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Bryan Andrews, PhD

University of Pittsburgh, 2022

Directed acyclic graphs (DAGs) and their corresponding Markov models have become
widely studied and applied in the fields of statistics and causality. The simple directed
structure of these models facilitates systematic learning procedures and provides an inter-
pretable representation for causal relationships. However, DAGs are ill-equipped to handle
latent variables without explicitly invoking them. This manifests as a lack of stability! un-
der marginalization and conditioning and a disparity between statistically and causally valid
models. Meanwhile, latent confounding and selection effects occur with some regularity in
many domains. The family of maximal ancestral graphs (MAGs) extends the family of DAGs
by implicitly taking latent variables into account. In fact, the family of MAGs constitutes the
smallest superset of the family of DAGs that is stable under marginalization and condition-
ing. Accordingly, MAGs and their corresponding Markov models—ancestral graph Markov
models—provide a natural choice for statistical and causal modeling in systems with latent
confounding and selection effects.

In this work we introduce inducing sets as a new perspective for reasoning about ancestral
graph Markov models. In particular, we derive and study m-connecting sets which are a
special case of inducing sets and provide an alternative representation for MAGs. We show
that m-connecting sets admit a characterization of Markov equivalence for MAGs and a
factorization criterion equivalent to the global Markov property for directed MAGs. Using
the factorization criterion, we formulate a consistent probabilistic score with a closed-form
for the Markov models of directed MAGs. Ultimately, we design a local causal discovery
algorithm called the ancestral probability (AP) procedure which estimates the posterior
probabilities of ancestral relationships. We evaluate the AP procedure on synthetically
generated data and a real data set measuring airborne pollutants, cardiovascular health, and

respiratory health.

1A graphical family is stable under marginalization and conditioning if the corresponding set of induced
independence models is closed under marginalization and conditioning; see Section 3.4.

v



1.0 List of Algorithms . . . . . . . . . 1
Preface . . . . . . . e 2
2.0 Introduction . . . . .. 3
21 Motivation . . . . .. 3
22 Outline . . . . . . 11
3.0 Background and Related Work . . . . .. ... .. oo 13
3.1 Conditional Independence . . . . . . . . .. ... .. ... 13
3.1.1 Probabilistic Conditional Independence . . . . . ... ... ..... 15
3.2 Partially Ordered Sets . . . . . . . . . .. . . .. . 16
3.2.1 Mebius Inversion . . . . . . . ... 18
3.3 Ancestral Graphs . . . . . . . ... 22
3.3.1 Preliminaries . . .. .. .. . .. ... 22
3.3.2 Graphical Conditional Independence . ... ... ... ....... 28
3.3.3 Markov Properties . . . . . . . ... 32
3.3.4 Maximality . . ... ... . . ... 35
3.3.5 Factorization . . . . . ... ... ... 37
3.3.6 Markov Equivalence . . . ... ... ... .. o 41
3.4 Stable Mixed Graphs . . . . . . .. ... 44
3.4.1 Marginalization and Conditioning . . . . . ... ... ... ..... 48
3.4.2 Latent Projections . . . . . . . . . . . ... 50
3.5 Alternative Independence Models . . . ... .. ... ... ........ 53
3.5.1 Elementary and Semi-elementary Imsets . . . . . ... ... .... 54
3.5.2 Multinformation . . . . ... ... 56
3.5.3 Structural Imsets as Independence Models . . . . ... ... .. .. 57
3.5.4 Characteristic Imsets as Independence Models . . . . .. ... ... 58
4.0 Inducing Sets . . . . . 61

Table of Contents



4.1 Equivalence . . . . ... e 64
4.1.1 Characterization of Markov Equivalence . . .. .. .. ... .... 65
4.2 Relationto OtherWork . . . . . . . . .. . .. ... .. .. . 67
4.2.1 Parametrizing Sets and Characteristic Imsets . . . . . ... .. .. 68
4.2.2 The Causal Inference Algorithm . . . . . .. ... ... ... .... 69
4.3 Factorization . . . . . . . .. e 70
4.3.1 Preliminaries . . . . . . . . . e 72
4.3.2 Factorization Implies Markov . . . . . .. .. ... ... ...... 91
4.3.3 Markov Implies Factorization . . . .. ... ... ... ....... 118
4.3.4 Formalization and Alternatives . . . . .. .. ... ... ...... 120
4.3.5 Worked-out Examples . . . . . ... ... ... ... o 123
5.0 MAG Curved Exponential Families . . . .. ... ... ... .. ... ... 127
5.1 Conditional Gaussian Probability Measures . . . . ... ... ....... 130
5.1.1 Conditional Gaussian Marginalization Condition . . . . . ... . .. 131
5.2  Gaussian Probability Measures . . . . . ... ... 0o 134
5.2.1 Gaussian Parameterization . . . . . . .. ... ... ... .. .... 134
5.3 Lee and Hastie Probability Measures . . . . . . .. ... ... ....... 136
5.3.1 Binary Transformation . . . . . . .. ... ... ... ... ..., 136
5.3.2 Lee and Hastie MAG condition . . . .. ... ... ......... 139
5.3.3 Lee and Hastie Parameterization . ... ... ... ... ...... 140
5.3.4 Lee and Hastie as Curved Exponential Families . . . .. .. .. .. 142
6.0 Scoring Criterion and Applications . . . . . .. ... ... ... ...... 147
6.1  Asymptotic Behavior of Directed MAG Curved Exponential Families . . . 148
6.1.1 Theoretical Evaluation . . . . ... .. ... ... ... ....... 149
6.1.2 Empirical Evaluation . . . . .. ... ... ... .. ... .. .. 153
6.2  Ancestral Probabilities . . . . ... .. ... . oo 173
6.2.1 Synthetic Examples and Background Knowledge . . . . . .. .. .. 175
6.2.2 Airborne Pollutants' EectonHealth . . . . . ... ... ...... 178
7.0 Discussion and Future Work . . . . . . .. 185
7.1  DISCUSSION . . . . . o e 185

Vi



7.2  Ruture Work . . . . . .
Appendix A. List of Notation . . . . . .. . .. ... .. ...
Al General Terms . . . . . . . . e e
A2 Setsof Numbers . . . .. . .. ...
A3 General Sets . . . . . . . e
A4 GenericSetSymbols. . . . . . ...
A.5 Probability Measures . . . . . . . . ... ...
A.6 Independence Models . . . . . . .. ... ...
A.7 Partially Ordered Sets . . . . . . .. . . . .. . ..
A.8 General Graph Terms . . . . . . . . . .
A.9 Functions of Vertices . . . . . . . . . .
A.10 Functionson Graphs . . . . . . . . . . .. ..
A.11 Evans' Partitioning Terms . . . . . . . . . . . . ...
A12 Interaction TErMS . . . . . . . . o i e
A.13 Stable Mixed Graphs . . . . . . . . ...
A.14 Constrained Subsets . . . . . . . ... L
A.15 Integer-valued Multisets . . . . . . . . . ...
A.16 Non-m-connecting Setsasimsets . . . . .. ... .. ... ........
A.17 Curved Exponential Families . . . . . .. ... ... ... ... .. .. ..
A.18 Parameterization. . . . . . . . . ...
Appendix B. Additional Background, Examples, and Results . . . ... ...
B.1 LatentProjections . . . . . . . . . . . . . ..
B.2 The Causal Inference Algorithm . . . . . .. ... .. ... .. ......
B.3 NSI Finds Non-minimal Solutions . . . . .. .. ... ...........
B.4 Necessity of the Adjustment Term . . . . . . .. ... .. ... ......
B.5 Comparison to Bayesian Scoring of Constraints . . . . . .. ... .. ...
B.6 Shifted NLL Comparison . . . . . . . . . .. . ..
B.7 Exact Histograms . . . . . . . . . . .. ...
B.8 AP Calibration . .. ... ... .. ...
B.9 Full Airborne Pollutants Tables . . . . ... ... ... ..........

Vil



Appendix C. Factorization of Graphs with Five Vertices ... .. ... .. ..

Bibliography . . . . .

viii



6.1

6.2

6.3
6.4
6.5
6.6
Bl
B2

List of Tables

Mean run time for graphs (std in parentheses) with 4 vertices in seconds with two
decimal places of precision for BIC an@fC. Statistical signi cance at an alpha

level of 0.05 is reported as either an overline BfC is better or an underline if the
alternative method is better. . . . . . . . ... oo 165
Mean run time for graphs (std in parentheses) with 5 vertices in seconds with one

decimal place of precision for BIC and two decimal places of precision BfC

(00 rePsS). . v v v e e 173
NAAQS airborne pollutants and cardiovascular disease results. . . . . . ... .. 182
NAAQS airborne pollutants and respiratory disease results. . . . .. .. .. ... 182
NESHAP Airborne Pollutants . . . . . . .. . . . . ... ... 183
Exceptions to NESHAP Airborne Pollutants . . . . . ... ... ... ...... 184
Complete airborne pollutants and cardiovascular disease results. . . . . .. ... 226
Complete airborne pollutants and respiratory disease results. . . . . .. ... .. 227



2.1

2.2

2.3

2.4

2.5

2.6

3.1
3.2

3.3

3.4

List of Figures

A causal DAG representing a randomized experiment for an ine ective drug with
unpleasant side e ects. Colored vertices represent selection e ects [65]. . . . . . .
DAGs representing a randomized experiment for an ine ective drug with unpleas-

ant side e ects: () a DAG with a valid casual interpretation, but an invalid

Marginalization: (1) a DAG with vertices fe;h;r;s;tg; (ii) a MAG correspond-
ing to the marginalization of h. Grayed vertices represent latent variables to be
marginalized. . . . . . . .. e
Conditioning: (i) a DAG with vertices fe; h;r; s; tg; (ii) a MAG corresponding to
the marginalization of e and conditioning ofs. Grayed vertices represent latent
variables to be marginalized and colored vertices represent latent variables to be
conditioned ON. . . . . . ..
Marginalization and conditioning: () a DAG with vertices fe;h;r;s;tg; (ii) a
MAG corresponding to the marginalization ofh and e and conditioning of s.
Grayed vertices represent latent variables to be marginalized and colored vertices
represent latent variables to be conditionedon. . . . .. ... .. ... ......
A structural imset which induced the same independence model as the MAG in
Figure 2.4 (i). . . . . . o e
The Hasse diagram for a posé€ = P(f a; b; @) ordered by inclusion. . . . . . ..
The zeta function of a poseP = P(f a; b; @) ordered by inclusion|the rst and
second arguments of the zeta function act as row and column indices respectively.

The Mebius function of a poseP = P(f a; b; @) ordered by inclusion|the rst and

second arguments of the Mebius function act as row and column indices respectively. 20

An application of the zeta and Mebius functions of a pos&® = P(f a; b; @) ordered

by inclusion. . . . . . . . L



3.5 Mixed graphs with verticed a; bg: (i) a mixed graph with aloopa aand multiple

edgesa! b; (ii) aacyclic directed loopless mixed graph with multiple edgess? b;

(iii ) a simple acyclic directed graph. . . . . . . . . ... ... o 24
3.6 A mixed graph with verticesfa;b;c;d;@. . . . ... ... ... ... .. ..., 25
3.7 Subgraphs of the graph in Figure 3.6: ) the directed subgraph; {i ) the undirected

subgraph. . . . .. e 27
3.8 Induced subgraphs of the graph in Figure 3.6:i)(the induced subgraph over

fa;c;d;a; (ii) the induced subgraph ovefa;b;d;e@.. . . . ... ... ...... 27
3.9 An ancestral graph with verticesa;b;c;d;@. . . . . . .. ... ... ... .. 30
3.10 Ancestral graphs with vertices a; b; c; dy: (i) a non-maximal ancestral graph; i{)

a maximal ancestral graph. . . . . . . . .. 36
3.11 ADMGs with verticesfa;b;c;ady. . . . . . . . ... L oo 38

3.12 The heads and tails for the ADMG illustrated in Figure 3.11i( and the Hasse
diagram for the corresponding poset over the ADMG's heads. . . . . ... .. .. 40
3.13The heads and tails for the ADMG illustrated in Figure 3.11i() and the Hasse
diagram for the corresponding poset over the ADMG's heads. . . . . ... .. .. 40
3.14 A Markov equivalence class of MAGs with verticefsa; b; c; d; @: (i) a maximally
informative PAG; (ii) a set of Markov equivalent MAGs. . . ... ... ..... 42
3.15The general form of a discriminating path. . . . . .. ... ... ... ...... 43
3.16 Stable mixed graphs: (i) a DAG with latent and selection variables; (ii) the pro-
jected ribbonless graph; (iii) the projected summary graph; (iv) the projected
ancestral graph. All graphs encode the same independence model over the mea-
sured variables usingn-separation. . . . . . ... ... oL a7
3.17 Hasse diagrams for posets of graphical families) families of stable mixed graphs

and DAGs ordered by inclusion; if ) independence models of the families of stable

mixed graphs and DAGs ordered by inclusion. . . . ... ... ... ....... 48
3.18 An elementary iIMS€tiUpapjci- - - « = v v v v v v v 55
3.19 The Hasse diagram for an elementary ims@fi.pici. - - « -« « -« « v v v v v o 55

Xi



3.20 A DAG with verticesf a; b; @ and an application of the zeta and Mebius function

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

of a posetP = P(V) ordered by inclusion as a transition between the standard

and characteristic imsets of the DAG. . . . . . . . . . . . . . . . ...

59

An illustration of various MAGs G and their correspondingm-connecting setdV (G). 62

A comparison of two Markov equivalent ancestral graphs that are)(not maximal
and (ii) maximal, along with their correspondingm-connecting setsM (G); their
m-connecting sets are identical. . . . . . ... ... ... ... ..
A directed MAG with verticesf a; b; c; d; @ and the correspondingm-connecting
and nonin-connecting sets for the directed MAG. . . . . .. ... ... .....
A visualization of Pairs (Gycge, €) applied to the directed MAG in Figure 4.3 and
the corresponding base conditionalterms. . . . . . . .. ... ... ... .....
A visualization of Pairs (Gyge; b) applied to the directed MAG in Figure 4.3 and
the corresponding base conditionalterms. . . . . . . .. .. ... ... ... ...
A visualization of Pairs (G.qe; d) applied to the directed MAG in Figure 4.3 and
the corresponding base conditionalterms. . . . . . . .. ... .. ... ......
A visualization of Pairs (G,; a) applied to the directed MAG in Figure 4.3 and
the corresponding base conditionalterms. . . . . . . .. .. ... .. .. .....
A visualization of Pairs (G;,e) applied to the directed MAG in Figure 4.3 and the
corresponding base conditional terms. . . . . . .. ..o L Lo

An illustration of the minimal latentsets. . . . . . . . . . . . ... ... .....

4.10 The Hasse diagram for the poset over sets ordered by inclusion. . . . . . .. ..

4.11 An illustration of how various sets interact and partition each other. . . . . . ..

4.12 An illustration of how various sets interact and partition each other. . . . . . . .
4.13 An illustration of the setup of OLMP (G, ,Aj) (stepi). . . . . ... ... . ...
4.14 An illustration of OLMP (G, ,Ap) (stepii). . . . .. . .. . ... ... ...,
4.15 An illustration of OLMP (G, ,Aj) (stepiii). . . . . . . ... ... ... .. ...
4.16 An illustration of OLMP (G, ,Aj) (stepiv). . . . . . .. ... ... ... ...
4.17 An illustration of OLMP (G, ,Ay) (stepv).. . . . .. . . . . . ... ... ...
4.18 An illustration of the setup of OLMP (G, ,A)) (stepwvi). . . .. ... ... ...
4.19 An illustration of OLMP (G, ,Ap) (stepwvii). . . . . . . .. .. ... ... ....

Xil

90

92

96

102



4.20 An illustration of OLMP (G, ,Ap) (stepwviii). . . . . ... ... ... .. .... 107

4.21 An illustration of OLMP (G, ,Ay) (stepix). . . . . . . . . . . . ... 108
4.22 An illustration of OLMP (G, A1) (StepX).. . . . . . . . . o oo v it 109
4.23 An illustration of OLMP (G, ,Ap) (stepxi). . . . . . . . . . . ... 110
4.24 An illustration of OLMP (G, ,Ap) (stepxii). . . . . . . . . .. ... ... .... 111

5.1 The Hasse diagram for the poset over families of probability measures ordered by
INCIUSION. . . . . . . 129
5.2 An illustration of the binary transformation . . . . . . ... .. ... ... .... 137
5.3 Lee and Hastie probability measures and violations of the marginalization condi-
tion. The contours give three standard deviations and the solid black line gives
the rst principal component. . . . . . . . . .. . ... e 140
6.1 An evaluation of the approximate log-likelihood and BIC for the speci ed directed
MAG with n = f50Q 5;00Q0 50,000y. The approximate and exact shifted negative
log-likelihoods are compared for a random parameterization. The approximate
BIC ranking of the data generating MEC amongst all MECs is shown using his-
tograms. The rate of recovery for the data generating MEC given by the highest
scoring approximate BIC score is compared against several other state-of-the-art
algorithms. Statistical signi cance at an alpha level of 0.05 is reported as either
an overline if BIC is better or an underline if the alternative method is better.. . 156
6.2 An evaluation of the approximate log-likelihood and BIC for the speci ed directed
MAG with n = f500Q 5,000 50,00Qy. Statistical signi cance at an alpha level
of 0.05 is reported as either an overline BfC is better or an underline if the
alternative method is better. . . . . . . . ... oo o 158
6.3 An evaluation of the approximate log-likelihood and BIC for the speci ed directed
MAG with n = 500 5;000 50,000y. Statistical signi cance at an alpha level
of 0.05 is reported as either an overline BfC is better or an underline if the

alternative method is better. . . . . . . . . . . .. .o 160

Xiii



6.4

6.5

6.6

6.7

6.8

6.9

An evaluation of the approximate log-likelihood and BIC for the speci ed directed
MAG with n = 500 5;000 50,000y. Statistical signi cance at an alpha level

of 0.05 is reported as either an overline BIC is better or an underline if the
alternative method is better. . . . . . . .. ... L oo 162
An evaluation of the approximate BIC for random directed MAGs with speci ed
edge ranges andh = f50Q 5,000 50,000y. Statistical signi cance at an alpha

level of 0.05 is reported as either an overline BfC is better or an underline if the
alternative method is better. . . . . . . . ... oo 163
An evaluation of the approximate BIC for random directed MAGs with speci ed
edge ranges andh = f50Q 5,000 50,000y. Statistical signi cance at an alpha

level of 0.05 is reported as either an overline BfC is better or an underline if the
alternative method is better. . . . . . . . ... oo 164
An evaluation of the approximate log-likelihood and BIC for the speci ed directed
MAG with n = f500 5;00Q 50,00Qy. Statistical signi cance at an alpha level

of 0.05 is reported as either an overline BfC is better or an underline if the
alternative method is better. . . . . . . . ... oo o 166
An evaluation of the approximate log-likelihood and BIC for the speci ed directed
MAG with n = 500 5;000 50,000y. Statistical signi cance at an alpha level

of 0.05 is reported as either an overline BfC is better or an underline if the
alternative method is better. . . . . . . . ... oL 168
An evaluation of the approximate log-likelihood and BIC for the speci ed directed
MAG with n = 500 5;000 50,000y. Statistical signi cance at an alpha level

of 0.05 is reported as either an overline BfC is better or an underline if the

alternative method is better. . . . . . . . . . . .. .o 170

6.10 An evaluation of the approximate BIC for random directed MAGs with speci ed

edge ranges andh = f50Q 5,000 50,000y. Statistical signi cance at an alpha
level of 0.05 is reported as either an overline BfC is better or an underline if the

alternative method is better. . . . . . . . . ... 171

Xiv



6.11 An evaluation of the approximate BIC for random directed MAGs with speci ed
edge ranges andh = f50Q 5;000 50,00Qy. Statistical signi cance at an alpha
level of 0.05 is reported as either an overline BfC is better or an underline if the
alternative method is better. . . . . . . .. ... oo oo 172
6.12 Precision recall curves for ancestral relationships with and without background
knowledge. . . . . . . . 176
6.13 Receiver operator curves for ancestral relationships with and without background
knowledge. . . . . . . . e e 176
6.14 Calibration curves for ancestral relationships with and without background knowl-
edge. . .. e 177
6.15A comparison of two hypotheses for the underlying causal model: (i) the air-
borne pollutant is a cause of cardiovascular disease and respiratory disease; (ii)
the airborne pollutant is confounded with cardiovascular disease and respiratory

diSEASE. . . . . 180

XV



A W N P

10
11

1.0 List of Algorithms

Causal Inference from M-connecting Sets CIM M) oo 69
Pairs (Gh) . . .. . . . e 76
Non-m-connecting Sets as Imsets NSI G ) ... 80
Ordered Local Markov Property OLMP G ;A ... 99
Binary Transformation Z(G) . . 138
Simulate (GNn) . . . . . . .. e 153
Ancestral Probabilities AP (XX Pr(Q)) L 175

RG(GL;S) . . e 195

Sg(G, L, S) ..................................... 196

AG (G, L, S) .................................... 196



Preface

| would like to express my utmost appreciation to my advisors: Greg Cooper for his
guidance and patience over the past six years and more recently Peter Spirtes for his insights
and encouragement. | would also like to thank the members of my PhD committee for their
invaluable suggestions and comments. Lastly, | would like to thank my friends and family
for their continual support.

The research reported in this dissertation was supported by: grants RO1LM012087 and
T15LM007059 from the National Library of Medicine, grant 11S-1636786 from the National
Science Foundation, grant U54HG008540 from the National Human Genome Research Insti-
tute through funds provided by the trans-NIH Big Data to Knowledge initiative, and grant
#4100070287 from the Pennsylvania Department of Health. The content of this dissertation
is solely the responsibility of the author and does not necessarily represent the o cial views

of these funding agencies.



2.0 Introduction

The formulation and analysis of causal models enables the study of causal relationships,
which has provided essential insights in many research areas such as economics, environmen-
tal science, and medicine. Randomized experiments where a hypothesized cause is manip-
ulated independently of a hypothesized e ect are the gold standard for discovering causal
relationships. However, in many domains, these experiments are often infeasible, unethical,
or prohibitively expensive. Consequently, there is a growing interest in developing methods
for causal inference and discovery without the need for experimentation|methods that work
with any available experimental data and the plethora of non-experimental data. One such
approach utilizes the dual interpretation of graphical Markov models as statistical and causal

models.

2.1 Motivation

Graphical Markov models are probabilistic models that leverage conditional indepen-
dence for modeling and inference. In a graphical Markov model, a graph induces an inde-
pendence model comprised of conditional independence statements represented in a prob-
ability measure|vertices correspond to random variables and absent edges coincide with
conditional independence statements. The independence model can be characterized by a
graphical separation criterion in conjunction with the global Markov property or a prob-
abilistic factorization criterion|both characterizations may be exploited for modeling and
inference. The notions of a conditional independence statement and an independence model
are made rigorous in Section 3.1.

In recent years, graphical Markov models have become widely applied in the elds of
statistics and causality [35, 45, 46, 50]. At the forefront of these methods are Bayesian net-
works, whose independence models are induced by directed acyclic graphs (DAGS) [16, 44,

58]. The popularity of Bayesian networks is in part due to their comprehensive theory, which



includes thed-separation criterion and the recursive factorization criterion. Thel-separation
criterion in conjunction with the DAG component of a Bayesian network graphically en-
codes conditional independence statements represented in the probabilistic component of
the Bayesian network. Equivalently, the recursive factorization criterion in conjunction with
the DAG component of a Bayesian network algebraically encodes conditional independence
statements represented in the probabilistic component of the Bayesian network. Both char-
acterizations of the independence model induced by the DAG component of a Bayesian net-
work facilitate systematic learning procedures. Indeed, there are an abundance of algorithms

capable of learning these models from data [13, 14, 64, 86].

Figure 2.1: A causal DAG representing a randomized experiment for an ine ective drug with

unpleasant side e ects. Colored vertices represent selection e ects [65].

As an example, suppose the DAG depicted in Figure 2.1 induces an independence model
comprised of conditional independence statements represented in a probability measre
Using the d-separation criterion and the global Markov property, the following conditional

independence statements are representednand graphically encoded by the DAG:
r?2f es;igjh[P] s?f h;r;tgje[P] t?2f h;rg[P]:

This notation is de ned in Section 3.1 and attributed to Dawid [17]. Furthermore, the
recursive factorization induced by the DAG algebraically encodes the same set of condi-

tional independence statements. The recursive factorization criterion is characterized by the



equivalence of the density admitted by a probability measure with the product of conditional
densities de ned as a variable conditioned on its parents in the graph. B is dominated by a
- nite product measure and admits densityf (x), then the following recursive factorization

holds almost everywhere:
f(X) = fge(X) frjn(X) fene (X) fr(x) fr(x) for -a.e.x 2 X:

This notation is de ned in Section 3.1.

Causal assumptions connect the structural component of a graphical Markov model to
causal relationships [79]. These assumptions can be interpreted as an appeal to Occam's
razor|if the true causal model is contained within a family of graphs, then the causal
model is a graph that encodes only conditional independence statements represented in the
probability measure whose corresponding Markov model has minimal complexity. A causal
Bayesian network is a Bayesian network whose independence model is induced by a DAG,
whose edges express all the causal relationships and only the causal relationships. These
models admit the dual interpretation of graphical Markov models as statistical and causal
models. Causal Bayesian networks provide researchers with a means to calculate the e ects
of intervention without the need for experimentation [51, 59] and have been widely applied
in many domains [22, 40, 49, 72, 77].

Unfortunately, the simplicity and theoretical convenience of DAGs comes at the cost of
representation power. The set of independence models induced by the family of DAGs is
insu cient to represent systems with latent variables without explicitly invoking them. This
limitation manifests statistically as a lack of stability under marginalization and condition-
ing, and causally as a disparity between statistically and causally valid models. Stability
under marginalization and conditioning is discussed in Section 3.4. To emphasize this point,

consider the following example taken from [65] and attributed to Chris Meek:

The graph [Figure 2.1] represents a randomized [experiment] of an ine ective drug with
unpleasant side-e ects. Patients are randomly assigned to the treatment or control group
[t]. Those in the treatment group su er unpleasant side-e ects [e], the severity of which is
in uenced by the patient's general level of health [h], with sicker patients su ering worse

side-e ects. Those patients who su er su ciently severe side-e ects are likely to drop out



of the study. The selection variable [s] records whether or not a patient remains in the
study, thus for all those remaining in the study [s = stay in]. Since unhealthy patients who
are taking the drug are more likely to drop out, those patients in the treatment group who
remain in the study tend to be healthier than those in the control group. Finally health

status [h] in uences how rapidly the patient recovers [r ] [65, p.234].

In this example, nawvely comparing the recovery times of the patients remaining in the
treatment group against the patients in the control group leads to the incorrect conclusion
that the drug is bene cial. The perceived e ect is due to the bias towards a good general
level of health in the treatment group. Since the remaining patients in the treatment group
tend to be healthier, they also tend to recover more quickly. Furthermore, if the patient's
general level of health is allowed to act as a latent confounder, then researchers will be unable

to identify this relationship as spurious.

Figure 2.2: DAGs representing a randomized experiment for an ine ective drug with un-
pleasant side e ects: () a DAG with a valid casual interpretation, but an invalid statistical

pretations.

Figure 2.2 depicts all possible DAGs over the variables for treatment and recovery|the
variables for side e ect, general health, and selection are latent. The DAG in)(is the only
valid causal model; it expresses the fact that neither treatment nor recovery cause the other.
However, it also implies that treatment and recovery are independent of each other which is
false. The DAGs in {i, iii ) correctly imply the dependence between treatment and recovery,
but express incorrect causal relationships. Consequently, the family of DAGs is inadequate

to represent this example without explicitly invoking the latent variables.



The ubiquity of latent variables necessitates methods capable of dealing with their sub-
tleties. DAGs can model latent variables if the latent variables are explicitly invoked and
treated as missing data. However, this approach results in a myriad of problems: there are
an in nite number of DAGs with latent variables to consider for each independence model; a
DAG with latent variables can encode non-conditional independence constraints; the param-
eters of a Bayesian network corresponding to a DAG with latent variables are often not fully
identi able; and assumptions about latent variables of a DAG and their parameterization in
the corresponding Bayesian network can have a profound impact on modeling and inference
including a loss of model smoothness [32, 33, 68, 76, 90].

