CONTROLLABILITY ANALYSIS AND CONTROL DESIGN OF BIOLOGICAL
SYSTEMS MODELED BY BOOLEAN NETWORKS

by
Vianney Mixtur

B.S. in Electrical and Computer Engineering, ENSEA, 2016

Submitted to the Graduate Faculty of
Swanson School of Engineering in partial fulfillment
of the requirements for the degree of

Master of Science

University of Pittsburp

2018

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

VianneyMixtur

It was defended on
April 4,2018
and approved by

Natasa MiskowZivanov, PhD AsgstantProfessor
Departement of Electrical andb@puter Engineering

Zhi-Hong Mao, PhD, Associate Professor
Departement of Electrical and Compuigrgineering

Amro El-Jaroudi, PhD, Associate Ressor
Department of Electrical and Computer Engineering

Thesis Advisor: Natasa MiskeXivanov, PhD, AsistantProfessor
Departement of Electrical and Computer Engineering

Copyright © by VianneWixtur

2018

CONTROLLABILITY ANALYSIS AND CONTROL DESIGN OF BIOLOGICAL
NETWORKS MODELED BY BOOLEAN NETWORKS

Vianney Mixtur, M.S

University of Pittsburgh, 2018

Cell signaling networks are often modeled using ordinary differential equations (ODESs), which
represent network components with continuous variables. However, parasueterss reaction
rate constants ameeded for ODEs are not always available or knamal, discrete approaches
such asBoolean networks (BNsyre used in such casdiNs have been applied in the past, in
particular, as means to determine network steady sfidtegyoal of this works to explorethe use

of BNs from a control theorpoint of view, thatto help manipulatebiological systemsnore
efficiently. In this thesiswe proposdéwo methodgo analyze and design control strategies for
BNs. The first method based on thalgebraicstatespace epresentation of BNs, consist of
defining control strategie to reach predetermined states, nangWgn a desired output, find all
possiblesystem state transition trajectorteshat output anddesign an input sequence leading to

it. The second method ainas$ introducingan alternative andnaextension of theirkt methodin

the sense that it offers broader possibilities for the representation dadrioiieis scalable to BNs

of bigger sizeThis method isbased on binary decision diagrams (BDDs), a data structure very
efficient to represerbgical functionsandallow us to relate outputs of a network to its inputs no

matter how many layers it contains and whether or not it has a cyclic structure.

TABLE OF CONTENTS

PREFACE-ACKNOWLEDGME NT ... e e Xl
1.0 INTRODUCGTION ... eee et eaeee e e e e e e e e e e e e ra e e e enne s 1
11 PREVIOUS WORK ...t e e e 1

1.2 CONTRIBUTION OF THIS THESIS ...t 3
1.2.1 CONrOl DESIGN ...t eeeei et e e e e e e e e e e e e e eaeaaan 3

1.2.2 Unrolling logic via Binary DeciSions Diagrams..............eeeeeiiinnesieesennnnnns 4

2.0 BOOLEAN NETWORK PREL IMINARIES ... 5
2.1 STRUCTURE e e 5

2.2 DYNAMICS e ee e e et e e e e r e e anene e 7

3.0 ALGEBRAIC STATE -SPACE REPRESENTATIONcooiiiiiiiiiiiiieeeeeeee e 9
3.1 SEMI-TENSOR PRODUCTottt s 9

3.2 LOGICAL FUNCTION AND STRUCTURE MATRIX ..o 10

3.3 NETWORK TRANSITION M ATRIX ..ee e 11

3.4 CONTROLLABILITY ettt rme e eea s 14

4.0 CONTROL STRATEGY .ttt eeee e e e e e e eeeaes 15
4.1 CONTROL OBJECTIVE ..ottt 15

4.2 CONTROLLABILITY ettt e e e e e s 16

4.3 INPUT DESIGN ...ttt e e e e e e eaenans 17
4.3.1 OVErall INPUL ...coeeeiiiiiieeee e e eeenae bbb e e e e e e e e e e ean 18

4.3.2 INPUL SEQUEINCE......cevuiiiiiiieeeeii e e irmmea e et e e e et e e e et saene e e et e e e eaa e e eeaaneaees 18

5.0 MATLAB IMPLEMENTATIO N .o 21
6.0 CASE STUDY 1 : TOY EXAMPLE ... 25
6.1.1 Control objective 1: DiSEaSE.........cccuvuiiieieiiiimmiee e e e 26

6.1.2 Control objective 2: IMMmMuNE reSPONSE.........coceevieiiiiieeeiiieene e eeeeens 28

7.0 LIMITATIONS OF METHO DS BASED ON THE ASSR........cooiiiiiiiiiieeee 31
8.0 BINARY DECISIONS DIA GRAMSo 32
8.1 DEFINITION ettt e e e e e e e e e e e enmmmes 32

8.2 ORDERING AND REDUCIN G ...ooviiiiiieiiiiie i eeee 34

9.0 BOOLEAN NETWORK VIA BINARY DECISION DIAG RAMSoouu..... 36
10.0 UNROLLING LOGIC ettt e e e e e e eeaanns 39
10.1 METHOD ..ot ee e e ettt e e e e e et e e e s emeneeeeeee 39
10.1.1 Simultaenous update SChEME..........cccuuuiiiiiiiiiieeei e 39

10.1.2 Random-order sequential update scheme...............ooooceiieenn e 41

10.2 DATA STRUCTURES AND IMPLEMENTATION ..o 42
10.2.1 DaAta SIIUCTUIES......eveiiiiieeee e e eree e e e e e e e e e e e e reee e e e e e e e e e eeeennnnennaan 43

10.2.2 Unrolling Implementationcoooiiiiiiiiiimemii e 44

10.3 PROSPECTIVE ANALYSIS ...ttt eeeee e 48
11.0 CASE STUDY 2: BIOLOGICAL EXAMPLEoeiiiiii e sl
111 T-CELL MODEL ..ottt eeeeeae Al
11.2 RESULT S e er e e e et e e e e ettt e e s ameneeeaeees 52
12.0 CONGCLUSION L.ttt e e e e et e e e e e e e smmmeeeeanns 58
APPENDIX A. BNETNODE CLASS. ...ttt 59

vi

APPENDIX B. BNET CLASS ...t ren e 60

APPENDIX C. T-CELL MODEL ...t 61

BIBLIOGRAPHY e n e rsnanens s e e s s e eeennnnns) 62

Vii

LIST OF TABLES

Table 1. Truth table of DISJUNCTION (OR).....cccoiiiiiiiiiiiiiiicmmriie e e mmme e 6
Table 2. DESIGN IMALIIX......coiiiiiiiiiiiiiii it e e e e s seeasaa s s s s e e e e e e e e aeeeeeeeasbnnneeeaeeeeeeees 17
Table3. Expression of the entrieSO{S)oooeiiiiiiiiiii e 19
Table 4 Algorithml: maxstep (algorithm to COMPUIE)coovviiiiiiiiiiiiiieeiee e, 21
Table 5 Algorithm 2ISYdreach ... 22
Table 6 Algorithm 3inseq (algorithm to compute the input sequences)........................ 23
Table 7. Update rules of the nodes of the network in Fig.2...........coovvviiiieee i, 26
Table 8. Unrollingprocedure applied to the example from Figure.l............cccooevvvviieeneee. 40

viii

LIST OF FIGURES

Figure 1. Toy example of a Boolean network (left). Update rules for elements of the BN $right).
Figure 2. Example of a Boolean control network with two inputandus, five internal nodesA,
B, C, D E, F, GandH and three outputgi, Y2 andys.ccccvvvrvimmmmeiieeieeneiiieeeee 25
Figure 3. Two representations of the Design Matrix for the first control objegtise=ys=0. (a)
3D representation and (B)D A h € @.1..Ma. PO iiiiiecciiiiiiiiiiiieeeeeee e 27
Figure 4. Input and Output sequences for the first control objective...............cccccceeirnnn. 28
Figure 5. Two representations of the Design Matrix, for the second control objgctyseys=1.
(a) 3D representat i.o.n..and..(.b)..2D..0R%at map
Figure 6. Input and output sequences for the second control objective...................c...... 29

