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Abstract

The recent shift towards write-intensive workload on big

data (e.g., financial trading, social user-generated data streams)

has pushed the proliferation of log-structured key-value stores,

represented by Google’s BigTable [1], Apache HBase [2] and

Cassandra [3]. While providing key-based data access with a

Put/Get interface, these key-value stores do not support value-

based access methods, which significantly limits their applicabil-

ity in modern web and database applications. In this paper, we

present DELI, a DEferred Lightweight Indexing scheme on the

log-structured key-value stores. To index intensively updated big

data in real time, DELI aims at making the index maintenance as

lightweight as possible. The key idea is to apply an append-only

design for online index maintenance and to collect index garbage

at carefully chosen time. DELI optimizes the performance of

index garbage collection through tightly coupling its execution

with a native routine process called compaction. The DELI’s

system design is fault-tolerant and generic (to most key-value

stores); we implemented a prototype of DELI based on HBase

without internal code modification. Our experiments show that

the DELI offers significant performance advantage for the write-

intensive index maintenance.

I. Introduction

In the age of cloud computing, various scalable systems

emerge and prevail for big data storage and management. These

scalable data stores, mostly called key-value stores, include

Google’s BigTable [1], Amazon’s Dynamo [4], Facebook’s Cas-

sandra [5], [3], Apache HBase [2] among many others. They

expose a simple Put/Get API which allows only key-based data

accesses, in the sense that when writing/reading data in the key-

value stores, user applications are required to specify a data key

as the parameter. While the key-based Put/Get API supports

basic workloads, it falls short when it comes to advanced web

and database applications which require value-based data access.

To gain wider application, it calls for value-based API support

on the key-value stores.

On the other hand, many key-value stores deal with write-

intensive big data. Typically, the workload against a key-value

store is dominated by data writes (i.e. Put) rather than reads,

and such workloads are prevalent in modern web applications.

For instance, in Web 2.0, social users not only read news but

also contribute their own thinking and write news themselves. It

is also the case in other emerging domains, such as large system

monitoring and online financial trading. To optimize the write

performance, many key-value stores (e.g. HBase, Cassandra and

BigTable) follow a log-structured merge design [6], in which

the on-disk data layout is organized as several sorted files and

writes are optimized by an append-only design. We call these

Log-structured Key-Value Stores as LKVS (whose distinctive

features are described in § II).

This work addresses the problem of supporting a value-based

API on the write-intensive data stored in LKVS. For value-

based access, a secondary index is essential. In common practice,

the secondary index is implemented as a regular table in the

underlying LKVS. In this situation, the index maintenance under

a write-intensive workload is a challenge: On the one hand, the

index maintenance needs to be lightweight in order for it to catch

up with the high arrival rate of the incoming data writes; On

the other hand, given mutable data where data updates overwrite

previous data versions, the index maintenance needs to find and

delete the obsolete versions (in order to keep the index fresh and

up-to-date); such a task includes Get operations which are very

expensive in LKVS systems (explained in § II).

In this paper, we propose DELI, a middleware system that

supports the secondary index on top of an LKVS. To address the

index-maintenance challenge, we propose a performance-aware

approach. The core idea is to decompose an index-maintenance

task to several sub-tasks, and only to execute the inexpensive

ones synchronously while deferring the expensive ones. More

specifically, given a data update, the index maintenance needs to

perform two sub-tasks, that is, 1) to insert new data versions to the

store and 2) to find and delete old versions. Sub-task 1) involves

only Put operations, while sub-task 2), called an index repair,

requires a Get operation to find the old version. The insight

here is that LKVS is write-optimized in the sense of Put being

fast and Get being slow, which makes sub-task 1) lightweight

and the index-repair sub-task 2) heavyweight. DELI’s strategy

to schedule the index maintenance is to synchronously execute

sub-task 1) while deferring the expensive index-repair sub-task.

A core design choice regarding the deferred index repair is

when the execution should be deferred to. Our key observation

is that a Get operation is much faster when it is executed after

a compaction than before that. Here, a compaction is a native

maintenance routine in LKVS; it cleans up obsolete data and

reorganizes the on-disk data layout. To verify the observation,

we conducted a performance study on HBase 0.94.2. A preview

of the experiment results is shown in Figure 1; the Get can

achieve more than 7× speedup in latency when executed after

a compaction comparing to that before a compaction. Based on

this observation, we propose a novel design that defers the index

repair to the offline compaction process. By coupling the index

repair with the compaction it can save the index-repair overhead



substantially.

While deferring the index repair to offline hours can improve

the performance of itself, it may prolong the value-based read

access, due to the need to check index-table inconsistency (caused

by the online repair). We further propose to schedule the index

repair operations online, by piggybacking them in the execution

path of value-based reads. The online index repair adds small

extra overhead (i.e. one local memory write) but can save huge by

removing the need of maintaining another remote base-table Get.
Note that unlike most existing online performance optimization

schemes, our DELI does not need to profile or monitor the

system resource utilization.
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Fig. 1: Read latency before/after compaction

The contributions of this paper are summarized below.

• We coin the term LKVS that abstracts various modern in-

dustrial strength big-data storage systems (including HBase,

Cassandra, BigTable, HyperTable, etc). We propose DELI to

extend the LKVS’s existing API by including a value-based

access method.

