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Cell signaling networks are often modeled using ordinary differential equations (ODEs), which 

represent network components with continuous variables. However, parameters such as reaction 

rate constants are needed for ODEs are not always available or known, and discrete approaches 

such as Boolean networks (BNs) are used in such cases. BNs have been applied in the past, in 

particular, as means to determine network steady states. The goal of this work is to explore the use 

of BNs from a control theory point of view, that to help manipulate biological systems more 

efficiently. In this thesis, we propose two methods to analyze and design control strategies for 

BNs.  The first method, based on the algebraic state-space representation of BNs, consist of 

defining control strategies to reach predetermined states, namely, given a desired output, find all 

possible system state transition trajectories to that output, and design an input sequence leading to 

it. The second method aims at introducing an alternative and an extension of the first method in 

the sense that it offers broader possibilities for the representation of time and it is scalable to BNs 

of bigger size. This method is based on binary decision diagrams (BDDs), a data structure very 

efficient to represent logical functions and allow us to relate outputs of a network to its inputs no 

matter how many layers it contains and whether or not it has a cyclic structure. 
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1.0  INTRODUCTION  

1.1 PREVIOUS WORK  

Modeling enables gaining insights into the modeled system, understanding its behavior, or 

predicting responses to various stimulations or perturbations. Boolean networks (BNs) have 

become a popular computational tool to model biological systems [1][2] [5][6][7]. This popularity 

is motivated by the fact that, despite this modeling approach being conceptually simple, it can 

provide valuable insights into the modeled biological systems.  

As with other systems, in order to understand and control the behavior of biological 

systems, we can study their controllability. Particularly, one of the main aims of the study of 

controllability and observability is to develop strategies to move biological systems from an 

undesirable state, such as a disease, to target state, such as restored health 

[11][12][13][14][15][16]. However, biological systems are usually very complicated in terms of 

their component interactions, that is, they often include intertwined feed-forward and feedback 

loops. These loops usually govern systemôs transient and steady-state behavior [8]. These complex 

interactions have been a major obstacle when developing control strategies for biological systems 

[13]. 

Recently, several approaches have been suggested to handle this problem. For example, a 

method offered by Cheng et al. [9] translates the control theoretical approach of continuous 
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systems to Boolean Networks, and, thus, has the advantage of being quite intuitive. This so called 

algebraic state-space representation (ASSR) lead to several other publications. Pursuing this 

work, Laschov and Margaliot developed an approach based on nonnegative matrices and the 

Perron-Frobenius theory to investigate the controllability of BNs [20], and a graph-theoretic 

approach to investigate the observability [22]. Bof et al. extended the known results to 

asynchronous random networks [23]. A recent study provides algorithms to determine whether a 

Boolean Network is controllable or observable [15]. This method uses advanced algebraic tools 

such that rings and ideals of rings. However, it does not provide a way to design control strategies. 

The methods mentioned so far, rely heavily on the dynamics of the networks as they all explore 

the state-transition (graph) of the network. 

Previously, Thomas investigated the logical structure of systems [8]. Gates and Rocha then 

showed that structural approaches were not sufficient, as exploring the control of complex 

networks requires both structure and dynamics [14].  Methods using Binary Decision Diagrams 

(BDDs) tend to incorporate both in their analysis. One interesting use of BDDs for the analysis of 

Boolean Networks is the method developed by Garg et al [29][30][31]. In this method, the state of 

the network is represented by a Boolean vector of size N (number of networks elements) which is 

then represented by a BDD. 
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1.2 CONTRIBUTION OF THIS THESIS  

1.2.1 Control Design 

Most of the results cited in the previous section, just answer the question of whether a given 

Boolean network is controllable/observable or not, and do not provide solutions to effectively 

control biological systems. Our goal here is to show how to define control strategies to reach 

predetermined desirable states for networks by controlling the input of the network under the 

assumptions of a synchronous update scheme for the time representation of the network [34]. To 

this end, the contributions of this work include: 

Å A control strategy to reach desirable states in a cyclic Boolean Network; 

Å A methodology to deduce input sequences that lead to a desired system state and a desired 

output pattern; 

Å An application of the proposed control strategy to biological systems. 

In the following, we first provide a brief background on BNs (Chapter 2) and an overview 

of the Algebraic State-Space Representation (ASSR) described in [9] [20][21] (Chapter 3). Next, 

we list the steps in the process of defining a control strategy for a network and provide an algorithm 

to design an input sequence that leads to the desired behavior (Chapter 4). To conclude with this 

approach, we show an example of application of our proposed methodology (Chapter 6).  
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1.2.2 Unrolling logic via Binary Decisions Diagrams 

Next, we provide a brief background on BDDs (Chapter 8), describe our data structure and our 

code implementation to model and manipulate BDDs (Chapter 9). We then describe in detail our 

unrolling methodology (Chapter 10). In this second part, the contributions of this thesis include: 

¶ A data structure to represent, manipulate and analyze Boolean networks 

¶ A methodology to express outputs of a Boolean networks as function of the inputs even in 

cases where the relationship between the two is not easily identifiable 

¶ A method to study Boolean network controllability and observability that utilizes the BDD 

data structure and our unrolling Boolean network implementation. 

To conclude this thesis, we apply our methodology on a real life, biological example, the T 

cell signaling pathway [34] (Chapter 11). 
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2.0  BOOLEAN NETWORK PRELIMINARIES  

2.1 STRUCTURE  

In Boolean Networks, the variables (corresponding to nodes of the network) can take only two 

values, 0 and 1. The node value 0 means that the modeled system element (e.g., a protein or a 

gene), is not expressed, or is below a certain concentration threshold, while the value 1 is used to 

represent that the element is expressed, or is above a certain threshold. The nodes are connected 

by edges depicting interactions between system elements and defining regulators for each element. 

In Figure 1 (left), we show an example BN with one input, u, one output, y, and three internal 

nodes, A, B, and C. As it is often the case with BNs, this toy example also has several feedback 

loops. 

 

 

Figure 1. Toy example of a Boolean network (left). Update rules for elements of the BN (right). 
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Each node in the BN has a corresponding update rule, which is a function of its regulators 

and includes logic operators such as disjunction (OR), conjunction (AND), and negation (NOT). 

In Figure 1 (right), we show example update rules for the BN in Figure 1 (left). The update rules 

are used to determine values that elements will take at each discrete time step, according to the 

values of their regulators. The ñ* ò next to A, B and C indicates that we are referring to the next 

value of the element. 

For example, if an update rule for node C is a disjunction between node A and node B, then 

C will obtain value 1 in the following time step when either A or B has value 1 at a current time 

step. In a biological system, this interaction can, for instance, describe a gene C which is expressed 

when either transcription factor A or transcription factor B is above a certain concentration 

threshold. In Table 1, we show the truth table for disjunction. The truth table of a logical function 

lists all combination of the inputs in the domain of the function, and for each input combination it 

gives the corresponding output [24]. This is well defined because the domain of a logical function 

is finite.  