Figure 7. Truth Table and Decision Tree Representations of a Boolean Function. A dashed (solid)

tree branch denotes the case where the decision variab(&)is.Q......................... 33
Figure 8. Truth table BDD €qQUIVAIENCE...........uuuiiiiiiiiiiieeeiiiiiiie et 33
Figure 9. RedUCING @ BDD........cuuuiiiiiiiiiiiii ettt 34
Figure 10. Conversion of a BN t0 & Set Of BDID...........cccuuuiiiiiiimmeiiiiiiiieieee e 37
Figure 11. Unrolling process applied to the example from Figure. L.........cccccevviiiieecnnnnnn. 40

Figure 12 Flowchart of Unroll function in the case of the simultaneous update scheme.45
Figure 13 Flowchart of Unroll function in the case of random order sequential update séfeme
Figure 14 FCell model with BDD (Top partial VIEW).............uuuuiimiiiiiiieeeiiiiiiieiieieeeeeeeeeeeean 53

iX

Figure 15 FCell model with BDD (Bottom partialieW)cccovviriiiiiiiiieeeeeeeeeeeeeeeviiiiinnns 53

Figure 16 BDD of FOXP3*, Boolean function update rule for FOXP3...........ccoooeiieiieeens 54
Figure 17 EXpression ¢F O X P 3.k 8. e 56
Figure 18 Compositio of the BNnetNOde CIaSS...........cccoiiiiiiiiieeeeie e 59
Figure 19 Composition Of the BNet ClasS...........ccuvviiiiiiiieeeiiieeee e 60
Figure 20 FCell MOUEL........ooo i 61

PREFACE-ACKNOWLEDGMENT

First, | would like to thank my advisor, Dr. Natasa Miskfivanov for her trustind precious
guidance during those two years. Second, | would tiikéhankDr. Kara Bocan and the PhD
students of the MeLoDy lab, Khaled Sayed, Adam Butchy, Emilee Holtzapple, Yasmine Ahmed
and Handa Dindor providing valuable help when | faced technipabblems. Also, | want to
thank Gavin Zhou, Alexandre Terridétathan RenaudjéMickael Vimbert and the MeLoDy lab as
a whole for be great atmosphere that was present during my time in here.

Third, | would like to thank Thomas Tang, Carine Sabouraubeofriternational relations
team at ENSEA and Dr. Mahmoud El Nokali for givinge the opportunity to study at the
University of PittsburghSandy Weisberg for her constant suppodll international students.

Last but not least, | would like to thank naniily.

Xi

1.0 INTRODUCTION

1.1 PREVIOUS WORK

Modeling enables gaining insights into the modeled system, understanding its behavior, or
predicting responseto various stimulations or perturbations. Boolean networks (BNs) have
become a popular computational tool to model biological systel®3 [5][6][7]. This popularity

is motivated by the fact that, despite this modeling approach being conceptually simple, it can
provide valuable insights iatthe modeled biological systems.

As with other systems, in order to understand and control the behavior of biological
systems, we can study their controllability. Particularly, one of the main aims of the study of
controllability and observability is tdevelop strategies to move biological systems from an
undesirable state, such as a disease, to targde, steuch as restored health
[11][12][13][14][15][16]. HoweVer, biological systems are usually very complicated in terms of
their component interactions, that is, they often include intertwinedféee@rd and feedback
|l oops. These | oops u atardisttaggtatewehaviod]. Tisegescanplexd s t r ¢
interactions have been a major obstacle when developing contreystsator biological systems
[13].

Recently, several approaches have been suggested to handle this problem. For example, a

method offered by Cheng et al.][@ranslates the control theoreticapproach of continuous

systems to Boolean Networks, and, thus, has the advantage of being quite intuitive. This so called
algebraic statespace representatiofASSR) lead to several other publicatiofarsuing this

work, Laschov and Margaliot developed approach based on nonnegative matrices and the
PerronFrobeniustheory to investigate the controllability of BN20], and a grapitheoretic
approach to invegjate the observability22]. Bof et al. extended the known results to
asynchronous random netwoil&8]. A recent study provides algorithms to determine whether a
Boolean Network is controllable or observafl8]. This method uses advanced algébtaols

such that rings and ideals of rings. However, it does not provide a way to design control strategies.
The methods mentioned so far, rely heavily on the dynamics of the networks as thaycadi

the statdransition (graph) of the network.

Previously, Thomas investigated the logical structure of sy§&mGates and Rocha then
showed that structurapproaches were not sufficient, as exploring the control of complex
networks requiredoth structure and dynami¢¥4]. Methods using Binary Decision Diagram
(BDDs) tend to incorporate both in their analy§kge interesting use of BDDs for the analysis of
Boolean Networks is the method @éaped byGarg et a[29][30][31]. In this method, the state of
the network is represented &yBoolean vector of sizZé (number of networks elemedtwhich is

then represented by a BDD.

1.2 CONTRIBUTION OF THIS THESIS

1.2.1 Control Design

Most of the results cited in the previous section, just answer the question of whether a given
Boolean network is contilable/observable or npand do not provide solutions to effectively
control biological systems. Our goal here is to show how to define control strategies to reach
predetermined desirable states for networks by controlling the input of the nemmaekthe
assumptions of a synchronous update scheme for the time representationedivtin&[34]. To
this end, the contributions of this work include:
A A control strategy to reach desirable states in a cyclic Boolean Network;
A A methodology to deduce input sequences that lead to a degstedstate ané desired
output pattern;
A An application of the proposed control strategy to biological systems.

In thefollowing, we first provide a brief background on B{@Ghapter 2and an overview
of the Algebraic StateéSpace RpresentatiofASSR)described 9] [20][21] (Chapter 3. Next,
we list the steps in the process of defining a control strategynetmaork angrovide an algorithm
to design an input sequence that leads to the desired bel@khaptér 4. To conclude with this

approach, we show an erale of application of our proposed methodoloGhépter §.

1.2.2 Unrolling logic via Binary Decisions Diagrams

Next, we provide a brief background on BDDs (Chagedescribe our data structure and our
code implementation to model and manipulate BQChaper 9). We thendescribe irdetail our
unrolling methodlogy (Chapter 10)In this second part, treontributionsof this thesis include
i1 A data structure to represent, manipulate and analyze Boolean networks
1 A methodology to express outputs of a Booleatworks as function of the inputs even in
cases where the relationship between the two is not easily identifiable
1 A method to study Boolean network controllability and observability that utilizes the BDD
data structure and our unrolling Boolean networglamentation.
To conclude this thesis, we apply our methodology on a real life, biological example, the T

cell signaling pathwaf84] (Chapter 11).

2.0 BOOLEAN NETWORK PRELIMINARIES

2.1 STRUCTURE

In Boolean Networks, the variables (corresponding to nodes of the network) can take only two
values, 0 and 1. The node value 0 means that the modeled system element (e.g., a protein or a
gene), imot expressed, or is below a certain concentration threshold, while the value 1 is used to
represent that the element is expressed, or is above a certain threshold. The nodes are connected
by edges depicting interactions between system elements and gledigutators for each element.

In Figurel (left), we show an example BN with one input,one outputy, and three internal

nodesA, B, andC. As it is often thecase with BIS, this toy example also has several feedback

loops.
f-"\\ u ﬁ‘ee
27K)
(u)J— 4 ¢ B A* | (BAND C) OR u
- y B* NOT B
\ 4 y
L e C* AORC
— ¢ k
g Y G

Figure 1. Toy example of a Boolean network (left). Update rules for elements of the BN .(right)

Each node in the BN has a corresponding update rule, whidanstgon of its regulators
and includes logic operators such as disjunction (OR), conjunction (AND), and negation (NOT).
In Figurel (right), we show example updatales for the BN irFigurel (left). The update rules
are used to determine values that elements will take at each discrete time step, according to the
values of theiregulatorsThefi © n e & B antd@indicates that we are referring to the next
value of the element.

For example, if an update rule for node C is a disjunction between node A and node B, then
C will obtain value 1 in the following time step when either A or B has valuetatrent time
step. In a biological system, this interaction can, for instamseribe a gene C which is expressed
when either transcription factor A or transcription factor B is above a certain concentration
threshold. In Tablé&, we show the truth table for disjunction. The truth table of a logical function
lists all combination ofhe inputs in the domain of the function, and for each input combination it
gives the corresponding outd@d]. This is well defined because the domain adgidal function
is finite.