• We make the index maintenance lightweight in DELI for

write-intensive workloads. The core idea is to make it

aware of performance; it defers expensive operations while

executing inexpensive ones synchronously in an LKVS

system. Specifically, we propose two lightweight scheduling

strategies for expensive index-repair operations; an offline

repair that is associated with the native compaction process

and an online repair that is coupled with value-based read

operation.

• We analyze the fault-tolerance of DELI in terms of both

online operations and offline index-repair process. The fault

tolerance in DELI is achieved without sacrificing perfor-

mance efficiency.

• DELI is designed to be generic on any LKVS. While

a generic implementation of DELI is realized in both

HBase and Cassandra, we also demonstrate an HBase-

specific implementation that optimizes performance without

any internal code change in HBase (by using exposed system

hooks). We open-source the DELI prototype on HBase. 1

II. Background: LKVS

LKVS, represented by BigTable [1]/HBase [2] and Cassan-

1https://github.com/tristartom/nosql-indexing

dra [3], has the following two common and distinctive features.2

Note that specific LKVS systems may differ in other aspects

(e.g. HBase shards data by range partitioning while Cassandra is

based on consistent hashing).

• LKVS employs a key-value data model with a Put/Get API.

In the data model, a data object is identified by a unique key

k and consists of a series of attributes in the format of key-

value pairs; a value v is associated with multiple overwriting

versions, each with a unique timestamp ts. To update and

retrieve an object, LKVS exposes a simple Put/Get API:

Put(k,v, ts), Delete(k, ts) and Get(k)→ {〈k,v, ts〉}. When

calling these API functions, the presence of a key k is

required, which makes them key-based access methods.

• LKVS uses the log-structured merge tree (or LSM) [6], [1]

for local data persistence. In an LSM tree, the data writes

are buffered in memory and then flushed to disk in a batched

and append-only manner. With multiple flushes, it generates

multiple on-disk files, and a read need essentially issue

multiple random-access calls to those files. This behavior,

making writes sequential disk access and reads multiple

random access, is the reason behind the fast-Put and slow-

Get characteristic of LKVS. An LKVS system typically

exposes an administration interface called Compact, which

merges multiple data files into one in the LSM tree and

performs cleanup tasks for garbage collection. Details of

Compact and LSM tree can be found in [6], [1].

III. The DELI Structure

In this section we first present the system and data model

in DELI, then describe the materialization of DELI in the

underlying LKVS, and at last formulate the problem of index

maintenance.

Cloud system

ReadValue Write

ReadKey

DELI

PutGet

App 

server

LKVS

Index Table Base Table

App 

server

App 

server

Compact

Fig. 2: DELI architecture

A. System and Data Model

In a cloud environment, the server system is typically orga-

nized into a multi-tier architecture, consisting of application and

storage tiers. The application tier processes queries and prepares

the data formatting for the writes, while the storage tier is

responsible for persisting the data. We consider the use of LKVS

in the storage tier, as shown in Figure 2. In this architecture,

DELI is a middleware that resides between the application and

2Note that other than LKVS, there are key-value stores that are read optimized,
such as PNUT [7].



storage tiers. To the application servers, it exposes both key-

based and value-based API, as described below. The application

servers are referred to as “client” (of DELI) in this paper. To the

underlying LKVS, DELI translates the API invocations to the

Put/Get operations.

• Write(k,v, ts): Given a row key k, it updates (or inserts) the

value to be v with timestamp ts.

• ReadKey(k, ts,m) → {〈k,v′, ts′〉}m: Given a row key k,

it returns the value versions before ts, that is, ts′ ≤ ts.

DELI considers an m-versioning policy, which allows client

applications to indicate the number of versions deemed as

fresh (by m). The method would return the latest m versions

of the requested key.

• ReadValue(vt , ts,m)→{〈k′,v, ts′〉}: Given queried value vt ,

it retrieves all the row keys k′ whose values v matches

vt . Here, vt is an index token generated from value v; the

tokenization process, denoted by t(v) = {vt}, depends on

different query predicates as discussed below. In addition,

the retrieved results should adhere to the m-versioning

policy; that is, the result version ts′ must be among the latest

m versions of its key k′ as of time ts.

The first two methods are similar to the existing key-based

Put/Get interface (with different internal implementations), while

the last one is for value-based data access. In the API design,

we expose timestamp ts for the client applications to specify

the consistency requirement. In practice, generating a (globally)

unique timestamp, if necessary, can be done by existing times-

tamp oracles [8], [9].

Query flexibility: Based on the new ReadValue API, the

DELI can support various data types and query predicates. In

addition to exact-match queries, for example, DELI can support

string data and prefix search; in this case, the tokenization

would be t(v) = {vt}, such as any vt is a prefix of a given

string v. DELI can support numeric data with range queries;

here t(v) = v and it requires the underlying key-value stores to

support range partitioning and scan operation (e.g. that is the case

in BigTable and HBase). DELI also supports multiple indices

and multi-dimension value-based search; it can be supported

through issuing multiple ReadValue calls on different indices

and intersecting the results. Without generality, we mainly focus

on the exact-match query in the rest of the paper, that is, vt = v.

B. Index Materialization

The index data is materialized in a regular data table inside

the underlying LKVS. The index table is not directly managed

by the client applications; instead, it is fully managed by our

DELI middleware. In terms of structure, the index table is an

inverted version of the base table; when the base table stores a

(valid) key-value pair, say 〈k,v〉, the index table would store the

reversed pair as 〈v,k〉. For different keys associated with the same

value in the base table, DELI materializes them in the same row

in the index table but as different versions; that is, 〈v,k1〉,〈v,k2〉
are two versions in one cell in the index table. The versioning is

disabled in the index table, and all obsolete index versions are

required to be deleted explicitly.

