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Geochemical and lithium isotope compositions (δ7Li) of Permian Basin produced waters and 

groundwater from overlying aquifers at an enhanced oil recovery (EOR) site in Gaines County, 

northwest Texas were determined to evaluate the effects of brine-groundwater-rock interactions, 

identify sources of dissolved solids, and characterize fluid migration and mixing processes.  δ7Li 

values for produced waters from dolostones of the Permian Basin San Andres Formation ranged 

from +11 to +16 per mil (‰) and fall within the range of formation waters from Gulf of Mexico 

and Appalachian basin oil and gas reservoir rocks.  The chemical composition and TDS content 

(800 to 2,200 mg L-1) of water from five Tertiary Ogallala Formation groundwater wells in the 

study area is comparable to other groundwaters from the Southern High Plains aquifer. 

Groundwaters from the Triassic Dockum Group Santa Rosa (δ7Li range of +21 to +23) are 

isotopically distinct from waters from the San Andres and Ogallala Formations.  In addition to 

tracking groundwater-brine mixing and water-rock interaction, temporal changes in the δ7Li 

composition of deep groundwater in the study area has potential use in the early detection of 

upward or injection-induced brine migration, prior to its incursion into the sensitive overlying 

Ogallala aquifer. 
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1.0  INTRODUCTION 

1.1 CARBON CAPTURE IN GEOLOGIC FORMATIONS 

One approach to the mitigation of the effects of anthropogenic greenhouse gas emissions on 

Earth’s climate system involves the injection of carbon dioxide (CO2) extracted from the exhaust 

stream of fossil fuel combustion facilities, such as coal-fired power plants, into subsurface 

geologic units (Rubin et al., 2007).  Potential geologic carbon storage sites include unmineable 

coal beds, fractured igneous and metamorphic rocks, and high porosity sedimentary rocks 

(Plasynski et al., 2009; Crawshaw and Boek, 2013).  The International Panel on Climate Change 

(IPCC) specified that subsurface geologic units for carbon storage should have the ability to 

retain a minimum of 99% of the injected CO2 for at least 1,000 years, and that assessment and 

storage must be based on measurable parameters (IPCC, 2006).  Successful long-term storage of 

environmentally significant amounts of CO2 into geologic formations is contingent on accurate 

determination of long-term storage capacity, and site-specific assessment, identification and 

mitigation of CO2 injection-related risks (Birkholzer and Tsang, 2008, and references therein).  

Sensitive monitoring, verification and accounting (MVA) tools are also needed that can detect 

subsurface changes relevant to the accurate assessment of these parameters over both short 

(during injection) and long (centuries) time scales (DePaolo and Cole, 2013, and references 

therein). 
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1.2 APPLICATIONS OF GEOCHEMICAL AND ISOTOPIC TOOLS FOR CARBON 

STORAGE 

Detailed characterization of fluid and rock components of geologic carbon storage systems 

provides key information for the development of predictive models, assessment of carbon 

storage, and long-term monitoring and verification.  These methods include the analysis of 

waters from producing, monitoring, and groundwater wells, and baseline characterization of both 

formation waters and groundwater from overlying aquifers (Fessenden et al., 2010; Keating et 

al., 2014; Newell et al., 2014).  Geochemical and isotopic composition of liquid and solid 

components of storage reservoirs, seal rocks, and sensitive aquifers, and temporal variations in 

these signatures can aid in the identification and rate determinations of water-CO2-rock 

interactions within the storage reservoir and overlying aquifers. These processes include mineral 

dissolution and precipitation, CO2 trapping in stable minerals (e.g. magnesite, siderite, 

dawsonite), and the mobilization or retention of chemical species such as trace metals by 

sorption/desorption and cation exchange (DePaolo and Cole, 2013).  As a window into 

subsurface processes, geochemical and isotopic signatures can also be useful MVA tools for the 

early identification of wellbore and changes that could compromise the retention of CO2 in the 

target formation and indicate the migration of CO2 or CO2-affected fluids or brines out of the 

storage unit and into overlying aquifers.  

Natural geochemical and isotopic tracers can discriminate between different formation 

brines and other sources of dissolved solids and have been used to quantify mixing among fluids 

from multiple sources (Chapman et al., 2012; Warner et al., 2014). Variations in the chemical 

and isotopic composition of formation and groundwater can be used as natural signatures of fluid 
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or CO2 migration, for early detection of leakage of CO2 or saline fluids into overlying units, and 

as sensitive monitors of aquifer water quality changes, without the need for the injection of 

synthetic tracers (Hammack et al., 2013).  Natural isotopic tracers can be more sensitive to water 

quality changes than traditional elemental concentration and ratio indicators (Kolesar Kohl et al., 

2014).  Temporal elemental and isotopic changes can be used for monitoring and source 

identification of fluid migration and water quality changes over both short (over the injection 

period) and long (centuries) timescales.  

1.3 CARBON STORAGE AND ENHANCED OIL RECOVERY 

Geologic carbon storage in sedimentary rocks requires a high porosity stratigraphic zone and a 

regionally confining seal rock. The reservoir should be of sufficient depth (≥ 1000 m) to 

maintain CO2 in a supercritical state, and unsuitable as a drinking water aquifer (Merrill et al., 

2015; US Environmental Protection Agency, 2010).  The Department of Energy (DOE) National 

Carbon Sequestration Database and Geographic Information System (NATCARB) indicates that 

depleted oil and gas reservoir rocks and deep saline formations are among the most numerous 

high carbon storage capacity units within the United States (Figure 1). Oil and gas-bearing 

formations are also active or potential sites for the simultaneous recovery of oil-in-place, the 

majority of which (85 to 94%; Meyer, 2008) remains in the reservoir following the primary 

pumping phase (Melzer, 2012; USGS, 2013; Warwick et al., 2012; Brennan et al., 2015; 

Buursink, 2014; Buursink, 2015).  Secondary phase enhanced oil recovery (EOR) methods such 

as waterflooding the field can release up to an additional 30%; and tertiary phase mechanisms 
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such as gas injection EOR can remove another 8 to 20% (Meyer, 2008).  Within the United 

States, more than half of EOR production is via the injection of gases such as carbon dioxide 

(http://energy.gov/fe/science-innovation/oil-gas-research/enhanced-oil-recovery).  