A more elegant approach is to use a graphical family that is stable under marginalization
and conditioning. These families are usually comprised of mixed graphs which are named
for the mixture of edge types that they contain: directed, bi-directed, and undirected. Max-
imal ancestral graphs (MAGs) make up one such family. A thorough treatment of graphical
families stable under marginalization and conditioning is given by [73] and discussed in Sec-
tion 3.4. The set of independence models induced by the family of MAGs is a superset of
the set of independence models induced by DAGs. Accordingly, MAGs can represent all
(and only) independence models obtained through marginalization and conditioning of the
independence models induced by DAGs [70]. This is of interest because graphical Markov
models can represent latent confounding as the marginalization of latent variables and selec-
tion e ects as the conditioning of latent variables|conditioning on latent variables applies

a selection e ect [4, 79].



Figure 2.3: Marginalization: () a DAG with vertices f e; h; r; s; tg; (ii ) a MAG corresponding

to the marginalization of h. Grayed vertices represent latent variables to be marginalized.

Figure 2.3 depicts an example of marginalization in a DAG where the grayed vertices of
the DAG in (i) are the variables to be marginalized|the MAG in (ii) is the resulting graph.
The marginalization of h induces a dependence betweenand r which corresponds to the
bi-directed edge between them. Generally, latent confounding is represented with bi-directed

edges.

Figure 2.4: Conditioning: () a DAG with vertices fe; h;r; s; tg; (ii) a MAG corresponding
to the marginalization of e and conditioning ofs. Grayed vertices represent latent variables

to be marginalized and colored vertices represent latent variables to be conditioned on.

Figure 2.4 depicts an example of conditioning in a DAG where the grayed vertices of

the DAG in (i) are the variables to be marginalized and the colored vertices of the DAG



in (i) are the variables to be conditioned on|the MAG in (i) is the resulting graph. The
conditioning of s induces a dependence betwed&nand t which corresponds to the undirected

edge between them. Generally, selection e ects are represented with undirected edges.

Figure 2.5: Marginalization and conditioning: () a DAG with vertices fe; h;r;s;tg; (i) a
MAG corresponding to the marginalization oth and e and conditioning ofs. Grayed vertices
represent latent variables to be marginalized and colored vertices represent latent variables

to be conditioned on.

Figure 2.5 depicts an example of marginalization and conditioning in a DAG where the
grayed vertices of the DAG in {) are the variables to be marginalized and the colored vertices
of the DAG in (ii) are the variables to be conditioned on|the MAG in (i) is the resulting
graph. The marginalization oft and conditioning ofs induces a dependence betweenand
t which corresponds to the directed edge between them. The MAG i ) is statistically
and causally valid, however, the causal interpretation of the edges of a MAG is slightly
di erent from the causal interpretation of the edges of a DAG. The MAG in {i) expresses
that the variable for treatment is either a causal ancestor of the variable for recovery or a
causal ancestor of a selection variable. In actuality, treatment is an ancestor of the selection
variable. The general causal interpretation of MAGSs is given in Section 3.3.

Ancestral graph Markov models are graphical Markov models whose independence mod-
els are induced by MAGs. Similar to Bayesian networks, Ancestral graph Markov models
can sometimes provide researchers with a means to calculate the e ects of intervention with-

out the need for experimentation [62, 92]. Additionally, ancestral graph Markov models are



equipped with the m-separation criterion [70, 66] and the heads and tails factorization cri-

terion [67, 30]. The heads and tails factorization criterion consists of multiple factorizations
for marginal densities admitted by a probability measure and only applies to ancestral graph
Markov models whose independence models are induced by directed MAGS|MAGs with no

undirected edges. The factorization criterion can be extended to all ancestral graph Markov
models by factoring the part of the model corresponding to the undirected section of the
MAG using the factorization criterion for undirected graph Markov models. These charac-

terizations may be exploited for modeling and inference, but the system of factorizations
given by the heads and tails factorization criterion does not readily admit a closed-form
objective function for model selection|a closed-form objective function for the model selec-

tion of MAGs is a key topic discussed in this dissertation. MAGs and their properties are

discussed in Section 3.3.

Graphs are not the only mathematical object used to encode conditional independence.
Imsetal Markov models use structural imsets, short for integer-valued multiset, rather than
graphs to encode the conditional independence statements represented in a probability mea-
sure. Structural imsets are equipped with an analogue to graphical separation criteria and
a product formula which can be used as a factorization criterion. Additionally, the family
of structural imsets induces a richer set of independence models [83]. Unfortunately, they
lack an intuitive interpretation and as a consequently their literature is largely theoretical.

Structural imsets and their properties are discussed in Section 3.5.

T ? fhg frg ftg fh;rg fh;tg fr;tg fh;rtg
h :
u(T) 0 1 0 0 1 1 0 1

I

Figure 2.6: A structural imset which induced the same independence model as the MAG in
Figure 2.4 (i).

Figure 2.6 depicts a structural imset which induced the same independence model as the
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MAG in Figure 2.4 (ii). The imset is a column vector whose elements correspond to subsets
of variables, but may also be thought of as a functiom : P(fh;r;tg) ! Z mapping the
power set off h;r;tg to the integers. This representation has theoretical merits, but does
not lend itself to an intuitive interpretation, causal or otherwise. Nevertheless, structural
imsets have been successfully applied as a framework for DAG learning [37, 84, 85, 86]. To
our knowledge, an analogous application for learning MAGs does not exist and is a key topic
discussed in this dissertation.

This dissertation introduces inducing sets as a new perspective for reasoning about ances-
tral graph Markov models. Using this new perspective, we give an alternative representation
for MAGs called m-connecting sets and provide a novel factorization grounded in the the-
ory of structural imsets. Accordingly, we utilize preexisting theoretical machinery from the
literature of MAGs graphs and structural imsets and form new connections between them
in the process. To demonstrate the e ectiveness of this new perspective, we show how the
factorization admits a closed-form estimate of the posterior probability of a model; this al-
lows ancestral graph Markov models to be compared, ranked, and averaged. Ultimately, we
develop and evaluate the ancestral probability (AP) procedure for computing the posterior

probabilities of ancestral relations among pairs of variables.

2.2 Outline

This dissertation is organized as follows. Chapter 3 introduces general background in-
formation, concepts useful for the study of ancestral graphs, and alternative independence
models. Chapter 4 introduces inducing sets anoh-connecting sets as a special case of in-
ducing sets. Additionally, we review related prior work and we prove that the independence
models induced by MAGs may be characterized byn-connecting sets and their factoriza-
tion. Chapter 5 discusses curved exponential families and derives conditions under which
Lee and Hastie probability measures are curved exponential families subject to an indepen-
dence model induced by a directed MAG. Chapter 6 develops and evaluates a probabilistic

score and the ancestral probability (AP) procedure, which performs Bayesian local causal

11



discovery on directed MAGs. An implementation of the AP algorithm is run on synthetically
generated data and a real data set measuring airborne pollutants, cardiovascular health, and
respiratory health. Lastly, the dissertation closes with Chapter 7 which summarizes and

discusses the main results and provides suggestions for future work.
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3.0 Background and Related Work

Throughout this dissertation we use the following conventions: upper case symbols,
such asA and B, denote sets; juxtapositions of upper case letters, such AB = A [ B,
denote unions; and lower case symbols, such @asnd b, denote set elements or singletons.
Occasionally in gures and subscripts the juxtaposition of lower case letters, such ak=
fa; g, denote sets. With a few exceptions that will be noted later, upper case letter in a
sans-serif font, such a& and B denote sets of sets.

The symbolV denotes a non-empty set of variables|or a set of vertices in the graphical
context|that indexes a non-empty nite collection of random variables (X 3)a2v With sample
spaces Xa)a2v. These spaces may be nite discrete spaces or nite-dimensional continuous
spaces. Given a subsed V, dene Xap  (Xa)aza and Xa a2a(Xa). Furthermore,
denote the xed elements ofX, by xa. Lastly, let Xy, X, Xy X, andxy X.

The following symbols are reserved for sets of numberR denotes the real numbers,
Q denotes the rational numbers, an& denotes the integers. FurthermoreQ. denotes the
non-negative rational numbers, andZ, denotes the non-negative integers. The symbol is
reserved for§+”+j is the set ofjnj |j nj symmetric positive de nite matrices. The symbol?
is reserved for the empty set and the symbd? is reserved for the power set. Furthermore,

the subset of the power set bounded byu 2 Z,. (I u) is de ned as follows:
P/(V) £ T V; | jTj ug

Lastly, let P,(V) PYi(v)and Pu(V)  PY(V).

3.1 Conditional Independence

Central to this dissertation are mathematical objects that represent sets of conditional
independence statements, called independence models. Conditional independence usually

refers to probabilistic conditional independence, that is, conditional independence state-
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ments that hold in a probability measure. In this dissertation we use the term conditional
independence statement more generally, for instance, conditional independence statements
that hold in a graph correspond to separations in that graph; see Section 3.3.2. Mathematical
objects that induce independence models include but are not limited to probability measures,
mixed graphs, and structural imsets. Let the symboD denote an abstract mathematical

object that represents conditional independence statements.

De nition  (conditional independence statemeint Let V be a non-empty set of variables
with disjoint subsetsA;B;C V. A conditional independence statementverV is a state-
ment of the form\ A is conditionally independent ofB given C." Every conditional inde-
pendence statement oveY corresponds to a disjoint triple of the formhA; B j Ci and should
be understood with respect to a mathematical object. For a mathematical obje@ overV,
if PA; B j Ci is represented inO, then we write A ? B j C [O].

The punctuation of a triple anticipates the intended role for each set. The two former
components are independent sets while the third component, written after the vertical bar, is
the conditioning set. The corresponding conditional independence statementelementary
when the two former sets are singletons andemi-elementary otherwise. The set of all
disjoint triples over V is denoted byT(V). Formally, an independence model is de ned as

follows.

De nition  (independence modgl Let V be a non-empty set of variables an@® be a mathe-
matical object overV. The independence moddl(O) induced by O is a set of disjoint triples

de ned as follows:
1(0) th A;BjCi2 T(V); A? BjC[O]g:

Let V be a non-empty set of variables an® be a mathematical object oveV. Classes
of independence models may be characterized axiomatically as follows. The independence
modell(O) is called asemi-graphoidwhenever conditionsi(- v) hold for every collection of
disjoint setsA;B;C;D  V:

i. triviality A? ?2jC[O];
ii. symmetry A? BjC[O] ) B? AjC[O];
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iii. decomposition A? BD jC[O] ) A? DjC[O]
iv. weak union A? BDjC[O] ) A? BjCD]IO]
V. contraction A? BjCD[O]andA? DjC[O] ) A? BD jC][O].

Furthermore, 1(O) is called agraphoid whenever conditions i( - vi) hold for every collection
of disjoint setsA;B;C;D  V:

vi. intersection A? BjCD[O]andA? DjBC[O] ) A? BD jC|[O].

Lastly, 1(O) is called acompositional graphoidwhenever conditions i( - vii ) hold for every

collection of disjoint setsA;B;C;D  V:

vii. compositon A? BjC[O]l]andA? DjC[O] ) A? BD jC[O]

3.1.1 Probabilistic Conditional Independence

The most common independence models are induced by probability measures. Vet
be a non-empty set of variables with disjoint subsetd;B;C V. Furthermore, let X be
a collection of random variables indexed by with probability measure P dominated by

- nite product measure . We sayhA;B j Ci is represented inrP and write A? B jC[P]

if for every measurable subset  Xa:
P(XA 2T J Xge = XB(:) = P(XA 2T _| Xc = Xc) for P-a.e.x 2 X: (31)

In Equation 3.1, P(Xa 2 T j Xgc) does not depend on the value dB8. Intuitively, this
conveys thatB provides no additional information aboutA when the value ofC is known.
Probabilistic conditional independence is a mathematical formalization of this notion of
irrelevance [17, 46]. IfP admits density f (x) with respect to , then we may de ne the

following equivalent de nitions of conditional independence:
A? BjC[P] , fajsc (X) = fajc(x) forP-a.ex2 X (3.2)
and for some real-valued functiong: Xac ! Randh:Xgc ! R

A? BjC[P] , fasc(X)= g(X)h(x) forP-a.e.x2 X: (3.3)
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The independence model induced Wy is denoted byl (P). Furthermore, every independence

model de ned by a probability measure is a semi-graphoid.

Proposition 3.1.1 (Lemma 2.1 [83]) Let P be a probability measure. The induced inde-

pendence model(P) is a semi-graphoid.

3.2 Partially Ordered Sets

The notion of a partially ordered set provides a principled way to order the vertices of
an ancestral graph and is required to de ne the Mebius inversion. Ancestral graphs are
discussed in Section 3.3 and the importance of the M®bius inversion becomes apparent when
we are able to understand lo§ as a linear combination of interaction information rates; see
Chapter 4 for details. Unless otherwise speci ed, the symb® denotes a nite partially
ordered set. Furthermore, the elements d® may be sets|hence our choice of notation. In

this dissertation all partially ordered sets are nite.

De nition  (partial order). A partial order is a binary relation  over a setP such that
is re exive, antisymmetric, and transitive. That is, for every collection of mathematical

objectsA;B;C 2 P:

I. re exivity A A

ii. antisymmetry A B andB A ) A = B;

iii.  transitivity A BandB C ) A C.

De nition  (partially ordered se). A partially ordered set, posetfor short, is a setP with a

partial order . A pair of mathematical objectsA; B 2 P arecomparableif A B orB A

and incomparableotherwise. If every pair of elements is comparable, then is atotal order

and P is atotally ordered set

The canonical poset used throughout this dissertation is de ned by the power set of a

non-empty set of variablesv ordered by inclusion:

A B A B forall A;B V:
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Figure 3.1 depicts the Hasse diagram for the posét = P(fa;b; @) ordered by inclusion.
Vertices represent the elements d? where vertices appearing higher in the diagram have
greater cardinality than vertices appearing lower in the diagram and edges connect sets to

their maximal subsets|or minimal supersets.

Figure 3.1. The Hasse diagram for a pos& = P(f a; b; @) ordered by inclusion.

Let P be a poset with partial order and consider a pair of mathematical objects
A;B 2 P. The join of A and B, denotedA _ B, is their supremum. Similarly, the meet
of A and B, denoted A ™ B, is their in mum. In general, the join and meet of a pair of
mathematical objects might not exist. Figure 3.1 illustrates the concepts of join and meet.

In the poset:

fa;b;gandfa;cghave joinfa;b;g fa;ag= fa;b;gand meetfa;b;@"f a;og= fa;;
fa;lbgandfb; g have joinfa;by_fb;g= fa;b;gand meetfa;lg"f b;q= fhbg;
fag and fcg have joinfag _fcg = fa;og and meetfag”™fcg= ?.
In the poset de ned by the power set of a nhon-empty set of variables ordered by inclusion,
join and meet behave identically to union and intersection respectively.

In general a Hasse diagram graphically represents a nite posets where vertices corre-

spond to elements of the poset where vertices appearing higher in the diagram appear later
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in the partial order. Edges connect vertices to their maximal non-trivial joinjor minimal

non-trivial meet.

De nition  (lattice). Let P be a poset with partial order . If every pair of elementsa; b2 P

has a unique joina_ b2 P and meeta” b2 P, then P is a lattice.

The poset ordered by inclusion in Figure 3.1 illustrates the concept of a lattice. Further-
more, any totally ordered set is a lattice. LetP be a lattice with partial order . We adopt

the notation for ceiling and oor to denote the join and meet of a subseA P in a lattice:
N
de  a bAc a

a2A az2A
If is a total order, then these operations return the rst and last elements of the set
respectively. If the partial order is not speci ed, we adopt the order for the canonical poset.

Figure 3.1 illustrates the concepts of ceiling and oor:

if A = ff ag;fhbg;fcgg, then dAe= fa;b;@ and bAc= ?;
if A= ff ag;fa;lg;fa;b;gg, then dAe= fa;b; @ and bAc = fag.

3.2.1 Mdbhius Inversion

Two useful functions for analyzing a poseP are the zeta function and the Mebius
function. Let V be a non-empty set of variables and® = P(V) be a poset ordered by

inclusion. The zeta function p : P P! f 0;1gis de ned as follows:
8

2 0 B6A:;
p(B;A) =

1 B A

The Mebius function p:P P! Z is de ned as follows:
8

2 9 B6 A:
p(B;A) =
JANB] B A

These functions may be thought of as matrices because the posets we consider are nite.

Abusing notation, we interpret p and p as matrices where the rst and second arguments

18



of these functions act as the row and column indices respectively. Under this interpretation,

the Mebius function is the inverse of the zeta function in the sense thatp = .

p ? fag fbg fcg fa;lbg fa;ag fb;@ fa;b;cg3

? 21 1 1 1 1 1 1 1

fag 0 1 0 0 1 1 0 1

0O O 1 0 1 0 1 1

0O O 0 1 0 1 1 1

fabg 0O O 0 0 1 0 0 1
faog B0 0O 0 O 0 1 0 1
fb;jg 40 O 0O o0 0 0 1 1
fajbjg 0 O 0 0 0 0 0 1

Figure 3.2: The zeta function of a poseP = P(f a; b; @) ordered by inclusion|the rst and

second arguments of the zeta function act as row and column indices respectively.

Figure 3.2 depicts the zeta function p as a matrix for the posetP depicted in Figure
3.1. Notice that the matrix is invertible|it is an upper triangular matrix with non-zero
entries on the main diagonal. In general, the rows and columns of the matrix corresponding
to the zeta function of a poset can be rearranged in this manner. Accordingly, the matrix

corresponding to the zeta function is invertible.
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? fag fbg fcg fa;bg fa,ag fb;g fa;b;g
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Figure 3.3: The Mebius function of a poseP = P(fa;b; @) ordered by inclusion|the rst

and second arguments of the Mebius function act as row and column indices respectively.

Figure 3.3 depicts the Mebius function p as a matrix for the posetP depicted in Figure
3.1. Again, notice that p is invertible|it is an upper triangular matrix with non-zero
entries on the main diagonal. We encourage the reader to check that the matrices depicted
in Figures 3.2 and 3.3 are indeed inverses of each other. This relation holds in general and
provides an intuition for the so called Mebius inversion. In what follows, we provide two

Characterizations of the Mebius inversion|we will use both later in this document.

Proposition 3.2.1 (Proposition 2 [71]) Let P be a poset andy: P! Randh:P! R be
real-valued functions. The following expressions imply each other
P
. g(A)= g,ph(B) p(B;A) forall A2P;
P
ii. h(A)= 5,p0(B) p(B;A) forall A2 P.
Alternatively, if we abuse notation and treaty and h as column vectors, then the Mebius

inversion states thaty= ph , h= pg. If V is anon-empty set of variables ang = P(V)

is a poset ordered by inclusion, then the Mebius inversion simpli es to the following equivalent
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statements:

i. g(A)= P g A( LYABInB) forall A V;

i. h(A) = P s A09(B) forallA V.

Corollary 3.2.1 (Corollary 1 [71]). Let P be a posetandy: P! Randh:P! R be
real-valued functions. The following expressions imply each other:

i. g(A)= P gop P(A;B)h(B) forall A2 P;

ii. h(A)= P sop P(A;B)g(B) forall A2 P.

Alternatively, if we abuse notation and viewg and h as column vectors then the corollary
states thatg= 7zh , h= Zg. If V is a non-empty set of variables an® = P(V) is a
poset ordered by inclusion, then the corollary simpli es to the following equivalent statements:
i. g(A)= P B via p)( 1P h(B) forall A V;

i. h(A)= 5 y@ ) 9(B) forallA V.

T g(T) T h(T)
. 2 0 3 2 0 3
fag 0 17 f ag 0
fbg 0 fbg 0
fcg 1 fcg 0
fa;lg 0 fa;lg 1
fa,og 1 fa,og 0
fb; @ 1 f bg 0
fa,b;g 1 fa,b;g 1

Figure 3.4: An application of the zeta and Mebius functions of a pose® = P(fa;b; @)

ordered by inclusion.
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Figure 3.4 depicts an application of the Mebius inversion with respect to a posét =
P(fa;b; @) ordered by inclusion. Ifg: P! Randh: P! R are real-valued functions
satisfying Proposition 3.2.1, then the zeta function depicted in Figure 3.2 applied tpresults
in h and the Mebius function depicted in Figure 3.3 applied toh results in g; Figure 3.4

gives an example.

3.3 Ancestral Graphs

A common theme throughout this dissertation is the use of mixed graphs as independence
models. This section introduces several families of mixed graphs, including directed acyclic

graphs, acyclic directed mixed graphs, and maximal ancestral graphs.

3.3.1 Preliminaries

De nition  (mixed graph. A mixed graphG = (V; E) is an ordered pair consisting of a vertex
set and an edge set respectively. The edge set contains a mixture of directed, bi-directed,
and undirected edges which connect pairs of vertices in the vertex set such that no pair of

vertices is connected by more than one edge of the same type.

De nition  (characteristics of mixed graphs A few characteristics used to further re ne

the de nition of a mixed graph are de ned as follows:

a mixed graph islooplessif no edge connects a vertex to itself;

a mixed graph hasmultiple edgesif more than one edge connects any pair of vertices;
a mixed graph issimpleif it is loopless and does not have multiple edges;

a mixed graph isdirected if it does not contain any undirected edges;

a mixed graph isacyclic if it does not contain any directed cyclesa sequence of com-

monly oriented edges that starts and ends with the same vertex.

As a point of clari cation, a directed graphis a mixed graph that only contains directed

edges, whereas a directed mixed graph can additionally contain bi-directed edges.
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De nition  (paths in mixed graphy. Let G= (V;E) be a mixed graph. The notion of gath

and a few related concepts are de ned as follows:

apath = hvy;:::;vyi is a sequence ain > 1 distinct vertices where an edge connects
viandvj;; foralll i<m;

the endpointsof a path = hvy;:::;vyi are the rst and last verticesfvy; v g;

atriple is apath = hvy;v,; vai with three vertices and isunshieldedif no edge connects

its endpointsv; and vs;

acollider on = hvy;:::;vpi (m  3)is a vertexy; (1 <i<m ) such that:
8 9 8 9
312 3 2
Vi 1 ! Vi 0% _ Vi
2 2 3 32
- $ - $

and is unshieldedif no edge connecty; ; and vj4; .

Paths are sometimes de ned as sequences of distinct edges linked by shared endpoints,
however, in this dissertation, the notion of a path is only considered within simple mixed

graphs where the two de nitions are equivalent.

A directed acyclic graph(DAG) is a simple directed graph that is acyclic. The family of
DAGs is of primary importance because it is both a subfamily and a constructor of mixed
graphs. Section 3.4.2 details how DAGs construct mixed graphs through a process called
latent projection. The two most prevalent families of mixed graphs that can be constructed
by a latent projection process areacyclic directed mixed graphg§ADMGs) and maximal
ancestral graph(MAGs). ADMGs are relatively easy to understand syntactically, while
MAGs are generally more convenient to work with theoretically. The families of ADMGs
and directed MAGs are equivalent with respect to representing conditional independence
statements. The family of directed MAGs is a subfamily of ADMGs so results on ADMGs
apply to directed MAGs, but not the other way around. Accordingly, prior work on both
families will be referenced throughout this dissertation, but MAGs will be the primary family

of mixed graphs discussed.
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Figure 3.5: Mixed graphs with verticesfa;by: (i) a mixed graph with a loopa a and
multiple edgesa! by (ii ) a acyclic directed loopless mixed graph with multiple edges? b;

(iii ) a simple acyclic directed graph.

Figure 3.5 illustrates several characteristics of mixed graphs. The mixed graphs in)(
and (iii ) are loopless and the mixed graph inii( ) is simple. Furthermore, the mixed graph
in (i) contains a directed cyclea! b! a, the mixed graph in (i) is an ADMG, and the
mixed graph in (ii ) is a DAG. Note that the multiple edgesa! b and the bi-directed
edgea $ b are not semantically equivalent. All families of mixed graphs discussed within
this dissertation are loopless. Accordingly, from this point on, the terms mixed graph and
loopless mixed graph will be used synonymously.

We utilize standard familial terminology from the vernacular of graphical models. Let

G=(V;E) be a mixed graph. For a vertexa2 V:

pag(@d) f b; b! ain Gy
chg(@d) f b; b ainGg
sps(a) f b; b$ ain Gg
neg(@) f b; b ainG&g

are the parents children, spousesand neighborsof a respectively. If any of the above edges

are present inG, then a and b are adjacent Similarly:

ang(a) f b; b! ! ainGora= by
deg(a) f b; b ainGora= bg
disg(d) f b; b$ $ ainGora= by
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bl ! a
antg(a) f b; _ b

W AW

Y inGora= Iy
a

W

are the ancestors descendants district, and anterior vertices of a respectively. These
functions are applied to sets disjunctively, that is, applying one to a set of vertices is the
union of the operation applied to each vertex in the set. For example, a set of verticks V

has the following parents and ancestors:

[ [
pag(A) pag(a) ang(A) ang(a):

a2A a2A
We use inclusive de nitions of these functionsa 2 ang(A), a 2 deg(A), and a 2 disg(A)
for all a 2 A. These operators are not always de ned this way|we de ne them as such
for theoretical convenience. Notably, the de nitions for parents, children, spouses, and
neighbors are not inclusive, however, having inclusive versions will be useful later. We de ne

the inclusive versions of these functions as follows: giahg; spg; neg.

Figure 3.6: A mixed graph with verticesf a; b; c; d; g.

Figure 3.6 illustrates concepts of parents, children, neighbors, and spouses. In the graph,

the non-trivial relations are as follows:

c has parentsf ag, d has parentsf by, and e has parentsf cg;
a has childrenf cg, b has childrenf dg, and c has childrenf eg;
a has neighbord bg, and b has neighbord ag;

¢ has spouses$dg, d has spouse$c; 3, and e has spouse$dg.
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Similarly, Figure 3.6 illustrates concepts of ancestors, descendants, and districts. In the

graph, the non-trivial relations are as follows:

¢ has ancestord a; ag, d has ancestors b; dj, and e has ancestord a; c; &;

a has descendant$a; c; @, b has descendant$b; dy, and ¢ has descendant$c; e3;

a has anterior verticed a; by, bhas anterior verticed a; kg, ¢ has anterior vertices a; b; @,
d has anterior verticesf a; b; d), and e has anterior verticesf a; b; c; @;

fag, fbg, and f c; d; eg form districts.

We now have a su cient set of graphical concepts to de ne the ancestral graphs and are

one step closer to de ning MAGs.

De nition  (ancestral graph). Let G= (V; E) be a simple mixed graph.G is ancestral if for

all verticesa 2 V:

I. chg(a) \ ang(a)= ?;
ii. spg(@) \ ang(a)= ?;
. pag(a) [ spg(@) 6 2 ) nes(a) = ?.

Criteria (i) states that ancestral graphs cannot have directed cycles and criterid X
states that ancestral graphs cannot havalmost-directed cycle sequence of commonly
oriented edges that starts and ends with vertices connected by a bi-directed edge. Criteria
(iii ) states that ancestral graphs cannot have a directed arrowhead pointed into a vertex
that is connected to another vertex with an undirected edge. Accordingly, ancestral graphs
have clearly de ned directed and undirected parts. This notion can be made rigorous using
the graphical concept of a subgraph.

Two important graphical concepts used throughout this dissertation are anterior and

ancestral sets.

De nition  (anterior set). Let G=(V;E) be a mixed graph containing a seA V. Ais
anterior if antg(A) = A, in other words, A contains all its own anterior vertices. The set of

all anterior sets inG is denoted byA(G).

De nition (ancestral se}. Let G= (V; E) be a mixed graph containing a seA V. A'is

ancestral if ang(A) = A, in other words, A contains all its own ancestors. Notably, ifG is
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directed, then A(G) is the set of all ancestral sets irG.