In the case of skewed data distribution, it could occur that

certain index rows for common values are huge. It may result in

a long list of query results by a ReadValue call. In this situation,

DELI provides a pagination mechanism to limit the number of

key-value pairs in a ReadValue result and relies on applications

to indicate such limit (and offset). Specifically, we allows an

optional parameter p as in ReadValue(v, ts,m, [p]) which limits

the number of ReadValue results up to p. Currently, we assume

there is fixed ordering between values of the same key (e.g.

based on the hash of the values) so that paginated results will

not overlap.

C. Index Maintenance: Design Choices

In this work, we focus on the problem of maintaining the

index table in LKVS. In the spectrum of the design space, the

most write-optimized approach (baseline 1) is not to maintain the

indices online (or maintain them offline), which can have no write

amplification but at huge expenses of ReadValue latency; now

it will need a full-table scan for processing a single ReadValue
query. On the other end, the most read-optimized approach

(baseline 2) would synchronously update the indices in place; that

is, to keep every index entry up-to-date based on the latest data

updates. While the no-maintenance approach works well in the

case that there are no (online) ReadValue calls, the update-in-

place approach would fit in read-intensive workloads. However,

neither approach is suitable for our targeted workload which is

write-intensive yet with considerable amount of ReadValue’s.

To explore the design space, we formulate the design choices

from two angles: 1) How to decompose an index-update task

and express it in terms of Put/Get/Delete operations, 2) When

to schedule the execution of those operations. For design aspect

1), there are choices, such as not to decompose but treat an

index-update task as a whole, or to decompose it to two sub-

tasks (i.e. index insert and repair). For design aspect 2), there

are generally three scheduling choices; synchronously online,

asynchronously online, and offline. Their designs range from

being read-optimized to write-optimized.

Under this model, we can re-examine the baseline approaches

and our DELI approach. Illustrated in Figure 3, we can see

that DELI is optimized towards write-intensive workloads mixed

with certain amount of (index) reads. This design choice is

made based on the unique characteristic in IO performance

of the underlying LKVS. Concretely, DELI approach is to 1)

synchronously schedule index-insert sub-task (§ IV-A), 2) defer

the execution of index repair sub-task with online option (§ IV-B)

and offline option (§ V).

Read

optimization

Write

optimization

Choice 1): 

Decomposition

Choice 2): 

Scheduling

Whole

Synch.

Whole

Offline

Index Repair

Asynch. Offline

Index 

Insert

Synch.

The DELI DesignBaseline 1 Baseline 2

Fig. 3: Design choices of DELI maintenance



IV. Online DELI

This section describes the design of online DELI in terms

of index maintenance, query evaluation and analysis of fault

tolerance.

A. Put-Only Index Maintenance

Given a data update as a key-value pair 〈k,v〉, the index

maintenance needs to include four tasks to keep both the index

and base table up-to-date: 1) Deleting old versions associated

with key k in the index table. This causes a Delete(v′,k, ts′)

call, in which v′ is the old version obsoleted by new version

〈k,v〉. Since old version v′ is unknown from the original data

update 〈k,v〉, it entails a Get operation to read the old version;

2) Reading the old version from the base table. This causes a call

for Get(k)→ 〈k,v′〉; 3) Inserting new version to the base table,

which causes Put(k,v, ts); 4) Inserting new version to the index,

which causes Put(v,k, ts).

A straightforward way to execute the index maintenance

process is to synchronously execute all the four operations,

which is essentially what the traditional update-in-place index-

ing technique does (which is also widely used in many cloud

databases [10], [11]). However, this strategy causes performance

problems when applied to the LKVS case: Recall that a Get

operation in LKVS is slow, and by attaching expensive Get
to the data write path, it could increase the write overhead

and slow down the system throughput, especially when the

workload is dominated by data writes. To improve the online

index maintenance efficiency, DELI employs a simple strategy

to execute the Put-only 3 operations (i.e. operations 3) and 4))

synchronously and defer the execution of expensive index repair

operations (i.e. operations 1) and 2)) to later time. Algorithm 1

illustrates the online Write algorithm. The two Put calls are

annotated with the same timestamp ts. Here, we deliberately put

the index update ahead of the base table update for the fault-

tolerance concerns which will be discussed.

B. Processing Reads

The Put-only index maintenance may lead to obsolete index

data (e.g. 〈v′,k〉 is present in the index table after 〈k,v〉 is written).

This requires a ReadValue query to always check whether an

index entry is fresh. Given an index data 〈v′,k〉, the freshness

check is done by checking with the base table, from which

multiple value versions of key k are co-located at the same

place and version freshness can be easily known. Algorithm 2

illustrates the evaluation algorithm for ReadValue(v, ts,m): It

first issues a Get call to the index table and reads the related

index entries before timestamp ts. For each returned index entry,

say ts′, it needs to determine whether the entry is fresh under the

m-versioning policy. To do so, the algorithm reads the base table

by issuing a ReadKey query (which is a simple wrapper of a

Get call to the base table), which returns all the latest m versions

{ts′′} before timestamp ts. Depending on whether ts′ show up in

the list of {ts′′}, the algorithm can then decide that it is fresh or

obsolete. Only when the version is fresh, it is then added to the

final result. If it is found that the index version ts′ is not present

3Since Put is an append-only operation in LKVS, we may use the term “Put-
only” and “append-only” interchangeably in this paper.