CO2-injection EOR has been used for decades; the first commercial project was 

developed in 1972 in the Scurry Area Canyon Reef Operators Committee (SACROC) Unit of the 

Kelly-Snyder Field in West Texas (Meyer, 2008).  During this process, CO2 that has been 

compressed into a supercritical fluid enters the reservoir rock via an injection well. As the CO2 

moves through the rock and dissolves into saline formation fluids or brines, oil is released and is 

subsequently pumped out of a producing well.  Following recovery, the CO2 is either recycled 

for re-injection or allowed to remain in the oil-bearing rock.  Monitoring of CO2-injection EOR 

sites indicates that CO2 left in the subsurface remains within the reservoir rock (Kharaka et al., 

2006).   
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Figure 1. Maps of CO2 storage potential in oil and gas reservoirs (top) and saline formations (bottom) in 
North America (from DOE NATCARB, 2012). 
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Detailed site-specific geologic, petrophysical and geochemical characterization of 

subsurface lithologies and associated pore fluids are essential for the accurate assessment of CO2 

injection-related changes in porosity and permeability in the storage formation, and the potential 

for the creation of fractures or seismicity.  Research in this area has accelerated over the last 

decade, and includes experimental investigations and studies of natural analog, EOR, and test 

sites (Bickle et al. 2013, and references therein).  As of March 2015, 9.9 metric tons of CO2 have 

been injected in large-scale CO2 injection field tests at sites including those of DOE’s US 

Regional Carbon Sequestration Partnership (RCSP) in the Permian, Gulf Coast, Williston, 

Powder River and Illinois Basins (http://energy.gov/fe/9932381-metric-tons-co2-injected-march-

18-2015).  Multiple field experiments have been conducted to determine CO2-induced 

geochemical changes on groundwater aquifers (Kharaka et al., 2010; Trautz et al., 2013; Newell 

et al., 2014) as well as those effects on cap rock and wellbore integrity (Carey et al., 2007; 

Newell and Carey, 2013). 

Active EOR sites also provide an opportunity to assess long-term changes in reservoir 

storativity, and to improve predictive models of the subsurface effects of large-scale CO2 

injection (e.g., Viswanathan et al., 2008; Class et al., 2009; Yang et al., 2014). These studies can 

complement experimental and field-based natural analog studies focused on CO2-brine-rock 

interactions that affect petrophysical properties of both storage and cap rock and can result in 

either porosity enhancement by fracturing or mineral dissolution, or porosity reduction due to 

cementation (e.g., Kaszuba et al. 2005; 2013). This requires an understanding of mineral 

dissolution-precipitation reactions and reaction kinetics. However, there is a lack of agreement 

between experimental and field-based rate determinations, and additional research is needed in 

this area (DePaolo and Cole, 2013). 
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EOR sites have undergone extensive mapping and other geologic characterization related 

to oil and gas exploration that can provide information regarding possible leakage pathways and 

other sequestration-related issues.  EOR field studies can be used to identify the potential 

impacts of CO2 migration into shallow aquifers (e.g., Keating et al., 2011; Fessenden, 2012; 

Trautz et al., 2013; and references therein), to test the effectiveness of MVA tools, and to assess 

and mitigate risk during the critical period immediately following the initiation of supercritical 

CO2 injection. This includes improving well-bore integrity (Carey, 2013; Mason et al. 2013), 

assessing petrophysical effects of CO2 brine interaction on caprock, and identifying factors (e.g., 

seismicity) that could create injection-related conduits resulting in CO2 leakage out of the storage 

formation (Tsang et al., 2008; DePaolo and Cole, 2013).  

Carbon sequestration field studies have been conducted at a number of EOR sites in the 

Permian Basin, including the SACROC field, the Mean’s San Andres field, and the Wasson 

Denver project, one of the worlds’ largest and longest CO2-floods (Stevens et al., 2001).  High 

permeability rocks in the Permian Basin of the southwestern United States have been identified 

as potential carbon storage formations because of the low geothermal gradient in the area as well 

as close proximity to CO2 pipelines (DOE NETL, 2010).  Major structures within its boundaries 

include the Central Basin Platform, Delaware Basin, Midland Basin, and Northwest and Eastern 

Shelf, (Figure 2). The Central Basin Platform is of particular economic importance due to its 

shallower oil plays in comparison to surrounding basins.  
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Figure 2. Major Permian Basin structures in Texas and New Mexico, with the study area location on the 
eastern flank of the Central Basin Platform (from Stueber et al., 1998). 

