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Abstract 

Glioblastoma (GBM) is the most common form of primary brain tumor in the US. It is 

highly aggressive and has a median survival rate of 12 to 14 months with treatment. It has 

significant effects on a patient’s neurocognitive functions, so consequently, patient reported 

outcomes (PROs) are useful for evaluating patients’ physical and mental state in a way that 

biomarkers cannot fully capture. 

Joint models, commonly used in biomedical research, combine traditional mixed models 

and survival analysis models, associating the longitudinal outcome with the time-to-event 

outcome. These models improve inferences on both types of outcomes by accounting for their 

underlying relationship, where events times are associated with the longitudinal outcomes. 

Using data from a net-clinical benefits (NCB) sub-study of RTOG 0825, which evaluated 

the effects Bevacizumab on newly diagnosed GBM patients, we fit joint models to longitudinal 

PRO measures of symptom severity and interference with daily life and time-to-event data of GBM 

progression-free survival. We use these scenarios to simulate joint models where we misspecify 

the underlying survival and longitudinal submodels to investigate the effect of model 

misspecification on the association parameter that ties together the submodels. 

We found that estimates of the association parameter are relatively robust to 

misspecification of the underlying survival distribution but not to misspecification of the assumed 
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trajectory of the longitudinal submodel. Individual simulations were prone to extremely biased 

estimates, unstable estimates, and programming errors, so further investigation is suggested. 

Public Health Significance: Limited research has been done regarding the impact of 

misspecifying joint models. This thesis can inform methods to improve the analysis of biomarker 

and time-to-event data.  These models, in turn, would have a public health impact when biomarkers 

can be used as surrogates for intervention in major health related events and thus facilitate early 

intervention of those events when necessary. Here, we illustrate an example confirming a result 

from RTOG 0825 that Bevacizumab has a negative effect on PROs in addition to investigating the 

association of these PROs on GBM progression. 
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1.0 Introduction 

Glioblastoma (GBM), a type of glioma, or primary brain tumor, is the most common form 

of malignant brain tumor in the US. It currently has no known cure and has only seen small 

improvements in prognosis in recent research1. After diagnosis, the relative one-year survival rate 

of GBM patients in the US between 2000 and 2012 was 37.8% with a five-year survival rate of 

5.1%. Undiagnosed cases have a median survival rate of 3 months, but this increases up to 12 to 

14 months with diagnosis and treatment2. The current standard of care for treatment involves 

surgery followed by radio-chemotherapy. This thesis uses data from RTOG 0825, a phase III 

randomized trial of Bevacizumab among newly diagnosed GBM patients. It uses data from a net 

clinical benefits (NCB) substudy from this trial which focused on patient reported outcomes 

(PROs), including health-related quality of life and neurocognitive outcomes.  

Joint models are the analytical focus of this thesis, making use of both the longitudinal and 

survival components of the data collected in longitudinal studies to account for the underlying 

association between these two types of outcomes. This is especially useful when there is 

nonrandom, informative dropout in the data. This thesis is a simulation study that explores the 

effects of either misspecifying the functional form of the longitudinal component or the underlying 

distribution of the parametric survival submodel on the estimation of the association parameter in 

joint models. We characterize the association between symptom severity and symptom 

interference with progression-free survival in GBM patients as the clinical example to investigate 

the effect of model misspecification. 

In Section 2, we provide background on GBM and RTOG 0825, the motivating clinical 

example for this thesis. Section 3 discusses the background on joint models, the simulation of joint 
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models, and the methods used for the analysis. Section 4 describes the results of the analyses. 

Section 5 concludes this thesis with a discussion. 
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2.0 Clinical Background 

2.1 Glioblastoma 

Glioblastoma (GBM) is the most common central nervous system tumor, representing 

nearly 80% of malignant primary brain tumors as well as 27% of all primary brain tumors in the 

US. It is a highly aggressive, incurable, and deadly form of cancer, classified as a grade IV glioma 

by WHO classification, with a median survival rate of only 12 to 14 months after diagnosis2. GBM 

is divided into two subtypes: primary and secondary GBM. Primary GBMs appear without prior 

evidence of tumors and comprise the majority of GBM cases, while secondary GBMs grow from 

lower grade glioma. While there are no histological differences between the two, there are 

molecular differences that suggest the two forms develop through different pathways, so each form 

could benefit from differing prognosis and treatment2. The current standard treatment for GBM 

consists of maximal safe surgical resection, followed by concurrent radiotherapy with 

temozolomide, and then adjuvant chemotherapy with temozolomide. Surgery has shown 

improvements in prognosis for newly diagnosed patients, but the relative effectiveness of radiation 

therapy in this subgroup is more nebulous. Temozolomide is an alkylating agent that triggers 

apoptosis, or cell death, whose effectiveness has been reported to be correlated with the levels of 

methyl guanine methyl transferase (MGMT) activity. MGMT is an important DNA repair protein 

that reduces the effectiveness of alkylating chemotherapy against tumor cells3. While GBM is one 

of the most common forms of brain tumors, it is a relatively rare tumor with an age-adjusted 

incidence rate between 0.6 to 3.7 per 100,000 persons. Persons diagnosed with GBM tend to be 

older, with a median age of 64, tending to be higher for primary GBM (mean age of 55) than 
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secondary GBM (mean age of 40). It is 1.6 times more common in males than females and most 

common in white people compared to other ethnic groups including blacks, Asians, and Latinos1,2. 

Previous exposure to ionizing radiation is associated with increased risk of GBM, and certain genes 

related to allergies and the immune system are associated with decreased risk, but there is no 

significant evidence that lifestyle or environmental factors are associated with risk of GBM1. 

2.2 Radiation Treatment Oncology Group Study 0825 (RTOG 0825)  

In this thesis, we utilize a subset of data from RTOG 0825, a phase III randomized trial of 

Bevacizumab for patients with newly diagnosed Glioblastoma. RTOG 0825 was funded by the 

National Cancer Institute and conducted as a collaboration between the Radiation Therapy 

Oncology Group (RTOG), the North Central Cancer Treatment Group, and the Eastern 

Cooperative Oncology Group. Bevacizumab is a humanized monoclonal antibody that neutralizes 

vascular endothelial growth factor (VEGF), an important angiogenic factor, to inhibit tumor 

angiogenesis. It has been approved for use in treating patients with recurrent glioblastoma but, at 

the time of this study, had not been studied for its effects among patients with newly diagnosed 

GBM4. Of 978 patients enrolled into the study, 621 patients were included in the final analysis. Of 

these 621, 309 received a placebo and 312 received Bevacizumab in addition to radiotherapy and 

chemotherapy with temozolomide. The study found no significant difference in overall survival 

between the two treatment arms, with a hazard ratio of 1.13 (95% CI: 0.93-1.37). However, there 

was a significant difference in progression-free survival between the placebo (median of 7.3 

months) and Bevacizumab (10.7 months) groups (hazard ratio of 0.79; 95% CI: 0.66-0.94), but it 

is worth noting that the treatment effect varied over time. A net clinical benefits (NCB) substudy 
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showed that, over time, the Bevacizumab group had greater decreases in various of neurocognitive 

tests, including the Controlled Oral Word Association Test (p = 0.003) and the Trail Making Test, 

Part A (p = 0.04). It also found that the Bevacizumab had greater decreases in various symptom 

and health-related quality of life (QoL) outcomes such as composite symptom score (p = 0.02), 

cognitive factors (p = 0.01), treatment factors (p = 0.03), and motor dysfunction (p = 0.02)4. This 

thesis uses data from the NCB substudy. For these analyses we additionally restricted the data to 

only data from while patients are of progression-free status. 

