Guo, Yue and Jena, Rohit and Hughes, Dana and Lewis, Michael and Sycara, Katia
(2021)
Transfer Learning for Human Navigation and Triage Strategies Prediction in a Simulated Urban Search and Rescue Task.
In: 30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN 2021).
(In Press)
Abstract
To build an agent providing assistance to human rescuers in an urban search and rescue task, it is crucial to understand not only human actions but also human beliefs that may influence the decision to take these actions. Developing data-driven models to predict a rescuer’s strategies for navigating the environment and triaging victims requires costly data collection and training for each new environment of interest. Transfer learning approaches can be used to mitigate this challenge, allowing a model trained on a source environment/task to generalize to a previously unseen target environment/task with few training examples. In this paper, we investigate transfer learning (a) from a source environment with smaller number of types of injured victims to one with larger number of victim injury classes and (b) from a smaller and simpler environment to a larger and more complex one for navigation strategy. Inspired by hierarchical organization of human spatial cognition, we used graph division to represent spatial knowledge, and Transfer Learning Diffusion Convolutional Recurrent Neural Network (TL-DCRNN), a spatial and temporal graph-based recurrent neural network suitable for transfer learning, to predict navigation. To abstract the rescue strategy from a rescuer’s field-of-view stream, we used attention-based LSTM networks. We experimented on various transfer learning scenarios and evaluated the performance using mean average error. Results indicated our assistant agent can improve predictive accuracy and learn target tasks faster when equipped with transfer learning methods.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Item Type: |
Conference or Workshop Item
(Paper)
|
Status: |
In Press |
Creators/Authors: |
|
Date: |
2021 |
Date Type: |
Publication |
Journal or Publication Title: |
30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN 2021) |
Publisher: |
IEEE |
Event Title: |
30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN 2021) |
Event Type: |
Conference |
Schools and Programs: |
School of Computing and Information > Information Science |
Refereed: |
Yes |
Date Deposited: |
13 Aug 2021 20:16 |
Last Modified: |
13 Aug 2021 20:16 |
URI: |
http://d-scholarship.pitt.edu/id/eprint/41665 |
Metrics
Monthly Views for the past 3 years
Plum Analytics
Actions (login required)
|
View Item |