 

 

Another important consideration affecting the location of geologic carbon storage sites in 

the United States is the High Plains-Ogallala aquifer, one of the largest freshwater systems in the 

world (Figure 3) and a critical water resource for much of the central and southwestern United 

States (Sophocleous, 2010). It is an important drinking water resource and the main source of 

agricultural water for a large part of the central US.  Decreased recharge and increased 

agricultural use due to prolonged drought conditions, particularly in the southwest and including 

much of the Permian Basin, have accelerated depletion of this critical groundwater resource and 

affected water quality (Mehta et al., 2000; Gurdak et al., 2009; Scanlon et al., 2009; 
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Venkataraman and Uddameri, 2012).  Although a number of studies have focused on potential 

environmental and health impacts of CO2 injection-related metal mobilization on the aquifer, 

there still remains is a need for detailed geochemical analysis and characterization of shallow 

groundwater and subsurface saline formation waters in the region (Carroll et al., 2009; Siirila et 

al., 2012; Romanak et al., 2012).  
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Figure 3. Map showing the extent and major subdivisions of the Ogallala/High Plains aquifer in the USA 
(from USGS and Rosenberg et al., 1999). 
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1.4 RESEARCH OBJECTIVES AND APPROACH 

Geochemical and isotopic characterization of formation brines and groundwater can be used to 

identify subsurface mineral dissolution and precipitation reactions and cation exchange processes 

that provide insight into CO2-water-rock interactions.  The lithium (Li) isotopic composition of 

produced water from oil and gas-bearing units have proven useful in determining the origin and 

evolution of basinal brines and identification of the effect of temperature on subsurface water-

rock interactions (Chan et al., 2002; Millot et al., 2011; Macpherson et al., 2014). Lithium 

isotopic composition can also aid in tracking fluid migration paths and in source determination of 

dissolved constituents in formation and groundwaters.  The use of natural geochemical and 

isotopic signatures requires site-specific baseline characterization of both fluid (brine, 

groundwater) and solid phases (reservoir rock, caprock, fracture fill and aquifers) followed by 

fluid sampling during and after injection. 

This study was conducted at an EOR site in the Seminole oilfield within the San Andres 

Platform Carbonate play of the Permian Basin Central Basin Platform (Broadhead et al. 2004). 

Dolomitic rocks of the Upper Permian (Guadalupian) San Andres Formation comprise one of the 

most important oil reservoirs in the Permian Basin. Carbonate hydrocarbon reservoirs are often 

targets of secondary and tertiary hydrocarbon recovery methods in the Permian Basin and 

elsewhere (Manrique et al., 2004). However, although carbonate host rocks can facilitate mineral 

trapping (i.e., CO2 sequestration by its incorporation into stable minerals such as magnesite), 

spatial heterogeneity can complicate models of fluid-rock interactions and the ability to 

extrapolate pore-scale models to characterize large field areas (Crawshaw and Boek, 2013; Ager 

and Geiger, 2015).  
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This study is an investigation of brine-groundwater-rock interactions and TDS sources.  

Geochemical and lithium isotope compositions of produced waters and groundwaters from an 

EOR site in northwest Texas were used to identify and quantify fluid-rock interactions over 

different temporal scales and investigate produced/formation water pathways. The presence of 

overlying aquifers, including the Tertiary Ogallala Formation of the Southern High Plains 

aquifer, provides an opportunity to establish detailed baseline geochemical and isotopic 

parameters, and identify sources of TDS in the Southern High Plains-Ogallala aquifer. 
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2.0  SITE DESCRIPTION AND GEOLOGICAL SETTING 

2.1 SITE DESCRIPTION AND GEOLOGIC SETTING 

Secondary and tertiary EOR at the site included waterflooding and CO2 injection.  The study area 

is an EOR site approximately 5.23 mi2 (~13.6 km2), within the Seminole oilfield, in Gaines 

County, Texas (Figure 2). The oilfield is within the San Andres Platform Carbonate play of the 

Permian Basin Central Basin Platform (Broadhead et al. 2004).  Oil wells reach depths of 

approximately 5,350 ft (1,627 m) below the surface, tapping carbonate rocks of the San Andres 

Formation that is approximately 1,500 ft (457 m) thick in the region. These dolostones are 

characterized by high primary permeability and porosity, and were affected by diagenetic 

dolomitization, sulfate mineralization and karst-modification (Bebout and Carlson, 1986; Ruppel 

and Cander, 1988; Dutton et al., 2005). The San Andres dolostones and overlying evaporitic 

Ochoan Series of the Central Basin Platform form part of the Permian Composite carbon storage 

assessment unit (SAU) identified by the US Geological Survey as potentially suitable for carbon 

sequestration (Merrill et al., 2015). 

The overlying Santa Rosa Sandstone member of the Dockum Group (approximately 

1,500 ft; 457 m depth) is a locally important aquifer that is primarily used by the oil and gas 

industry in the field area. The Ogallala Formation aquifer is approximately 35 to 55 meters 

beneath the surface and 45 to 60 meters thick in Gaines County (Rettman and Leggat, 1966).  
 13 

 



Groundwater flow is to the southeast (Engle and Blondes, 2014).  Stratigraphy and generalized 

lithologies are shown in Figure 4. 

 

 

Figure 4. Generalized stratigraphy of the study area (modified from Steuber, 1998). 
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The Southern High Plains portion of the Ogallala aquifer overlies the study area, and is 

an important source of irrigational and drinking water (Fahlquist, 2003).  Compared to the 

northern part of the aquifer, Southern High Plains groundwater generally has higher TDS 

(median 800 mg L-1 in shallow groundwater) and arsenic concentrations that can exceed the 

USEPA drinking water standard of 10 µg L-1 (Mehta et al., 2000; Gurdak et al., 2009; Scanlon et 

al., 2009; Venkataraman and Uddameri, 2012).   

