characterized method,

a large volume of plasmid DNA is rapidly injected into the tail vein

to markedly increase hydrostatic pressure in the inferior vena cava

and preferentially drive transgene delivery to the liver [19,20].

The murine Ephx2 (NM_007940) cDNA was PCR amplified

with specific forward (59-ATGGCGCTGCGTGTAGCC-39) and

reverse (39-CTAAATCTTGGAGGTCAC-59) primers from

whole liver total cDNA, subcloned into the pcDNA3.1(–)

expression vector (Invitrogen, Carlsbad, CA, USA) downstream

of the cytomegalovirus (CMV) enhancer-promoter, and then

confirmed by sequencing. Ephx22/2 mice received 0.75 mg/kg of

plasmid DNA (pcDNA3.1-Ephx2 or empty pcDNA3.1 vector

[control], n = 4 per group) in phosphate buffered saline (PBS) by

tail vein injection. The injection volume was 9% of the body

weight (22.5 mg plasmid delivered in 2.7 mL PBS per 30 gram

mouse), and the injection time was 5 seconds, as described

[19,20,21]. After 18 hours, the mice were euthanized by CO2

asphyxiation, and plasma and liver tissue were harvested and

stored at 280uC pending analysis.

Direct Quantification of CYP-Derived Eicosanoids in
Plasma and Liver

Arachidonic acid metabolites from the CYP epoxygenase

pathway (8,9-EET, 11,12-EET, 14,15-EET, 5,6-DHET, 8,9-

DHET, 11,12-DHET, 14,15-DHET) and CYP v-hydroxylase

pathway (20-hydroxyeicosatetraenoic acid [HETE]) were extract-

ed from plasma and liver and then quantified by liquid

chromatography-tandem mass spectrometry (LC-MS/MS) as

previously described, with minor modifications [22]. Briefly,

plasma (200 uL) was diluted in 250 uL of a 0.1% acetic acid/

5% methanol solution containing 0.009 mM butylated hydro-

xytoluene (BHT), spiked with internal standards (3 ng each of

PGE2-d4, 10,11-DiHN, and 10,11-EpHep; Cayman Chemical,

Ann Arbor, MI), and then underwent solid-phase extraction, as

described [22]. Following serial passage through HyperSep Retain

SPE columns (Thermo Scientific, Bellefonte, PA, USA), the

columns were washed and then eluted with 0.5 mL of methanol

and 1 mL of ethyl acetate into glass tubes with 10 mL of trapping

solution (30% glycerol in methanol). Liver tissue (approximately

20 mg) was weighed and homogenized in 0.1% acetic acid/5%

methanol solution containing 0.009 mM BHT and 100 mM (5%

Figure 2. Hepatic expression of arachidonic acid metabolism pathway genes in response to atherogenic diet administration. Gene
expression profiling was completed in liver using the Agilent Whole Mouse Genome Microarray (n = 4 per group). To generate the enrichment plot,
each gene on the microarray is rank-ordered (left to right) according to its correlation with atherogenic diet administration (most positive on the far
left, most negative on the far right). The enrichment plot for the arachidonic acid metabolism pathway gene set enrichment analysis (GSEA) indicates
the position of each gene (vertical lines) within the pathway in the overall rank-order of the correlation (top of figure). The p-value for the GSEA is
provided. A heat-map is provided illustrating gene expression levels for each gene in the core enrichment subset (bottom of figure). Blue indicates
the gene is down-regulated and red indicates the gene is up-regulated. CYP epoxygenase genes from the Cyp2c and Cyp2j subfamilies are denoted
in blue.
doi:10.1371/journal.pone.0110162.g002
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w/v) of the sEH inhibitor trans-4-[4-(3-adamantan-1-ylureido)-

cyclohexyloxy]-benzoic acid (t-AUCB, kindly provided by Dr.

Bruce Hammock, University of California-Davis), spiked with the

internal standards, and then underwent liquid-liquid extraction.

Liver lysates were vortexed with 2 mL of ethyl acetate (twice) for

10 minutes, and the organic layers were transferred to a single

glass collection tube containing 6 uL of 30% glycerol. Plasma and

liver extracts were dried under nitrogen gas, purged with argon

gas, and then stored at -80uC pending analysis.

Following reconstitution in 50 uL of 30% ethanol, online liquid

chromatography of extracted samples was performed with an

Agilent 1200 Series capillary HPLC (Agilent Technologies, Santa

Clara, CA). Separations were achieved using a Halo C18 column

(2.7 mm, 10062.1 mm; MAC-MOD Analytical, Chadds Ford,

PA), which was held at 50uC and a flow rate of 400 ml/min.

Mobile phase A was 0.1% acetic acid in 85:15 water:acetonitrile.

Mobile phase B was 0.1% acetic acid in acetonitrile. Gradient

elution was used and the mobile phase was varied as follows: 20%

B at 0 min, ramp from 0 to 5 min to 40% B, ramp from 5 to

7 min to 55% B, ramp from 7 to 13 min to 64% B. From 13 to

19 min the column was flushed with 100% B at a flow rate of

550 ml/min before being returned to starting conditions and

equilibrated for 6 minutes. Samples were solvated in 50 ml of 30%

ethanol and injected in triplicate at 10 ml per injection.