De nition  (subgraph of mixed graphs Let G= (V;E) and G = (V; E) be mixed graphs.
If VO V andE? E, then Gis asubgraphof Glof particular interest:
the directed subgraphof G, denoted by dir(G) = (V% EY whereV°= fa2 V; pag(a) [
chg(a) [ sps(a) 8 ?2gandE®= fe2 E ; eis a directed or bi-directed edgg
the undirected subgraplof G, denoted by un@G) = (V% E9 whereV°= fa2 V; pag(a) [
sps(@) = ?gand E%= fe2 E ; eis an undirected edge;
the induced subgraphof G over AV, denoted byGy = (A;E9 where E? = fe 2

E ; econnects two members oAg.

Figure 3.7: Subgraphs of the graph in Figure 3.6: Y the directed subgraph; {i ) the undi-
rected subgraph.

Figure 3.8: Induced subgraphs of the graph in Figure 3.6i)(the induced subgraph over
fa;c;d; a; (ii) the induced subgraph over a; b; d; &.

27



Proposition 3.3.1 (Proposition 3.5 [70]) Let G be an ancestral graph. 113 is a subgraph

of G, then G is an ancestral graph.

As noted earlier, DAGs are not stable under marginalization and conditioning, however,
ancestral graphs are stable under marginalization and conditioning. For any DAG with latent
confounding and selection e ects, there is an ancestral graph over the measured variables
alone that represents the conditional independence and ancestral relations entailed by the
original DAG; in the case of a causal DAG, the ancestral relations are causal. The edges of

a causal ancestral graph may be interpreted causally as follows:

a! bmeans thata is a cause ob or some selection variable, bub is not a cause of
or any selection variable;

a$ bmeans thata is not a cause ob or any selection variable, and is not a cause of
a or any selection variable;

a b means thata is a cause ob or some selection variable, ant is a cause ofa or

some selection variable.

3.3.2 Graphical Conditional Independence

Graphical separation criteria de ne the notion of graphical conditional independence.
In this dissertation, we use the so callean-separation criterion for mixed graphs, which
naturally extends the well known d-separation criterion for directed graphs [58, 70, 74].
Given a DAG with latent confounding and selection e ects, inducing paths characterize
when two vertices cannot be not graphically separated conditioned on any set of vertices
that corresponds to a set of measured variables. Throughout this dissertation, the symbols
L and S denote sets of latent confounding and selection e ects (and their corresponding

vertices) respectively.

De nition  (inducing path). Let G= (V;E) be an ancestral graph containing verticea; b2
V (a6 b) and disjoint setsL;S V nfa;lg. A path betweena and bis inducing relative
to hL; Si if the following hold:

I. every non-endpoint on is a member ofL or a collider;

ii. every collider on is an ancestor ofa, b,ors2 S.
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If L=S=?,then is aprimitive inducing path.

Looking ahead, Figure 3.10 gives an example of a primitive inducing path. The path
ha; c; d; b is primitively inducing in both graphs, but a and b are only adjacent in {i). In
the literature, inducing paths have only been de ned for ancestral graphs, but it is likely the
case that they can be extended to all families of mixed graphs discussed in section 3.4.

In Section 3.4, we review how a DAG with latent confounding and selection e ects may
be represented as a loopless mixed graph derived by the marginalization and conditioning
of that DAG. In the case of a loopless mixed graph, graphical conditional independence is

characterized bym-connecting paths andm-separation.

De nition  (m-connecting path). Let G = (V;E) be a mixed graph containing vertices
a;b2 V (a6 b) and a subsetC V nfa;lg. A path betweena and b is m-connecting

relative to C if the following hold:

I. every non-collider on is not a member ofC,;

ii. every collider on is an ancestor ofa, b, orc2 C.
De nition  (m-separation). Let G = (V;E) be an mixed graph containing disjoint sets
A;B;C V. Ifforeverya2 A and b2 B no m-connecting path exists betweem and b
relative to C, then A and B are m-separatedby C.

Let G= (V; E) be a mixed graph containing disjoint set#\;B;C V. We sayMA;B j Ci
is represented inG by mseparation and writeA ? B j C [G] if A and B are m-separated

by C. The independence model induced b is denotedl ,(G).
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Figure 3.9: An ancestral graph with verticed a; b; c; d; @.

Figure 3.9 illustrates the concepts of inducing pathsn-connecting paths, andn-separation.

In the graph:

ha; b; c;d is an inducing path relative to hfcg; f bgi and relative to hfcg; f egi;
ha; b; c; d is an m-connecting path relative tof bg and relative to f eg;
ha; b;c;d is not m-connecting relative tofcg, fb; @, or fc; ey becausea and d are m-

separated byf cg, f b; @, and f c; ey respectively.
Additionally, m-connecting and inducing paths in ancestral graphs are related by the follow-
ing proposition.
Proposition 3.3.2 (Theorem 4.2 [70]) Let G = (V;E) be an ancestral graph containing

verticesa; b2 V (a6 b) and disjoint setsL;S V nfa;kg. The following are equivalent

I. there exists an inducing path betweea and b relative to h_; Si;
ii. aandbare not m-separated byC forallS C V nL (a;b62C).

Occasionally, it is useful to have an alternative separation criterion for the simpli cation
of proofs. Accordingly, we de ne the augmented graph andh -separation criterion for

ancestral graphs.

De nition  (collider-connecting path). Let G= (V;E) be a mixed graph containing vertices
a;b2 V. Apath betweena andbis acollider-connecting pathif every non-endpoint vertex

on is a collider.
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Let G= (V;E) be a mixed graph containing a vertexa 2 V. The non-trivial collider-
connecting vertices ofa are the vertices connected t@ by collider-connecting paths. Let

G=(V;E) be a mixed graph. For a vertexa?2 V,

cols(@) neg(a) [ pag(diss(chg(a)))

are the collider-connecting vertices ofa. We de ne this function to be conjunctive when
applied to sets, that is, by de nition applying the collider-connecting function to a set of
vertices is the intersection of the operation applied to each vertex in the set. For example,
a set of verticesA  V has collider-connecting vertices:

\
colg(A) cols(a):
a2A

De nition  (augmented graph Let G= (V;E) be a mixed graph. The augmented graph,
denoted @ = aug(GQ), is the undirected graph over the same vertices such that g€a) =

colg(a) for all a2 V.

De nition  (m -separation). Let G= (V;E) be an ancestral graph containing disjoint sets
A;B;C V andD = antg(ABC). If for every a2 A and b2 B no m-connecting path

exists betweena and brelative to C in aug(&,), then A and B are m -separatedby C in G.

Let G= (V; E) be a mixed graph containing disjoint set®\;B;C V. We sayhA;B | Ci
is represented inG by m -separation and writeA ? , B j C [G] if A andB arem -separated

by C. The independence model induced b§ is denotedl, (G).
Theorem 3.3.1 (Theorem 3.18 [70]) If Gis an ancestral graph, therl, (G) = 1,(G).

Since the two separation criterion are equivalent we drop the identifying subscript in
the relevant notation. The following corollary is a direct consequence of the equivalence of

m -separation andm-separation.

S
Corollary 3.3.1. If Gis an ancestral graph, therl (G = 5,5 | (QU9(GA)).
Proof. This directly follows from the de nition of m -separation and Theorem 3.3.1. [

Lastly, we note that an induced independence model de ned by a mixed graph and

m-separation, including ancestral graphs, is compositional graphoid.
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Proposition 3.3.3 (Theorem 1 [74]) If Gis a mixed graph, then the induced independence

modell(G) is a compositional graphoid.

3.3.3 Markov Properties
Formally, ancestral graph Markov models are characterized by tha-separation criterion
in conjunction with the global Markov property.

De nition  (global Markov property. Let G= (V;E) be a mixed graph andP be a proba-
bility measure overV. P satis es the global Markov propertyfor G if the following holds for

all disjoint triples hA;B j Ci2 T(V):
A? BjC[G] ) A? BjC[PI:
Alternatively, P satis es the global Markov propertyfor G if:

(G [I(P):

However, it is often the case that many of the conditional independence statements
characterized by the global Markov property are redundant|implied by the semi-graphoid
axiom and other conditional independence statements. Accordingly, for many graphical
families, the global Markov property is often reduced to simpler Markov properties, such
as the ordered local Markov property for ADMGs. In what follows, we introduce concepts

needed to de ne the ordered local Markov property.

De nition  (collider-connecting se}. Let G = (V;E) be a mixed graph containing a set
A V. Aiscollider-connectingif A colg(A). That is, there exists a collider path between

aandbfor all a;b2 A (a6 b).

Let G=(V; E) be a mixed graph containing a vertex2 V. The set of collider-connecting

vertices forb has special property:
b? ajcolg(bhhnb[G] forall a2V ncolg(b)

That is colg(b) n b is the set that rendersb independent of all other vertices in the
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graph. In many cases, this special property is what allows simpli ed Markov properties to
be constructed. In general this set is called a Markov blanket and the set consisting of a
vertex and its Markov blanket is called a closure. Accordingly, the Markov blanket and

closure for ADMGs are de ned as follows:

mbg(b) colg(b) nb clg(b) cols(b)

The global Markov property can also be simpli ed by using the concept of a consistent

order.
De nition  (consistent orden. Let G = (V;E) be an ADMG. A total order overV is

consistentwith Gif:

a b ) b62ang(a) na forall a;b2 V:

De nition  (preceding vertice$. Let G = (V;E) be an ADMG containing a vertexb 2 V
and be a total order consistent withG. The preceding vertices ob with respect to are
de ned as follows:

preg(b) f a2Vv,; a by

The concepts of a Markov blanket and a closure can be rede ned with respect to a

consistent order which directly leads to the ordered local Markov property.

mbg(b) mbg(b) \ preg(b) clg(b) clg(b) \ preg(b)

De nition  (ordered local Markov property. Let G = (V;E) be an ADMG, Dbe a total
order consistent withG, and P be a probability measure oveV. If for every vertexb2 V
and ancestral setA 2 A(G) whereb2 A preg(b):

b? Anclg (b jmbg () [P]

then P satis es the ordered local Markov propertyfor G with respect to

Theorem 3.3.2 (Theorem 2 [66]) Let G= (V; E) be an ADMG, be a total order consistent

with G, and P be a probability measure ovey. The following are equivalent
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I. P satis es the global Markov property foiG;

ii. P satis es the ordered local Markov property foG with respect to

Lastly we introduce the augmented pairwise Markov property for ancestral graphs. This
criterion extends the pairwise Markov property for undirected graphs using graph augmen-

tation; see Lauritzen [46] for more details.

De nition  (augmented pairwise Markov properdy Let G = (V;E) be an ancestral graph
and P be a probability measure oveV. |If for every anterior setA 2 A(G) and pair of

verticesa; b2 A wherea 62n€; q,,(b):
a? bjAnfa;lg[P]

then P satis es the augmented pairwise Markov propertyor G.

Richardson and Spirtes introduced the pairwise Markov property for MAGs which also
extends the pairwise Markov property for undirected graphs [70]. Sadeghi showed that their
pairwise Markov property is equivalent to the global Markov property for compositional
graphoids [74]. We show that the augmented pairwise Markov property is equivalent to the

global Markov property for graphoids using a classic result for undirected graphs.

Theorem 3.3.3 (Theorem 1 [60]) Let G = (V;E) be an undirected graph and® be a

probability measure oveN. If |(P) is a graphoid, then the following are equivalent

i. a? bjVnfaylg[P] forall a;b2V (a6xe;(b);
i. A? BjC[P] forall PA;B jCi2 I(G).

Theorem 3.3.4. Let G=(V;E) be an ancestral graph ané® be a probability measure over

V. If 1(P) is a graphoid, then the following are equivalent

I. P satis es the global Markov property foiG;

ii. P satis es the augmented pairwise Markov property.

Proof. (i) ii): Let A2 A(G) be an anterior set anda;b2 A (a6 b). By Corollary 3.3.1
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and the antecedent:

a? bjAnfa;lgf[aug(G)] ) a? bjAnfa;lg[G]
) a? bjAnfa;lg[P]:

(i( i) Let A;B;C V be disjoint sets andD = ant(ABC). By the antecedent:
a? bjDnfag[aug&)] ) a? bjDnfa;lg[P] forall a;b2 D (a6 b):
Accordingly, by Corollary 3.3.1 and Theorem 3.3.3:

A? BjC[G] ) A? BjClaug&)]
) A? BjCI[PI

3.3.4 Maximality

De nition (maximal). Let G= (V; E) be an ancestral graph.Gis maximal if for all a;b2 V

(a & b) the following are equivalent:

I. aandb are adjacent;
ii. there exists a primitive inducing path betweera and b;

iii. aandbare notm-separated byC forall C V nfa; .

Proposition 3.3.2 implies that {i ) and (iii ) are equivalent; they are included here to provide

alternative de nitions of maximal.

A maximal ancestral graph (MAG) is an ancestral graph that is maximal. MAGs are
maximal in the sense that no additional edges can be added to the graph without changing the
independence model. Furthermore, any non-maximal ancestral graph can be made maximal
by adding bi-directed edges. Intuitively, the de nition of maximality for ancestral graphs in

(i) may be applied to other families of mixed graphs which utilize m-separation.
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Figure 3.10: Ancestral graphs with vertice$a; b; c;d): (i) a non-maximal ancestral graph;

(i) a maximal ancestral graph.

Figure 3.10 illustrates the concept of maximality. The ancestral graph ini ) depicts a
graph that is not maximal and the ancestral graph ini{) depicts a graph that is maximal.
In general, the presence of a bi-directed edge in a MAG corresponds to one or more latent
confounders on a path between the endpoints of the bi-directed edge. However, it does not
necessarily mean that there is a latent confounder between the endpoints. For example, in
(i) and (ii ) there could be a latent confounder betweea and c. In this case the bi-directed
edge betweera and bin (ii ) could be induced exclusively by the confounded path between

a and b mediated byc.

Theorem 3.3.5 (Theorem 5.1 [70]) Let G = (V;E) be an ancestral graph. Then there
exists a unique maximal ancestral graph formed by adding bi-directed edge6& t®uch that

the independence model does not change.

Accordingly, every DAG is maximal and the family of DAGs is a subset of the family
of MAGs. Additionally, transforming an ancestral graph into a MAG does not a ect the
ancestral relations|only bi-directed edges are added. In Chapter 4 we work with MAGs
rather than ancestral graphs to develop the theory in this dissertation because they are
theoretically simpler and retain the statistical and causal properties of the corresponding

ancestral graphs.
Proposition 3.3.4. Let G=(V;E) be a MAG:

the directed subgrapldir(G) is a MAG;
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the undirected subgraphin(G) is a MAG,;
the induced subgrapl, is a MAG for all anterior sets A 2 A(G).

Proof. By Proposition 3.3.1, subgraphs ofs are ancestral. The proposition is proven by rst
showing that Gy is maximal and then noting that dir(G) and un(G) are induced subgraphs
of MAGs.

Suppose there is a primitive inducing path in Gy such that the endpoint are not
adjacent. By the de nition of induced subgraph, the endpoint are also not adjacent if®.
Furthermore, since any path inG, exists inG, is also a primitive inducing inG. This is a
contradiction becauseG is maximal. Accordingly, Gy is maximal.

In the case of the directed subgraph dif§), consider the subgraph ofs where the undi-
rected edges have been removél= (V;EY. Notably, dir(G) is an induced subgraph of3
Suppose there is a primitive inducing path in G such that the endpoint are not adjacent.
By the de nition of primitive inducing path, every non-endpoint on is a collider. Further-
more, since removing an undirected edge can only destroy non-colliderss also primitively
inducing in G. This is a contradiction becauses is maximal. Accordingly, G are dir(G) are
maximal. In the case of the undirected subgraph u@), un(G) is an induced subgraph ofa.

Accordingly, un(G) is maximal. O

3.3.5 Factorization

For a probability measureP, the global Markov property implies that the conditional
independence statements represented in a graph are representedP in Equivalently, some
graphical families admit well-known factorizations that algebraically imply that the condi-
tional independence statements represented in a graph are representedPinFor instance,
DAGs provide a well known recursive factorization.

Let G=(V;E) be a DAG. Furthermore, letX be a collection of random variables indexed
by V with probability measure P that admits density f (x) with respect to dominating -
nite product measure . P satis es the global Markov property with respect toG if and
only if v

f(x)= fuipagvy(X) for -a.e.x 2 X:
v2Vv
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A similar factorization was developed by Evans and Richardson for ADMGs [30, 67].
However, the factorization developed by Evans and Richardson requires multiple equations.
In Chapter 4 we develop an alternative to Evans and Richardson's factorization that only

requires a single equation.

Figure 3.11: ADMGs with verticesf a; b; c; d).

In order to state Richardson's factorization criterion for ADMGs, we must rst introduce
a few additional concepts. LetG = (V;E) be a mixed graph. For a vertexa 2 V and a
subsetB V
barg(B) f b2B; B\ deg(b) = bg

is the barren subsetof B.

De nition  (barren sef). Let G=(V;E) be an ADMG containing asetB V. B is barren

if B =barg(B). That is, B is barren if it does not contain any non-trivial descendants.

Richardson's factorization criterion for ADMGs utilizes a partition function that par-
titions the variables into sets called heads. The factorization criterion is a product over

conditional density terms comprised of heads conditioned on their corresponding tails.

De nition (head). Let G=(V;E) be an ADMG containing asetH V (H 6 ?). H is
a head if it is barren in G and contained within a single district ofG,n (4). The set of all

heads inG is denoted byH (G).

De nition (tail). Let G=(V;E) be an ADMG. For a headH 2 H (G), the tail of H is the
set
tailg(H) TnH [ pag(T) whereT :disGanG(H)(H):
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Let G=(V;E) be an ADMG and be the partial order
H H° , H ang(HY forall H;H°2 H(G):

Heads patrtition the variables with the help of two functions: ¢ : P(V)! P(H(G) which
is such that g(A) returns the set of heads that are subsets & and maximal with respect
to ;and g:P(V)! P(V)whichis such that g(A) returns the elements ofA which are

not contained in a set in g(A):

o(A) f H2H(G; H AandH 6 H%oralH® A (H 6 H9g;

[
cs(A) An B:
B2 G(A)

For a subsetA V, recursively de ne the partition function:
8
2 9 A=7;

[A]
TP UM I(Ale AB 2

where square brackets denote the partition function. The partition function removes maximal

sets fromA, and is recursively applied again to what remains.

Theorem 3.3.6 (Theorem 4.12 [30]) Let G= (V;E) be an ADMG. Furthermore, letX be
a collection of random variables indexed By with probability measureP that admits density
f (x) with respect to dominating - nite product measure . P satis es the global Markov

property with respect toG if and only if for every ancestral setA 2 A(G),

fA(X) = ijtaiIG(H)(X) for -a.e.x 2 X:
H2[A]ls
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H|tag fbg fog fdg
T‘ ? fag fby fa;b;@

Figure 3.12: The heads and tails for the ADMG illustrated in Figure 3.11i§ and the Hasse

diagram for the corresponding poset over the ADMG's heads.

Figure 3.12 depicts the heads and tails for the ADMG illustrated in Figure 3.11 and
the posets and partial order. Accordingly, a probability measure obeys the global Markov

property with respect to the graph if and only if it factors as:

fancd(X) = fgjanc(X) fgp(X) Frja(X) fa(x) for -a.e.x 2 X
fanc(X) = Feu(X) fha(X) fa(x) for -a.e.x 2 X

fan(X) = fha(x) fa(x) for -a.ex2X

H|fag fhy fog fdg faidg fbig
T| 2 2 fag fhg fhg fag

Figure 3.13: The heads and tails for the ADMG illustrated in Figure 3.11ii() and the Hasse

diagram for the corresponding poset over the ADMG's heads.
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Figure 3.13 depicts the heads and tails for the ADMG illustrated in Figure 3.11i() and
the posets and partial order. Accordingly, a probability measure obeys the global Markov

property with respect to the graph if and only if is factors as:

f abcd(X) = Fagip(X) fbga(X) for -a.e.x 2 X;
fanc(X) = fpga(X) fa(x) for -a.e.x 2 X;
fabd(X) = Fagip(X) Fu(X) for -a.e.x 2 X;
fan(X) = fa(X) fp(X) for -a.e.x2 X;
fac(X) = fga(X) fa(x) for -a.e.x2 X;
fpa(X) = fan(X) fu(X) for -a.e.x 2 X:

Note that both the factorization characterized by Evans and Richardson and the factor-
ization presented in this proposal are equivalent to the global Markov property and therefore
equivalent to each other. The key di erence is that the factorization characterized by Evans
and Richardson requires an equation for every non-empty ancestral subset of variables, while

the factorization presented in this proposal only requires a single equation.

3.3.6 Markov Equivalence
Multiple graphs representing the same independence model is made rigorous by the
notion of Markov equivalence.
De nition  (Markov equivalence. Let G=(V;E) and G= (V;E®% be mixed graphs.G and
@ are Markov equivalentif 1(G) = 1(&):

A? BjC[G] , A? BjC[C)] foral hA;B|Ci2 T(V):

As noted above, there exists a unique MAG for every ancestral graph with the same
independence model. Accordingly, Markov equivalence is usually discussed in terms of MAGs
rather than ancestral graphs. Furthermore, the set of MAGs that form a Markov equivalence

class may be graphically summarized using a maximally informative partial ancestral graph
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(PAG). A maximally informative PAG is not a mixed graph, but a graph that summarizes
a set of mixed graphs. In addition to the standard set of edges used by mixed graphs,
maximally informative PAGs also include edges with circle edge marks to denote ambiguity|

the edge mark varies among the summarized graphs.

Figure 3.14: A Markov equivalence class of MAGs with verticds; b; c; d; @: (i) a maximally

informative PAG; (ii) a set of Markov equivalent MAGs.

De nition  (maximally informative partial ancestral grapl). A maximally informative PAG
is a graph used to summarize the Markov equivalence class of a MAG and contains at most
one of six possible edge typds ;$; ; ;! ; g between every pair of vertices.

If Gis a MAG, then the maximally informative PAG [G for G is a graph with the same
adjacencies a$. Furthermore, every non-circle edge mark inG] occurs in every member of
G's Markov equivalence class and every circle edge mark # corresponds to an edge mark

that varies among the members o5s Markov equivalence class.
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Figure 3.15: The general form of a discriminating path.

The concept of a discriminating path partly characterizes whether two MAGs belong to
the same Markov equivalence class. Figure 3.15 depicts the general form of a discriminating
path, where asterisks are used to denote edge marks that may either be an arrowhead or a

tail.

De nition  (discriminating path). Let G= (V;E) beaMAG withapath = ha;by;:::;h;c;d
(k 1). We say is a discriminating path for c if:

I. aandd are not adjacent;

ii. bisacollderon foralll 1 Kk;

iii. bisaparentofdforalll i k.
Theorem 3.3.7 (Theorem 1 [81]) Let G and G be MAGs. G and G’ are Markov equivalent
if and only if:
i. Gand @ have the same adjacencies;
ii. Gand @ have the same unshielded colliders;
ii. if = hab;::;h;c;d (k1) is a discriminating path forcin G and G, thencis a

collider on in Gif and only if it is a collider on in G

De nition  (parametrizing sety. The parametrizing set ofG, denoted by §(G) is de ned as

follows:

SG f HT; H2H(GandT tailg(H)g:

This de nition is extended from directed MAGs to all MAGs by adding allcliquesof the

undirected subgraptto the set. The undirected subgraph is the graph with the same vertices
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where all directed and bi-directed edges have been removed. A clique is a complete subset
of the graph, that is, every vertex in the subset is connected to every other vertex in the

subset. The following results hold:

Proposition 3.3.5 (Proposition 3.3 [38]) Let G= (V; E) be a MAG containingaseN V.
N 625(G) if and only if there exista;b2 N (a6 b)andC V (N C) such thataandb

are m-separated byC nfa; lg.
Proposition 3.3.6 (Proposition 3.4 [38]) For a MAG G, we have

I. any two vertices a and b are adjacent i if and only if fa; by 2 S(G);
ii. for any unshielded tripleha; b;d¢ in G, fa;b;g 2 SG) if and only if b is a collider on the
triple ha;b;a;
iii. if  forms a discriminating path for b with endpointsa and cin Gthenfa;b;g 2 SG)

if and only if bis a collider on .

Theorem 3.3.8 (Theorem 3.2 [38]) Let G and G’ be MAGs. G and G are Markov equivalent
if and only if S(G) = (3.

Hu and Evans re ne the set of parametrizing sets by specifying a subset that is particu-

larly useful for e cient calculation of Markov equivalence.
G fT28Q; 1 jPYT)\ S(Gj 2T 3g

Corollary 3.3.2 (Corollary 3.2.1 [38]) Let G and G be MAGs. G and G are Markov
equivalent if and only ifS(G) = (3.

3.4 Stable Mixed Graphs

Suppose that the causal relationships of a system of variables can be correctly represented
by a DAG. If only some variables are measured and others are latent or measured selection
bias, then the system of variables can be represented by the marginalization and conditioning
of the DAG respectively. Accordingly, we often refer to the marginalization set ds and the

conditioning set asS. In some cases, we consider marginals and conditionals of the graph
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for theoretical purposes. That is, when we refer to a latent or selection variable, we may be
referring to a variable that has been marginalized or conditioned on.

Families of stable mixed graphs are families that are closed under this process of marginal-
ization and conditioning. Since marginalization and conditioning can correspond to latent
confounding and selection e ects, these families of graphs are quite useful for modeling. If
a graphical family is not stable under marginalization and conditioning, then dealing with
latent confounding and selection e ects can be more di cult; see the example in Chapter 2.

DAGs make up an important family of graphs. In particular, Bayesian networks, which
are graphical Markov models that use DAGs, have been applied with much success across
many domains. However, when a subset of variables in a DAG are latent, independence
models induced by DAGs are generally insu cient to encode the complete set of conditional
independence statements represented in the probability measure of a Markov model. Latent
confounding variables and selection bias are treated as marginalization and conditioning
respectively. Accordingly, this shortcoming manifests statistically as a lack of stability under
marginalization and conditioning.

In this section, we discuss previous works on mixed graphs that capture the modied
independence structure of a DAG after marginalization over unobserved variables and con-
ditioning on selection variables using then-separation criterion. These include ribbonless,
summary, and ancestral graphs. Ribbonless graphs were introduced in order to straight-
forwardly deal with the problem of nding a superset of the family of DAGs that is stable
under marginalization and conditioning while summary graphs extend ADMGs to include

undirected edges.

De nition  (summary graph). Let G= (V;E) be a mixed graph. G is a summary graph if
for everya?2 V:
I. chg(a) \ ang(a) = ?;
i. pag(a) [ sps(a) € ? ) nes(a)= ?.
The family of summary graphs extends the family of ancestral graphs. In particular,

summary graphs are loopless rather than simple|summary graphs can contain multiple

edges. Additionally, criterion (i ) of ancestral graphs has been removed|summary graphs
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can contain almost directed cycles. Figure 3.16 illustrates an example of a summary graph

that is not an ancestral graph.

De nition  (ribbonless graph[73]). Let G = (V;E) be a mixed graph. G is a ribbonless
graph if for every triple ha; b; ¢ in G where:

8 9 8 9
%a! b ¢ %a c3
§a$ b$ c. inGand_ a$ c§ not in G,
- al b$ c ~al o

for all verticesd 2 deg(b):
I. chg(d) \ ang(d) = ?;
. neg(d)= 7?.
The family of ribbonless graphs extends the family of a summary graphs. In particular,
the criteria of summary graphs are only required hold for descendants of colliders with a

special form. Figure 3.16 illustrates an example of a ribbonless graph that is not a summary

graph.
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Figure 3.16: Stable mixed graphs: (i) a DAG with latent and selection variables; (i) the
projected ribbonless graph; (iii) the projected summary graph; (iv) the projected ancestral
graph. All graphs encode the same independence model over the measured variables using

m-separation.

Accordingly, the graphical families discussed in this dissertation form a hierarchy. This

hierarchy is further expanded through the application of \directed" and \maximal" modi ers.

RG  Ribbonless Graph; ADMG Acyclic Directed Mixed Graph;

SG Summary Graph; DANnG Directed Ancestral Graph;

AnG Ancestral Graph; DMAG Directed Maximal Ancestral Graph;
MAG Maximal Ancestral Graph; DAG Directed Acyclic Graph;

UG  Undirected Graph.