2.3 Patient Reported Outcomes (PROs) 

Although the primary endpoints of the RTOG 0825 study were overall survival and 

progression-free survival, Patient Reported Outcomes (PROs) were analyzed in a NCB substudy 

of RTOG 0825. PROs provide important clinical information from patients’ perspectives, allowing 

us to better evaluate the costs and benefits of treatments and use information that cannot be gleaned 

from biomedical outcomes alone, or are subjective in nature, to better interpret clinical trial 

results5. There are three components to the PROs that are assessed as part of RTOG 0825. The 

European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30 questionnaire 

and BN20 module are used to assess a patient’s QoL. It primarily evaluates patients’ physical 

function, cognitive function, and affective state. The M.D. Anderson Symptom Inventory 

(MDASI) assesses patients’ symptom severity and symptom interference with daily life, with an 

additional module assessing symptoms specifically related to brain tumors (MDASI-BT). Finally, 

neurocognitive tests, consisting of the Hopkins Verbal Learning Test-Revised, Trail Making Test 

Parts A and B, and the Controlled Oral Word Association test, were administered4. QoL can be 
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affected by both the disease itself as well as the treatment, with the effects of anti-tumor treatment 

as possibly both positive and negative. Because of GBM’s nature as a brain tumor, its effect on 

cognitive function is especially evident, with most patients experiencing cognitive deficits and 

neurocognitive decline2. A recent study has shown that using cognitive function PROs in 

conjunction with tumor prognostic variables is better than using tumor variables alone to predict 

survival and using additional endpoints besides just survival and PFS may be useful in brain cancer 

clinical trials6. Due to the aggressiveness of GBM, losing patients to follow up results in non-

ignorable missing PRO data, which we aim to use joint models in the presence of. 
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3.0 Statistical Methodology 

3.1 Overview of Joint Models 

Longitudinal studies, which are commonplace in biomedical research, are studies that 

follow individuals over a set period of time, collect repeated measurements of data, and typically 

analyze two types of outcomes: longitudinal response data and time-to-event (survival) data. Often 

cited examples are that of HIV and cancer research7,8. With HIV studies, the time to death, disease 

progression to AIDS, or data censoring (from study withdrawal, study closure, etc.) is recorded for 

each patient. In addition to baseline characteristics, repeated longitudinal measurements of 

biomarkers related to the immune system, such as CD4 lymphocyte count or viral load, are taken 

for subjects in the study. Likewise, cancer studies will record time to death or disease progression 

and measurements such as prostate specific antigen levels, for prostate cancer studies. Usually, 

research questions are constructed such that these two types of data are analyzed separately; for 

example, mixed effects models are used to analyze the longitudinal outcome and survival models 

for the time-to-event outcome, without overlap. However, in situations where the association 

between the two types of outcomes is of interest, joint models are useful7,8. If the primary focus is 

on the longitudinal outcome, in situations when dropout events are nonrandom and results in loss 

of longitudinal data, ignoring the time-to-event data can lead to biased analyses. In this situation, 

joint models allow us to produce valid inferences that account for this underlying relationship. If 

the primary focus is on the time-to-event outcome, joint models are used when we wish to analyze 

the effect of the time-dependent longitudinal measurements on the time-to-event outcome. Using 

standard survival analysis models, it is assumed that time-dependent covariables are exogeneous 
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and do not depend on the longitudinal outcome. When these covariates are endogenous and are 

related to the longitudinal outcome, such as with biomarkers and PROs, using standard survival 

analysis may lead to biased estimates. When the longitudinal covariates are dependent on the time-

to-event outcome, then joint models are required for valid inferences7. 

3.2 Joint Model Specification 

We start by defining the survival and longitudinal data we observe. We define 𝑇𝑖 as the 

true event times for each of the 𝑖 = 1, … , 𝑛 subjects and 𝐶𝑖 as the underlying potential censoring 

times for the ith subject. However, we only observe 𝑉𝑖 = 𝑚𝑖𝑛(𝑇𝑖, 𝐶𝑖) and 𝛿𝑖 = 𝐼(𝑇𝑖  ≤ 𝐶𝑖), an 

indicator of whether we observed the event or if the subject was censored. We will define 

{𝑦𝑖(𝑡), 𝑡 ≥ 0} as the full longitudinal response measured over all times 𝑡 ≥ 0. Because we do not 

observe the entire trajectory, we define 𝑦𝑖𝑗 = {𝑦𝑖(𝑡𝑖𝑗), 𝑗 = 1, … , 𝑛𝑖} as the measurements we 

observe, which we collect at each of the intermittent 𝑡𝑖𝑗 time points. We use a mixed-effects model 

to characterize the longitudinal data while incorporating subject specific intercepts and slopes 

using the following equation: 

𝑦𝑖(𝑡𝑖𝑗) = 𝑚𝑖(𝑡𝑖𝑗) + ϵij = 𝑿𝒊
𝑻(𝑡𝑖𝑗)𝜷 + 𝒁i

T(𝑡𝑖𝑗)𝒃𝑖 + 𝒖𝑖
𝑇𝜽+ 𝜖𝑖𝑗 (1) 

where mi(tij) is the true unobserved values of the longitudinal response at times tij and the error 

term 𝜖𝑖𝑗~𝑁(0, σ2) represents measurement error, which we assume are mutually independent and 

independent of the random effects bi. We define Xi as a design matrix for the fixed effect 𝜷 and Zi 

for the random effects bi, with distributed as multivariate normal 𝒃𝑖~𝑵(𝟎, 𝚺)7. Baseline covariates 

are represented with vector ui with a corresponding vector of regression coefficients 𝜽 to delineate 



 9 

from the covariates we measure over time in Xi, although some authors include it within the Xi 

term8. For longitudinal outcomes that show non-linear trajectories, flexible formulations for 𝑚𝑖(𝑡) 

are preferred, using functions of time t expressed as high-order polynomials or splines. Splines are 

considered the preferred way to model highly nonlinear trajectories because they have better 

numerical properties and, due to their local nature, avoid possible problems associated with the 

global nature of polynomials7. Approaches utilizing cubic b-splines have been proposed by several 

authors9,10. For example, Brown (2005) proposes a Bayesian hierarchal model that defines 

𝑌𝑖𝑗 = ψ(𝑡𝑖𝑗) + ϵ𝑖𝑗 = ∑ β𝑖𝑘

𝑞

𝑘=1

𝐵𝑘(𝑡𝑖𝑗) + 𝑥𝑖
′α + ϵ𝑖𝑗 (2) 

where βik~𝑁(𝑏0𝑘, 𝑉0𝑘). The summation term is a random effect curve with a q-dimensional basis 

for spline functions on [0, 𝑇] and the 𝑥𝑖
′α term accounts for the effect of the baseline covariates. 

This model can also be extended to the multivariate case of longitudinal outcomes10. Another 

alternative framework uses models with the form 

𝑦𝑖(𝑡) = 𝑚𝑖(𝑡) + 𝑈𝑖(𝑡) + ϵ𝑖(𝑡) (3) 

where 𝑈𝑖(𝑡) is a mean-zero stochastic process. Possible specifications of 𝑈𝑖(𝑡) include as an 

integrated Ornstein-Uhlenbeck process or as a stationary Gaussian process, allowing trends to vary 

over time and accounting for biological fluctuation about a smooth trend8. For example, in 

Henderson (2000), the following specification is proposed: 

𝑈1𝑖(𝑡) = 𝑊1𝑖 + 𝑊2𝑖𝑡 (4) 

𝑈2𝑖(𝑡) = 𝛾1𝑊1𝑖 + 𝛾2𝑊2𝑖 + 𝛾3(𝑊1𝑖 + 𝑊2𝑖𝑡) + 𝑊3𝑖 

with the subscript i left out. In this, (𝑊1, 𝑊2) are latent zero-mean bivariate normal variables and 

𝑊3~𝑁(0, σ3
2), independent of (𝑊1, 𝑊2). The parameters γ1, γ2, and γ3 measure the association 
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between W1 and W2, while W3 is a frailty term11. For our formulation, we will focus on 𝑚𝑖(𝑡) as a 

polynomial function of time, a simple example being 𝑚𝑖(𝑡) = (β0 + 𝑏0𝑖) + (β1 + 𝑏1𝑖)𝑡 + β2𝑡2.  