Table 1. Truth table of DISJUNCTION (OR) 

A B A OR B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
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Note 1: We showed in Table 1, the truth table for the disjunction with the input 

combinations listed according to the natural binary order, however in the ASSR, the structure 

matrices (cf Chapter 3) are defined as if the truth tables were written with the input combinations 

following a reverse order. 

2.2 DYNAMICS   

The main difference between BNs and logic combinational circuits is the representation of time in 

the former. In logic (combinational) circuits [3][4], the time is continuous, and the inputs of a 

logical function are assumed to have an instantaneous effect on the outputs of that function. Thus, 

referring to Figure 1, if A is the disjunction of u and the conjunction of B and C, and if A is currently 

0, a transition of u from 0 to 1 will cause an instantaneous transition from 0 to 1 for A.  

BNs are sequential networks, the time is discretized, and the variables evolve sequentially. 

They are updated according to their update rules at each time step, defined by the selected update 

scheme [6][17][34]. An update scheme is, by definition, a description of when and how each 

variable should be updated.  

The simplest update scheme consists of, at each step k, updating all the nodes together 

simultaneously, using the values of the nodes in the update rules (regulators) at step k-1 in the. 

This update scheme is called simultaneous update scheme. 

Another update scheme consists of, at each step k, updating only one node randomly 

picked, using the values of the regulators at step k-1. This update scheme is called step-based 

random-order sequential update scheme. 
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Additionally, there is another random sequential update scheme that is sometimes used in 

studies of biological networks. In this update scheme, also called round-based random-order 

sequential , all the nodes are updated within one update round (or, update cycle) but not 

simultaneously. At each new round, an update order is randomly generated, and the nodes are 

updated according to that order. Thus, if a node A is selected to be updated after a node B, and if 

A depends on B, while updating the node A at step k, one should consider the new value of B at 

step k, rather than the value of B at step k-1.  

A more detailed description of the different update schemes is provided in the description 

of the DiSH simulator [34] developed by Sayed et al.
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3.0  ALGEBRAIC STATE -SPACE REPRESENTATION  

In this chapter, we briefly review the state space representation developed in [9] [20][21]. 

3.1 SEMI-TENSOR PRODUCT 

We introduce here the semi-tensor product [18-19], which will be used throughout Chapters 3 to 

7. It is a generalization of the conventional matrix product for matrices whose dimensions do not 

match. 

Definition 1. Let T be an np-dimensional row vector, X a p-dimensional column vector,  

X = (x1, x2,éxp), and T1, . . ., Tp, where each Ti (i=1,..,p) is an 1×n matrix, are equal blocks of T. A 

left semi-tensor product, denoted by ẛ, can be defined as  

Ὕẛὢ ὝϽὼ  ɸ Ὑ ρ 

Definition 2. Let M  ɴMm×n and N ɴ  Mp×q. If n is a factor of p or p is a factor of n, then  

C =MẛN is called the left semi-tensor product of M and N, where C consists of m×q blocks Cij, 

such that 

ὅ ὓ ẛὔȟὭ ρȣȟάȟὮ ρȟȣȟή ς 

where Mi is the i-th row of M and Nj is the j-th column of N. 
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The semi-tensor product extends all the matrix product properties [10]. Additionally, it 

extends the matrix product to matrices whose dimensions do not match. Considering this fact, we 

will indifferently use Ā or ẛ to indicate the semi-tensor product. 

 

3.2 LOGICAL FUNCTION AND STRUCTURE MATRIX  

In the state-space representation [9], logical values 1 and 0 are represented as: 

,ÏÇÉÃÁÌ ÖÁÌÕÅ ρ
ρ
π
 ,ÏÇÉÃÁÌ ÖÁÌÕÅ π

π
ρ
 σ τ 

With this approach, a logical function is represented using a structure matrix, which is derived 

from the truth table of the given logical function. The structure matrix is obtained by rewriting the 

truth table in a reverse natural binary order, extracting each entry of the output column, and 

interpreting it as a vector. For example, for the truth table of disjunction, shown in Table 1, the 

corresponding structure matrix is: 

ὓ  
ά ά ά ά

ά ά ά ά
ρ ρ ρ π
π π π ρ

 υ 

We can then write the disjunction of A and B in a matrix form as: 

ὅ ὃ ὕὙ ὄ ὓ ẛὃẛὄ φ 

Following the representation of logic values in (3-4), if we write A as a column vector 
ὥ
ὥ  , and 

B as a column vector 
ὦ
ὦ
 , then we can compute the product in (6) as 
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ὅ  
ά ά ά ά

ά ά ά ά Ͻ

ὥὦ
ὥὦ
ὥὦ
ὥὦ

 χ 

ὅ 
ά ὥὦ ά ὥὦ ά ὥὦ ά ὥὦ

ά ὥὦ ά ὥὦ ά ὥὦ ά ὥὦ
 ψ 

Remark 1. A noticeable point here is that all the vectors and all the columns of the matrices that 

we use in the state-space representation are columns of some identity matrix Ὅ, where 

Ὅ

ρ π π π
π ρ π π
ể
π
ể
π
Ệ ể
ȣ ρ

ω 

For example, if A and B from the conjunction above (6-8) are 

 

ὃ
ρ
π
ȟὄ

π
ρ

ρπ ρρ 

   

then the result of the conjunction will be 

ὅ ὃ ὕὙ ὄ 
ρz π ρz ρ ρz π πz π
πz π πz ρ πz π πz π

ρ
π

ρς 

3.3 NETWORK TRANSITION MATRIX  

Given the description above, a BN can be converted from a set of logical functions to a set of 

algebraic equations [9] as shown below in (13-16). 
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Let us consider the following BN, with inputs u1,u2,..,um, outputs y1,y2,..,yp, and internal 

nodes A1,A2,..,An, all of which can take logical values 0 and 1, and thus, can be represented as in 

equations (3-4). 

ừ
ỬỬ
Ừ

ỬỬ
ứ
ὃ Ὧ ρ Ὢὃ Ὧȟὃ ὯȟȢȢȟὃ Ὧȟό ὯȟȢȢȟό Ὧ

ὃ Ὧ ρ Ὢ ὃ Ὧȟὃ ὯȟȢȢȟὃ Ὧȟό ὯȟȢȢȟό Ὧ
Ȣ
Ȣ
Ȣ

ὃ Ὧ ρ Ὢ ὃ Ὧȟὃ ὯȟȢȢȟὃ Ὧȟό ὯȟȢȢȟό Ὧ

 ρσ 

ừ
Ừ

ứ
ώ Ὧ Ὤ ὃ Ὧȟὃ ὯȟȢȢὃ Ὧ

Ȣ
Ȣ

ώ Ὧ Ὤ ὃ Ὧȟὃ ὯȟȢȢȟὃ Ὧ

  ρτ 

where f1, f2,.., fn and h1, h2,..., hp are logic functions, k is the current time step, and k+1 is the next 

time step. 

