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LINGUISTIC ENTRAINMENT IN MULTI-PARTY SPOKEN DIALOGUES

Zahra Rahimi, PhD

University of Pittsburgh, 2019

Entrainment is the propensity of speakers to begin behaving like one another in conversations.

Evidence of entrainment has been found in multiple aspects of speech, including acoustic-

prosodic and lexical. More interestingly, the strength of entrainment has been shown to

be associated with numerous conversational qualities, such as social variables. These two

characteristics make entrainment an interesting research area for multiple disciplines, such

as natural language processing and psychology. To date, mainly simple methods such as

unweighted averaging have been used to move from pairs to groups, and the focus of prior

multi-party work has been on text rather than speech (e.g., Wikipedia, Twitter, online

forums, and corporate emails). The focus of this research, unlike previous studies, is multi-

party spoken dialogues. The goal of this work is to develop, validate, and evaluate multi-party

entrainment measures that incorporate characteristics of multi-party interactions, and are

associated with measures of team outcomes.

In this thesis, first, I explore the relation between entrainment on acoustic-prosodic and

lexical features and show that they correlate. In addition, I show that a multi-modal model

using entrainment features from both of these modalities outperforms the uni-modal model at

predicting team outcomes. Moreover, I present enhanced multi-party entrainment measures

which utilize dynamics of entrainment in groups for both global and local settings. As for

the global entrainment, I present a weighted convergence based on group dynamics. As the

first step toward the development of local multi-party measures, I investigate whether local

entrainment occurs within a time-lag in groups using a temporal window approach. Next, I

propose a novel approach to learn a vector representation of multi-party local entrainment by
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encoding the structure of the presented multi-party entrainment graphs. The positive results

of both the global and local settings indicate the importance of incorporating entrainment

dynamics in groups. Finally, I propose a novel approach to incorporate a team-level factor

of gender-composition to enhance multi-party entrainment measures. All of the proposed

works are in the direction of enhancing multi-party entrainment measures with the focus on

spoken dialogues although they can also be employed on text-based communications.
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1.0 INTRODUCTION

1.1 MOTIVATION

Entrainment1 is the propensity of speakers to begin behaving like one another in conversa-

tions. Research has found that speakers entrain to both human and computer conversational

partners. Evidence of entrainment has been found in multiple aspects of speech, including

acoustic-prosodic, lexical, syntactic, and gestural. More interestingly, the strength of en-

trainment has been shown to be associated with numerous conversational qualities, such as

naturalness of speech, task success, dialogue success, or social variables, such as cohesiveness.

These two characteristics, commonness and association with positive conversational quali-

ties, make entrainment an interesting research area for multiple disciplines, such as natural

language processing, linguistics, and psychology.

Consider the small excerpt of a real conversation from the Teams corpus (Litman et al.,

2016) between three speakers A, B, and C in Table 1. The speakers are playing a board

game, Forbidden Island. In this game, each tile of the board can have three states: normal,

flooded, and sunk. If a tile is flooded the players can unflood it with one of their actions

if their pawn is on the flooded tile. This action is called unflooding. If a tile is sunk, it is

removed from the board and this cannot be undone anymore. In the example in Table 1,

speaker B in utterance number 2 uses the word “unsink” mistakenly instead of “unflood”.

Shortly after, speaker A also uses the same word. They continue using this word instead of

“unflood” in this game. This is an example of lexical entrainment where speakers entrain on

using the word “unsink”.

1Other terms in the literature include accommodation, adaptation, alignment, convergence, coordination,
and priming.
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UC1 : Ok so yeah that’s my turn. Alright.
UC2 : Um.
UC3 : Mmhmm.
UB1 : You should probably
UB2 : Unsink the two things that have like
UC4 : Yeah 2 Things on them
UC5 : Um so let me think
UA1 : You should yes, you should unsink your own thing.

Table 1: An example of lexical entrainment in a real conversation.

One of the interesting applications of entrainment research is spoken dialogue systems.

Interactive conversational agents have been implemented in many devices including cars,

phones, and TVs. Implementing dialogue systems with human-like characteristics is an

open research problem. One of the most common human characteristics in conversation is

entrainment. The first step towards this end goal of implementing dialogue systems with en-

trainment capabilities is to understand human entrainment behavior and to present measures

to estimate it.

The development of methods for automatically quantifying entrainment in text and

speech data is an active research area. While most research in this area has focused on quan-

tifying the amount of entrainment between pairs of speakers, recent studies have started to

develop measures for quantifying entrainment between larger groups of speakers (Friedberg

et al., 2012; Danescu-Niculescu-Mizil et al., 2012; Gonzales et al., 2010; Doyle and Frank,

2016). Studying entrainment in multi-party environments is a topic of interest as teams,

rather than individuals, are now the usual generators of scientific knowledge. How to opti-

mize team interactions is a passionately pursued topic across several disciplines. Moreover,

entrainment capabilities are useful for conversational agents that monitor and facilitate group

interactions.

To date, mainly simple methods such as unweighted averaging have been used to move

from pairs to groups, and the focus of prior work has been on text rather than speech

(e.g., Wikipedia, Twitter, online discussion forums, and corporate emails). The focus of

this research, unlike previous studies, is multi-party spoken dialogue. The goal of this

2



work is to develop, validate, and evaluate multi-party entrainment measures that can 1) be

computed using language technologies, 2) incorporate characteristics of multi-party

interactions and 3) be associated with measures of team outcomes.

1.2 THESIS OVERVIEW

To develop computational measures of multi-party entrainment, I study various dimensions

described below:

Features: Research has been done on measuring entrainment on features from different

linguistic levels. But, the association of entrainment on these features has generally not

been investigated. I utilize features from two modalities available in spoken dialogue data

(acoustic-prosodic and lexical), calculate entrainment using the same measures on them, and

explore their relations and their utility to predict group outcomes. My experiments using

existing measures show that there is a correlation between different modalities and a multi-

modal prediction model outperforms a unimodal model at the downstream task of predicting

team outcomes.

Time Frame: Entrainment can be both a linear and dynamic phenomenon (De Looze

et al., 2014). Feature similarity may increase somewhat linearly over the course of conver-

sation (global). However, entrainment can also be short-term or local (e.g. only between

adjacent turns), with feature similarity fluctuating within conversations. Speakers might

show different entrainment behaviors. While one might entrain globally, another speaker

might entrain locally. So, it is important to study these various aspects of entrainment, and

this research develops local and global measures of entrainment in multi-party spoken dia-

logues. Developing measures of short-term (local) entrainment is more difficult to investigate

in teams rather than dyads. While research on short-term pairwise entrainment typically ex-

amines similarity between two consecutive utterance or turns across speakers (Porzel et al.,

2006; Levitan and Hirschberg, 2011; Danescu-Niculescu-Mizil et al., 2011; Mitchell et al.,

2012; Ward and Litman, 2007b; De Looze et al., 2014), in multi-party conversations, dyad

exchanges are not always adjacent, and/or participants can speak to two or more people at
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the same time. Rather than attempt a complex manual annotation of addressee detection

or solve an open algorithmic problem, I utilize a simple temporal window-based method. I

hypothesize that there might be a time-lag between the source and the target utterances.

The source and target utterances are a set of dyadic exchanges where the source utterance

is uttered preceding to the target utterance and the target utterance could entrain to the

source. So, using the window approach, I study the effect of time-lag on multi-party local

entrainment. I did not find any significant result supporting this hypothesis.

From Pairs to Groups: To date, no matter what measure is used to estimate en-

trainment, mainly simple methods such as unweighted averaging have been used to move

from pairs to groups. But, multi-party interactions are more complicated. Unlike two-party

conversations, there are many pairwise relations in a group. Not all of these pairs show the

same behavior. For example, a group might have both converging and diverging pairs. A

speaker might converge to an interlocutor while diverging from another one. Moreover, using

adaptive local entrainment measures, we are able to estimate not only the strength, but also

the direction of pairwise entrainment. Directionality of the entrainment measure means that

entrainment of speaker A towards B is not equal to the entrainment of speaker B towards

A. Simply averaging pairwise entrainment values, as in the literature, ignores directionality

and as a result ignores the dynamics of entrainment behaviors.

In this research, I propose global and local multi-party measures of entrainment that in-

corporate group entrainment dynamics. As for the global perspective, I propose a weighted

convergence measure where the weights are defined based on the entrainment behaviors in

the groups with the goal of decreasing the influence of outlier behaviors. Regarding the

short-term (local) entrainment, I introduce graph-based vector representations of entrain-

ment in multi-party groups. I propose to utilize pairwise directional measures of entrainment

to represent multi-party entrainment as graphs. Then, I propose to utilize graph algorithms

and represent nodes and graphs as vectors to encode the strength and the dynamics of en-

trainment relations. Finally, I propose approaches to learn the vector representations of

the graphs (groups). The objective of the proposed vector representation is to encode the

dynamics of entrainment behavior for each group and to achieve a more informative represen-

tation than a single-valued measure. The experiments indicate the promising performance
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and utility of the proposed methods.

Individual and Team-level Attributes: Prior research has found relationships be-

tween non-conversational characteristics, such as gender, role, and expertise, and both the

presence and utility of entrainment in dyads (Levitan and Hirschberg, 2011; Pardo, 2006) and

teams (Yu and Litman, 2019). Given this knowledge, the research question is whether incor-

porating non-conversational characteristics (I only employ gender-composition in this study)

enhances measures of multi-party entrainment. The proposed multi-task vector representa-

tion learning using an auxiliary task to predict gender-composition shows some promising

results and encourages further investigation of this path.

1.3 RESEARCH QUESTIONS

I attempt to answer five main research questions:

• What is the relation between entrainment at different linguistic levels of acoustic-prosodic

and lexical?

• Is there any time-lag between source and target utterances when measuring multi-party

local entrainment?

• How do we incorporate the dynamics of local and global entrainment behaviors to intro-

duce enhanced multi-party entrainment measures?

• How do we incorporate non-conversational factors such as gender-composition to enhance

multi-party entrainment measures?

• Do the introduced measures have advanced utility at the downstream task of predicting

team outcomes?

1.4 HYPOTHESES

First, I use a simple averaging method to extend global measures of proximity and conver-

gence from pairs to groups. I explore the relation of acoustic-prosodic and lexical entrain-
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ment. I hypothesize that:

• H1: Entrainment occurs at multiple linguistic modalities during conversation.

• H2: Teams that entrain on one modality are more likely to entrain on the other, and

vice versa.

• H3: To predict team outcomes, a multi-modal model with entrainment features from

acoustic-prosodic and lexical levels outperforms a unimodal model.

Second, I propose a weighted multi-party convergence measure that incorporates the

group dynamics. I hypothesize that:

• H4: A properly weighted multi-party convergence measure has a higher validity than the

simple-averaging convergence.

• H5: A properly weighted multi-party convergence measure has a higher utility than the

simple-averaging convergence at the downstream task of predicting team outcomes.

Third, for the short-term (local) entrainment, using the temporal window approach, I

study the effect of time-lag between source and target utterances in multi-party entrainment.

I hypothesize that:

• H6: Time-lagged multi-party entrainment estimated by the proposed window-based ap-

proach has a higher validity than the immediately preceding baseline.

• H7: Time-lagged multi-party entrainment estimated by the proposed window-based ap-

proach has a higher utility than the immediately preceding baseline at the downstream

task of predicting team outcomes.

Fourth, I propose entrainment vector representation, a novel approach to encode both

the strength and the dynamics of local entrainment behaviors in multi-party conversations.

I hypothesize that 2:

• H8: The proposed vector representation of multi-party entrainment outperforms the

state-of-the-art adaptive entrainment baselines at the downstream task of predicting team

outcomes.

2The vectors are trained to have high validity. So, the validation experiment is not required.

6



Finally, I propose two approaches to enhance multi-party entrainment measures by incor-

porating team-level non-conversational attributes, such as gender-composition. I hypothesize

that:

• H9: The proposed gender-aware extension of the entrainment measures outperforms the

none-extended versions at the downstream task of predicting team outcomes.

1.5 CONTRIBUTIONS

This thesis advances research on multi-party entrainment. It has multiple contributions.

First, the focus of this research, unlike previous studies, is multi-party spoken dialogue. Sec-

ond, I develop, validate, and evaluate novel multi-party entrainment measures that incor-

porate characteristics of multi-party interactions and are associated with measures of team

outcomes. For the global entrainment, we present a weighted convergence measure. For

the local entrainment, we present a graph-based entrainment vector representation. More-

over, this study provides insights on the relationship between two modalities of spoken

dialogues (acoustic-prosodic and lexical) and whether entrainment occurs at multiple levels

during conversations. Finally, I propose a novel approach to incorporate a team-level factor

of gender-composition to enhance multi-party entrainment measures. All of the proposed

works are in the direction of enhancing multi-party entrainment measures with the focus on

spoken dialogues although they can also be employed on text-based communications.

1.6 THESIS OUTLINE

This chapter introduces entrainment, motivations for this study, research questions, hypothe-

ses, and a summary of main contributions.

In chapter 2, I introduce the theory behind entrainment studies, discuss the related work

on entrainment from different perspectives in detail, and explain where this work stands

compared to the previous work.
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In chapter 3, I introduce the Teams corpus which is used in this thesis and includes multi-

party task-oriented spoken dialogues. I also describe the general setting of the experiments

throughout this thesis, including the features, the pre-processing of data, and evaluation

methods.

In chapter 4, I study the relationships of entrainment at the two linguistic levels, acoustic-

prosodic and lexical, in multi-party dialogues (Rahimi et al., 2017). While there is consid-

erable evidence for both exical and acoustic-prosodic entrainment, little work has been con-

ducted to investigate the relationship between these two different modalities using the same

measures in the same dialogues, specifically in multi-party dialogue. I measure lexical and

acoustic-prosodic entrainment for multi-party teams to explore whether entrainment occurs

at multiple levels during conversations and to provide insights on the relationship between

these two modalities.

In chapter 5, I present a new weighting method to extend a dyad-level measure of conver-

gence to a multi-party measure by considering group dynamics instead of simply averaging

(Rahimi and Litman, 2018). I argue that although simple averaging is a good starting point

to measure team entrainment, it has several weaknesses in terms of capturing team-specific

behaviors specifically related to convergence (Rahimi et al., 2019). Experiments indicate

validity and utility of the proposed weighted measure and also show that, in general, a

proper weighting of the dyad-level measures performs better than non-weighted averaging in

multiple tasks.

In chapter 6, I first discuss the limitations of existing short-term (local) multi-party

entrainment measures, such as ignoring time-lag between source and target utterances, and

ignoring the dynamics of entrainment relations in groups. To address such limitations, in

the first part of this chapter (section 6.1), I investigate the time lag of influence in groups

using an asymmetric local measure and the proposed temporal window algorithm. I found

no evidence that considering time-lag improves the adaptive local entrainment measure. In

the second part (section 6.2), I propose a novel graph-based vector representation for multi-

party entrainment by incorporating the dynamics of entrainment relations. The proposed

entrainment vector representation shows promising results compared to the state of the art.

Finally, in chapter 7, I propose new methods to utilize non-conversational factors such as
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gender-composition to enhance entrainment measures. The proposed multi-task learning

where predicting gender-composition is an auxiliary task, shows significant improvements at

predicting the favorable outcome.

Finally, in chapter 8, I summarize the major contributions and results of this work and

present the limitations and possible future directions.
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2.0 RELATED WORK

In the literature, linguistic entrainment is referred to with different terms, such as alignment,

accommodation, and adaptation. Brennan and Clark (1996) define linguistic entrainment

as the phenomena of speakers repeatedly using the same or closely similar terms to refer

to the same objects in a conversation. They observed lexical entrainment where within-

pair similarities on referral terms were significantly higher than between-pair similarities.

Giles et al. (1991) defines speech accommodation as changes that people make to attune

their communication to their speaking partners. The accommodation theory focuses on

a specific form of entrainment, convergence, which is the increased linguistic similarity in

the course of conversation. I, similar to the numerous studies of linguistic entrainment

(Brennan, 1996; Nenkova et al., 2008; Levitan and Hirschberg, 2011; Doyle and Frank, 2016),

refer to entrainment as a general term which covers different behaviors, such as similarity,

convergence, synchrony, and proximity.

To explain the entrainment phenomena, Brennan and Clark (1996) emphasize more on

automatic priming mechanisms of entrainment. They argue that conceptual pacts are es-

tablished by speaking partners jointly and during the course of conversation. Also, speakers

show different entrainment behaviors with different partners. This study emphasizes on re-

cency, frequency of past references, informativeness and availability to explain how concep-

tual pacts are formed. In contrast, Accommodation Theory (Giles et al., 1991) emphasizes

more on communicative and strategic nature of alignment. For example, it argues that “since

speech is a way to express group membership, people adopt convergence or divergence in

communication to signal a salient group distinctiveness, so as to reinforce a social identity”.
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2.1 ENTRAINMENT AT DIFFERENT LINGUISTIC LEVELS

Entrainment has been investigated at different linguistic levels. Empirical evidence of acoustic-

prosodic entrainment has been reported in the literature. Matarazzo and Wiens (1967)

showed that interviewers can influence latency or average duration of silence in interviewees’

speech. In another study, manipulation in vocal intensity of the interviewers resulted in

convergence of subjects’ intensity to the new loudness levels (Natale, 1975). Guzzo et al.

(1993) found that similarity of the speakers in terms of pitch and intensity was greater in the

real conversations than in the simulated ones. Similarly, Ward and Litman (2007b) found

entrainment on pitch and intensity as good measures to discriminate real and randomized

conversations. At the phonetic level, Pardo (2006) found that speakers in conversational

settings are susceptible to phonetic convergence. Levitan et al. (2011) investigated conver-

gence on backchannel-preceding cues (BPCs) and found it to be significantly correlated with

speech followed by backchannels. The results showed that speaking partners not only tend

to use similar sets of BPCs, but also this similarity increases over the course of a dialogue.

Levitan et al. (2012) investigated proximity and showed that conversational partners are

more similar to each other than non partners in terms of acoustic-prosodic features, such

as intensity mean, intensity maximum, and syllables per second. (Levitan and Hirschberg,

2011) and Lubold and Pon-Barry (2014) found evidence of entrainment on four acoustic-

prosodic features (intensity, pitch, voice quality, and speaking rate) using three measures of

proximity, synchrony, and convergence. Having children interact with a virtual human in

a controlled experiment, Finkelstein et al. (2012) found that dialect of the virtual partner

affects the prosody of young African American children.

Entrainment at the lexical level has been investigated extensively. Brennan and Clark

(1996), Brennan (1996), and Metzing and Brennan (2003) studied entrainment on referring

expressions. It has been shown that conversational partners entrain on referring expressions,

they reach a conceptual pact, and continue to appeal to it in later references. Evidence

of linguistic style matching was found in computer chats, twitter conversations, and spo-

ken conversations (Niederhoffer and Pennebaker, 2002; Danescu-Niculescu-Mizil et al., 2011;

Gonzales et al., 2010). Linguistic style refers to the components of language that are unre-
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lated to the content. Linguistic Inquiry Word Count (LIWC) (Pennebaker et al., 2001) is

applied to measure word usage in categories, such as articles, auxiliary verbs, and positive

emotions. Linguistic style matching measures the similarity of speaking partners in using

these word categories. In another study, Beňuš et al. (2012) showed evidence of entrainment

on the use of filled pauses, such as uh and um in spoken dialogues. (Nenkova et al., 2008)

examined entrainment on high-frequency words (the most common words in the corpus)

and showed its correlation with the perceived naturalness of the dialogues and task success.

Friedberg et al. (2012) found that there is a significant difference between lexical entrainment

on project-related words of the high performing and the low performing student engineering

groups.