Electrospray ionization tandem mass spectrometry was used for

detection. Analyses were performed on an MDS Sciex API 3000

equipped with a TurboIonSpray source (Applied Biosystems,

Foster City, CA). Turbo desolvation gas was heated to 425uC at a

flow rate of 6 L/min. All analytes were monitored simultaneously

in a scheduled multiple reaction monitoring experiment as

negative ions at parent ion-product ion mass/charge ratio pairs

and retention times. The relative response ratios of each analyte

were used to calculate concentrations, while correcting for

surrogate losses via quantification relative to internal standards.

Liver eicosanoid concentrations were normalized to tissue weight,

the 14,15-EET:DHET ratio was calculated as an in vivo
biomarker of sEH metabolic function [16], and the sum of EET

levels (8, 9-, 11, 12–14, 15-EET) were calculated as a biomarker of

CYP epoxygenase pathway function [23].

Formation of CYP-Derived Eicosanoids in Liver
Microsomes

Microsomal fractions were isolated from hepatic tissue as

previously described [12] and microsome protein concentrations

were determined using the BCA method [24]. Microsomal protein

was incubated with 50 mM arachidonic acid in 1 mL of a 0.12 M

potassium phosphate incubation buffer containing 5 mM MgCl

[12], and incubations were completed at 37uC for 20 minutes;

reactions were initiated by adding 1 mM NADPH and terminated

by placing the samples on ice. Incubations were completed in the

presence of 5 mM of t-AUCB to minimize EET hydrolysis.

Following termination of the reaction samples were diluted 10-

fold, internal standard (20-HETE-d6) was added and metabolites

were extracted, dried under a stream of nitrogen gas and

reconstituted for analysis. Metabolites of arachidonic acid were

then quantified by LC-MS/MS, as described [12]. The incuba-

tions were performed under saturating concentrations of arachi-

donic acid, where formation rates reflect the amount of

Figure 3. Atherogenic diet administration suppresses the CYP epoxygenase pathway. (A) Plasma sum EET levels and (B) liver sum EET
levels were significantly lower in mice administered the atherogenic diet compared to mice administered the STD diet (n = 4–6 per group). (C) The
EET formation rate in the presence of saturating arachidonic acid concentrations was also suppressed in liver microsomes isolated from mice
administered the atherogenic diet compared to mice administered the STD chow diet (n = 8 per group). (D) Liver Cyp2c29, Cyp2c50, Cyp2c55, and
Cyp2j5 mRNA levels were significantly suppressed but (E) Ephx2 mRNA levels were not significantly different (STD diet: n = 6, atherogenic diet n = 5).
*P,0.05 vs. STD diet group.
doi:10.1371/journal.pone.0110162.g003
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biologically active protein and significantly correlate with CYP

mRNA and protein levels [12,25].

Hepatic Microarray and Gene Set Enrichment Analysis
Total RNA was isolated from homogenized liver (n = 4 per

group) using the RNeasy mini-prep kit (Qiagen, Valencia, CA).

Global gene expression analysis was conducted using the Agilent

Whole Mouse Genome 4644 multiplex array (Agilent Technol-

ogies, Inc., Santa Clara, CA) according to the manufacturer’s

protocol. Briefly, 1.65 micrograms of Cy3 labeled cRNAs were

fragmented and hybridized for 17 hours in a rotating hybridization

oven. Slides were then washed and scanned, data were acquired

using the Agilent Feature Extraction software version 9.5 (Agilent

Technologies) using 1-color defaults for all parameters. The

resulting data were processed and analyzed using Genespring

version 12.1 (Agilent Technologies). Only probes flagged ‘‘detect-

ed’’ in at least 75% of samples from at least one treatment group

were included, resulting in 31,643 probes in the final dataset.

Datasets were deposited with the Gene Expression Omnibus of the

National Center for Biotechnology Information (GEO Series

accession number GSE53381).

Gene set enrichment analysis (GSEA) Version 2.0 was used to

determine if the arachidonic acid metabolism pathway is enriched

in WT mice administered the atherogenic compared to WT mice

administered the standard diet. Genes involved in the metabolism

of arachidonic acid to biologically active eicosanoids were

identified using the Kyoto Encyclopedia of Genes and Genomes

(KEGG) [26] ‘arachidonic acid metabolism pathway’ for mice

(map00590), and limited to genes involved in arachidonic acid

liberation from the cell membrane and metabolism.

Analysis of variance (ANOVA) with unequal variance was used

to generate the complete list of genes significantly up-regulated or

down-regulated in response to the atherogenic diet at a false

discovery rate (Benjamini-Hochberg) of 1% using Genespring GX

(Agilent Technologies, Inc., Santa Clara, CA) (Table S1). Pathway

enrichment was determined using the National Institutes of Health

(NIH) Database for Annotation, Visualization and Integrated

Discovery (DAVID) Version 6.7, which uses a modified Fisher’s

Exact Test to calculate an ‘‘Enrichment Score’’ for each functional

annotation cluster and identifies enriched biological themes

without a pre-specified hypothesis [27,28]. Biological Process

Terms and Molecular Function Terms were included as Gene

Ontologies, and the Classification Stringency was set to high; all

other default parameters were unchanged. The list of significantly

up-regulated or down-regulated genes was uploaded to DAVID

and compared to the mus musculus reference to generate a list of

functional pathways that were over-represented in response to

atherogenic diet feeding. P-values were calculated by computing

102Enrichment Score, with p,0.01 (Enrichment Score .2) consid-

ered statistically significant.