Equations (13) and (14) can be re-written as follows: 

ừ
Ử
Ừ

Ử
ứ
ὃ Ὧ ρ ὓ Ͻὃ ὯϽȢȢϽὃ ὯϽό ὯϽȢȢϽό Ὧ

ὃ Ὧ ρ ὓ Ͻὃ ὯϽȢȢϽὃ ὯϽό ὯϽȢȢϽό Ὧ
Ȣ
Ȣ
Ȣ

ὃ Ὧ ρ ὓ Ͻὃ ὯϽȢȢϽὃ ὯϽό ὯϽȢȢϽό Ὧ

   ρυ 

ώ Ὧ Ὄ ὃ ὯϽȢȢϽὃ Ὧ
ể

ώ Ὧ Ὄ ὃ ὯϽȢȢϽὃ Ὧ
ρφ 

where M1, M2,..,Mn and H1, H2,..,Hp are structure matrices, which can be defined according to 

functions f1,..,fn and h1,..,hp. We can now write the system state x(k), input u(k), and output y(k) 

vectors as semi-tensor products:  
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ὼὯ ὃ Ὧ  ρχ 

όὯ ό Ὧ  ȟώὯ ώ Ὧ ρψȟρω 

For the example in Figure 1, vectors x, u, and y can be written as 

ὼὯ ὃὯ ὄὯ ὅὯ

ụ
Ụ
Ụ
ợ
ὥ ὦ ὧ

ὥ ὦ ὧ

ể
ὥ ὦ ὧỨ

ủ
ủ
Ủ

 ςπ 

όὯ
ό
ό ȟώὯ

ώ
ώ  ςρȟςς 

We can define a matrix L as the network transition matrix, and matrix H as the state-output 

transition matrix, such that equations (15) and (16) can be written as: 

ὼὯ ρ ὒ ϽὼὯϽόὯ ςσ 

ώὯ ὌϽὼὯ ςτ 

Finally, we introduce a definition of network steady-state. 

Definition 3. A network is in a steady-state when the variables associated with network nodes are 

not changing in time, i.e., the next state is equal to the current state.  

Given (23), in the state-space representation, the steady-state is described as follows: 

ὼὯ ρ ὼὯ  ςυ 
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3.4 CONTROLLABILITY  

In order to study the controllability of a system, it is critical to find the set of reachable states. 

Given an initial state ὼ, if the network transition matrix L is known, we can compute the set of 

reachable states of the BN, R(x0), as: 

Ὑὼ ὅέὰ ὒ Ͻὼ  ςσ 

Rx0=ColρЊ ,ÉϽØπ    

Next, we introduce a globally controllable BN, as a network that can reach any state from 

any given initial state, defined more formally as follows. 

Definition 4. A BN is called globally controllable if and only if ᶅ  ὼ ὈɸȟὙὼ Ὀ , where 

Ὀ  is the set of columns of the identity matrix Ὅ. 

However, using the set of reachable states as defined in (26) is not convenient since it 

requires an infinite number of calculations. In fact, it has been proved [21] that there exists a 

number N such that 

Ὑὼ ὅέὰ ὒ Ͻὼ  ςτ 

   

Therefore, when investigating the controllability of a network, we will first determine N 

and then compute R.
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4.0  CONTROL STRATEGY  

We now describe the steps of the process to define a control strategy given a control objective. 

4.1 CONTROL OBJECTIVE  

We assume in this section that we are given a Boolean network with n internal nodes, m inputs and 

p outputs, whose evolution is dictated by (15) and (16), and that our control task is to find a 

sequence of inputs that will allow us to move from a given state of the network x0, to a desired 

state xd. 

The first step is to identify the initial state of the network, that is, we need to define initial 

values for each Ai and each yi. Initial values for the network can be determined using different 

approaches. One approach is to use the values corresponding to a particular state of the network 

that are available in literature or in data. For example, in cell signaling networks, this could mean 

initializing model elements to represent normal cell or a cell that is affected by a disease. If such a 

state is not known, we can set the inputs as constants, compute the steady-state and start from 

there. 

The second step is to specify the desired output yd, which defines our control objective, 

that is, yd is the goal that we want to reach for the outputs of the network. 
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4.2 CONTROLLABILITY  

Once the control objective is defined, we must check if it is achievable. Investigating the 

controllability of the network gives insights about the feasibility of the control objective. 

If the network is controllable, it is certain that the control objective is feasible. If the 

network is not controllable, i.e., some states of the network are not reachable, we may still be able 

to achieve the control objective if one or more states that are reachable can lead to the desired 

output. In order to check if any of the reachable states leads to the desired output, we use (27) to 

compute the set of reachable outputs, YN, for a given initial state x0: 

ὣ ὼ ὅέὰὌϽὙὼ ςψ 

  

ὣ ὼ ὅέὰὌϽὅέὰ ὒ Ͻὼ ςω 

   

Since multiplying a matrix A by a matrix B is equivalent to multiplying each column of B 

by A, by multiplying all the elements of Ὑὼ  by H, we obtain the set of the reachable outputs: 

ὣ ὼ ὅέὰ ὌϽὒϽὼ σπ 

Ysmaxx0=ColρÓ (Ͻ,ÉϽØπ    
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4.3 INPUT DESIGN 

We define here a Design Matrix, which we use as part of our control strategy. To build a Design 

Matrix, D, we need to first determine ὣ ὼ  for each x0, and then, compare this set of reachable 

outputs to the desired output (or set of outputs). The results of this comparison determine entries 

in the Design Matrix.  

More specifically, each column of D corresponds to a different input sequence. Assuming 

that there are m inputs of the system being modeled, u1, é, um, and that each input can take either 

value 0 or value 1, there are exactly 2m possible input patterns at each time step. Thus, given a step 

s, there are exactly 2mÖs possible sequences of input patterns up to that step. If we are interested in 

finding what is reachable within N steps, we create a Design Matrix with N rows and 2mÖN columns. 

The ñxôsò in the Design Matrix correspond to cases where the matrix is not defined. For example, 

at step s, matrix D is not defined for input sequences numbered from (2mÖs +1) up to sequence 2mÖN. 

For a given input sequence, and a given step s, if any element in the reachable set of outputs 

matches desired output yd, the corresponding element of the D matrix takes the value 1, otherwise, 

it takes value 0. In Table 2, we outline the Design Matrix. 

Table 2. Design Matrix 

 

Steps 

D matrix  

1 2 ȣ ς  ȣ ςȢ  ȣ ς Ȣ ȣ ς Ȣ 

1 Ὠ  Ὠ  ȣ Ὠ  ȣ x ȣ x ȣ x 

2 Ὠ  Ὠ  Ễ Ὠ  Ễ Ὠ Ȣ  Ễ x Ễ x 

ể ể ể Ễ ể Ễ ể Ễ ể Ễ ể 

s Ὠ  Ὠ  Ễ Ὠ  Ễ Ὠ Ȣ  Ễ Ὠ Ȣ Ễ x 

ể ể ể Ễ ể Ễ ể Ễ ể Ễ ể 

N Ὠ  Ὠ  Ễ Ὠ  Ễ Ὠ Ȣ  Ễ Ὠ Ȣ Ễ Ὠ Ȣ  
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4.3.1 Overall Input  

From the column number previously identified we deduced the overall input that leads to the 

desired output. 