Finally, we define the survival submodel using the relative risk formulation of the 

proportional hazards model: 

ℎ𝑖(𝑡 | 𝑀𝑖(𝑡), 𝑣𝑖) = 𝑙𝑖𝑚
𝑑𝑡→0

𝑃𝑟{𝑡 ≤ Ti < 𝑡 + 𝑑𝑡 |𝑇𝑖 ≥ 𝑡, 𝑀𝑖(𝑡), 𝑣𝑖}/𝑑𝑡 

= ℎ0(𝑡)𝑒𝑥𝑝{𝜂𝑇𝑣𝑖 + α𝑚𝑖(𝑡)} (5) 

where 𝑀𝑖(𝑡) = {𝑚𝑖(𝑠), 0 ≤ 𝑠 < 𝑡} is the true, complete history of the unobserved longitudinal 

process up to time t. The baseline hazard function is denoted as ℎ0(⋅) and 𝑣𝑖 denotes a vector of 

baseline covariates that may or may not be the same as 𝒖𝑖
𝑇 in (1) with corresponding coefficient 

vector η. The Cox Proportional Hazards model is the most popular choice of model to use for the 

survival submodel. In it, the baseline hazard function is left unspecified and is estimated 

nonparametrically while η is estimated using a partial likelihood function. This is known as the 

semi-parametric approach7. The method this thesis focuses on is the parametric approach that 

specifies a known parametric function, such as the exponential function, for the baseline hazard 

function. The parameter 𝛼 is the measure of association between the longitudinal outcome to the 

time-to-event outcome risk. Previous studies have evaluated the potential of using the longitudinal 

outcome as a surrogate for the time-to-event outcome with the conditions that if the treatment had 

an effect on the time-to-event, the treatment had an effect on the longitudinal outcome, and vi in 

(5) includes the treatment indicator, then the risk of the event based on the longitudinal outcome 

should be independent of treatment, so 𝑚𝑖(𝑡) can serve as a surrogate8. Alternative specifications 

for the survival submodel include the rate of change structure that uses α𝑚𝑖
′(𝑡) instead of 𝛼𝑚𝑖(𝑡) 

in (5) or the accelerated failure time framework. Though we focus on continuous longitudinal 
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outcomes in this thesis, joint models can be extended to categorical and count data within the 

generalized linear mixed model framework7. 

Initial approaches to fit joint models were based on two-stage models; in the first stage 

random effects are estimated using growth curve models, and in the second stage the estimates are 

substituted into the partial likelihood of the Cox model which is then maximized. Now, the primary 

estimation method for joint models uses maximum likelihood estimation. The likelihood function 

for the parameters of interest is  

∏ ∫[ℎ0(𝑉𝑖)𝑒𝑥𝑝{η𝑇𝑣𝑖 + α𝑚𝑖(𝑉𝑖)}]δ𝑖 𝑒𝑥𝑝 [− ∫ ℎ0(𝑢)𝑒𝑥𝑝{η𝑇𝑣𝑖 + α𝑚𝑖(𝑢)}𝑑𝑢
𝑉𝑖

0

]

𝑛

𝑖=1

 

×
1

{(2πσ}2)𝑚𝑖/2
exp [− ∑

𝑌𝑖(𝑡𝑖𝑗) − 𝑚𝑖(𝑡𝑖𝑗)
2

2σ2

𝑚𝑖

𝑗=1

] 𝑝(αi|ν𝑖; 𝛿)𝑑α𝑖 (6) 

where 𝑝(αi|ν𝑖; 𝛿) is assumed multivariate normal. 

Maximization of the log-likelihood function can be done using the Expectation-

Maximization (EM) algorithm or the Newton-Raphson algorithm, though the EM algorithm is 

preferred due to some of the parameters having closed-form estimates7. 

3.3 Effects of Model Misspecification 

In this thesis we are interested in the effect model misspecification has on the estimation 

of joint model parameters. Our primary interest is in the effects of misspecifying the forms of the 

𝑚𝑖(𝑡) time polynomial and the underlying baseline hazard function ℎ0(⋅) on the association 

parameter α in the survival submodel of the joint model, a topic that has received limited attention. 

Gail (1984) shows that, in the analysis of uncensored survival data, parametric proportional 
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hazards models give unbiased estimates of treatment effects regardless of the underlying survival 

distribution. However, when censoring is present, estimates are biased. When needed covariates 

are omitted, the estimates of treatment effects are also biased, but if the exponential model is used, 

less bias is observed than if using the Cox proportional hazards model. In proportional hazards 

models, when covariates are omitted, estimates of the regression parameters are asymptotically 

biased towards zero. The degree of bias is expected to be small, unless if the true value is large12. 

Asymptotic variances from the model with omitted covariates are also smaller than those from the 

true model13. The effect of misspecifying the hazard function in parametric proportional hazards 

models will vary depending on the true underlying distribution of the survival data. In a study 

modeling against a single covariate, the size and power of hypothesis tests on the parameters of 

misspecified parametric models is generally outperformed by Cox models, with exponential 

models performing particularly poorly except in the case of no misspecification14. Kwong (2003) 

states that there is merit to fitting parametric survival models, as models are generally robust to 

misspecification if coefficients are small or if survival times are long, including in the presence of 

influential observations. However, this less true when hazard rates are rapidly increasing or 

decreasing15. Misspecifying the underlying survival distribution can also lead to models with local 

overfitting and increased bias at the lower and upper percentiles compared to at the median16,17. 

Correctly specified and asymptotically well-fitting parametric models should give efficient 

parameter estimates16, but the potential trade-off for misspecification of the underlying survival 

distribution leading to highly biased estimates is undesirable. This issue is exacerbated when there 

is a large amount of censoring present in the data14,17. As such, some authors caution against the 

use of parametric proportional hazards models due to the possibility of producing very biased 

estimates from misspecified models and misleading results for the shape and scale parameters of 



 13 

the hazard function unless if prior knowledge suggests using a specific parametric model. They 

suggest using a Cox proportional hazards or accelerated failure time models as they are more 

robust to misspecification of the underlying survival distribution16.  

3.4 Simulation of Joint Models 

Bender (2005) provides a general framework for simulating survival data from parametric 

proportional hazards models18. First, the hazard function h(t) of proportional hazards models is 

given as 

ℎ(𝑡|𝑋) = ℎ0(𝑡)𝑒𝑥𝑝(𝑋β) (7) 

where h0(t) is the baseline hazard function of a parametric distribution, 

𝐻(𝑡|𝑋) = 𝐻0(𝑡)𝑒𝑥𝑝(𝑋β), 𝑤ℎ𝑒𝑟𝑒 𝐻0(𝑡) = ∫ ℎ0(𝑢)𝑑𝑢
𝑡

0

(8) 

describes the cumulative hazard, and the survival function, S(t), and cumulative distribution 

function, F(t), are as follows: 

𝑆(𝑡|𝑋) = 𝑒𝑥𝑝[−𝐻(𝑡)]    𝑎𝑛𝑑    𝐹(𝑡|𝑋) = 1 − 𝑒𝑥𝑝[−𝐻(𝑡)]. (9) 