Table 1. Truth table of DISJUNCTION (OR)

A B AORB
0 0 0
0 1 1
1 0 1
1 1 1

Note 1: We showed in Tablel, the truth tablefor the disjunction with the input
combinationdlisted according tothe natural binary order, however in the ASSR, the structure
matrices (cf Chapter 3) are definasdl if the truth tables were written with the input combinations

following a reverse order.

2.2 DYNAMICS

The main difference between BNs and logpenbinationatircuits is therepresentationf timein
the former.In logic (combinationa) circuits [3][4], the time iscontinuous,andthe inputsof a
logical functionareassumed to have an instantaneous effect on the outputs of that fufition.
referring toFigurel, if Ais the disjunction ofi and the conjunction @ andC, andif Ais currently
0, a transition oti from 0 to 1 will cause an instantaneous transition from 0 to A.for

BNs are sequeiatl networks, the time idiscretizedand the variabkeevolve sequentially.
They are updated according to their update rules at each timeefiepd by the selected update
schemeg[6][17][34]. An update scheme is, by definition, a description of when and how each
variable should be updated.

The simplest update schermensists of at each steg, updating all the nodetogether
simultaneouslyusing the values of the nodesthe update rules (regulators} stepk-1 in the
This update scheme is callemnultaneousipdatescheme

Another update scheme ists of at each stefx, updating only one node randomly
picked using the values of theegulatorsat stepk-1. Thisupdate scheme is callelepbased

randomorder sequentialpdatescheme

Additionally, there is another random sequentiadate scheméhat is sometimes used in
studies of biological networkdn this update schemajso called roundbased randororder
sequential, all the nodes are updatesithin one update round (or, update cycla)t not
simultaneouslyAt eachnew round,an update order is randomfj)gneratedand the nodes are
updated according to that order. Thilist nodeA is selected to bapdated after a nod& and if
A depends o, while updating the nodA at stepk, one should consider the new valueBoat
stepk, rather than the value & at stepk-1.

A more detailed description of the different update schemes is provided in the description

of the DiISH simulatof34] developed by Sayed et al.

3.0 ALGEBRAIC STATE -SPACE REPRESENTATION

In thischapterwe briefly review the state spacepresentation developedj [20][21].

3.1 SEMI-TENSOR PRODUCT

We introduce herene semitensor product [1-8.9], which will be usedhroughoutChapters3 to
7. It is a generalization of the conventional matrix product for matrices whose dimensions do not
match.
Definition 1. Let T be annp-dimensional row vectoiX a p-dimensional column vectpr
X=(x1, X2, &p), andT?:, ..., TP, where eacf (i=1,.,p) is anlxn matrix, are equablocksof T. A

left semitensorproduct, denoted bly, can be defineds
M D Yo ¢ Y p

Definition 2. Let M N Mmxn@andN N Mpxq. If nis a factor op or pis a factor o, then
C =M/ Nis called the left sertiensor product ofl andN, whereC consists ofnxq blocksCi,
such that
6 O f 0hQ p8MhQ pB M C

whereM! is thei-th row of M andN,; is thej-th column ofN.

The semitensor product extends all the matrix pradpmperties [10]. Additionally, it
extends the matrix product to matrices whose dimensions do not match. Considering this fact, we

wi || i ndi f fi ¢orindicate thg semEisor pfoduot.r

3.2 LOGICAL FUNCTION AND STRUCTURE MATRIX

In the statespace representati¢@], logical values 1 and O are represented as:

T CORAGOAR | i ¢ E@Mﬂ@/&g o T
With this approach, a logical fation is represented using a structure matrix, which is derived
from the truth table of the given logical function. The structure matrix is obtaineshbiing the
truth table in a reverse natural binary order, extracting each entry of the output cahamn,

interpreting it as a vector. For example, for the truth table of disjunction, shown inITah&

corresponding structure matrix is:

& & a a
0 PP p T u
a a a a T TP
We can then write the disjunction AfandB in a matrix form as:
0 00 O [6106 (0}

Following the representation of logic values ir4(3if we write A as a column vectof, and

W :
B as a column vectora) , then we can compute the product in (6) as

10

A O ad O a OO0 d 0O
a 00 a6 00 a Od 4 O v

Remark 1. A noticeable point here is that all the vectors and all the columns of the matrices that

we use in the statgpace represerian are columns of some identitnatrix ‘O, where

P TT M T
TP M T

O &% E & w
m T8 p

For example, ifA andB from the conjunction abov&-8) are

s
o pTt PP

then the result of the conjunction will be

" Z 711 z IM T4 M
5 55v P pzp P P oc
T2 Tt T[Zp TIZTT T2 Tt Tt

3.3 NETWORK TRANSITION MATRIX

Given the description above, a BN can be converted from a set of logical functions to a set of

algebraic equation®] as shown below in (:36).

11

Let us consider the following BN, with inputg,uz,..,Um, Outputsysy-,..yp, and internal
nodesA;,Az,.. A, all of which can take logical values 0 and 1, and thus, can be represented as in

equations (31).

L0 0 p Q6 0 QeI Qb Qe Q

0 Q p Q6 O Qdd Qb Qg Q
8

I’y 8

I’y 3 8v 3 3 o

0 Q p Q06 QM QBB QM QeI 0

(e

SO Q Qo6 QM Qmsd Q

8 T
e 8 P

O Q Q0 QM QB Q

wherefy, f2,.., fn andhy, hy,..., hp are logic functionsk is the current time stepndk+1 is the next

time step.

Equations (13) and (14pn be rewritten as follows:

Mp 0O 0O 03 0
0 Qp 00D 0B Q® @™ Q
8
v 8 pu
v 8

0 Q p 0 DO QX 0TI 0

®Q 006 03I 0

. & . PO
B0 00 OB O

whereMs, My,..Mn and Hi, Ha,..Hp are structure matrices, which can be defined according to
functionsfy,.. fn andhg,.. hp. We can now write the system sta{k), inputu(k), and outputy(k)

vectors as semtensor products:

12

W Q 0 Q P X

6Q 6 Qo0 ® Q pipw

For the example ifigurel, vectorsx, u, andy can be written as

o, 5 - L
N7 Ay w T v T, (JO(JO’
®Q sQsQsn 'PY " g
L) ~e~|1
w w Y
r % () ALY U') d
0 Q 6 MwQ & C X ¢

We can define a matrixas the network émsition matrixand matrixH as the stateutput

transition matrix, such that equations (15) and (16) can be written as:
©Q p QD Q o
wQ 0ILQ T
Finally, we introduce a definition of network steastpte.

Definition 3. A network is in a stadystate wherhe variablesssociated with network nodase

notchanging in timei.e., the next state is equal to the current state.
Given (23), in the statspace representation, the steathte is described as follows:

~ N

WQ p wQ CuL

13

3.4 CONTROLLABILITY

In order to study the controllability of a system, it is critical to find the set of reachable states.
Givenan initial statew , if the networktransition matrixL is known we can compute the set

reachable states of the BR(xo), as:

Y w 0¢é¢a 0 Co

RXx0=Colp b , EOOn
Next, we introduce a globally controllable BN, as a network that can reach any state from

any given initial state, defined more formally as follows.

Definition 4. A BN is calledglobally controllableif and only if! @& ¢ 'O RY & O where

O is the set of columns of the identity matitx

However, using the set of reachable states as defined in (26) is not convenient since it
requires an infinite number of calculations. fact, it has been prove@1] that there exists a

number such that

Yo O0¢éa 0 3o CT

Therefore, when investigating the controllability of a network, we will first determine

and then computi.

14

4.0 CONTROL STRATEGY

We now describéhe steps of the process to define a control strategy given a control objective.

41 CONTROL OBJECTIVE

We assume in this section that we are given a Boolean network inttrnal nodesninputs and
p outputs, whose evolution is dictated by (15) and (169, twat our control task is to find a
sequence of inputs that will allow us to move from a given state of the netwdd<a desired

statexq.