Definition 5 The overall input at step s is the product of the inputs from 0 to s-1 as shown in (31). 

It stores in one vector, all the information contained in the input sequence. 

Ὗί όπϽόρϽȣϽόί ρ όὯ σρ 

We recall that the semi-tensor product of s vectors of size 2m being columns of the identity 

matrix Ὅ  is a column of the identity matrix Ὅ Ȣ [10]. In order to achieve our control objective, 

we can represent U(s) as: 

Ὗί

ụ
Ụ
Ụ
Ụ
ợ
π
ȡ
ρ
ȡ
πỨ
ủ
ủ
ủ
Ủ


Ȣ

σς 

where 
Ȣ
is a 2ms column vector whose rows are all 0, except the one that matches with, l, the 

selected column of D, and s, the selected row of D. s is the step where the control objective will 

be achieved, and l is the l-th overall input sequence among all the designable input sequences. 

4.3.2 Input sequence 

Since we assume that we have control of the inputs at every step, we want to derive, from U(s), 

the full input sequence, that is, the values of all individual inputs u1(k),é,um(k) for all steps k=0..s-

1. To do so, we need to derive the expression of U(s) as a function of individual inputs: 
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Ὗί όὯ ό Ὧ σσ 

Given that U(s) is a vector with 0 at each row but one, and the terms in the product that 

define U(s) are vectors with two rows, one with value 0 and one with value 1, in order to determine 

individual input values at each step k, we just need to find the location of the 1s in each ό Ὧ. 

This can be done by introducing the notation shown in (34)-(35), and expressing each entry of U(s) 

in terms of the όὯ: 

όὯ
ό Ὧ

ό Ὧ
 στ 

όὯ ό
ό

ό 
 συ 

Table 3 shows the expression of U(s) in terms of the ό Ὧ. 

Table 3. Expression of the entries of U(s) 

U(s) Row number 

ό ό ȣ ό ό ȣ ό  1 

ό ό ȣ ό ό ȣ ό  2 

ể ể 

ό ό ȣ ό ό ȣ ό         ς Ȣ 

 

 

 

Remark 2. We can notice two things from Table 3. First, if we omit the superscripts in the terms 

of the products in the left column of Table 3, all the entries contain the pattern ό ό ȣ ό

ό ȣ ό . Second, with the notation introduced in (34) and (35), a unique pattern appears in 
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the superscripts of the products at each row of the table. Indeed, the superscripts follow the natural 

binary order.  

From these observations, we can write, 

Ὗί ό

Ȣȟ   ȟ   Ȣ

ᶲ  Ȣ

σφ 

where bin(i,z,n) is the i-th digit of the binary representation of the integer z over n bits [24][38][39] 

. 

According to (32), for one and only one row number rd, we have, 

ό

Ȣȟ   ȟ   Ȣ

ρ σχ 

From (36), we can deduce the location of all the ñ1sò that define the uj(k)ôs, and 

consequently, the full input sequence. Indeed, for rd and all (i, j) ˰ ([0 s-1] x [1 m]), 

ό Ȣȟ   ȟ   Ȣ ρ σψ 

ό Ȣȟ   ȟ   Ȣ π σω 

 

where ñ-ñon top of the exponent represents logical negation operator (NOT).
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5.0  MATLAB IMPLEMENTATION  

We implemented our method to compute the D matrix and derive the input design in MATLAB 

by adding new functions to the functions already available in the toolbox at 

http://lsc.amss.ac.cn/~dcheng/stp/STP.zip developed by Cheng et al [21]. 

We next give a description of the main functions that we implemented. We stated in 

Chapter 3.3 that, given a network transition matrix L and an initial state x0, there exists a finite 

number of steps N after which no new states can be computed. Since this number is of great 

interest, provided that it prevents us from infinite computation, we will describe the algorithm to 

obtain N first (Algorithm 1). 

Table 4 Algorithm 1: maxstep  (algorithm to compute N) 
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This function takes as parameters the network transition matrix L renamed Lt here, the initial state 

x0 and the number of internal nodes n and returns the N (smax in the Algorithm 1). The process 

consists of computing the set of reachable states at steps s (line 8), from which we compute the 

new states obtained at each step (double for  loop), by updating new_columns . old_columns  

and new_columns  are vectors of size SP, which is the maximum number of states for the n 

internal nodes. new_columns /old_columns (i) = 1, if the corresponding state is found. We 

then test the equality between new_columns  and old_columns  (line 15) and repeat the 

process until the equality is true. 

With N available, we can now compute D using the function isYdreach  in Algorithm 2. 

 

 

Table 5 Algorithm 2: isYdreach  

 

 

 

 

The function isYdreach  takes as parameters the set of reachable output Yset, the desired output 

yd and the number after which no new states are obtained N and returns D. e is a Boolean variable 
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that indicates if yd is reachable. If not, D will be an empty matrix. s is here a vector of size N that 

indicates at which steps yd is reachable among the N steps considered. 

Finally, the function inseq  elucidates the algorithm described in Chapter 4.3.2 (Algorithm 3). 

Table 6 Algorithm 3: inseq  (algorithm to compute the input sequences) 

 

 

 

 

inseq  takes as parameters satisfying column and row number of D, c and s, and the number of 

input m. It returns both, the overall input that allows us to achieve the control objective and the 

corresponding input sequence. The input sequence is composed of s times m vectors u{i,j} (line 3) 

that we initialize as null vectors (line 8) (which temporary breaks the assertion of Remark 1, stating 

that all the vectors we work with must contain exactly one 1). We then put the 1s at the right 

location (line 12 and 14 ) with respect to (38) and (39). 

In the next Chapter, we use the above described function to perform a controllability 

analysis and a control strategy design. The analysis presented in Chapter 6 was run on desktop 

with a 12-core processor Intel Xeon, at 3.4 GHz, with 32 GB of virtual memory on Windows. The 
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results for the analysis of a network containing 13 nodes including 2 inputs and 3 outputs were 

obtained in less than 2 minutes.
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6.0  CASE STUDY 1 : TOY EXAMPLE  

In this section, we apply the theory developed in Chapter 3 on an example illustrated in Figure 2. 

 

Figure 2. Example of a Boolean control network with two inputs, u1 and u2, five internal nodes, A, B, C, D, E, F, G and H and three 

outputs, y1, y2 and y3. 

 

 

 

Table 7 completes Figure 2 by indicating update rules for every component of the network, 

except u1 and u2, which are inputs of the system, and therefore, assumed to be designable. In other 

words, we consider that at each time step the values of u1 and u2 can be set to any value. 
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Table 7. Update rules of the nodes of the network in Fig.2. 