Here, t represents time, X the baseline covariate vector, and β the associated regression 

coefficients. Cumulative distribution functions of variables follow a standard uniform distribution, 

denoted here as 𝑈~𝑈𝑛𝑖𝑓(0,1), and it follows that 1 − 𝑈 is also distributed as 𝑈𝑛𝑖𝑓(0,1). From 

this, letting T be the event time, we have 

𝑈 = 𝐻(𝑡|𝑋) = 𝑒𝑥𝑝[−𝐻0(𝑇) × 𝑒𝑥𝑝(𝑋β)] ~ 𝑈𝑛𝑖𝑓(0,1) (10) 

which we can then solve directly for T as long as 𝐻0(𝑡) can be inverted. So, using the following 

equation 
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𝑇 = 𝐻0
−1[−𝑙𝑜𝑔(𝑈) × 𝑒𝑥𝑝(−𝑋β)] (11) 

we only need to generate random variables from 𝑈~𝑈𝑛𝑖𝑓(0,1) in order to easily simulate survival 

data. Using the simple example of the exponential distribution, the baseline hazard function  is 

ℎ0(𝑡) = λ, giving 𝐻0(𝑡) = λ𝑡 and 𝐻0
−1(𝑡) = λ−1𝑡. Plugging this into (11) gives us 

𝑇 = λ−1[−𝑙𝑜𝑔(𝑈) × 𝑒𝑥𝑝(−𝑋β)] = −
𝑙𝑜𝑔(𝑈)

λ × 𝑒𝑥𝑝(𝑋β)
(12) 

However, when the equations become more complex, such as in the context of joint models, this 

method cannot be directly applied to simulate survival data. Crowther (2013) describes methods 

to extend Bender’s framework to cover situations such as when there is a complex baseline hazard 

function, time-dependent effects, time-varying covariates, and random effects, such as in joint 

modelling19. In these scenarios, if 𝐻0(𝑡) does not have a closed form solution or if T cannot be 

solved for analytically, numerical integration and iterative root finding methods are required to 

solve for the simulated times T. In short, if in equation (8), ℎ0(𝑡) is a complex function of t, or if 

𝑒𝑥𝑝(𝑋β) is a function of t, we must use numerical integration to calculate 𝐻(𝑡|𝑋) and then use 

iterative root finding methods to find the simulated time T that solves equation (10). 
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4.0 Results 

4.1 RTOG 0825 Data Analysis 

Our analyses use a 477 patient subset from the NCB substudy of the RTOG 0825 clinical 

trial, only collecting data from patients who had consented to participating in the NCB component 

of the study and whose tumors had not yet progressed. Among these patients, 229 (48.0%) were 

assigned to receive the placebo and 248 (52.0%) were assigned to receive the Bevacizumab 

treatment. The baseline characteristics of MGMT status and RPA class, a prognostic classification 

for GBM patients, were well balanced between the two treatment arms. These covariates are 

significantly associated with GBM prognosis, but in Gilbert (2014) were not found to have a 

significant differential effect on treatment effect or to change the treatment effect when adjusted 

for, and we will not be using them in our analyses4. In our data subset, disease progression occurred 

in 191 (83.4%) of placebo group patients and 201 (81.0%) of Bevacizumab group patients. The 

median survival time in the placebo group was 7.3 months (95% CI: 5.7 to 8.4) compared to 10.8 

months (95% CI: 10.0 to 12.4) in the Bevacizumab group, with a hazard ratio of 0.82 (95% CI: 

0.67 to 1.00, p = 0.047 by the log-rank test). When we plot the Kaplan-Meier curve (Figure 1), we 

see that early on the Bevacizumab has less progression events than the placebo group. However, 

after approximately 1.5 years the curves cross, indicating that the proportional hazards assumption 

of the hazard ratio has been violated. 
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Figure 1 Progression-Free Survival Kaplan-Meier Plot 

 

The NCB substudy in Gilbert (2014) identifies several PROs that are found to have a 

significant differential deterioration over time between the Bevacizumab and placebo treatment 

groups. PRO data is collected during assessments at 6 time points: 0, 6, 10, 22, 34, and 46 weeks 

after randomization. For our analyses, we will focus on two MDASI-BT outcome measures: the 

composite symptom score and the composite symptom interference score. These are measures of 

the symptom severity and the symptom interference with daily life, scored on a 0-10 scale with 0 

representing no severity and no interference and 10 representing extreme severity and complete 

interference. In total, 13 severity items are averaged for a composite symptom score and 6 

interference items are averaged for the composite symptom interference score (Appendix B). 

These scores are highly right-skewed, so we will use the square roots of the scores in our models 

to limit issues that may stem from modeling skewed data. As such, subsequent references to the 

symptom severity and interference scores will refer to their square roots. 
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Figure 2 Observed Longitudinal Trajectories of Symptom Severity and Interference 

 

In the plots of the symptom severity (Figure 2A) and interference (Figure 2B), the two 

groups start very close, but after about 0.25 years (3 months), the curves separate, with the 

Bevacizumab tending towards higher scores on average than the placebo group, meaning that the 
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Bevacizumab is experiencing worse symptom severity and symptom interference. Observing the 

approximately cubic shape to the symptom severity curve, we fit the following longitudinal 

submodel: 

𝑦𝑖(𝑡𝑖𝑗) = 𝑚𝑖(𝑡𝑖𝑗) + 𝜖𝑖𝑗 = (𝛽0 + 𝑏0𝑖) + (𝛽1 + 𝑏1𝑖)𝑡 + 𝛽2𝑡2 + 𝛽3𝑡3 + 𝛽4𝑇𝑟𝑡𝑖 + 𝛽5𝑡 ∗ 𝑇𝑟𝑡𝑖 + 𝜖𝑖𝑗(13) 

where 𝑇𝑟𝑡𝑖 is a treatment group indicator, time in the scale of years, and 

(
𝑏0𝑖

𝑏1𝑖
) ~𝑁 ([

0
0

] , [
𝜎0

2 𝜌𝜎0𝜎1

𝜌𝜎0𝜎1 𝜎1
2 ])   , ϵ𝑖𝑗~𝑁(0, σϵ

2) (14) 

which is a model with fixed quadratic and cubic powers of time, fixed treatment effect and 

treatment interaction with linear time, and random intercept and linear slope. We fit the following 

survival submodel with an exponential baseline hazard function 

ℎ𝑖(𝑡) = λ𝑒𝑥𝑝(η ∗ 𝑇𝑟𝑡𝑖 + α𝑚𝑖(𝑡)) (15) 

where 𝑚𝑖(𝑡) is from (13). For the symptom interference joint model, we fit a similar submodel 

without the cubic time term: 

𝑦𝑖(𝑡𝑖𝑗) = 𝑚𝑖(𝑡𝑖𝑗) + 𝜖𝑖𝑗 = (𝛽0 + 𝑏0𝑖) + (𝛽1 + 𝑏1𝑖)𝑡 + 𝛽2𝑡2 + 𝛽4𝑇𝑟𝑡𝑖 + 𝛽5𝑡 ∗ 𝑇𝑟𝑡𝑖 + 𝜖𝑖𝑗 (16) 

with random effects and measurement error specified just as in (14) and the survival submodel 

specified as in (15), using the 𝑚𝑖(𝑡) from (16). Though standard survival parametric regression 

suggests that the survival distribution may be better fit as Weibull, these joint models fail to run 

with a Weibull survival submodel on our data, so we will use the exponential baseline hazard for 

our joint models. Standard mixed models of the symptom interference model also suggest 

modeling with cubic time, but joint models with the cubic term fail to converge, so we fit a 

quadratic model. Analyses are performed using the JM package in R (see Appendix A). 