The first step is to identify thaitial state of the network, that is, we need to define initial
values for eah Ai and eacly;. Initial values for the network can be determined using different
approaches. One approach is to use the values corresponding to a particular state of the network
that are available in literature or in data. For example, in cell sigyaditworks, this could mean
initializing model elements to represent normal cell or atbellisaffected byadisease. If such a
state is not known, we can set the inputs as constants, compute thessiéadnd start from

there.

The second step is 8pecify thedesired outputyq, which defines our control objective,

that is,yq is the goal that we want to reach for the outputs of the network

15

4.2 CONTROLLABILITY

Once the control objective is defined, we must check if it is achievable. Investigating the

controllability of the network gives insights about the feasibility of the control objective.

If the network is controllable, it is certain that the control objective is feasible. If the
network is not controllable, i.e., some states of the network areadtable, we may still be able
to achieve the control objective if one or more states that are reachable can lead to the desired
output. In order to check if any of the reachable states leads to the desired output, we use (27) to

compute the set of reacHaloutputs,Yy, for a given initial stateo:

O 6V Cuw

Ww O06&£0ODEAa O W ¢ w

Sincemultiplying a matrix A by a matrix B is equivalent to multiplyingach column oB
by A, by multiplying all the elements 6f @ by H, we obtain the set of the reachable outputs:
O ® 0éa 0 oT

YsmaxxGColp O (2, EO@m

16

4.3 INPUT DESIGN

We define here a Design Matrix, which we use as part of our control strategy. To build a Design
Matrix, D, we need to first determinge @ for eachxo, and then, compare this set of reachable
outputs to the desired output (or set of outputs). The results of this comparison determine entries

in the Design Matrix.

More specifically, each column &f correponds to a different input sequence. Assuming
that there areninputs of the system being modeled,€ , un, and that each input can take either
value 0 or value 1, there are exactRyssible input patterns at each time sfdqs, given a step
s, thele are exactly ?°possible sequences of input patterns up to that step. If we are interested in
finding what is reachable withid steps, we create a Design Matrix witllows and 28 columns.
The fixdso in the Design Matrix correspond to
at steps, matrixD is not defined for input sequences numbered froff{2) up to sequence"®.
For a given input sequence, and a given stap any element in the reachable set of outputs
matctes desired outpwyt, the corresponding element of thematrix takes the valug btherwise,

it takes valud. In Table2, we outline the Design Matrix

Table 2. Design Matrix

D matrix

SePs T3 T8 8] c® [8] c? [8] c¢@
1 |Q |Q [8|Q 8 x |8 x |8 X
2 Q |Q |E E| Q s |E X E X
é 6| 6 |E|] & |[E é |E & |E é
s Q |Q |[E|Q E|lQ s [E|Q ¢ |E X
é 6| 6 |E|] & |[E é |E & |E é
N |[Q |Q [E|lQ E|Q s |[E|Q s |E|Q =

17

43.1 Overall Input

From the column number previously identified we deduced the overall input that leads to the

desired output.

Definition 5 The overall input at stepis the product of the inputs from 0¢d as shown ir{31).

It stores in one vector, all the information contained in the input sequence.

~

Yi omdp BAHiI p 60 op

We recall that the serténsor product of vectors of size 2being columns of the identity
matrix ‘O is a column of the identity matri® s [10]. In order to achieve our control objective,
we can represeti(s) as:

T
- :[D 1 8

Y i 2
ey
Uy

0¢Q

wherg| ®is a 2" column vector whose rows are all 0, except the one that matched, i
selected column dD, ands, the selected row dD. sis the step where the control objective will

be achieved, anlds thel-th overall input sequence among all the designaiplet sequences.

432 Input sequence

Since we assume that we have controhef inputs at every step, we want to derive, fld(g),
the full input sequence, that is, the values of all individual inpiik3, éug(k) for all steps k=0s

1. To do so, we need to derive the expressidi(gfas a function oindividual inputs

18

Y i 0 Q 6 Q lole)

Given thatU(s) is a vector withO at each row but one, atige terms in the product that
defineU(s) are vectors with two rowsnewith value 0 anane with valuel, in order to determine

individual input values at eachep k, we just need to find the location of the 1s in eacfQ.

This can be done by introducing the notation shown in(38), and expressing each entry{)

in terms of thed Q:

Table3 shows the expression 0fs) in terms of the Q.

Table 3. Expression of the entries bf(s)

U(s) Row number
6 06 80 o0 8o 1
6 06 80 o0 80 2

é é
6 6 806 6 86 c 8

Remark 2. We can notice two things from Table 3. First, if we omit the superscripts in the terms
of the products in the left colunai Table3, all the entries contain the patté&rn 6 8 0

0 8 0 . Secondwith the notation introduced in (34) and (38)unique pattern appears in

19

the superscripts of the products at each row of the table. Indeed, the superscripts follow the natural

binary order.

From these observations, we can write,

wherebin(i,z,n) is thei-th digit of the binary representation of the integevern bits[24][38][39]

According to (32), for one and only one row humbkgwe have,
p o X

From (36), we <can deduce the I|uwlkgbasandon of

consequently, the full input sequence. Indeedrdand all (, j) , ([0 s-1] x [1 m]),

w h e rfieotafi of the exponent represents logical negation operator (NOT).

20

5.0 MATLAB IMPLEMENTATION

We implemented oumethod to compute the matrix and deriveghe input design in MATLAB
by adding new functions to the functionalready available in the toolbox at
http://lsc.amss.ac.cn/~dcheng/stp/STPdegeloped by Cheng et [@1].

We next give a description of theain functiors that we implementedWe stated in
Chapter 3.3 thagiven a network transition matrix and an initial stateo, there exists a finite
number of stepd after which no new states can be computed. Since this number is of great
interest provided that it prevents us from infinite computafiave will describe thelgorithmto

obtainN first (Algorithm 1).

Table 4 Algorithm 1: maxstep (algorithm to computé\)

Alporithm 1: maxstep

1 new=1;

3 k=1;

3 N=2™

4 old_columns=xercs(1,N); // old_columns will contain the column of R{x0,sz-1)
& new_columns=zeros(1,N); // and new_columns those of Ri{x0,z)

& while new == 1 do

T Lits=Lt*;

E Rxls=lap(Lts,x0);

B vRxls=Rxils.v; // Columnz of R{x0,s)
10 Imax=lengthi{vERx(k); // Should be 2™:

11 for:i=1:N do

12 for I =1 : Imar do

13 if fwRzls(1) == 1) then

14 new_eolumns(i)==1; // nev_column(1) iz 1 if I1=([1] ,N) i= a column of
R{x0,z) 0 if mot. So we basically storing non-repetively the columns
of R{x0,z)

1E if (neweolumns==old_columns) then
16 new=I[l;

17 el=e
18 old_columns=new_columns; k = k+41;

18 mmax = k;

21

This function takes as parameters the network transition niatemamed._t here, the initial state
xo and the number of internal nodesnd returns th&l (smax in the Algorithm 1). The process
consists b computing theset of reachable states at stggbne 8), from which we compute the
new states obtained at each step (dofdsleloop), by updatinghew_columns . old_columns
andnew_columns are vectors of siz&F, which is the maximum number of states for the
internal nodesnew_columns /old_columns (i) = 1, if the corresponding state is foundie
then test the equality betweerew_columns andold_columns (line 15) and repeat the

process until the equality is true.

With N available we cannow computeD usingthe functionisYdreach in Algorithm 2.

Table 5 Algorithm 2:isYdreach

Alporithm 2: sYdreach

1 etemp=I();

2 s—sweros| smax,l |;

3 stemp=seros(sma,1);

a Imax=length(Ysetlength({Yset).v); // lmax is the maximum pumber of columns of Yset ie the
maxisum omomber of path

& oo—reros|smax, lmax);

6 for i=[smar do

T for j=Ii-lengthi VYeetfi)v) do

] ctemp = etemp-(Yaet(i)(§)==yd);

] if Yaeffi)(j)==yd then

10 | eolij) = 1; stempli) = stemp(i)+1;

11 c=stemp;

12 s—sbempy;

ThefunctionisYdreach takes as parameters the set of reachable ovfajthe desired output

ya and thenumber after which no new states are obtaMead return®. eis a Boolean variable

22

that indicates if/q is reachable. If noD will be an empty matrixsis here a vector of sizdé that
indicates at which stepa is reachable among tiNesteps consiered.
Finally, the functiorinseq elucidates the algorithm described in Chagt&8t2(Algorithm 3).