TABLE I: Algorithms for online writes and reads

Algorithm 1 Write(key k, value v, timestamp ts)

1: index.Put(v,k, ts)
2: base.Put(k,v, ts)

Algorithm 2 ReadValue(value v, timestamp ts, versioning m)

1: {〈k, ts′〉} ← index.Get(v, ts) ⊲ ts′ ≤ ts
2: for ∀〈k, ts′〉 ∈ {〈k, ts′〉} do
3: {〈k,v′, ts′′〉} ← ReadKey(k, ts, m) ⊲ ts′′ is earlier than ts
4: if ts′ ∈ {〈k,v′, ts′′〉} then ⊲ ts′ is a fresh version regarding ts
5: result list.add({〈k,v, ts′〉})
6: else
7: if ts′ > min{〈k,v′, ts′′〉} then
8: index.Delete(v,k, ts′) ⊲ Cleanup dangling index data
9: end if

10: end if
11: end for
12: return result list

in the base table, implying the occurrence of a failure, it issues

a Delete call to remove the dangling index data.

C. Fault Tolerance

In a cloud environment where machines fail, it is possible

that a Write can fail with only one Put completed. To deal with

failure, our API has the following semantics.

• A Write is considered to succeed only when both Put op-

erations complete. A read (either ReadKey or ReadValue)

will return data that must be written successfully, and will

not return any data unsuccessfully written.

Under this semantics, DELI can achieve consistent data reads

and writes with efficiency. We consider the scenario where the

machine issuing a Write call fails. It is a trivial case when the

failure occurs either before or after the Write invocation; in this

case, nothing inconsistent will be left in the LKVS and this can

be guaranteed by the fault-tolerance and atomicity property of the

underlying LSM tree. Thus, what is interesting is the case that

failure happens between index.Put(v,k, t) and base.Put(k,v, t) in

the write path. This case can lead to dangling index rows without

corresponding data stored in the base table. This (inconsistent)

situation can affect the reads under three circumstances: 1)

ReadValue(v), 2) ReadValue(v′) where v′ is the version right

before v and 3) ReadKey(k). For case 1), Algorithm 2 is able

to discover the dangling index data (as in Line 7) and would

correctly neglect such data to comply with our API semantics.

It actually issues an index.Delete(〈v,k〉) to remove the dangling

data from being considered by future ReadValue(v) invocations.

For case 2), Algorithm 2 will not find any version that overwrites

v′ in the base table and would return 〈k,v′〉. For case 3), ReadKey

returns 〈k,v′〉. In all cases, our API semantics holds. It is fairly

easy to extend this analysis to multiple failed Write’s.

V. Offline DELI: Batched Index Repair

In DELI, the index repair process eliminates the obsolete

index entries and can keep the index fresh and up-to-date. This



section describes the design and implementation of an offline and

batched repair mechanism in DELI.

A. Computation Model and Algorithm

To repair the index table, it is essential to find the obsolete

data versions. A data version, say 〈v′,k, ts′〉, is considered to be

obsolete when either of the following two conditions is met.

1. There are at least m newer key-value versions of key k that

exist in the system.

2. There is at least one newer Delete tombstone4 of key k that

exists in the system.

The process to find the obsolete versions, called index garbage

collection, is realized by scanning the base table. Because the

base table has the data sorted in the key order, which helps verify

the above two conditions. Algorithm 3 illustrates the batched

garbage collection algorithm on a data stream that is output from

the table scan; the data stream is assumed to have key-value

pairs ordered first by key and then by timestamp. The algorithm

maintains a queue of size m and emits the version only when it is

older than at least m versions of the same key k in the queue and

it is repaired by previous repair processes (will be discussed in

next paragraph). In the algorithm, it also considers the condition

regarding a Delete tombstone; it will emit all the versions before

the Delete tombstone marker. Note that our algorithm requires

a small memory footprint (i.e. the queue of size m).

Our offline index repair process runs periodically (e.g. on

a daily or weekly basis). To avoid duplicated work between

multiple rounds of repairs, we require that each run of an index

repair process is marked with a timestamp, so that the versions of

interest to this run are those with timestamps falling in between

the timestamp of this run and that of previous run (i.e. tsLast). Any

version that is older than tsLast was repaired before by previous

index-repair processes and is not considered in the current run.

B. Compaction-Aware System Design

To materialize the table scan in the presence of an offline

compaction process, one can generally have three design options,

that is, to run the index repair 1) before the compaction, 2) after

the compaction or 3) coupled inside the compaction. In DELI, we

adopt the last two options (i.e. to couple the index repair either

after or within the compaction). Recall that in an LKVS, the

read performance is significantly improved after the compaction.

The rationale of such design choice is that the table scan, being

essentially a batch of reads, has its performance dependent on the

compaction: Without the compaction, there would be a number

of on-disk files and a key-ordered scan would essentially become

a batch of random reads that make the disk heads swing between

the multiple on-disk files.

Overall, the offline DELI runs in three stages; as illustrated

in Figure 4, it runs the offline compaction, garbage collection

and index garbage deletion. After a Compact call is issued,

the system runs the compaction routine, which then triggers the

execution of index garbage collection and deletion (for the index

repair). Specifically, the garbage collection emits the obsolete

data versions to the next-stage garbage deletion process. The

4In an LKVS, a Delete operation appends a tombstone marker in the store
without physically deleting the data.