2.2 SAMPLING STRATEGY AND LOCATIONS 

Waters were collected during three sampling periods from 18 wells in the study area: ten 

producing wells (Wells A1-A10); one Santa Rosa aquifer well drilled by the oil company (Well 

B1); and three residential (C2, C3 and C5) and two irrigation (C1 and C6) -purposed Ogallala 

aquifer wells. Waters were also collected from two injection wells (Wells D1 and D3); after the 

first sampling event, Well D3 was converted into a CO2 injection well. Injection water consisted 

of groundwater from the Santa Rosa well (B1) mixed in a tank with recycled water from 

producing wells (Figure 5). Figure 6 shows sampling locations as well as the location of CO2 

injection wells (E1 through E5).  
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Figure 5. Schematic of water injection and water mixing procedure at the East Seminole field; figure not to 
scale (from Gardiner, 2013). 

 

 

The East Seminole field has been periodically waterflooded and injected with CO2 since 

the 1980s (Gray, 1989; USGS, 2012).  The most recent phase of CO2 injection at the study site 

began in October 2013 and continued through the remainder of the study period. Waterflooding 

of the field occurred prior to and concurrent with CO2 injection as part of secondary recovery. 

The first set of samples was collected four months before CO2 injection commenced (June 2013). 

The second and third sampling events occurred three months (January 2014) and seven months 

(May 2014) after the initiation of CO2 injection. Because of logistical and operational issues, 
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water samples were not obtained for some wells for all three sampling events; collection dates 

are noted in the data tables. 

 

 

Figure 6. Well locations of produced water (A), Santa Rosa groundwater (B), Ogallala groundwater (C), and 
injection water (D) sampled in this study, as well as locations of CO2 injection wells in the field area. 
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3.0  ANALYTICAL METHODS 

3.1 FIELD METHODS AND SAMPLE COLLECTION 

Wells were sampled in June of 2013, January 2014, and May 2014.  Waterflooding was ongoing 

at the site throughout the sampling period.  CO2 injection began in October 2013.  At each site, 

pH, temperature, electrical conductivity, and reduction potential were measured using a multi-

meter (YSI® Instruments) with analytical accuracy of ±0.2, ±0.2°C, ±1% µS cm-1, and ±20 mV, 

respectively, and total dissolved solids (TDS) was analyzed using a refractometer (Atago 

MASTER-S28 Alpha Refractometer) with analytical accuracy of ±2,000 mg L-1.  All samples 

were collected at the wellhead into pre-rinsed carboys that were conditioned with sample water 

using new, pre-cleaned sample tubing for each sample. Waters were filtered with 0.45 μm high 

capacity filters (EnviroTech GWE) into acid-washed Nalgene HDPE bottles.  Produced water 

aliquots taken below the oil-water interface were passed though glass wool to remove large 

particulates and oil prior to filtration.  Alkalinity was determined using Hach® titration methods, 

and calculated via the USGS Alkalinity Calculator (2012).  Samples for major and trace cation 

analyses were preserved by acidification with ultrapure concentrated nitric acid to pH<2.  

Samples for anion analysis were preserved by storage on ice followed by refrigeration at the lab. 
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3.2 GEOCHEMICAL (MAJOR, TRACE ELEMENT AND ANION) ANALYSIS 

Major and trace cations were analyzed using a Horiba Inductively Coupled Plasma-Optical 

Emission Spectrometer (ICP-OES; JY Ultima 2) and a VG Elemental Inductively Coupled 

Plasma-Mass Spectrometer (ICP-MS; PQII+XS) at the Kansas Geological Survey and University 

of Kansas, respectively.  Anion concentrations were determined with a Dionex 4000i ion 

chromatograph (IC) equipped with an AS4a 4-mm analytical column and an AG4a guard column 

at the University of Kansas. Analytical accuracy and precision were determined by replicate 

analyses of samples, standards (ICP-OES: QCS-23; ICP-MS: Dionex 7 Anion Standard II (Br), 

QCS-23, and NIST1640a; IC: Dionex 7Anion Standard II) and matrix-matched solutions. 

Calibration curves were created using pure element solutions.  Replicate samples were analyzed 

at least 25% of every run and analytical uncertainty is <10%.   

3.3 LITHIUM ISOTOPE ANALYSIS 

Lithium concentrations and δ7Li determinations were conducted at the University of Pittsburgh. 

Lithium separation of samples, reference standards (Seawater: NASS-6 and CB-25), sample 

replicates and procedural blanks was conducted under clean lab conditions using a method 

modified from Choi et al. (2013). Li yields and procedural blanks were determined by ICP-MS.  

δ7Li compositions for samples with column yields ≥ 99% and blank < 0.06% were determined on 

a Thermo Neptune Plus multicollector-ICP-MS (MC-ICP-MS) using a sample-bracketing 

technique and normalization to the L-SVEC standard.  The measured δ7Li value for NASS-6 was 
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29.60±2.22 (n=6); CB-25 yielded δ7Li of 9.56±0.49 (n=8).  Long-term reproducibility for δ7Li is 

estimated to be ≤ 1‰ (2σ).  
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4.0  RESULTS 

4.1 MAJOR AND TRACE ELEMENT GEOCHEMISTRY OF PRODUCED WATERS 

Major element data for San Andres produced and injection waters are presented in Table 1; trace 

element data are given in Table 2.  Produced waters are sodium-chloride type (Figure 7) and 

calcium is approximately 20 % of the total cation load; sulfate makes up approximately 25% of 

the anion load.  Major element chemistry of the injection waters is indistinguishable from the 

San Andres produced waters (Figures 7, 8), reflecting long term pumping and reinjection of the 

same waters.  Produced water from San Andres Formation wells are saline (TDS from 24,400 to 

42,200 mg kg-1) with pH ranging from 6.2 to 7.4 (Figure 8). Sodium ranged from approximately 