Biochemical Analysis
Plasma total cholesterol and alanine aminotransferase (ALT)

levels were quantified using a Vitros 350 automated chemical

analyzer (Ortho-Clinical Diagnostics, Rochester, NY). Total

cholesterol and triglyceride levels were quantified in homogenized

liver tissue using the Biovision Cholesterol Ester Quantification

Figure 4. Hydrodynamic delivery of Ephx2 to Ephx22/2 mice. Ephx22/2 mice were administered plasmid DNA (empty vector [control] or vector
containing murine Ephx2) by hydrodynamic injection (9% of body weight over 5 seconds). All mice were fed with a standard chow diet, and liver
tissue and plasma were harvested 18 hours following injection. A parallel group of untreated WT and Ephx22/2 mice were included for comparison
(n = 4 per group). (A) A representative immunoblot in liver lysates and (B) corresponding densitometry analysis demonstrate partial restoration of
hepatic sEH protein expression in Ephx22/2 mice. (C) Quantitative RT-PCR demonstrates partial restoration of Ephx2 mRNA levels in liver. (D) In
contrast, no detectable increase in Ephx2 mRNA levels was observed in either kidney or heart tissue. (E) Hydrodynamic delivery of Ephx2 significantly
lowered the plasma 14,15-EET:DHET ratio (biomarker of sEH metabolic function [lower ratio indicative of higher function]) to a level equivalent with
untreated WT mice. Hydrodynamic injection of empty vector markedly increased (F) hepatic Ccl2 mRNA levels and (G) plasma ALT levels compared to
untreated controls, and induction of these biomarkers of hepatic inflammation and injury were significantly increased in the presence of the Ephx2
transgene. *P,0.05 vs. Ephx22/2 (vector) control.
doi:10.1371/journal.pone.0110162.g004
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Kit II and the Biovision Triglyceride quantification Kit, respec-

tively, according to the manufacturer’s instructions (Biovision

Incorporated, Milpitas, CA).

Quantitative RT-PCR
Quantitative RT-PCR was performed in triplicate using the

ABI 7300 Real-Time PCR system, as described [12]. Expression

of hepatic Tlr4 (Mm00445274_m1), Cyp2c29 (Mm00725580_s1),

Cyp2c50 (Mm00663066_gH), Cyp2c55 (Mm00472168_m1),

Cyp2j5 (Mm00487292_m1), Ephx2 (Mm01313813_m1), Tnfa
(Mm00443258_m1), Ccl2 (Mm00441242_m1), Nfkb1
(Mm00476361_m1) and Col3a1 (Mm01254476_m1) was quanti-

fied using Taqman Assays on Demand (Applied Biosystems),

normalized to Gapdh (endogenous control, Mm99999915_g1) and

expressed relative to the control group using the 22DDCt method

[29].

ELISA
Liver tissue was homogenized in lysis buffer (50 mM Tris-HCl

(pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% Triton X, 1 mM

NaF, 0.25% Na deoxycholate and protease inhibitors) and the S9

fraction was separated by centrifugation. Protein concentrations of

the homogenate were quantified using the BCA method [24].

Monocyte chemoattractant protein-1 (MCP-1), and vascular

cellular adhesion molecule-1 (VCAM-1) protein levels were

quantified in liver homogenates using the mouse CCL2/JE/

MCP-1 and VCAM-1/CD106 Quantikine ELISA kits (R&D

Systems, Minneapolis, MN, USA), respectively, after loading equal

amounts of protein into each well. Concentrations were normal-

ized to mg of liver protein. Plasma concentrations of MCP-1 were

quantified using the mouse CCL2/JE/MCP-1 Quantikine ELISA

kit (R&D Systems) following a four-fold dilution.

Immunoblotting
Liver homogenates (30 mg protein) were separated by 10%

NuPAGE Bis-Tris gels, and then transferred to nitrocellulose

membranes (Invitrogen). Membranes were blocked in 5% non-fat

milk in Tris-buffered saline (TBS), washed, and then incubated

with either anti-phospho-IkBa (1:500 in 1% BSA in TBS with

0.05% Tween 20; #2859, Cell Signaling Technology, Danvers,

MA, USA), anti-sEH (1:1000 in 5% milk in TBS with 0.1%

Tween 20; sc22344, Santa Cruz Biotechnology, Santa Cruz, CA),

or anti-GAPDH (1:1000 in 5% BSA in TBS with 0.05% Tween

20; #2118, Cell Signaling) antibodies, washed and then incubated

with the appropriate horseradish peroxidase-conjugated secondary

antibody (Santa Cruz Biotechnology), as described [12]. Immu-

noreactive bands were detected by chemiluminescence using the

ECL Western Blotting Substrate (Thermo Scientific, Rockford,

IL). The density of the immunoreactive phospho-IkBa bands,

normalized to GAPDH, was quantified using ImageJ software

(NIH) as a biomarker of NF-kB activation, as described [12].

Histology and Immunohistochemistry
Liver tissue (left lobe) was fixed in 4% paraformaldehyde for 24

hours, processed, embedded in paraffin, and then sectioned using

a serial interrupted technique (5 mm sections, 200 mm apart).