Evidence of entainment in other levels, such as syntax (Branigan et al., 2000), pragmatic

(Roche et al., 2012), and gesture (Alderisio et al., 2017; Richardson et al., 2009) has been

found in the literature. Branigan et al. (2000) showed that the syntactic structure of utter-

ances is influenced by interlocutors’ previous utterances. Reitter and Moore (2006) observed

that in task-oriented dialogues, speakers are more likely to use a syntax rule soon after their

interlocutors used the same rule.

In this research, I focus on two linguistic levels aucostic-prosodic and lexical. In terms

of acoustic-prosodic features, this research is built upon the work of Levitan and Hirschberg

(2011). In terms of lexical features, our work is similar to (Nenkova et al., 2008; Fried-

berg et al., 2012; Niederhoffer and Pennebaker, 2002; Danescu-Niculescu-Mizil et al., 2011;

Gonzales et al., 2010) where I measure entrainment on high frequency words, game-related

words, and LIWC categories. Although, entrainment has been investigated exhaustively at

different linguistic levels, the association between these levels are not investigated. In the

first part of this work, I investigate the association between lexical and acoustic-prosodic

entrainment in multi-party spoken conversations (Rahimi et al., 2017).
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2.2 ENTRAINMENT MEASURES

Numerous entrainment measures are defined in the literature. Each of these measures focus

on a different aspect of entrainment. Proximity (Levitan and Hirschberg, 2011) compares

the similarity of speaking partners versus non-partners. Higher values indicate that speak-

ing partenrs’ similarity is more than random. Convergence (Natale, 1975; Street Jr, 1984;

Coulston et al., 2002; Pardo, 2006; Ward and Litman, 2007a; Levitan and Hirschberg, 2011)

measures the increase or decrease in the similarity of partners over time. Several studies

(Brennan and Clark, 1996; Niederhoffer and Pennebaker, 2002; Pennebaker et al., 2001;

Nenkova et al., 2008; Friedberg et al., 2012) have looked at the global similarities between

speakers, while others (Lee et al., 2011; Danescu-Niculescu-Mizil et al., 2011; Fusaroli et al.,

2012; Wang et al., 2015) have looked at conversational turn-by-turn (local) similarities.

Truong and Heylen (2012) investigated dynamics of alignment over time using a windowed

cross-correlation procedure. Their results showed weak tendencies toward synchrony. Mea-

suring local adaptive entrainment, Danescu-Niculescu-Mizil et al. (2011) used a probabilistic

framework; while Doyle et al. (2016b) estimated alignment using a generative model which

provides a robust framework for sparse data. Jain et al. (2012a) used dynamic Bayesian

networks to estimate alignment state at each conversational turn.

The scope of this research covers both global and local entrainment since different speak-

ers might show different entrainment behaviors and it is important to define proper measures

to estimate these different types of entrainment. In this work, I adapt several measures from

literature including proximity and convergence (Levitan and Hirschberg, 2011) and adap-

tive entrainment measures (Danescu-Niculescu-Mizil et al., 2012; Doyle and Frank, 2016).

These measures are either developed for pairwise interactions or leverage simple averag-

ing to extend pairwise entrainment to multi-party entrainment. In this research, I propose

novel approaches for incorporating the dynamics of entrainment behavior into measures of

multi-party entrainment (Rahimi and Litman, 2018; Rahimi et al., 2019).
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2.3 RELATION WITH SOCIAL OUTCOMES

Motivated by the theories relating entrainment to pragmatic goals (Giles et al., 1991), several

studies have explored the relationship between entrainment and numerous social outcomes.

Niederhoffer and Pennebaker (2002) found associations between Linguistic Style Match-

ing (LSM) and perceived interaction quality (rapport) reported by the participants or the

external judges. In contrast, Chartrand and Bargh (1999) did not find any correlations.

They proposed a coordination-engagement hypothesis as an alternative to the coordination-

rapport hypothesis: “The more that two people in a conversation are actively engaged with

one another, in a positive or negative way, the more verbal and nonverbal coordination we

expect.” Lubold and Pon-Barry (2014) found a positive correlation between turn-by-turn

local acoustic-prosodic entrainment and rapport. Results suggested that speakers entrain on

pitch most significantly among other features when rapport is present. Michalsky et al. (2018)

looked at the relation between prosodic entrainment and the perceived conversational quality

in dating conversations. They found that conversational quality has a significant effect on

a speaker’s pitch entrainment. Pitch entrainment has also found to have a significant effect

on perceived conversational quality. Natale (1975) looked at the vocal intensity convergence

and showed that mean intensity convergence is positively correlated with the self-reported

social desirability score of the individuals.

Levitan et al. (2018) investigated the relation between acoustic-prosodic entrainment

and deception or trust. The results suggested significantly higher local entrainment on max

intensity and jitter in conversations with deceptive speech than truthful speech, as well as

higher local entrainment on mean intensity in conversations judged as deceptive than judged

as truthful. Beňuš et al. (2018) investigated the link between subjects’ trust toward an

avatar, “expressed as the tendency to follow its advice”, and acoustic-prosodic convergence

or divergence of the avatar’s voice towards the subjects. They found that females trusted

the avatars who locally diverged on mean pitch, intensity, and speech rate. Reichel et al.

(2018) measured prosodic entrainment in cooperative games. The investigation of interaction

between gender and speaker role (describer vs. follower) showed that, in cooperative inter-

actions, strategies are gender-dependent. For example, they found that female describers
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entrain most and male describers least. Levitan et al. (2012) investigated the interaction

between acoustic-prosodic entrainment, gender, and social behaviors. The results suggested

significantly different entrainment behaviors for different genders. They found that male-

female pairs entrained on more features than male-male pairs. Also, entrainment had the

most significant correlations with the perception of social behaviors of mixed-gender pairs,

and to the efficiency and flow of male-male pairs.

Xu et al. (2018) applied a generalized linear model to investigate the interaction between

lexical entrainment and social power. The results suggested that entrainment is influenced

by low-level linguistic features such as utterance length rather than social power. They

suggest that the relation between social power and lexical alignment in (Danescu-Niculescu-

Mizil et al., 2012) is not reliable since it did not control for low-level linguistic features.

But, Beňuš et al. (2014) found similar results to (Danescu-Niculescu-Mizil et al., 2012) for

acoustic-prosodic entrainment where lawyers entrain more to justices than justices to lawyers

with respect to local entrainment on intensity.

Investigating the relation between entrainment and task performance, Nenkova et al.

(2008) found a significant correlation between lexical entrainment (on most frequent words)

and naturalness of dialogue; and also between entrainment on classes of common words and

task success. Gonzales et al. (2010) found a positive relation between linguistic style match-

ing and cohesiveness of groups in both face-to-face and computer assisted text-based com-

munications, and a positive correlation with task performance in face-to-face environments.

Fusaroli et al. (2012) also found that the alignment of particular task-relevant vocabularies

strongly correlate with collective task performance. In the study of the relation between

entrainment of students to a tutoring dialogue system, and learning rate, Thomason et al.

(2013) found that male mean entrainment was significantly higher than female mean entrain-

ment on min and max loudness features. They also found positive correlations of learning

gain with entrainment for several pitch features. In another study, Friedberg et al. (2012)

investigated lexical entrainment in engineering study groups and found that there is a signif-

icant difference between lexical entrainment on project-related words of the high performing

groups, which tended to increase with time, and entrainment of the low performing groups,

which tended to decrease with time.
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Investigating local PCA-based vocal entrainment in relation to psychologist’s affective

rating of real couples, Lee et al. (2011) found that when a spouse is rated as having positive

emotions, he/she has a higher value of vocal entrainment compared to when rated as having

negative emotions. Analyzing lexical and syntactic alignment in peer-to-peer online support

communities, Wang et al. (2017) and Wang et al. (2015) found that lexical alignment cor-

relates with stronger emotional support while syntactic alignment positively correlates with

informational support.

Given the evidence of the relation between entrainment and social outcomes and in-

teraction qualities, as in the previous studies, I examine the relation between multi-party

entrainment and the self-reported social outcomes as an extrinsic method to evaluate the

quality entrainment measures. Our goal is to develop multi-party entrainment measures that

are powerful at predicting social outcomes.

2.4 ENTRAINMENT AND DIALOGUE SYSTEMS

Several researches have tackled implementing dialogue systems with entrainment capabili-

ties. Lubold et al. (2015) implemented a dialogue system that can dynamically adapt its

pitch value to the user’s mean pitch value by manipulating the text to speech output. They

found a positive relation between perceptions of rapport and pitch adaptation. In another

study, Hu et al. (2016) implemented a natural language generator that can entrain to “the

user’s referring expressions, tense-modality selection, verb and noun lexical selection, hedge

and cue word choice, and syntactic template selection, or any combination of these”. The

results showed that “entraining on user’s hedges increases perceptions of friendliness while

reducing naturalness, while entraining on user’s referring expressions, syntactic template se-

lection, and tense/modal choices increase perceptions of both naturalness and friendliness.”

In an attempt to improve dialogue success in a spoken dialogue system, Lopes et al. (2015)

proposed a lexical entraining dialogue system. It is trained to follow the user’s choice of

prime word if the system performance is not negatively affected. Otherwise, the system pro-

poses a new prime. Results showed this entrainment strategy reduces out-of-vocabulary and
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word error rate, and increases the number of correctly transferred concepts. Furthermore,

Mizukami et al. (2016) found signs of entrainment on dialogue acts in a dialogue system,

and also found that lexical entrainment is different depending on the dialogue act of the

utterance. Sun and Morency (2011) proposed a new approach for dialogue act recognition

by speaker adaptation which balance the influence of speaker specific and other speakers

data in multi-party meetings. In another study, de Kok et al. (2013) presented a speaker-

adaptive model for predicting listener responses. The speaker-adaptive model is created from

a collection of dyadic interactions and is used to select the prediction model that reflects the

characteristics of the speaker.

All these studies focus on pairwise dialogues. Implementing dialogue systems with en-

trainment capabilities for multi-party conversations has not been attempted. Although I

do not attempt to implement a multi-party dialogue system in this research, this work is

essential as the first step toward this goal as corpus studies are often done before the study

of dialogue systems to understand the human’s behavior and to develop proper measures.

2.5 MULTI-PARTY ENTRAINMENT

Entrainment studies have mainly focused on two-party conversations. Iwata and Watanabe

(2013) have investigated entrainment in multi-party meetings although their main focus still

remained on estimating influence relations for each pair of speakers using a probabilistic

model and the expectation maximization (EM) algorithm. There have been several studies

about entraiment in multi-party text-based communications, such as Twitter conversations

and online health communities, or less spontaneous speaking conversations, such as supreme

court hearings (Danescu-Niculescu-Mizil et al., 2011, 2012; Beňuš, 2014; Wang et al., 2014).

Danescu-Niculescu-Mizil et al. (2012) developed a probabilistic measure to estimate turn

by turn adaptive similarities of each individual to the group. They simply averaged these

values to measure the group entrainment. These group entrainment values were used to

compare justices and lawyers as two groups with different levels of social power. Beňuš et al.

(2014) have also investigated entrainment in supreme court hearings between justice-lawyer
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pairs using similarity based measures . Wang et al. (2014) studied multi-party conversations

in online health communities by estimating word repetition between one or more prime

posts and a target post. Doyle et al. (2016b) introduced a generative approach to measure

entrainment using a hierarchical alignment model (Shin and Doyle, 2018; Doyle and Frank,

2016; Doyle et al., 2016a). The group layer in the hierarchy has latent variables to model the

entrainment of each group. Although this measure is more robust at presence of sparseness,

it is applied to measure entrainment in large groups such as Twitter conversations or email

communication in corporations. But, it needs to be examined for the case of small groups

where there is not much data available for each latent variable.

Face-to-face multi-party meetings have also been studied in several work. Hung et al.

(2011) focused on speaker diarization where there is only a single audio source available.

Oertel and Salvi (2013) investigated group involvement in eight-party face-to-face conversa-

tions. They define several group features based on gaze, such as presence, the fraction of

subjects looking at other subjects to predict the group involvement category. Matsuyama

and Kobayashi (2015) presented a computational model of conversation facilitation in small

groups using a conversational robot. They proposed models to control and balance engage-

ment and associate language generation with user models.

Gonzales et al. (2010) studied alignment in small groups of four to sixth members in

both face-to-face and text-based communications. This study measured the linguistic style

matching (LSM) of functional words for each group member by comparing each person’s

language with the overall percentage of the remaining group members. Then, a simple

average of all group member’s LSM score resulted in the group entrainment values. Friedberg

et al. (2012) studied entrainment in student engineering groups. It used a similarity measure

introduced by Nenkova et al. (2008) to estimate pairwise entrainment and then used simple or

weighted averaging based on ratio of words spoken by each member to reduce the importance

of speakers that may have talked very little. The weighted average did not result in any

improvement in the results.

In this work, I investigate several aspects of entrainment in multi-party speaking groups

that have not been investigated in the prior work. The goal is to gain better understanding

of group entrainment behaviors and to develop enhanced multi-party entrainment measures

18



that take into account the dynamics of interactions in the groups and are more predictive of

group social outcomes. Although our focus is on face-to-face speaking conversations, there

are no limitations to apply the proposed methods on other types of conversation such as

text-based communications.
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3.0 DATA, FEATURES, AND EXPERIMENT SETUPS

3.1 TEAMS CORPUS

The Teams corpus (Litman et al., 2016) consists of over 45 hours of cooperative task-oriented

dialogues within groups of three or four speakers, where audio and video files were collected

and transcribed using best practices for computational processing. The corpus was collected

in a laboratory experiment1. The laboratory setting enabled high-quality audio and video

capture, while the experimental study allowed to collect measures of team processes.2

3.1.1 Task

The task is the cooperative board game, Forbidden IslandTM , where players take on the

roles of adventurers seeking treasures on an island before it is flooded. The cooperative task-

oriented nature of the game requires players to communicate to achieve their goals (e.g.,

discussing cards and strategies in real time, see Figure 1 for an example excerpt from a dia-

logue or Appendices for a complete dialogue), lending itself directly to eliciting entrainment.

Further, the game gives each player a different role 3 to achieve the team goals, as well as

game-specific terminology, generalizing to real-world situations with teamwork (e.g. avia-

1This work has been published in (Litman et al., 2016). My contribution in this paper is the entrainment
analysis section. Also, I participated in the segmentation and the transcription part of the data collection.

2A lab experiment involving a two-player game requiring spoken communication was similarly used to
collect the Columbia Games Corpus of 12 spontaneous task-oriented dyadic conversations, which has been
used in multiple studies of two-party entrainment (Levitan and Hirschberg, 2011; Levitan et al., 2012, 2011).
The Team’s corpus is approximately 5 times larger, includes speech from teams rather than from dyads, and
relatedly includes new types of team-related meta-data. The corpus also contains both video and audio as
our dialogues were face-to-face rather than restricted to voice.

3There are four different roles in this game: Engineer, Pilot, Messenger, and Explorer. Teams with three
participants do not have the role of Explorer.
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Figure 1: Dialogue excerpt from a Forbidden IslandTM game. E=Engineer, M=Messenger,

and P=Pilot roles in the game. Square brackets indicate overlapping speech.

tion, health care). Two isomorphic versions of the game were constructed so that the first

and second games would appear visually different but the difficulty level would be identical

between and within teams. This isomorphism was accomplished by maintaining the position

of tiles and cards that determined order-of-play and game difficulty, while systematically

shifting the position of non-critical tiles and cards.

3.1.2 Recruitment

Participants aged 18 years and older who are native speakers of American English were re-

cruited via electronic and hardcopy flyers and paid for their time. They were males and

females of any ethnicity from a university and its surrounding community. To increase eth-

nicity, race, and age diversity (rare in corpora typically drawn only from student samples),

advertisement was done in non-student locations in predominantly ethnic minority neigh-

borhoods.
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3.1.3 Procedure

As a team’s participants arrived in the lab, each completed a questionnaire to collect per-

sonality, demographic, and other information such as experience with the game Forbidden

IslandTM . Participants were then taught how to play the game by watching a video and

playing a tutorial game, then given a few minutes to ask specific questions. Then each team

played the game twice for no more than 35 minutes per game. Teams were told that not

completing a game in 35 minutes counted as a loss, and that winning scores for the rest of

the games would be inversely related to game length (a timer was displayed on a computer

monitor during each game). Finally, both between and after the two games, all participants

filled out questionnaires regarding their team processes.

3.1.4 Data Capture

Game participants were located around a round table 48 inches in diameter in the game-

playing lab, enabling comfortable participant access to the game board. Each participant sat

in a particular location depending on their role in the game. The survey data were collected

in a separate workstation lab using Qualtrics, a web-based, survey software tool.

To collect high-quality speech data with minimal cross-talk, audio was recorded using

Sennheiser ME 3-ew close-talk microphones. Each microphone was connected to a Presonus

AudioBox 1818VSL multi-channel audio interface sampling at 96k, 24 bits. Audio recordings

were monitored using Reaper Digital Audio Workstation v 4.76. Each game yielded one

stereo recording with the synchronized speech from all speakers, along with 3 or 4 individual

files (one per participant) representing the audio recording from each microphone. Reaper

was used to render .WAV files with a 48000 Hz sampling rate and a 16 bit PCM Wav bit

depth.

To complement the speech, four wall-mounted Zoom Q4 cameras captured WVGA/30

.MOV video recordings. The audio streams recorded from the cameras are at the central

room, not the individual, level. A master audio signal was used to synchronize the videos

with each other and with the audio from the microphones. Note that the videos also provide

backup audio streams (recording at 256kbps AAC) for the microphones. In addition, the
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3-per. 4-per.

# of teams 36 27

avg g1 time 26.5 27.65

avg g2 time 18.1 18.7

Table 2: Team descriptives (n = 63).

videos provide information about the games that are not always obvious from the audio, as

well as non-verbal data for future analysis (e.g., of gesture or posture).

3.1.5 Descriptive Statistics

The 216 participants in the experiment were on average 25.3 years old (min=18, max=67,

SD=11.3). There were 135 females (62.5%) and 81 males (37.5%). The highest level of

education (whether completed or not) ranged from high school (28 participants, 13.0%)

to undergraduate (153 participants, 70.8%) to postgraduate/professional (35 participants,

16.2%). 145 participants (67.1%) were currently students. 35 participants (16.2%) knew at

least one of their team members. The most frequent self-reported ethnicity/races were Cau-

casian (166), Asian (31), Black (24), and Hispanic (10) (multiple ethnicities were allowed).

Table 2 shows the distribution of the teams in the corpus by team size (3 versus 4

person). For each of these groups of teams, the table also shows the average time they

took in minutes to play games 1 and 2, respectively. A 2-way ANOVA shows a significant

within-team effect for game, with first games taking significantly longer than second games

(27.1 vs. 18.4 minutes, p < .001). The average game length did not significantly differ by

team size (p > .3).

One team’s game 2 audio file was not properly saved during the experiment. To be

consistent, I removed that team and used the remaining 62 teams in all of our experiments

for both game 1 and 2.
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3.1.6 Audio Segmentation and Transcription

After the experiment was completed, our multiple audio track speech was manually seg-

mented and transcribed using the Higgins Annotation Tool4. To do transcription, each

participant’s speech is first segmented into inter-pausal units, pause-free chunks of speech

from a single speaker (Levitan and Hirschberg, 2011). The threshold used for pause length

(i.e., silence) for this corpus is 200 milliseconds. Once speech is segmented in a specific audio

track, a corresponding text line appears where the transcriber manually types in the text for

the corresponding audio segment. Five game 2 transcriptions were not completed, so I have

transcriptions of 57 teams for game 2.