Table 6 Algorithm 3:inseq (algorithm to compute the input sequences)

Alporithm 3: inseq

.

1 N=dec?bin(c-1,m*s); // The first column correspond to O
2 l=length{N};
3 u=cell{s,m);
4 T=cell(s.1);
ff Imitialisation
5 for i=1:s do
6 for j=1-m do
T | mlij) = wmeros(2.1);

/4 Computation
8 for i=1:s do

B i)=1; for j=Im do

10 k = 14+m*{i-1);

11 if (eval{N{k)}==(l) then
12 ufij){1)=1;

13 else

14 ulij)(2)=1;
16 ufi.j) = mfufij));
16 (i) = lspm(U{i),u(ij));

inseq takes as parameters satisfying column and row numdey oands, and the number of
input m. It returns both, the overall input that allows us to achieve the control objective and the
corresponding input sequence. The input sequence is compasadesm vectorsfi,j} (line 3)
that we initialize as null vectors (line @yhichtemporary breakthe assertion of Remark dtating
that all the vectors we work with must contain exactly oné\g then put the 1s at the right
location (linel2and14) with respect to (38) and (39).

In the next Chapter, we ugbe above describefiinction to perform a controllability
analysis and a control strategy desighe analysis presented in Chapter 6 was run on desktop

with a 12core processor Intel Xeoat 3.4 GHz, with 32 GB of virtual memory on Windows. The

23

results for the analysis of a network containing 13 nodes including 2 inputs and 3 outputs were

obtained in less than 2 minutes

24

6.0 CASE STUDY 1:TOY EXAMPLE

In this section, we apply the theory deyedd inChapter 3n an examplélustratedin Figure?2.

Figure 2. Example of a Booleaoontrolnetwork with two inputsy; andu,, five internal nodesA, B, C, DE, F, GandH and three

outputsy, y> andys,

Table7 completeg-igure2 by indicating update rules for every component ofrisisvork
exceptu; andup, which are inputs of the system, and therefore, assumed to be designable. In other

words, we consider that at each time step the valuesasfdu, can be set to any value.

25

Table 7. Update rules othe nodes of the network in Fig.2.

Internal nodes | Rule Output nodes | Rule

A 0 6 60 o "0
B* 6 © 1) "0
c* ol ® "0
D* 5 6

E* 6

F* 6 0O ©O

G* O ©

H* "0 "0

Although in this example we use generic narfaesthe network elements, many intra
cellular pathways could be represented using this (or similar) BN. We can identify three main
pathways in this model. The first one is the pathwa® 6 © 60 © "O° « that leads to the first
output. The second one is the pathway 6 © ‘O° "0O° leading to the third output. The last

pathway is a mix of the first and the second pathwaf® © 6 © ‘00 "GO ©° 00 (.

The modehlsocontains two feedbacks loops® 6RO © "0° 00 § andé © ‘OO0 6.

6.1.1 Control objective 1: Disease

We assume in this case that the three outputs are known as markers of a disease that we would like
to inhibit, and the inputs are potential treatments. We want to see if, starting from a state where all
outputs are activated, we can drive them to a sthtgenthey are all low. In other words, we are
interested in finding an input sequence that leagistp=ys=0. Thus, we follow all the steps listed

in Chapter 4in order to create the Design Matiix We use a 3D plot to visualize elements of

matrix D, as shown inFigure3(a).

26

Dij

The plotin Figure3(a) is a discrete&D plot, where thexy-plane is defined by the matrix
dimensionsWe recall that each column Bfcorresponds to a different input sequence. The rows
of D relate to the timeteps. We stopped at step 7 since there are no new states that can be reached
after this step. e z-axis contaigthe matrix elements valueSince these values are either O or 1,
we used a discrete plot. The thick black lines at rows 1 through 5 in@igataes Each 0 value
in Figure 3(a) represents eithan actual Qi.e., the output corresponding tiwe particular input
sequencé, for a given column of matril, particular time step, for a given row oD, is not the

desired outpytor it represents anndefined, xalue as described i€hapter3.

In Figure 3(b), a value 1 at step obtained by an inputequence is represented by a
Asquareo of width 1s l8imcstbe nonher ofealumns®fisushadly poi nt
much greater thathhe number of rowthe squares are compressed and resemble sticks. The darker
the sticks are, the closer tegquares arézrom the Design Matrix, wean nowidentify an input
sequence that leads to the desired output. One example of such input sequespendto row

6 and column 305 dD. Then we apply (8) and (®) to derive the input sequence

J 6 H

Colimn=ciiD 2000 4000 6000 8000 10000 12000 14000 16000

Rows of D
(Steps) (Us)) u(s)

(@) (b)

Figure 3. Two representations of the Design Mattixthe first control objectives=y,=ys=0. (a) 3D representation and

(b) 2D fAheat mapbo

27

i \ w ‘ \] ‘ w
L) Y
5} 5]
© o
3 =]
§0 . go .
0 1 2 3 4 5 0 1 2 3 4 5 6
il
>
=
(=]
D
=
S0
0 1 2 2 4 5 6
1 L -
5 ‘e
] @
] =)
So . o
0 1 2 5 4 5 0 1 2 3 4 5 6
Steps Steps

Figure 4. Input and Output sequences for the first control objective

The derived input sequence, and the corresponding output are shéwgur@4, where
the sequences are plotted as stemnsl the values of the nodes are indicated by filled circles
similarly to Figure 3. However, unlikeFigure 3, wherecircles at 0s and 1s represent presence or
absence of elements ins&t, inFigure 4 these circles illustrate values of model elements in

consecutive time steps.

6.1.2 Control objective 2: Immune response

We assumderethat the output arantigens that we want to promote. We want to see if starting

from a point where the signaling pathway is, @#., all the nodes are low, we can reach a state

28

where all the outputs are high, thatyissy-=ys=1. As in Chapter 6.1we followed the procede

developed irChapter 3The resultfor this case are presentedrigure5 andFigure6.

T— == W\'('M i

(@) (b)

Figure 5. Two representations of the Desigraflx, for the second control objectiv=y.,=ys=1. (a) 3D

representation and (b) 2D fAheat mapo.

We can noticein Figure 5(b) that for some input sequences, the output will not be
maintained at the desired state for the following steps, although the inputs are maintained at the
last value they had at the step dref reaching the desired state. To stabilize the outputs at the

desired state, we will need to continuously update the inputs.

=
=y

Value of U1

(=)
o

o
-
N
w e
~
(4]

=

o

-

Value of Y3 Value of Y2 Value of Y1

o

=

Value of U2

o

o

1 2 3 4 5 1 2 & 4 5 6
Steps Steps

Figure 6. Input and output sequences for the second control objective.

29

In both cases, wachieved the control objectives, explicitly, in the first case (disease), drive
all the output to a low level starting from a state where all the elements were at a high level. In the
second case, drive all the outputs to a high level starting from andtate all the elements were

at a low level.