Figure 5. Genetic disruption of sEH-mediated EET hydrolysis increases circulating and hepatic EET levels. Plasma (n = 10–19 per group)
and liver (n = 3–5 per group) eicosanoids were quantified in wild-type (WT) mice fed the STD diet and WT and Ephx22/2 mice fed the atherogenic
diet. (A) Plasma and (C) hepatic 14,15-EET:DHET ratios (biomarker of sEH metabolic function [lower ratio indicative of higher function]) and (B) plasma
and (D) hepatic sum EET levels were significantly higher in atherogenic diet fed Ephx22/2 compared to WT mice. (E) Liver Cyp2c29 expression (n = 10–
19 per group) was significantly suppressed in both WT and Ephx22/2 mice fed the atherogenic diet. *P,0.05 vs. WT atherogenic diet group.
doi:10.1371/journal.pone.0110162.g005

CYP Epoxygenase Pathway and Hepatic Inflammation

PLOS ONE | www.plosone.org 6 October 2014 | Volume 9 | Issue 10 | e110162



Sections underwent hematoxylin and eosin (H&E) and immuno-

histochemical (F4/80) staining. Digital images were acquired with

the ScanScope CS slide capture device (Aperio, Vista, CA) and

analyzed using ImageScope Version 11.1 (Aperio).

Immunohistochemistry was performed by treating slides with

pH 6.0 sodium citrate buffer (Dako North America, Carpinteria,

CA) and endogenous peroxide was quenched by placing slides in a

solution of 3% H2O2 for 15 minutes. Sections were blocked using

0.25% casein in PBS (Dako North America) then incubated with a

rabbit anti-F4/80 polyclonal antibody at a 1:200 dilution (Santa

Cruz Biotechnology) followed by a goat anti-rabbit secondary

antibody at a 1:500 dilution (Jackson Immunoresearch, West

Grove, PA). Antibody binding was detected using Vectastain Elite

ABC Kit (Vector Laboratories, Burlingame, CA) and visualization

was performed with 3,3-diaminobenzidine. Sections were then

counterstained with hematoxylin, dehydrated, and mounted.

Macrophage infiltration was quantified by counting the number

of inflammatory foci (i.e., the number of macrophage clusters) per

10x field, as described [30]. All analyses were performed in

duplicate by the same individual who was blinded to treatment

group. Three non-overlapping fields were analyzed across three

sections; the number of foci were then summed and averaged to

obtain an estimate for each mouse.

The presence and extent of NAFLD was evaluated on

hematoxylin and eosin (H&E) stained slides according to a

standardized and well-established histological scoring system

(NAFLD Activity Score) that evaluates the presence and severity

of steatosis, lobular inflammation, hepatocyte ballooning, and

fibrosis [31]. Lobular inflammation, which is the most relevant

histological consequence of the atherogenic diet [8], was graded in

blinded fashion by a pathologist (H.M.J.) according to the number

of inflammatory infiltrates per 200x field as follows: 0 (no

infiltrates); 1 (,2 infiltrates per field); 2 (2–4 infiltrates per field);

and 3 (.4 infiltrates per field).

Statistical Analysis
Data were normalized to the atherogenic diet treated WT

control group and pooled across experiments, unless otherwise

indicated, and expressed as mean 6 standard error of the mean

(SEM). For continuous variables, rank-transformed mean values

were compared across diet and genotype groups using a one-way

ANOVA followed by Fisher’s LSD post hoc test with p,0.05

considered statistically significant. Lobular inflammation score (0,

1, 2, or 3) was compared across groups by Chi-squared test with a

post-hoc ordinal logistic regression analysis. Correlation between

continuous variables was evaluated using Spearman’s rank

correlation. All statistical analyses were performed using SAS

version 9.3 (SAS Institute, Cary, NC).

Results

Characterization of the Atherogenic Diet Model of
NAFLD/NASH

We first conducted a time-course experiment to characterize the

effects of atherogenic diet administration over time. Atherogenic

diet administration for two, four or eight weeks significantly

increased hepatic Ccl2 mRNA levels (MCP-1, a chemokine that

recruits monocytes; 3.060.9-, 10.964.1-, and 7.962.7-fold,

Figure 6. Genetic disruption of sEH attenuates atherogenic diet-induced hepatic expression of inflammatory biomarkers. The
atherogenic diet evoked induction of (A) plasma MCP-1, (B) liver MCP-1, and (C) liver VCAM-1 protein levels was significantly attenuated in Ephx22/2

mice (WT STD diet: n = 15–16, WT atherogenic diet: n = 37–40, Ephx22/2 atherogenic diet: n = 22–24). (D) A representative immunoblot characterizing
protein expression of phosphorylated IkB-a and GAPDH in liver lysates is provided. (E) Densitometry analysis demonstrated that the atherogenic diet-
induced increase in phosphorylated IkB-a expression, normalized to GAPDH, was attenuated in Ephx22/2 mice (n = 4–6 per group). Data are
expressed relative to the WT atherogenic diet group. *P,0.05 vs. WT atherogenic diet group.
doi:10.1371/journal.pone.0110162.g006

CYP Epoxygenase Pathway and Hepatic Inflammation

PLOS ONE | www.plosone.org 7 October 2014 | Volume 9 | Issue 10 | e110162



Figure 7. Genetic disruption of sEH attenuates hepatic inflammation and injury. Representative (A) F4/80 (10x, scale bar = 200 mm) and (C)
H&E stained (20x, scale bar = 100 mm) images are provided. The atherogenic (ATH) diet induced increase in the (B) number of inflammatory foci per
10x field and (D) lobular inflammation score expressed as a continuous variable was significantly attenuated in Ephx22/2 mice (WT STD diet: n = 11–
12, WT ATH diet: n = 30–31, Ephx22/2 ATH diet: n = 18–19). (E) Induction of plasma ALT levels (WT STD diet: n = 10, WT ATH diet: n = 21, Ephx22/2 ATH
diet: n = 14) and hepatic collagen (type III, Col3a1) expression (WT STD diet: n = 5, WT ATH diet: n = 15, Ephx22/2 ATH diet: n = 10) by the ATH diet
were significantly attenuated in Ephx22/2 mice. *P,0.05 vs. WT ATH diet group.
doi:10.1371/journal.pone.0110162.g007

Table 1. Hepatic lobular inflammation scores.