3.1.7 Questionnaire Data

The pre-game questionnaire was used to collect individual demographic information such as

discussed in section 3.1.5, and self-reported data related to personality (John et al., 1991),

cognitive styles (Miron et al., 2004), and collective orientation (“the propensity to work

in a collective manner in team settings” (Driskell et al., 2010)). The between and post-

game questionnaires elicited perceptions of team processes such as cohesion, satisfaction,

and potency/efficacy (Wendt et al., 2009; Wageman et al., 2005; Guzzo et al., 1993). Such

information is a novel resource for studying multi-party entrainment, since team processes

have been shown to be positively related to performance (Beal et al., 2003; Mullen and

Copper, 1994).

3.1.8 Perceived Interpersonal Team Outcome Measures

The between and post-game self-report questionnaires (see Appendices for the relevant sub-

set of the questionnaires) that individuals took after each game include perceptions of cohe-

sion (Wendt et al., 2009), general team satisfaction (Wageman et al., 2005), potency/ efficacy

(Guzzo et al., 1993), and an adapted measure of shared cognition (Gevers et al., 2006), all

of which had scale alpha reliabilities of ≥ .70. Because these four measures are highly corre-

4http://www.speech.kth.se/hat/
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lated, I z-scored each separate outcome and averaged these scores to make a single omnibus

favorable group perception scale (alpha post-game1 = .78) and then averaged them for each

team to create a team-level (positive) favorable outcome. The self-report surveys contained

perceptions of three types of conflict (task, process, and relationship) (Jehn and Mannix,

2001) (each with alpha post-game1 ≥ .7). I z-scored the process conflict and averaged it

in the groups to construct a team-level process conflict outcome. I chose process conflict

over the other two conflict measures since process conflict was the only conflict measure that

could be split at the median without making arbitrary choices 5.

3.2 FEATURES

In this thesis, I examine entrainment at acoustic-prosodic and lexical levels. At acoustic-

prosodic level, I examine eight typical features that are used in the previous work (Levitan

and Hirschberg, 2011; Levitan et al., 2012):

• Intensity mean

• Intensity max

• Intensity standard deviation

• Pitch (f0) mean

• Pitch (f0) max

• Pitch (f0) standard deviatio

• Jitter6

• Shimmer7

These features are computed from the audio files using Praat (Boersma and Heuven,

2002), an open-source audio processing software.

At the lexical level, I examine both content and functional words. In one setting, I

measure entrainment on content words which are related to the topic of discussion and

5The median split is required for our classification tasks.
6The average absolute difference between the amplitudes of consecutive periods, divided by the average

amplitude.
7The average absolute difference between consecutive periods, divided by the average amplitude.
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are semantically meaningful. The detailed discussion is in Chapter 4. In another setting,

for consistency with prior work (Danescu-Niculescu-Mizil et al., 2012), I measure lexical

entrainment on eight LIWC-derived categories of function words (Pennebaker et al., 2001)

that have little semantic meaning and are more relevant to style than content. These eight

categories (451 lexemes total) are:

• Articles

• Auxiliary verbs

• Conjunctions

• High-frequency adverbs

• Impersonal pronouns

• Personal pronouns

• Prepositions

• Quantifiers

3.3 EXPERIMENT SETUPS

Here, I discuss the pre-processing and evaluation methods that I utilized throughout this

work. The details specific to each experiment are discussed in the corresponding chapters.

3.3.1 Pre-processing

The raw audio is used to extract the acoustic-prosodic features. I did not remove the silences.

Transcripts are pre-processed before extracting lexical terms by removing punctuation marks,

converting all words to lower case, removing noises such as laughter, and removing any part

of the transcript indicated as not fully understood by transcribers. For the study of content

words, these steps are also added to the pre-processing: removing stop-words, removing filled

pauses, and stemming the words.
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3.3.2 Evaluation Approaches

To evaluate the proposed entrainment measures throughout this thesis, I will use two of

the most common approaches. The first approach is to verify the validity of the proposed

measures. The second approach is to test the utility of the measures at predicting social

outcomes. Both of these methods are extrinsic evaluation. An intrinsic evaluation, if possible,

is very expensive since human annotation of entrainment is a very complicated task specially

at acoustic-prosodic level.

3.3.2.1 Evaluating Validation: One important criteria is that the entrainment mea-

sure should be valid or meaningful. In other words, the existence of entrainment should not

be incidental. To evaluate this criteria, existing studies use fake vs real conversations (De

Looze et al., 2014; Lee et al., 2011; Jain et al., 2012b). If the measure is valid, there should be

a distinguishable difference between the real conversations and the fake conversations that

are built using random permutations. Also, we might expect that a classification method

that use entrainment values as features should be able to detect fake and real conversations

better than random.

To evaluate validity of measures, I generate a random permutation of each game in

the corpus. Then, I perform a binary classification using the team entrainment values as

features to predict if each instance in data is real or permuted. So, the size of the data in

this experiment is double the size of the real data.

To generate the permuted version of each game, from audio files or transcriptions, I ran-

domly permute speech and silence intervals of each speaker independently. So, the speakers

are the same in both fake and real versions of each team. As a result, the vocabulary of

speakers are the same for both fake and real versions of each game. The only difference is

the ordering of the speech and silence intervals for each speaker. Using these permutations,

I generate the permuted version of each audio and transcription file for each game and I add

them to the corpus.
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3.3.2.2 Evaluating Utility at Predicting Team Outcomes: Another extrinsic eval-

uation approach that has been utilized to examine the quality of entrainment measures is

to test their ability to predict speakers’ or interactions’ characteristics that are known to

be associated to entrainment such as social statues, power, and positive or negative af-

fect (Danescu-Niculescu-Mizil et al., 2011; Doyle et al., 2016b; Lee et al., 2011).

Similarly, I examine the relation between multi-party entrainment and the two self-

reported measures of perception of team outcomes explained in section 3.1.8: favorable

outcome and process conflict. I examine these relations using regression or classification

tasks.

Regression analysis is done using the team outcome as the dependent variable and the

multi-party entrainment as the independent variable. In classification task, I split the favor-

able outcome and process conflict at the median and generate two binary outcome variables.

Then, I examine the utility of multi-party entrainment measures at predicting these binary

outcome variables using binary classification tasks.
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4.0 MULTI-PARTY ENTRAINMENT AT MULTIPLE LINGUISTIC

LEVELS

Proximity and convergence are two important entrainment measures that has been used

frequently in dyadic interactions (Levitan and Hirschberg, 2011; Levitan et al., 2012) and

showed correlation with task and dialogue quality measures. The first step toward the

analysis of entrainment at multi-party dialogue is to extend the dyadic measures to multi-

party ones and show that entrainment exist in the corpus.

Some research has attempted to show that entrainment co-occurs at multiple linguis-

tic levels, with varying success (Reitter and Moore, 2007; Heath, 2017). Recent attempts

to quantify entrainment in multi-party dialogues has mainly been conducted on written

language from text based communication (Internet forums, Twitter, emails, etc.) (Danescu-

Niculescu-Mizil et al., 2011; Mukherjee and Liu, 2012; Munson et al., 2014). Consequently,

there are few studies that measure multi-party entrainment on spontaneous spoken conver-

sations (Danescu-Niculescu-Mizil et al., 2012; Friedberg et al., 2012; Litman et al., 2016).

Since spoken dialogues have several linguistic modalities, studying the relation between en-

trainment at different modalities is another interesting research question that has not get

much attention yet. Further, because many multi-party entrainment studies measure se-

mantically light words (like filled pauses or grammatical function words) (Gonzales et al.,

2010; Beňuš et al., 2012), there are few investigations that analyze group entrainment on

lexical items with more semantic content. In this chapter, I take a multi-modal approach

by integrating and extending prior work on semantically rich lexical (Friedberg et al., 2012)

and acoustic-prosodic group entrainment.

I extend the dyadic convergence and proximity measures to multi-party by simple av-

eraging of pairwise entrainment as it was done in previous studies (Friedberg et al., 2012;
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Gonzales et al., 2010). Next, I perform an analysis on acoustic-prosodic and lexical en-

trainment to examine three hypotheses: H1) both acoustic-prosodic and lexical entrainment

occur in multi-party team dialogues, H2) teams that entrain on one linguistic level are more

likely to entrain on the other level, and H3) a multi-modal model with lexical and acoustic-

prosodic entrainment features will better predict team outcomes than a unimodal model. I

believe that investigating these hypotheses will provide insights about entrainment at mul-

tiple modalities.

In the next section, I describe the entrainment measures, convergence and proximity,

that I adopt from prior works (Levitan and Hirschberg, 2011; Friedberg et al., 2012; Litman

et al., 2016). Then, I explain the methods that I use to extract acoustic-prosodic and lexical

features for computing entrainment. Finally, I will explore the three proposed hypotheses

and discuss the results.

4.1 MULTI-PARTY PROXIMITY AND CONVERGENCE

In this chapter, I utilize two conversation-level (global) measures of entrainment: proximity

and convergence. Proximity measures the degree of similarity between members within a

team relative to participants in other teams. Convergence measures the change in similarity

of teammates over time. These two forms of entrainment are shown in Figure 2. I utilize

multi-party proximity and convergence measures 1 which average the corresponding dyad-

level measures (Levitan and Hirschberg, 2011).

I quantify average distance of team partners (TDiffp) using Equation 4.1, where |team|

refers to the size of the corresponding team and featurei (e.g., from the acoustic-prosodic

and lexical levels described below) is the value of the corresponding feature for speaker i:

TDiffp =

∑
∀i 6=j∈team(|featurei − featurej |)

|team| ∗ (|team| − 1)
(4.1)

To quantify team distance to the set of non-team (i.e. other) participants |X|, I follow a

1This part of my research is originally published in (Litman et al., 2016).
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Figure 2: Proximity and Convergence. The circles and triangles represent feature values

from two different speakers partnered in a conversation. Squares represent feature values of

a speaker from another group (not partnered with the other two speakers).
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similar calculation in Equation 4.2:

TDiffo =

∑
∀i∈team(

∑
∀j∈X |featurei−featurej |

|X| )

|team|
(4.2)

Proximity and convergence are then defined in Equations 4.3 and 4.4, respectively.

Greater positive values indicate more team entrainment. For calculating convergence, note

that the feature values are extracted from 2 different non-overlapping intervals.

proximity = TDiffo − TDiffp (4.3)

convergence = TDiffp,Interval1 − TDiffp,Interval2 (4.4)

4.2 ACOUSTIC-PROSODIC FEATURE LEVEL

Consistent with prior work on dyad entrainment (Levitan and Hirschberg, 2011; Lubold and

Pon-Barry, 2014; Borrie et al., 2015), I extract features of pitch, intensity, jitter, and shimmer

using Praat software (Boersma and Heuven, 2002). Pitch describes the frequency of sound

waves, intensity describes the loudness or energy transported by the wave, and jitter and

shimmer (acoustic characteristics of voice quality) measure frequency and energy variation,

respectively. Specifically, I extract the following 8 features: maximum (max), mean, and

standard deviation (SD) of pitch; max, mean, and SD of intensity; local jitter; and local

shimmer. The features are extracted first from the whole conversation at game level, then

from two non-overlapping intervals.

4.3 LEXICAL FEATURE LEVEL

Since (Nenkova et al., 2008; Friedberg et al., 2012) showed that speakers’ entrainment on

high-frequency words was significantly correlated with task success, social variables, etc., I
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follow a similar methodology in this work. First, I select a set of lexical terms that I want to

examine for entrainment. Second, I extract the frequencies for each term overall and for each

speaker, with the latter normalized by the total number of terms uttered by the speaker.

These normalized counts are the features in my entrainment measures. As in (Friedberg

et al., 2012), I sum all term entrainment scores to get one final group entrainment score.

I first used existing methods to extract a set of terms:

HighTF-all: This term frequency method replicates (Nenkova et al., 2008). I choose

the 25 most frequent words in the corpus. The idea behind this method is to avoid sparsity

in my feature set.

HighTF-game: This method replicates (Friedberg et al., 2012). I choose the 25 most

frequent words for each individual game (rather than all corpus games). The idea behind

this and all other game-based methods is to select terms that are specific to each team.

ProjectWords-all: This method replicates (Friedberg et al., 2012). I extract game re-

lated words from the instructions that were handed to participants. Then, to avoid selecting

rare words in the corpus, I select the 25 most frequent words in the corpus which occur in

the instruction materials to avoid selecting off-topic words.

Since speakers may exhibit variation in the forms of words that they use, I hypothesize

that extracting project words might not be the best approach for choosing game-related

words. Consequently, I add a new data driven term-extraction approach utilizing topicSig 2,

an automatic topic signature acquisition algorithm that recognizes relevant topic words in

a document (Lin and Hovy, 2000). The algorithm identifies key terms by associating a

certain topic with a signature, or a vector of related words and their associated weights of

relation to the topic. Relational weights are calculated according to a likelihood ratio (λ)

that compares the competing hypotheses values that the probability of the presence of a

given word is indicative of a certain topic versus the probability that it is not. Probabilities

are calculated by weighing the distribution of a certain word in the target corpus against

its distribution in a background corpus. The transformed quantity −2 log(λ) asymptotically

follows a chi-square distribution, allowing us to select a significance level to set a threshold

for selecting topic words. For my background corpus, I used part of transcripts for second

2topicSig is a Java implementation of Annie Louis’ algorithm.
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Method Top 10 Terms

HighTF-all
yeah, ok, one, oh, two, move,

card, right, get, three

ProjectWords-all
one, two, move, card, right, get,

three, give, shore, turn

topicSig-all (λ = 10)
templ, treasur, card, discard, draw,

gate, pilot, pile, flood, action

Table 3: Top 10 terms from different extraction methods.

games in the Teams corpus. Finally, I extract two sets of terms using the topic signature

algorithm:

topicSig-all: I extract the topic signature when the target is the whole corpus. I select

λ = 10 (p = 0.016), which is the default algorithm setting, and λ = 4 (p = 0.05) as this is a

standard cutoff for statistical significance.

topicSig-game: I extract the topic signature for only the first game for each team. To

address data sparsity issues, I only use the more lenient λ = 4 (p = 0.05) and only select

terms that occur more than 5 or 10 times3 for analysis.

To illustrate the terms selected by each type of lexical term selection method, Table 4.3

shows the top 10 terms (sorted by frequency and shown stemmed) for the “all” versions

of each method. HighTF-all includes words such as “yeah”, “oh”, “ok” which are not

semantically-rich. The ProjectWords-all terms do not have this issue since words absent

from the project materials are omitted. The topic signature method also avoids this issue

and additionally omits the most general project words.

3These cutoffs should be tuned to optimize performance in the future.
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4.4 EXPERIMENTS AND RESULTS

4.4.1 Preprocessing

The raw audio is used to extract the acoustic-prosodic features. These features are normal-

ized by gender when computing proximity since team partners (TDiffp) are compared with

participants from other teams (TDiffo). The normalization is done using z-scores:

z =
vi − µ
σ

(4.5)

where vi is the value of the feature for speaker i, µ is gender mean value of the feature,

and σ is gender standard deviation of the feature. I do not normalize for convergence since

only team partners are compared (TDiffp) (at different time intervals).

The transcripts are preprocessed before extracting lexical terms by: removing punctu-

ation, converting all words to lower case, removing stop-words, removing filled pauses and

noises such as laughter, removing any part of the transcript indicated as not fully understood

by transcribers, and stemming all words.

Since convergence requires feature extraction from two non-overlapping intervals, in this

section, I break each conversation into two equal halves. To be consistent, I use time to

compute the halves for both the audio and transcripts. For transcripts, all utterances that

begin before the breaking point are included in the first half, regardless of when they end,

and the rest are included in the second half.

4.4.2 Experiment 1: Unimodal Entrainment

My first hypothesis is that both acoustic-prosodic and lexical entrainment exist in the corpus.

To test this hypothesis, I measure entrainment (proximity and convergence) using the meth-

ods for computing lexical and acoustic-prosodic features and look for statistically significant

results in the corpus. I employ the Student’s paired t-test to determine if the differences

between partners and others (proximity), and the differences between the first and second

intervals (convergence) are significant.
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Feature Proximity Convergence

Intensity max 3.327∗ -0.189

Intensity mean 3.264∗ 0.413

Intensity SD 1.823+ -1.667

Pitch max 1.171 0.952

Pitch mean 0.550 -1.782+

Pitch SD 2.741∗ 1.319

Jitter 2.159∗ 2.234∗

Shimmer 2.444∗ 2.748∗

HighTF-game -0.879 -0.102

HighTF-all 3.919∗ 0.657

ProjectWords-all 2.545∗ 0.333

topicSig-game (>10) 1.156 -0.790

topicSig-game (>5) 0.381 -1.174

topicSig-all (λ = 4) 4.265∗ 0.644

topicSig-all (λ = 10) 0.606 0.647

Table 4: The T-statistic of paired t-test on proximity and convergence at acoustic-prosodic

and lexical levels. The positive T-statistic is a sign of entrainment. The entrainment is

significant if the p-value is < 0.05 (*) and trending if < 0.1 (+).
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The results are in Table 4. At the lexical level, HighTf-all, ProjectWords-all, and

TopicSig-all (λ = 4) show significant proximity. All features except HighTF-game show

proximity (have positive T-statistic) which means the partners are more similar to each other

than to non-partners. At the prosodic level, only pitch-mean and pitch-max do not show

significant proximity. These results indicate that proximity occurs at both acoustic-prosodic

and lexical levels. However, I only see significant lexical proximity when the lexical terms

are extracted from the whole corpus (as opposed to from an individual game). Even though

I filtered out very low frequency terms (below either 5 or 10) when using topicSig-game, data

sparsity might still be an issue and needs further investigation.

As for the convergence measure, Pitch mean shows a near significant divergence and

Jitter and Shimmer show significant convergence from the first to the second interval. None

of the lexical features show any significant results although HighTF-all, ProjectWords-all,

and TopicSig-all show positive convergence. Note that the number of observed significant

entrainment results are reduced in both linguistic levels for convergence as compared to

proximity. For the lexical level, this might be because of the short length of the dialogues.

Because the term frequencies are not very high for each individual in each game, when I

break the game into halves these numbers are even smaller in each interval.

As a validity check for convergence, for each of the 62 teams, I constructed artificial

versions of the real conversations between team members: For each member of the team,

I randomly permuted the silence and speech intervals extracted by Praat. For the lexical

entrainment, I randomly permuted the speech and silence intervals based on transcriptions.

Ideally, I should not see evidence of convergence within these constructed conversations. The

results of paired student t-test, confirm that there is no significant entrainment on the fake

games, for all acoustic-prosodic and lexical features.

In conclusion, my first hypothesis is supported. Both acoustic-prosodic and lexical en-

trainment exists in my corpus.
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4.4.3 Experiment 2: Multimodal Co-Occurrence

My second hypothesis is that entrainment not only separately occurs at both acoustic-

prosodic and lexical levels but also it co-occurs across levels for individual teams. In other

words, the teams that show entrainment in one level are more likely to show entrainment in

the other level. To investigate this hypothesis, I quantify the correlations between acoustic-

prosodic and lexical entrainment on both proximity and convergence. Significant positive

correlations will support this hypothesis.

To calculate correlation, I employ the Spearman correlation coefficient. The significant

results are in Table 5. In terms of proximity, multiple acoustic measures have significant

(Pitch mean and max) or trending (Intensity SD and max) positive correlations with at

least one lexical measure. In terms of convergence, Intensity SD also has significant positive

lexical correlations. As with Experiment 1, there are more results when proximity rather

than convergence is used to measure entrainment. In contrast to Experiment 1, however,

extracting terms at the game rather than the corpus level now seems to be more useful.

In conclusion, I observe that within a team, lexical and acoustic-prosodic entrainment

show signs of positive correlation, which supports my second hypothesis. However, I also see

some negative correlations (indicating inverse relationship between the two variables) which

needs further investigation.