Algorithm 3 BatchedGC(Table-scan stream s, versioning m, tsLast)

1: kprev← NULL ⊲ kprev is previous key in the stream
2: qd ← NULL ⊲ qd maintains potential key-value pairs for deletion
3: for ∀〈k,v, ts〉 ∈ s do ⊲ Stream data sorted by key and in

time-ascending order (i.e. from past to now)
4: if kprev == k then
5: if qd .size() < m then
6: qd .enqueueToHead(〈k,v, ts〉)
7: else if qd .size == m then
8: qd .enqueueToHead(〈k,v, ts〉)
9: 〈k,v′, ts′〉 ← qd .dequeueFromTail() ⊲ All pairs in qd are

of same key kprev = k
10: if ts′ ≥ tsLast then ⊲ ts′ is no older than tsLast

11: emitToIndexDel(〈k,v′, ts′〉) ⊲ emit the data to
index-deletion stage

12: end if
13: end if
14: else
15: loop qd .size()> 0 ⊲ Clear qd for index deletion
16: 〈k,v′, ts′〉 ← qd .dequeueFromHead()
17: if 〈k,v′, ts′〉 is a Delete tombstone then
18: emitToIndexDel(qd .dequeueAll())
19: end if
20: end loop
21: kprev← k
22: qd .enqueueToHead(〈k,v, ts〉)
23: end if
24: end for

index garbage deletion issues a batch of deletion requests to

the distributed index table. In the following, we describe our

subsystems for each stage and discuss the design options.
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Fig. 4: Compaction-aware index repair

1) The Garbage Collection: We present two system designs

for garbage collection, including a staged design that puts the

garbage collection right after the compaction process, and a

streaming design that couples the garbage collection inside the

compaction process.

A staged design: The garbage collection subsystem is

materialized as a staged component that runs after the previous

compaction completes. As portrayed in Figure 4, the system mon-

itors the number of sorted data files in the local machine. When

an offline compaction process finishes, it reduces the number of

on-disk files to one, upon which the monitor component triggers

the garbage collection process. In this case, the garbage collection

reloads the newly generated file to memory (and the file system



cache may still be hot), scan it, and run Algorithm 3 to collect

the obsolete data versions.

A streaming design: Alternatively, the garbage collection

subsystem can be implemented by streaming the compaction’s

output stream directly to the garbage collection service. To be

specific, as shown in Figure 4, the streaming garbage collection

intercepts the output stream from the compaction while the data is

still in memory; the realization of interception is described below.

Then it runs the garbage collection computation in Algorithm 3;

if the data versions are found to be obsolete, they are emitted but

still being persisted (for fault-tolerance concerns). Comparing the

staged design, the streaming design saves disk accesses, since

the data stream is directly streaming in memory without being

reloaded from disk.

a) Implementation: In terms of implementation, the staged

design can be realized as an add-on module to the key-value

store system, since its implementation and deployment require

nothing more than a generic file-system interface. By contrast,

the streaming design may need built-in support from the key-

value store in order to hook its garbage collection actions to

the compaction data flow.5 Certain key-value stores expose such

programming interface (e.g. CoProcessor [12] in HBase) to allow

applications to hook external actions to an internal event.

In particular, we have implemented the staged design for

Cassandra, and the streaming design on HBase. For HBase

implementation, for hooking up garbage collection, we used the

PRECOMPACT API available in HBase’s CoProcessor framework.

This API allows an application to view a stream of data sorted

and merged from multiple old HFiles as being loaded from disk

and to customize which key-value records to skip or to be written

back to disk. Implementation of both our designs does not require

any internal code-base change, and can be lively deployed on the

running key-value store.

2) The Index Garbage Deletion: For data emitted from the

garbage collection, they enter the stage of index garbage deletion;

the goal of this stage is to delete the corresponding obsolete

index entries in the index table. Since these index entries could

potentially be distributed on any remote machines, the stage

needs to issue a number of remote Delete calls. Then the remote

index nodes, after receiving the calls, will store the Delete

tombstones. After all base-table nodes finish sending the Delete
calls, each index-table node will then trigger the index-side

Compact which will eventually delete the obsolete index entries,

physically.

In this stage, the performance bottleneck is on the sending of

remote Delete calls which involve a large number of network

messages. To improve network utilization, we propose to “com-

bine” Delete calls to the same destination index node, and pack

them into one (instead of multiple) RPC call. The data flow inside

the stage of index garbage deletion is illustrated in Figure 4; the

incoming data are first buffered in memory and later shuffled

before being sent by a Delete call. The shuffle process sorts

and combines the data key-value pairs based on the value. In the

design of the garbage deletion subsystem, we expose a tunable

knob to configure the maximal buffer size; The bigger the buffer

5Note that this requirement does not decrease the generality of the DELI
system design, since it is always possible to modify the code-base of underlying
key-value store systems.

is, the more bandwidth efficiency it can achieve at the expense

of more memory overhead.

C. Fault Tolerance

We consider a faulty networked system underneath the key-

value store. The data flow in the offline index-repair process may

drop some key-value pairs before the repair action is executed.

To enable and simplify the recovery, we enforce the following

requirement in the regular execution path of index-repair process:

• Given a compaction and index-repair process with tsLast,

it does not physically delete any data of interest (i.e. with

timestamp between now and tsLast).

Note that for any data before tsLast, physical deletion is enabled.