Lobular Inflammation Score (0–3)

Group 0 1 2 3

Standard Diet

WT (control) 11 (100%) 0 (0%) 0 (0%) 0 (0%)

Atherogenic Diet

WT 9 (30%) 7 (23%) 7 (23%) 7 (23%)

Ephx22/2 12 (63%) 4 (21%) 2 (11%) 1 (2%) p = 0.034a

Data presented as the n (percentage) of mice from each group having an inflammation score of 0, 1, 2, or 3. The percentages may not equal 100% due to rounding.
aP-value for the ordinal logistic regression analysis evaluating the impact of genotype (Ephx22/2 vs. WT) on lobular inflammation score (coded as an ordinal variable: 0,
1, 2, 3) in mice administered the atherogenic diet.
doi:10.1371/journal.pone.0110162.t001
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respectively) and plasma ALT levels (a biomarker of hepatocellular

injury; 3.660.5-, 4.060.5- and 2.960.3-fold, respectively) com-

pared to the standard chow diet (p,0.005 for each comparison).

Since hepatic inflammation and injury were not further increased

at eight weeks, the four-week time-point was utilized for all follow-

up studies.

At four weeks, plasma total cholesterol, hepatic total cholesterol,

and hepatic triglyceride levels were significantly higher in mice

administered the atherogenic diet compared to mice administered

the standard chow diet (Figure 1). Body weight did not change

significantly from baseline (20.260.2 grams, p = 0.397) in

response to the atherogenic diet; however, mice administered

the standard diet experienced modest weight gain (1.260.2 grams,

p,0.001). Collectively, these data demonstrate that the athero-

genic diet model induces hepatic lipid accumulation, inflamma-

tion, and injury, which are key drivers of the development and

progression of NAFLD/NASH, independent of weight gain.

Differential Hepatic Expression of Arachidonic Acid
Metabolism Pathway Genes

We subsequently sought to determine whether the arachidonic

acid metabolism pathway was differentially expressed in liver tissue

in WT mice administered the atherogenic diet. Of the 82 genes in

the arachidonic acid metabolism pathway, 67 (82%) were included

on the microarray and passed our quality control standards.

GSEA demonstrated that the arachidonic acid metabolism

pathway was significantly enriched in mice administered the

atherogenic diet (p,0.001). Moreover, the core enrichment

subset, which is the subset of genes accounting for the observed

signal, was down-regulated in mice administered the atherogenic

diet compared to mice administered the standard chow diet

(Figure 2), indicating that relative to global hepatic gene expres-

sion changes, the arachidonic acid metabolism pathway was

suppressed in liver following atherogenic diet administration.

Notably, 22 of the 28 (79%) genes included in the core enrichment

subset were CYP transcripts, and 10 of the 22 CYPs (46%) were

CYP epoxygenases from the Cyp2c and Cyp2j subfamilies. In

parallel, biological pathway enrichment was quantified using the

full list of genes that were significantly up-regulated or down-

regulated in liver by atherogenic diet feeding in order to identify

enriched biological themes without a pre-specified hypothesis.

Consistent with the GSEA results, the ‘‘cytochrome P450’’ cluster

was among the most significantly enriched pathways (Table S2).

Dysregulation of Cytochrome P450-Mediated Eicosanoid
Metabolism

In order to specifically investigate the functional effects of fatty

liver disease-associated inflammation on CYP-mediated eicosa-

noid metabolism, we subsequently quantified plasma and hepatic

eicosanoid levels and eicosanoid formation rates in liver micro-

somes. Atherogenic diet administration significantly decreased

plasma and liver EET levels in vivo (Figure 3A and 3B), which

were highly correlated (rs = 0.817, p = 0.007). In addition, hepatic

sum EET formation ex vivo was significantly suppressed in

microsomes isolated from mice fed the atherogenic diet (Fig-

ure 3C). A similar suppression of the individual 8,9-, 11,12-, and

14,15-EET regioisomers in vivo and ex vivo was observed in

atherogenic diet fed mice (Figure S1). Consistent with suppression

of hepatic CYP epoxygenase metabolic activity, liver Cyp2c29,

Cyp2c50, Cyp2c55, and Cyp2j5 mRNA levels were all significantly

suppressed in mice administered the atherogenic diet (Figure 3D).

In contrast, no significant differences in hepatic Ephx2 mRNA

levels (Figure 3E) were observed. Furthermore, disparate effects on

the expression of Cyp4a and Cyp4f isoforms in liver were

observed, with certain isoforms either suppressed, unchanged or

induced in response to the atherogenic diet (Figure S2).