4.4.4 Experiment 3: Benefit of Multimodal Analysis

My third hypothesis is that a multimodal model which includes both lexical and acoustic-

prosodic entrainment as predictors of team outcomes will outperform a unimodal acoustic-

prosodic model. To test this hypothesis, I use a hierarchical multiple regression to first con-

struct a model with only acoustic-prosodic entrainment features (Model 1), then add lexical

entrainment features to construct a multimodal model (Model 2). Significant improvement

in the second model will support my hypothesis.

Table 6 shows the hierarchical regression results for each of the favorable and conflict

team outcome measures introduced in Section 3.1.8. For example, when all of the acoustic-

prosodic entrainment values were entered as potential independent variables for predicting
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Lexical Acoustic r

Proximity

HighTF-all
Intensity SD 0.245+

Pitch mean 0.279∗

HighTF-game Pitch SD -0.263∗

topicSig-game
(>5)

Pitch mean 0.270∗

Pitch max 0.261∗

topicSig-game
(>10)

Pitch SD -0.218+

Intensity max 0.227+

Convergence

HighTF-all Intensity SD 0.283+

HighTF-game Intensity SD 0.292∗

topicSig-game
(>5)

Pitch SD -0.255∗

Intensity SD 0.272∗

Table 5: Spearman correlation (r) between lexical and acoustic-prosodic proximities and

convergence. The correlation is significant if the p-value is < 0.05 (*) and trending if it is

< 0.1 (+).

Favorable outcome, a significant model containing Pitch mean proximity and Intensity SD

proximity resulted (Model 1). After lexical entrainment features were considered, topicSig-

all convergence was added to create Model 2 (which still includes the Model 1 features). The

standardized βs indicate the effect size and direction of the individual independent variables

on the dependent variable, whereas the R2 indicates the effect size of the model with all

variables.
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Dependent Features M1 (β) M2 (β)

Favorable

P-Intensity SD 0.206+ 0.249*

P-Pitch mean -0.343* -0.301*

C-topicSig-all 0.300*

R2 0.162 0.248

F 5.695* 6.382*

Conflict

P-Pitch mean 0.439* 0.411*

C-topicSig-all -0.208+

R2 0.192 0.235

F 14.299* 9.064*

Table 6: Regression between entrainment and favorable (conflict) outcome measures. C, P,

M refer to convergence, proximity, model. Significant / trending results if p-value is < 0.05

(*) or < 0.1 (+).

For Favorable outcome as the dependent variable, the independent entrainment vari-

ables which are significant covariates and that appear in the final hierarchical model are

Intensity SD proximity, pitch mean proximity, and topicSig-all (λ = 10) convergence. Two

of these (pitch mean proximity and topicSig-all (λ = 10) convergence) also appear in the

Conflict model. For multi-modal prediction of Favorable outcome, the amount of variance

explained is significant above and beyond the variables entered in Model 1, ∆R2 = 0.086,

∆F (1, 58) = 6.662, p = 0.012. There was a significant positive association between topicSig-

all and Favorable outcome. For Conflict, the amount of variance explained by Model 2 over

Model 1 is trending, ∆R2 = 0.043, ∆F (1, 58) = 3.284, p = 0.075, with a significant negative

association between topicSig-all convergence and Conflict. I performed a similar experiment

by first entering the lexical entrainment features to the model and I got the same conclu-

sion. These results support my last hypothesis that multimodal models predicting team

outcomes using both lexical and acoustic-prosodic entrainment will outperform unimodal

models considering only acoustic-prosodic entrainment.
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4.5 CHAPTER SUMMARY

In this chapter, I examined existence of entrainment (proximity and convergence measures)

on a multi-party spoken dialogue corpus on two linguistic levels of acoustic-prosodic and

lexical. I used simple averaging to calculate team entrainments. I showed that entrainment

exists at both lexical and acoustic-prosodic levels; entrainment at these levels has significant

correlation with each other; and a multi-modal model using both levels can predict the team

outcomes significantly better than a unimodal model.

41



5.0 MULTI-PARTY WEIGHTED CONVERGENCE

Recently, a few researchers have studied multi-party entrainment in online communities and

conversation groups (Gonzales et al., 2010; Friedberg et al., 2012; Danescu-Niculescu-Mizil

et al., 2012; Litman et al., 2016). Regardless of which approach these studies use to measure

entrainment, they utilize simple averaging to extend pair-level measures to group-level ones,

as I did in the previous chapter. But, the question is can I do better than simple averaging?

Although we get valid results using simple averaging, we are discarding the properties and

behaviors of different groups that might actually improve the accuracy of group entrainment

measures.

In this chapter, first, I perform a case-study analysis on convergence measure and I show

that simple averaging is unable to capture at least two properties of multi-party convergence.

So, in order to improve the limitations, I propose a new weighted convergence measure that

utilizes group dynamics.

5.1 NON-WEIGHTED CONVERGENCE FOR MULTI-PARTY DIALOGUE

The convergence measure that I extend in this study is adopted from prior work. Originally,

convergence between dyads (Levitan and Hirschberg, 2011) was measured by calculating the

difference between the dissimilarity of speakers in two non-overlapping time intervals. If

the dissimilarity in the second interval was less than in the first, the pair was said to be

converging.

Extending this work, multi-party convergence (Litman et al., 2016) was measured using

Non-Weighted (NW) averaging of each pairs’ convergence, as shown in Equations 5.1 and
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5.2:

GroupDifft =

∑
∀i 6=j∈group(|fi,t − fj,t|)
|group| ∗ (|group| − 1)

(5.1)

ConvNW = GroupDifft1 −GroupDifft2 (5.2)

GroupDifft corresponds to average group differences calculated for linguistic feature f

in time interval t for all pairs (i,j) in the group. |group| refers to the size of the group. The

convergence is the difference between GroupDiffs in two intervals.

5.2 CASE STUDY ANALYSIS OF CONVERGENCE

I divide each game into four equal disjoint intervals to get better insight of the behavior

of individuals, as opposed to comparing two intervals. I extract the following 8 acoustic-

prosodic features: maximum (max), mean, and standard deviation (SD) of pitch; max, mean,

and SD of intensity; local jitter1; and local shimmer2. The features are extracted from each

of the four intervals of each speaker in each team.

First, I perform a significance test to find out which features show significant convergence

and on which intervals. The results of the repeated measures of ANOVA with interval as

a factor with 4 levels are shown in Table 7. ‘c’ and ‘d’ are indicative of significant conver-

gence and divergence on the corresponding intervals respectively. For example, speakers are

significantly converging on shimmer from interval 1 to 3.

5.2.1 Is Simple Averaging a Proper Approach?

While previous studies have averaged pairs’ entrainment to measure multi-party entrainment,

it remains uncertain whether simple averaging is an optimal approach. What are the flaws

and weaknesses of this approach and how can we improve them?

1The average absolute difference between the amplitudes of consecutive periods, divided by the average
amplitude.

2The average absolute difference between consecutive periods, divided by the average amplitude.
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Features ANOVA Pairwise Comparisons

1-2 1-3 1-4 2-3 2-4 3-4

Pitch-max

Pitch-mean * d d d

Pitch-sd

Intensity-max

Intensity-mean

Intensity-sd

Shimmer * c c c c

Jitter * c c

Table 7: The results of the repeated measures of ANOVA. * indicates the p-value < 0.05.

Pairwise comparisons indicate which intervals are significantly different. The direction (con-

vergence or divergence) is represented by c and d respectively.

I argue that there are some group-specific behaviors that are not properly quantified using

the simple averaging method. To demonstrate this with real examples from the corpus, I

perform a within-team analysis in which I examine the behavior of individuals within each

team and the relationship between their behaviors and team convergence.

For this purpose, I draw the plots of raw values of the feature for each team on all 4

intervals in game 1. I chose jitter and shimmer as my features of interest since they are

the only features that demonstrated significant convergence. I sort all the teams by their

convergence values computed by Equation 5.2. For example, the convergence of each team

from interval 1 to interval 4 is defined as GroupDiff1 −GroupDiff4.

I examined the plots of all diverging, converging, and maintaining teams. I argue that

there are at least two general cases that the simple averaging approach is unable to capture

in the groups’ behavior. I describe these two cases as follows.

First, how many of the team members are required to converge in order to consider the
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Figure 3: The plot of jitter of individuals over all four intervals in two diverging teams. Each

point is the jitter value calculated for corresponding speaker at corresponding interval using

the Praat software. S is short for speaker. M and F are indicative of gender. (a) Convergence

from interval 1 to 4 calculated using Equation 5.2 is equal to −0.0139 (b) Convergence from

interval 1 to 4 calculated using Equation 5.2 is equal to−0.0199

team to be converging overall? According to the simple averaging method, the answer is

that the number of converging or diverging pairs does not matter. As long as the average

convergence is higher than the average divergence, we consider the team to be converging. I

argue that this answer is not accurate. For example, consider Figure 3. Each of the plots in

this figure shows the values of jitter for each individual 3 in a team over the four intervals.

Comparing the first and the last intervals, it appears that Figure 3(b) is the most diverging

team in the corpus, based on the convergence measure. But, unlike the team in Figure 3(a),

where all the speakers are diverging from each other, speaker 3 is the only participant to

diverge from the team, while the rest of the speakers converge. The question is, how much

3I included the gender of speakers in the plots. But, there is no significant effect of gender composition
of the teams on convergence value.
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Figure 4: The plot jitter of individuals over all four intervals in the two most maintaining

teams. Each point is the jitter value calculated for corresponding speaker at corresponding

interval using the Praat software. S is short for speaker. M and F are indicative of gender.

(a) Convergence from interval 1 to 4 calculated using Equation 5.2 is equal to 0.00006 (b)

Convergence from interval 1 to 4 calculated using Equation 5.2 is equal to −0.00036

should speaker 3 influence the team convergence in this group?

I argue that the influence of a speaker, such as speaker 3, should lessen if his or her

behavior is in the opposite direction of the team behavior. I hypothesize that the solution

to this problem is to use a weighted average, where the weights are defined based on the

number of speakers that have the same behavior in the team. For example, the weight of a

diverging speaker should be the percentage of diverging individuals in the team. I explain

this proposed approach in the next section.

Second, does the convergence or divergence of speakers in teams have an absolute mean-

ing, similarly as in pairs? An individual might converge to one teammate while diverging

from another one. How do these conflicting behaviors affect the team measure? For example,

consider the two teams in Figure 4. Comparing the first and the last intervals, these two
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teams have the closest convergence value to zero in my corpus, meaning they are the most

maintaining teams. The plot in Figure 4(a) is an obvious case of maintenance where none

of the team members change their feature values to converge toward or diverge away from

the others. But, in Figure 4(b), speaker 1 changes her initial state to converge to speaker 2

while she diverges from speaker 3. I hypothesize that taking into account the self-difference,

or how much each speaker’s feature value has changed over time, will help to resolve this

issue. This hypothesis is not examined in this work and needs to be investigated in future.

5.3 WEIGHTED CONVERGENCE FOR MULTI-PARTY DIALOGUE

In the next subsections, I introduce two weighted variations of convergence: a baseline based

on participation ratios (Friedberg et al., 2012), and the proposed method based on group

dynamics.

5.3.1 Baseline: Weighting Based on Participation

The idea behind this approach is that the weights for speakers that may have talked very

little should be reduced. In prior work on multi-party lexical entrainment (Friedberg et al.,

2012), speaker participation was measured by number of uttered words; the participation

ratios of speaker pairs were then used as the weights.

For acoustic-prosodic features, I measure speaker participation by amount of speaking

time. The Participation Ratio (PR) of each speaker in a given temporal interval is their total

speech time divided by the duration of the interval including silences. Speech and silence

periods are automatically annotated using Praat (Boersma and Heuven, 2002).

Convergence for pair p = (i, j) and for two disjoint intervals t1 and t2 is calculated as in

Equation 5.3:

Convp=(i,j) = (|fi,t1 − fj,t1 | − |fi,t2 − fj,t2 |) (5.3)

The Participation-based Weighted (PW) convergence for a group is then computed as
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the normalized weighted average of convergence of all pairs p in the group:

ConvPW =

∑
∀p∈group(Convp ∗ PRp)
Nump

∑
∀p∈group PRp

(5.4)

Nump indicates number of pairs, and Participation Ratio for a pair, PRp, for the two

intervals is the sum of PRs for both speakers and in both intervals.

5.3.2 Proposed: Weighting Based on Group Dynamics

Although participation-based weighting decreases the contribution of less active speakers

when calculating group convergence, it does not take group convergence dynamics into ac-

count. I hypothesize that it might instead be better to decrease the contribution of speakers

whose convergence behaviors differ from the rest of the group (e.g., Speaker3 in Figure

3(b)). To tackle this issue, I use weighting to decrease the contribution of outlier speakers.

In particular, I propose that the weight for a speaker should be the percentage of individuals

who have the same convergence behavior as the speaker.

Equation 5.5 defines the proposed Group Dynamic-Based Weighted (GDW) convergence

measure:

ConvGDW =
∑
g∈G

|g|
|N |
∗
∑

i∈g
∑

j 6=i∈N Convij

|Numpair|
(5.5)

G is a set including three categories: G = {Converging,Diverging,MixedBehavior}, g is a

set of all individuals who belong to a category in G, |N | is the number of all speakers in the

group, Convij is the convergance of the pair (i, j) calculated by Equation 5.3, and |Numpair|

is the number of pairs.

Consider the example in Figure 3(b). There are 12 pairs (6 unique pairs since convergence

is a symmetric measure). Each speaker is in three unique pairs with the other three members

of the group.

Speaker1 pairs: (1,2),(1,3),(1,4)
Speaker2 pairs: (2,1),(2,3),(2,4)
Speaker3 pairs: (3,1),(3,2),(3,4)
Speaker4 pairs: (4,1),(4,2),(4,3)

If all conversational pairs that a speaker is involved in have positive convergence values,

the speaker is converging to the group and has the Converging category. If all involved
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pairs have negative value, the speaker is diverging from the group. Else, the speaker has a

mixed-behavior.

The weight for each category is the number of speakers who have corresponding behavior

normalized by the group size. For example, for the group in Figure 3(a) where all mem-

bers diverge from each other, the weights will be: converging = 0, diverging = 1, and

mixedBehavior = 0. For the group in Figure 3(b), Speaker 3 has a diverging behaviour

and the rest of group have a mixed behaviour. Thus, the weights are: converging = 0,

diverging = 1/4, and mixedBehavior = 3/4. So, the group convergence for this example is

as follows:

ConvGDW = 0 ∗ 0 +
1

4
∗ C(2) +

3

4
∗ [C(1) + C(3) + C(4)]

where C(i) is shortened for sum of pair convergences for speaker i normalized by the

number of pairs. For example C(2) is equal to:

C(2) =
C(2, 1) + C(2, 3) + C(2, 4)

12

5.4 EXPERIMENTS AND DISCUSSION

I break each game into four equal intervals4 (including silences) and choose the first and

last intervals to compute convergence for eight acoustic-prosodic features: maximum (max),

mean, and standard deviation (SD) of pitch; max, mean, and SD of intensity; local jitter;

and local shimmer. The features are extracted from each of the first and last intervals for

each speaker in each team.

I evaluate the measures in two tasks that have been used for convergence measure eval-

uations in previous studies (De Looze et al., 2014; Lee et al., 2011; Jain et al., 2012b; Doyle

et al., 2016b; Lee et al., 2011).

4Any method of breaking the games to compare two disjoint intervals can be used.
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Predicting Team Outcomes: The first task examines how the NW, PW, and GDW

measures of acoustic-prosodic convergence (independent variables) relate to the team out-

come measures (dependent variables) from Section 3.1.8. This is similar to prior studies

which have evaluated convergence in terms of predicting outcomes (Doyle et al., 2016b;

Lee et al., 2011). I hypothesize that the group-dynamic weighted convergence measure will

outperform the non-weighted and participation-based measures.

First, I train a hierarchical multiple regression with each of the three groups of conver-

gence measures, added once in the first level and the other time in the second, to measure

if the second level predictors significantly improve the explanation of variance. I only keep

predictors with significant coefficients when presenting the models.5

For Process Conflict, the results show that all NW, PW, and GDW predictor groups

are as good as each other; no matter which group is entered in the first level, the predictors

in the second level do not significantly improve model fit.

For Favorable, neither PW nor NW in the second level significantly improves per-

formance. However, Table 8 shows that adding the GDW measures at the second level

significantly improves a model with only NW features at the first level. The amount of

variance explained in Model 2 is significantly above and beyond Model 1, ∆R2 = 0.048,

∆F (2, 119) = 3.179, p = 0.045. The reverse order, GDW at first level and NW at the sec-

ond level, shows that the improvement at the second level is not significant, ∆R2 = 0.031,

∆F (2, 119) = 2.068, p = 0.131. These results indicate that the proposed weighted (GDW)

convergence (for intensity max and SD) are the best predictors of the favorable social out-

come compared with the other two measures of convergence.

Next, I reduce the task from regression to a binary classification by splitting the two social

outcome variables at the median. I perform Leave-One-Out Cross-Validations (LOOCV)

using a logistic regression (L2) algorithm and all eight acoustic-prosodic features to predict

binary outcomes. I use both game 1 and game 2 to increase the size of the training set (123).

The results in Table 9 show that the GWD model significantly6 outperforms both PW and

5To control for the effect of first versus second dialogue (game) for each group, I also included an inde-
pendent variable for game. However, the coefficient was never significant.

6Corrected paired t-test was performed to address instance dependency from both games (Nadeau and
Bengio, 2000).
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Independent Vars M1 (β) M2 (β)

Intensity max (NW) 0.248* -0.164
Intensity SD(NW) -0.055 -0.479+
Intensity max(GDW) 0.430+
Intensity SD(GDW) 0.457+

R2 0.063 0.110
F 4.034* 3.678*

Table 8: Hierarchical regression results with intensity max and SD convergence as indepen-

dent, and Favorable as dependent, variables. The NW measures are added in the first level

and GDW measures in the second level. Significant / trending results if p-value is < 0.05

(*) or < 0.1 (+).

Favorable Process Conflict

Majority 50 53
NW 50 66.93
PW 53.23 67.74+(GDW)
GDW 62.90** 62.90
GDW+PW 58.87 66.13

Table 9: LOOCV prediction accuracies of binary favorable social outcome and process

conflict variables. (**) indicates GWD model significantly outperforms both PW and NW

models. (+) indicates PW improvement over GDW is trending.

NW models to predict the favorable social outcome. In the prediction of process conflict,

the PW model outperforms both NW and GDW models and its improvement over GDW is

trending.

In sum, the results in both tables support my hypothesis for the favorable social outcome,

where the proposed GDW convergence measure is a better predictor of the outcome. For

process conflict, we do not see any significant difference.

Predicting Real Dialogues: The existence of entrainment should not be incidental. To

evaluate this criteria, I use permuted versus real conversations as in (De Looze et al., 2014;

Lee et al., 2011; Jain et al., 2012b). I hypothesize that GDW will be the best convergence

51



All Game1 Game2

Majority 50 50 50
NW 54.43 60.48 49.19
PW 53.62 58.06 51.61
GDW 54.03 67.74*+ 48.39

Table 10: Accuracies using the linear SVM models and LOOCV to predict real conversa-

tions. (+) indicates GWD outperforms NW with p = 0.06 , (*) indicates GWD outperforms

PW with p = 0.004.

measure for distinguishing real versus permuted dialogues.

For each of the 124 game sessions, I construct artificially permuted versions of the real

dialogues as follows. For each speaker, I randomly permute the silence and speech intervals

extracted by Praat. Next, I measure convergence for all the groups with permuted audios.

I perform a leave-one-out cross-validation experiment to predict real conversations using

the convergence measures. I examined several classification algorithms including logistic

regression; linear SVM was the only one that showed significant results.