6,300 to 13,900 mg kg-1 and chloride from approximately 10,400 to 20,600 mg kg-1. Detectable 

hydrogen sulfide at the wellhead is indicative of reducing conditions in the formation.  Alkalinity 

for produced and injection waters ranged from 1,110 to 1,800 mg kg-1.  Cerium (Ce), cobalt 

(Co), chromium (Cr), iron (Fe), lanthanum (La), lead (Pb), vanadium (V) and zinc (Zn) were 

below detection limits in all produced and injection water samples. 
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Table 1. Major and minor geochemistry of produced water samples.  All analytes measured by ICP-OES except Li and Br (ICP-MS), Cl- and SO4
-2 (ion 

chromatograph), and HCO3
- (field titration). 
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Table 2. Trace metal concentrations (by ICP-MS) of produced water samples. 
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Figure 7. Piper plot of all samples analyzed in this study. 
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Figure 8. Durov plot of all samples analyzed in this study. Symbols the same as Figure 7. 

4.2 OGALLALA & SANTA ROSA GROUNDWATER GEOCHEMISTRY 

4.2.1 Groundwater major anions and cations 

The major constituents of Ogallala and Santa Rosa groundwater samples are presented in Table 

3.  Ogallala aquifer groundwater pH was circumneutral, with values that ranged from 6.9 to 7.4, 
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and TDS in the range of 797 to 2,200 mg kg-1 (Figure 8).  Up to 50% of the cation load consisted 

of sodium (Na+), with nearly equal amounts of calcium (Ca2+) and magnesium (Mg2+) making up 

the remainder (Figure 7).  The total anion load for most Ogallala samples contained less than 

20% bicarbonate (HCO3
-), and slightly more chloride (Cl-) than sulfate (SO4

2-) (Figure 7). 

The salinity of groundwater from the Santa Rosa aquifer in the area precludes its use for 

drinking water or agricultural purposes. Total dissolved solid values for the Santa Rosa well, B1, 

locally used by the oil and gas industry, ranged from 4,520 to 4,650 mg kg-1, and pH values 

ranged from 8.0 to 9.1 (Figure 8).  The dominant cation was Na+ making up greater than 90%.  

SO4
2- made up approximately 70% of the total anion load (Figure 7). 
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Table 3. Major and minor geochemistry of groundwater samples.  All analytes measured by ICP-OES except Li and Br (ICP-MS), Cl-, and SO4
-2 (ion 

chromatograph), and HCO3
- (field titration). 
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4.2.2 Trace element geochemistry of groundwaters 

Trace element data for groundwater samples from Ogallala and Santa Rosa wells are presented in 

Table 4. Ce, La, and Zn were below the detection limit in all Ogallala water samples. Aluminum 

(Al), rubidium (Rb), Ce, Co, Cr, Fe, La, Pb, V, and Zn were below detection limits in the Santa 

Rosa groundwater samples.   

Vanadium concentrations in Ogallala aquifer groundwaters ranged from 49 to 99 µg kg-1. 

Although the US Environmental Protection Agency (EPA) has not established a drinking water 

maximum contaminant level (MCL) for V, several states have set a health risk limit of 50 µg L-1 

for drinking water (CA and MN Health Depts.).  The Superfund removal action limit established 

by the EPA is 250 µg L-1. Although elevated, V concentrations of Ogallala groundwater in the 

study area falls within the range of 9.4 to 190 µg L-1 (median 37 µg L-1) found in 47 domestic 

water wells in the Southern High Plains Aquifer (Fahlquist, 2003). In a study of groundwater in 

the western Texas Panhandle region, Hopkins (1993) detected V in 91% of Ogallala aquifer 

groundwater wells, with concentrations ranging from 20 to 532 µg L-1. 

Elevated V in groundwater can originate from natural and anthropogenic sources.  

Vanadium is a redox sensitive transition element that can occur in high concentrations (>10 ppm) 

in some shales.  Elevated V5+ concentration in surficial aquifers suggests soil leaching and is 

typically associated with oxic and alkaline groundwater as H2VO4-.  Solubility is controlled by 

sorption-desorption reactions on aquifer oxides and amorphous phases (Wright et al., 2014).  In 
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1999, V from an industrial leak contaminated some wells in Hockley County to the north but 

locally, V is associated with alteration of Cenozoic volcanic material (Potratz 1980).
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Table 4. Trace metal concentrations (by ICP-MS) of groundwater samples. 
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4.3 LITHIUM ISOTOPE COMPOSITION 

Lithium isotope data for the San Andres produced water, injection water, Ogallala groundwater, 

and Santa Rosa Formation groundwater are presented in Table 5.  The total range of δ7Li in the 

San Andres produced waters is +10.9 to +15.6, which is very comparable to the range in the 

Ogallala aquifer samples (+10.6 to +16.5).  In contrast, the Santa Rosa groundwater samples 

yield δ7Li values in the range of +20.6 to +23.5, significantly higher than the Ogallala or San 

Andres values.  San Andres waters have higher Li concentrations (1.4-2.4 mg kg-1) than Santa 

Rosa or Ogallala waters (Figure 9), both of which fall within the range of 0.13-0.28 mg kg-1. 
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Table 5. Lithium isotope data for all samples. 

 
 32 

 



 

Figure 9. Lithium isotopes (δ7Li) plotted against lithium concentrations [Li] for all samples analyzed in this 
study. Error bars represent the estimated long-term external reproducibility (±1‰). 
 