Ribbonless, summary, and ancestral graphs are stable under marginalization and condi-
tioning and their directed counterparts are stable under marginalization; see the top right
of Figure 3.17.

In what follows, we useF to denote a family of graphs. Furthermore, we usg(V) to
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denote a family of graphs over vertex sev .

Figure 3.17: Hasse diagrams for posets of graphical families) families of stable mixed
graphs and DAGs ordered by inclusion;ii() independence models of the families of stable

mixed graphs and DAGs ordered by inclusion.

Figure 3.17 {) depicts a Hasse diagram for a poset of graphical families ordered by
inclusion|the colored sections indicate families that induce the same independence models
as before. Figure 3.17ii() depicts a Hasse diagram for the poset of independence models

induced by the families of graphs ordered by inclusion.

3.4.1 Marginalization and Conditioning

Let | be an independence model over a non-empty set of variablésvith a subsetL V.

The resulting independence model after marginalizing out of I, denoted (I;L; ?), is the
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subset of disjoint triples that do not involve any members ok :
(L;?) th A;BjCi2 T(VnL); bA;BjCi2 lg:

If I captures the conditional independence statements represented in a probability measure
P, then (I;L;?) returns the set of conditional independence relations after marginalizing
L out of P. The symbolL is used because latent variables represent one context in which
marginalization may occur.

While the various families of stable mixed graphs are all stable under marginalization
and conditioning, they were developed for di erent purposes. In this dissertation we will
identify their di erences based on the causal relationships and amount of information that
they can represent. Since the maximal modi er primarily exists for statistical convenience
and the directed modi er is used for cases where there is no conditioning, we discuss the
families of ribbonless graphs, summary graphs, and ancestral graphs

In general, families of stable mixed graphs use the various edges types of mixed graphs
as follows: directed edges identify dependence due to causal ancestry; bi-directed identify
dependence due to marginalization or latent confounding; and undirected edges identify
dependence due to conditioning or selection e ects. The families of stable mixed graphs
di er in how they resolve con icts of multiple sources of dependence. Figure 3.16 provides
a visual aid for the following comparison.

The family of ribbonless graphs is the most general family of stable mixed graphs. Rib-
bonless graphs include all edges that apply to a given pair of vertices. Accordingly, ribbonless
graphs can have up to three edges (directed, bi-directed, and undirected) between a pair of
vertices. For this reason, they are able to encode constraints beyond conditional indepen-
dence constraints, however, to our knowledge, the extent of these constraints has not been
studied. Note that ribbonless graphs can encode any form of constraint encoded by sum-
mary graphs. An algorithm to construct ribbonless graphs by latent projection is detailed
in Algorithm 8.

The family of summary graphs lies between ribbonless graphs and ancestral graphs in
terms of complexity. Summary graphs give priority to undirected edges and include all edges

that apply otherwise for a given pair of vertices. Accordingly, summary graphs can have up

49



to two edges (directed and bi-directed) between a pair of vertices. For this reason they are
able to encode constraints beyond conditional independence constraints. These constraints
have been studied in some detail [29, 76, 90]. An algorithm to construct summary graphs
by latent projection is detailed in Algorithm 9.

The family of ancestral graphs is the simplest family of stable mixed graphs. Ancestral
graphs give rst priority to undirected edges, second priority to directed edges, and third
priority to bi-directed edges for a given pair of vertices. Accordingly, ancestral graphs can
have up to a single edge between a pair of vertices. Due to their simplicity, ancestral graphs
only represent condition independence constraints. An algorithm to construct MAGs by
latent projection is detailed in Algorithm 10.

Let I be an independence model over a non-empty set of variabMswith a subset
S V. The resulting independence model after conditioningon S, denoted (1;?;S), is

the subset of disjoint triples de ned as follows:
(1;?2;S) th A;BjCi2 T(VnS); bA;BjCSi2 lg:

If 1 captures the conditional independence statements represented in a probability measure
P, then (I;7?;S) returns the set of conditional independence relations after conditionirig
onS. The symbolS is used because selection bias represent one context in which conditioning
may occur.

Combining these de nitions, we obtain:
(;L;S) fth A;BjCi2 T(VnLS); bA;BjCSi2 Ig:

If | captures the conditional independence statements represented in a probability measure
P, then (I;L;S) returns the set of conditional independence relations after marginalizing
L out of P and conditioningP on S.

3.4.2 Latent Projections

We may apply the marginalization and conditioning operations directly to graphs using

the concept of latent projection. Although the concept of latent projection was introduced
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by Pearl and Verma [61], Sadeghi provides the most complete treatment of latent projection
[73]. Consider a family of graphg=. |If for every graph G = (V;E) 2 F and disjoint
setsL;S V there is a graph@ 2 F such that I(&) = (I(G);L; ?), then F is stable
under marginalization, and if there is a graph®2 F such that I (&) = (1(G);?;S), then
F is stable under conditioning. Furthermore, we calF stable under marginalization and
conditioning if there is a graph@ such that I(&) = (1(G);L;S). Below, we de ne an
algorithm for the latent projections of ancestral graphs. Additional algorithms for the latent
projections of ribbonless, summary, and ancestral graphs are provided in Appendix B.1
Let G=(V;E) be a MAG such thatV contains disjoint subsetd ;S V. The resulting
graph after marginalizingL out of G and conditioning G on S, denoted Ac(G;L;S), is a
graph over the set of vertice®/ nLS, and edges speci ed as follows: For all distinct vertices

a;b2 V nLS where there exists an inducing path betweea and b relative to h_; Si

8 9 8 9
% a2 antg(b[ S)andb62ants(al S)& Zal b3

if _ a62antg(b[ S)andb62antg(a[ S)_ then _a$ b§ in Ac(GL;S):
- a2 antg(b[ S)andb2 antg(a S)’ a b

That is, ac(G,L;S) is a graph containing verticesV nLS and edges between vertices
that are m-connecting inG given all subsets containing the members & and no members of
L. Furthermore, an edge between two distinct verticea; b2 V nLS will have an arrowhead
at a if and only if a is not an ancestor ofbor s2 S in G, and a tail otherwise.

Richardson and Spirtes showed that latent projection has several nice properties.
Theorem 3.4.1 (Theorem 4.18 [70]) If G = (V;E) is a MAG containing disjoint sets
L;S V, then:

(1(G;L;8)) = 1( ac(GL;S))

In words, the independence model corresponding to the transformed graph is the in-

dependence model obtained by marginalizing and conditioning the independence model of

the original graph Additionally, the latent projection procedure de ned by Richardson and

Spirtes and has several nice properties.

Corollary 3.4.1 (Corollary 4.19 [70]) If G = (V;E) is a MAG containing disjoint sets
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L;S V,then Ac(GL;S) is a MAG.

Theorem 3.4.2 (Theorem 4.18 [70]) If G = (V;E) is a MAG containing disjoint sets
Li;L2:S1:S,  V, then:

Ac( aAc(GL1;S1)iL2;S) = ac(GLi[ LosSi[ Sy)

Furthermore, the family of directed MAGs represents DAG under marginalization, that

is, directed MAGs are capable of representing latent confounding.

Proposition 3.4.1 (Proposition 4.13 [70]) If G is an ancestral graph which contains no

undirected edges, then neither doeqG;L; ?).

Let G= (V;E) be a MAG containing an anterior setA 2 A(G). Next we note the induced
subgraphG, and the latent projection (G;V nA,; ?) are related|namely that they are the
same. First, note two useful results about the anterior relationships in ancestral graphs and

their marginals.

Corollary 3.4.2 (Corollary 3.10 [70]) Let G=(V;E) and G@= (V;EY are ancestral graphs
with the same adjacencies. If for alh;b2 V, adjacent inGand G, a2 antg(b) , a2
ante(b), then G= G.

Corollary 3.4.3 (Corollary 4.8 [70]) In an ancestral graphG = (V;E) if a2 V nL then
antg(a) nL =ant (g.7)(a).
We now show that induced subgraphs on anterior sets are the marginals over the same

vertices.

Proposition 3.4.2. Let G=(V;E) be a MAG containing setsA;L  V that partition V.

If A2 A(G) is an anterior set, then:
G = (GL;?):

Proof. By construction, for all a;b2 A adjacent in Gy and G, a 2 antg, (b) if and only if
a2 antg(b). By Corollary 3.4.3, for alla;b2 A adjacentinGy and (g;L;?), a2 antg, (b
if and only if a 2 ant (g..»)(b). What remains to be shown is that they have the same

adjacencies.
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Take two arbitrary vertices that are not latent. We need to show that they are adjacent in
G, if and only if they are adjacentin (G;L; ?). By de nition, there is an edge in (G;L; ?)
if and only if there is an inducing path inG with respect tohL; ?i. Therefore, we show that
there is an edge inG, if and only if there is an inducing path inG with respect tohL_; ?1i.

In other words, there is a primitive inducing path inG, if and only if there is an inducing
path in G with respect tohL; ?1i.

Every (primitive inducing) path in G, is in G by construction. Since these paths do not
include L, they are inducing in G with respect toh_; ?1i.

Suppose that there is an inducing path with respect toL; ? i in Gthat is not a primitive
inducing path in Gy. Then there is a non-collider inL on the path. SincelL is a non-collider,
it is anterior to either an endpoint or a collider on the path. Since collider on the path are
ancestors of the endpoints by de nition, the vertex must be anterior to an endpoint. This is

a contradiction becausea; b2 A 2 A(G).

By Corollary 3.4.2,Gy, = (G, L; ?).

3.5 Alternative Independence Models

In this dissertation, we consider several mathematical objects apart from probability
measures and graphs that induce independence models. In this section, we discuss integer-
valued multisets, multiinformation, and supermodular functions as alternative mathematical
objects that induce independence models. In this section, we introduce these objects and
their relevant properties. In particular, this work relies heavily on the theory of integer-

valued multisets orimset for short; see Studery [83] for more details.

De nition  (integer-valued multise}. Let V be a non-empty set of variables. Annteger-
valued multisetover V is an integer-valued functionu: P(V) ! Z or, alternatively, an

element ofzP(V)

Basic operations with imsets|summation, subtraction, and multiplication by an integer|
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are de ned coordinate-wise. Besides basic operations with imsets, an operation of a scalar
product of a real-valued functionm : P(V) ! R and an imsetu overV de ned by
X
u’m u(T) m(T)

T2P(V)

is used. A simple example of an imset is thielentier of a setA V denoted by , and

de ned as follows: 8
21 T=A
U
-0 T V;T6 A:

We generalize the concept of the identi er to sets of sets. The identi er of a set of sets

A P(V)is denoted by 5 and de ned as follows:
8
2 T2A;

AT

0 T V; T62A:

3.5.1 Elementary and Semi-elementary Imsets

Elementary and semi-elementary conditional independence statements can be expressed
as imsets of the same name. This becomes clear in the following sections on supermodular

functions and structural imsets.

De nition (elementary imse}. Let V be a non-empty set of variables antla; bj Ci 2 T(V)
be a disjoint triple over V. The correspondingelementary imsetover V is an imset de ned

by the formula:

Ura:bici abpct c a[ C b[ C-
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T ? fag fbg fcg fa;bg fa,ag fb;g fa;b;g
h s
Ura;bjci (T) 0 0 0 1 0 1 1 1

Figure 3.18: An elementary imsetUpg i -

Figure 3.19: The Hasse diagram for an elementary imsefipci .

De nition  (semi-elementary imseX. Let V be a non-empty set of variables antA; B j Ci 2
T(V) be a disjoint triple over V. The correspondingsemi-elementary imseupg jci is de ned
by the formula:

Uma;B jCi asc t c AC BC -
Proposition 3.5.1 (Proposition 4.2 [83]) Every semi-elementary imset is a linear combi-

nation of elementary imsets with non-negative integer coe cients.
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3.5.2 Multiinformation

Supermodular functions, in particular the multiinformation of a probability measure, are
essential concepts for the theory of imsetal Markov models as they connect semi-elementary

imsets to probabilistic conditional independence.

De nition  (supermodular functior). Let V be a non-empty set of variables. A function

m:P(V)! R is asupermodular functionoverV if
mA[ B)+ m(A\ B) m(A)+ m(B) forall A;B V:

De nition  (multiinformation ). Let V be a non-empty set of variables containing a subset
A V. Furthermore, let X be a collection of random variables indexed by with probability
measureP that admits density f (x) with respect to dominating - nite product measure .
The multiinformation of P is a real-valued functionmp : P(V) ! [0;1 ) that is the relative

entropy of P with respect to the product of its one-dimensional marginals:

8 R i

2 fa(x) .
mp (A) 2 108 %oy P00 AS T

-0 A=7:

In the eld of information theory, the above integral is an instance of Kullback-Liebler
divergence or relative entropy. Other terms for multinformation in the literature include
total correlation, dependency tightnessand entaxy [83]. The following corollary gives a
nice intuition for elementary and semi-elementary imsets can be used in conjunction with

multiinformation to de ne probabilistic conditional independence.

Proposition 3.5.2 (Corollary 2.2 [83]) Let V be a non-empty set of variables and be a
probability measure ovel. If P has nite multinformation mp, then mp is a non-negative

supermodular function that satis es
mp(A) =0 wheneverA V (JA] 1)
That is,

mp(ABC)+ mp(C) mp(AC) mp(BC) 0 forallPA;B jCi2 T(V):
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These two conditions implymp(A) mp(B) wheneverA B V. Moreover, for every
hA;B jCi2 T(V)

mp(ABC)+ mp(C) mp(AC) mp(BC)=0 , A? BjCIPI

3.5.3 Structural Imsets as Independence Models

De nition  (structural imset). Let V be a non-empty set of variables andi be an imset
over V. The imset u is structural if it is a linear combination of elementary imsets with
non-negative rational coe cients:

X
u khA;BjCi UmB jCi for somekhA;B iCi 2 Q+ .
hAB jCi2 T(V)

One says that a disjoint triple hA; B j Ci 2 T(V) is represented in a structural imsetu
overV and writesA ? B j C [u]if there existsk 2 Q. suchthatu Kkumgjci is a structural
imset overV. The class of represented triples then de nes the (conditional independence)

model induced byu:
[(uy th A;BjCi2 T(V); A? BjC]Jlu]g
Unlike the previously discussed families of mixed graphs which induce compositional

graphoid independence models, structural imsets induce semi-graphoid independence models.

Proposition 3.5.3 (Lemma 4.6 [83]) A structural imset over V induces a semi-graphoid

overV.

The primary advantage of structural imsets is their representation power. In fact, struc-
tural imsets can represent the independence model of any probability measure with nite

multiinformation [83]. Structural imsets are closely related to supermodular functions.

Proposition 3.5.4 (Proposition 5.1 [83]) Let V be a non-empty set of variables. A function

m: P(V)! R is supermodular if and only if any of the following three conditions holds

i. um O for every structural imsetu over V;

ii. u”m O for every semi-elementary imseti over V;
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iii. u”m O for every elementary imseu overV.
We now give a factorization using of structural imsets.

Theorem 3.5.1 (Theorem 4.1 [83]) Let V be a non-empty set of variables and be a
structural imset overV. Furthermore, let X be a collection of random variables indexed by
V with probability measureP that admits densityf (x) with respect to dominating - nite
product measure . If P has nite multinformation mp, then the following are equivalent
P

I. logf (x) =log f (x) T2pvy U(T)logfr(x)  for P-a.e.x 2 X;
i. ump =0;
ii. A? BjClu] ) A? BJC[P] foreverybA;B jCi2 T(V):

Of course, along with their representation power comes complexity that makes practical

use di cult. For that purpose, standard and characteristic imsets were developed.

3.5.4 Characteristic Imsets as Independence Models

Let V be a non-empty set of variables an® = P(V) be a poset ordered by inclusion.
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T 1 co(T) T ug(T)

2 3 2 3
? 0 ? 0
fag 0 1P f ag 0
fbg 0 fbg 1
fcg 0 fcg 0
fa, g 0 fa;lg 1
fa;og 1 fa;og 0
fb;q 0 o b 1
fa;b;g 1 fa;b;@g 1

Figure 3.20: A DAG with verticesf a; b; @ and an application of the zeta and Mebius func-
tion of a posetP = P(V) ordered by inclusion as a transition between the standard and

characteristic imsets of the DAG.

De nition (standard imse). Let G=(V;E) be a DAG. The corresponding standard imset
ug over V is de ned as follows:

X
Ug vV 2 T ( pag(a) pag(a)):
az2Vv

Proposition 3.5.5 (Lemma 7.1 [83]) Let G= (V;E) be a DAG with standard imseug. Ug

is a structural imset wherel (ug) = 1(G).

De nition  (characteristic imsef). Let G= (V; E) be a DAG with standard imsetug. The
corresponding characteristic imset is de ned as follows:

X
c(A) 1 ug(T) forall A V (jA] 2):
ATV

Note that characteristic imsets are not de ned on the empty set or singletons. However,
if we letcg(A)=1forall A V (jAj 1), then by the Mebius inversion:
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P o
i Us(A)= 5 v g DML c(B)) forall A Vv,
i. 1 c(A)= 5 vy, syUs(B) foral A V.

Accordingly, the following corollary follows from Theorem 3.5.1, Proposition 3.5.5, and
Corollary 3.2.1.

Corollary 3.5.1. Let G=(V;E) be a DAG with standard imsetig and characteristic imset
Cc. Let P = P(V) be a poset ordered by inclusion. Furthermore, IeX be a collection of
random variables indexed by with probability measureP that admits densityf (x) with
respect to dominating - nite product measure . If P has nite multinformation mp, then

the following are equivalent
P
I. logf (x) = T2P(V) pCs(T) logfr(x) for P-a.e.x 2 X;
ii. ugmp =0;
. A? BjC[G] ) A? BjC[P] foreveryhA;B jCi2 T(V).
See [37, 87] for more details.
Proposition 3.5.6 (Theorem 1 [37, 87]) Let G=(V;E) be a DAG and be a total order
consistent withG. For all AV (JA] 2):
I. cs(A) 210;1g;
i. cg(A)=1 A pa;(dAe ).
It follows that two DAGs G and G are Markov equivalent if and only ifcg = ce.
There has been extensive work toward applying imsets to the problem of DAG learning

[37, 83, 84, 85, 86, 87]. However, imsets have not been applied to learning maximal ancestral

graphs. We explore this topic in Chapter 6.
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4.0 Inducing Sets

In this chapter we introduce a new perspective for reasoning about ancestral graph
Markov models, which is the primary contribution of this dissertation. Accordingly, we
de ne the novel concept of an inducing set and the concept of an-connecting set as a
special case. While this chapter primarily focuses on ancestral graphs, especially those that
are maximal, many of the forthcoming results may be applied to any family of stable mixed
graphs. As we have seen earlier, all families of stable mixed graphs induce the same family

of independence models; the focus on ancestral graphs is largely for theoretical convenience.

De nition  (inducing sef. Let G = (V;E) be an ancestral graph containing disjoint sets
M;L;S V (M 6 ?). M is an inducing set relative toh_; Si for G if one of the following
hold:

I. M is a singleton;

ii. there exists an inducing path between and brelative to h_; MS nfa; lgi for all a;b2 M
(a6 b).

If L=S=?,then M is aprimitive inducing set
Proposition 3.3.2 allows us to equivalently de ne a primitive inducing set in terms of

m-connecting paths. Therefore, we adopt the ternrm-connecting setin place of primitive

inducing set.

De nition  (m-connecting sej. Let G = (V;E) be an ancestral graph containing a set

M V(M 6 ?). M is an m-connecting set foiG if one of the following hold:

i. M is a singleton;
ii. there exists an inducing path betweem and brelative to h? ;M nfa; gi for all a;b2 M
(a6 b
iii. aandbare notm-separated byC foralla;b2 M (a6 bhandallM C V (a;b62C).

Proposition 3.3.2 implies that {i ) and (iii ) are equivalent; they are included here to provide

alternative de nitions of m-connecting set
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Note that the concept of anm-connecting set can be extended to any family of stable
mixed graphs using i ). Let G=(V;E) be a MAG. The set of allm-connecting sets foiG
is denoted byM (G). Furthermore, the set ofnon-m-connecting setdor G are de ned as the

complement excluding the empty set and denoted bM(G) = P1(V) nM(G).

Figure 4.1: An illustration of various MAGs G and their correspondingm-connecting sets
M (G).
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Figure 4.2: A comparison of two Markov equivalent ancestral graphs that are)(not max-
imal and (ii) maximal, along with their correspondingm-connecting setsM (G); their m-

connecting sets are identical.

We make the following connection betweem-connecting sets and collider-connecting
sets. Lemma 4.0.1 shows that the set of maximat-connecting sets and maximal collider-

connecting sets are the same.

Lemma 4.0.1. Let G = (V;E) be a MAG containing a setM V. For the following
conditionsi ) ii:

I. M is an m-connecting set forG;

ii. M is a collider-connecting set.

Furthermore, the following are equivalent:
iii. M is a maximal m-connecting set foG;

iv. M is a maximal collider-connecting set.

Proof. (i) 1ii): If M is m-connecting forG, then suppose by way of contradiction thatV
is not collider-connecting.M not collider-connecting: There exist verticeg; b2 M (a6 b)
such that a and b are not collider-connecting. M m-connecting forG: inducing path g

betweena and b relative to L = ;;M nfa;lgi. a and b are not collider-connecting: 4 is
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not collider-connecting. There exists a non-collider 2 V on ,, such thatv 62_; this is a

contradiction. It follows that M is collider-connecting.

(ii ) ii): This directly follows from that facts that every maximal m-connecting set is

m-connecting and that everym-connecting set is collider-connecting.

(i ( iv): If M is a maximal collider-connecting set, then for ala;b2 M (a 6 b) there
exists a collider-connecting path 5, betweena and b such that every vertex on 4, is a
member ofM . It follows that every g, is inducing relative to h? ;M nfa;bgi. Therefore,

M is m-connecting forG.

(ii , iv): We have that if M is a maximal m-connecting set forG, then M is collider-
connecting and that if M is a maximal collider-connecting set, therM is a maximal m-
connecting set.

If M is a maximal m-connecting set, thenM is a collider-connecting set. Suppose by
way of contradiction that M is not a maximal collider-connecting set. It follows that there is
a proper maximal collider-connecting superset &fi . But every maximal collider-connecting
set ism-connecting, so the super set is also-connecting; this is a contradiction.

If M is a maximal collider-connecting set, them is an m-connecting set. Suppose by
way of contradiction that M is not a maximal m-connecting set. It follows that there is
a proper maximal m-connecting superset oM. But every maximal m-connecting set is
collider-connecting, so the super set is also collider-connecting; this is a contradiction.

Accordingly, M is a maximal m-connecting set if and only ifM is a maximal collider-

connecting set. m

4.1 Equivalence

In this section, we show thatm-connecting sets may be used as an alternative repre-

sentation of Markov equivalence for ancestral graphs. It follows thain-connecting sets

equivalently characterize the independence models of ancestral graphs. We also show how
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these sets relate to characteristic imsets and parametrizing sets.

4.1.1 Characterization of Markov Equivalence

Theorem 3.3.7 characterizes Markov equivalence using adjacencies, unshielded colliders,
and colliders at the end of discriminating paths. Accordingly, the forthcoming three lemmas
address each of these points. Lemma 4.1.1 details the relation betwemfconnecting sets
and adjacencies, Lemma 4.1.2 details the relation betwesniconnecting sets and unshielded
colliders, and Lemma 4.1.3 details the relation betwean-connecting sets and the colliders

at the end of discriminating paths.

Lemma 4.1.1. Let G=(V;E) be a MAG containing verticesa;b2 V. The following are

equivalent
i. aand b are adjacent

ii. Mg f a;bgis m-connecting.

Proof. (i) ii): If aandbare adjacent, then there is a primitive inducing path betweea

and b becauseG is maximal. Therefore,M 4, is m-connecting.

(i ( ii): If Mg is m-connecting set, then there is a primitive inducing path betweea and

b. Therefore,a and b are adjacent becaus& is maximal. ]

Lemma 4.1.2. Let G=(V;E) be a MAG with an unshielded triplé®; b;a¢. The following

are equivalent

i. bis a collider onha;b;g;

ii. Mac f a;b;@is m-connecting.

Proof. (i) ii): If bis a collider onha; b; ¢, then:

ha; b is an inducing path betweera and brelative to h? ;ci: a! by
ha; b; ¢ is an inducing path betweera and c relative to H? ;bi: a! b (o

hb; @ is an inducing path betweerb and c relative to h? ;ai: b C.
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Therefore, M ayc IS m-connecting.

(i ( ii): If Mgy Is m-connecting buta and c are not adjacent, then there exists an inducing
path betweena and crelative to h? ; bi that is not inducing relative to h? ; ? i. Accordingly,
every collider on is an ancestor ofa, b, or c. However, there exists a collider 2 V on
that is not an ancestor ofa or c, otherwise, would be inducing relative toh? ; ?i. It follows
that v is an ancestor ob and that b is not an ancestor ofa or c; if bwas an ancestor o& or

¢, then v would also be an ancestor od or c. Therefore,bis a collider onha; b; ¢. O

(k 1) for c. The following are equivalent

i. cis a collider onho;c;d;

. Maq f a;c;dyis m-connecting.

Proof. (i) 1ii): If cis a collider onhy;c;d, then:

a! b$ $ b$ c$ dwhereh! dforalll i k|every collider on the path
is an ancestor off c; dg;

ha;by;:::;h; c is an inducing path betweera and c relative to h? ; di:

a! bb$ $ bi$ cwhere! dforalll i Kk|every collider on the path is an
ancestor ofd;

hc; d is an inducing path betweerc and d relative to h? ;ai: ¢$ d.

Therefore, M 5¢4 IS M-connecting.

(i ( ii): If Maeq is m-connecting buta and d are not adjacent, then there exists an inducing
path betweena andd relative to h? ; ci that is not inducing relative to h? ; ? i. Accordingly,
every collider on is an ancestor ofa, ¢, or d. However, there exists a collider 2 V on
that is not an ancestor ofa or d, otherwise would be inducing relative toh? ; ?i. It follows
that v is an ancestor ot and that c is not an ancestor ofa or d; if c was an ancestor o or
d, then v would also be an ancestor ad or d. Similarly, c is not an ancestor ot sinceby is

a parent ofd. Therefore,c is a collider onhy; c;d. O
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Accordingly, in conjunction with Theorem 3.3.7, the preceding three lemmas may be

used to characterize Markov equivalence.
Theorem 4.1.1. Let G=(V;E) and @=(V;E% be MAGs. The following are equivalent

i. Gand@ are Markov equivalent

ii. Gand@ have the same m-connecting sets.

Proof. (i) ii): If Gand G are Markov equivalent, then they have the samm-separations.
It follows from the de nition of m-connecting set {v) that G and G have the samem-

connecting sets.

(i ( ii): Lemma 4.1.1 implies thatG and G have the same adjacencies and, accordingly,
the same unshielded triples. Lemma 4.1.2 implies th& and G have the same unshielded
colliders. Lemma 4.1.3 implies that if forms a discriminating path forbin G and G, then
bis a collider on in Gif and only if it is a collider on in G. Theorem 3.3.7 implies that

G and G are Markov equivalent. O

An interesting takeaway is that the induced independence model of a MAG may be
characterized by itsm-connecting sets of cardinality two and three. Additionally, the sets
of cardinality three can be further re ned to those that have at least one and at most
two subsets of cardinality two that are m-connecting. This is an important result used
for quickly de ning Markov equivalence with parametrizing sets [38]. This characterization
of equivalence may be straightforwardly extended to any family of stable mixed graphs by
noting that all families of stable mixed graphs induce the same family of independence models
[73, 74]. Since them-connecting sets of a graph can be de ned directly from the induced

independence model of the graph the result is immediate.

4.2 Relation to Other Work

In this section, we discuss how the ideas presented in this dissertation relate to previous

works. Similar ideas have been explore independently by other authors.
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4.2.1 Parametrizing Sets and Characteristic Imsets

Hu and Evan's work on parametrizing sets [38] is closely related our work orrconnecting
sets. These sets were developed concurrently with this work and published during the synthe-
sis of this dissertation. Parametrizing sets are identical tm-connecting sets, but are de ned
using the heads and tails of an ADMG explicitly for the purpose of characterizing Markov
equivalence. Additionally, for those familiar with the work of Hu and Evans, Lemmas 4.1.1,

4.1.2, and 4.1.3 achieve the same result as Proposition 3.4 in [38].