Results for the symptom severity model described above is in the following Table 1 and 

symptom interference in Table 2. In both the symptom severity and interference joint models the 
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Table 1 Symptom Severity Score Joint Model Results 

Parameter Coefficient Std. Error p-value 

Longitudinal Submodel 

Intercept β0 1.0564 0.0323 <0.0001 

Time 𝛽1 1.1738 0.2166 <0.0001 

Time2 𝛽2 -3.4508 0.6201 <0.0001 

Time3 𝛽3 2.3895 0.4710 <0.0001 

Treatment 𝛽4 -0.0677 0.0425 0.1115 

Time*Treatment 𝛽5 0.2376 0.0879 0.0069 

Survival Submodel 

Treatment 𝜂 -0.0648 0.1013 0.5525 

Association 𝛼 -0.0003 0.0001 0.0029 

Log(Scale) 𝑙𝑜𝑔(𝜆) -1.2869 0.0745 <0.0001 

Random Effects Variance-Covariance 

σ0 0.3826   

σ1 0.3517   

𝜌 0.2495   

Measurement Error 

𝜎𝜖 0.3489   

 

 
Table 2 Symptom Interference Score Joint Model Results 

Parameter Coefficient Std. Error p-value 

Longitudinal Submodel 

Intercept 𝛽0 1.2451 0.0486 <0.0001 

Time 𝛽1 -0.5564 0.1289 <0.0001 

Time2 𝛽2 0.2556 0.1011 0.0115 

Treatment 𝛽3 -0.0144 0.0666 0.8284 

Time*Treatment 𝛽4 0.3710 0.1332 0.0053 

Survival Submodel 

Treatment 𝜂 -0.0461 0.1023 0.6520 

Association 𝛼 -0.0342 0.0153 0.0254 

Log(Scale) 𝑙𝑜𝑔(𝜆) -1.2299 0.0782 <0.0001 

Random Effects Variance-Covariance 

σ0 0.5834   

σ1 0.4662   

𝜌 -0.1328   

Measurement Error 

𝜎𝜖 0.5763   
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effects of time and the interaction between time and treatment were significant, but not the 

treatment main effect, in the longitudinal submodel. The interaction coefficient in both models 

indicates that the Bevacizumab group has a more quickly increasing slope in symptom scores than 

the placebo group. In the survival submodel, neither joint model found the treatment effect to be 

significantly associated with progression-free survival. Both models found a significant 

association between the longitudinal outcome and survival, with 𝛼 = -0.0003 (p = 0.003) in the 

symptom severity model and 𝛼 = -0.0342 (p = 0.025) in the symptom interference model. 

Interestingly, the models seem to indicate increased (worse) symptom scores are associated with 

a reduction in hazard rate. In the symptom severity joint model, including cubic time leads to 

rapidly increasing values of the outcome, so the association parameter is sensitive to this and is 

very small compared to in the symptom interference joint model’s association parameter. These 

results will be used to inform our simulations.  

4.2 Simulation Results 

Our first simulation is based on the symptom severity joint model, specifying the assumed 

longitudinal trajectory as in (13) and the survival submodel as in (15), using the parameter values 

of  𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝜎0, 𝜎1, 𝜌, 𝜆, 𝜂, and 𝜎𝜖 from Table 1 to simulate data and fit joint models. 

We then misspecify the survival submodel to have a Weibull underlying distribution, using 

ℎ0(𝑡) = λγγ𝑡γ−1 (17) 

as the baseline hazard function. Our second is based on the symptom interference joint models, 

with (16) and (15) as the assumed longitudinal and survival model specification, using the 

parameters from Table 2. We then misspecify the longitudinal component as 
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𝑦𝑖(𝑡𝑖𝑗) = 𝑚𝑖(𝑡𝑖𝑗) + ϵ𝑖𝑗 = (β0 + 𝑏0𝑖) + (β1 + 𝑏1𝑖)𝑡 + β4𝑇𝑟𝑡𝑖 + β5𝑡 ∗ 𝑇𝑟𝑡𝑖 + ϵ𝑖𝑗 (18) 

without a quadratic time term. Longitudinal outcomes are simulated at up to 6 time points: 0, 0.2, 

0.4, 0.6, 0.8, and 1.0 years, evenly spaced and covering a similar time period as the original data. 

Treatment group membership is simulated from a Bernoulli(0.5) distribution. A 5% chance of 

random missingness in the longitudinal data is generated from a uniform 𝑈(0,1) distribution. 

Survival data is simulated as described in Section 3.3, with disease progression times and 

censoring times simulated according to the same hazard function, as we assume censoring is 

informative, selecting the minimum of the two as the observed event. Longitudinal measurements 

simulated after the observed event time are deleted as well as patients with zero longitudinal data. 

Administrative censoring is applied at 3 years. For each model, 500 simulations are generated with 

longitudinal and survival outcomes for 200 patients in each simulation (Appendix A). 

Results for the simulated symptom severity joint models are presented in Table 3, where 

we display the bias, percent bias, coverage probability (CP), and mean square error (MSE) of the 

estimates of 𝛼 from the simulations. For the correctly specified exponential baseline hazard model, 

of 500 simulations, 45 (9%) had non-positive-definite Hessian matrices and gave parameter 

estimates that cannot be used. Another 122 (24.4%) entirely failed to run, giving fatal errors, 

leaving N = 333 (66.6%) simulations to analyze. In the incorrectly specified Weibull baseline 

hazard model, 42 (9.4%) had non-positive-definite Hessian matrices and 153 (30.6%) encountered 

fatal errors, leaving N = 305 (61%) simulated models to analyze. In the longitudinal submodel, we 

note a moderate amount of bias in the time parameters of both the correctly and incorrectly 

specified models and less so in estimates of the treatment effects (Table 3). The Weibull model 

tends to be less biased but have lower coverage probability than the exponential model. In the 

survival submodel, both joint models are moderately biased in the estimate of the treatment effect 
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and extremely biased with respect to the association parameter 𝛼, though the correctly specified 

model performs slightly better. The simulated estimates of the variance-covariance matrices and 

𝜎𝜖 seem to perform well in both models. However, as seen in Figure 3A, there are extreme 

observations heavily influencing the mean of the simulated alpha parameters from both joint 

models. In Figure 3B, we see trimming the 20% of the simulations based on the alpha parameter 

 
Table 3 Misspecified Survival Submodel Simulation Results 

Parameter  Truth Bias % Bias CP MSE Bias % Bias CP MSE 

  Exponential (N = 333) Weibull (N = 305) 

Longitudinal Submodel 

Intercept β0 1.056 0.001 0.11 91.9 0.016 -0.000 -0.04 84.4 0.017 

Time 𝛽1 1.174 -0.268 -22.84 74.5 1.944 -0.250 -21.31 68.8 2.072 

Time2 𝛽2 -3.451 0.773 -22.39 72.7 16.312 0.729 -21.13 67.0 17.427 

Time3 𝛽3 2.390 -0.531 -22.24 71.8 7.700 -0.503 -21.03 66.7 8.230 

Treatment 𝛽4 -0.068 0.003 -5.04 94.0 0.008 0.003 -5.01 85.9 0.009 

Time* 

Treatment 𝛽5 

0.238 -0.005 -2.02 96.4 0.008 -0.005 -2.20 88.6 0.008 

Survival Submodel 

Treatment 𝜂 -0.065 -0.020 30.62 93.4 0.057 -0.023 35.55 85.6 0.056 

Association 𝛼 -0.0003 -0.083 31668 65.2 4.009 -0.091 34649 58.9 4.377 

Random Effects Variance-Covariance 

σ0 0.383 -0.005 -1.3  0.001 -0.005 -1.2  0.001 

σ1 0.352 -0.015 -4.3  0.005 0.017 -4.9  0.006 

𝜌 0.249 0.019 7.6  0.026 0.004 1.5  0.030 

Measurement Error 

𝜎𝜖 0.349 0.009 2.7  0.010 0.009 2.5  0.009 

 

still leaves us with a substantial right tail. In Figure 3C, trimming by 40% gives a better picture of 

the distribution of the simulated alphas near 0. We see that the simulated alphas are biased 

positively, away from the true parameter. In Table 4, when examining the median and trimmed 

means of the simulated alphas, while still moderately biased, it is significantly less biased than the 

untrimmed mean.  Here the misspecified Weibull model is less biased and generally performs 

better than the correctly specified exponential model. 
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Figure 3 Histogram of Alphas from Simulation 1 

 

Table 4 Trimmed and Median Alphas from Simulation 1 

  Truth 

(10-2) 

Bias 

(10-2) 

% Bias CP MSE 

(10-6) 

Bias 

(10-2) 

% Bias CP MSE 

(10-6) 

  Exponential Weibull 

20% Trimmed -0.026 0.140 -532.3 68.5 46.308 0.015 -58.0 71.2 0.737 

40% Trimmed 0.008 -32.5 67.2 0.010 0.006 -23.9 76.2 0.008 

Median 0.009 -34.6   0.007 -27.0   

 

Results for the simulated symptom interference joint models are presented in Table 5. 

