Tsai, CH and Brusilovsky, P
(2017)
Enhancing recommendation diversity through a dual recommendation interface.
In: UNSPECIFIED.
Abstract
The beyond-relevance objectives of recommender system are drawing more and more attention. For example, a diversity-enhanced interface has been shown to positively associate with overall levels of user satisfaction. However, little is known about how a diversity-enhanced interface can help users to accomplish various real-world tasks. In this paper, we present a visual diversity-enhanced interface that presents recommendations in a two-dimensional scatter plot. Our goal was to design a recommender system interface to explore the different relevance prospects of recommended items in parallel and to stress their diversity. A within-subject user study with real-life tasks was conducted to compare our visual interface to a standard ranked list interface. Our user study results show that the visual interface significantly reduced exploration efforts required for explored tasks. Also, the users' subjective evaluation shows significant improvement on many user-centric metrics. We show that the users explored a diverse set of recommended items while experiencing an improvement in overall user satisfaction.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Metrics
Monthly Views for the past 3 years
Plum Analytics
Actions (login required)
|
View Item |