Zhai, Xuetong
(2021)
Development of Statistical Models for Functional Near-infrared Spectroscopy Data Analysis Incorporating Anatomical and Probe Registration Prior Information.
Doctoral Dissertation, University of Pittsburgh.
(Unpublished)
Abstract
Functional near-infrared spectroscopy (fNIRS) is a non-invasive technology that uses low-levels of non-ionizing light in the range of 650 -- 900 nm (red and near-infrared) to record changes in the optical absorption and scattering of tissue. In particular, oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) have characteristic absorption spectra at these wavelengths, which are used to discriminate blood flow and oxygen metabolism changes. As compared with functional magnetic resonance imaging (fMRI), fNIRS is less costly, more portable, and allows for a wider range of experimental scenarios because it neither requires a dedicated scanner nor needs the subject to lay supine.
Current challenges in fNIRS data analysis include: (i) a small change in brain anatomy or optical probe positioning can create huge differences in fNIRS measurements even though the underlying brain activity remains the same due to the existence of ``blind-spots"; (ii) fNIRS image reconstruction is a high-dimensional, under-determined, and ill-posed problem, in which there are thousands of parameters to estimate while only tens of measurements available and existing methods notably overestimate the false positive rate; (iii) brain anatomical information has rarely been used in current fNIRS data analyses.
This dissertation proposes two new methods aiming to improve fNIRS data analysis and overcome these challenges -- one of which is a channel-space method based on anatomically defined region-of-interest (ROI) and the other one is an image reconstruction method incorporating anatomical and physiological prior information. The two methods are developed using advanced statistical models including a combination of regularization models and Bayesian hierarchical modeling. The performance of the two methods is validated via numerical simulations and evaluated using receiver operating characteristics (ROC)-based tools. The statistical comparisons with conventional methods suggest significant improvements.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Item Type: |
University of Pittsburgh ETD
|
Status: |
Unpublished |
Creators/Authors: |
|
ETD Committee: |
|
Date: |
26 January 2021 |
Date Type: |
Publication |
Defense Date: |
6 November 2020 |
Approval Date: |
26 January 2021 |
Submission Date: |
3 November 2020 |
Access Restriction: |
No restriction; Release the ETD for access worldwide immediately. |
Number of Pages: |
138 |
Institution: |
University of Pittsburgh |
Schools and Programs: |
Swanson School of Engineering > Bioengineering |
Degree: |
PhD - Doctor of Philosophy |
Thesis Type: |
Doctoral Dissertation |
Refereed: |
Yes |
Uncontrolled Keywords: |
functional near-infrared spectroscopy; statistical analysis; functional brain imaging image reconstruction |
Date Deposited: |
26 Jan 2021 20:57 |
Last Modified: |
26 Jan 2021 20:57 |
URI: |
http://d-scholarship.pitt.edu/id/eprint/39806 |
Metrics
Monthly Views for the past 3 years
Plum Analytics
Actions (login required)
|
View Item |