There are significantly fewer errors in these joint models. In the correctly specified quadratic 

model, 3 (0.6%) had non-positive definite Hessian matrices and 13 (2.6%) encountered fatal errors, 



 24 

leaving 484 (96.8%) to analyze. In the misspecified linear model, there are 4 (0.8%) with non-

positive-definite Hessian matrices and 30 (6%) that ran with fatal errors, leaving 469 (93.8%) 

simulations for analysis. Here, we see that the moderate to significant amount of bias present in 

 
Table 5 Misspecified Longitudinal Submodel Simulation Results 

Parameter  Truth Bias % Bias CP MSE Bias % Bias CP MSE 

  Quadratic (N = 484) Linear (N = 469) 

Longitudinal Submodel 

Intercept β0 1.245 -0.007 -0.6 92.6 0.006 -0.015 -1.2 91.7 0.008 

Time 𝛽1 -0.556 0.114 -20.5 58.7 0.082 0.237 -42.5 34.5 0.072 

Time2 𝛽2 0.256 -0.121 -47.4 53.3 0.076     

Treatment 𝛽3 -0.014 -0.004 25.6 94.0 0.012 0.020 -138.3 89.8 0.014 

Time* 

Treatment 𝛽4 

0.371 0.003 0.9 95.2 0.020 -0.065 -17.5 79.7 0.035 

Survival Submodel 

Treatment 𝜂 -0.046 -0.027 57.6 95.0 0.062 -0.180 390.5 81.7 0.148 

Association 𝛼 -0.034 0.042 -124.4 50.4 0.006 0.158 -463.2 44.3 0.088 

Random Effects Variance-Covariance 

σ0 0.583 -0.007 -1.2  0.002 0.003 0.6  0.027 

σ1 0.466 -0.049 -10.5  0.019 -0.149 -32.0  0.056 

𝜌 -0.136 0.020 -15.2  0.037 0.051 -38.0  0.350 

Measurement Error 

𝜎𝜖 0.576 0.002 0.400  0.000 0.008 1.4  0.001 

 

the correctly specified simulations is exacerbated in the misspecified simulation joint models for 

all parameters. We also observe that coverage probability for the time parameters is fairly low in 

the quadratic simulations and even lower in the linear simulations, although the simulated 

estimates of the treatment parameters performed relatively well. Significant bias of the association 

parameter is also present here, though not nearly to the extent in the symptom severity simulations. 

As seen in Figure 4A, like the symptom severity model simulations, there are large values of the 

simulated alphas affecting the mean bias, though not as extreme as in the previous simulations. 

Figure 4B shows the 20% trimmed histogram of alpha parameter estimates. We observe that the 

misspecified linear model has a longer right tail, though both simulations are right skewed. 
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Figure 4 Histogram of Alphas from Simulation 2 

 

Trimming the simulated alphas only offered a marginal improvement in mean bias here (Table 6), 

with the median faring better, though they are still very biased. In these symptom interference 

simulations, we can see that misspecifying the longitudinal submodel clearly causes our estimates 

of the association parameter to be biased in the positive direction. 

 
Table 6 Trimmed and Median Alphas from Simulation 2 

  Truth  Bias  % Bias CP MSE  Bias  % Bias CP MSE  

  Quadratic Linear 

20% Trimmed -0.034 0.039 -115.3 48.2 0.003 0.162 -474.9 48.6 0.041 

Median 0.019 -55.5   0.114 -333.8   
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5.0 Discussion 

In this thesis we used simulations to examine the effects of misspecifying the longitudinal 

and survival submodels in joint modeling, using scenarios based on fitting these models to PROs 

and progression-free survival data in GBM patients. Through applying joint models to the RTOG 

0825 data, we confirmed the Gilbert (2014) finding that Bevacizumab patients had a greater 

deterioration in time in symptom severity and interference scores than placebo patients. Though 

our models, which were only conducted on a subset of the RTOG 0825 patients, found that the 

treatment effect was not significantly associated with progression-free survival, we did find that 

the longitudinal symptom outcomes were significantly associated with progression-free survival, 

even if the association was very small. 

In our simulation based on symptom severity, we found that misspecifying the underlying 

survival submodel only had a minor impact on estimates of the association parameter in joint 

models. In fact, the misspecified Weibull submodel appeared to perform even better than the 

correctly specified exponential submodel, requiring further investigation. In the simulation based 

on symptom interference, where we misspecified the longitudinal trajectory, we found that fitting 

a linear trajectory to an assumed quadratic trajectory has a large impact on parameter estimation, 

especially with respect to estimates of the association parameter, where we see a tendency to 

overestimate the association parameter. However, we also note that because of the very small 

association parameters, a small amount of bias could reflect a very large percent bias. 

Many issues arose in our analysis and simulation of joint models. We only evaluated the 

exponential and Weibull underlying survival distributions, which are closely related. Other 

specifications of the survival submodel could be investigated, including using semi-parametric 
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over parametric baseline hazards or the rate of change over the current value structure. Some 

authors suggest modeling the baseline hazard function with splines, especially if there are turning 

points in the underlying hazard function, something simpler parametric models cannot capture20. 

The RTOG 0825 clinical dataset showed that the survival curves do not meet the proportional 

hazards assumption, which could be affecting the estimation and simulation of these parameters. 

Other formulations of the longitudinal submodel should be investigated. Splines have been 

suggested as a better alternative to polynomial modeling so we can reduce issues where the 

assumed longitudinal trajectory has a large rate of change as we see in our models. Our simulated 

longitudinal data would sometimes fall outside the range of the data it was based on, since the 

MDASI scores are discrete 0-10 scores, which may have influenced our simulated joint models. 

There was a higher rate of administrative censoring compared to the original data, but when we 

raised the time limit on administrative censoring, we saw an increased amount of errors in our 

simulations. This suggests that estimation of joint models can be problematic when there is a large 

gap between the period of time that longitudinal data is collected and survival events occur. 

However, this is a common feature of many datasets of this nature and could be an area of further 

research.  