The “All” results in Table 10 show that none of the models significantly outperform the

majority baseline. To diagnose the issue, I perform the prediction on each game separately.

The proposed GDW model significantly outperforms other models for Game 1. However, for

Game 2, none of the results are significantly different. One reason might be that convergence

occurs quickly during Game 1, and there is not much convergence occurring at Game 2. Thus,

there is no significant difference between permuted and not permuted convergence for any

of the features during Game 2.

5.5 CHAPTER SUMMARY

In this chapter, I introduced a new weighted convergence measure for multi-party entrain-

ment which utilizes group convergence dynamics to weight pair convergences. Experimental
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results show that the proposed weighted measure is more predictive for two evaluation tasks

used in prior entrainment studies: predicting favorable social outcomes and predicting real

versus permuted conversations. In general, a proper weighting of the dyad-level measures

performs better than non-weighted averaging in multiple tasks.
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6.0 MULTI-PARTY ENTRAINMENT: FROM DIRECTIONAL MEASURES

TO VECTOR REPRESENTATIONS

In previous chapters, I studied multi-party entrainment using symmetric measures such

as convergance and proximity. Another category of entrainment measures are asymmetric

measures (Lee et al., 2011; Danescu-Niculescu-Mizil et al., 2011, 2012; Doyle and Frank,

2016; Doyle et al., 2016a) where entrainment of A to B is not the same as entrainment of B

to A. This directionality contains knowledge about the dynamics of entrainment relations

in mutli-party groups and can be utilized to improve multi-party entrainment measurement.

In this chapter, I utilize an existing asymmetric measure introduced in (Danescu-Niculescu-

Mizil et al., 2011) to measure pairwise entrainment and propose new multi-party measures

that better incorporate group dynamics.

In the first part of this chapter, I investigate whether there is a time-lag between the

source and target utterances in groups using an asymmetric measure and a proposed window

algorithm. In the second part, I propose a graph-based vector representation for multi-party

entrainment. I incorporate the dynamics of entrainment relations estimated by the pairwise

asymmetric measure.

6.1 MULTI-PARTY ADAPTIVE ENTRAINMENT AND TIME-LAG

One of the entrainment measures that has been studied for both multi-party groups and

pairs is adaptive entrainment (Danescu-Niculescu-Mizil et al., 2011; Doyle and Frank, 2016).

Unlike other similarity-based measures, adaptive entrainment does not simply estimate sim-

ilarity in the language of the speakers but how one adapts her language to the other. The
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Figure 5: An example multi-party conversation. The lines show the conversation by three

speakers A, B, and C. Each rectangle is an IPU.

adaptive measure that I utilize in this chapter (Danescu-Niculescu-Mizil et al., 2012) is ex-

plained in details in section 6.1.1. In adaptive measures, the similarity is the direct influence

of the interlocutor’s language. So, the first question, regardless of the method of calculating

influence or similarity, is what is the source of influence?

Previous studies (Danescu-Niculescu-Mizil et al., 2011, 2012; Doyle and Frank, 2016) have

considered the immediately preceding inter-pausal unit (IPU) (for spoken conversations) or

the immediately preceding utterance (for the text-based conversations) of the interlocutor

as the source of influence for the current IPU/utterance. But, a spontaneous face-to-face

multi-party spoken conversation is more complicated.

First, detecting the immediately preceding IPU is not always straight-forward. Consider

the example in Figure 5. Each block represents an IPU. The immediately preceding IPU of

U3 is U2. But, how do we choose the immediately preceding IPU of U6? Do we choose the

IPU that ends last or starts last?

Second, in a two-party conversation, the addressee is always the other speaker. But, in

a multi-party conversation, the current utterance can be the response to any of the other

speakers (not necessarily the speaker with the immediately preceding IPU), to the group, or

a subgroup. Similarly, the source of influence for the target IPU might be other than the

immediately preceding IPU. In other words, there might be a time-lag between the source

IPU and the target IPU in a multi-party spoken conversation.
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So, from this perspective, choosing the immediately preceding IPU as the only source of

entrainment for the current IPU might be too restrictive. Moreover, considering all preceding

utterances as the potential source of entrainment is too simplistic. Addressee detection

for multi-party human-human conversations is a complex task which works best if visual

information like gaze is available (Jovanovic et al., 2006). Moreover, automatic addressee

detection requires annotated data. Finally, there is no evidence that other conversational

roles such as side-listeners do not entrain to the speaker. Recency (Brennan and Clark,

1996) might be a more important factor than conversational roles. So, I employ a temporal

window approach to consider recent IPUs as the potential source of entrainment for each

target IPU. I set-up experiments to examine the effect of the length of the window or the

amount of time-lag on multi-party entrainment.

In the next section, I describe the adaptive entrainment measure (Danescu-Niculescu-

Mizil et al., 2012) that I utilized in this chapter. In section 6.1.2, I describe the proposed

window-based approach to build the source-target pairwise sets.

6.1.1 Probabilistic Adaptive Entrainment

The measure, introduced by Danescu-Niculescu-Mizil et al. (2012), is based on conditional

probabilities. The entrainment of speaker b to speaker a with respect to a linguistic feature

c, Entc(b, a), is defined in equation 6.1:

Entc(b, a) = p(eb|ea)− p(eb) (6.1)

where the probabilities are estimated over the set Uab. Uab is the set of all (ua, ub)

conversation exchanges where speaker a’s utterance (ua) is uttered immediately preceding to

the speaker b’s utterance (ub). I call ua source and ub target. eb/ea is the indicator that the

desired event (e.g. presence of linguistic feature c) occurred in the corresponding utterances

ub /ua from set Uab. “This measure estimates how much a’s use of c in an utterance ua

increases the probability that b will use c in his reply ub, where the increase is relative to b’s

normal usage of c in conversations with a. ”

Similarly, entrainment of speaker b towards a group of speakers G in a multi-party
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conversation is defined in equation 6.2:

Entc(b,G) = p(eb|eG)− p(eb) (6.2)

where UGb is the set of (uG, ub) exchanges which involves first utterances uG from various

speakers in G. Finally, the multi-party entrainment is the average of the entrainment of all

speakers to the group.

Entc(G) =

〈
Entc(b,G)

〉
b ∈ G (6.3)

In the next section, I describe how I define set UGb using the proposed window-based

approach to consider the possible time-lag of influence.

6.1.2 Proposed Window-Based Approach

To measure entrainment, we need to build the set of source and target IPUs U . Instead of

only considering the immediately preceding IPU, I propose to consider a window of length

L. The proposed method is defined in Algorithm 1. First, I sort all IPUs by their start

time. Then, for each target IPU, I consider a window of length L that starts and ends

at [Target.start − L, Target.Start). All IPU’s in this window which are not uttered by

the target IPU’s speaker can be a potential source. So, for each pairwise set Uab, I add

an exchange (ua, ub) to the set where the first element includes concatenation of all IPU’s

uttered by a in the window. In this way, each event is only considered once in a window for

a pair. For each group-wise set UGb, I add an exchange (uG, ub) to the set where the first

element includes concatenation of all IPU’s not uttered by b in the window. The size of the

window is the parameter that indicates the time-lag of influence and needs to be tuned. This

is an approximate algorithm. I make sure that the source IPU’s start time is smaller than

the target IPU’s start time. But, I don’t force them to end before the target IPU’s begin.

The reason is that there is a lot of overlapping speech which we do not want to discard. For

this purpose, I only make sure that at least half of the length of each IPU is uttered before

the target’s start time.
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Figure 6: An example multi-party conversation. The lines show the conversation by three

speakers A, B, and C. Each rectangle is an IPU. The bracket shows a window.

Consider the example in Figure 6. Suppose that the current target IPU is U4 and the

bracket shows the corresponding window for U4 with length L. The source-target pairs where

target is U4 are:

• U(B,A) += (U2, U4)

• U(C,A) += (U3, U4)

• U(group,A) += (U2 + U3, U4)

U1 is uttered by A and is ignored. U5 does not satisfy the condition in line 8 of the algorithm

and is ignored. Considering entrainment of A to the group, I concatenate all valid utterances

from all speakers (U2+U3). + = indicates that the final U(B,A) set is the union of all relevant

source-target pairs in the conversation.

6.1.3 Experiments and Discussion

I compare the proposed window-based method and the baseline immediately preceding IPU

using the probabilistic measure defined in Equation 6.2. For the baseline method, I choose

the immediately preceding IPU with the biggest start time, unless it does not pass the con-

dition in line 8 of the window algorithm. Also, I add all the other IPUs overlapping with the
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Algorithm 1 Window-Based Pair Construction

1: Sort the IPUs by their start time

2: L← window length

3: for all targetIPU ∈ set (sorted IPUs) do

4: u, speakers← Empty

5: Window← all IPUs that their start time is in [targetIPU.start−L, targetIPU.start)

6: for all sourceIPU ∈ window do

7: if sourceIPU.speaker ! = targetIPU.speaker then

8: if sourceIPU.start + sourceIPU.length / 2 < targetIPU.start then

9: u(sourceIPU.speaker) += sourceIPU

10: u(group) += sourceIPU

11: speakers.append(sourceIPU.speaker)

12: for all s ∈ speakers + [’group’] do

13: U(s,targetIPU.speaker).append((u(s),targetIPU))

14: return U

selected preceding IPU if their end time is bigger than the selected IPU’s end time and if

they pass the condition in line 8 of the algorithm. So, I include the IPUs if they start or end

last. I experiment with different values of window length to test the hypothesis that there

is a time lag between the source and target of adaptive entrainment. For consistency with

prior work (Danescu-Niculescu-Mizil et al., 2012), I measure lexical entrainment on eight

LIWC-derived categories of function words (Pennebaker et al., 2001) that have little seman-

tic meaning and is more relevant to style than content. These eight categories are: articles,

auxiliary verbs, conjunctions, high-frequency adverbs, impersonal pronouns, personal pro-

nouns, prepositions, and quantifiers (451 lexemes total). I use the multi-party entrainment

on these eight categories as features to predict team outcomes (process conflict and favorable

outcome). The two tasks are binary classifications. I use Leave-One-Out cross validation

and support vector machine with the RBF kernel.

The results in Table 11 are the accuracies. I examine the window length as low as

four seconds and as high as 60 seconds. The average silence length in the dataset is 1.11
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Features Process Conflict Favorable Outcome

Majority 53.78 50.42

Baseline 63.02 51.26

Window (L=4s) 55.46 47.89

Window (L=5s) 59.66 53.78

Window (L=6s) 53.78 50.42

Window (L=7s) 63.02 47.89

Window (L=8s) 57.98 59.50

Window (L=9s) 57.98 48.73

Window (L=10s) 57.98 48.73

Window (L=15s) 63.86 46.21

Window (L=20s) 62.18 46.21

Window (L=25s) 64.70 39.49

Window (L=30s) 65.54 45.37

Window (L=40s) 64.70 50.42

Window (L=50s) 63.02 49.58

Window (L=60s) 63.86 48.73

Table 11: Accuracy of binary classification of process conflict and favorable outcome for

temporal window approach.

seconds and the maximum silence length is 31.97 seconds. I choose the minimum and

maximum window length with regards to these numbers to avoid empty windows. There

is no significant difference between the results. On predicting conflict, larger window sizes

(> 10) performs better than small window sizes. The window length of 30 seconds has the

best performance although the difference with baseline is not significant. We do not observe

the same pattern on predicting favorable outcome. On this task smaller window sizes (< 9)

performs better. Looking at these results, we cannot make a consistent conclusion for both

tasks.
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Features Is Real?

Majority 50.00

Baseline 83.61

Window (L=4s) 75.63

Window (L=5s) 79.41

Window (L=6s) 77.73

Window (L=7s) 78.15

Window (L=8s) 78.15

Window (L=9s) 77.73

Window (L=10s) 73.10

Window (L=15s) 75.63

Window (L=20s) 73.95

Window (L=25s) 73.10

Window (L=30s) 66.38

Window (L=40s) 64.70

Window (L=50s) 65.12

Window (L=60s) 61.70

Table 12: Accuracy of binary classification of real or permuted games for temporal window

approach.

Table 12 shows the results of validation task (real vs permuted prediction). The results

indicate that increasing the window size decreases the accuracy. By increasing the window

size, we are giving more opportunity to speaker’s to influence their speaking partners. In

the Equation 6.2, increasing the window size only influences the first term and potentially

increases the probability. So, why does the quality of the real vs permuted task decrease?

Increasing the window size, entrainment of the permuted games are potentially increased

and as a result the entrainment values are less distinctive from the entrainment values of

real games.
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6.1.4 Summary

I hypothesized that in adaptive entrainment, influence might occur within a time lag and

finding the effective time-lag will increase the quality of multi-party entrainment and as a

result the quality of predicting social outcomes using entrainment. To test this hypothesis, I

proposed a temporal window-based approach to build the source and target pairwise sets. I

used these sets to measure entrainment by Equation 6.2 and used simple averaging to measure

multi-party entrainment. The results of the three prediction tasks (process conflict, favorable

outcome and fake vs real) do not support my hypothesis that the time-lagged measure

outperforms the baseline. There is no significant improvement as a result of increasing time-

lag. There are some non-significant improvements but the results are not consistent across

all these tasks. So, in the next section, I use the immediately preceding IPUs baseline (with

the biggest start time and their overlapping IPUs) as explained in the previous section.

6.2 VECTOR REPRESENTATION FOR MULTI-PARTY ENTRAINMENT

In this section, utilizing the adaptive pairwise entrainment measure (Danescu-Niculescu-

Mizil et al., 2012), which measures how much a speaker adapts her language to another

one in a local turn-by-turn basis, I propose a graph-based vector representation of multi-

party entrainment to encode the strength and structure of pairwise interactions in multi-

party groups. Weighted directed entrainment graphs represent the structure of pairwise

entrainment relations and their strength. Learning embedding for the entrainment graphs,

I represent multi-party entrainment in vector-space where groups with similar graphs have

close vectors.

Learning dense vector representations for nodes, edges, or sub-graphs from a large-scale

sparse graph has been studied by researchers and applied to social or knowledge graphs (Luo

et al., 2015; Tang et al., 2015; Grover and Leskovec, 2016; Zhou et al., 2017; Hamilton et al.,

2017). The intuition is similar to word2vec (Mikolov et al., 2013). Similar nodes in a graph

should have vector representations that are close to each other. Similarity can be defined as
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having similar neighbors or similar structural roles.

Inspired by these methods and by paragraph2vec (Le and Mikolov, 2014), I learn vectors

for small graphs where similarity is defined as having a similar graph structure. To encode

the structure, I propose to initialize the node and graph embeddings by applying a set of

graph algorithms where each encodes a distinctive property of the graph. As the supervision,

I propose to employ the domain-specific task of predicting real versus randomly permuted

conversations, which has been utilized in the entrainment domain to verify the validity of

measures (De Looze et al., 2014; Lee et al., 2011; Jain et al., 2012b; Rahimi and Litman,

2018). Experimental evaluations demonstrate that the group entrainment embedding im-

proves performance for the downstream task of predicting group outcomes compared to the

state-of-the-art methods.

In the next section, I describe entrainment graphs. Then, in the following section, I

describe the three proposed approaches to represent entrainment in a vector space utilizing

the graphs.

6.2.1 Entrainment Graph

Influence networks or graphs have been introduced and investigated in other domains such as

the social analysis literature (Friedkin and Johnsen, 2011; Tang et al., 2009; Romero et al.,

2011). I propose to apply a similar idea to build multi-party entrainment graphs. First, I

estimate pairwise entrainment values using an existing probabilistic directional (i.e., asym-

metric) method (Danescu-Niculescu-Mizil et al., 2012), where the entrainment of speaker b

to speaker a on a lexical category or linguistic feature c, Entc(b, a), is defined as in Equa-

tion 6.1. The directionality of this entrainment measure means that the entrainment of

speaker a towards b is not the same as the entrainment of speaker b towards a.

Next, I define the multi-party entrainment graph G = (V,E,W ). Each node v ∈ V

represents a speaker from the group. The directed edges in E represent the presence and

the weights in W represent the strength of entrainment between the source and destination

node, which are measured using Equation 6.1. I define an edge from node a to b if and only

if Entc(b, a) is positive. The negative values imply that the linguistic feature c is part of the
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Figure 7: An example multi-party entrainment graph

speaker’s b language and is independent of speaker a’s speech. So, I can simply ignore them.

The direction of the edge implies that the source node influences the destination node, while

the edge weight represents the amount of this influence (entrainment). Consider a group

with three speakers: A,B,C. Suppose that the entrainment of pairs on a lexical feature are

as follows:

Ent(B,A) = 0.5,

Ent(A,B) = −0.1,

Ent(C,A) = 0.9,

Ent(A,C) = 0.2,

Ent(B,C) = −0.5,

Ent(C,B) = 0.

The entrainment graph that would then be constructed for this group is shown in Fig-

ure 7.

Entrainment graphs contain interesting information about the dynamics of the entrain-

ment relations. For example, we could learn the structural roles of the speakers, such as
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who are the influencers, connectors, or passive speakers. Also, we could learn about indirect

entrainment relations. If A influences B and B influences C, there is an indirect influence

from A to C. This information could potentially help us have a better understanding of

multi-party entrainment. In the graph from Figure 7, we observe that A is an influential

speaker and C could potentially influence B although there is no edge between them. This

information will be lost if we simply average pairs’ entrainment values.

In the next section, I propose three different approaches to learn entrainment vector

representations from such entrainment graphs.

6.2.2 From Graphs to Vector Representation

6.2.2.1 Directly Estimating the Vectors

Given the entrainment graphs, the goal is to represent group entrainment in a vector-

space where groups with similar entrainment dynamics have close vectors. As the most

obvious and straightforward approach, I apply a set of graph algorithms to capture distinctive

and informative properties of the graphs. Applying d functions, each node in the graph (i.e.,

conversational participant) is represented with a d-dimensional vector. Then, the vector

representation of the entrainment graph (i.e., the group of participants) is a simple average

of its nodes’ vectors.

Following are all ten kernel functions that I utilized. I tried to be inclusive but I did not

perform an experiment to obtain the best list by pruning it or by adding other algorithms.

For convenience, I call these functions kernels in the rest of this thesis. All these functions are

well-known graph algorithms, so I explain them minimally here. Given a weighted directed

graph G = (V,E,W ), the 10 kernels are as follows:

• K1= Closeness Centrality (Wasserman and Faust, 1994) of a node u is “the ratio

of the fraction of reachable nodes, to the reciprocal average distance from the reachable

node”.

C(u) =
n− 1

N − 1

n− 1∑n−1
v=1 d(v, u)

(6.4)
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The distance function d(v, u) is defined as the length of the shortest-path from node v

to u. And, n is the number of nodes that can reach u. N is the total number of nodes.

In this work, we are interested in finding the highly influential nodes which can reach to

many nodes. This is opposite of the Closeness Centrality definition. For this purpose,

for each entrainment graph G, I build and use the reversed graph GR in which the edges

are the reverse of G’s edges. Thus, the reachable nodes of u in GR are the ones that

can be reached starting from u in the original graph G. So, highly influential nodes in

G have high closeness centrality score.

• K2 = Betweenness Centrality (Brandes, 2001) of node u is the fraction of all-pairs

shortest paths that pass through u to all the all-pairs shortest paths. σ(s, t) is the number

of shortest (s, t)-paths, and σ(s, t|u) is the number of those paths passing through node

u other than s, t. If s = t, σ(s, t) = 1, and if u ∈ {s, t}, σ(s, t|u) = 0.

CB(u) =
∑
s,t∈V

σ(s, t|u)

σ(s, t)
(6.5)

A node has a high betweenness centrality if it’s role in the graph is a connector.