In addition, we assume that the operations in underlying

LKVS are idempotent, that is, there are no additional effects

if a Put (or Delete) is called more than once with the same

parameters. Based on these two properties, we can easily support

fault tolerance of the index-repair process. The logic is the

following: Given a failed run of index repair, we can simply

ignore its partial results and keep the old tsLast. Upon the next

run of index repair, the above property guarantees that all data

versions from tsLast to the present are still there in the system

and the current run, if it succeeds, will eventually repair the index

table correctly. Note that since the previously repaired data is not

deleted, it may cause some duplicated operations which however

do not affect the correctness due to idempotency.

VI. Experiments

This section describes our experimental evaluation of DELI.

We first did experiments to study the performance characteristics

of HBase, a representative LKVS, and then to study DELI’s

performance under various micro-benchmarks and a synthetic

benchmark. Before all of these, we describe our experiment

system setup.
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Fig. 5: Experiment platform and DELI deployment

A. Experiment System Setup

The experiment system, as illustrated in Figure 5, is organized

in a client/server architecture. In the experiment, we use one

client node and a 19-node server cluster, consisting of a master

and 18 slaves. The client connects to both the master and the

slaves. We set up the experiment system by using Emulab [13],

[14]; all the experiment nodes in Emulab are homogeneous in

the sense that each machine is equipped with the same 2.4 GHz



64-bit Quad Core Xeon processor and a 12 GB RAM. In terms

of the software stack, the server cluster uses both Hadoop HBase

and HDFS [15]. The HBase and HDFS clusters are co-hosted on

the same set of nodes, as shown in Figure 5. Unless otherwise

specified, we use the default configuration in the out-of-box

HBase. The client side is based on the YCSB framework [16],

an industry-standard benchmark tool for evaluating the key-value

store performance. The original YCSB framework generates only

key-based queries, and for testing our new API, we extended

the YCSB to generate value-based queries. We use the modified

YCSB framework to drive workload into the server cluster and

measure the query performance. In addition, we collect the

system profiling metrics (e.g. number of disk reads) through

a JMX (Java management extension) client. For each run of

experiments, we clean the local file system cache.

DELI prototype deployment: We have implemented an

DELI prototype in Java and on top of HBase 0.94.2. The

DELI prototype is deployed to our experiment platform in two

components; as shown by dark rectangular in Figure 5, the DELI

middleware has a client-side library for the online operations and

a server-side component for the offline index repair. In particular,

based on system hooks in HBase, the prototype implements both

the staged garbage collection and streaming garbage collection

in the server component.

Dataset: Our raw dataset consists of 1 billion key-value

pairs, generated by YCSB using its default parameters that

simulates the production use of key-value stores inside Yahoo!.

In this dataset, data keys are generated in a Zipf distribution and

are potentially duplicated, resulting in 20,635,449 distinct keys.

The data values are indexed. The raw dataset is pre-materialized

to a set of data files, which are then loaded to the system for each

experiment run. For query evaluation, we use 1 million key-value

queries, be it either Write, ReadValue or ReadKey. The query

keys are randomly chosen from the same raw dataset, either from

the data keys or values.

B. Performance Study of HBase

Read-write performance: This set of experiments evaluates

the read-write performance in the out-of-box HBase to verify

that HBase is aptly used in a write-intensive workload. In the

experiment, we set the target throughput high enough to saturate

the system. We configure the JVM (on which HBase runs)

with different heap sizes. We varied the read-to-write ratio 6 in

the workload, and report the maximal sustained throughput in

Figure 6a, as well as the latency in Figures 6b. In Figure 6a, as the

workload becomes more read intensive, the maximal sustained

throughput of HBase decreases, exponentially. For different JVM

memory sizes, HBase exhibits the similar behavior. This result

shows that HBase is not omnipotent but particularly optimized

for write-intensive workloads. Figure 6b depicts the latency

respectively for reads and writes (i.e. Get and Put) in HBase.

It can be seen that the reads are much slower than writes, by

an order of magnitudes. This result matches the system model

of LKVS in which reads need to check more than one places

on disk and the writes are append-only and fast. In the figure,

as the workload becomes more read intensive, the read latency

6In the paper, the read-to-write ratio refers to the percentage of reads in a
read-write workload.

decreases. Because with read-intensive workload, there are fewer

writes and thus fewer data versions in the system for a read to

check, resulting in faster reads.
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Fig. 6: HBase performance under different read ratios

C. DELI Performance

Online write performance: This experiment evaluates

DELI performance under the write-only workloads. We drive

the data writes from the client into the HBase server cluster.

We compare DELI with the update-in-place indexing approach

described in Section IV-A. We also consider the ideal case

where there is no index structure to maintain. The results of

sustained throughput are reported in Figure 7. As the target

throughput increases, the update-in-place indexing approach hits

the saturation point much earlier than DELI. While DELI can

achieve a maximal throughput at about 14 thousand operations

(kops) per second, the update-in-place indexing approach can

only sustain at most 4 kops per second. Note that the ideal case

without indexing can achieve higher throughput but can not serve

the value-based queries. This result leads to a 3× performance

speedup of DELI. In terms of the latency, Figure 7b illustrates

that DELI constantly outperforms the update-in-place approach

under varied throughput.
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Fig. 7: Index write performance

Online read-write performance: In this experiment, we

evaluate DELI’s performance in the workload that varies from

read-intensive workloads to write-intensive ones. We compare

DELI on top of HBase against two alternative architectures:

the B-tree index in MySQL and the update-in-place indexing

on HBase. For fair comparison, we use the same dataset in both

HBase and MySQL, and drive the same workload there. MySQL



is accessible to YCSB through a JDBC driver implemented by

us, in which we reduce as much as possible the overhead spent

in the JDBC layer. The results are shown in Figure 8. With

varying read-to-write ratios, DELI on HBase is clearly optimized

toward write-intensive workload, as can be seen in Figure 8a.