Internal nodes Rule Output nodes Rule 

A* Ὄ ό ό ώ Ὂ 

B* ό Ὁ ώ Ὄ 

C* ὃӶ ώ Ὃ 

D* ὃ ὄ 

E* ὄ 

F*  ὅ Ὀ Ὁ 

G* Ὀ Ὁ 

H* Ὂ Ὃ 

Although in this example we use generic names for the network elements, many intra-

cellular pathways could be represented using this (or similar) BN. We can identify three main 

pathways in this model. The first one is the pathway όᴼὃᴼὅᴼὊᴼώ  that leads to the first 

output. The second one is the pathway ό ᴼὄᴼὉᴼὋᴼώ leading to the third output. The last 

pathway is a mix of the first and the second pathway όȟό ᴼ ὃȟὄ ᴼὈᴼ ὊȟὋ ᴼὌᴼώ.   

The model also contains two feedbacks loops ὃᴼ ὅȟὈ ᴼὊᴼὌᴼὃ and ὄᴼὉᴼὄ. 

6.1.1 Control objective 1: Disease 

We assume in this case that the three outputs are known as markers of a disease that we would like 

to inhibit, and the inputs are potential treatments. We want to see if, starting from a state where all 

outputs are activated, we can drive them to a state where they are all low. In other words, we are 

interested in finding an input sequence that leads to y1=y2=y3=0. Thus, we follow all the steps listed 

in Chapter 4, in order to create the Design Matrix D. We use a 3D plot to visualize elements of 

matrix D, as shown in Figure 3(a). 
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The plot in Figure 3(a) is a discrete 3D plot, where the xy-plane is defined by the matrix 

dimensions. We recall that each column of D corresponds to a different input sequence. The rows 

of D relate to the time steps. We stopped at step 7 since there are no new states that can be reached 

after this step. The z-axis contains the matrix elements values. Since these values are either 0 or 1, 

we used a discrete plot. The thick black lines at rows 1 through 5 indicate 0 values. Each 0 value 

in Figure 3(a) represents either an actual 0, i.e., the output corresponding to the particular input 

sequence l, for a given column of matrix D, particular time step s, for a given row of D, is not the 

desired output, or it represents an undefined, x value, as described in Chapter 3.  

In Figure 3(b), a value 1 at step s obtained by an input sequence l is represented by a 

ñsquareò of width 1 whose center is the point (s, l). Since the number of columns of D is usually 

much greater than the number of rows, the squares are compressed and resemble sticks. The darker 

the sticks are, the closer the squares are. From the Design Matrix, we can now identify an input 

sequence that leads to the desired output. One example of such input sequence corresponds to row 

6 and column 305 of D. Then we apply (38) and (39) to derive the input sequence. 

(a)    (b)  

Figure 3. Two representations of the Design Matrix for the first control objective, y1=y2=y3=0. (a) 3D representation and 

(b) 2D ñheatmapò. 
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Figure 4. Input and Output sequences for the first control objective 

 

 

 

The derived input sequence, and the corresponding output are shown in Figure 4, where 

the sequences are plotted as stems, and the values of the nodes are indicated by filled circles 

similarly to Figure 3. However, unlike Figure 3, where circles at 0s and 1s represent presence or 

absence of elements in a set, in Figure 4 these circles illustrate values of model elements in 

consecutive time steps. 

6.1.2 Control objective 2:  Immune response 

We assume here that the output are antigens that we want to promote. We want to see if starting 

from a point where the signaling pathway is off, i.e., all the nodes are low, we can reach a state 
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where all the outputs are high, that is, y1=y2=y3=1. As in Chapter 6.1, we followed the procedure 

developed in Chapter 3. The results for this case are presented in Figure 5 and Figure 6. 

(a)     (b)  

Figure 5. Two representations of the Design Matrix, for the second control objective, y1=y2=y3=1. (a) 3D 

representation and (b) 2D ñheatmapò. 

 

 

 

We can notice in Figure 5(b) that for some input sequences, the output will not be 

maintained at the desired state for the following steps, although the inputs are maintained at the 

last value they had at the step before reaching the desired state. To stabilize the outputs at the 

desired state, we will need to continuously update the inputs. 

 

Figure 6. Input and output sequences for the second control objective. 
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In both cases, we achieved the control objectives, explicitly, in the first case (disease), drive 

all the output to a low level starting from a state where all the elements were at a high level. In the 

second case, drive all the outputs to a high level starting from a state where all the elements were 

at a low level.
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7.0  LIMITATIONS OF METHODS BASED ON THE ASSR  

The approach that we developed provides a powerful way to drive nodes to a desirable state, and 

it gives us some control power in the cyclic networks, often encountered in biology. One can infer 

the influence of inputs on outputs without having to simulate the evolution of the network for a 

big number of steps and with randomly assigned inputs. Assuming a simultaneous update scheme, 

that is, all elements updating their values simultaneously, one can find the input values that will 

give a desired output. However, the simultaneous update scheme does not always reflect the 

variety of time scales in biological systems [5][6][30][34]. Thereby, an extension of this method 

to the stochastic, random-order sequential update scheme, is necessary. One way to do so, would 

be to introduce a random matrix in (15) and (16) that acts as a variable-update-selector. 

Additionally, this method does not give information about the stability of the desired states. A 

further development of this method would be necessary to get insights about the design of inputs 

subsequent to the step where the control objective was achieved. 
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8.0  BINARY DECIS IONS DIAGRAMS  

8.1 DEFINITION  

A binary decision diagram represents a Boolean function as a rooted, directed acyclic graph 

[26][27]. It is formed by two types of elements, terminal and non-terminal nodes. The former 

represent the Boolean variables present in the function, and the latter are Boolean constants whose 

values are either 0 or 1. Each non-terminal node A, possesses two outgoing edges, low and high 

[41], labeled with respect to the two possible values for the variable associated with that node. The 

two edges point to terminal or non-terminal nodes called successors, or equivalently, children of 

A. When reading a BDD node from the root at the top of the graph, to the terminal node at the 

bottom of the graph, the non-terminal node must be read as if the variable is high, then he node 

pointed at with the high edge is examined next, else, if the variable is low, the node pointed at with 

the low edge is followed. Thus, a BDD can be seen as cascaded if-then-else statements.  As an 

example, Figure 7 illustrates a representation of the function Ὢὼȟὼȟὼ  defined by the truth table 

given in Figure 7(left). 
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Figure 7. Truth Table and Decision Tree Representations of a Boolean Function. A dashed (solid) tree branch 

denotes the case where the decision variable is 0 (1).  