• K3 =PageRank 1 (Page et al., 1999) is one of the most well-known algorithms which

was originally designed to rank web pages. It outputs a probability distribution for nodes

based on the score of their neighbours. “PageRank works by counting the number and

quality of links to a node to determine a rough estimate of how important the node is.

The underlying assumption is that more important nodes are likely to receive more links

from other nodes.” I use the weighted reversed graph GR, and the weighted algorithm

(Xing and Ghorbani, 2004) to measure PageRank probability distribution of the nodes.

• K4 , K5 = HITS (Kleinberg, 1999) computes two numbers for a node. Authority

score is based on the incoming links (“a good authority is a node that is linked by many

different hubs”). Hub score is based on outgoing links (“a good hub is a node that points

to many other nodes”).

1PageRank and HITS algorithms’ outputs are a probability distribution. So, although they are distinct
and informative at the node level, they are repetitive and all equal to the team-size at the graph level. For
the purpose of consistency with the next proposed method, I include them all here.
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• K6 = Maximum Flow (Ford and Fulkerson, 2009) of node u is the sum of all single-

commodity max flow values (i.e., net outflow) from the source node u to all other nodes in

the capacity graph Gc = (V c, E, C) where each edge has only a single attribute, capacity

C, which is equal to the weight attribute in the original graph G.

MaxFlow(u) =
∑
v∈V c

max flow(u, v, C) (6.6)

The Maximum Flow, is the sum of all direct and indirect entrainment influences that a

node has on all other nodes in the graph.

• K7 = Katz Centrality (Katz, 1953) computes centrality for a node based on centrality

of its neighbors. The Katz centrality for node u is:

KATZu = α
∑
j

AijKATZj + β (6.7)

where A is the adjacency matrix of graph G with eigenvalues λ. The parameter β controls

the initial centrality and α < 1
λmax

. “Katz centrality computes the relative influence of

a node within a network by measuring the number of the immediate neighbors (first

degree nodes) and also all other nodes in the network that connect to the node under

consideration through these immediate neighbors.”

• K8 = Weighted In degree of a node is sum of the weights of all incoming edges of it.

This indicates how much direct influence the node gets from other nodes in the graph.

• K9 = In degree Centrality of a node is the fraction of nodes to which it’s incoming

edges are connected. This measure indicates how many influencers a node has.

• K10 = Degree Centrality of a node is the fraction of nodes that it is connected to

(sum of in degree and out degree centrality). This measure indicates the ratio of all the

nodes that entrain directly to/from the corresponding node.

6.2.2.2 Learning Embedding: The Self-Supervised Approach

Given the entrainment graphs, the goal is to learn a d-dimensional embedding of nodes

and graphs where nodes with similar structural roles and graphs with similar structure have
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close vectors. I employ the node2vec (Grover and Leskovec, 2016) and paragraph2vec (Le

and Mikolov, 2014) methods and define our problem as follows.

Our embedding learning is a maximum likelihood optimization. I define G as the set of

all graphs and U as the set of all nodes (vocabulary) from all graphs. Then, for a given graph

g = (V,E,W ), the nodes of the graph, V , are its context, C(g) = V . I seek to optimize

the objective function in Equation 6.8 which maximizes the log-probability of observing the

context of the graph g, conditioned on vector representation of g, given by f(g):

maxf
∑
g∈G

log p(C(g)|f(g)) (6.8)

Assuming conditional independence of observing each node in the context given the

vector representation of the graph, the conditional probability of Equation 6.8 is defined by:

P (C(g)|f(g)) =
∏

v∈C(g)

p(v|f(g)) (6.9)

Let W be the matrix of graph embedding and Z be the matrix of node embedding.

Every unique graph g is mapped to a unique vector Wg and every unique node is mapped

to a unique vector Zv. The probability in Equation 6.9 is defined as the softmax probability

normalized by all the nodes in U :

p(v|f(g)) =
exp(ZT

v .Wg)∑
u∈U exp(ZT

u .Wg)
(6.10)

Given Equations 6.8, 6.9, and 6.10, and approximating the normalization of the softmax,

which is a sum over all nodes of all graphs, with negative sampling (Mikolov et al., 2013;

Grover and Leskovec, 2016). the loss function of the optimization problem is:

L = −
∑
g∈G

∑
v∈C(g)

(log σ(ZTv .Wg) +
∑

u∈C′(g)

log σ(ZTu .Wg)) (6.11)

The dot product measures the similarity of a node and a graph in the vector-space. For

all nodes in the context of a graph, the vector representations of the nodes and the graph

should be close in the vector space. C ′(g) is a set of random nodes which do not belong to

the graph g. σ is the sigmoid function.
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Initializing Embedding: As discussed before, we want graphs with similar structure

and nodes with similar structural roles to be close in vector space. To achieve this, we need

to encode these structures in the vectors. For this purpose, I utilize the proposed kernel

approach from Section 6.2.2.1 to initialize the node and graph embedding matrices. So, the

vector of each node or graph indicates their structural properties and similarity of vectors

indicates similarity of their structures.

Domain-Specific Negative Sampling: To build the set C ′(g) in Equation 6.11, one

approach similar to word2vec is to randomly sample nodes that are not in the context of

the graph (i.e., that are from other graphs). But, this might not be a good approach for

our problem as several graphs might have the same structure. So, randomly choosing nodes

from other graphs does not serve our purpose well. We want our negative samples to have

different vector representations from the context of the graph.

Entrainment is a phenomena that occurs in the course of conversation. So, randomly

generated conversations should not show strong entrainment relations. Distinguishing be-

tween real and randomly permuted fake conversations is a validation task in the entrainment

literature (De Looze et al., 2014; Lee et al., 2011; Jain et al., 2012b; Rahimi et al., 2017).

I thus propose to use the permuted version of each conversation to build the corresponding

fake graphs and use the nodes of these fake graphs to build C ′(g). So, the size of C ′(g) is

equal to C(g) and the nodes in C ′(g) are the permuted version of the nodes in C(g). The

fake conversations were generated by randomly permuting the speech and silence intervals

of each speaker in the group. Using this method, I make sure that the negative and positive

samples have different structures. At the same time, I make sure they are not too distinct

since I do not change the content of the conversations but only randomly permute the con-

tent. For example, the distribution of the lexical categories are the same in both negative

and positive samples of a graph.

Network Structure and Algorithm: The network is in Figure 8. As in word2vec

(Mikolov et al., 2013), our network is a shallow two-layer neural net. It has two embedding

look-up tables, one for the nodes and one for the graphs. The second (output) layer includes

a sigmoid activation function applied on the dot product of the two vectors from the first

layer. The input is a pair of node index and graph index. Given the input indexes and
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Figure 8: GraphVec

the embedding matrices, I look up the two vectors for the given node and graph. Then,

I simply get the dot product of the two vectors to calculate their similarity. I apply a

sigmoid activation function on the result of the dot product to calculate the probability of

the output. This probability is used to predict if the node is from the context of this graph

(a positive sample) or is from the corresponding fake graph (a negative sample). So, I have

a simple binary prediction and I use binary cross entropy loss function and a stochastic

gradient decent optimization algorithm. After completing the training, I get the learned

graph embedding matrix as our representation of multi-party entrainment.

The pseudo-code of the algorithm is given in Algorithm 2.

6.2.2.3 Learning Embedding: The Weakly-Supervised Approach

The self-supervised approach employs the randomly permuted conversations to generate

the negative samples for an optimization task that tries to maximize the likelihood of ob-

serving the context nodes. A different approach is to directly employ the validation task of

real-vs-permuted prediction as supervision. Given vector representations of a node and a

graph, I predict if the input is from a real conversation or a fake conversation. I train the

graph embedding while I optimize this classifier. I call this method weakly supervised since

the supervision is not on the main task of interest which is predicting social outcomes and
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Algorithm 2 Learning Multi-party Entrainment Embedding

1: function InitializeEmbedding(Realgroups , PermutedGroups)

2: for all group ∈ Realgroups + PermutedGroups do

3: pairEnts← PairEnrtainments(group)

4: graph← BuildGraphs(pairEnts)

5: vector ← ApplyKernel(graph)

6: NodeEmbedding ← append(NodeEmbedding,vector)

7: GraphEmbedding ← GetGraphEmbeding(NodeEmbeding)

8: return NodeEmbedding, GraphEmbedding

9: function LearnEmbedding(input,labels,NodeEmbedding,GraphEmbedding)

10: Initialize Embedings to NodeEmbedding,GraphEmbedding

11: model← StochasticGradiantDesent(input,label)

12: LearnedGraphEmbeding ← model.GetWeights(Graph Embedding Layer)

13: return LearnedGraphEmbeding

also no manually labeled data is required. Similar to the self-supervised approach, I construct

a randomly permuted conversation for each real conversation and build its corresponding en-

trainment graph. Then, unlike the self-supervised approach, I predict if a given input graph

is real or permuted. The objective is to minimize a binary cross entropy loss function or

maximize the likelihood of observing the data using a gradient descent optimization.

Like before, I employ two embedding matrices for the nodes and the graphs although

the size of the graph embedding is doubled (by including the fake graphs). I initialize the

two matrices with the kernel approach to encode the structure of the graphs. Assuming

that the kernel initialization is good at encoding the underlying structure, to reduce the

number of trainable parameters, I fix the node embedding with the initialization, and train

the graph embedding. I utilize the same shallow network as in the self-supervised method.

After training the graph embedding, the subset of the graph embedding which is from the

real graphs represents our entrainment vectors.
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6.2.3 Evaluation of Multi-party Entrainment Embedding

6.2.3.1 Experimental Setups

For consistency with prior work (Danescu-Niculescu-Mizil et al., 2012; Doyle and Frank,

2016), I measure lexical entrainment on eight LIWC-derived categories of function words

(Pennebaker et al., 2001) that have little semantic meaning and are more relevant to style

than content. These eight categories are: articles, auxiliary verbs, conjunctions, high-

frequency adverbs, impersonal pronouns, personal pronouns, prepositions, and quantifiers

(451 lexemes total). Transcripts are pre-processed before extracting lexical terms by remov-

ing punctuation marks, converting all words to lower case, removing noises such as laughter,

and removing any part of the transcript indicated as not fully understood by transcribers.

The size of the input data for training the networks is about 6500 instances2. I have

minimum 100 and maximum 150 epochs and stop early if the training loss is smaller than

0.1 to avoid overfitting. The batch size is set to 20. RMSProp optimization algorithm is

used with learning rate equal to 0.001. These hyper-parameters are chosen with regards to

the small training data size and should be optimized in the future. It should be emphasized

that I do not require any manually labeled data for training the self-supervised or weakly-

supervised models.

After learning the entrainment embedding, similar to prior works (De Looze et al., 2014;

Lee et al., 2011; Jain et al., 2012b; Rahimi et al., 2017; Doyle et al., 2016b; Lee et al., 2011)

which have evaluated entrainment in terms of predicting outcomes, I evaluate its utility at

predicting Favorable and Conflict team outcomes. I use support vector machines with RBF

kernel and perform leave-one-out cross validation. The size of the data for this experiment is

119 since I predict the outcomes for each team and each session. I compare the utility of the

proposed embedding with two local adaptive baselines from the literature: SCP (Danescu-

Niculescu-Mizil et al., 2012) which is a probabilistic measure and its pairwise version is

utilized in this thesis to build the entrainment graphs, and HAM (Doyle and Frank, 2016)

which is a generative hierarchical alignment model argued to outperform SCP. The HAM

baseline is fit using the same hyper-parameters as in (Doyle and Frank, 2016). But, it is fit

2119 sessions * (3 or 4) speakers * 8 LIWC categories * 2 (fake or real)
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with 2000 iterations of the sampler (1000 as warm-ups) and four chains since our data is

small. The output is a probability distribution for each group. So, I utilize the mean, upper

and lower bounds of the 95% highest posterior density.

6.2.3.2 Results and Discussion

First, I utilize the entrainment embedding of all 8 lexical categories as features. So the

total number of features is 80 which for 119 instances of data is a lot and might cause the

model to overfit. So, it is important to employ feature selection. I employ a model-based

feature selection using LASSO. The feature selection is performed inside the cross validation

loop, so the number of selected features might be slightly different at each fold. I also

set a threshold on minimum number of features to avoid underfitting. The regularization

parameter is tuned with regards to this threshold. The threshold itself is tuned in each fold.

The results are in Table 13. The middle part of the table shows the accuracies of the three

proposed approaches using their best configurations at two tasks of predicting Favorable and

Conflict outcomes using all features or by employing feature selection. Predicting Conflict,

the embedding of weakly-supervised approach when utilizing feature selection outperforms

the best SCP result significantly and the best HAM result. Feature selection has a greater

effect on the proposed approaches since the number of features in these models are more

than baselines. SCP has only 8 features and HAM has 24 features. Predicting Favorable

outcome, the embedding of weakly-supervised approach with or without feature selection

outperforms the best SCP result significantly and the best HAM result with a trending p-

value (< 0.1). Comparing the three proposed approaches, the weakly-supervised approach

outperforms the other two models on both tasks. This shows that training the embedding

improved the initial kernel embedding although the initial kernel embedding, which does not

require any training, performs comparable, if not better, to the computationally expensive

HAM baseline.

The last part of Table 13 presents other evaluated configurations for the weakly-supervised

and the self-supervised approach. For the self-supervised approach, I experiment on initial-

izing the graph embedding with the default Uniform initialization rather than our proposed

73



Features Conflict-All Conflict-FS Favorable-All Favorable-FS

Baselines

Majority 53.78 53.78 50.42 50.42

SCP 63.02 63.86 51.26 50.42

HAM 68.90 69.74 53.78 51.26

Best Proposed

Kernel 57.14 69.74 62.18(∗,) 62.18(∗,)

WeakS KP NT 59.66 74.79(∗,) 63.86(∗,+) 63.86(∗,+)

Self K P 63.02 73.95(+,) 57.14 58.82

Other Configurations

WeakS KP T 58.82 63.86 56.30 57.14

Self K R 63.02 66.38 56.30 55.46

Self U P 49.58 63.86 39.49 52.94

Self U R 52.94 57.93 58.82 55.46

Table 13: Accuracy of predicting Conflict and Favorable outcomes. The features are entrain-

ment values/vectors from all 8 LIWC categories. The pair of signs in parenthesis indicates

the result of significant test comparing the corresponding accuracies with the best of SCP

and HAM in order. “*” indicates significance (p-value < 0.05), “+” indicates trending result

(p-value < 0.1).
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Kernel initialization. Also, for negative sampling, I experiment on Randomly selecting nodes

from other graphs rather than our proposed domain-specific Permuted negative samples.

The results show that both proposed approaches for initialization and negative sampling

outperform the other configurations. For the weakly-supervised approach, the best configu-

ration has Not Trainable (NT) node embedding and only trains the graph embedding rather

than Training both embedding matrices. This is beneficial since it reduces the number of

trainable parameters of the model.

In a second experiment, I predict the Favorable and Conflict outcomes using the em-

bedding of each lexical category. So, I have 8 prediction tasks for each outcome. At each

prediction task, the number of features is equal to the size of the vector (10). So, I do not

need to employ feature selections in this experiment. The results are in Table 14. I only ex-

periment with the best methods from the first experiment. For predicting Conflict, I observe

that the HAM baseline is more robust across different lexical categories than the embedding

approaches. But, the proposed approaches outperform the HAM baseline on all categories

when predicting favorable outcome. So, the entrainment embedding is more robust across

the two tasks.

Given the promising results of the proposed vector representations, there are two more

questions that I further investigate. First, does the proposed model learn anything beyond

team size? 3 Second, which dimensions (kernels) are more predictive? To answer these

questions, I take a closer look at each dimension of the vectors. I choose one of the ex-

periments where the vector representation outperformed baselines on a individual category:

kernel model predicting process conflict on the LIWC category of “quantitative”. I perform

a hierarchical regression analysis. The z-scored team-level process Conflict is the dependent

variable. I enter team-size as an independent variable to the first level. In the second level,

I add all ten dimensions of the entrainment vector on the LIWC category of quantitative.

The results are in Table 15. I remove all the dimensions that did not have a significant

or trending coefficient from the final model. The amount of variance explained by Kernel

dimensions is significantly above and beyond team size entered in Model 1, ∆R2 = 0.215,

3I specially need to answer this question for the Kernel approach, since average of PageRank and HITS
scores over the nodes of the graph is the ratio of the number of nodes. This is not an issue for the learned
embedding.
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Task Features ipron article auxverb conj adverb ppron preps quant

Conflict

Majority 53.78 53.78 53.78 53.78 53.78 53.78 53.78 53.78

HAM 68.06 69.74 63.86 68.06 61.34 67.22 64.70 65.54

Kernel 62.18 63.86 58.82 64.70 61.34 66.38 60.50 65.54

WeakS KP NT 57.98 57.14 65.54 67.23 56.30 60.50 59.66 72.27

Self K P 68.06 54.62 63.02 57.14 58.82 53.78 55.46 71.42

Favorable

HAM 50.42 54.62 45.37 43.69 40.33 47.05 37.81 51.26

Kernel 63.02 63.02 61.34 58.82 55.46 52.94 63.02 54.62

WeakS KP NT 58.82 66.39 57.14 57.14 55.46 51.26 63.03 57.98

Self K P 57.14 53.78 48.73 63.86 54.62 51.26 47.05 49.58

Table 14: Accuracy of predicting Conflict and Favorable outcomes. The features are en-

trainment values/vectors from a single lexical category.

Model 1 Model 2

B SEB β B SEB β

Team Size 0.613 0.180 0.300* 0.510 0.210 0.250*

K1 = Closeness Centrality 18.922 9.201 4.509*

K2 = Betweenness Centrality -5.942 3.563 -0.526+

K6 = Maximum Flow -4.280 1.763 -0.268*

K10 = Degree Centrality -8.281 4.588 -3.584+

Model R2 0.09 0.306

Model F 11.609* 9.948*

Table 15: Summary of hierarchical regression analysis for variables predicting process conflict

on quantitatives using Kernel approach. B , SEB, and β are the unstandardized coefficients,

coefficients Std. Error, and standardized coefficients. * p < .05. + p < .1 n = 119.
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∆F (4, 113) = 8.763, p = 0.000. So, the answer to our first question is yes. The proposed

model learns predictive dimensions above and beyond the effect of team size. To answer

the second question, I look at the selected dimensions with significant coefficients. Closeness

Centrality has a positive significant correlation with process conflict which means teams with

higher average closeness centrality have higher conflict. In other words, teams with fewer

influential members, have less conflict. Maximum flow has a significant negative correlation

which indicates teams with higher average maximum flow, have less conflict. In other words,

the more is the direct and indirect entrainment in the team, the less is the process conflict.

One main advantage of the proposed vector representation compared to the baselines is

the ability to present all these pieces of information about the dynamics of entrainment in

groups.

6.2.4 Summery

In this section, I proposed group entrainment embedding, a vector representation for multi-

party entrainment to encode the underlying entrainment dynamics in the groups. I proposed

three approaches to learn the vector representation from entrainment graphs built by utilizing

existing directional pairwise entrainment measures. I concluded that the vector representa-

tion learned by the proposed weakly-supervised approach outperforms the baselines and the

other proposed approaches. Beside performance, this approach has other advantages. First,

encoding the underlying structure of the entrainment graphs in the vectors provides useful

information. For example, I found that teams with more influential (in terms of entrain-

ment) members or higher average closeness centrality have more Process Conflict. Second,

proposed approaches are computationally less expensive than the best performing baseline:

the generative HAM model. The running time of the weakly supervised training on a lap-

top was less than 30 seconds while HAM takes about 30 minutes to converge running on a

server. Finally, the weakly supervised approach requires training data similar to HAM. But,

the proposed kernel approach when performance is comparable to the weakly supervised

approach does not require any training data and directly estimates entrainment of groups.