Consequently, atherogenic diet administration did not significantly

impact CYP v-hydroxylase pathway metabolic function, such that

plasma 20-HETE levels (1.560.3 vs. 1.360.2 ng/ml, p = 0.825),

liver 20-HETE levels (4.160.3 vs. 3.460.4 ng/g, p = 0.218) and

liver microsome 20-HETE formation rates (375627 vs. 338625

pmol/mg protein/minute, p = 0.689) were similar in mice fed the

standard and atherogenic diets, respectively. Collectively, these

data suggest that induction of fatty liver disease-associated

inflammation dysregulates the arachidonic acid metabolism

pathway by preferentially suppressing hepatic CYP epoxygenase

metabolic function and hepatic and systemic EET levels.

Furthermore, consistent with activation of the innate immune-

mediated inflammatory response and suppression of the CYP

epoxygenase pathway, a significant inverse correlation between

sum EET concentrations in liver tissue and hepatic Tlr4 (rs = 2

0.646, p = 0.032), Nfkb1 (rs = 20.746, p = 0.009), and Tnfa
(rs = 20.736, p = 0.010) mRNA levels was observed. Similar

inverse correlations were observed with hepatic Cyp2c29,

Cyp2c50, Cyp2c55, and Cyp2j5 mRNA levels (Table S3).

Hydrodynamic Delivery of Ephx2 to Ephx22/2 Mice
Due to the strong correlation between hepatic and circulating

EET levels, we also sought to characterize the functional

contribution of hepatic sEH to circulating EET levels in vivo.

Delivery of plasmid DNA containing murine Ephx2 using the

hydrodynamic injection-based transfection method elicited partial

restoration of hepatic Ephx2 mRNA (Figure 4C) and hepatic sEH

protein levels (Figure 4A and 4B) to Ephx22/2 mice. In contrast,

no detectable increase in renal or myocardial Ephx2 mRNA levels

was observed (Figure 4D). Consistent with disruption of sEH-

mediated EET hydrolysis, the plasma 14,15-EET:DHET ratio was

significantly higher in Ephx22/2 (1.5260.21) compared to WT

mice (0.1660.01) under basal, standard diet fed conditions (p,

0.001). Hydrodynamic delivery of Ephx2 to Ephx22/2 mice,

however, significantly lowered the plasma 14,15-EET:DHET ratio

to a level comparable with untreated WT mice (Figure 4E),

demonstrating that hepatic sEH is a major contributor to

circulating EET levels.

Furthermore, due to the rapid increase in intravascular volume

and pressure, the hydrodynamic injection procedure also elicits

acute but transient hepatic inflammation and injury that resolves

within 24–48 hours [21]. No significant differences in either

hepatic MCP-1 expression (p = NS) or plasma ALT levels (p = NS)

were observed between Ephx22/2 and WT mice under basal,

standard diet fed conditions (Figure 4F and 4G). However, the

acute induction of hepatic MCP-1 (Figure 4F) and plasma ALT

levels (Figure 4G) elicited by the hydrodynamic injection was

exacerbated in the presence of Ephx2 transgene expression,

suggesting a functional contribution of sEH to the induction of

hepatic inflammation and injury.

Atherogenic Diet Evoked Hepatic Inflammation and
Injury in Ephx22/2 Mice

In order to evaluate the functional contribution of the CYP

epoxygenase pathway to the regulation of fatty liver disease-

associated hepatic inflammation and injury, we administered the

atherogenic diet to Ephx22/2 mice. Consistent with global

disruption of sEH-mediated EET hydrolysis, the 14,15-EET:D-

HET ratio and the sum levels of EETs were significantly higher in

atherogenic diet fed Ephx22/2 compared to atherogenic diet fed

WT mice in both plasma and liver (Figure 5A–D). Similar results
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were observed across the individual EET regioisomers and the

11,12-EET:DHET and 8,9-EET:DHET ratios in both plasma and

liver (Table S4). However, Ephx2 disruption did not influence the

atherogenic diet-evoked suppression of CYP epoxygenase expres-

sion (Figure 5E, Table S4).

In order to characterize the effects of Ephx2 disruption on

systemic and hepatic cholesterol levels, we first quantified plasma

and liver total cholesterol levels, which were significantly increased

in response to atherogenic diet administration (p,0.001 vs.

standard diet). However, plasma (21865 vs. 22366 mg/dL,

p = 0.533) and liver (4.060.4 vs. 4.260.1, p = 0.350) total

cholesterol levels were similar in atherogenic diet fed Ephx22/2

compared to WT mice.

We next evaluated expression of key inflammatory mediators in

WT and Ephx22/2 mice. Compared to the standard chow diet,

administration of the atherogenic diet significantly increased

plasma MCP-1, hepatic MCP-1, and hepatic VCAM-1 protein

levels (Figure 6A–C). The induction of chemokine and cellular

adhesion molecule expression, however, was significantly attenu-

ated in the Ephx22/2 mice. The atherogenic diet-evoked

induction of NF-kB activation in liver tissue was also significantly

attenuated in Ephx22/2 mice (Figure 6D and 6E). Furthermore,

WT mice fed the atherogenic diet exhibited significant infiltration

of macrophages into liver tissue compared to standard diet fed

mice (Figure 7A and 7B); however, macrophage infiltration was

significantly attenuated in the Ephx22/2 mice.

We further assessed the pathological severity of NAFLD/NASH

through histological evaluation of lobular inflammation [31].