30

7.0 LIMITATIONS OF METHODS BASED ON THE ASSR

The approach that we developed provides a powerful way to drive nodes to a desirgldadctate

it givesus some control powen the cyclic networks, often encoengd in biology. One can infer

the influence of inputs on outputs without having to simulate the evolution of the network for a
big number of steps and with randomly assigned inputs. Assunsingu#taneousipdate scheme,

that is, all elements updating thealues simultaneously, one can find the input values that will
give a desired output. However, teenultaneousupdate scheme does not always reflect the
variety of time sckes in biological system%][6][30][34]. Thereby, an extension of this method

to the stochasticrandomorder sequentialpdate scheme, is necessary. One way to do so, would
be to introduce a random matrix in (15) and (16) that acts as a vaujadd¢eselector.
Additionally, ths method does not give information about the stability of the desired states. A
further development of this method would be necessary to get insights about the design of inputs

subsequent to the step where the control objective was achieved

31

8.0 BINARY DECISIONS DIAGRAMS

8.1 DEFINITION

A binary decision diagram represents a Boolean function as a rooted, directed acyclic graph
[26][27]. It is formed by two types of elements, terminal and-tesminal nods. The former
represent the Boolean variables present in the fun@rmahthe latter are Boolean constants whose
values are either 0 or 1. Each ne@rminal nodeA, possessesvo outgoing edgg low andhigh
[41], labeled with respect to the two possible values for the variable associated with thatmode.
two edges point to terminal or né@rminal nodegalledsuccessorsor equivalently children of

A. When reading a BDD node from the radtthetop of the graphto the terminal nodat the
bottomof the graphthenonterminal node must be read as if the variable is,Higgn he node
pointedat with thehigh edgeis examined nexelse if the variable is lowthe node pointedt with

the low edge is followedThus,a BDD can be seen as cascadethdnelse statemeat As an
exampleFigure7 illustrates a representation of the functi@ fo o - defined by the truttable

givenin Figure7(left).

32

-
&
=
2
-
L

(=) Q@
- /
© Q
-)

0

Figure 7. Truth Table and Decision Tree Representations of a Boolean Furctiashed (solid) tree branch

— it i e O O O O

—o—Oo—Oo—~O

—o—o—ooo ™
\

/
0

1

denotes the case where the decision i 0 (1).

For a given assignment to the variables, the vafuke function isdetemined by tracing
a path from the root to a terminal vertex, following the branches indibgtdte values assigned
to the variables. The function value is then given by the terminal valtek Due to the way the
branches are ordered in this figure, ¥htes of the terminal verticegad from left to right, match
those in the truth table, read from top to bottéfowever,the BDD presented iRigure7 is not
optimal as it is an exact translation of the truth tabte. examplein Figure 7(left), the first row

of the truth table is equivalent to the leftmost path of the BDD on the agishown irFigure8.

R e 0-0-0

Figure 8. Truth table BDD equivalence

We can make comparisons like the on&igure8 for the whole tableas the second row
is equivalent to the second path on the BDD (starting from thédefipw-high) and the last row

is equivalent to the rightmost pathigh-high-high).

33

8.2 ORDERING AND REDUCING

Binary Decisions Diagrams become a very efficient data structure to represent Boolean functions
when they are ordered and reducAdBDD is ordered if on all paths through the graph the
variables appear in the same orddre BDD n Figure7 is actually ordered as the variables always
appear in the following ordeb © @ © ® in all paths.Additionally, if no redundant tests are
conducted and all nodes are unique, the BDD is said to be reduced. A Addeunique if no

other node associated with the same variable, possesses tHewamehigh childrenthanA.

In Figure9, we show the process of reducing a BDD.

/

|
|
|
|
|
0

A). Duplicate Terminals B). Duplicate Nonterminals C). Redundant Tests

Figure 9. Reducing a BDD

Figure9 shows the reduction of the BDD showrFigure7. We first remee the redundant
terminal nodes in A)Three nodes associated wihhad the sam&w children (terminal node
associated with constant 0) and sdngh children (terminal node associated with constant 1), we
then removed the redundant nodes inA)ally, we removed the unnecessary tests.

The BDDs that are ordered and reduced aeferred to as Reduced Ordered Binary

Decisions Diagrams (ROBDD). In the literatyg5][26][27][28][29][30][31], scientists usually

34

refer to ROBDD using the acronym BDD. Likewise, in the remainder of this thesis, we will be

referring to ROBDB as BDDs.

35

9.0 BOOLEAN NETWORK VIA BINARY DECISION DIAGRAMS

In this chapter we will introduce the representation of a Boolean netwosksas of BDI3.
Hereafter, we will describaBooleannetwork withn nodes as follows,
W "QohoB o
W Q wrm 8 hoo
C
g "Qohohw
wheret he fA * 0 i ndi c atiwibtake theenext tarlétusechoseh frtupdate. n o d e
Among thex;, some nodes are inputs and some other are outputs of the BN. Weheadlet of
integers from 1 toh andM, Y and P the set of the indices of the input, the internal and the output
nodes respectively
Remark 3 Foralliin I, x* is afunction ofthex; with j in a subset J of I. Although all tixeappear
as arguments in all tHe eachx; is actually a function of just a subset of the set okihe
With BDDs, the notions of Boolean functisrand Boolean variables merge. Indeed, a
variable is a BDD comtining exactly three nodes, a node labeled with the variable name whose
low ard high edges point to the constant terminal nodes 0 and 1.
We can present Boolean networks as a collectioB-roBDDs as shown inFigure 10.

Among thos@-n BDD, n BDDs areused to store the Boolean variabédto 8 fo) andn others

are used to store the Boolean functi@iisus 8 his).

36

(X \\‘ r/.\' \\‘1 s/:\' \1
P TP N Wy
[o] (o] [o]
X 1 - ,\‘_,* \" -
(x) Cx,) x \>
= S T
s g AR P N
5)6 %5) (o () ("
(1-/ W . f\‘;’/’\“;) L2 %)
/ _‘\1 1/ -\— -.\i 1/>-\—\\| |/ _ \ \/ ‘:\'_‘\1 |/:\'_ﬁ\;
"/ UL L N N Ny

Figure 10. Conversion of a BN to a set of BDD

Figurel1Oillustrates the conversion of a Boolean network as a set ofsBDi® first row
of aBDD contains the variablas o /8 ho , and the second row afBDD contains the Boolean
functionscy his B8 hos . In Figure10, for the second row @BDD, tokeep the Boolean expression
general, we showed general a@duced BDD and udgeéBoolean constants without specifying

their valuesWealso willingly omit tospecify the nature of the edges of the nodes lathgieand

37

w which is why we use dotted lines for the edghidrent from the dashed lines used for i

edges).

38

10.0 UNROLLING LOGIC

We now explairhow to relate inputs of a BN to the outputs of that BN.

10.1 METHOD

10.1.1 Simultaenousupdate scheme

In the simultaneousipdate scheme, the dynasaf a BN is deterministic. We can predict the
evolution of the BN deterministically, precisely compute the steady statésee the exact effect
of the inputs on the outputs. If there is a path betweanpartix; and an outpuk;, we can find a
Booleanexpression relating a future valaew, & and® . ¢ indicates the expression of node
| at steps .This can be done by recursively calling the different Boolean funstacording to
(41-42).
o Qs FE Fos Tp
W "QQohwhE ko FQ owhwE o FE RQ ¢ o FE Fo T ¢
This process ifurtherillustrated inTable 5 andrigure11, where we show how to express
the outputy with respect tdhe inputu in Figure 1, with the difference that we now consider that

the output is delayed of one step

39

Table 8. Unrolling procedureapplied tathe examplefrom Figure 1.

Steps Expression of
1 w 0 10
2 w” 6 06 0 T1
3 o o 6° 66 06 06 TU

9l ¢
e

Figure 11 Unrolling processpplied tothe examplefrom Figure 1.

The proceélure shown inFigure 11 allows us to transform a nonlinear netwoFkgure

11(left) into a linear netork Figure11(right), and to link the outputs to the inpuie expression

for ¥ in (45) can be further simpliéd into

w 6 6 o T
We observe that the effect of the inpus seenn y only three steps lateindeed activatingu at

a given step will result iny beinghigh at steps+3. If we keep recursively, unrollingwe obtain

the following result

w 0 6 o6 o T X
And, by mathematical induction we can prove that,
@ "QoMmh 6 Ty

40

Where'Q 6 hoH s the part of the expression af that does not depend anThe superscript
0 next to'Qis used to emphasize thg&tdoes not depend an From (48), we can concludthat if
uis maintined at a high valyéheny will, after a transient phase tifreesteps, stabilize to a high
value.
We showed through this example, how to get the expressions of an @ubpat network
as function of an inpub, under the assumption that there exists a path betweamdw. The
process also works to relate multiple outputs to multiple inputs. However, the exarhjgars
11, is sufficiently small to be done manually. For bigger networks, this process is tidious, thus we

implemented a codg@lescriptionprovidedin Chapter 9.2to automatically perform this operation.