5.1 Conclusion 

The results from this thesis show that joint modeling, while a useful tool for incorporating 

longitudinal and survival analysis together, can be affected by various elements of the data and 

modeling process. To this end, under our specific formulation of joint models, the estimation of 

the association parameter, alpha, our primary parameter of interest, seems to be relatively robust 
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to the misspecification of the underlying survival distribution but not of the true form of the 

longitudinal trajectory. However, this is difficult to fully evaluate when even our correctly 

specified simulations gave biased estimates of alpha and our simulated models produced a not 

insignificant number of extreme estimates of alpha. We find that joint models are effective at 

evaluating the association between longitudinal and time-to-event outcomes but would advise 

caution in choosing how to specify the submodels. Though we did not explore this aspect, 

including additional significant covariates may also improve the estimation of the parameter of 

interest. We suggest that further research into scenarios when the structure of the data is not ideal 

and could benefit from more complex submodel specifications would improve the practical 

application of joint modeling. 
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Appendix Simulation Code 

library(JM) 

library(plyr) 

library(dplyr) 

library(mvtnorm) 

 

##################################### 

###### Data Description 

 

#### Dataset 

#   mdasi: longitudinal dataset 

## Variables 

#   CN: subject identifier 

#   RXf: treatment group assignment 

#   Time_Years: time of assessment, in the scale of years 

#   SYMPTOM: symptom severity score 

#   INF: symptom interference score 

 

#### Dataset 

#   surv_m: survival dataset 

## Variables 

#   PFS: indicator of progression-free survival 

#   PFSYears: time of event or censoring, in the scale of years 

 

##################################### 

###### Analysis of RTOG 0825 data 

 

## establishing the parameteric regression model 

survExp <- survreg(Surv(PFSYears, PFS) ~ RXf, dist = "exponential", data = 

surv_m, x = TRUE) 

 

## Mixed Model: square root of symptom severity score 

lmeSym <- lme(sqrt(SYMPTOM) ~ RXf*Time_Years + I(Time_Years^2) + 

I(Time_Years^3), random = ~ Time_Years | CN, data = mdasi, na.action = 

na.omit) 

 

## Mixed Model: square root of symptom interference score 

lmeInf <- lme(sqrt(INF) ~ RXf*Time_Years + I(Time_Years^2), random = ~ 

Time_Years | CN, data = mdasi, na.action = na.omit) 

 

## Joint Model: Symptom Severity Score with Progression-free Survival, 

assuming underlying exponential surival distribution 

jointFit <- jointModel(lmeSym, survExp, timeVar = "Time_Years", method = 

"weibull-PH-aGH", scaleWB = 1) 

 

 

## Extracting parameters from the joint model to use in simulation 

fittedVCV <- jointFit$coefficients$D 

longCoef <- jointFit$coefficients$betas 

MeasureErr <- jointFit$coefficients$sigma 

survCoef <- jointFit$coefficients$gammas[-1] 
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assocParm <- jointFit$coefficients$alpha 

weibScale <- exp(jointFit$coefficients$gammas[1]) 

weibShape <- 1/jointFit$coefficients$sigma.t 

 

 

##################################### 

###### Simulation Code: using symptom severity joint model as the basis 

 

# Setting number of simulations 

NSim <- 500; 

 

# Creating empty lists to store the simulated data and joint models 

ModelStorage <- vector("list", NSim) 

DataStorage <- vector("list", NSim) 

SurvStorage <- vector("list", NSim) 

convcodes <- rep(NA, NSim); 

 

for(SimCount in 1:NSim) 

{ 

  ## Simulating random intercept and slopes for N people 

  Nsub <- 200; 

   

  ######################################################## 

  ### Simulating longitudinal data 

  NGroup <- 2; # establishing number of treatment groups 

  poly <- 3; # setting order of polynomial time 

   

  ## Specifying true fixed parameters, using parameters extracted above 

  b0 <- longCoef[1]; 

  bTime <- longCoef[3:5]; # Set population time polynomial parameters 

  bGroup <- longCoef[c(2,6)]; # Main Effect and interaction 

 

  ## creating the vector of time points for which we simulate data 

  tt <- seq(0, 1, by = 0.2) 

  Nobs <- length(tt) 

   

  timepolytemp <- matrix(rep(NA, Nobs*poly), nrow = poly, ncol = Nobs) 

  for(i in 1:poly) 

  { 

    timepolytemp[i,] <- tt^i; 

  } 

  zeroplaceholder <- matrix(rep(0, Nobs*poly), nrow = poly, ncol = Nobs) 

   

  timepoly <- rbind(timepolytemp, zeroplaceholder) 

   

  ## Randomly generating group assignment 

  Group <- as.matrix(sample(c(0,1), Nsub, replace = TRUE), ncol = 1) 

   

  ## Specifying and simulating from a multivariate normal distribution 

  vcv <- matrix(as.numeric(fittedVCV), nrow = 2) 

   

  mu <- matrix(rep(0,2),ncol = 1) 

  U <- as.matrix(rmvnorm(Nsub, mean = mu, sigma = vcv), ncol = 2) 

   

  # Create subject-wise coefficients 

  beta0<-b0+U[,1] 

  beta1<-bTime[1]+U[,2] 
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  beta2<-bTime[2] 

  beta3<-bTime[3] 

  betaGroup <- bGroup[1] 

  betaGroupTime <- bGroup[2] 

   

  s1 <- MeasureErr; # standard deviation of measurement error 

  tempE <- rnorm(Nsub*Nobs, mean = 0, sd = s1)  

  Eij <- matrix(tempE, nrow = Nsub, byrow = TRUE) # matrix of measurement 

error 

   

  # Calculating and constructing the matrix of simulated longitudinal 

outcomes 

  Y<-matrix(rep(NA,Nsub*Nobs),nrow=Nsub) 

  for (i in 1:Nsub) { 

    for (j in 1:Nobs) { 

      Y[i,j] <- (  

beta0[i]+beta1[i]*timepoly[1,j]+beta2*timepoly[2,j]+beta3*timepoly[3,j] + 

                    betaGroup*Group[i] + 

(betaGroupTime*Group[i]*timepoly[1,j]) + Eij[i,j] ) 

    } 

  } 

   

  ## Adding random censoring 

  rcens <- matrix(runif(Nsub*Nobs),nrow=Nsub) 

  Y[which(rcens<=0.05)] <- NA 

   

   

  ######################################################## 

  ### Simulating Survival Data  (see section 3.3) 

   

  # Setting parameters based on joint model of real data 

  alpha <- assocParm 

  Hscale <- weibScale # lambda 

  Hshape <- weibShape  # gamma, = 1 if exponential 

  ZGroup <- survCoef[1] 

   

  # Generating U from uniform distribution 

  UVec <- runif(Nsub*2); 

  UMat <- matrix(UVec, ncol = 2) 

  logU <- -log(UMat) 

   

  # Creating empty dataframe to hold simulated survival dataset 

  tempEventData <- as.data.frame(matrix(rep(NA, Nsub*4), ncol = 4)) 

  names(tempEventData) <- c("TrueEventTime", "TrueCensTime", "ObsTime", 

"ObsEvent") 

   

  # Numerical integration and approximation to solve for T that optimizes 

equation (10) from section 3.3 

  #  Simulates true survival and censoring times 

  for(i in 1:Nsub){ 

    testfunc <- function(t) 

    { 

      (t^(Hshape-1))*Hshape*Hscale*exp(ZGroup*Group[i])* 

        exp(alpha*(beta0[i] + beta1[i]*t + beta2*t^2 + beta3*t^3 + 

betaGroup*Group[i] + betaGroupTime*t*Group[i])) 

    } 

     



 32 

    Tvec <- seq(0.001, 3.05, by = 0.001) 

    NumInt <- rmutil::int(testfunc, a = 0, b = Tvec) 

    tempEventData$TrueEventTime[i] <- Tvec[which.min(abs(NumInt - 

logU[i,1]))] 

    tempEventData$TrueCensTime[i] <- Tvec[which.min(abs(NumInt - logU[i,2]))] 

 

  } 

   

  # Using T_i and C_i to find V_i and delta_i 

  tempEventData$ObsTime <- apply(tempEventData[,1:2], 1, FUN = min) 

  tempEventData$ObsEvent <- as.numeric(tempEventData[,3] == 

tempEventData[,1]) 

   

    SurvData <- tempEventData[,3:4] 

  names(SurvData) <- c("SurvTime", "Event") 

   

  # Set administrative censoring and random censoring 

  MaxTime <- 3 # Administrative censoring + reigning in very high survival 

times 

  SurvData$Marker <- 0 

  SurvData$Marker[which(SurvData[,1] > MaxTime)] <- 1 

  SurvData$SurvTime[which(SurvData$Marker == 1)] <- MaxTime 

  SurvData$Event[which(SurvData$Marker == 1)] <- 0 

  SurvData <- SurvData[,-3] 

   

   