 

Undiluted San Andres formation waters from the eastern flank of the Central Basin 

Platform (Stueber et al., 1998) have higher concentrations of Li (up to 7.3 mg L-1, average 3.9 

mg L-1) than the produced waters from the East Seminole site.  This is likely the result of dilution 

resulting from waterflooding related to EOR at the latter site.  Injection water is composed of a 

mixture of recycled San Andres produced water and Santa Rosa groundwater, which have 

significantly different Li isotope compositions (Figure 9).  This difference in δ7Li could 

conceivably shift the isotopic composition of waters produced from the San Andres Formation. 
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However, mixing calculations indicate that in order to generate a measurable shift the δ7Li, Santa 

Rosa groundwater would have to be added at amounts ≥~70% (Figure 10), which appears to be 

the maximum addition.  Therefore, we assume that the δ7Li values of San Andres produced water 

are negligibly different than those of the original formation water. 
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Figure 10. Mixing curve between Santa Rosa groundwater values from this study and approximate lithium 
concentrations of undiluted San Andres Formation water (Stueber et al., 1998); percentages represent the 
fraction of added Santa Rosa groundwater. 

 

 

The range of δ 7Li values measured in San Andres produced waters is comparable to oil and 

gas field formation waters in the Appalachian Basin (Macpherson et al., 2014; Warner et al., 

2014) and Gulf Coast Sedimentary Basin (Macpherson et al., 2014); above the range observed in 

the Paris Basin (Millot et al., 2011), and below that in the Heletz-Kokhav oil field, Israel (Chan 

et al., 2002) (Figure 11).  Lithium concentrations are generally lower than most of these oilfield 

brines (Figure 12), again most likely due to waterflooding at the East Seminole site. 
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Figure 11. δ7Li values from this study compared to published formation waters from other hydrocarbon 
producing basins (Chan et al., 2002; Millot et al., 2011; Macpherson et al., 2014; Warner et al., 2014).  
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Figure 12. δ7Li values vs. [Li] for samples analyzed in this study (solid red circles) and published formation 
waters (data  from Chan et al., 2002; Millot et al., 2011; Macpherson et al., 2014; Warner et al., 2014). 
Modern seawater (yellow diamond) is shown for comparison. 
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5.0  DISCUSSION 

5.1 EVOLUTION OF PRODUCED WATERS 

5.1.1 Sources of dissolved constituents in San Andres produced waters 

Permian Basin formation water chemistry can reflect a complex history of seawater evaporation, 

ion exchange, halite dissolution, dolomitization, and precipitation of gypsum (Dutton, 1987; 

Engle and Blondes, 2014).  Based on the predictable variation of Na/Br and Cl/Br in response to 

seawater evaporation and halite dissolution (Walter et al., 1990), Stueber et al. (1998) suggested 

that the San Andres formation waters on the eastern flank of the Central Basin Platform are 

primarily meteoric in origin with subsequent halite (and minor K-rich salt) dissolution 

responsible for salinity, in contrast to deeper brines that have a significant evaporated seawater 

component.  We compared San Andres produced waters from East Seminole in the central part 

of the platform to the data of Stueber et al. (1998) (Figure 13).  The East Seminole waters also 

fall along the halite evaporation trend, extending to significantly higher Na/Br and Cl/Br values 

than those measured by Stueber et al. (1998).  This could be due to (1) additional halite 

dissolution induced by injection of more dilute waters during waterflooding, or (2) a greater 

extent of halite dissolution by meteoric water in the central part of the platform.  The effects of 

dilution by Santa Rosa Formation groundwaters during waterflooding can clearly be seen in a 
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plot of Na vs. Cl (Figure 14), with the East Seminole waters falling along a mixing trend 

between the eastern Platform formation waters and more dilute Santa Rosa groundwater.   

 

 

 

Figure 13. Molar Cl/Br vs. molar Na/Br ratios for samples in this study compared to the range of undiluted 
San Andres formation waters reported by Stueber et al. (1998). The halite dissolution trend (blue dashed line) 
extends from modern seawater along a 1:1 line (Walter et al., 1990). 
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Figure 14. Cl vs. Na for San Andres produced water, injection water, and Santa Rosa formation water from 
this study, and undiluted San Andres produced water from Stueber et al. (1998). 

 

 

Because the San Andres is a dolomitic reservoir, it is expected that the dolomite host rock 

itself will exert some control on water chemistry.  Molar concentrations of Ca are in excess of 

Mg for all produced water samples, but Ca and Mg vary with a slope very close to unity when 

combined with the eastern Platform data (Figure 15).  We suggest that this covariation reflects 
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dissolution of dolomite host rock, with the “excess” Ca (the intercept at Mg = 0 on Figure 15) 

being inherited from interaction of meteoric waters with anhydrite evaporite units.  

 

Figure 15. Ca vs. Mg for San Andres produced and injection water from this study, and undiluted San 
Andres produced water from Stueber et al. (1998). 

 41 

 



5.1.2 Lithium isotopes in San Andres produced water 

Major element data discussed in Section 5.1.1 and stable isotope data from Stueber et al. (1998) 

strongly suggest that San Andres waters are primarily meteoric in origin, with the recharge 

originating in southeastern New Mexico (Stueber et al., 1998; Barnaby et al., 2004).  The bulk of 

the TDS appears to have originated from dissolution of evaporite deposits in the flowpath; hence 

this is the likely origin of the Li in San Andres waters.  Evaporites would inherit δ7Li values 

similar to those of the water from which they precipitate, but the Li isotope composition of 

Permian seawater is not currently known.  Misra and Froelich (2012) extended the marine δ7Li 

record back to about 70 Ma using carbonate from a deep sea core, and found secular variations 

with δ7Li values as low as ~+20 at 60 Ma.  Given this level of variation, it is not unreasonable to 

surmise values as low as +10 to +15 during the Permian.  If this were the case, then the δ7Li 

values in San Andres produced waters would represent Permian seawater/evaporites, modified 

by later interaction with reservoir minerals.  In general, exchange with and alteration of silicate 

minerals is likely to raise the δ7Li of the interacting waters. 