10.1.2 Random-order sequentialupdate scheme

In the randomorder update scheme, the dynasiof a BN is stochasticwe cannot exactly,
determine the effect of the inputs on the outplitbere is a path between an inpu&nd an output

Xj, we can similar to the simultaneougdate schemdind a Boolearexpression relating a future
value of®, @ andw.

However,in this casethe expression is associated to a weight that corresponds to a given

sequence of updat@permutation) In the randomorder update scheme, each node has a

probabilityr) to be updatedt a given steplhus,c is associated with a probability

wherel is agiven sequence of update

41

To illustrate thisupdate scheméet us consider a network witthreenodeswhere each

~

node has specificprobabilityto be selected for updatg: - - -.

w65 Qofoi By 2
I’ S
& QaRfo hp 2 o
(N ¢ o
I’P\z ” AT AT] - p
Y Q whwhw hn 6
Then the expression fof will depend on the sequence of update as shown in (51)
Q0o M iy 22 P
r'p ¢ ¢ T
& _aefQeki ik iy 22 2 v p
e ¢ o O
1P o~ o~ .
Qoo o by o 2 2
u C® pg¢

Similarly, we can get expressions for, & and their counterparts at further steps.

10.2 DATA STRUCTURES AND IMPLEMENTATION

In order to automate the method described previously in Chapter 9, we developed a library to
manipulate BNsThe foundationsf ourlibraryresson the CUDD packad@8], which ispublicly

available atbttps://qgithub.com/ivmai/cudd

The CUDD library provides functions to manipulate BDDs and other Decisions Diagrams
such as Algebraic Decisions Diagraméiich are not used in the context of this thesig can be
used to model biological systems as wé&he functions and the data structures implemented in

the CUDD library are implemented in C but the authors also provided a C++ wrapping.

42

https://github.com/ivmai/cudd

10.2.1 Data structures

Our library, developed in C+Hs structured mainly around twmain classes. The first class is
calledBnetNodeThis class is basically an extension of the BDD object of the CUDD package
A BnetNode (BNN) object contains, a CUQdDlass)object the attributen_mgr a BDD
object m_node a stringm_nodenameand two integers that indicate the type of the BNN
m_nodeTimeTypandm_nodeType
m_nodeTimeType an enumeratiorp(esent, futurethat specifies if the BDD of the BNN
object is a veable present like ¢ fo B8 ho in the canonical example Bfg.100r an update rule
(future) o3 Fes B8 us *.
m_nodeTypés an enumerationufdefined,input, intermediate, outputused only if the
BNN is of time typepresentand indicates the role that the variaklassociated to the BNN plays
in the Booleametwork.
m_nodeNams a string that obviously contains the name of the BNN. The names of the BNN
must respect this convention:
1 Every BNN in a BN must have a uniqguema
1 The name of a BNN of time tydeture mustbe the same name than the corresponding
BNN of time typepresenf ol | owed by the character 6%*06.
Under those condition, the name of a BNN can be used as an ID number to identify each instance
of a BNN object.
m_nodeis a BDD that represents a Boolean variable if the BNN has a timetggent

and a Boolean function if the BNN has a titype future.

43

m_mgris a CUDD object called manager that is necessary to manipulate BDD. It is
important to verify that every BNlin a BN have the same manager.

The BnetNodeclass is then used to define the class Bnethasa relationship. A Bnet
(BN) object containsan array of BNNsand six arrays of integersn_BNNIist m_BNNIist_n,
m_BNNIist_r, m_BNNIlist_mm_BNNIist_y m_BNNIist_p which gather all the element that
compose the Boolean Network (we may subsequently refer to those arrays as lists) and six integers
which are actually the size of the corresponding list.

m_BNNIist is a dynamical array that contains all the BNNs tlee BN that is
6o Foo 8 oo Fos hos B a3

m_BNNlist_nis the list of the indices of the elements mf BNNIist whose field
m_nodeTimeTypare set tpresent

m_BNNIist_ris the list of the indices of the elements wf BNNIlist whose field
m_nodeTimeTypare set tduture.

m_BNNIist_mis the list of the indices of the elements mf BNNIist whose field
m_nodeTypare set tonput.

m_BNNIist_yis the list of the indices of the elements mf BNNIlist whose field
m_nodeTimeTypare set tontermeliate.

m_BNNlist_pis the list of the indices of the elements f BNNIist whose field

m_nodeTimeTypare set tautput

10.2.2 Unrolling Implementation

The unrolling functionin the simultaneous update scheroaseis described by a flowchart in
Figurel2.

44

m_bnnlist,n,temp

Check the i-th element

| Add rule of node in BDDIist

|Add node to new array, BDDIist|

v

VectorCompose(temp,BDDIist)

s=3
Y

A

| Create node for inputs |

!

| Add the new nodes at the end of BDDIist |

v

VectorCompose(temp,BDDIist)

End

Figure 12 Flowchart of Unroll function inthe case of the simultaneougdate scheme.

TheUnroll function is applied on a BN object aitdakes as parameters the positiontbé
node we want to unroll in the array of BNN objett BNNIis} thatis composd of the otherBN
objecs, it is represented in the flowchart by the variadielep More precisel, tempis the BDD
of the node that we want to expand. Moreowstep,is the step number at which we want the
expression of the nod¥ectorComposes a precious function provided in the CUDD library. The
function takes as input arguments a BDD (firsyusnent) and an array of BDDs (second
argument). Then, it replaces every variable in the support of the first argument by the
corresponding BDD in the array of the second argument. An important point about the operation
principle ofVectorComposeeeds to & mentioned. Each BDD has an index that matches the order
of creation of the BDDsVectorComposenatches a variable of indéxn the support of the first
argument by theé-th BDD in the array of the second argument. The first loop is an initialization
loop. WEefill BDDlist with the corresponding rulef each node that is not an in@irticeinputsdo
not have a rule. Instead, fdrem,we create a new node that represergdriput at the following
step.Then we call the functiowectorCompose

In the second loop we repeat the process of the first &smpwhilewe do not need to add
the rules in BDDlisanymorewe still need to create new variables for the inputs.

The unolling function in therandomorder sequentiatase is now described kgure13.

46

m_bnnlist,n,temp,

i=randomNumber(distribution)

v

Check the i-th element
A
Create node Add rule of node in BDDlist

Add node to new array, BDDlist

Y
VectorCompose(temp,BDDlist)

3

4]

S++
C <=nstep

Create node for inputs

Add the new nodes at the end of BDDlist

v

VectorCompose(temp,BDDlist)

A
End

Figure 13 Flowchart of Unroll function irthe caseof random order sequential update scheme

a7

The procedure itherandomordercase is similar to the one of teenultaenougase. However,
instead of replacing every node by its corresponding rule (or by a new node for an input), we first

generate a random numbeandthen wereplace only thé-th variable.

10.3 PROSPECTIVE ANALYSIS

With the unrolling approach, nonlinear (cycli@tworks are converted into linear networks. Yet,
for linear networkswe have tool$o study their controllability and observabilig2][43].

Among those t ool sindgtaklogit, A dontack termdar a fenetionass 0 .
eitheran illegal combination of inputs or @mbinationof inputs for which théunction output
doesnotmatteGener ally speaking, the Adonét careso
that do not affect the outputs can provide information about the combination of inputs that do affect
the outputs. Before we define the difiere t ype of @Adondt afevopemt®re we n
thatare atthe originofthd ef i ni ti on of the different fAdonodt

The first operatoris the Shannon expansion of a Boolean funct®iven theBoolean
variablesi hio i8 fro and anyBoolean function™Ow fto I8 by, F can beexpressed as,

O w0 » 0O AAWY
where'Oand™O aredefinedas
O OnBw pB o L C
0O OwMBw mB® Lo
are called cofactors &f with respect ta andw.