On a typical write-intensive setting with 0.1 read-to-write ratio,

DELI on HBase outperforms the update-in-place index on HBase

by a 2.5× or more speedup, and the BTree index in MySQL by

10×. When the workload becomes more read-intensive, DELI

may become less advantageous. By contrast, the update-in-place

approach is more read-optimized and the BTree index in MySQL

is inefficient, regardless of workloads. This may be due to that

MySQL uses locking intensively for full transaction support, an

overkill to our targeted use case. In terms of latency, the DELI on

HBase has the lowest write latency at the expenses of relatively

high read latency due to the extra reads to the base table. By

contrast, the update-in-place index has the highest write latency

(due to the reads of obsolete versions in the base table) and a low

read latency (due to that it only needs to read the index table).

Note that in our experiments, we use more write-intensive values

for read-to-write ratios (e.g. more ticks in interval [0,0.5) than

in [0.5,1.0]).

Offline index repair performance: This experiment evalu-

ates the performance of offline index repair with compaction. We

mainly focus on the approach of compaction-triggered repair in

the offline DELI; in the experiment we tested two implemen-

tations, with staged garbage collection and streaming garbage

collection. For comparison, we consider a baseline approach

that runs the batch index repair before (rather than after) the

compaction (i.e. design option 1) in Section V-B). We also

test the ideal case in which an offline compaction runs without

any repair operations. During the experiment, we tested two

datasets: a single-versioned dataset that is populated with only

data insertions so that each key-value pair has one version,

and a multi-versioned dataset populated by both data insertions

and updates which results in 3 versions on average for each

data value. While the multi-versioned data is used to evaluate

both garbage collection and deletion during the index repair, the

single-versioned dataset is mainly used to evaluate the garbage

collection, since there are no obsoleted versions to delete. In the

experiment, we have configured the buffer size to be big enough

to accommodate all obsolete data in memory. 7 We issued an

offline Compact call in each experiment, which automatically

triggers the batch index repair process. Until the end, we collect

the system profiling information. In particular, we collect two

metrics, the execution time and the total number of disk block

reads. Both metrics are emitted by the HBase’s native profiling

subsystem, and we implemented a JMX client to capture those

values.

We run the experiment three times, and report the average

results in Figure 9. The execution time is reported in Figure 9a. In

general the execution time with multi-versioned dataset is much

longer than that with the single-versioned dataset, because of the

extra need for the index deletion. Among the four approaches,

the baseline is the most costly because it loads the data twice and

7We try to set up our experiment to be more bounded by local disk accesses
than by the network communications, so that the offline index repair process is
dominated by the garbage collection process than the deletion process.

from the not-yet-merged small data files, implying that disk reads

are mostly random accesses. The ideal case incurs the shortest

time, as expected. Between the two DELI designs, the streaming

garbage collection requires shorter time because it only needs

to load the on-disk data once. To understand the performance

difference, it is interesting to look at the disk read numbers, as

shown in Figure 9b. We only show the results with the single-

versioned dataset, because disk reads only occur in the garbage

collection. The baseline approach incurs a similar number of

disk reads to the staged design, because both approaches load

the data twice from the disk. Note that the disk reads in the

baseline approach are mostly random access while at least half of

disk access in the staged DELI should be sequential; this leads

to differences in their execution time. In Figure 9b, the ideal

case has a similar cost to the streaming design, because both

approaches load on-disk data once. From the single-versioned

results in Figure 9a, it can be seen that their execution time

is also very close to each other, due to that the extra garbage

collection caused by the DELI approach is very lightweight and

incurs few in-memory computations.

TABLE II: Overhead under Put and Compact operations

Name Exec. time (sec) Number of disk reads

DELI 1553.158 60699

Update-in- place index 4619.456 313662

Name Online Offline Online Offline

DELI 1093.832 459.326 0 60699

Update-in- place index 4340.277 279.179 252964 60698

Mixed online and offline operations: In this experiment,

we compare DELI and the update-in-place indexing approach

as a whole package. In other words, we consider the online and

offline operations together. Because the update-in-place approach

already repairs the index in the online phase, there is no need

to perform index repair in the offline time. For fair comparison,

we run the offline compaction (without any repair actions) for

the update-in-place index. In the experiment, the online workload

contains a series of writes and the offline workload simply issues

a Compact call and if any, the batch index repair. For simplicity,

we here only report the results of streaming DELI. We report

the execution time and the number of disk reads. The results

are presented in Table II. In general, DELI incurs much shorter

execution time and fewer disk reads than the update-in-place

approach. For example, the execution time of DELI (in bold text

in the table) is one third of that of the update-in-place approach.

We break down the results to the online costs and offline costs, as

in the bottom half of the table, which clearly shows the advantage

of having the index repair deferred to the offline phase in DELI.