The spread in δ7Li values of the produced water suggests that the original formation 

waters are affected by more than one component of Li.  Because these waters are hosted in a 

carbonate reservoir, the calcitic/dolomitic host rocks are one possible endmember.  Marine 

carbonate typically incorporates Li that is 2-4 ‰ lighter (lower δ7Li) than the water from which 

it precipitates (Marriott et al., 2004; Pogge von Strandmann et al., 2013).  The concentration of 

Li in marine carbonate is low (typically 0.5-1.5 ppm; Marriott et al., 2004).  Assuming a 

difference in δ7Li of 15 ‰ (likely a maximum difference), even the dilute San Andres produced 

waters would need to dissolve more than one third of their mass in carbonate to shift δ7Li by 5-
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‰, the total range observed in this study.  This would push the water chemistry to much higher 

Ca concentrations than are actually observed (Figure 7).  Interaction with clays and other silicate 

minerals, either in the present host formation or during migration of the formation waters, is a 

more likely scenario for creating the spread of δ7Li values.  A modest positive correlation of Li 

with HCO3
- (Figure 16) indicates possible hydrolysis reactions with a Li-bearing silicate mineral 

such as K-feldspar could help create a spread of δ7Li values. 

 

 

Figure 16. Correlation of Li with HCO3
- for San Andres produced water from this study. 
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5.2 FACTORS CONTROLLING GROUNDWATER CHEMISTRY IN POST-

PERMIAN UNITS 

5.2.1 TDS sources in Ogallala groundwater 

The major cation and anion trends from Ogallala groundwater samples in this study are 

comparable to other data from the southern High Plains aquifer, generally falling on the low-Ca 

and low-carbonate end of the spectrum (Figure 17).  Chaudhuri and Ale (2014) attributed 

increased salinization and contamination of Ogallala aquifer groundwater in Texas between 1960 

and 2010 to agricultural and hydrocarbon exploration activities, and to natural processes such as 

percolation of recharge through surface playas and mixing with high TDS water from underlying 

units. The upward migration of these saline waters has been exacerbated in some areas by high-

capacity wells used for irrigation (Gurdak et al., 2009).  
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Figure 17. Piper plot comparing the geochemistry of the Ogallala formation samples collected in this study 
(solid blue triangles) with previously reported Southern High Plains data (inverted hollow triangles, 
Fahlquist et al., 2003; hollow circles, Fryar et al., 2001;  hollow squares, Scanlon et al., 2009; hollow diamond, 
Mehta et al., 2000). 

 

 

Given that these samples were collected from an active oil extraction and EOR site, 

contamination from deeper groundwaters (i.e., from the Santa Rosa Formation) and formation 

waters (San Andres produced waters) must be considered a possibility.  In particular, a 
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correlation of [Li] with δ7Li (Figure 18a) and the overlap in δ7Li values between Ogallala and 

San Andres waters are suggestive of possible contamination.  A plot of δ7Li vs. 1/[Li] (a mixing 

diagram, Figure 19) shows that likely Ogallala mixing trajectories using two possible [Li]-δ7Li 

trends do not point either toward the San Andres formation waters or toward the Santa Rosa 

groundwater values.  Thus, neither upward migration of formation waters nor downward 

percolation of released oilfield produced water into the Ogallala aquifer appears to have taken 

place at this location.  A modest correlation of δ7Li with Si (Figure 18b) could represent a 

weathering reaction with a Li-bearing mineral such as K-feldspar in the soil zone during 

infiltration.  
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Figure 18. δ7Li values of Ogallala samples analyzed in this study plotted against a) [Li] and, b) [Si]. 
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Figure 19. Mixing diagram (δ7Li vs. 1/[Li]) depicting two possible trajectories for formation water mixing to 
explain [Li] vs. δ7Li trends. In both cases, the high-[Li] endmember does not correspond to either Santa Rosa 
groundwater or San Andres produced water. 

 

 

The overlap in δ7Li values between San Andres formation waters and Ogallala aquifer 

waters provides the possibility that these disparate groundwater systems share a common source 

of Li.  For the San Andres waters, evaporite salts from units such as the overlying Salado 

Formation (Ochoan Group) are a likely source (Stueber et al., 1998; Barnaby et al., 2004).  

While Permian salts are stratigraphically below the Tertiary Ogallala aquifer, Neogene uplift 

(Senger et al., 1987) provided deep groundwater recharge to the west, and may have allowed 
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westward erosion of Permian evaporites into the Ogallala recharge area, providing a source for 

the extensive playa deposits.  Percolation of water through playa lake bottoms during wet periods 

would result in dissolution of soluble salts and transport into the Ogallala aquifer (Nativ, 1992).  

During this process, Li ultimately derived from Permian seawater would be delivered to the 

shallow aquifer system, giving it a signature similar to that of the San Andres produced waters.  

A playa/evaporite source of Li is likely to be in the form of chloride or sulfate minerals.  δ7Li 

values of Ogallala waters show modest correlations with sulfate (Figure 20a) and chloride 

(Figure 20b) but no correlation with bicarbonate (Figure 20c).  The latter would be affected by 

the combined contributions from carbonate minerals, which would contribute very little Li, and 

silicate weathering reactions, which could contribute (or sequester) variable amounts of Li. 

 

Figure 20. δ7Li values of Ogallala samples analyzed in this study plotted against a) SO4
-2, b) Cl-, and c) HCO3

-. 
 