Proposition 4.2.1. Let G=(V;E) be a MAG containing a setM V. The following are

equivalent

I. M is m-connecting forG,

ii. M is a parametrizing set ofG.
Proof. The proof directly follows from Proposition 3.3.5. ]

Studery et al.'s work on characteristic imsets [87, 37] is closely related to our work on
m-connecting sets. These imsets have only been de ned for independence models induced by
DAGs, but for these modelan-connecting sets and characteristic imsets are nearly identical.
To facilitate this comparison, note that a set of sets can be represented by an identi er imset
for that set of sets. With this, the only di erence is that characteristic imsets are not de ned

for singletons; singletons are triviallym-connecting.

Proposition 4.2.2. Let G=(V;E) be a DAG containingaseM V (jMj 2)and be

a total order consistent withG. The following are equivalent
I. M is an m-connecting set forG;

ii. the characteristic imsetcg(M) =1.

Proof. (i) ii): If M is m-connecting, then by Lemma 4.0.M s a collider-connecting set.
In a DAG this is only possible ifM ndV e pag(dM e ). Therefore, by Proposition 3.5.6
(M) = 1.

(i i) If cg(M) =1, then by Proposition 3.5.6 M ndM e pag(dM e ). Accordingly,

there exist m-connecting paths between the members &f ndMe and dVe . Further-
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more, there existm-connecting paths between all members & ndvie relative to dMe .

Therefore,M 2 M(G). n

4.2.2 The Causal Inference Algorithm

The causal inference (Cl) algorithm recovers a PAG that represents a Markov equiva-
lence class of MAGs by querying a conditional independence orak|@9]; the Cl algorithm is
detailed in Appendix B.2. Algorithm 1 outlines a modi ed version of the CI algorithm that
replaces the queries to a conditional independence oracle with queries ta@tonnecting set
oracleM. This modi cation directly follows from Lemmas 4.1.1, 4.1.2, and 4.1.3. Algorithm
1 provides a procedure to reconstruct a MAG up to its Markov equivalence class from its

m-connecting sets.

Algorithm 1: Causal Inference from M-connecting Sets CIM (M)
Input: m-connecting sets:M
Output: partial ancestral graph: G

1 Let G=(V;E) whereE = fa bja;b2 Vg;

2 foreach edgea b2 E do

3 | if fa;lbg 62V then

4 \ Removea  bfromE ;

5 | end

6 end

7 foreach unshielded tripleha; b; ¢ in G do

8 \ Rule O: Iffa;b;@ 2 M, then orient it as a collidera! b C;

9 end

10 repeat

11 | Rulel:Ifa! b ¢, and a and c are not adjacent, then orient the triple as
al! b! c;

12 Rule 2: Ifa! b! cora! b! canda c, then orient a casa! c;
13 | Rule3:Ifa! b C a d ¢, a and c are not adjacent, andd b, then
orient d basd! b;

14 | Rule 4: Ifha;:::;b;c;d is a discriminating path fromato d for cand c d,
then: if fa;c;dy 62V, then orient ¢ d asc! d; otherwise orient the triple
tb;c;d asb$ c$ d;

15 until Rules 1 - 4 no longer apply;
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4.3 Factorization

In this section we present one of the main results of this dissertation: a factorization
criterion for the log density of a probability measure. The factorization criterion is derived
from the m-connecting sets of a directed MAG for a probability measure and is equivalent
to the probability measure satisfying the global Markov property with respect to that MAG.
The general proof strategy uses an algorithm to construct the primary and secondary imsets
out of the nonim-connecting sets; see Algorithm 3. Applying the Mebius inversion to the
primary imset yields a structural imset that induces the same independence model as the
directed MAG. The secondary imset is incorporated into the factorization as an adjustment
term. Ultimately we show: (i) the factorization criterion holding implies that the dot product
of the structural imset with the multiinformation of the probability measure equals zero;i()
the dot product of the structural imset with the multiinformation of the probability measure
equaling zero implies that the global Markov property holds; andii{ ) the global Markov
property holding implies that the factorization criterion holds.

To facilitate the forthcoming discussion, we de ne several new terms. L& be a non-
empty set of variables. Furthermore, letX be a collection of random variables indexed by
V with probability measure P that admits density f (x) with respect to dominating - nite
product measure . We de ne a function A : Xa ! R as alinear combination of log density
terms motivated by the Mebius inversion.

X . X
a()= ( 1YA™®logfg(x) logfa(x) = B (X)
B A B A

The expectation of A(x) with respect to P has been previously studied in the eld of
information theory by several researchers including McGill, who coined the term interaction
information [53]. Accordingly, we call A(x) the interaction information rate.

We provide an analogous term for a non-empty set of sets. L&t P(V) be a set of

sets:
X

a(x) T(X)

T2A
We de ne the following case for sets of sets and shorthand for the correspondingerm. Let
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A;B V (A6 ?) be disjoint sets:
[

Majs fTg AB(X) M (X) AB Majs

T AB
AT

Similar to above, we call ajg (X) the conditional interaction information rate.

X
Ajg(X) = 7(X)

T AB

AT

X _ .

= ( 1" logfr(x)

T AB

B T

Another case is when the set of sets corresponds to a semi-elementary imset that has
been transformed by the Mebius inversion. LeA;B;C V (AB 6 ?) be disjoint sets.

[
Nagjc fTg agic(X)  Nag e (X) ABIC  Nagic

T ABC
T6 AC
T6BC

The expectation of agjc(x) with respect to P is the well-known information theoretic

concept of mutual information. Accordingly, we call agjc(X) the mutual information rate.

The mutual information rate corresponds to the imsets constructed by Algorithm 3.
Additionally, these terms are closely related to conditional independence. LAtB;C V

(AB 6 ?) be disjoint sets.

X
ABjc(X) = T7(X)
T ABC
T6AC
T6BC
X X X X
= T(X) + 7(X) 7(X) T7(X)
T ABC T C T AC T BC
=log fasc (X) +log fc(x) logfac(x) logfec(x):
A? BjCI[P] , ajc(X)=0 for P-a.e.x2 X (4.1)
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This relation can be expressed more generally using imsets. et P(V) be a poset

. . P
ordered by inclusion and note that p o =  , .

X
ABijC — T
T ABC
T6AC
T6BC
X X X X
= Tt T T T
T ABC T C T AC T BC
= pasct pPc P AC P BC
= plasc * ¢ AC Bc]
= pUmBijci-
Accordingly,
UwnBijci = P ABjC-
A? BjC[P] , (pagjc) mMp=0 (4.2)

The nonim-connecting set terms constructed by the Algorithm 3 are exactly the non-
m-connecting sets for a directed MAG, and we use their correspondence to conditional
independence in a probability measure to show the equivalence between the factorization

and the global Markov property.

4.3.1 Preliminaries

To facilitate the forthcoming proofs, we introduce the concept of constrained subsets.

De nition  (constrained subsefs Let V be a non-empty set of variables containing sets
A;B V. LetR P(V) be a set of sets. The subset operator applied #® with respect to

B constrained byR, denoted byA B, is the conjunction:

i. A B;
i. A2R

Let b2 V be a variable. The subset operator applied té with respect to B constrained by

b, denoted byA P B, is the conjunction:
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.. A B;
i. b2 A.
The subset operator applied toA with respect to B constrained by R and b, denoted by
A BB, is the conjunction:
i. A B;
i. b2A2R
Additionally, a maximal constrained subsetienoted byA 2 dB €2, is a maximal set satisfying
A & B.
Proposition 4.3.1 shows that the induced subgraph of a MAG over an anterior set is a

MAG and induces an independence subset over the shared variables.

Proposition 4.3.1. Let G=(V;E) be a MAG containing a setA V. If A is an anterior
set, then the induced subgrapB, is a MAG and:

1(Gy) = fhA;B jCi2 T(A): hA;B jCi2 I(Q)g:

Proof. By Proposition 3.3.4,G, is a MAG and by Proposition 3.4.21(Gy) = fhA;B jCi 2
T(A); bA;BjCi2 I(Gg. ]

Corollary 4.3.1. Let G=(V;E) be a directed MAG containing a seA V. If A is an

ancestral set, then the induced subgrajgh, is a directed MAG and:
I(G)=ftA;BjCi2 T(A); bA;BjCi2 I(Qg:
Proof. The proof immediately follows from Propositions 3.4.1 and 4.3.1. ]

Lemma 4.3.1 shows that then-connecting sets of the induced subgraph of a MAG over
an anterior set is the induced set ofn-connecting sets. That is, for an ancestral subset
A V, M(G) is the set ofm-connecting sets containing everyn-connecting set present in

M (G) over the members ofA.

Lemma 4.3.1. Let G=(V;E) be a MAG containing an anterior subseA V. If M A,

then the following are equivalent:
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I. M is m-connecting forG,

ii. M is m-connecting forG,.

Proof. The proof immediately follows from Proposition 3.4.2 and the de nitions of marginal-

ization and m-connecting set. m

Lemma 4.3.2 shows that barren vertices have a unique maximal collider-connecting set.

Lemma 4.3.2. Let G=(V;E) be a directed MAG containing a vertexo 2 barg(V). There

is exactly one maximal collider-connecting set containing

Proof. Let A;C 2 dVef:’O'G(b) be maximal collider-connecting sets containindgp and note
that jAj = jCj. If jJAj = jC] =1, then A = C = fbg and there is exactly one maximal
collider-connecting set.

If jJAj=jCj> 1,thenforalla2 A (a6 b)and allc2 C (c 6 b), there exists a collider
path ,, betweena and b and a collider path . betweenband c. In what follows, we show
that a and c are collider-connecting; ifa = c this is trivial.

Construct a path ,. as follows. Traverse 5, from a to b until reaching a vertexv 2 V
such thatv is on . Let ,, be the subpath of ,, betweena andv. Similarly, traverse .
fromvto c. let .. be the subpath of ,. betweenv andc. Then 4 is the path formed by
concatenating o, and ..

If v= b thenvis a collider on 5. sinceb?2 barg(V). If v6 b thenv is a collider on
and .. Itfollows that v is a collider on ... Thereforea and c are collider-connecting. Since
everya 2 A and c 2 C are collider-connecting,A = C and there is exactly one maximal

collider-connecting set containingy. O

Corollary 4.3.2 shows that barren vertices have a unique maximai-connecting set. It
is worth noting that the unique maximal m-connecting set of a vertex is also the unique

maximal collider-connecting set for that vertex.

Corollary 4.3.2. Let G=(V;E) be a directed MAG containing a vertex 2 barg(V). There

is exactly one maximal m-connecting set containing

Proof. The proof immediately follows from Lemmas 4.0.1 and 4.3.2. ]
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Lemma 4.3.3 shows thatm-connecting sets may be characterized by the existence of

inducing paths between a barren vertex and the other vertices in the set.

Lemma4.3.3. Let G=(V;E) be adirected MAG containingaseiM V andletL = VnM.

If b2 barg(M), then the following are equivalent

I. there exists an inducing path betweemand b relative tohL; M nfa;kgi for all a2 M nb;

ii. M is m-connecting forG.

Proof. (i) 1ii): Suppose by way of contradiction thatM is not m-connecting forG. Then
there existsa;c2 M nb(a 6 c) such that there is no inducing path betweera and c relative
to hL;M nfa;ogi. However, there exists an inducing path 5, betweena and b relative
to ;M nfa;bgi and an inducing path . betweenb and c relative to hL;M nfb; @i.
Construct the path .. by traversing 5, from a to b until reaching somed 2 . then
traversing . from dto c.

Note the status of every non-endpoint vertex on .. In particular, check if each non-
endpoint vertex is a non-collider on 5. and member ofL, a collider on ,. and an ancestor
of M, or neither. By construction, every non-endpoint vertex on 5. has the same status
as on ,, and . except ford. Therefore, all non-endpoint vertices other thard satisfy the
criteria required for 5. to be inducing relative tohL; M nfa; ogi.

Accordingly, we consider the possible scenarios far If d = b, then d is a collider on
and a trivial ancestor ofM sinceb 2 barg(M). If d & bis a non-collider on ., thendis a
non-collider on g, or ,candd2 L. If d6 bis a collider on 5. and d is a collider on
or ., thend2 ang(M). If dis a collider on 5. and a non-collider on 5, and , thendis
an ancestor ofa, c, or a collider on ,; accordinglyd 2 ang(M).

Therefore,d satis es the criteria required for . to be inducing relative toh.; M nfa; agi.

The path . is inducing forhL; M nfa; agi; this is a contradiction.

(i ( ii): This is trivial by the de nition of m-connecting set. O

Algorithm 3 uses a helper algorithm to construct pairs ofn-connecting and nonm-

connecting sets; see Algorithm 2.
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Algorithm 2:  Pairs (G, b)
Input: directed MAG: G=(V;E), barren vertex: b2 barg(V)
Output: ordered lists: MGP, NGP
Initialize ordered lists M &P = hi and N©P = hi;
2 LetR=fN; N o Vg;
repeat
Pick N 2dVe} andM 2 dN €}, g ;
Append N to NG and M to MGP ;
foreach T N do

if b2 TandT 6 M then

RemoveT from R ;

end
10 | end
11 untl R=?;

[

w

© oo N o o

Algorithm 2 requires several new concepts. Accordingly, we de ne the following notation.
Let G = (V;E) be a directed MAG, P = P(V) be a poset ordered by inclusion, and 2
barg(V) be a barren vertex. Additionally, we useM & and NP to de ne the ordered lists
output by Algorithm 2. These are ordered lists ofm-connecting, nonm-connecting sets
respectively:

MGP = R 3P M P NGP = AN ZP: o NGB
wheren = jM S},
Additionally, we de ne the restricted universe of sets with respect toN.*" and b

. [
usP fTg:

T NP
b2 T

We simplify notation and usefo{b to de ne sets of sets that corresponds to the conditional

independence statemenb? N nM® j M®nh Let A = b B = N**nM®, and
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C = M nb, then

ABC = (NnM®) [ M nb [ b

- NiG;b
AC =(MS°nb [ b
- MiGb
BC = (N nM>) [ (M nb)
= N nb:
Therefore, de ne
NGP [ fTg= [ fTg= [ fTg:
G;b G;b
A
Accordingly
ABJC = NGB and Umgijci = p NGt

Lemma 4.3.4 states that the norm-connecting sets constructed at each step of Algorithm

3 are the nonm-connecting sets containind that have not yet been accounted for ilN(G).

Lemma 4.3.4. Let G=(V;E) be a directed MAG containing vertexo 2 V with preceding
vertices R = pre;(b) and ancestral setA 2 A(G) such thatb2 A R. If M&P; NG =
Pairs (Ga;b) are the ordered lists constructed by Algorithm 2, then

n
b _ .
N?®=fT No AC:

i=1

Proof. By Corollary 4.3.1 G, is a directed MAG and by Lemma 4.3.fT y@p A =
fT  Neoyb AQ. Let T n)p A be a nonm-connecting subset ofA containing b and
suppose by way of contradiction thatlT 62N i‘;f‘“b forany 1 1 n.

Note that T N*Pforsome1 i nsinceN®®= A. PickisuchthatT NP,
If T6 M>®, then T 2 N this is a contradiction. Otherwise, there existsr N>
M*® for someN*® 2 N&® by maximality. Repeat this logic until T 2 N or M®®
has no maximal nonm-connecting subsets; the latter is a contradiction.

: S .
Thus, there exists 1 i nsuchthatT2 N®®and ™, N®°=fT ygpAg O
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Let G=(V;E) be adirected MAG and be a total order consistent withG. Accordingly,
the set of setsN(G) is the set of all nonm-connecting sets foiG and the imset (g is the
identi er of N(G). Algorithm 3 characterizes y(g as a linear combination of imsets whose
Mebius inversions are semi-elementary imsets. Two new imsets are subsequently constructed
from the linear combination imsets|one is the sum of the (absolute) positive components
and the other is the sum of the (absolute) negative components. We call these imsets the
primary and secondary imsets respectively. It follows that the Mebius inversion of the newly
constructed imsets are structural imsets and induce semi-graphoids. Notably, the primary
imset induces the same independence model@$ut is not part of the factorization, while
the secondary imset induces a strict independence subset but is part of the factorization.

Algorithm 3 begins by de ning a setR as the set of all variablesv. As the algorithm
loops, variables are removed one at a time aril contains the remaining variables. A vertex
bis selected to be removed from the remaining verticE&wherebis the last vertex according
to . Algorithm 2 is called to construct ordered listsM ¢® and N©®. The ordered listsM &P
and N®P contain m-connecting and nonm-connecting sets respectively; all sets contain
By Corollary 4.3.2, each seﬂ\IiG;b in N©P has exactly one unique maximam-connecting
subsetMiG;b that contains b. Accordingly, we construct pairs of nonm-connecting andm-
connecting sets by addingv ®° and N.®° terms to MG and NG respectively where each
NS" is paired with the correspondingvl®®.

In each loop on Algorithm 2, we pick a maximal noma-connecting setN.®® that contains
b from R and the previously described pairing process is repeated. All subsetg\tﬁ;IO and
supersets oM ®° are removed fromR.

New m-connecting and nonm-connecting sets are added tM&° and NG respectively
using this process untilR does not contain any more sets. At this point, the pairs fob
and R have been extracted and Algorithm 2 returnsM ®® and NGP. In general the N.°°
terms are subsets of vertices containingand the M ®° terms are the closure ob within the
correspondingN®®, that is, b? N°°nM® j M nb [Gy e llthis is shown in Lemma
4.3.5.

Additionally, Lemma 4.3.1 impliesb? N®°nM® j M nb[G]. These conditional

independence statements are represented by thl%b imsets and by Lemma 4.3.4 their union
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is equivalent to the nonm-connecting sets oGk that contain b, thatis, fran): eTg- USINg
the principle of inclusion and exclusion, we de ne the union in terms of the sum of positive
and negative intersection terms represented by tHEIJGj,E imsets. These positive and negative
terms re ect the conditional independence statements used in the de nition of the ordered
local Markov property. Once these components have been accounted for in the imséts
removed fromR and the process of constructing pairs begins again with a ndwand R.

When R = ?, the algorithm is complete.
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Algorithm 3:  Non-m-connecting Sets as Imsets NSI (G )

Input: directed MAG: G= (V;E), total order consistent with G:
Output:  imsets: Uy g, Uyig)

N(G)

1 Initialize imsets uy g0 P(V) ! 0anduyg: P(V)! 0;

2 letR=V

3 repeat

4 | Letb= dRe ;

5 | Let M&P;N&P = Pairs (Gg;b) ;

6 Initialize lists A= hiand B = hi ;

7 | foreach J f 1;:::;jM%Pjg do

8 foreach K J whereK 6 ? do
o if N§7°6 2 then

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

if j3 nKjmod 2 =0 and N$" 628 then

| Append N3;° to A ;

else if j3 nKjmod 2 =0 and N5} 2 B then
| RemoveNS§;” from B ;

else if jJ nKjmod 2 =1 andN§;" 62A then
| Append N3;° to B ;

else if jJnKjmod2=1andN$;"2 A then
| RemoveNZ™ from A ;

end

end

end

end

foreach N2 A do

| Unig T Unig t N
end

foreach N2 B do
N

‘ Unig = Un(g)
end
Removeb from R ;

20 until R=7?;

Algorithms 3 require several new concepts. Accordingly, we de ne the following notation.

Let G = (V;E) be a directed MAG, P = P(V) be a poset ordered by inclusion, and 2

barg(V) be a barren vertex. Additionally, we useM®® and N®* to de ne the ordered lists
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output by Algorithm 2. We expand this notation to intersection terms as follows:

by . ) . . [ . . .
M P MSP  NSP NP ugP fTg M50 M\ N
k2K j2J T NGP
b2 T
We simplify notation and useNJG;}E to de ne sets of sets which correspond to the condi-
tional independence statemenb? N nM jM5 nb If A= b B = N’ nM3?, and

C = M nb, then

ABC = (NS nM$R) [ (M2 nb [ b
- J
AC =(MS2nb [ b

BC =(NS*nM$) [ (M5e nb)

= N nb:
Therefore, de ne [ [ [
Gb — — .
Nyk fTg= fTg= fTg:
TZUS;;b T NJG;b T ABC
T6MSP 2T TeBc
’ T6M G
Accordingly
ABIC = NSP T oSt SPiMSPnn AND P oyen = Upyyeooy by ooyt

Now we show that the output of Algorithm 3 characterize the set identi er for the non-
m-connecting sets; Appendix B.3 shows that Algorithm 3 does not necessarily give the most

e cient solution.

De nition  (inclusion/exclusion for imsets[91]). Let V be a non-empty set of variables and

Ni;:::;Np P(V) be n sets of sets. The concept of inclusion/exclusion is extended to
imsets as follows: X
Sin=1 Nj = ( 1)ij ' Tj2J Nj -
Jf 1;::ng
J6?
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Several applications of De Morgan's laws gives an alternative form as follows:

X

T - jJj 1 s
r]1Ni_ ( l)JJ j2JNJ'

Proposition 4.3.2. If G=(V;E) be a directed MAG, be a total order consistent withG,
P = P(V) be a poset ordered by inclusion, then:
X

— - i+ ;
NG) =T Ry Gro — Unie) Un(a)
b2V

whereR = preg(b) for all b2 V.

Proof. Let G = (V;E) be a directed MAG, be a total order consistent withG, P =
P(V) be a poset ordered by inclusion, an®, = pre;(b). Furthermore, let M&®; NP =
Pairs (Gg;b):

b — Gib..... :b; b — Gib..... :b;
M&P = AV R M SR N&P = ANgR®; o NSR P

wheren, = jM &5},

= S - 9.
T B RO ", NGR® (Lemma 4.3.4)
— 2 3
S, &s
i=1 TzuiGR;bng
T6MCR®
X 1 1 - - -
= ( 1)1t 2 (inclusion/exclusion)
Jf 1;::npg T ES T
J6? i23 GRrib g
) T2y, R _
TeMR®
X jiJj 1 Gr b Cr ;b
- 2 y )
= ( - (Ur=r urn)
Jf 1;::5np0 T S
J6? i23 TZUGR;bng
J
ToMR®
X X o . . .
= (pyrh oyt 2 3 (inclusion/exclusion)
Jf 1;::5n K J S S
Jg? o9 K&? kZKE TZUJGR;bng
T6M SR
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= ( 1)JJnKJ 2
Jf LinpgK J S S
J67? K6 szE TZUfR;bng
T6M SR
X X N
= (o 2 (complement)
Jf LisnpgK J S E Grb S
K62 U n cebTQ
R, k2k @Y% T2UJR.
T MJIRP
X X o
= ( 1K 2 3 (De Morgan's law)
Jf L:npgK J Gr b ET S
o U n b fTQ
Jg? K67 J k2K T2UJGRb
T MJIRP
X X
- ( 1)jJnKj 2 3 (MkGR;b I M\Je‘lib)
Jf 1;:npgK J Go b ET S §
167 K6? Uy;R"n erb fTQ
J k2K TZUJR.
T MSRP
X X ’
= ( 1)J'JnKJ' 2 3
Jf 1;:npgK J + B6S
167 Kg&? UfR’bnE TZU?R;bngg
T MSRP
X X '
— jJnKj s
= ( 1y ™ Ly oo (T8 (complement)
Jf 1nnpgK J I
;(6? bg};(g? TGM‘fE'b
= 1 JInKj Ggr b
( ) NJ;E
Jf LnpgK J
J6? K6&?
Accordingly,
X
N(G) = T 8 o) RO
b2V
X X X o
= ( 1)JJnKJ Gr b
NCR'
b2V Jleg;::’:);nbgK J i«
- u o+ u )
T UN(R) N(&R)
whereR = preg(b) for all b2 V. ]

In what follows, we give an illustrative example of Algorithm 3. Figure 4.3 depicts a
directed MAG G = (V; E), its m-connecting setdV (G), and its non-m-connecting setdN(G).

Consider the total order overV suchthate a d b c
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Figure 4.3: A directed MAG with verticesf a; b; c; d; g and the correspondingn-connecting

and nonim-connecting sets for the directed MAG.

Run Pairs (Gupege, ©) to construct ordered lists NG € = hfa; b;c; @;fa;c;d;gi and

M Gebede i€ = hfa; b; @; fc; d; ei.
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Figure 4.4: A visualization of Pairs (Gypcqe, €) applied to the directed MAG in Figure 4.3

and the corresponding base conditional terms.

The intersection terms are as follows|these terms correspond to intersections over mem-

bers of N o ¢ indexed by the loop on line 7 of Algorithm 3.

Intersection Terms:

Nf‘abcde ic — fa; b;C;@ Mf‘dbcde ic = fa; b,(g
NzGabcde ic — fa;c;d;eg MzGabcde ic — fc;d;eg
N%bcde ic — fa: c g Mleabcde ic — ng

The conditional terms are as follows|these terms correspond to those appended and

removed on lines 11, 13, 15, and 17.
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Conditional Terms:

N ©= fN 2 N(G);  cqan(N) =19
NZE=e® = fN 2 N(GQ); caea(N) =19
N = fN 2 N(G); cea(N)=1g
NZEe®=fN 2 N(G); cae(N)=1g
N = fN 2 N(G);  cae(N) =19

The positive and negative conditional terms are as follows|the positive terms are on
the left and correspond to the listA in Algorithm 3 and the negative terms are on the right

and correspond to the listB in Algorithm 3.

Positive Conditional Terms: Negative Conditional Terms:

NZPe® = fN 2 N(G);  cqan(N) =19 NZXse = fN 2 N(G);  cqa(N) =19
N3Z=e®= fN 2 N(G);  caae(N) =19 NZEe®= N 2 N(G); cae(N)=1g
N =N 2 N(G); cae(N)=1g

Accordingly, the nonim-connecting set terms added on lines 23 and 26 of Algorithm 3 are
as follows|these imsets represent all nonm-connecting subsets ofa; b; c; d; g that contain

C.

T ¢ fabcdegg = ceabt  cajde  cae cea  caje

= [ abcet acet beet ce] + [ acdet acdt ace™ ac]

+ [ ace + ac + ce] [ ace + Ce] [ ace + ac]

Run Pairs (Gupge; D) to construct ordered lists NG = hfa; b; d; @i and M Geded =
hfa; kgi.
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Figure 4.5: A visualization of Pairs (Gynge; ) applied to the directed MAG in Figure 4.3 and

the corresponding base conditional terms.

The intersection terms are as follows|these terms correspond to intersections over mem-

bers of NG P indexed by the loop on line 7 of Algorithm 3.

Intersection Terms: Positive Conditional Terms:

N = fa:-b:d;g MZe® = fa; iy NZEe® = fN 2 N(G);  haga(N) =19

Accordingly, the nonim-connecting set terms added on lines 23 and 26 of Algorithm 3 are

as follows|these imsets represent all nonm-connecting subsets ofa; b; d; g that contain b.

fT a(G)fa;b;d;egg: b;dga

=[ abdet apbdt avet bdet bdt be

Run Pairs (Gyge; d) to construct ordered listsN %4 = hfa; d; egi and M e = hfd; egi.
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Figure 4.6: A visualization ofPairs (Gyge; d) applied to the directed MAG in Figure 4.3 and

the corresponding base conditional terms.

The intersection terms are as follows|these terms correspond to intersections over mem-

bers of N&e«:d indexed by the loop on line 7 of Algorithm 3.

Intersection Terms: Positive Conditional Terms:

N = fa;dyey Mg = fd;eg N = N 2 N(G);  gae(N) =1g

Accordingly, the nonm-connecting set terms added on lines 23 and 26 of Algorithm 3
are as follows|these imsets represent all norm-connecting subsets of a; d; e that contain
d.

fT a(e)fa;d;egg_ d;aje

[ ade T ad]

Run Pairs (Gs; @) to construct ordered listsN&e2 = hfa; egi and M %@ = hfagi.
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Figure 4.7: A visualization of Pairs (G,e; @) applied to the directed MAG in Figure 4.3 and

the corresponding base conditional terms.