I did not perform any parameter tuning on the parameters of the neural network such
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as number of epochs, batch size, or learning rate. I also chose a simple two layer network.

Other network structures might perform better specially for the weakly-supervised approach.

Further investigation is required to optimize the list of the graph algorithms (kernels) to best

encode the structure of the graphs. The results are promising and might be even further

improved by exploring these paths. Also, the team size in the Teams corpus is three or four.

Larger groups might benefit more from the proposed approaches.

6.3 CHAPTER SUMMARY

In this chapter, I utilized an existing short-term asymmetric measure, introduced in (Danescu-

Niculescu-Mizil et al., 2011), to estimate pairwise entrainment and proposed new multi-party

measures that better incorporate group dynamics. As the first step toward development of

multi-party local entrainment, in the first part of this chapter, I investigated the hypothesis

that local entrainment might occur within a time lag in groups. To test this hypothesis, I

proposed a temporal window-based approach. The results of the three prediction tasks (pro-

cess conflict, favorable outcome, and fake vs real) do not support my hypothesis. There is

no significant improvement as a result of increasing time-lag. There are some non-significant

improvements but the results are not consistent across all these tasks.

In the second part, I proposed a graph-based vector representation for multi-party en-

trainment to better incorporate the dynamics of entrainment relations, estimated by a pair-

wise asymmetric measure. I proposed three approaches to learn the multi-party entrainment

vector representations from entrainment graphs. I performed multiple experiments to find

the best setting for each of these methods. I concluded that the graph embedding learned by

the proposed weakly-supervised approach outperforms the baselines and the other proposed

approaches. Beside performance, this approach has other advantages. First, a vector is po-

tentially more informative than a single-valued entrainment measure since each dimension is

defined to capture a distinctive property of the entrainment graph which encodes the strength

and dynamics of entrainment behaviors in the group. Moreover, it is computationally less

expensive than the best performing baseline.
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7.0 INCORPORATING INDIVIDUAL AND TEAM LEVEL ATTRIBUTES:

GENDER

Work on dyads and groups has found that gender is related to both the strength and utility

of entrainment (Levitan and Hirschberg, 2011; Yu and Litman, 2019). In the Teams Corpus,

minimum convergence was higher for teams with greater gender diversity than teams with less

gender diversity (Yu and Litman, 2019). In the Columbia Games Corpus, acoustic-prosodic

entrainment was strongest for mixed-gender pairs, followed by female pairs, followed by male

pairs; however, even though less prevalent, entrainment was more important to the dialogue

success of the male pairs (Levitan and Hirschberg, 2011). The effects of gender composition

on team performance are mixed, but in general, diverse teams have worse processes and

performance than homogeneous teams (Mannix and Neale, 2005; Joshi and Roh, 2009; van

Knippenberg and Schippers, 2007). More important is when gender diversity reflects deeper

diversity such as differences in attitudes and schemas (Harrison et al., 1998). In this chapter,

building upon the existing work that found relation between gender and entrainment, I

attempt to answer the question that how can we incorporate gender or gender-composition

of teams to develop enhanced measures of multi-party entrainment? In this chapter, I only

focus on gender and gender composition. But, any relevant individual or team-level factor,

such as prior game experience, age, and education could be incorporated by the proposed

approaches.

I propose two approaches. The first approach is an extension to the Hierarchical Align-

ment Model (HAM) (Doyle and Frank, 2016) by utilizing a crossed hierarchy design and

grouping data by gender-composition variable beside marker or team variable. The second

approach is an extension to the proposed entrainment vector representation learning model,

discussed in section 6.2, by jointly learning to predict the gender or gender-composition.
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7.1 GENDER-AWARE HIERARCHICAL ALIGNMENT MODEL (GHAM)

The HAM model (Doyle et al., 2016b) which is the strongest baseline in previous section is

shown in Figure 7.1. Similar to the method (Danescu-Niculescu-Mizil et al., 2011) explained

in section 6.1.1, the HAM model measures entrainment on a set of pairwise exchanges be-

tween the speakers and estimates the conditional likelihood of an event occurring (presence

of a marker category) in the utterances. For more details, on how I build the pairwise utter-

ance sets and how I calculate the likelihoods see section 6.1.1. The alignment in Ham model

is defined in the log-odd space:

HAM(b, a) ≈ logit−1p(eb|ea)− logit−1p(eb|¬ea) (7.1)

HAM assumes that word use in replies is shaped by whether the preceding message

contained the marker of interest. The binomial probability µ is dependent on whether

the preceding message did (µalign) or did not (µbase) contain the marker, and the inferred

alignment value is the difference between these probabilities in log-odds space (ηalign). Marker

token counts Calign
m,a,b and Cbase

m,a,b are draws from a binomial distribution. N base
m,a,b and N base

m,a,b are

the total token counts. The remainder of the model is a hierarchy of normal distributions.

There are three levels in the hierarchy: marker or lexical category level, conversational

subgroup or team level, and conversational dyad level. All of the normal distributions have

identical standard deviations σ2 = 0.25. A Uniform[−5, 5] distribution gives a relatively

uninformative prior for the baseline marker frequency. The normal distribution prior for the

alignment hierarchy is centered at zero.

I define two gender-aware HAM models using two of the most obvious extensions to the

original HAM architecture 1. First, utilizing a crossed hierarchy design and a dyad-level

gender-composition index that indicates whether the pair is same-gender or mixed-gender, I

model pair-level entrainment η where ηm,c represents the deviation from the average for each

gender-composition and on each marker category. The graphical model is in Figure 7.1. C

here is a binary variable that indicates if the pair is same-gender (male-male and female-

1I experimented with other variations of these architectures and choices that we could make about the
hyper-priors or the gender-composition variable (binary, or different categorical versions). I did not get any
improvement and I do not report them here.

80



Figure 9: Graphical model of Hierarchical Alignment Model (HAM). G represent the teams,

D is dyads, and M is lexical markers.
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female) or mixed-gender. Second, I utilize a crossed hierarchy design and a binary team-level

gender-composition index. In this model, I define gender-composition as a grouping on the

team-level entrainment variables for all the marker categories with hyper-priors the same as

hyper-priors of the marker level 2. The graphical model is in Figure 7.1. C here is a binary

variable that indicates if the team has equal or more males, or it has more females.

I used PyStan to implement these models. The optimization algorithm is Hamiltonian

Monte Carlo (HMC). The model is fit with 2000 iterations of the sampler (1000 as warm-

up) and four chains. For the second model, I increased the values of the hyper-parameters

(max treedepth=15,adapt delta=0.9) so the model would converge. I extracted entrainment

estimates (ηm,g) from each of the final 1000 iterations of the model, and I report upper-bound,

lower-bound, and mean of the 95% highest posterior density interval on the parameter values.

7.2 VECTOR REPRESENTATION LEARNING: MULTI-TASKING

Multi-Task Learning (MTL) has been used successfully in natural language processing (Col-

lobert and Weston, 2008; Deng et al., 2013) and computer vision (Zhang et al., 2014). MTL

comes in many forms and serves different goals. The goal of MTL in (Caruana, 1997) is de-

fined as “improving generalization by leveraging the domain-specific information contained

in the training signals of related tasks”. Auxiliary tasks in MTL help to improve the main

task by biasing the model to prefer representations that other tasks also prefer.

Given the prior studies that have found relations between gender and entrainment (Lev-

itan and Hirschberg, 2011), I propose to extend the proposed entrainment vector representa-

tion learning models by multi-task learning. The main task is one of the weakly supervised

or self-supervised approaches proposed in previous section. The auxiliary task is to predict

the gender of speaker or the gender-composition of the team.

The Embedding layer is shared between the two tasks. The main task has a output layer

which is a sigmoid of dot product of node vector and graph vector. The network structure

2I experimented with nested versions of gender-composition and marker but the model did not converge.
So, I do not report them here.
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of the main task is in Figure 8. The second task has two fully connected dense layers on top

of the shared embedding layer. The first dense layer’s input dimension is 10 (the input is a

graph or node vector) with sigmoid activation function and has 20 units. The second dense

layer or the output layer has a single unit and a sigmoid activation function. I apply dropouts

on the embedding and the first dense layer with dropout rate of 20% for regularization.

The challenge in our problem is that the main task and the auxiliary task do not have

the exact same inputs. We can only predict gender for the real nodes and graphs (not the

fake ones). To solve this issue, I define a custom loss function for the auxiliary task. The

custom loss function is a masked binary cross entropy, given that the output label is binary,

which has the ability to mask unlabeled non-relevant permuted data. the total loss is the

sum of the losses from the main task and the auxiliary task.

The input of the main task is pairs of node and graph indexes. I define two different

auxiliary tasks. The first defined auxiliary task gets the node index as the input and predicts

if the input node is for a male or a female speaker. The second auxiliary task gets the graph

index as the input and predicts the gender-composition of the input graph. For simplicity, I

define gender composition as a binary variable which indicates if the team has more female

members or less or equal female members.

7.3 EXPERIMENTS AND RESULTS

I evaluate the quality of the proposed gender-aware approaches on the independent clas-

sification task of predicting social outcomes. I use the multi-party entrainment values as

features to predict social outcomes. I use support vector machines with RBF kernel and per-

form leave-one-out cross validation. I have 119 instances. For more details see section 6.2.3.1.

The results are in Table 16. The only gender-aware extension that improves the performance

of it’s non gender-aware approach is multi-tasking on the weakly-supervised approach where

the auxiliary task is to predict the binary gender composition of the teams (graphs). This

method could improve the performance of the predicting social outcome from 63.86 to 66.38.

This is the best result that I have on this prediction task overall. The results of the same
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Features conflict conflict+FS(Lasso) favaroble favaroble+FS(Lasso)

HAM 68.90 69.74 53.78 51.26

GHAM-dyad 66.38 63.02 51.26 51.26

GHAM-team 68.90 68.90 51.26 52.10

WeaklyS KP T 58.82 63.86 56.30 57.14

MTL WeaklyS KP T(Node) 63.02 67.22 59.66 2 57.14

MTL WeaklyS KP T(Graph) 59.66 64.70 62.18 60.50

WeaklyS KP NT 59.66 74.79 63.86 63.86

MTL WeaklyS KP NT(Graph) 65.54 67.22 66.38 66.38

Self K P 63.02 73.95 57.14 58.82

MTL Self K P(Graph) 57.14 60.50 56.30 60.50

Table 16: Accuracy of binary classification of process conflict and favorable outcome using

proposed gender-aware models. (Node) or (Graph) indicates whether the auxiliary task was

to predict gender using nodes, or gender-composition using graphs. The bold numbers are

the best result in each column.
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model on prediction of conflict is also improved but the original weakly supervised approach

performs better when incorporating feature selection. None of the other extensions could

improve the original methods.

The results of the multi-tasking on the weakly-supervised approach using team-level

factor of gender-composition are promising. This is a first step toward the study of team-

level factors when measuring multi-party entrainment. I chose a very simple network for

the auxiliary task, did not perform parameter tuning, and did not experiment with other

team-level factors, such as mean or standard deviation of age or education level.

7.4 CHAPTER SUMMARY

In this chapter, building upon the existing work that found relation between gender and

entrainment, I attempted to answer the question that how can we incorporate gender or

gender-composition of teams to develop enhanced measures of multi-party entrainment?

The proposed model to extend the entrainment vector representation learning by multi-task

learning shows some promising results and motivates further investigations in future.
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8.0 CONCLUSION AND FUTURE WORK

8.1 SUMMARY OF CONTRIBUTIONS AND RESULTS

This research has five major contributions. First, I studied the relationships of entrainment

at two linguistic levels, acoustic-prosodic and lexical, in multi-party dialogues. I found

that first, entrainment occurs at both levels. Second, entrainment at these linguistic levels

positively correlate (i.e., teams that entrain on one level are more likely to entrain on the

other, and vice versa). Finally, to predict positive and negative team outcomes, a multimodal

model with features from acoustic-prosodic and lexical levels outperforms a unimodal model.

Second, I introduced a new weighted convergence measure for multi-party entrainment

at the global setting which utilizes group convergence dynamics to weight pair convergences.

Experimental results show that the proposed weighted measure has higher validity than

simply averaging convergence in that it is more predictive of fake versus real conversations.

Also, the proposed weighted measure has higher utility at the downstream task of predicting

the favorable team outcome. In general, a proper weighting of the dyad-level convergences

performs better than non-weighted averaging in multiple tasks.

Third, at the short-term (local) setting, where similarity is measured between dyadic

exchanges, I investigated the effect of considering time-lag between source and target utter-

ances using a temporal window approach. The source utterance is preceding to the target

and is a potential source of entrainment for it. The results of the evaluation experiments

do not support the hypothesis that considering time-lag improves the multi-party local en-

trainment measure. There is no significant improvement as a result of increasing time-lag.

There are some non-significant improvements, but the results are not consistent across all

three evaluation tasks.
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Fourth, I proposed a novel graph-based vector representation for multi-party local en-

trainment by incorporating strength and direction of pairwise entrainment relations. The

proposed kernel approach and weakly-supervised representation learning method show promis-

ing results at the downstream task of predicting team outcomes. Also, the vector represen-

tation is potentially more informative than the single-valued baselines.

Finally, I proposed new methods to employ non-conversational factors such as gender-

composition to entrainment measures. The proposed multi-task vector representation learn-

ing, where predicting gender-composition is an auxiliary task, shows promising improvement

at predicting the favorable outcome. The results indicate this is a promising path that

requires further investigation in future.

Table 17 summarizes the hypotheses I made in this thesis and if the evaluation results

support these hypotheses.

8.2 TRADEOFFS

I developed several measures of multi-party entrainment in this work. As I discussed before,

each speaker might show one or multiple forms of entrainment on one or multiple linguistic

features. So, we need to estimate entrainment using different measures such as global conver-

gence and local entrainment to fully understand the entrainment behavior of the speakers.

Although, each of the introduced measures might be more proper for a certain situation.

Convergence is a within team measure. It is directly estimated using the given team’s

data. It does not include any learning process and does not require training data. So, it can

be used both online and offline. Although, estimating lexical convergence on short dialogues

or on small intervals have sparsity issue.

Proximity compares the target group with non-team members. Similar to convergence,

proximity is directly estimated and does not involve any learning process and does not require

any training data. But, it does require data from other teams on the same task, same topic

of discussion, and similar audio recording situation to be compared to the target team as

a sort of baseline. This measure can be used both online and offline if the baseline data is
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Hypothesis Supported?

H1: Entrainment occurs at multiple linguistic modalities
during conversation.

Yes

H2: Teams that entrain on one modality are more likely to
entrain on the other, and vice versa.

Yes

H3: To predict team outcomes, a multi-modal model with
entrainment features from acoustic-prosodic and lexical lev-
els outperforms a unimodal model.

Yes

H4: A properly weighted convergence measure has a higher
validity than the simple-averaging convergence.

Yes

H5: A properly weighted convergence measure has a higher
utility than the simple-averaging convergence at the down-
stream task of predicting team outcomes.

Yes

H6: Time-lagged multi-party entrainment estimated by the
proposed window-based approach has a higher validity than
the immediately preceding baseline.

No

H7: Time-lagged multi-party entrainment estimated by the
proposed window-based approach has a higher utility than
the immediately preceding baseline at the downstream task
of predicting team outcomes.

No

H8: The proposed vector representation of multi-party en-
trainment outperforms the state of the art adaptive entrain-
ment baselines at the downstream task of predicting team
outcomes.

Partially Supported

H9: The proposed gender-aware extension of the entrain-
ment measures outperforms the none-extended versions at
the downstream task of predicting team outcomes.

Partially Supported

Table 17: The thesis hypotheses and summary of the final conclusions.
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collected beforehand.

The proposed entrainment embedding utilizes the pairwise measure introduced by Danescu-

Niculescu-Mizil et al. (2012). This pairwise measure is more suitable for lexical entrainment.

Any other directional pairwise measure can be utilized to build the entrainment graphs. For

example, for acoustic-prosodic features, we can utilize the PCA-based directional entrain-

ment measure (Lee et al., 2011).

The entrainment embedding estimated directly using the kernel method does not in-

volve any learning process and does not require any training data. It can be used both

online and offline. The self-supervised and weakly-supervised approaches are more proper

for offline situations since they involve training time to learn the embedding. Although the

weakly-supervised approach is computationally more expensive than the kernel approach,

it is superior to the kernel approach in terms of accuracy at predicting team outcomes.

It should be emphasized that the training data, utilized to learn the embedding, does not

require any manual labeling.

All these measures can be utilized for multiple applications. One example application

is to understand team interactions. Researchers might introduce team interventions for less

entraining teams to optimize the team processes. These measures can also be used to design

dialogue systems with entrainment abilities for multi-party situations.

8.3 LIMITATIONS AND FUTURE WORK

This study utilizes one single dataset, the teams corpus, which is a small dataset collected

in a controlled laboratory experiment. The teams are small groups of three or four

people. Each participant was a member of only a single team. Also, the team outcomes are

self-reported perceived variables. Here I describe several future directions that arise from

this thesis and are yet to be investigated:

• Real Data: This work is done using the Teams Corpus which is collected in a laboratory

setting. The laboratory setting enabled high-quality audio and video capture, while the

experimental study allowed us to collect measures of team processes. Although this data
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approximates task-oriented multi-party spoken dialogues, future work should experiment

with real world situations to both validate our results and provide solutions for new

challenges like noisy input or multiple topics of discussion.

• Utility of the Proposed Measures: In this thesis, utility of the proposed measures

is verified at the downstream task of predicting perceived team outcomes. Using other

datasets, the utility of the proposed entrainment measures should also be verified at

predicting real, not-perceived outcomes such as task success 1.

• Varying Team Size: This study deals with groups of three or four people. Future

work should experiment with groups with varying team-size to both validate our results

on large groups and provide solutions for any potential challenges that arise when the

teams are big. For example, although I did not find any evidence that considering time-

lag improves the local entrainment measure, this conclusion might not hold for larger

groups.

• Multi-party Dialogue Systems: An interesting end application of this research is

entrainment-enabled multi-party dialogue systems. A few studies have implemented such

systems for two-party dialogues (Lubold et al., 2015; Lopes et al., 2015; Hu et al., 2016;

Mizukami et al., 2016). Future work should attempt to implement entrainment-enabled

dialogue systems for multi-party enviroments, such as computer-assisted collaborative

learning, or home-bots with ability to detect multiple users.

• Relation of Different Entrainment Measures: In this work, I examined multiple

entrainment measures. Each of these measures focuses on a different aspect of entrain-

ment. But, I did not investigate the relation between these measures. Future work should

investigate these relations. For example, what is the relation between convergence and

proximity, or global and local measures in multi-party groups? Do teams with high prox-

imity also have high convergence? Is there any relation between global convergence and

local entrainment?

• An Exhaustive Multi-Modal Analysis: In this work, I investigated the relation be-

tween entrainment at acoustic-prosodic and lexical levels in multi-party spoken dialogues.

1In the Teams corpus, almost all of the teams successfully finish the task. So, we could not employ a task
success measure in this thesis using the Teams corpus.
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Future work should extend this study by including more linguistic levels such as syntax

or semantics, and other modalities such as visual (e.g., gesture and facial expressions).

Following this work, Levitan et al. (2018) investigated the relation of acoustic-prosodic

and lexical entrainment on two corpora of dyadic dialogues and they did not find any

correlations. Future work should investigate these relations on other multi-party corpora.

• Incorporating Individual and Team-level Non-Conversational Characteristics:

In this thesis, I attempted to enhance multi-party entrainment measures by incorporating

gender and teams’ gender-composition. This work takes the first step and shows this

is a promising path to follow. Other non-conversational characteristics, such as age,

education, and familiarity with the task should be investigated in future work.