 49 

 



The Ogallala well water samples show a possible correlation of δ7Li with depth (Figure 

21), with deeper wells.  This points to a variable contribution from water-silicate interaction, 

with either discontinuities within the aquifer (i.e., isolated lenses) or water chemistry gradients.  

The trend of heavier δ7Li with depth is consistent with a greater amount of fluid-silicate 

interaction (possibly a longer residence time) deeper in the reservoir (Liu et al., 2015). 

 

Figure 21. δ7Li values of Ogallala samples analyzed in this study plotted as a function of well depths. 
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5.2.2 Santa Rosa groundwater 

The Santa Rosa Formation lies between the San Andres Formation and the Ogallala aquifer, yet 

it contains Li with a very different isotopic composition than either (Figure 9).  Because it 

overlies the main Permian evaporite units, it most likely escaped the downward flowing meteoric 

waters that interacted with the evaporites.  In addition, it is isolated from regional surface 

recharge that may have interacted with playa lakes containing a Permian salt component.  Thus, 

the δ7Li of Santa Rosa waters is more likely to reflect interaction of meteoric waters with the 

clastic component of the unit itself.  The relatively high δ7Li values of waters from this unit 

could have been imparted by long term fluid-rock interaction, which tends to enrich the fluid in 

isotopically heavy Li (Chan et al., 1992; Liu et al., 2015).  While we only have Santa Rosa 

samples from a single well, we note that the chemistry of these waters differs significantly from 

both the Ogallala aquifer and the San Andres produced waters (Figure 7), falling well off the 

halite dissolution/seawater evaporation trend (Figure 13). 

5.3 DEEP BRINE MIGRATION AND GROUNDWATER MIXING 

Enhanced oil recovery and CO2 injection for geologic carbon sequestration both carry risks of 

forcing deep brines to shallower levels through faults or previous wellbores.  Thus, it is 

important to develop geochemical tools that can sensitively detect upward movement of brines in 

time to prevent significant contamination.  At the East Seminole site, the intermediate Santa 

Rosa groundwater provides a monitoring point for possible upward movement of San Andres 
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brines during EOR.  While the Ogallala and San Andres waters have essentially identical δ7Li 

values, the large difference in δ7Li between Santa Rosa and San Andres waters makes Li 

isotopes a sensitive monitor for incursion of the deeper brines.  Based on measured δ7Li and [Li] 

values, only a few percent of San Andres water would need to mix with Santa Rosa waters to 

produce a significant shift in δ7Li (Figure 22).  Thus, monitoring of the Santa Rosa Formation 

waters could provide an early warning before brines reach the more sensitive overlying Ogallala 

aquifer.  The extent to which δ7Li can serve as a monitor for brine migration or leakage in any 

given situation depends on regional geologic and hydrologic conditions (cf. Warner et al., 2014), 

and requires collection and analysis of baseline values for all possible end members. 
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Figure 22. Mixing model for San Andres formation water mixing with Santa Rosa groundwater. Numbers on 
the curve represent percentages of San Andres formation water added.   
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6.0  CONCLUSIONS 

• Produced water from the San Andres carbonate reservoir records its chemical history 

despite previous waterflooding and CO2 injection in the East Seminole field. 

• δ7Li values for produced waters from the San Andres Formation carbonate reservoir 

(+10.9 to +15.7) fall within the range of formation waters from Gulf of Mexico and 

Appalachian shale and sandstone reservoirs 

• San Andres produced waters inherited their δ7Li values primarily from evaporite units 

that were dissolved by infiltrating meteoric water in the Neogene.  This suggests a 

Permian seawater δ7Li value about 20‰ lower than present-day seawater. 

• Ogallala aquifer groundwater chemistry in the study area is comparable to that of other 

Southern High Plains aquifer waters. 

• δ7Li values of the Ogallala aquifer may be inherited from playa lakes in their recharge 

area.  The salts in these lakes are derived in part from eroded Permian evaporites, and 

thus impart a Li isotopic signature on the Ogallala waters that overlaps significantly with 

San Andres produced waters. 

• The trend of increasing TDS content, higher δ7Li, and lower Li concentrations observed 

in shallow vs. deeper Ogallala and Santa Rosa aquifer groundwater is consistent with 

increased residence time in the aquifer. 
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• The intermediate depth Santa Rosa groundwater aquifer lies above Permian evaporites 

and is shielded from infiltrating waters by the Ogallala aquifer (and underlying aquitard). 

Therefore, the elevated Santa Rosa groundwater Li isotope composition reflects 

prolonged interaction with clay and other silicate minerals in the aquifer. 

• A major consideration for the selection of stratigraphic zones for CO2 injection is the 

potential migration of CO2 or displaced saline formation waters into shallow aquifers that 

could result in the degradation of groundwater quality via salinization and the 

mobilization of metals and other chemical species.  In addition to its use as a natural 

tracer of groundwater-brine mixing and water-rock interactions, the δ7Li composition of 

deep groundwater has potential as a monitoring tool to identify CO2 injection-induced 

fluid migration into overlying permeable units prior to its intrusion into sensitive shallow 

aquifers. Although δ7Li values of San Andres oilfield waters overlap with those of 

groundwaters from the Ogallala aquifer, δ7Li of waters from both units are distinct from 

Santa Rosa groundwater that lies between the two. Thus, a shift in the δ7Li of 

groundwater from wells tapping the Santa Rosa aquifer could be used to detect upward 

fluid migration. 

• Chemical and isotopic spatial heterogeneity over short (km-scale) distances reinforce the 

need to integrate detailed geologic and geochemical characterization into interpretations 

of subsurface processes and predictive models of water-rock interactions. 
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