The intersection terms are as follows|these terms correspond to intersections over mem-

bers of N2 indexed by the loop on line 7 of Algorithm 3.

Intersection Terms: Positive Conditional Terms:

N = fajeg M™% =fag NEF®= N 2N(G); ae(N)=1g

Accordingly, the nonm-connecting set terms added on lines 23 and 26 of Algorithm 3

are as follows|these imsets represent all norm-connecting subsets of a; eg that contain a.

fT ﬁl(G)fa;egg: ae

Run Pairs (G;; €) to construct ordered listsN&*¢ = hi and M&:*® = hi.
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Figure 4.8: A visualization of Pairs (G,e) applied to the directed MAG in Figure 4.3 and

the corresponding base conditional terms.

There are no intersection terms. Accordingly, the nom-connecting set terms added on
lines 23 and 26 of Algorithm 3 are as follows (there are none)|these imsets represent all

non-m-connecting subsets of eg that contain e.
Combining the results from all the iterations of the procedure, we get

P
uN(G)_ c;ejab+ c;ajde+ c;ae+ b;deja+ d;aje+ ae

uNiG)z cegaT  caje

or
o=
UN(G)_[ abcet acet beet ce]+[ acdet acdt acet ac]+[ acet act ce]

+[ abdet abdt abet bdet bdT be]+[ ade T ad]+ ae

uNéG) =[ acet cel *[ acet adl

where the linear combination contains all the noma-connecting set terms.
Let V be a non-empty set of variables an® = P(V) be a poset ordered by inclusion.

Applying the Mebius inversion, we get

e
PUN(g) = Uncigiabi + Unciajdei + Uhciael + Urbidgai + Undiajei + Unagei

PUN(g) = Uncieiai + Unciajei
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or

PUN{(;) = [ abcet ab abc abe] + [ acde b de ade cde] + [ ace ae c]
+ [ abde T a ade ab] + [ adet e ae T de] + [ ae a e]

P“NEG>:[ace+ a ac  aelt[ acet e ae  cel

Clearly puNég) and pUNéG) are structural imsets.

4.3.2 Factorization Implies Markov

In this section, we provide the necessary lemmas to prove that if the factorization pre-
sented in Section 4.3.4 holds, then the global Markov property holds. However, in order
to do so we rst introduce the concept of a minimal latent set. The minimal latent set is
de ned as follows. LetG=(V;E) be an ADMG such that A 2 A(G) is an ancestral set and
b= dAe with preceding verticesR = pre(b):

mig(A)  Spg, (disg, (b)) ndisg, (b):

Let L = V nA be the set of latent variables. Intuitively, ml,(A) de nes the minimal subset
of latent verticesL™" L for which every member is automatically added to the ordered

Markov blanket and order closure when added té:

mbG|[ (B 1 [ mbg (b forall |2 L min-
Clg, ,(® 1 clg (B forall 12 Lmin
This concept was originally introduced by Richardson to construct maximal ancestral sets
and is made rigorous in Lemma 5 of [66]. These sets were used to simplify the set of

conditional independence statements required to characterize independence models induced
by ADMGs [66].
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A L fabicdef g
by, = €
Ra = fajb;c;d;e;f, @
Lr = RanA
Mg, = fb;c;d; @

A

ba ? Ran(oa [ La)jManbs [Gi]

La 2ffg;f;g; ?g La 2fdg;cfg LA 2 f abcdg; abcd; abedg;
bcdg; abcd; abdg; bed;
bcdg; cdig; abd; bd; bdg;
cd; dg; bd; d; dg; dg

Figure 4.9: An illustration of the minimal latent sets.

Figure 4.9 illustrates the minimal latent set for an ADMG G = (V;E) and ancestral
sete2 A 2 A(G). Let bn = dAe with preceding verticesRa = preg(ba), La = Ra nA,
Ma = colg, (ba), and L™ = ml ;(A). All possible sets forL, are listed and partitioned by
M, at the bottom of the gure. In particular, M, is the closure oflb, with respect to A.
The minimal latent set L,T‘” is the minimal subset ofL o intersected withMg, = coIGRA (ba)

for each partition. Note that L need not be one of the possible sets bf ; see Figure 4.9
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whenL" = fcgand L 2 ff c;f;gg;fc;fgo.

Lemma 4.3.5 uses the concept of a minimal latent set to extract conditional independence

statements from a directed MAG.

Lemma 4.3.5. Let G = (V;E) be a directed MAG,P = P(V) be the poset ordered by
inclusion,  be a total order consistent withG, and uyg); Uye = NSI(G; ) be the imsets
constructed by Algorithm 3. IfG contains a vertexb 2 V with preceding verticeR = pre5(b),
then for M = colg, (b):

b? RnM jM nb[ puyg I

Furthermore, if G contains an ancestral setA 2 A(G) such thatb 2 A R, then for

L=mlg(A), N =M nL, and M4 = colg, (b):

b? N nMAj Ma nb[ PUN?C-B)]:

Proof. By Corollary 4.3.1 G is a directed MAG.

By Proposition 3.5.3 the independence model induced by a structural imset is a semi-
graphoid. Accordingly, we may apply the semi-graphoid axioms.

Let M&® and N&P be the ordered lists constructed by Algorithm 2 and len be their
cardinality. The structural imset puy is constructed as the sum over a set of semi-
elementary imsets including the semi-elementary imsets de ned as e:» forl i n.
Accordingly

b2 NF nMEF®iMFPnb[ puyig]:

By construction NF®* = R and by Lemma 4.0.1M ¥ = M, therefore
b? RnM jM nb[ puyg I

Note Mpa N M (becauseN M only removes latent vertices). By Lemma 4.0.1

Ma 2 dN € .-
If L=7,thenMa = N =M (becauseM, = M). Accordingly N nM, = ? and by

semi-graphoid axiom of triviality

b?2 NnMajManb] puNég)]:
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If L 6 ?,then assume by way of contradiction thalN is not a maximal nonm-connecting
superset ofM . But if we add a member ofL to N, then we changeM . Therefore,N is

maximal and N*® = N and M®®= M, forsome 1 i n. Accordingly
b?2 NnMajManb] PUNEE)]:
O

We now extend the ideas of Lemma 4.3.5 to incorporate the conditional independence
statements required by the ordered local Markov property. LeG = (V;E) be a directed
MAG, be a total order consistent withG, and A 2 A(G) be an ancestral set where
ba = dAe , Ry = preg(bn). Let Ma = colg(ba), Mg, = colg,, (ba), LA™ = mlg(A) and
Na = Mg, nLT". Furthermore, letL, = Ra nA be the latent set with respect toA.

Let Bo = b | LQ\“” be the union of the barren vertexby in Gz, with the minimal
latent set LT”. Let Co = Mg, NBa be the ordered Markov blanket of the barren vertex
ba excluding the set of minimal latent setL 3. Let Da = deg,, (LX) nLA™ be the proper
descendants of the set of minimal latent sdt{™ contained in the set of preceding variables
Ra with respect to the barren vertexb, and the total order . Let FA = Rao nMg, D, be
the variables in the set of preceding variableR, with respect to the barren vertexb, and
the total order that have not already been assigned to a set. Accordinglga, Ca, Da,

and Fp partition R,. Ultimately, we show that By ? Fa j Ca [upuN{é)].
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Figure 4.10: The Hasse diagram for the poset over sets ordered by inclusion.

Intuitively, the sets in Figure 4.10 are:

A2 AG an ancestral set;
by, = dAe the last vertex in A with respect to ;
Ra = preg(bn) the preceding vertices ob, with respect to
Ma = colg, (ba) the maximal m-connecting set with respect toA and b;
Mg, = colg,, (ba) the maximal m-connecting set with respect tdR, and b;
Lr = RanA the latent set with respect toA;
min = ml 4 (A) the minimal latent set with respect to A and ;
Na = Mg, n Lin the maximal nonim-connecting subset oMg, ;
Ba =l [ LN the independent set containingy;
Ca = Mg, NBp the conditioning set;

Da =deg,, (LA")nLA™ the set to be dropped;

Fa = RanMg,Da the independent set not containingo .
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Figure 4.11: An illustration of how various sets interact and partition each other.

Figure 4.12: An illustration of how various sets interact and partition each other.
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Ca = Na nby becauseNp, Mg,

Ca = Mg, NBa
= Mg, n(by [ LT (B=hy [ LT
= (Mg, Nba) \ (Mg, nL™) (distributive property)
= Mg, Nby \ Na (Na = Mg, NL3™)
= Nao nby (Mg, \ Na = Na)

Ra = AL becauseA Ra:

Ra=(Ra\ A)[ La (LA = RanA)

= ALA (RA \ A= A)
Mg, = NaLR" because. 3™ =ml;(A) colg,, (ba) = Mg,:

Mg, = Na [ (Mg, \ L™ (Na = Mg, nLY™)

NAL " (M, \ LR = L2")

In order to facilitate the forthcoming proof we de ne a few alternative relations.F, =
(AnNp) [ (LanMg,Dp) becauseLa \ A= ? andL™D, La. Note that Dp  La

becauseD, = deg(LY") and A is an ancestral set.

Fa = Ra nMRAD/_\

= Ran(Mg,Da [ (LA \ A)) (La\ A=7?)

= Ran(Mg,DalLa \ Mg, DpA) (distributive property)
= ALAN(NALT"DaLA \ Mg, DaA) (change notation)

= ALaNn(NaLa \ Mg, DaA) (LY"Da  La)
=(ALANNaLA) [ (ALANMg,DAA) (distributive property)
=(AnNa) [ (LanMg,Da) (simplify di erences)

Nanby =(NanMp) [ (Manhby) becauseby 2 Map  Na. Note that My N, because
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M a MRA andMA\ La= 7.

Nanby = Nan(Ma \ ba) (b = Ma \ by)
= Nan((Ma\ b)) [ (Ma\ (NanMa)) (Ma\ (NanMa)=?)
= Nan(Ma\ (ba [ (NANMR))) (distributive property)
=(NanNMaA) [ (Nan(ba [ (NaNMp))) (distributive property)

=(NanMa) [ ((Nanby)\ (Nan(NanM,))) (distributive property)

=(NanMa) [ ((Nanba)\ (Na\ Mp)) (NAN(NanMa)= Na\ Mjp)
=(NanMa) [ ((Nanby)\ Ma) (Na\ Ma = Maj)
=(NanMa) [ (Manhbn) ((Nanba) \ Mp=Manhy)

AnMa  (AnNa) [ (NanM,) becauseMpa  Na:

AnMa=An(Na\ Ma) (Ma = Na \ Mp)
=AN((Na\ Ma) [ (Na\ (AnNa)) (Na\ (AnNa)=7?)
= An(Na\ (Ma [ (AnNyu))) (distributive property)
=(ANnNNA) [ (An(Ma [ (ANNyp))) (distributive property)

=(AnNa) [ ((AnMa) N\ (An(AnN,))) (distributive property)

=(AnNa) [ ((AnMa)\ (A\ Na)) (An(AnNa)= A\ Nja)
(AnNa) [ ((AnMa)\ Na) (A\ Na Na)
=(AnNa) [ (NanM,) ((AnMa) \ Na=NanM,)

Algorithm 4 outlines a generalized process to extract conditional independence state-
ments from a directed MAG. The conditional independence statements are used to construct
a structural imset whose induced independence model is a subset of the induced indepen-
dence model of the graph and a subset of the independence model induced by the output of
Algorithm 3. Furthermore, the conditional independence statements required by the ordered
local Markov property are represented in the constructed imset. This is a key result for the

formulation of the factorization presented in Section 4.3.4.
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Algorithm 4:  Ordered Local Markov Property OLMP (G ;A

[

N

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Input: directed MAG: G= (V;E), total order consistent with G.
ancestral set:A 2 A(G)

Output: structural imset: ua

Let by = dAe , Ra =preg(bn), Mg, =colg,, (b), min = ml 4 (A),
Na = Mg, nLR" ;
Let Bo =y [ LY", Ca = Mg, NBa, Da= deGRA(L,T‘”) nLyn,
Fa = RanMg,Da ;
Initialize imset us : P(V)! O;
Leti=1, rf=bBac, RE=preg(rd);
repeat
LetBA=Ba\ R, CA=Ca\ RA, DA=Dp\ RA, FA=Fo\ RA;
if rf* 2 disg,, (n) then
Let M =colg_, () ;
Ua = Ua t+ UhiA;IlinnMiAjMiAmiAi /[ Lemma 4.3.5 ;
Ua = Ua + Upapajgacansi // decomposition and weak union ;
if rA2 Ca then
Ua = Ua + Upa [ gapajca i I/ contraction ;
end
else if rA 2 CoFa then
Let A= RANDy;
Ua = Usy + OLMP (G, ;A9 // recursive call ;
Ua = Ua + Upgacajcapanai I/ decomposition and weak union;
if rA2 Ca then
Ua = Ua + Umga,aq ppjca i /] contraction ;
end
end
Ua = Ua + Umgapajca; // Weak union or contraction ;
if r® 6 by then
Leti=i+1, r*=DbRanR},c, R}=preg(r});
end
until r = ba;
Let Ma = colg, () ;
Ua = Ua + Ung,:anNajNanbai // decomposition ;
Ua = Ua + Uy NanMajManbai // Lemma 4.3.5 ;
Ua = Ua * Uy, :AnMajManbsi // CONtraction ;

Applications of the symmetry semi-graphoid axiom are not noted in the algorithm.
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In the following series of gures, we give an illustrative example of the steps of Algorithm
4. Let G=(V;E) be a directed MAG, be a total order consistent withG, and Ai; A, 2
A(G) be ancestral sets. Additionally, letP = P(V) be the poset ordered by inclusion.
We construct the structural imsetu,, by adding semi-elementary imsets tai,, throughout
Algorithm 4. Note that ua, is guaranteed to be structural since it is constructed as a linear

combination of semi-elementary imsets to,, with positive integral coe cients.

A, =fa;b;d;e;@
bAlz e
Ra, = fa;b;c;d;e;f; @

Ua, - P(RAl) I 0

Figure 4.13: An illustration of the setup of OLMP (G, ,A;) (stepi).

Figure 4.13 initializes many of the sets used throughout the example TOLMP (G, ,A,).
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A, =fa;b;d;e; g a b |{zC} d f g

ret 2 disg,, (ba,) NCa,

Ua, = Ua; + Uncan?i t Uncaj T Uncajbi

Figure 4.14: An illustration of OLMP (G, ,A;) (stepii).

Figure 4.14 depicts the rst step ofOLMP (G, ,A;) wherer?! = ¢, R{* = fa;b; @, and
M#t = fcg. Note that ry* 2 disGRAl(bAl) nCa,. Semi-elementary imsets corresponding to

the following conditional independence statements are added t, :

line 9::r* 2 R M MM nrf [ puyig ]
line 1015 2 F{jBRCI [ puyiy ]

Instantiating the sets:

line9:c? abj? [ puyg] (Lemma 4.3.5)
line 10:c? ajb[ puNég)] (weak union|(line 9))
line 22:c? ajb[ puyg] (line 10)
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Al Al
2

z —{
A, =fa;b;d;e; g a b c¢ |{9} f g e
r?l

52 Ca, \ disGRAl(bAl)

Ua, = Ua; t Ungiajbd T Undiajbd T Uncd;ajbi T Unc;ajbdi

Figure 4.15: An illustration of OLMP (G, ,A;) (stepiii ).

Figure 4.15 depicts the step oDLMP (G, ,A;) wherer5® = d, R}* = fa;b;c;d, and
M2t = fb;c;dy. Note that r5* 2 Cp, \ disg,, (bn,) and Ci't = Cytnryt. Semi-elementary

imsets corresponding to the following conditional independence statements are added¢:

line 9:r3* 2 R nMZ M il [ puyig ]
1 A A . A A o+

line 10:r3* 2 F21jBICH [ puy(g ]

line 1215 [ B2 2 F*jCI [ sl ]

ine 22:B2" 2 FJ ' [ puyig)]
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Instantiating the sets:

line 9:d? ajbc[ puyg] (Lemma 4.3.5)
line 10:d? ajbc[ puyig] (line 9)
line 12a:c? ajb] puNég)] (previous step|(step ii))
line 12b:cd? ajb] puNég)] (contraction|(line 10 + line 12a))
line 22 :c? ajbd| puNég)] (weak union|(line 12b))
SN L S
A, =fa;b;d;e; g a b c d |{];} g e
rht

r@l 62CA1FA1 [ diSGRA (bA)

Ua, = Ua; * Uncajhd

Figure 4.16: An illustration of OLMP (G, ,A;) (stepiv).

Figure 4.16 depicts the step ofOLMP (G, ,A;) wherer5! = f, R§* = fa;b;c;d;fg,
and M5t = fc;fg. Note that r3* 62Ca,Fa, [ diss,, (ba). A semi-elementary imset

corresponding to the following conditional independence statement is addedug, :

line 22:B85% 2 F{*j C5 [ ety g ]
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Instantiating the sets:

line 22a:c? ajbd] puN@)] (previous step|(step iii ))
line 22b:c? ajbd[ puy] (line 22a)
z i {2
A, = fa;b;d;e; g a b ¢ d f l{g} e

ryt 2 Fa, ndisg, (ba,)
Az =fajb;cid; g

Ua; = Up, + OLMP (G, ,Az)

Figure 4.17: An illustration of OLMP (G, ,A;) (step v).

Figure 4.17 depicts the step oDLMP (G, ,A;) whererj* = g, R}* = fa;b;c;d;f; g,
and Mt = fc;f;gg. Note that ry* 2 Fa, ndisGRAl(bAl). Algorithm 4 performs a recursive

call with A, = fa;b;c;d; @.
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A;=fa;b;c;d @
bA2: g
Ra, = fa;b;c;d;f; oo

Ua, - P(R/_\z) I 0

Figure 4.18: An illustration of the setup of OLMP (G, ,A;) (step vi).

Figure 4.18 initializes many of the sets used throughout the example lOLMP (G, ,A)).
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A, = fa;b;c;d; @ a b c¢c d

re2 2 disg,, (ba,) NCa,

Ua, = Ua, T Untabdjc T Utabdjci T Urtabdjci

Figure 4.19: An illustration of OLMP (G, ,A;) (step vii).

Figure 4.19 depicts the rst step of OLMP (G, ,A;) wherer;? = f, Ry? = fa;b; c; d;fg,
andM 2 = fc;fg. Notethat r{'2 2 disGRAZ(bAZ)nCAZ. Semi-elementary imsets corresponding

to the following conditional independence statements are added tQ,:
line 9::r* 2 RY* M M nrf? [ puyig ]
line 10:r32 2 F2jBIZCL? [ puyig ]

line 22:B52 2 Ff2jCR [ puyig ]

Instantiating the sets:

line 9:f 2 abdjc[ puyg] (Lemma 4.3.5)
line 10 :f ? abdjc[ puyg] (line 9)
line 22 :f 2 abdjc[ puyg] (line 10)
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/2*2 A2
A fa;b;c;d ; b ﬁd f { ZL}Z]{
=Ta;n;c;q, a C e
; Y )
r?z_ ba,

r?z 2 diSGRAZ(bAZ) nCAz

Ua, = Ua, * Ungabdcfi + Ungiabdcfi T Utg;abdici

Figure 4.20: An illustration of OLMP (G, ,A;) (step viii).

Figure 4.20 depicts the step oDLMP (G, ,A;) wherer5? = g, R5? = fa;b;c;d;f; g,
and M2 = fc;f;gg. Note that ry? 2 disg,, (bx,) N Ca,. Semi-elementary imsets corre-

sponding to the following conditional independence statements are addedug,:

line 9:r32 2 R3*NMZ? | M22nrd? [ euyig ]
ine 10:r3* 2 F* | BL*CL* [ puyigy]

ine 22:B* 2 FJ* | C* [ puyig)]

Instantiating the sets:

line 9:g 2 abdjcf [ puyg] (Lemma 4.3.5)
line 10:g ? abdjcf [ puyg I (line 9)
line 22a :f ? abdjc| pUNéE)] (previous step|(step vii))
line 22b :fg ? abdjc| puNé’(’;)] (contraction|(line 10 + line 22a))
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SinceR; = bn,, the main loop of OLMP (G, ,A;) is done.

Az =fajb;cid; g

bA2=e

Ua, = Ua, + Ungiabdc + Ungig?i + Ungiabed?i

Figure 4.21: An illustration of OLMP (G, ,A;) (step ix).

Figure 4.21 depicts the step oOLMP (G, ,A,) after completing the main loop. Semi-

elementary imsets corresponding to the following conditional independence statements are

added toua,:

line 28 :bA2 ? A nNAzj NA2 nbA2 [ pUNéE’)]
line 29 :bAz ? NA2 nM/_\zj MA2 nb/_\2 [ PuN?(—S)]

o+

line 30 :n, 2 A2NMa, j Ma, Ny, [ pUyig ]

Instantiating the sets:

line 28a :fg ? abdjc| pUNEg)] (previous step|(step viii))
line 28b :g? abdjc| puN{(’;)] (decomposition|(line 28a))
line 29:9? cj? [ puyg] (Lemma 4.3.5)
line 30:g? abcdj ? [ pUNéE)] (contraction|(line 28b + line 29))
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Al

Z fje { 2

A, =fa;b;d;e; a b c¢c d f e
: Y 2

ryt 2 Fa, ndisg,, (ba,)
ua, + OLMP (G, ;A))

Ua,

Ua; = Ua; + Urcgiabd T Uncagjbd

Figure 4.22: An illustration of OLMP (G, ,A;) (step x).

Figure 4.22 depicts the step oDLMP (G, ,A;) whererj* = g, R3! = fa;b;c;d;f; g,
and Mt = fc;f;gg. Algorithm 4 returns to this step after a recursive call. Note that

ryt 2 Fa, ndisGRAl (ba,). Semi-elementary imsets corresponding to the following conditional

independence statements are added tq, :

line 17:B* 2 1 j CUFM el [ puyig]

e 22:B" 2 F{* j C [ el ]
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Instantiating the sets:

line 17a :abcd? g ? [ pUNé+G)] (recursive call|(step ix))
line 17b :c? gj abd| pUNég)] (weak union|(line 17a)
line 22a:c? ajbd| puNég)] (previous step|(step iv))
line 22b :c? agj bd[ puN{(’;)] (contraction|(line 17b + line 22a))
2 i {
A, =fa;b;d;e; g a b c d f g |{§}
rel=ba,

ret 2 disg,, (b,) NCa,

Ua, = Ua, T Uneafrgjbed T Uneiagibed T Uhce:agibd

Figure 4.23: An illustration of OLMP (G, ,A;) (step xi).

Figure 4.23 depicts the step oDLMP (G, ,A;) whererf! = e, RE! = fa;b;c;d;e;f; @,

and Mﬁl = fb;c;d; . Note that r?l 2 disGRA (ba,) NCa,. Semi-elementary imsets corre-
1

sponding to the following conditional independence statements are addedug;:

line 9 :rg" 2 R nMZt M nrd" [ plyig ]
line 10:r8* 2 F&MjBEICE nrd" [ puy(g]

ine 22:B4" 2 FLjC [ puyig)]
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Instantiating the sets:

line 9:e? afg jbed] puyg] (Lemma 4.3.5)
line 10:e? agj bed[ puNég)] (decomposition|(line 9))
line 22a:c? agj bd][ puNég)] (previous step|(step X))
line 22b :ce? agj bd] PUN(&)] (contraction|(line 10 + line 22a))

Sincers = ba,, the main loop of OLMP (G, ,A;) is done.

A, =fa;b;d;e;@

bA1=e

Ua, = Ua; t Upeagibd + Ure2jbd + Ure;agjbdi

Figure 4.24: An illustration of OLMP (G, ,A;) (step xii).

Figure 4.24 depicts the step oOLMP (G, ,A;) after completing the main loop. Semi-

elementary imsets corresponding to the following conditional independence statements are
added toua,:

line 28 :bAl ? A nNAlj NA1 nbA1 [ pUNég)]
line 29 :bAl ? NA1 nMAlj MA1 nbAl [ pUNég)]

line 30 :bAl ? AlnMAlj MAl I"IbAl [ PUN{(rB)]

111



Instantiating the sets:

line 28a :ce? agj bd|[ pUNég)] (previous step|(step xi))
line 28b:e? agj bd[ pUNé:—;)] (decomposition|(line 28a))
line 29:e? ? jbd[ puyg] (Lemma 4.3.5)
line 30 :e? agjbd[ puyg] (line 28b)

Lemma 4.3.6. Let G= (V;E) be a directed MAG and be a total order consistent with
G Let A2 A(G and b = dAe with preceding verticesR = preg(b). Letr 2 R and
RO=pre(r). If r 2 disg, (b), then:

COlg.o(r)  COlg (b):
If r 6isg, (b), and B = b[ mig(A):
COlg,o(r) \ B = 7?:

Proof. Note that Gro is a subgraph ofGz so any vertices and paths irGgo are in Gg. Pick
vertexa 2 colg,,(r) and path 4 in Gzo betweena andr such that , is a collider-connecting
path. Furthermore, r = dR% so , must have an arrowhead directed inta .

For the rst statement, we show thata 2 colg, (b). Sincer 2 disg, (b), there is a path
in Gk betweenband r consisting entirely of bi-directed edges. Accordingly, the composition
of o fromator with  fromr to bis a collider-connecting path betweem and b in Gg.
It follows that colg,(r) colg, (b).

For the second statement, we show that & 2 B, thenr 2 disg, (b); this is the contrapos-
itive statement. Sincea 2 B, there is a path ,, in Gz betweena and b consisting entirely
of bi-directed edges. Accordingly, the composition ofy, from bto a with 5 fromator is

a collider-connecting path betwee and r in Gz. It follows that colg,(r) \ B = ? O

Lemma 4.3.7. Let G = (V;E) be a directed MAG,P = P(V) be the poset ordered by
inclusion,  be a total order consistent withG, and uNég); Uy = NSI(G; ) be the imsets
constructed by Algorithm 3. IfA 2 A(G) is an ancestral set anduy = OLMP (G; ;A) is

the imset constructed by Algorithm 4, themi, is a structural imset andl(uy)  1( pUNég)).
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Furthermore, if by = dAe and M, = colg, (ba), then:
bA ? AnMp, j M a nbA [UA]:

Proof. Sinceu, is de ned as the sum of semi-elementary imsets, is a structural imset.
Additionally, by 2 AnMa j Ma nby [ua] by line 30. Consider the recursive call on line 16:
Note that A%is ancestral because it is de ned as an ancestral set minus a set that contains
all of its descendants. Lethho = dA% and Rao = pre(bao) and note that Rao Ra.
Accordingly, each time the algorithm is called recursively, the set of preceding variables is
smaller. Since these sets are nite, Algorithm 4 is guaranteed to terminate.

We show that the conditional independence statement represented by semi-elementary
imset added tou, are either represented in pUNé:—s) by Lemma 4.3.5 or implied by preexisting
conditional independence statements represented un Accordingly, [ (ua) I( puNég)).

Let Ra = preg(), Mg, = colg,, (ba), LA = ml4(A), Na = Mg, NLP", and L =
RaNA. LetBa = bp [ LM, Cao = Mg, NBa, Da = deGRA(L,Ti”)nLR“”, Fa = RanMg, Da.

We proceed by induction. For the base case, left = bBac , R} = preg(r?), and
M{ =colg, (r}). Let Bf = Ba\ R}, C = Ca\ R}, D7 = Da\ Rf,andF{ = Fa\ R}
1
be the sets constrained to the set of variablgR%. Note that rf 2 disg, , (ba). By Lemma
4.3.5,

2 RENMP M nr [ puyg l:
Thus line 9 is satis ed. By changing notation,
rt? BYCIDYFS nM M nrf [ puyg I
By Lemma 4.3.6M# B#C#. By the decomposition and weak union semi-graphoid axioms,
ri 2 FLJBICE nr [ puyig I
Thus line 10 is satis ed. Noting that B = r,
B2 FPCH[ puys )

N(
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Thus line 22 is satis ed.