The secondperatoiis the Boolean differenc&he Boolean difference of a functiérwith

respect taw is defined by,

48

— 08 O VT

where$ represents the logical operator XOR.
Derivatives of function of continuous real variables intkdagow the function changes with
small change of the variables and the Boolean difference has the same role for Boolean function.
It indicates how the function changes when a variable switches from 0 fooindt to O.
The next operator, the existentiplantification is definedybreplacing the operator XOR i64)
by the operator OR
MmO wBw M Mo O O LU
The existential quantification gives the closest functiof tmdependent of the variable by
adding some terms.
Finally, we definehe last operatorhe universal quantification by replacing the XOR54d)(by
an AND.
oo O B w hw Mo O O V0]
The universal quantification gives the closest functior tmdependent of the variabble by
removing the terms which depend @n
Using the operatorsdescribed above we can now define the sa
(SDC), control | abandoibtsye rdvearbGtl icdcayr edso n(6@DC)ar es (
Sati sf i abi lare pagternefanpuistandmuatpgtef &in internal node which are
impossible because thegontradictthe value of the node outputFormally, for a noded®
"Owhw B h h, we have
YOO ®$ O L X
Controllability d o n 6 t are impossible patterns of just inputs of an internal node. They are
obtained by removing the output of the SDCs.

49

506 1 YO & TR

w¢? [variables which are not input X, w? [variables which are input t§]

Ob s er v a btichrestarng pattevns 6f input of an internal node that make the node output
unobservablat the network outputin other wordswe can compute the network value without
knowing the node output value and that a change in this node output value does not affect the

network output.

CA
CA
(V]
CA

006 —.

! VW
!

€

In Section10.1, we showed how to get an expression of the autgfa cyclic Boolean network
as function of the inputdt is straightforwardio apply the operators defined in (59) to the
expanded expressions obtained through the methodology of Sectiormii8.analysiswill be

developed as an extension of the thesis in the future.

50

11.0 CASE STUDY 2: BIOLOGICAL EXAMPLE

11.1 T-CELL MODEL

T cells are apecific cell typan humans anthatplaya key role inthe immune systerf83]. The

T refers to the thymus, organ in which the T cells madndare released into the body to recognize
and fight against infections and other threats to the immune system, alsodspathogenthat,

are responsible for activating and differentiating the T cafter differentiation,Tcellsthey can

be grouped into two main subtypes: those that methatenmune response [T helperjTcells]

and those that suppress the immunpaaseyegulatory T (Teg) cells[32] [34]. It hasbeen shown
previouslythat both the concentration of antigen and the duration of stimulation of T cells with
antigen influenc¢he differentiation of T cellThus,increased antigen concentrations favaccéll
generation, whereas decreased concentrafiémos Treg Cell generation35][36][37].

In [32]], Miskov-Zivanov et al providel a logical model of te T cell signaling pathway
andherewe include the illustrabn of this model in Appendix CThe model contains about 40
elements among whicérethe transcription factor of there] cells (FOXP3)the T cell receptor
(TCR), the costimulatory molecule (CD28), the interleukifil22) and interleukin 2 receptor (1L
2R), the transforming growthfacor bBb)Y T&Rd transf or mi nbdTGEr owt h
bR). We highlight the presence ofa$e particulaelements among the 40 of the networks as in a

control engineering point of view, theyould bethe inputs and outputs of the systeffisus, our

51

goal in this case study is to apply the methodology described in Chapter 9 and 10 to this biological
example. Namely, we want to express the outputs of #8ellfmodel as functiasof the inputs
of the model antb analyze the expressions oliedl. The resultsf this approach are presented in

the next section.

11.2 RESULTS

In this Chapter, we present the results of our unrolling method applied to@ed $ignaling
pathway described iBectionl11.1

We converted the model ascollection of 10BDDs. Among those 107 BDD6&1 were
variables and 46 were Boolean rules. Given the size of the network, we areentd abbw it
entirely but Figire4 and Figirel5 give a partial representation of the network as a collection of

BDDs.

52

TCR

TCR_LOW

TCR_HIGH

cp2s

TGFBETA

e

IL2R

FOS

FOSD

FOS_DD

MEK2

MKKT

(5] (][] (o] (] [or] [

=]

0xg5683

0xg5684

Figure 14 T-Cell model with BDD (Top partial view)

Figure 15 T-Cell model with BDD (Bottom partial view)

1 =
1 Comsens

oneseaz

53

085687

NFKAPPAB® NFAT*

In Figure 14, the variables names are listed on the left, the update rules names are listed on
top; the rules are named after the variable that they are associateth&iBDDs for the 46 rules
are merged into ongupraBDD but we can alternatively, display each ruldividually as shown
in Figure 16. The bottom partof a graphical representation of a BDD provides essential
information as it contains the terminal nodes which shbe value associated with each
combination of inputs. Under this consideratiod because the BDD in Rige14is not complete
Fig.15was inserted to show the bottom part of the sBW® representing the-Cell modelwith

the purpose of completing kige12.

Figure 16 BDD of FOXP3*, Boolean function updarule for FOXP3

As statedin the previous paragraph we can as well display the BDD of eachfrtiie o
model individually. Figire 46 is an example of the BDD of a rule. It shows the rule of FoxP3

which is a element of particular interest ftive remainder of this thesis.

54

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	List of tables
	1.Truth table of DISJUNCTION (OR)
	2. Design Matrix
	3. Expression of the entries of U(s)
	4. Algorithm 1: maxstep (algorithm to compute N)
	5. Algorithm 2: isYdreach
	6. Algorithm 3: inseq (algorithm to compute the input sequences)
	7. Update rules of the nodes of the network in Fig.2.
	8. Unrolling procedure applied to the example from Figure 1.

	List of figures
	1. Toy example of a Boolean network (left). Update rules for elements of the BN (right).
	2. Example of a Boolean control network with two inputs, u1 and u2, five internal nodes, A, B, C, D, E, F, G and H and three outputs, y1, y2 and y3.
	3. Two representations of the Design Matrix for the first control objective, y1=y2=y3=0. (a) 3D representation and (b) 2D “heatmap”.
	4. Input and Output sequences for the first control objective
	5. Two representations of the Design Matrix, for the second control objective, y1=y2=y3=1. (a) 3D representation and (b) 2D “heatmap”.
	6. Input and output sequences for the second control objective.
	7. Truth Table and Decision Tree Representations of a Boolean Function. A dashed (solid) tree branch denotes the case where the decision variable is 0 (1).
	8. Truth table BDD equivalence
	9. Reducing a BDD
	10. Conversion of a BN to a set of BDD
	11. Unrolling process applied to the example from Figure 1.
	12. Flowchart of Unroll function in the case of the simultaneous update scheme.
	13. Flowchart of Unroll function in the case of random order sequential update scheme
	14. T-Cell model with BDD (Top partial view)
	15. T-Cell model with BDD (Bottom partial view)
	16. BDD of FOXP3*, Boolean function update rule for FOXP3
	17. Expression of FOXP3*5
	18. Composition of the BnetNode class
	19. Composition of the Bnet class
	20. T-Cell model

	Preface-Acknowledgment
	1.0 Introduction
	1.1 Previous work
	1.2 Contribution of this thesis
	1.2.1 Control Design
	1.2.2 Unrolling logic via Binary Decisions Diagrams

	2.0 Boolean network preliminaries
	2.1 Structure
	2.2 Dynamics

	3.0 Algebraic State-Space Representation
	3.1 Semi-tensor product
	3.2 Logical function and structure matrix
	3.3 Network transition matrix
	3.4 Controllability

	4.0 Control strategy
	4.1 Control objective
	4.2 Controllability
	4.3 Input design
	4.3.1 Overall Input
	4.3.2 Input sequence

	5.0 MATLAB Implementation
	6.0 Case study 1 : Toy example
	6.1.1 Control objective 1: Disease
	6.1.2 Control objective 2: Immune response

	7.0 Limitations of methods based on the ASSR
	8.0 Binary Decisions Diagrams
	8.1 Definition
	8.2 Ordering and reducing

	9.0 Boolean network via Binary Decision Diagrams
	10.0 Unrolling logic
	10.1 Method
	10.1.1 Simultaenous update scheme
	10.1.2 Random-order sequential update scheme

	10.2 Data structures and implementation
	10.2.1 Data structures
	10.2.2 Unrolling Implementation

	10.3 Prospective Analysis

	11.0 Case study 2: Biological example
	11.1 T-Cell Model
	11.2 Results

	12.0 Conclusion
	BnetNode class
	Bnet class
	T-Cell Model
	Bibliography

