Martins, L and Gomes, T and Tipper, D
(2016)
An efficient heuristic for calculating a protected path with specified nodes.
Proceedings of 2016 8th International Workshop on Resilient Networks Design and Modeling, RNDM 2016.
150 - 157.
Abstract
The problem of determining a path between two nodes in a network that must visit specific intermediate nodes arises in a number of contexts. For example, one might require traffic to visit nodes where it can be monitored by deep packet inspection for security reasons. In this paper a new recursive heuristic is proposed for finding the shortest loopless path, from a source node to a target node, that visits a specified set of nodes in a network. In order to provide survivability to failures along the path, the proposed heuristic is modified to ensure that the calculated path can be protected by a node-disjoint backup path. The performance of the heuristic, calculating a path with and without protection, is evaluated by comparing with an integer linear programming (ILP) formulation for each of the considered problems. The ILP solver may fail to obtain a solution in a reasonable amount of time, especially in large networks, which justifies the need for effective, computationally efficient heuristics for solving these problems. Our numerical results are also compared with previous heuristics in the literature.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Metrics
Monthly Views for the past 3 years
Plum Analytics
Altmetric.com
Actions (login required)
|
View Item |