Let r* = bRA NRA ;¢ , RA = preg(r}), and M = coIGRA(r-A). Let BA = Ba \ RA,
CA=Ca\ RA,DA=Da\ RA andFA = Fo \ RA be the sets constrained to the set of

variablesR”. By the inductive hypothesis:

BA, 2 FALjCh PUNg;)]:

If rf 2 disg_, (ba), then by Lemma 4.3.5,

2 R nMga jMganrf [ puyig I

Thus line 9 is satis ed. By changing notation,

2 BACIDAFANMA [MA N [ puyig I

By Lemma4.3.6M” BACA. By the decomposition and weak union semi-graphoid axioms,

2 FRIBACA nrf [ puyg I:

Thus line 10 is satis ed.
If rA2 Ba,thenBA=rA[ BA,,CA=CA,,DA=DA,, andF” = FA,. By changing

notation,

2 FAPBRCR [ puyg ]

By changing the notation of the inductive hypothesis,
BA,? FAICAI PUNé+G)]:

By the symmetry and contraction semi-graphoid axioms,
BA? FAICH [ Uy

Thus line 22 is satis ed.
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If rA2 Cap,thenBA=BA,,CA=rA[ CA,,DA=D",, andF” = FA,. By changing

notation,

2 FAJBACH [ PUNF(-B)]:

By changing the notation of the inductive hypothesis,
BA?2 FAJCH L[ puygl:
By the symmetry and contraction semi-graphoid axioms,

[ B2 FAICH T puygl:

Thus line 12 satis es the lemma. By the symmetry and weak union semi-graphoid axioms,
B2 FAICHT puyg I
Thus line 22 is satis ed.

Else if r 2 CaFa, then let A= R nDa, bao = dA% , and Mo = colg,,(bao). Note
that A%is ancestral because it is de ned as an ancestral set minus a set that contains all of
its descendants. Note thatbyo = rA. Since we show that all other lines are satis ed and

Algorithm 4 terminates, lines 16 is satis ed. Accordingly,
bao ? A°NMaoj Maonbao| puNég) I:
By changing notation,
rt 2 BACHFA nMaoj Maonrf [ puyg I:

By Lemma 4.3.6Ma0  CAFA. By the symmetry, decomposition, and weak union semi-
graphoid axioms,
BA? ' jCARA NI [ puyg ]

Thus line 17 is satis ed.

If rA2 Fp,thenBA=BA,,CA=C*,,DA=DA,andF" =rA [ F*,. By changing
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notation,

BA? rl JCA i 1[ PUN(G)]

By changing the notation of the inductive hypothesis,
B2 FALICH puygl:
By the contraction semi-graphoid axiom,
BA? FAJCHL puyiy ]
Thus line 22 is satis ed.

If rA2 Cp,thenBA=BA,,CA=rA[ CA,,DA=D#A,,andF? = FA,. By changing
notation,

B' 2 rf jCP IR [ Uy
By changing the notation of the inductive hypothesis,
BA?2 FAJCH L[ puygl:
By the contraction semi-graphoid axiom,
BA?2 r* [ FAICH L[ puygl:
Thus line 19 is satis ed. By the weak union semi-graphoid axiom,
BA?2 FAJCH [ puyig

Thus line 22 is satis ed.

If rA2 Da,thenBA=BA,,CA=CA, DA=rA[ DA, andFA = FA,. By changing

the notation of the inductive hypothesis,
BA?2 FAJCH [ puyig

Thus line 22 is satis ed.
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Accordingly,
Ba? FajCal PUN{E;)]:
Note that Bo = by [ LT", Cao = Nanbs, andFa  (AnNa) [ (LanMg, Da). By changing
notation and the decomposition semi-graphoid axiom,
b[ LA™ ? (AnNa) [ (LanMg,Da)jNanba [ puygl:
By the symmetry and decomposition semi-graphoid axioms,

bA? AnNAj Na nbA[ pUNé-g)]:

Thus line 28 is satis ed. Note thatNanby, = (NanMa) [ (Manby) becausdoy 2 My Na.

By expanding notation,
ba 2 AnNaj(NanMa) [ (Manb[ puyig]

By Lemma 4.3.5,
bA ? Nja nMAj M A nbA [ PUNKB)]:

Thus line 29 is satis ed. By the contraction and decomposition semi-graphoid axioms,

ba 2 (AnNNa) [ (NanMa)jManbs [ puyg

Note that AnMa  (AnNa) [ (NanMpu) becauseM,  Np. By the decomposition
semi-graphoid axiom,

bA? AnMAj M a nbA[ PUN{E-‘,)]:

Thus line 30 is satis ed. O]

Corollary 4.3.3. Let G = (V;E) be a directed MAG,P = P(V) be the poset ordered by
inclusion, and  be a total order consistent withG. If b2 V and A 2 A(G) such that
b2 A preg(b), then

b? Anclg, (b j mbg, (b [ pUNEg)]

o+
N(G)

imset constructed by Algorithm 3.

where pu Is the structural imset derived by applying the Mebius inversion to the primary
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Proof. The proof follows from the de nitions of Markov blanket and closure and above

lemmas and corollaries. O

4.3.3 Markov Implies Factorization

In this section, we provide the necessary lemmas to prove that if the global Markov
property holds, then the factorization presented in Section 4.3.4 holds. The intuition for
Lemma 4.3.8 is given by the ordered local Markov property. In what followd is a barren

vertex and M nbis its Markov blanket with respect to the setN.

Lemma 4.3.8. Let G= (V;E) be a directed MAG containing aseN V (N 6 ?). If
b2 barg(N) andM 2 dN €, ), then:

b? NnM jM nb[G]:

Proof. By Proposition 3.3.3 the induced independence mod€IG) is a compositional graphoid.
Accordingly, graphoid axioms { - vi) may be applied. Consider the cases whel¢ is m-
connecting and notm-connecting.

If N is m-connecting, then by maximallyM = N. By the triviality graphoid axiom
b? NnM jM nb[G]:

If N is not m-connecting, thenM  N. Pick a vertexa2 NnM andletN, =M [ a
By maximally N, is nonim-connecting. By Lemma 4.3.3, sincé 2 barg(N), no inducing
path exists betweena and b relative to Vv nN,; M nhi. By Proposition 3.3.2 if no inducing
path exists betweena and b relative to Vv nN,; M nhi, then a and b are m-separated byC
forsomeM nb C N, (a;b62C). According

b? ajM nb[G] forall a2 N nM:
By the composition graphoid axiom

b? NnM jM nb[G]:
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Lemma 4.3.9. Let G=(V;E) be a directed MAG and be a total order consistent withG.
Furthermore, let X be a collection of random variables indexed ®ywith probability measure
P that admits densityf (x) with respect to dominating - nite product measure . If P has
nite multiinformation mp and satis es the global Markov property fofs, then:
Unig(N) n(x)=0 for P-a.ex 2 X
N2P(V)
and

X
Uyg(N) n(x)=0 for P-aex2 X

N2P(V)

whereu,;~. and u,;

N(G) n( are the imsets constructed by Algorithm 3.

Proof. Pick a variableb2 V and let R = pre(b). By Corollary 4.3.1 the induced subgraph
& is a directed MAG andI (&) 1(G). By Proposition 3.3.3 the induced independence

model I (&) is a compositional graphoid. Accordingly, graphoid axiomsi (- vi) may be

Note that
M N N& forall i2J:
By maximality, sinceM ~ N;*” and M® 2 dN°¢,  for all i 2 J,

M M forall i2J:

Accordingly,
M M3 forall K X

By Lemma 4.3.8
b? NEnM jM nb[Ge:

By the weak union graphoid axiom
b? NS°nM3 jMse nb[Ge] foral K J
Therefore, sincd (&) 1(G) and P satis es the global Markov property forG,

b2 N°nMZ2 jMS2 nb[P] foral K J
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By Equation 3.2, since the imsets constructed by Algorithm 3 are constructed as sums over

Gb .
Ny terms:

X
Uyg(N) N(X)=0 for P-a.ex2 X
N2P(V)
and
X .
UNiG)(N) n(X)=0 for P-a.ex 2 X:
N2P(V)

4.3.4 Formalization and Alternatives

In this section, we present the factorization and several alternatives. Notably, while the
factorizations presented in this chapter are de ned from probability measures with nite

multiinformation, a similar proof could be given for positive measures.

Theorem 4.3.1. Let G = (V;E) be a directed MAG,P = P(V) be a poset ordered by
inclusion, and  be a total order consistent withG. Furthermore, let X be a collection of
random variables indexed by with probability measureP that admits densityf (x) with
respect to dominating - nite product measure . If P has nite multinformation mp, then

the following are equivalent:

: P P :

i. logf (x)= M2M(G M (%) N2P(V) uN&G)(N) n(X) for P-a.e. x 2 X;
i ( puNég))> mp =0;
ii. A? BjC[G] ) A? BjC[P] foreveryPA;B jCi2 T(V),

whereu,;". and u,;

N(G) n( are the imsets constructed by Algorithm 3.

Proof. (i) 1i): By the Mebius inversion

X
logf (x) = 7(X)
T2P(V)
X
= m (X) + N (N) N (X)
M 2M(G) N2P(V)
. X
= M (X) + UN&G)(N) N (X) uNiG)(N) N (X):
M2M(G) N2P(V) N2P(V)
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By the antecedent

X X
logf (x) = m (X) uNéG)(N) n(x) for P-a.e.x 2 X:
M 2M(G) N2P(V)
Therefore
X

Uyg(N) n(X)=0 for P-aex2X:
N2P(V)

By integrating with respect to P

Z X 7
Unie(N) ~ () dP(x) = Uin(N) () dP(X)
X2X N 2P(V) N 2P(V) Xx2X ,
X X
= UN&G)(N) p(N;T) logf+(x) dP(x)
N2P(V) T N x2X
= Unig(N)  p(N;T)mp(T)
N2P(V) T N
:( pU " )> Mp:
N(G)
Accordingly

( PUNég)y mp =0:

(ii ) i ): By Corollary 4.3.3,ifb2 V and A 2 A(G) such thatb2 A preg(b), then
b? Anclg, () j mbg, (D) [ puyg]:

By Theorem 3.5.1 and the antecedent, b2 V and A 2 A(G) such thatb2 A  preg(b),
then

b? Anclg (b)j mbe, (0) [P ]:

By Theorem 3.3.2

A? BjC[G] ) A? BjC[P] foreverybA:B jCi2 T(V):
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(i ( iii): By the Mebius inversion and Lemma 4.3.9

X
logf (x) = T7(X)
T2P(V)
X
= m (X) + N (X)
M 2M(G) N2N(G)
X N X :
= M (X) + UN&G)(N) N (X) UN&G)(N) N (X)
M 2M(G) N2N(G) N2N(G)
= m (X) Uyg(N) n(x) for P-ae.x2X:
M 2M(G) N2N(G)

]

In general, we refer ta of Theorem 3.5.1 as the factorization which we may alternatively

characterize and with a structural imset:

X X _
logf (x) = u (X) Upie(N) n(X)
M 2M(G) N2N(G)

( Mm@ (N) UNéG)(N)) N (X)
N2P(V)

1 uin(N) W)
N2P(V)

X .
= log f (x) Ugisy (N) (%)
N2N(G)

and with heads and tails:

X X .
M (X) UN&G)(N) N(X)
M 2M(G) N2N(G)

logf (x)

= Hitail (H) (X) Unig(N) n(X)
H2H(G) N2N(G)
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and with conditional densities:

X X _
logf (x) = v (%) Unig(N) n(X)
M 2M(G) N2N(G)
X X .
= (m@(N) Uy (N)) ~(X)
B2V N clg (b)
b2 N
X X .
= (L uyin(N) N
B2V'N ¢l (b)
b2N
X X "
= 1097 51, 1y (X) Unie(N) v (X)
b2v N clg (b

b2 N

The last alternative has a nice intuition using a special case of unfaithful DAGs [11]

which we call dominating DAGs.

De nition  (dominating DAG). Let G = (V;E) be a directed MAG with consistent total
order . The dominating DAG G’=dom(G; ) is the DAG over the same vertices such that
pag(b) = mb 4(b) for all b2 V.

Accordingly, the last alternative can be expressed as an adjusted version of the recursive

factorization for the dominating DAG:

X X .
logf (x) = 109 bipagem 6. () (X) Unig(N) n(X) -
b2V N pa(;om( G; )(b)
2N

Appendix B.4 show that while it may be the case that the factorization does not need

an adjustment term, our current proof strategy is insu cient.

4.3.5 Worked-out Examples

The rst equality is the originally posed factorization, the second equality is the second
alternative, and the third equality is the third alternative. The last line of the rst two
equalities makes up the adjustment term and the last line of the third equality includes
terms required to construct a Markov DAG factorization in addition to the adjustment

term.
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Figure 43wheree a d b c

|ng (X) abcde(x) + bcde(x) + abcd(x) + abc(x) + bcd(x) + cde(x) + ab(x)
+ bc(x) + cd(x) + de(x) + a(x) + b(x) + c(x) + d(x) + e(x)

ace(X)  ce(X)  ace(X)  ac(X)

bccjae(x) + bq’a(x) + cdje(X) + bja(x) + dje(x) + a(x) + C(X) + e(x)
c;eja(x) c;aje(x)
= l0g f gande(X) + 109 fha(X) +10g f gie(X) +10g fa(X) + log fe(X)

c;ejab(X) c;ajde(x) c;ae(X)

For directed MAGs with ve vertices or fewer, no adjustment term is needed if the correct
total order is chosen. That means that we can simplify the factorization for small graphs;
this is worked out exhaustively in Appendix C. However, it also illuminates the fact that the
factorization gives di erent decompositions for di erent total orders. Theorem 4.3.1 implies

that if the result holds for any total order consistent with G, then the result must hold for
all total orders consistent with G.

Figure 3.11 () wherea b ¢ d:

|09f (X) = abcd(X) + abd(x) + acd(x) + bcd(x) + ab(X) + ad(X)
+ opX)+ pd(X)+ ca(X)+alX)+ p(X)+ c(X)+ a(X)
diabe(X) + p(X) + pa(X) +  a(X)

= log f gjanc(X) +10g fp(X) + log fa(X) +log fa(X)
Figure 3.11 (i) wherea b c¢ d:
logf (X) = apc(X) +  apd(X) +  ac(X)+  ad(X) + belX)
+ pd(X)+ a(X)+ p(X)+ (X)+  4(X)

adip(X) ¥ bga(X) + gip(X) + ga(X)+ b(X)+ a(x)

= 10g f gian(X) + 109 f gan(X) +10g f4(x) +log fa(x)
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Figure 4.1 () wherea b c:

logf (x) = a(X)+ be(X)+ a(X)+ p(X)+ o(X)
= cjb(x)+ bja(x)+ a(X)

= Iog fcjb(x) + |Og fbja(X) + |Og fa(x)
Figure 4.1 (i) wherea ¢ bk
logf (X) = apc(X) + an(X)+ b(X)+ a(X)+ p(X)+ c(X)

= pac(X)*+ (X)) + a(X)

= log fhac(x) +log fc(x) +log fa(x)
Figure 4.1 (ii ) wherea d b c

|ng (X) = abcd(X) + abc(X) + bcd(X) + ab(x) + bc(x)
+oa(X)t a(X)+ p(X)+ (X)) a(X)
= pgad(X) + Ga(X)+ Ga(X)+ a(X)+  a(x)

= log f jana(X) + 109 fa(X) +log fa(x) +log fa(x)

a;cjd(x)

Figure 4.1 (v) wherea ¢ b d:

abcd(X)+ abc(X)+ acd(X)+ bcd(X)+ ab(x)+ bc(x)
+ opd(X) + cd(X)+ a(X)+ p(X)+ (X)) + a(X)

= cgab(X) +  pga(X) +  gp(X) +  pHa(X)+ (X)) +  a(x)

logf (x)

= Iog fdjabc(x) + Iog fbjac(x) + |Og fc(x) + |Og fa(x)

adib(X)
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Figure 4.1 vi) wherea b c¢ d:

abc(X) +
ba(X) +
abc(x) +

ba(X) +

logf (X) = apcd(X) +
+  ac(X)+
= abcd(X) +

+  ac(X)+

ab(x)
d(x)
ab(X)

a(x)

bcd(x) +

o(x) +

acd(x) +
a(X) + b(x) +
acd(X) + bcd(x) +

a(¥)+ p(X)+ o(X)+

abd(X) +
cd(X) +
abd(x) +

cd(X) +

= log f gjanc(X) + 109 f gan(X) + log fp(x) +log fa(x)

cd(X)

In the following chapter we discuss curved exponential families and apply the factoriza-

tion to these families in order to develop probabilistic score for learning ancestral relation-

ships.
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5.0 MAG Curved Exponential Families

In this chapter we discuss exponential families whose independence models are described
by MAGs|ancestral graph Markov models. Exponential families are attributed to Darmois,
Koopman, and Pitman, who independently published the following de ning theoretical re-
sult. The Darmois-Koopman-Pitman theorem states that a probability measure belongs to
an exponential family if and only if the dimension of the su cient statistic for data drawn
from that probability measure is independent of the sample size of the data [1, 6]. Another
de ning theoretical result for exponential families was discovered in Bayesian statistics and
states that a probability measure belongs to an exponential family if and only if that proba-
bility measure has a conjugate prior [34]. For these reasons, exponential families have found

wide application in probabilistic graphical models [45].

De nition  (exponential family). An exponential familyis a family of probability measures

that admit densities with respect to - nite measure proportional to:

f(xj )/l exp “tx) ()

R
where 2 f 2RK:

wox €Xp Tt(x) d (x) < 1g is the natural parameter of dimen-

sion k, t(x) is the su cient statistic, and () exp ~t(x) d (x) is the cumulant

x2X
function.

When the natural parameter space is an open set, the exponential family is regular.
Furthermore, a minimal exponential family is an exponential family where the components
of the su cient statistics t(x) are linearly independent. We are interested in minimal regular
exponential families whose natural parameter spaces are constrained to smooth manifolds|

curved exponential families.

De nition  (curved exponential family) A curved exponential familyis a minimal regular
exponential family whose natural parameter space is constrained to a manifold characterized

by a smooth bijective function called adi eomorphism : I RKm™ RM™forl m k.
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Accordingly, a curved exponential family is de ned as follows:
FEFfPZFEF; ()>:[,C]g

where C is constant. For more details about exponential families and curved exponential

families see [5, 43].

Let P be an exponential family with natural parameter space . One way to constrain
the natural parameter space of an exponential family is to restrict the members of the family
to probability measures whose induced independence models are subsets of a prespeci ed
independence model:
Fer(l) f P 2Fge; 1=1(P)g

If the prede ned independence model is induced by a MA&, then the result is an family

of ancestral graph Markov models:
Fer(G) f P 2Fe; 1(G=1(P)a

We denote the parameter space constrained by an independence mao@@) as . However,
not all exponential families constrained by independence models induced by MAGs are curved
exponential families. In this chapter, we discuss curved exponential families constrained by

the independence models induced by MAGs. The families discussed include the following:

CG Conditional Gaussian; M Multinomial;

LH Lee and Hastie; G Gaussian.
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Figure 5.1: The Hasse diagram for the poset over families of probability measures ordered

by inclusion.

Figure 5.1 depicts a Hasse diagram for a poset of families of probability measures ordered
by inclusion|the colored section indicates families that are known to be curved exponential
families when restricted by a MAG and the uncolored section indicates families that require
additional restrictions to be curved exponential families. In particular, di eomorphisms
were given for Gaussian probability measures by Spirites et al. [82, 70] and for multinomial
probability measures by Evans and Richardson [30].

In the forthcoming sections, we discuss conditional Gaussian, Gaussian, and Lee and
Hastie probability measures respectively. Notably, conditional Gaussian and Lee and Hastie
probability measures constrained by independence models induced by MAGs have not been
shown to be curved exponential families. We provide an additional condition for MAGs
such that Lee and Hastie probability measures constrained by independence models induced
by MAGs satisfying the condition are curved exponential families. An analogous proof for

conditional Gaussian is outside the scope of this dissertation.
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5.1 Conditional Gaussian Probability Measures

The family of conditional Gaussian probability measures is the most general exponential
family of probability measures discussed in this dissertation. In fact, the other families we
discuss are subfamilies of conditional Gaussian probability measures. Conditional Gaussian
probability measures where studied in detail by Lauritzen [46] and model mixtures of con-
tinuous and discrete variables where the conditional distribution of the continuous variables
given the discrete variables is Gaussian. Following Lauritzen's notation, we use to denote
continuous variables and to denote discrete variables.

Let V be a non-empty set of variables partitioned by sets; 2 V which denote the
continuous and discrete variables respectively. Lef(x ):x ! R, h(x ):x ! R J and
K(xx ):x ! 9++’ . A conditional Gaussian probability measure is a probability measure
whose density has the following form:

f(xj )/ exp g(x )+ h(x )”x %X>K(X )X

Furthermore, if K (x ) is constant, then the probability measure is a homogeneous condi-

tional Gaussian probability measure. Let

g(x)=gkx )+ %h(x )”K(x )h(x ) (x )= K(x )7h(x ):

The density of a conditional Gaussian probability measure can be put in a form where in
the cases of only continuous or discrete variables, the probability measure is Gaussian or

multinomial respectively

fxj )l g(x) %(X (x )7K(x )(x (x)) :

For more details about conditional Gaussian probability measures see [46].
Notably, our prior assumption about multiinformation hold for this family of probability

measures.

Proposition 5.1.1 (Corollary 4.1 [83]) Let V be a non-empty set of variables and be a

non-empty collection of random variables indexed Mywith probability measureP dominated
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by - nite product measure . If P is a conditional Gaussian probability measure ovey,

then P has nite multiinformation.

However, current theoretical results cannot guarantee that families of conditional Gaus-
sian probability measures restricted by the independence models of MAGs are curved expo-
nential families. This is due to the fact that conditional Gaussian probability measure are

not closed under marginalization.

5.1.1 Conditional Gaussian Marginalization Condition

Unfortunately, while conditional Gaussian probability measures are closed under condi-
tioning, they are not closed under marginalization. Lauritzen accounted for this by de ning
the concept of a weak marginal. Intuitively, a weak marginal is the conditional Gaussian
probability measure over a marginal set of variables that is as close as possible to the actual

marginal.

De nition  (weak margina). Let V be a non-empty set of variables containing a s&
V. Furthermore, let X be a collection of random variables indexed by with conditional
Gaussian probability measureP that admits density f (x j ) with respect to dominating

- nite product measure . Lastly, denote the density of the weak marginal with respect to
A asfa;. As mentioned above, the weak marginal is \close" to the actual marginal in the
following sense. Iff o is a conditional Gaussian density, therija; = fa, otherwisef n; is the

conditional Gaussian distribution that minimizes:

Z
. fa(xj )
inf log ——*~
2 yox J fra(xj )

dP (x):

In the eld of information theory, the above integral is the Kullback-Liebler divergence
or relative entropy of the weak marginal with respect to the actual marginal. To be clear,
fa(x j ) is the actual marginal of a conditional Gaussian density but not necessarily a
conditional Gaussian density. On the other handfj,(x j ) is the weak marginal of a
conditional Gaussian density and a conditional Gaussian density.

It turns out that conditional Gaussian probability measures are closed under marginal-

ization subject to the following condition.
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De nition  (conditional Gaussian marginalization condition). Let V be a non-empty set of

variables partitioned by sets ; V which denote the continuous and discrete variables
respectively. Furthermore, letP be a conditional Gaussian probability measure that admits
density f with respect to - nite product measure . If A;L V suchthatL = V nA, then

f o is conditional Gaussian if and only if:
A\ 2?2 L\ JAN [ P

That is, the continuous variables in the margin are independent of the marginalized discrete
variables given the discrete variables in the margin. Accordingly, this condition characterizes

when an actual marginal and a weak marginal are equivalent [31, 46].

We call this the conditional Gaussian MAG condition (CGMC) because conditional Gaus-
sian probability measures whose induced independence models are subsets of MAGs that
satisfy this condition are curved exponential families. This result is not proven here, but
should be straightforward to prove using the analogous proofs for multinomial and Gaussian
probability measures. Notably, there are MAGs that do not satisfy this condition that are
Markov equivalent to a MAG that does satisfy this condition

If P is a conditional Gaussian probability measure whose independence model is re-
stricted by | (G), then the following is a necessary and su cient condition forP to satisfy
the conditional Gaussian marginalization condition with respect to the ancestral set of the

directed subgraph.

De nition  (conditional Gaussian MAG condition). Let G= (V;E) be a MAG whose ver-
tices are partitioned by sets ; V which denote the continuous and discrete vertices
respectively. If there exists® 2 [G and G°= dir( &) such that:

HT6 ) H

forall H 2 H(GY and T = tail e(H), then G satis es the conditional Gaussian MAG
condition (CGMC).

Proposition 5.1.2. Let G=(V;E) be a MAG whose vertices are partitioned by sets

V which denote the continuous and discrete vertices respectively dif(G) = G = (V% EY),
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then following are equivalent

i. HT 6 ) H forall H2H(&) andT = tail »(H);
i. A\ 2L\ jA\ [ @] foral A2A(&) andL = V°nA.

Proof. (i) ii):

By the antecedent, the descendants of continuous variables must also be continuous and
the districts are either completely continuous or completely discrete.

Let A2 A(GandL =V°nA. IfFA\ = ?2,thenA\ 2?2 L\ jA\ [ G]bythe
triviality semi-graphoid axiom.

If A\ 6 ?,thenleta2 A\ and B = Vdey(L\ ). Byde nition a? Bnclg (a) j
mb; (8) [ G ]

The district must be continuous by the antecedent: dig (a) A\ . Since A'is
ancestral, all the districts parents must be inA as well. All the district's descendants must
be continuous by the antecedent and accordingly, iB if not latent. If not latent, then in A
and becauseA is ancestral, their parents are inA. Therefore, mig (a) A na.

By the antecedent and since the continuous descendants are continuols) B.
Since mig (@) Anaanda2 A, L\ B nclg (a).

By the weak union semi-graphoid axioma? L\ jAna[G} ]. By Proposition 3.4.2,
(&) I(&). By the intersection semi-graphoid axiomA\ 2?2 L\ jA\ [ G].

(i ( ii):

Assume by way of contradiction that there existéd 2 H(G) suchthatHT \ 6 ? and
H\ 6?2 whereT =tailg(H)andA\ 2?2 L\ jA\ [ GJforal A2 A(G). Let
B=H\ and A=ang(HTnB). a2 HT \ and b2 B such thata andbare adjacent in
G. Therefore,a 6?bj A\ [ G] by maximally. Accordingly, A\ 62L\ jA\ [ G

This is a contradiction. O

We conjecture that the CGMC de nes exactly the set of MAGs that describe the indepen-
dence models of conditional Gaussian probability measures. That is, conditional Gaussian

probability measures cannot represent the same set of conditional independence statements
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as a directed MAG that does not satisfy the marginalization condition|it is parametrically

impossible.

Conjecture 5.1.1. Let G=(V;E) be a MAG whose variables are partitioned by sets

V which denote the continuous and discrete variables respectively andPlebe a conditional
Gaussian probability measure. Ifs does not satisfy the CGMC and(P ) 1(G), then there
existsa;b2 andC 2 V nfa;lg wheredeg(a) \ deg(b) \ 6 ? such that:

. a? bjC[G];
i. a6?2bjCI[P ].

5.2 Gaussian Probability Measures

5.2.1 Gaussian Parameterization

In this section, we detail the parameterization of MAGs for Gaussian probability mea-
sures, discussed in detail by Richardson and Spirtes [70]. L&t (V; E) be a MAG. De ne
D =chg(V)[ sps(V)andU = VnD as the directed and undirected vertices @ respectively.

Dene (G SY to be the set of matrices ()ap = ap that satisfy:
a;b2Vv

8
2R a2 ne; (b);
() ab ab2 eG

: > .
b2V “ fOg otherwise

Dene (G gﬂj to be the set of matrices ()a = ! 4 that satisfy:

a;p2Vv
8
2R a2 sps (b);
() ab ! ab 2 >
ap2v “f0Og otherwise
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Dene B(G) RVl Vito be the set of matrices B)a, = ap that satisfy:
a;b2Vv

8

2 R a2 chgb);

(B)ab ab 2

a;b2V ~ f0Og otherwise

Dene w(G) RV to be the set of real numbers.