  ######################################################## 

  ### Data Cleanup, consolidating into readable simulated longitudinal and 

survival datasets 

   

  # Subject IDs 

  id <- seq(1, Nsub, 1) 

   

  Y_wide <- as.data.frame(cbind(id, Y)) 

  Y_long <- reshape(Y_wide, direction = "long", varying = 

list(names(Y_wide)[2:(Nobs+1)]), 

                    v.names = "Y", idvar = "id", timevar = "Time", times = 

tt) 

  row.names(Y_wide) <- c(1:nrow(Y_wide)) 

   

  Y_long <- Y_long[order(Y_long$id, Y_long$Time),] 

  row.names(Y_long) <- c(1:nrow(Y_long)) 

   

  SurvDataFull <- as.data.frame(cbind(id, Group, SurvData)) 

   

  tempJoint <- merge(SurvDataFull, Y_long, by = "id") 

   

  JointData <- tempJoint[-which(tempJoint$Time > tempJoint$SurvTime),] 

  JointData <- JointData[-which(is.na(JointData$Y)),] ## removing NAs to 

avoid errors 

   

  DataStorage[[SimCount]] <- JointData 

   

  SurvFinal <- aggregate(JointData[,-1], by = list(id=JointData$id),head,1) 

  SurvStorage[[SimCount]] <- SurvFinal 

   

  #### Dataset Description 
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  ## Variables 

  #   id: subject identifier 

  #   Group: treatment group assignment 

  #   Time: time of longitudinal assessment, in the scale of years 

  #   Y: simulated longitudinal outcome 

  #   Event: indicator of event or censoring 

  #   SurvTime: time of event or censoring, in the scale of years 

   

  ######################################################## 

  ### Joint Models 

   

  myLME <- NULL; mySurv <- NULL; myJM <- NULL; # safety measure to ensure old 

models aren't reused if a component fails 

   

  # Code to continue running when running into an error 

  tryCatch({ 

    # Mixed model 

    myLME <- lme(Y ~ factor(Group)*Time + I(Time^2) + I(Time^3), random = ~ 

Time | id, data = JointData, na.action = na.omit) 

    # Survival Model 

    mySurv <- survreg(Surv(SurvTime, Event) ~ factor(Group), dist = 

"exponential", data = SurvFinal, x = TRUE) 

    # Joint Model 

    myJM <- jointModel(myLME, mySurv, timeVar = "Time", method = "weibull-PH-

aGH", scaleWB = 1) 

   

    # Saving joint model output 

    ModelStorage[[SimCount]] <- myJM 

  }, error = function(e){paste("Error"); ModelStorage[[SimCount]] <- NA}) 

   

} 

 



 34 

Bibliography 

 1. Vleeschouwer, Steven D. Glioblastoma. Brisbane, Australia: Codon Publications, 2017. 

 2. Brem, Steven, and Kalil G. Abdullah. Glioblastoma. Philadelphia, PA: Elsevier, 2017. 

 3. Hanif, Farina et al. “Glioblastoma Multiforme: A Review of its Epidemiology and 

Pathogenesis through Clinical Presentation and Treatment.” Asian Pacific journal of 

cancer prevention : APJCP vol. 18,1 (2017): 3-9. 

 4. Gilbert, Mark R et al. “A randomized trial of bevacizumab for newly diagnosed 

glioblastoma.” The New England journal of medicine vol. 370,8 (2014): 699-708. 

 5. Mercieca-Bebber, Rebecca et al. “The importance of patient-reported outcomes in clinical 

trials and strategies for future optimization.” Patient related outcome measures vol. 9 

(2018): 353-367. 

 6. Meyers, Christina A et al. “Cognitive function as a predictor of survival in patients with 

recurrent malignant glioma.” Journal of clinical oncology : official journal of the 

American Society of Clinical Oncology vol. 18,3 (2000): 646-650. 

 7. Rizopoulos, Dimitris. Joint models for longitudinal and time-to-event data : with applications 

in R. Boca Raton: CRC Press, 2012. 

 8. Tsiatis, Anastasios A., and Davidian, Marie. “An overview of joint modeling of longitudinal 

and time-to-event data.” Statistica Sinica vol. 14, (2004): 793-818. 

 9. Rizopoulos, Dimitris. “Dynamic predictions and prospective accuracy in joint models for 

longitudinal and time-to-event data.” Biometrics vol. 67,3 (2011): 819-829. 

10. Brown, Elizabeth R et al. “A flexible B-spline model for multiple longitudinal biomarkers and 

survival. Biometrics vol. 61,1 (2005): 64-73. 

11. Henderson, Robin et al. “Joint modelling of longitudinal measurements and event time data.” 

Biostatistics vol. 1,4 (2000): 465-480. 

12. Gail, Mitchel H et al. “Biased estimates of treatment effect in randomized experiments with 

nonlinear regressions and omitted covariates.” Biometrika vol. 71,3 (1984): 431-444 

13. Struthers, Cyntha A, and Kalbfleisch, John D. “Misspecified Proportional Hazards Models.” 

Biometrika vol. 73, 2 (1986): 363-369 

14. Li, Yi-Hwei et al. “Effects of model misspecification in estimating covariate effects in 

survival analysis for small sample sizes.” Computational Statistics & Data Analysis vol. 

22, 2 (1996): 177-192. 



 35 

15. Kwong, GPS, and Hutton, JL. “Choice of parametric models in survival analysis: applications 

to monotherapy for epilepsy and cerebral palsy.” Journal of the Royal Statistical Society. 

Series C (Applied Statistics) vol. 52, 2 (2003): 153-168. 

16. Nardi, Alessandar, and Schemper, Michael. “Comparing Cox and parametric models in 

clinical studies.” Statistics in Medicine vol. 22 (2003): 3597-3610. 

17. Hutton, Jane L, and Monaghan, PF. “Choice of Parametric Accelerated Life and Proportional 

Hazards Models for Survival Data: Asymptotic Results.” Lifetime Data Analysis vol. 8 

(2002): 375-393. 

18. Bender, Ralf et al. “Generating survival times to simulate Cox proportional hazards models.” 

Statistics in Medicine vol. 24 (2005): 1713-1723. 

19. Crowther, Michael J, and Lambert, Paul C. “Simulating biologically plausible complex 

survival data.” Statistics in Medicine vol. 32, 23 (2013): 4118-4134. 

20. Crowther, Michael J et al. “Joint modelling of longitudinal and survival data: incorporating 

delayed entry and an assessment of model misspecification.” Statistics in Medicine vol. 

35, 7 (2016): 1193-1209. 


	Title Page
	Committee Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	1.0 Introduction
	2.0 Clinical Background
	2.1 Glioblastoma
	2.2 Radiation Treatment Oncology Group Study 0825 (RTOG 0825)
	2.3 Patient Reported Outcomes (PROs)

	3.0 Statistical Methodology
	3.1 Overview of Joint Models
	3.2 Joint Model Specification
	3.3 Effects of Model Misspecification
	3.4 Simulation of Joint Models

	4.0 Results
	4.1 RTOG 0825 Data Analysis
	Figure 1 Progression-Free Survival Kaplan-Meier Plot
	Figure 2 Observed Longitudinal Trajectories of Symptom Severity and Interference
	Table 1 Symptom Severity Score Joint Model Results
	Table 2 Symptom Interference Score Joint Model Results

	4.2 Simulation Results
	Table 3 Misspecified Survival Submodel Simulation Results
	Figure 3 Histogram of Alphas from Simulation 1
	Table 4 Trimmed and Median Alphas from Simulation 1
	Table 5 Misspecified Longitudinal Submodel Simulation Results
	Figure 4 Histogram of Alphas from Simulation 2
	Table 6 Trimmed and Median Alphas from Simulation 2


	5.0 Discussion
	5.1 Conclusion

	Appendix Simulation Code
	Bibliography