For a given assignment to the variables, the value of the function is determined by tracing 

a path from the root to a terminal vertex, following the branches indicated by the values assigned 

to the variables. The function value is then given by the terminal vertex label. Due to the way the 

branches are ordered in this figure, the values of the terminal vertices, read from left to right, match 

those in the truth table, read from top to bottom. However, the BDD presented in Figure 7 is not 

optimal as it is an exact translation of the truth table. For example, in Figure 7(left), the first row 

of the truth table is equivalent to the leftmost path of the BDD on the right, as shown in Figure 8. 

x1 x2 x3 f 

0 0 0 0 

Figure 8.  Truth table BDD equivalence 

 

 

 

We can make comparisons like the one in Figure 8 for the whole table, as the second row 

is equivalent to the second path on the BDD (starting from the left, low-low-high) and the last row 

is equivalent to the rightmost path (high-high-high). 
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8.2 ORDERING AND REDUCING  

Binary Decisions Diagrams become a very efficient data structure to represent Boolean functions 

when they are ordered and reduced. A BDD is ordered if on all paths through the graph the 

variables appear in the same order. The BDD in Figure 7 is actually ordered as the variables always 

appear in the following order ὼᴼ ὼᴼὼ in all paths. Additionally, if no redundant tests are 

conducted and if all nodes are unique, the BDD is said to be reduced. A node A is unique if no 

other node associated with the same variable, possesses the same low and high children than A. 

In Figure 9, we show the process of reducing a BDD. 

 

Figure 9. Reducing a BDD 

 

 

 

Figure 9 shows the reduction of the BDD shown in Figure 7. We first remove the redundant 

terminal nodes in A). Three nodes associated with x3 had the same low children (terminal node 

associated with constant 0) and same high children (terminal node associated with constant 1), we 

then removed the redundant nodes in B). Finally, we removed the unnecessary tests. 

The BDDs that are ordered and reduced are referred to as Reduced Ordered Binary 

Decisions Diagrams (ROBDD). In the literature [25][26][27][28][29][30][31], scientists usually 
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refer to ROBDD using the acronym BDD. Likewise, in the remainder of this thesis, we will be 

referring to ROBDDs as BDDs.
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9.0  BOOLEAN NETWORK VIA BINARY DECISION DIAGRAMS  

In this chapter we will introduce the representation of a Boolean network as a set of BDDs. 

Hereafter, we will describe a Boolean network with n nodes as follows, 

ὼᶻ Ὢὼȟὼȟȣȟὼ

ὼᶻ Ὢὼȟὼȟȣȟὼ
ể

ὼᶻ Ὢὼȟὼȟȣȟὼ
 

  τπ 

where the ñ * ò indicates the value that a node i will take the next time it is chosen for update. 

Among the xi, some nodes are inputs and some other are outputs of the BN. We call I the set of 

integers from 1 to n and M, Y and P the set of the indices of the input, the internal and the output 

nodes, respectively. 

Remark 3 For all i in I, xi*  is a function of the xj with j in a subset J of I. Although all the xi appear 

as arguments in all the fi, each xi is actually a function of just a subset of the set of the xi.  

With BDDs, the notions of Boolean functions and Boolean variables merge. Indeed, a 

variable is a BDD containing exactly three nodes, a node labeled with the variable name whose 

low and high edges point to the constant terminal nodes 0 and 1. 

We can present Boolean networks as a collection of 2·n BDDs as shown in Figure 10. 

Among those 2·n BDD, n BDDs are used to store the Boolean variables (ὼȟὼȟȣȟὼ) and n others 

are used to store the Boolean functions (ὼᶻȟὼᶻȟȣȟὼᶻ). 
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ὼᶻ Ὢὼȟὼȟȣȟὼ

ὼᶻ Ὢὼȟὼȟȣȟὼ
ể

ὼᶻ Ὢὼȟὼȟȣȟὼ
 

   

 

 

 

Figure 10. Conversion of a BN to a set of BDD 

 

 

 

Figure 10 illustrates the conversion of a Boolean network as a set of BDDs. The first row 

of a BDD contains the variables ὼȟὼȟȣȟὼ, and the second row of a BDD contains the Boolean 

functions ὼᶻȟὼᶻȟȣȟὼᶻ. In Figure 10, for the second row of a BDD, to keep the Boolean expression 

general, we showed general non-reduced BDD and used Boolean constants ci without specifying 

their values. We also willingly omit to specify the nature of the edges of the nodes labeled ȟὼ and 
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ὼ which is why we use dotted lines for the edges (different from the dashed lines used for the low 

edges).
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10.0  UNROLLING LOGIC  

We now explain how to relate inputs of a BN to the outputs of that BN. 

10.1 METHOD  

10.1.1 Simultaenous update scheme 

In the simultaneous update scheme, the dynamics of a BN is deterministic. We can predict the 

evolution of the BN deterministically, precisely compute the steady states, and see the exact effect 

of the inputs on the outputs. If there is a path between an input xi and an output xj, we can find a 

Boolean expression relating a future value of ὼ, ὼᶻ and ὼ . ὼᶻ indicates the expression of node 

j at step s .This can be done by recursively calling the different Boolean functions according to 

(41-42). 

ὼᶻz ὪὼᶻȟὼᶻȟỄȟὼᶻ τρ 

ὼᶻz ὪὪὼȟὼȟỄȟὼ ȟὪὼȟὼȟỄȟὼ ȟỄȟὪὼȟὼȟỄȟὼ τς 

This process is further illustrated in Table 5 and Figure 11, where we show how to express 

the output y with respect to the input u in Figure 1, with the difference that we now consider that 

the output is delayed of one step.  
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Table 8. Unrolling procedure applied to the example from Figure 1. 

Steps Expression of y 

1 ώᶻ ὅ τσ 

2 ώᶻz ὅᶻ ὃ ὅ ττ 

3 ώᶻ ὃᶻ ὅᶻ ὄ ὅ ό ὄ τυ 

 

 

 

 

 

Figure 11. Unrolling process applied to the example from Figure 1.  

 

 

 

The procedure shown in Figure 11 allows us to transform a nonlinear network Figure 

11(left) into a linear network Figure 11(right), and to link the outputs to the inputs. The expression 

for ώᶻ in (45) can be further simplified into 

ώᶻ ὄ ὅ ό τφ 

We observe that the effect of the input u is seen in y only three steps later. Indeed, activating u at 

a given step s will result in y being high at step s+3. If we keep recursively, unrolling y we obtain 

the following result  

ώᶻ ὃ ὄ ὅ όᶻ τχ 

And, by mathematical induction we can prove that, 

ώᶻ Ὢὃȟὄȟὅȟί ό τψ 
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Where Ὢὃȟὄȟὅȟί is the part of the expression of  ώᶻ that does not depend on u. The superscript 

ό next to Ὢ is used to emphasize that Ὢ does not depend on u. From (48), we can conclude that if 

u is maintained at a high value, then y will, after a transient phase of three steps, stabilize to a high 

value.  