Lobular inflammation was absent in all mice fed the standard diet

and present in the vast majority of WT mice administered the

atherogenic diet (Table 1). The atherogenic diet group had a

significantly higher inflammation score compared to the standard

diet group, and Ephx22/2 mice had significantly lower inflam-

mation scores compared to WT mice fed the atherogenic diet

(Figure 7C and 7D). An ordinal logistic regression analysis

confirmed that lobular inflammation scores were significantly

lower in Ephx22/2 compared to WT mice administered the

atherogenic diet (Table 1). Furthermore, induction of plasma ALT

levels, a biomarker of hepatic injury and necrosis, and hepatic

collagen (type III) expression, an early biomarker of collagen

deposition, were significantly attenuated in Ephx22/2 compared to

WT mice (Figure 7E and 7F).

Discussion

Fatty liver disease is a rapidly growing public health problem

without effective therapies that confers significant morbidity and

mortality [1], and sustained activation of the innate immune

inflammatory response is a key pathologic driver of its progression

[4]. Accumulating evidence has demonstrated that CYP-mediated

eicosanoid metabolism is an important regulator of acute and

chronic inflammatory responses, and promoting the effects of CYP

epoxygenase-derived EETs has been proposed as an anti-

inflammatory therapeutic strategy for cardiometabolic and renal

diseases [15]. However, despite the integral pathologic role of

hepatic inflammation in NAFLD/NASH and the abundance of

CYP enzyme expression in the liver, the contribution of CYP-

mediated eicosanoid metabolism to the pathogenesis and progres-

sion of this emerging public health problem remains largely

unexplored. Using the atherogenic diet model of NAFLD/NASH,

this study is the first to demonstrate that 1) induction of NAFLD/

NASH markedly and preferentially suppresses hepatic EET

biosynthesis and circulating EET levels through suppression of

hepatic CYP epoxygenase expression; and, 2) targeted disruption

of Ephx2 restores hepatic and systemic EET levels and attenuates

NAFLD/NASH-evoked hepatic inflammation and injury. Collec-

tively, these findings suggest that suppression of hepatic EET

biosynthesis is a key pathological consequence of NAFLD/NASH,

and therapeutic restoration of EET levels is an anti-inflammatory

strategy with potential utility for the treatment of fatty liver

disease-associated inflammation and injury.

It is well-established that inflammatory stimuli suppress hepatic

CYP-mediated xenobiotic metabolism [32]. In addition, we have

reported that hepatic EET biosynthesis is suppressed in an LPS

model of acute inflammation and a high-fat diet model of insulin

resistance [12,33]. Although accumulating evidence has demon-

strated that NAFLD/NASH dysregulates hepatic CYP-mediated

xenobiotic metabolism, and these effects are largely CYP isoform-

specific [34], the impact on CYP-mediated eicosanoid metabolism

has not been evaluated to date. Our expression analysis

demonstrated that, relative to global gene expression changes,

the arachidonic acid metabolism pathway is significantly dysreg-

ulated in liver following atherogenic diet administration. Notably,

these changes were largely driven by suppression of CYP

expression, including numerous Cyp2c and Cyp2j epoxygenases.

Moreover, we confirmed that atherogenic diet administration

evoked a marked suppression of hepatic Cyp2c29, Cyp2c50,

Cyp2c55, and Cyp2j5 expression, the most abundant CYP

epoxygenases in mouse liver [12]. Furthermore, EET biosynthesis

in liver microsomes and both plasma and liver EET levels were

significantly suppressed. In contrast, hepatic 20-HETE biosynthe-

sis and hepatic and plasma 20-HETE levels were not altered in

mice administered the atherogenic diet, while hepatic expression

of key Cyp4a and Cyp4f isoforms were either suppressed

(Cyp4a12, Cyp4f13), unchanged (Cyp4f15), or induced (Cyp4f16).

The disparate effects observed on hepatic CYP v-hydroxylase

expression in response to the atherogenic diet are consistent with

previous findings in acute models of inflammation [12], and

suggest that the mechanisms underlying regulation of hepatic 20-

HETE biosynthesis in the presence of inflammation are complex

and require further investigation. Collectively, these data suggest

that suppression of hepatic CYP epoxygenase-mediated EET

biosynthesis is a key pathological consequence of NAFLD/NASH.

Previous studies have demonstrated that LPS-induced inflam-

mation suppresses hepatic CYP epoxygenase expression in vivo
[12]. In addition, inflammatory cytokines including IL-1, IL-6 and

TNFa suppress CYP expression in hepatocytes, and cytokine-

mediated CYP suppression is dependent on NF-kB activation

[35]. The direct contribution of specific nuclear receptors to these

effects, however, appears to be isoform- and species-specific and

model-dependent, which suggests that upstream activation of the

innate immune response is the most important factor driving the

suppression of hepatic CYP expression. The atherogenic diet

model of NAFLD/NASH induces hepatic inflammation via an

innate immune system dependent mechanism [7,8]. Interestingly,

we observed a significant inverse correlation between Tlr4, Nfkb1,
and Tnfa expression and both hepatic CYP epoxygenase

expression and EET levels, suggesting that atherogenic diet-

evoked suppression of hepatic EET biosynthesis is most likely

mediated via activation of the innate immune response and down-

regulation of CYP epoxygenase expression. However, future

studies remain necessary to elucidate the mechanisms underlying

these effects.