Although the update-in-place index wins slightly in terms of the

offline compaction (see the bold text “279.179” compared to

“459.326” in the table), DELI wins big in the online computation

phase (see bold text “1093.832” compared to “4340.277” in the

table). It leads to overall performance gain of DELI. In terms of

disk reads, it is noteworthy that DELI incurs zero costs in the

online phase.

VII. Related Work

Log-structured systems and performance optimizations:

Log-structured systems have been studied for more than two
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Fig. 9: Performance of offline index repair

decades in the system community. The existing work largely

falls under two categories, the unsorted LFS-like systems [17]

and sorted LSM tree-like systems. While the former maintains

a global log file in which data is appended purely by the

write time, the latter organizes the data layout to a number of

spill files, in each of which data is sorted based on the key.

Log-structured systems generally rely on a garbage collection

mechanism to reclaim disk space and/or re-organize the data

layout. In particular, several heuristic-based garbage collection

policies [18], [19] are proposed and adopted in LFS systems.

Recently, due to the burst of write-intensive workloads, log-

structured design has been explored in the context of big data

systems in the cloud. In addition to various LKVS systems,

bLSM [20] aims at improving the read performance on log-

structured stores; the idea is to decompose the cumbersome

compaction process so that it can be run at fine granularity

with costs being piggybacked with other concurrently running

operations. Several key-value stores adopt the unsorted LFS

design. Based on a farm of Flash/SSD storage nodes, FAWN [21]

avoids the costly in-place writes on SSD by a sequential log and

maintains an in-memory index that is updated in place and can

speed up the random reads.

Optimizing the performance for LKVS can be divided into

two aspects: the scalability/elasticity for cross-node communica-

tion efficiency, and the per-node performance. While proposed

optimizations apply for elasticity aspects[22], [23], the essence

of our DELI work is to optimize the per-node IO performance

in the context of secondary indexes layered over LKVS.
Secondary indexes on key-value stores: Recently, a

large body of academic work [10], [24], [11] and industrial

projects [25], [26], [27], [28], [29], [30], [31] emerge to build

secondary indexes as middleware on scalable key-value store

systems. Those systems can be largely categorized by their design

choices in terms of: 1) whether the index is local or global, 2)

how the index is maintained, and 3) the system implementation.

Regarding choice 2), the index can be maintained synchronously,

asynchronously, or in a hybrid way. Synchronous index mainte-

nance indicates real-time query result availability at the expense

of extra index update overhead. Asynchronous index maintenance

means the whole index updates are deferred. The hybrid approach

is essentially the append-only design (as in DELI) in which only

the expensive part of index maintenance is deferred. In terms of

implementation, the index middleware can be in the client or

server side, depending on the preference on system generality or

performance. Our prior work [32] addresses flexible consistency

in context of HBase indexing, but dosn’t consider the asymmetric

read-write performance in LKVS. We summarize these key-value

store indexes in Table III.

In particular, Megastore [28] is Google’s effort to support

the cloud-scale database on the BigTable storage [1]. Megastore

supports secondary indexes at two levels, namely the local index

and global index. The local index considers the data from an

“entity group” of machines that are close by. When the entity

group is small, the local index is maintained synchronously at low

overhead. The global index which spans cross multiple groups

is maintained asynchronously in a lazy manner. Phoenix [26]

is a SQL layer on top of HBase. Its secondary index is global

and it considers two types of indices, a mutable index where

base data updates overwrite previous versions and an immutable

index (e.g. time series data) where data updates are append-

only (semantically). While the immutable data index is easily

maintained by a client (since an index entry never need to be

deleted), the mutable data indexing needs to delete previous

versions overwritten. It addresses the consistency issues when

the data writes come to local nodes out of order, which may

make it delete a wrong version.

While existing literature considers the append-only index

maintenance (e.g. Phoenix [26]), it does not address the prob-



TABLE III: Key-value indexing systems (– means uncertain and *

means DELI is implemented on HBase and Cassandra.)

References Local/Global Index Mntn Impl.

Phoenix [26] Global Hybrid HBase-Client/Server

HyperTable Idx [31] Global – HyperTable-Client

Huawei’s Index [27] Local Sync HBase-Server

Cassandra Index [29] Local – Cassandra-Server

Megastore [28] Local/global Sync/Async BigTable-Client

F1 [30] Global Sync Spanner[33]-Client

PIQL [10], [34] Global Sync SCADR [35]-Client

DELI Global Hybrid General*-Client/Server

lem of scheduling expensive index-repair operations, the lack

of which may lead to eventual index inconsistency and cause

unnecessary cross-table check for query processing. By contrast,

the DELI design is aware of the asymmetric performance charac-

teristic in an LKVS and optimizes the execution of index repairs

accordingly.

In addition, the DELI bears similarity to indexing in dis-

tributed hash tables [36], [37] due to the large-scale network

to index; however the latter is mainly for peer-to-peer network

which exhibits much higher churn than in a data-center environ-

ment.

VIII. Conclusion

This paper describes DELI, a lightweight real-time indexing

framework for generic log-structured key-value stores. The core

design in DELI is to perform the append-only online indexing

and compaction-triggered offline indexing. By this way, the

online index update does not need to look into historic data

for in-place updates, but rather appends a new version, which

substantially facilitates the execution. To fix the obsolete index

entries, DELI performs an offline batched index repair process.

By coupling with the native compaction routine in an LKVS, the

batch index repair achieves significant performance improvement

by incurring no extra disk accesses. We implemented an DELI

prototype based on HBase and demonstrate the performance gain

by conducting experiments in real-world system setup.
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