We showed through this example, how to get the expressions of an output ὼ of a network 

as function of an input ὼ, under the assumption that there exists a path between  ὼ and ὼ. The 

process also works to relate multiple outputs to multiple inputs. However, the example in Figure 

11, is sufficiently small to be done manually. For bigger networks, this process is tidious, thus we 

implemented a code (description provided in Chapter 9.2) to automatically perform this operation. 

10.1.2 Random-order sequential update scheme 

In the random-order update scheme, the dynamics of a BN is stochastic, we cannot exactly, 

determine the effect of the inputs on the outputs. If there is a path between an input xi and an output 

xj, we can, similar to the simultaneous update scheme, find a Boolean expression relating a future 

value of ὼ, ὼᶻ and ὼ.  

However, in this case, the expression is associated to a weight that corresponds to a given 

sequence of update (permutation). In the random-order update scheme, each node ὼ has a 

probability ὴ to be updated at a given step. Thus, ὼᶻ is associated with a probability 

ὴᶻ ὴ τω 

where I is a given sequence of update. 
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To illustrate this update scheme, let us consider a network with three nodes where each 

node has a specific probability to be selected for update: ὴ ȟὴ ȟὴ . 

ừ
Ử
Ừ

Ử
ứὼᶻ Ὢὼȟὼȟὼ ȟ ὴ

ρ

ς

ὼᶻ Ὢὼȟὼȟὼ ȟ ὴ
ρ

σ

ὼᶻ Ὢὼȟὼȟὼ ȟ ὴ
ρ

φ

 υπ 

Then the expression for ὼᶻ will depend on the sequence of update as shown in (51) 

ὼᶻ

ừ
Ử
Ừ

Ử
ứὪὪὼȟὼȟὼ ȟὼȟὼ ȟ ὴᶻ

ρ

ς

ρ

ς

ρ

τ

ὪὼȟὪὼȟὼȟὼ ȟὼ ȟ ὴᶻ
ρ

ς

ρ

σ

ρ

φ

ὪὼȟὼȟὪὼȟὼȟὼ ȟ ὴᶻ
ρ

ς

ρ

φ

ρ

ρς

υρ 

 

Similarly, we can get expressions for ὼᶻ, ὼᶻ and their counterparts at further steps. 

10.2 DATA STRUCTURES AND IMPLEMENTATION  

In order to automate the method described previously in Chapter 9, we developed a library to 

manipulate BNs. The foundations of our library rests on the CUDD package [28], which is publicly 

available at https://github.com/ivmai/cudd . 

The CUDD library provides functions to manipulate BDDs and other Decisions Diagrams 

such as Algebraic Decisions Diagrams, which are not used in the context of this thesis, but can be 

used to model biological systems as well. The functions and the data structures implemented in 

the CUDD library are implemented in C but the authors also provided a C++ wrapping. 

https://github.com/ivmai/cudd
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10.2.1 Data structures 

Our library, developed in C++, is structured mainly around two main classes. The first class is 

called BnetNode. This class is basically an extension of the BDD object of the CUDD package. 

A BnetNode (BNN) object contains, a CUDD (class) object the attribute m_mgr, a BDD 

object m_node, a string m_nodename, and two integers that indicate the type of the BNN 

m_nodeTimeType and m_nodeType.  

m_nodeTimeType is an enumeration (present, future) that specifies if the BDD of the BNN 

object is a variable (present) like ὼȟὼȟȣȟὼ in the canonical example of Fig.10 or an update rule 

(future) ὼᶻȟὼᶻȟȣȟὼᶻ* . 

m_nodeType is an enumeration (undefined, input, intermediate, output) used only if the 

BNN is of time type present and indicates the role that the variable xi associated to the BNN plays 

in the Boolean network.  

m_nodeName is a string that obviously contains the name of the BNN. The names of the BNN 

must respect this convention: 

¶ Every BNN in a BN must have a unique name 

¶ The name of a BNN of time type future must be the same name than the corresponding 

BNN of time type present followed by the character ó*ô. 

Under those condition, the name of a BNN can be used as an ID number to identify each instance 

of a BNN object. 

m_node is a BDD that represents a Boolean variable if the BNN has a time type present 

and a Boolean function if the BNN has a time type future. 
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m_mgr is a CUDD object called manager that is necessary to manipulate BDD. It is 

important to verify that every BNN in a BN have the same manager.  

The BnetNode class is then used to define the class Bnet in a has-a relationship. A Bnet 

(BN) object contains, an array of BNNs and six arrays of integers, m_BNNlist m_BNNlist_n, 

m_BNNlist_r, m_BNNlist_m, m_BNNlist_y, m_BNNlist_p which gather all the element that 

compose the Boolean Network (we may subsequently refer to those arrays as lists) and six integers 

which are actually the size of the corresponding list. 

m_BNNlist, is a dynamical array that contains all the BNNs of the BN that is  

ὼȟὼȟȣȟὼȟὼᶻȟὼᶻȟȣȟὼᶻ.  

m_BNNlist_n is the list of the indices of the elements of m_BNNlist whose field 

m_nodeTimeType are set to present. 

m_BNNlist_r is the list of the indices of the elements of m_BNNlist whose field 

m_nodeTimeType are set to future. 

m_BNNlist_m is the list of the indices of the elements of m_BNNlist whose field 

m_nodeType are set to input. 

m_BNNlist_y is the list of the indices of the elements of m_BNNlist whose field 

m_nodeTimeType are set to intermediate. 

m_BNNlist_p is the list of the indices of the elements of m_BNNlist whose field 

m_nodeTimeType are set to output.   

10.2.2 Unrolling Implementation  

The unrolling function in the simultaneous update scheme case is described by a flowchart in 

Figure 12.   
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Figure 12 Flowchart of Unroll function in the case of the simultaneous update scheme. 



 46 

The Unroll function is applied on a BN object and it takes as parameters the position of the 

node we want to unroll in the array of BNN object (m_BNNlist) that is composed of the other BN 

objects, it is represented in the flowchart by the variable temp. More precisely, temp is the BDD 

of the node that we want to expand. Moreover, nstep, is the step number at which we want the 

expression of the node. VectorCompose is a precious function provided in the CUDD library. The 

function takes as input arguments a BDD (first argument) and an array of BDDs (second 

argument). Then, it replaces every variable in the support of the first argument by the 

corresponding BDD in the array of the second argument. An important point about the operation 

principle of VectorCompose needs to be mentioned. Each BDD has an index that matches the order 

of creation of the BDDs. VectorCompose matches a variable of index i in the support of the first 

argument by the i-th BDD in the array of the second argument. The first loop is an initialization 

loop. We fill BDDlist with the corresponding rule of each node that is not an input since inputs do 

not have a rule. Instead, for them, we create a new node that represents the input at the following 

step. Then we call the function VectorCompose.  

In the second loop we repeat the process of the first loop, and while we do not need to add 

the rules in BDDlist anymore, we still need to create new variables for the inputs. 