Despite the abundant expression of CYP epoxygenases and sEH

in liver, the contribution of hepatic EET biosynthesis and

hydrolysis to circulating EET levels has remained unclear.

Interestingly, plasma and liver EET levels were highly correlated

in our atherogenic diet experiments. In addition, our Ephx2
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transgene delivery experiment demonstrated that restoration of

hepatic sEH expression in Ephx22/2 mice restored the plasma

14,15-EET:DHET ratio to levels similar to those observed in WT

mice. Taken together, these data suggest that EET biosynthesis

and hydrolysis in the liver is a major contributor to circulating

EET levels. The link between hepatic and plasma EET levels may

have important implications for other inflammatory diseases, as

well as the utility of circulating EET levels and the 14,15-

EET:DHET ratio as a metabolic biomarker in human studies, as

plasma EET levels and the plasma 14,15-EET:DHET ratio were

inversely correlated with circulating biomarkers of inflammation in

humans with stable coronary artery disease [36]. Although

lipidomic analyses in humans have demonstrated that NAFLD/

NASH is associated with dysregulated fatty acid metabolism, [37]

the relationship between the presence and severity of NAFLD/

NASH and altered CYP-derived eicosanoid metabolites has not

been evaluated in humans to date. Our findings demonstrate the

need, and lay the foundation, for future translational research in

this area.

It is now well-established that CYP-derived EETs have potent

anti-inflammatory effects in preclinical models of NF-kB-mediated

vascular inflammation [12,38], and also exhibit anti-apoptotic and

anti-fibrotic properties [15,39,40]; therefore, the observed sup-

pression of hepatic EET biosynthesis may propagate the inflam-

matory response and thus be detrimental in the pathological

progression of NAFLD/NASH. Although recent reports indicate

that sEH inhibition may attenuate the development of insulin

resistance and hepatic steatosis in response to a high-fat diet

[41,42], the functional contribution of the CYP epoxygenase

pathway to the regulation of NAFLD/NASH-associated hepatic

inflammation and injury had not been evaluated. We hypothesized

that decreasing sEH-mediated EET hydrolysis, by targeted

disruption of Ephx2, would restore hepatic EET levels and

attenuate atherogenic diet induced hepatic inflammation and

injury. Consistent with our hypothesis and the anti-inflammatory

effects of EETs, Ephx22/2 mice exhibited increased hepatic and

circulating EET levels and significantly attenuated NF-kB

activation, hepatic chemokine and cellular adhesion molecule

expression, macrophage infiltration into liver tissue, hepatic injury,

and collagen activation in response to atherogenic diet feeding.

Collectively, these findings demonstrate that sEH is an important

regulator of NAFLD/NASH-associated hepatic inflammation and

injury. In addition, we observed that acute hepatic inflammation

and injury evoked by the hydrodynamic injection procedure was

exacerbated in the presence of hepatic Ephx2 transgene expres-

sion, further implicating sEH as a key regulator of hepatic

inflammation and injury.

Although the atherogenic diet model of NAFLD/NASH

increases circulating and hepatic cholesterol levels, increases

hepatic triglycerides, activates the innate immune system, and

induces hepatic inflammation and injury within four weeks, these

effects are not driven by weight gain or systemic insulin resistance.

Thus, the atherogenic diet has limitations as a model of human

NAFLD/NASH, where the most common underlying etiology is

chronic obesity and insulin resistance. However, due to the known

insulin sensitizing effects of sEH inhibition [41,42], use of the

atherogenic diet model allowed us to evaluate the fundamental

pathological role of hepatic inflammation in NAFLD/NASH

without the confounding effects of weight gain, adipose tissue

inflammation, and insulin resistance. Moreover, sEH is a

bifunctional enzyme with both an epoxide hydrolase and lipid

phosphatase domain [43]. Genetic disruption of sEH, which

abolishes both domains, has been reported to lower basal plasma

cholesterol levels [44]; however, in the present study genetic

disruption of sEH did not have an effect on the atherogenic diet

induced increase in plasma or hepatic cholesterol levels. There-

fore, it is unlikely that changes in cholesterol metabolism impacted

the anti-inflammatory phenotypes observed in the Ephx22/2 mice.

Follow-up studies evaluating the effects of Ephx2 disruption and

pharmacologic strategies that promote the effects of EETs,

including sEH inhibitors and stable EET analogs, in additional

models of NAFLD/NASH remain necessary to elucidate the

functional contribution of CYP-derived EETs to fatty liver disease.

Conclusions
In summary, we have demonstrated that hepatic CYP

epoxygenase activity, and hepatic and circulating EET levels, is

significantly and preferentially suppressed in the atherogenic diet

model of NAFLD/NASH. In addition, genetic disruption of sEH

increased EET levels and attenuated atherogenic diet induced

hepatic inflammation and injury. Collectively, these data suggest

that suppression of hepatic CYP-mediated EET biosynthesis is an

important pathological consequence of NAFLD/NASH, and

indicate that the CYP epoxygenase pathway is an important

regulator of the NAFLD/NASH-associated hepatic inflammatory

response in vivo. Future studies are needed to evaluate the

therapeutic utility of strategies that promote the effects of CYP-

derived EETs in NAFLD/NASH, and improve our understanding

of the mechanisms underlying the contribution of sEH and EETs

to the regulation of NAFLD/NASH-associated chronic hepatic

inflammation.
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