• Optimizing the Hyper-Parameters and Finding the Best Network Architec-

tures: The goal of this research is not to find the best prediction models and the best

possible result for the proposed models. I introduce several novel ideas and research paths

for multi-party entrainment. The promising results using most obvious network struc-

tures and intuitively chosen parameters indicates the potential of these novel ideas. Fu-

ture work should investigate finding the best results by optimizing the hyper-parameters

and by investigating other network structures.
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APPENDIX A

TRANSCRIPTION OF A DIALOGUE OF A 3-PERSON TEAM PLAYING

THE GAME IN THEIR FIRST SESSION FROM THE TEAMS CORPUS

Engineer : Ok I’m going to

Engineer : shore up these two.

Pilot : Good move.

Engineer : Then we got one and then I guess I can also

Engineer : Can I use my powers twice in one play

Messenger : Mm

Pilot : yes

Engineer : OK well I guess yeah cause we (–)

Pilot : Well the Pilot’s limited to once per turn.

Messenger : yeah

Engineer : Ok and then I have (–) two treasure cards.

Messenger : two treasure cards

Pilot : Two Treasure cards.

Messenger : Mmhmm

Engineer : yeooh

Engineer : Ok so, let me see sorry

Pilot : uh oh

Engineer : so i move this up one tick

Pilot : and then these are gonna get shuffled
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Engineer : Mmhmm

Pilot : If we had any sandbags we’d wanna use them while these were getting shuffled.

Engineer : (–) shuffle and then discard this into the treasure

Engineer : Um and I guess I have to, I’m still picking two cards I guess then.

Pilot : yeah

Messenger : Mmhmm

Pilot : That’s the worst part. It starts out easier but then it starts sinking faster and faster.

Engineer : So Iron Gate and Phanthom Rock.

Messenger : Iron Gate

Messenger : umm

Pilot : That’s the Iron Gate

Messenger : Ok

Pilot : Phathom Rock

Messenger : Phathon Rock, oh um

Engineer : Aw, oh my gosh.

Pilot : Oh sinking already

Engineer : Ok

Messenger : I guess the Phathom Rock

Pilot : Alright. The Phathom Rock Card gets removed

Engineer : Oh yeah. That sucks.

Pilot : Foruntately it’s not critical. No Treasures on it and it’s not a path to anywhere.

Messenger : Mmhmm

Pilot : Ok that was your turn. So

Engineer : Ok

Pilot : I can take up to three actions.

Pilot : (–)

Pilot : I’m gonna move one.

Pilot : Opps that not sunken, why am I turning it.

Pilot : I move two ,

Pilot : give me two and two that doesn’t help alright.
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Pilot : I’m just gonna move two and sit there and draw

Pilot : one

Pilot : Draw two.

Engineer : Hmm.

Pilot : Draw Flood Cards equal to the water level.

Messenger : Lost.

Pilot : Lost Lagoon

Engineer : Oh.

Pilot : And Whispering Gardens.

Pilot : Alright that’s it for my turn.

Messenger : um hmm.

Messenger : Ok so.

Messenger : I think I’m going to...

Messenger : use my power to fly here and save this card.

Pilot : Ok.

Pilot : One action left.

Messenger : Um.

Messenger : then.

Messenger : Move here.

Messenger : And then

Pilot : Wait isn’t using your power an action?

Messenger : move

Messenger : Yeah one action.

Pilot : So you one action to move, one to shore up, and then one move is what I’m asking.

Messenger : Um, (sighs) there’s not much I can do, ok

Pilot : third action

Pilot : Not at this point. We need to get matching sets and get treasures before the island

sinks.

Messenger : (it’s) another Helicopter.

Messenger : that and then two Flood Cards.
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Pilot : alright

Pilot : alright

Messenger : Um Cliffs of Abandon and Breaker’s Bridge.

Pilot : Breaker’s Bridge.

Messenger : and Cliffs of Abandon

Engineer : Ok first i’m going to

Engineer : use (–)

Engineer : huh (–)

Engineer : Um I’m gonna (–) Cliffs of Abandon

Engineer : and

Engineer : and then I’ll take two Treasure cards ok.

Messenger : Two cards

Engineer : Thank you.

Engineer : OK

Pilot : (you got it)

Engineer : Wait op, six, I gotta discard one.

Pilot : Nope.

Pilot : You’ve got five.

Engineer : Oh wait (–) sorry (–).

Messenger : Oh isn’t it five?

Pilot : You got five and you got three fire each. You need to get to

Pilot : Cave of Shadows

Engineer : Yeah ok um so Temple of the Moon and Golden Gate.

Messenger : Umm.

Pilot : Gold Gate is removed. That’s not good.

Engineer : Mm, that’s oh.

Messenger : Temple of the Moon.

Pilot : Temple of the Moon. Ah.

Messenger : Oh and the Golden Gate card.

Engineer : Oh yeah I’m sorry.
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Pilot : Take that SanFrancisco

Pilot : Alright it’s your turn, so it’s my turn.

Pilot : Um, I’m gonna shore up the Temple of the Moon.

Pilot : I got two of these. I kinda wanna stay there right now. Nothin’ else I can shore up

so I think I’ll only take one action.

Pilot : I’m gonna go to six cards though. so I’m gonna go ahead and use Sandbags so

Pilot : shore that up

Pilot : Oo Water’s Rise that’s not good.

Pilot : tick’s up one.

Messenger : Oh did you only take one Treasure card?

Pilot : M cause I had to play the Water’s Rise immediately but

Pilot : Also got a Lion.

Pilot : Shuffle shuffle shuffle shuffle shuffle shuffle

Pilot : And I’m going three

Pilot : Breaker’s Bridge. Good thing I shored Temple of the Moon up.

Messenger : Breaker’s Bridge

Pilot : Temples of the Moon and Whispering Gardens.

Messenger : Whispering Garden’s keeps getting turned over.

Engineer : Yeah

Pilot : Good news is they keep on floating right next to the Engineer

Pilot : Ok that’s it for my turn.

Messenger : Ok.

Messenger : Um so.

Messenger : Ah yeah five cards.

Engineer : I can discard one if

Messenger : Ok.

Pilot : Yeah well you gotta, you gotta be adjacent to her now so you’d have to fly there and

then hand her

Messenger : Mmk. I’m going to fly

Messenger : here.
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Pilot : or is it adjacent or is it on the same

Messenger : is it on the same?

Pilot : same island yeah you’d have to fly to meet her.

Messenger : Same island, ok here.

Messenger : I’m gonna give you this.

Engineer : ok.

Pilot : you gotta discard a treasure cards.

Engineer : ok um

Engineer : thanks.

Messenger : Ok so that’s two turns so far.

Pilot : Yup, you got one left.

Messenger : Um.

Pilot : You could either move or shore up.

Messenger : I’m going to...

Messenger : You can shore up adjacent right?

Pilot : Yes.

Engineer : mmhmm

Messenger : So I mine as well just shore this one up.

Pilot : Yeah it’s got the Treasure on it though.

Messenger : Ok and then two Treasure cards.

Messenger : Sandbag this one.

Messenger : And then two Flood cards.

Pilot : Three Flood cards.

Messenger : Three Flood cards.

Messenger : Cliffs of Abandon, Lost Lagoon, Iron Gate.

Engineer : Mmmm.

Messenger : Mmm Iron-

Engineer : Um soo

Engineer : Alright I’m going to move two places wait.

Engineer : Maybe that was waste for me (–)
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Pilot : You could move two and collect a treasure.

Engineer : Yeah. I just (–) I’m gonna save something.

Engineer : Wait is collect treasure a move?

Pilot : Yes.

Engineer : Oh ok.

Engineer : One Two. And then I will- I guess I put these in the treasure room

Pilot : Yup and you collect the rasberry jello.

Messenger : And that was three turns?

Pilot : Yup.

Engineer : Yeah that’s it. Thank you.

Messenger : Mmhmm.

Engineer : um yups got these guys and I guess three Flood cards unfortunately.

Engineer : What’s it gonna be. Copper Gate, Crimson Forest and Howling garden.

Messenger : Howling Garden gone.

Pilot : There’s copper gate. oop

Messenger : And what’s the other one?

Engineer : Ah Crimson Forest.

Messenger : Oh.

Messenger : Mkay

Pilot : Alright, what am I doing here. So I have two of these. I’m gonna shore this up for

one. And

Pilot : and then I’m gonna use my special power for one action messsenger this to you for

one action messenger this for you. each got two. flip over two.

Messenger : Thank you

Messenger : Oh I have to discard. One, two, three.

Pilot : Well you could immediately use either Sandbags or Helicopter Lift.

Messenger : Oh um.

Pilot : Oh yeah I need definitely want to use it cause I just drew a Water’s Rise.

Messenger : Use this to save that?

Engineer : Hhhmm.

100



Pilot : (sighs)

Messenger : Throw that out and now I have five (–).

Pilot : (–) up at three (–) shuffling.

Messenger : Could I also use this one?

Pilot : Yes you could. Just use it any time.

Messenger : Umm.

Messenger : I’m going to

Messenger : move myself away, just in case those fall away.

Pilot : If it falls away you’ll still be able to swim but

Messenger : to here

Pilot : Alright.

Pilot : (fool)

Pilot : flip Breaker’s Bridge, Howling Gardens and Temple of the Moon.

Messenger : Oh thank God we saved that one.

Engineer : Nope this is gone. and temple of the moon is sunk oh.

Messenger : Breaker’s Bridge is Gone.

Messenger : Oh the Breaker’s Bridge card.

Pilot : Oh yeah.

Messenger : ok um.

Pilot : Mm

Messenger : I’m going to give that to you for one action.

Pilot : You need to be on the same as me.

Messenger : Keep forgetting.

Messenger : Yo’re up there.I don’t think I could. I could..

Pilot : I’m up there. you could- you could use your Pilot ability to go there.

Messenger : Oh that’s one.

Messenger : two.

Pilot : two.

Pilot : You got one left. You could shore it up.

Messenger : Umm.
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Messenger : Shore that up.

Pilot : And that’ll be three.

Pilot : Don’t draw another Water’s Rise.

Messenger : (–)

Messenger : Helicopter Lift and this.

Pilot : Three Lions.

Engineer : I’m so far away from everything.

Pilot : Alright then three Flood Cards.

Messenger : Oh.

Pilot : yup

Messenger : OK Crimson Forest, um Iron Gate.

Pilot : Op, both those are getting removed.

Messenger : And Cliffs of Abandon. uh

Engineer : Hmm.

Messenger : ok

Engineer : um oh this is a little tricky. I have so many cards to give and no one to give them

to because I’m a million miles away.

Messenger : Oh um I can use Helicopter Lift and move you to our side.

Engineer : That would just be gorgeous so I can- ok and then so I guess that counts as one

move for me.

Pilot : Mm. Helicopter Lift does not that’s not an action so you still have all three. That’s

one, that’s two.

Engineer : Oh ok. ok, so one and two. Um.

Messenger : Awesome.

Engineer : And then I am going to move back over here in hopes that- well I guess it would’t

matter but we could attempt at some point to save this ok. Um could I please have two?

Engineer : oh look at that ok.

Messenger : Awesome.

Engineer : Um now it’s time for a bad part.

Pilot : now we just need to getcha there.
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Engineer : Yeah.

Engineer : Ok um Whispering Garden, Lost Lagoon and Copper Gate. so Whispering

Garden

Pilot : oop

Messenger : Ah (–) Gate is gone.

Pilot : That’s a problem. That’s a real problem.

Messenger : Oh what’s the other one?

Engineer : Um Lost Lagoon and oop

Pilot : we now don’t have a path back to landing.

Messenger : oh and I only have one Helicopter card.

Engineer : Ooo we’re fun.

Messenger : And I can move myself.

Pilot : You can fly to anyone, but we’re gonna need to be helicopter lifted off that side of

the island. that’s the only way we are gonna get there and I’m gonna need another one.

Engineer : yeah

Pilot : to get off Fool’s Landing.

Pilot : Ok so that was your turn.

Engineer : Yes.

Pilot : I gotta rock.

Messenger : Oh we’re actually, I think we’re good. Cause we only need one more.

Pilot : That’s one. well we also need to get back to Fool’s Landing and escape.

Messenger : Oh I can send you that, well hmm, we need one more Helicopter Lift.

Engineer : Hmm.

Engineer : Yeah. Oh we’ll figure it out. cool enough though but I don’t know

Pilot : One.

Pilot : Ah. And I can move but moving-

Pilot : If we’re stay in the same place, one helicopter Lift can get us there but we’ll still

need one more and you also need to get treasure.

Engineer : Well.

Engineer : yeah I mean if you use your two moves like to go here and he- wait ah sorry.

103



Pilot : No I want to stay with you and use one Helicopter Lift cause

Engineer : Well I’m saying she does like two moves to get here and she can flip this over and

then she would only need one more.

Pilot : One to (–) ok

Engineer : Oh We that would be on like the next turn. Just to ensure it doesn’t sink that

one.

Pilot : Well

Pilot : that’s

Pilot : one

Pilot : two.

Pilot : And flipping over three flood card

Engineer : I don’t know.

Pilot : Cave of Embers

Pilot : Silver Gate

Messenger : Silver Gate

Pilot : Dunes of Deception.

Engineer : (–) we don’t care about them

Pilot : Alright. I’m done.

Messenger : Mmkay um.

Messenger : Ah (–) this.

Messenger : I’m going to use my power to move, no this is me.

Pilot : Oh wait

Messenger : Wait yeah.

Messenger : Oh.

Pilot : you were blue?

Messenger : That sucks.

Messenger : I’m gonna use my powers.

Pilot : right Wow, that’ll teach me to refer to the colors.

Messenger : to go

Pilot : Go to one of the Lion spaces.
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Messenger : eehh.

Messenger : Umm.

Messenger : I think I want to go over here.

Messenger : So that’s one.

Pilot : One (–)

Messenger : Use another one to flip it over.

Messenger : oh Wait can I still take it even thought it’s flipped over?

Pilot : Mm.

Pilot : Yes.

Messenger : yeah so never mind I’m not gonna flip it over.

Engineer : Mmm.

Messenger : Um.

Pilot : One.

Messenger : Ss, two to get the lion.

Engineer : ok

Pilot : two to get the lion.

Messenger : And then

Messenger : One more. Um

Messenger : Hmm.

Pilot : Either shore up or move yourself one closer to the Fool’s Landing.

Messenger : Um.

Messenger : I’ll just shore it up.

Pilot : Alright draw two Treasure cards hope the waters don’t rise.

Messenger : Nope. Waters went rising.

Messenger : And then three floods

Pilot : three flood card.

Messenger : ok.

Messenger : Bronze Gate.

Messenger : Ah Coral Palace and Tidal Palace.

Engineer : Ok, umWould it even matter (where) we move?
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Pilot : we wanna be on the same place so we can be Helicopter lifted off of here.

Engineer : Ok um

Pilot : And you could shore up two before you move.

Engineer : yeah I mean

Pilot : Oh.

Engineer : I think only this one is adjacent to me so.

Pilot : Right cause you can’t diagonal.

Messenger : Mmhmm.

Engineer : so I’ll shore up this one.

Engineer : Then I’ll come over here, um.

Engineer : I don’t, I won’t use that (–) yeah

Messenger : Just give the-

Messenger : yup, water rises.

Engineer : Ok water rises, but also helicopter lift with water rises so I have to put this up

one tick, shuffle those and put them back in the flood thing

Engineer : and then you have to immediately discard those. thinkin’

Engineer : Um, yeah I can

Pilot : (–)

Engineer : I can do, I can use a Helicopter Lift and then you can use yours to get there

finally so

Pilot : Right.

Pilot : Right get to the two of us to Fool’s Landing with the helicopter lift.

Engineer : yeah.

Engineer : (–) treasure cards

Pilot : And then I think we’ve got it.

Pilot : Play it out.

Pilot : Bronze Gate.

Messenger : Bronze Gate

Pilot : Opp I’m flipping all three over.

Messenger : Oop, that one’s out. Bronze Gate’s out.
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Messenger : Oh.

Pilot : Dunes of Deception is out.

Engineer : um

Messenger : And Howling Garden.

Engineer : howlin-

Pilot : Howling Garden.

Pilot : Ok at this point I’m waitin’ for the Helicopter Lift out of here and we’ve got three.

Pilot : I can shore this up as an action.

Pilot : and I can sit here and twidle my thumbs as an action.

Pilot : Flip over two.

Pilot : Two.

Pilot : and flip over

Pilot : well we’ve lost the Lost Lagaoon, imagine that.

Messenger : Lost Lagoon.

Pilot : Did we fi- uh was it already removed?

Engineer : oh I think we did

Pilot : And (–)

Engineer : (–)

Pilot : Silver Gate.

Pilot : Whispering Garden.

Engineer : Whispering Garden’s gone

Pilot : Temple of the Moon.

Engineer : We were really lucky.

Engineer : Pilot

Messenger : I seriously thought it was this one.

Messenger : Ok um my turn?

Pilot : Yup. Need your pilot ability to get there.

Messenger : Use my power to go over there.

Messenger : And use helicopter lift to get us all out.

Pilot : (–) high fives all around.
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Engineer : This is good. Yay!

Engineer : (laughs)

Messenger : (laughs)
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APPENDIX B

THE SUBSET OF THE QUESTIONNAIRES RELATED TO THE

FAVORABLE OUTCOME AND CONFLICT

Q36 Thinking of your team, please choose the letter A through F that best matches for each

item.

• A: There is not a friendly atmosphere among people. (1)

• B (2)

• C (3)

• D (4)

• E (5)

• F: There is a friendly atmosphere among people. (6)

Q27 Thinking of your team, please choose the letter A through F that best matches for

each item.

• A: People in my group do not trust each other. (1)

• B (2)

• C (3)

• D (4)

• E (5)

• F: People in my group trust each other (6)

Q22 Please use the following scale to rate your agreement on each item.
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Q23 Please use the following scale to rate your agreement on each item.

Q28 Thinking of your team, please choose the letter A through F that best matches for

each item.

• A: People are not warm and friendly. (1)

• B (2)
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• C (3)

• D (4)

• E (5)

• F: People are warm and friendly. (6)

Q30 Thinking of your team, please choose the letter A through F that best matches for

each item.

• A: People do not treat each other with respect. (1)

• B (2)

• C (3)

• D (4)

• E (5)

• F: People treat each other with respect. (6)

Q31 Thinking of your team, please choose the letter A through F that best matches for

each item.

• A: People do not work well together as a team. (1)

• B (2)

• C (3)

• D (4)

• E (5)

• F: People work well together as a team. (6)

Q32 Thinking of your team, please choose the letter A through F that best matches for

each item.

• A: People do not cooperate with each other. (1)

• B (2)

• C (3)

• D (4)

• E (5)

• F: People cooperate with each other. (6)
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Q33 Thinking of your team, please choose the letter A through F that best matches for

each item.

• A: People are not willing to share resources. (1)

• B (2)

• C (3)

• D (4)

• E (5)

• F: People are willing to share resources. (6)

Q34 Thinking of your team, please choose the letter A through F that best matches for

each item.

• A: People almost never speak well of the group. (1)

• B (2)

• C (3)

• D (4)

• E (5)

• F: People almost always speak well of the group. (6)

Q35 Thinking of your team, please choose the letter A through F that best matches for

each item.

• A: The people are not proud to belong to the group. (1)

• B (2)

• C (3)

• D (4)

• E (5)

• F: The people are proud to belong to the group. (6)

Q37 Please choose the number from 1 to 5 that fits best, from 1 (to no extent) to 5 (to

a great extent).
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Q38 Please use the following scale to rate your agreement on each item.

Q38 Please use the 1 to 5 scale to answer the questions below. Please choose the number

that fits best.
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Beňuš, Š. (2014). Conversational entrainment in the use of discourse markers. In Recent
Advances of Neural Network Models and Applications, pages 345–352. Springer.
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