The unrolling function in the random-order sequential case is now described in Figure 13. 
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Figure 13 Flowchart of Unroll function in the case of random order sequential update scheme 
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The procedure in the random-order case is similar to the one of the simultaenous case. However, 

instead of replacing every node by its corresponding rule (or by a new node for an input), we first 

generate a random number i, and then we replace only the i-th variable. 

10.3 PROSPECTIVE ANALYSIS  

With the unrolling approach, nonlinear (cyclic) networks are converted into linear networks. Yet, 

for linear networks, we have tools to study their controllability and observability [42][43]. 

Among those tools are the ñdonôt caresò. In digital logic, a don't-care term for a function is 

either an illegal combination of inputs or a combination of inputs for which the function output 

does not matter. Generally speaking, the ñdonôt caresò by pointing out the combination of inputs 

that do not affect the outputs can provide information about the combination of inputs that do affect 

the outputs. Before we define the different type of ñdonôt caresò we need to define a few operators 

that are at the origin of the definition of the different ñdonôt caresò. 

The first operator is the Shannon expansion of a Boolean function. Given the Boolean 

variables ὼȟὼȟȣȟὼ and any Boolean function  Ὂὼȟὼȟȣȟὼ , F can be expressed as, 

Ὂ ὼ Ὂ ὼ Ὂ  ÆÏÒ ÁÎÙ ὼ 

where Ὂand Ὂ   are defined as, 

Ὂ Ὂὼȟȣὼ ρȟȣὼ υς  

Ὂ Ὂὼȟȣὼ πȟȣὼ υσ 

are called cofactors of F with respect to ὼ and ὼ. 

The second operator is the Boolean difference. The Boolean difference of a function F with 

respect to ὼ is defined by, 
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Ὂ

ὼ
Ὂ ṥὊ υτ  

where ṥ represents the logical operator XOR. 

Derivatives of function of continuous real variables indicate how the function changes with 

small change of the variables and the Boolean difference has the same role for Boolean function. 

It indicates how the function changes when a variable switches from 0 to 1 or from 1 to 0.  

The next operator, the existential quantification is defined by replacing the operator XOR in (54) 

by the operator OR. 

ὼɱ Ὂ ὼȟȣὼ ȟὼ ȟȣὼ Ὂ Ὂ υυ 

The existential quantification gives the closest function to F independent of the variable xi by 

adding some terms.   

Finally, we define the last operator, the universal quantification by replacing the XOR in (54) by 

an AND. 

ὼᶅ  Ὂ ὼȟȣὼ ȟὼ ȟȣὼ Ὂ Ὂ υφ 

The universal quantification gives the closest function to F independent of the variable xi by 

removing the terms which depend on ὼ. 

 Using the operators described above, we can now define the satisfiability donôt cares 

(SDC), controllability donôt cares (CDC) and observability donôt cares (ODC). 

Satisfiability donôt cares are patterns of inputs and outputs of an internal node which are 

impossible because they contradict the value of the node output. Formally, for a node ὢ

Ὂὼȟὼȟȣȟὼ ȟ, we have 

ὛὈὅ ὢṥὊ υχ 

Controllability donôt cares are impossible patterns of just inputs of an internal node. They are 

obtained by removing the output of the SDCs.  
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ὅὈὅ ὼᶅ ὛὈὅ υψ 

ὼɸ [variables which are not input to X], ὼɸ [variables which are input to X] 

Observability donôt cares are patterns of input of an internal node that make the node output 

unobservable at the network output. In other words, we can compute the network value without 

knowing the node output value and that a change in this node output value does not affect the 

network output.  

ὕὈὅ
ὗ

ὢ
ὗ ṥὗ  υω 

In Section 10.1, we showed how to get an expression of the outputs of a cyclic Boolean network 

as function of the inputs. It is straightforward to apply the operators defined in (57-59) to the 

expanded expressions obtained through the methodology of Section 10.1. This analysis will be 

developed as an extension of the thesis in the future.
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11.0  CASE STUDY 2: BIOLOGICAL EXAMPLE  

11.1 T-CELL MODEL  

T cells are a specific cell type in humans and that play a key role in the immune system [33]. The 

T refers to the thymus, organ in which the T cells mature and are released into the body to recognize 

and fight against infections and other threats to the immune system, also known as pathogens that, 

are responsible for activating and differentiating the T cell.  After differentiation, Tcells they can 

be grouped into two main subtypes: those that mediate the immune response [T helper (TH) cells] 

and those that suppress the immune response, regulatory T (Treg) cells [32] [34]. It has been shown 

previously that both the concentration of antigen and the duration of stimulation of T cells with 

antigen influence the differentiation of T cell. Thus, increased antigen concentrations favor TH cell 

generation, whereas decreased concentrations favor Treg cell generation [35][36][37]. 

 In [32]], Miskov-Zivanov et al provided a logical model of the T cell signaling pathway 

and here we include the illustration of this model in Appendix C. The model contains about 40 

elements among which are the transcription factor of the Treg cells (FOXP3), the T cell receptor 

(TCR), the costimulatory molecule (CD28), the interleukin 2 (IL-2) and interleukin 2 receptor (IL-

2R), the transforming growth factor ɓ (TGF- ɓ) and transforming growth factor receptor ɓ (TGF- 

ɓR). We highlight the presence of those particular elements among the 40 of the networks as in a 

control engineering point of view, they would be the inputs and outputs of the systems. Thus, our 



 52 

goal in this case study is to apply the methodology described in Chapter 9 and 10 to this biological 

example. Namely, we want to express the outputs of the T-Cell model as functions of the inputs 

of the model and to analyze the expressions obtained. The results of this approach are presented in 

the next section. 

11.2 RESULTS 

In this Chapter, we present the results of our unrolling method applied to the T-Cell signaling 

pathway described in Section 11.1.  

We converted the model as a collection of 107 BDDs. Among those 107 BDDs, 61 were 

variables and 46 were Boolean rules. Given the size of the network, we are not able to show it 

entirely but Figure 4 and Figure15 give a partial representation of the network as a collection of 

BDDs. 
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Figure 14 T-Cell model with BDD (Top partial view) 

 

Figure 15 T-Cell model with BDD (Bottom partial view) 
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In Figure 14, the variables names are listed on the left, the update rules names are listed on 

top; the rules are named after the variable that they are associated with. The BDDs for the 46 rules 

are merged into one supra-BDD but we can alternatively, display each rule individually as shown 

in Figure 16.  The bottom part of a graphical representation of a BDD provides essential 

information as it contains the terminal nodes which show the value associated with each 

combination of inputs. Under this consideration and because the BDD in Figure 14 is not complete, 

Fig.15 was inserted to show the bottom part of the supra-BDD representing the T-Cell model with 

the purpose of completing Figure 12. 

 

Figure 16 BDD of FOXP3*, Boolean function update rule for FOXP3 

 

 

 

 As stated in the previous paragraph we can as well display the BDD of each rule of the 

model individually. Figure s16 is an example of the BDD of a rule. It shows the rule of FoxP3 

which is an element of particular interest for the remainder of this thesis. 
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