The parameterization ofG given by the di eomorphism ' : B n! gisdened
as follows: 2 3
K
Gl(; ;B; ):4 . >5
svecK)
where 2 3,

K=(1 B4 %5 (1 B)
0

and| isthejVj j Vjidentity matrix. Accordingly, the family of Gaussian MAG probability
measures is a curved exponential family characterized by the inverse di eomorphisra.
Proposition 5.2.1 (Theorem 8.23 [70]) For a MAG G = (V;E), Fs(0G) is a curved expo-
nential family, with dimension2jVj + jEj.

Furthermore, these curved exponential families correspond exactly to the independence

models induced by the corresponding directed MAG.

Proposition 5.2.2 (Theorem 8.14 [70]) Let G be a MAG. If Fg(G) is the family of Gaussian
probability measures parameterized b$ and Fg(1(G)) is the family of Gaussian probability

measures constrained by(G), then

Fe(G) = Fe(1(G):
Conveniently, all the parameters used to de ne the di eomorphism have meaningful
interpretations:

K and are the precision matrix mean vector respectively;
ab corresponds to the coe cient ofb in the regression of on its parents pg(a);

I ap corresponds to the covariance between the residuals afregressed on its parents
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pag(a) and the residuals ofb regressed on its parents p#b);

ab Corresponds to an edge potential in ui®).

In Section 5.3, we repurpose Richardson and Spirtes parameterization for the family of Lee

and Hastie probability measures.

5.3 Lee and Hastie Probability Measures

In this section, we consider a subfamily of conditional Gaussian probability measures rst
characterized by Lee and Hastie [47]|Accordingly, we call these measures Lee and Hastie
probability measures. Raghu et al. provide a summary of methods developed to learn
Markov equivalence classes of MAGs [63] on data generated from Lee and Hastie probability
measures.

The family of Lee and Hastie probability measures is the special case of the family of
homogeneous conditional Gaussian probability measures. The covariance matrix is constant
for di erent values of the discrete variables and the discrete variables factorize as a pairwise
discrete Markov random eld (MRF). When the independence model of a probability measure
is described by an undirected graph, that model is called a Markov random eld; see [45] for
details on pairwise MRFs.

We give a di eomorphism to show that Lee and Hastie probability measures whose
independence models are restricted by MAGs are curved exponential families. However, we
rst describe a transformation to facilitate the discussion of the di eomorphism and provide
an additional condition for Lee and Hastie probability measures to be curved exponential

families.

5.3.1 Binary Transformation

We show that the family of Lee and Hastie probability measures is an exponential family
using the following transformation. LetV be a non-empty set of variables partitioned by sets

; V which denote the continuous and discrete variables respectively. Furthermore, let
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X be a collection of random variables indexed by with conditional Gaussian probability
measureP that admits density f (x j ) with respect to dominating - nite product measure
. Accordingly, X = X X whereX RilandX Z.'.

\Y, W
1(G)
Xa Xb Xc X@1) | X1) | X02) | X(03) | X(c)
7.9 1 3.8 7.9 1 0 0 3.8
0.2 3 4.8 {0 0.2 0 0 1 4.8
3.9 4 0.5 3.9 0 0 0 0.5
2.2 2 7.3 2.2 0 1 0 7.3
7.9 2 0.2 7.9 0 1 0 0.2
3.9 1 9.7 3.9 1 0 0 9.7
0.3 4 9.8 0.3 0 0 0 9.8

Figure 5.2: An illustration of the binary transformation

De ne the binary transformation of V with respectto A V as follows:
zn(V) Wa=fa2A Z,; a | ajg

where subscripts are used to index the rst or second part of a transformed variable ajvd,j
equals the number of non-redundant categories for discrete random variables and one for

continuous variables. De ne the binary transformation ofx with respect to A as a function
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Za X! RWav i f Q;1gWar I

8
2 Xa; a 2

(a(a Za=
aZWA . Xal 2 al 2

where , ., is the Kronecker delta. Additionally, we de ne a corresponding transformation
for directed MAGs.

Algorithm 5:  Binary Transformation z(Q)
Input: MAG: G=(V;E)
Output: MAG: G=(W;F)

1 W=fa2V Z,;a | ajg;

2 F =7

3 foreach a;b2 W (a6 b) do

4 if a7 b in Gthen

s | | Adda btoF;

6 | elseif a1 $ by in Gthen
7| | Addas btoF;

8 else if a; by in Gthen
o | | Adda btoF;

10 end

11 end

We show that the transformed graph is a directed MAG which has the same conditional

independence relationships.

Proposition 5.3.1. Let G=(V;E) be a MAG. If z(G) = (W, F) is the transformed graph,
then z(G) is a MAG and

A? BJC[G] ., Wa? WsjWc[z(G)]

Proof. By construction, z(G) is a ancestral graph. We consider the contrapositive for the
double implication.

If A 62B jC[G], then there is anm-connecting path betweena 2 A andb 2 B
relative to C in G. Construct °in z(G) by replacing each vertexv 2 with w 2 z(v). By

construction, °is an m-connecting path betweera® 2 W, and i° 2 Wg relative to W¢ in
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z(G). Accordingly W, 62Wg j We [2(G) .

If Wa 6?2Wg j We [G], then there is anm-connecting path © betweena 2 W, and
b2 Wg relative to W¢ in z(G). Construct °in G by replacing each vertexw 2 with
v=w,. Ifany w2 appears more than once, then remove all vertices the between the rst
and last occurrence ofv and the last occurrence ofv. By construction, °is anm-connecting
path betweena’2 A and B’2 B relative to C in G. Accordingly A 6?B j C [G].

Accordingly, z(G) is an ancestral graphandA ? BjC[G], Wa? Wi jWc [2(G)];

maximality follows from the maximality of G.

5.3.2 Lee and Hastie MAG condition

Lee and Hastie probability measures require an additional condition for MAGs such that
Lee and Hastie probability measures constrained by independence models induced by MAGs

satisfying the condition are curved exponential families.

De nition  (Lee and Hastie MAG conditior). Let V be a non-empty set of variables par-
titioned by sets ; V which denote the continuous and discrete variables respectively.
Furthermore, let A;B;C  V be disjoint sets andD nAB. G satis es the Lee and
Hastie MAG condition (LHMC) if:

i. Gsatises the CGMC;
i. A2 BjC[G]) A? BjCD[G]forall /A;BjCi2 T(V)andD nAB.

If conditioning on a set of discrete variables induces dependence between two other sets
of variables, then marginalizing the same set of discrete variables will result in a mixture of
two or more marginal Lee and Hastie densities and induce the same dependency.

An intuition for this comes from the similarity between Lee and Hastie and Gaussian
probability measures. Figure 5.3 illustrates the case where two continuous variables cause a
discrete variable that otherwise have no relation. In this case we would expect to see that
the continuous variables are marginally independent, however, this is not the case. The light
gray points give the marginal of the Gaussian probability measure with the same parameter-

ization. Accordingly, the Lee and Hastie probability measure appears similar to a Gaussian
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Figure 5.3: Lee and Hastie probability measures and violations of the marginalization con-
dition. The contours give three standard deviations and the solid black line gives the rst

principal component.

probability measure subject to a selection e ect. This selection e ect induces a marginal
dependence between the two continuous parents, which would otherwise be marginally in-
dependent.

Accordingly, the LHMC ensures that these induced dependencies do not occur. Graph-
ically, this implies that the discrete variables are contained within the undirected subgraph
of MAGs.

5.3.3 Lee and Hastie Parameterization

Let G=(V;E) be a directed MAG satisfying the LHMC whose variables are partitioned
by sets ; V which denote the continuous and discrete variables respectively, and let
z(G) = (W; F) be the transformed directed MAG. De neD = ch;(W) [ sp,g (W) and
U = W nD as the directed and undirected vertices o£(G) respectively. Furthermore,
X be a collection of random variables indexed by. We rede ne Richardson and Spirtes

parameterization of G for Lee and Hastie probability measures as follows:
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Dene (G Sﬂj to be the set of matrices ()ap ap that satisfy:
a;b2uU

R a=banda; 2 or a; 2 neg(h);

() ab ab2

flg a=banda; 2 ;
a;b2uU

WA AW 0

- fO0g otherwise

Dene (G gﬂj to be the set of matrices ()a ! ap that satisfy:

a;b2D
8
2R a2 spy(by);
() ab ! ab 2 >
ab2D ~ fOg otherwise

Dene B(G) RWiI Wito be the set of matricesB)a,  ap that satisfy:
a;p2w

8

2R a2 chg(by);

(B)ab ab 2

a;b2w - f0g otherwise

Dene (G RV to be the set of real numbers.

The parameterization of G given by the di eomorphism Gl : B p! G is
de ned as follows: 2 3
K
(B ) 4 S
svecK)
where 2 3,

K ( B4 O5 (1 B)
0

and | is the jWj j Wj identity matrix. A parameterization is maximal if for all a;b2 V:

a 2 ne:;(bl) ) ab 6 Oa
a2spg(b) ) !'a60;
a1 2 chg(by) ) ab 6 0:

We show the family of Lee and Hastie MAG probability measures is a curved exponential
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family characterized by the inverse di eomorphism . The parameterization given by Lee
and Hastie di ers from the parameterization given here and we have not veri ed that the two
are equivalent. Notably, the parameterization given by Lee and Hastie uses more parameters,
So it is possible that they describe a more general family of probability measures. However,
the parameterization given by Lee and Hastie is not minimal, so it is also possible that our

parameterization is a minimal characterization of the same family of probability measures.

5.3.4 Lee and Hastie as Curved Exponential Families

Let z z(x) and za za(x). Lee and Hastie probability measures form an exponential

family as follows:

_ 2 3
h [ 7
>
K Gveck)” 1) 4vec(zz> )5

where vecf) is the vectorization of matrix A into a column vector. In what follows, we show
that Lee and Hastie probability measures are conditional Gaussian probability measures.
We abuse notation and use the following shorthand, = w, and Kag = Kw,w, for all
A;B 2V.

1
“t(x) = “Kz évec(K)>vec(zz>)

1
= °K ~z7K
z 22 z
> > > > 1> > 1>
=z K + 7K + 'K z + "K z EZKZ zK z EZKZ
1 1
= K z §z>K z + K z +(K + K ( z))z §z>K z
=g(z )+ h(z )z %Z>K z
Accordingly,
> 1> >
gz )= K z ézK z + K z h(z )= K + K ( z):
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Therefore

0(z)= gz )+ hiz YK h(z )

1
= K z §z>K z + K z
1
+§(K + K z ))”K YK + K ( z))
1 1
= ZK z + K z +Z°K + “K
2 2
+%>K K 'K K K 'K z+%z>K K 'K z
1
= 57K K KK )z + (K K K K )z
1 1 1
+ 2 7K + 7K + 2 7K -~ 7 (K K K K
2 2 2( )
1> 1 > 1 1> > 1
= — + + — K
22 z z 2( )

where is the covariance matrix and the transformation A,i = Kaa Kag KBBlKBA is

given in Bishop [10] and

K h(z )

—~
N
N—r

1

+ K K ( z):

Accordingly, a Lee and Hastie density is proportional to the following:

2 3
1
f(xj )/l expdg(z) =(z (z )’K (z (z ))°
PK/I%—‘\%F_g 2 F mean shiﬁiﬁ Gaussian }

Notably, the pairwise edge potentials and the pairwise MRF should be associated with the

undirected augmented graph rather than the original directed MAG.

Proposition 5.3.2. Let G = (V;E) be a directed MAG satisfying the LHMC. If ;' :
B u! isthe dieomorphism corresponding to the parameterization dg, then

;! is a bijection.

Proof. ! is surjective by construction, therefore we show that ;' is injective.

If D =chyg(W) [ sp,g(W)andU = W nD are the directed and undirected vertices
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of z(G) respectively, then:

. 1
f(xj ) exp 277 Jbzu+ o ubzu+

1
2 _( >K l>J U]L_J U)

2
1 >
E(ZD p(zu)) " Kop(zo  b(zv)) :

Notably, D  z() and [}, = and the directed part of a Lee and Hastie probability

measure is Gaussian. Accordingly, we check the undirected non-constant part of Lee and

Hastie probability measures. IfA=U\ and B = U\ |, then:

> 1 > 1 - > >
EZU wuZut U uulu = ézu zyt+
—_ > > >
= EZA AAZA  Zpn aBZB EZB BB ZB

> > > >
+ A aZat A aBZst g BAZAat g BBZB

X X 1 X X X X 1
= > aa®Za0Zy abZaZp t > bPZbZt0
a2 A a%A a2A b2B b2B K%2B #
X X X X X X
+ aa® a0t ab b Zat ab at b ° Zb
a2A  a®RAnza, b2B 2B a2A b2B
X X 1 X X X X 1
= 5 aa’ZatZy abZaZp 2 bPZbZP
a2A a%2Anza, a2A b2B %ZB 2B "
X X X 1 X X X
+ aa® a0t ab bt a é Zy + ab a™t b b0 Zp:
a2A  aRAnza, b2B 2B a2A b2B

The rst three terms are edge potentials, where the lambda terms are non-zero if and
only if the two corresponding vertices are adjacent. Accordingly, every unique value of the
lambda terms results in a di erent probability measure. The last two terms are vertex
potentials. Therefore, for xed lambda terms, every unique value of the mu terms results in
a di erent probability measure. It follows that the di eomorphism is a bijection.

The Lee and Hastie family of probability measures uses the same parameterization as the
Gaussian family of probability measures after transforming the variables. Thus, by applying
the transformation to both the variables and the graph, we have that Lee and Hastie directed

MAG probability measures are curved exponential families. ]

Corollary 5.3.1. If G=(V;E) is a directed MAG andz(G) = (W;F) be the transformed
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directed MAG, thenF 4 (G) is a curved exponential family with dimensiofwWj + | j+ jFj.

Proof. The proof follows from Proposition 5.2.1 because Lee and Hastie exponential Families

and Gaussian exponential families use the same di eomorphism. m

Proposition 5.3.3 (Proposition 3.1 [46]) Let X be a collection of random variables and
be a probability measure oiX that admits densityf (x) with respect to dominating - nite

product measure . If f (x) > 0 is positive for allx 2 X, then I(P ) is a graphoid.

Lemma 5.3.1. Let X be a collection of random variables anB be a probability measure
on X that admits densityf (x) with respect to dominating - nite product measure . If P

is a Lee and Hastie probability measure, the(P ) is a graphoid.

Proof. This directly follows from Proposition 5.3.3 and the well-known fact that the density

admitted by a Gaussian probability measure is positive. ]

Proposition 5.3.4 (Lemma 8.17 [70]) If K is a precision matrix parameterized by a MAG
G=(V;E), anda;b2 V are not adjacent inaug(G) then (K),, =0.

Lemma 5.3.2. Let G=(V;E) be a directed MAG andP be a Lee and Hastie probability
measure overV. If is maximal parameterization with respect tds, then for all disjoint
A;B;C V whereang(ABC) =V

A? BjC[G] , A? BjC[P I

Proof. Let G=(V;E) be adirected MAG andX be a collection of random variables indexed
by V with probability measure P that admits density f (x ] ) with respect to dominating -
nite product measure . We note that G and z(G) have the same conditional independence
relationships by Proposition 5.3.1 and apply the Proposition 5.3.4. L&;B;C V be three
sets that partition V. Let D = AB anddener = z as the residual ofz given the mean.

We use the shorthandKw,w, = Kaa.

. 1. S 1.
logf (xj )/ érCchrc reKenrp érDKDDrD
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> —_
rCKCCrC = chﬂrcrco
c2C c2C
N X
reKepfp = Kedalcld
c2C d2D
X X X
= Kaclalc+ Koclblc
a2A c2C 2B c2C
roKoprp = Kdgorgrgo
d2D d%2D
X X X X X X
= Kaaolalao+ Kalalfpt Koy e
a2A a2 A a2A bh2B b2B 2B
_ 1X X X X
logf (xj )/ - K aa0a a0 Kaclalc
a2A a2A a2A c2C
1X X X X
> Kb o l'e Kpelple
b2B b%2B 2B c2C
1 X X 1X X
- ch‘)rcrcO " Kabrarb
2 2
c2C c®2C a2A b2B

Let a2 A and b2 B be variables. From the equation above, we see tha(x |
be split into a function of fag [ C and a function offbg [ C if and only if K, = 0. This
occurs if and only ifa and b are not adjacent in augg(G)). Furthermore, f (X |
split into a function of fag [ C and a function offbg [ C ifand onlyifa? bjC [P ].

Accordingly,a? bj C [P ]if and only if K, = 0.

Theorem 5.3.1. Let G be a directed MAG satisfying the LHMC. IfF 4 (G) is the family of
Lee and Hastie probability measures parameterized Byand F (1 (G) is the family of Lee

and Hastie probability measures constrained ByG), then

Flh(G) = Fu (1(G):

This follows from the LHMC, Theorem 3.3.4, and Lemmas 5.3.1 and 5.3.2.
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6.0 Scoring Criterion and Applications

In this chapter we discuss an application of the factorization derived in the Section 4.3.
In particular, we formulate a consistent probabilistic score with a closed-form solution for
exponential families whose independence models are described by directed MAGs|directed
ancestral graph Markov models. The families discussed in this dissertation are subfamilies of
conditional Gaussian probability measures and include the families of Gaussian probability
measures and multinomial probability measures.

The consistent probabilistic score developed in this chapter is formulated by employing
an approximation of the maximum log-likelihood with respect to a directed MAG in the well
known Bayesian information criterion (BIC). Notably, the BIC using the exact maximum
log-likelihood with respect to a directed MAG also provides a consistent probabilistic score,
however, the resulting score does not always have a closed-form solution for the families of
probability measures considered in this dissertation. Furthermore, calculation of the exact
maximum log-likelihood with respect to a MAG requires the development of family speci c
solvers|solvers have been developed for Gaussian and multinomial directed ancestral graph
Markov models [20, 30]. In contrast, the approximate maximum log-likelihood calculation
developed in this chapter only requires knowledge of the unconstrained probability density.
We compare the ability of the exact and approximate probabilistic scores to recover the
correct Markov equivalence class for Gaussian directed ancestral graph Markov models and
report run times.

Historically, methods that optimize a score for directed MAG Markov equivalence class
recovery have not seen much development due to theoretical complications. Instead, directed
MAG Markov equivalence class recovery has been done by the fast causal inference (FCI)
algorithm and its variants. These methods rely on a series of conditional independence
tests in order to learn a Markov equivalence class; this approach readily handles latent
variables. Accordingly, there is an abundance of FCI variants in the literature [57, 63, 80, 93].
However, in these approaches, errors made by conditional independence tests can propagate,

compound, and result in poor overall performance. Furthermore, these methods give no
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indication of how much better the best Markov equivalence class is compared to the next
best Markov equivalence class [78]. These issues are non-existent in methods that optimize
a score, which motivates their development.

Indeed, in the past ve years there has been an in ux of methods capable of learning
directed MAGs by optimizing a score. These methods include: a method that searches over
causal orders [8], a continuous optimization method [9], an integer programming method
[12], a method that scores conditional independence statements [41, 42], steepest ascent hill
climbing methods [56, 88], and a method that uses an independence-based subroutine to
determine local structures [89]. The majority of these methods use the exact score described
above and are therefore candidates for the approximate score. By switching out the exact
score for the approximate score, these methods gain exibility and computational e ciency.
Additionally, Appendix B.5 shows the similarity between one of these methods and our
score. We compare the probabilistic scores against the FCI algorithm and two of its variants
to compare the performance of a score based approach to a constraint based approach.

Ultimately, we design a local causal discovery algorithm called the ancestral probability
(AP) procedure, which estimates the posterior probabilities of ancestral relationships using
the probabilistic score developed in this chapter. The idea of local causal discovery, originally
formulated by Cooper as a constraint based approach and later extended to score based
methods by Mani [15, 52], focus on local subsets of variables in order to e ciently target
speci ¢ causal relationships. We evaluate the AP procedure on synthetically generated data
and a real data set measuring airborne pollutants, cardiovascular health, and respiratory

health.

6.1 Asymptotic Behavior of Directed MAG Curved Exponential Families

In this section, we formulate a consistent probabilistic score with a closed-form for curved
exponential families whose independence models are described by directed MAGs. We in-
vestigate the theoretical and empirical asymptotic behavior of curved exponential families

subject to the parametric constraints of independence models induced by directed MAG. We
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compare the ability of the probabilistic score to recover the correct Markov equivalence class

against the well-known FCI algorithm and two of it variants.

6.1.1 Theoretical Evaluation

Let G = (V;E) be a directed MAG. Furthermore, let X be a collection of random
variables indexed byV with probability measure P that admits density f (x j ) with

respect to dominating - nite product measure . Throughout this section, letP belong to

X .
C(Cixbnx) logf (x| )

i=1
where " 2 . Berks proved strong consistency for the maximum likelihood parameter

estimates of exponential families under mild regularity conditions [7]. If 2 g, then:

Therefore, by the continuous mapping theorem:
(e jxt Xy BT jxt X

Haughton provides a computationally e cient approximation of marginal likelihood for
curved exponential families called the Bayesian information criterion (BIC) using the maxi-
mum likelihood and a parameter penalty [36, 75]:

BIC(GxY i ;x™) (" jxt i x) J—ZGJ log(n)
and approximates the log marginal likelihood up to a constant under mild regularity condi-

tions:
Z 0 _
logPr(x!;::::x"j G) = log f(x'j)d ()

2 Gij=1
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Notably, P satis es the global Markov condition with respect to a directed MAGG if and

onlyif 2 . The BIC is a consistent score for model selection.

Proposition 6.1.1 (Proposition 1.2 [36]) Let G = (V;E) and @ = (V;E9 be directed
MAGs. Furthermore, let X be a collection of random variables indexed By with probability
measureP that admits densityf (x j ) with respect to dominating - nite product measure

f xl;:::;x”"df(xj ) and either 2 ( @n g)or( g\ @) withj @ <| g, then:

where @ cif 1(G 1(3.

The BIC has a closed-form solution for the curved exponential families when the pa-
rameter space is constrained by an independence model induced by a DAG. Unfortunately,
this is not always the case when the parameter space is constrained by an independence
model induced by a directed MAG. We develop an approximation for the BIC that has a
closed-form solution in both cases.

Let @=dom(G, ) and de ne an approximate log-likelihood using the factorization with
respect toG and

(XX 109 bipagoty (X' | ) unig(N) N
v =1 N pafo(b) i=1
b2 N

Accordingly, we de ne the following score which approximates the BIC:
j d

Bfc(G, ;xY;iiiix") AG('\'(Q)';jxl;:::;x”) Tlog(n):

which simpli es to BIC if Gis a DAG and has nice asymptotic properties.

Proposition 6.1.2. Let G=(V;E) and @ = (V;EY be directed MAGs and and °be total
orders consistent withG and G respectively. Furthermore, letX be a collection of random
variables indexed by with probability measureP that admits densityf (x j ) with respect

to dominating - nite product measure .
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If xL:oxn ™ f(xj Yand 2 @n g then:

n) _( PUN(G)) mp .

If x4 o0 x" "df(Xj Yand 2 g\ @withj g <] gj then:
lim —— Bic(G® ®xL:iix") Bfo(G xbinxn) = 91 ol
ni1 Iogn 2
Proof. Let G=dom(G, ). If x%:::::x" ™ f(xj )and 2 @n g then:
Iilrn% Bfc(& Oxi:iiix")  Bic(G xtiiiiix)
n!
- lf\mle- ..... n ; 1a mle ; y1..... n J@JJ Gj
=lm ORI im T (T, T ) lim = log(m)
=(prv)) Mp (P Mo PUNéG))> Mmpe
:( PUNEZ;))>mP:
If x%xn " f(xj Jand 2 g\ ewith| ¢ <| o then:
lim Bfc(& %x*:::::x") BfS(G, ;x*::iiiix")
n'l logn :
— 1 ~(Mmle ; ,1..... n LANZA 111 =S . nI JG)JJ Gj
= lim logn Con I x55x") (e J X755 111X) — 5
_ld il
—
O
The approximate BIC is a consistent score for model selection.
Corollary 6.1.1. Let G=(V;E) and @=(V;E9 be directed MAGs and and ©°be total

orders consistent withG and G respectively. Furthermore, letX be a collection of random

variables indexed by with probability measureP that admits densityf (x j ) with respect

to dominating - nite product measure . If x%;::::x" " f(xj ) and either 2 ( @n o)

or ( g\ @ withj o <j g, then:
Ii{n Pr(Bfc(G, ;x;:::i:x") < Bfc(&@ %x:iiix") =1
n!

where @ cif 1(Q 1(3.
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Proof. The proof directly follows from Proposition 6.1.2. m

In what follows, we reason about the asymptotic properties of the approximate BIC and

its relation to the marginal likelihood. We rst note the following result.

Proposition 6.1.3 (Theorem 1 [18]) Let G=(V;E) be a directed MAG. Furthermore, let
X be a collection of random variables indexed by with probability measureP that admits
density f (x j ) with respect to dominating - nite product measure . If x*;:::;x" i (X ]
), then:
Q " #
LN () z f(xj )

"2 Gn _ . . L
nl.'{n log T nI!llm nAlznfG szlog — 0P (x) + Op(n?)

R h
whereinfr, . log f(XJA; dP (x)=0 ifand only if 2 .

Theorem 6.1.1. Let G=(V;E) and @= (V;EY be directed MAGs and and °be total
orders consistent withG and G respectively. Furthermore, letX be a collection of random
variables indexed by with probability measureP that admits densityf (x j ) with respect
to dominating - nite product measure .

If xL:oxn ™ f(xj )and 2 g, then:
BfC(G; ;x;:::;x™) =BIC( G;x%;:::;x") almost surely

If xL:oxn ™ f(xj Yand 2 @n g then:

_ Pr(x%;::;x"jG)  expBic(G  xiiiix")
nil expBfC(@ °oxL;:::;xn)

Proof. If 2 &, then BIC(G; :x%:::::x") = BIC( G x%;:::; ;X") almost surely by the
continuous mapping theorem and strong consistency of the maximum likelihood estimate. If

2 @n g then:

lim lo
n ° e>|<,PB1\C(G°, Ox1;:ii;xn) i
max Pr(x;::::x"j G);expBfC(G, ;xi::ii;xM)
lim log
nil expB1b(G0 OxL:iiiixM)
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follows from Proposition 6.1.3. O

Accordingly, the BIC and approximate BIC are equal almost surely when the probability
measure is Markov with respect to the directed MAG. Furthermore, the di erence between
the log marginal likelihood and approximate BIC tends towards zero exponentially when
the probability measure is not Markov with respect to the directed MAG relative to the

approximate BIC for a directed MAG that is Markov with respect to the probability measure.

6.1.2 Empirical Evaluation

We supplement the theoretical evaluation with an empirical evaluation on synthetic data

simulated from Gaussian densities as follows:

Algorithm 6: Simulate (G, n)
Input: directed MAG: G, number of instances:n
Output: data: x%;:::x"

1 repeat
( Uniform[ 0:7; 0:3][ [0:3;0:7] ifa$ bin G
2 =( ! 4) wWhere! 4 Uniform [1:0; 3:0] ifi=jinG ;
0 otherwise
3 until IS positive-de nite;
4B =( u)where u l(.)Jnlform[ 0:7; 0:3][ [0:3;0:7] gtaerwti)slg G |

x1;:::x"  Gaussian(@ ;n);

o u

We compare our log-likelihood approximation against the maximum log-likelihood. The
maximum log-likelihood is calculated using an R implementation of the iterative condi-
tional tting (ICF) procedure: https://CRAN.R-project.org/package=ggm [20]. Notably,
ICF optimizes the likelihood for curved exponential families constrained MAG independence
models, however, this space is not guaranteed to be convex. Accordingly, ICF does not

necessarily converge to the MLE|in practice rarely converges to something other than then
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MLE [21]. Furthermore, we are using a general implementation of ICF and not one that
was designed to be e cient in this scenario. For comparison purposes, the approximate
and exact negative log-likelihoods are shifted so that their smallest values are equal to 1.
Notably, the smallest log-likelihoods always correspond to the saturated model, which is the
same for both the approximate and exact methods. Accordingly, both methods are shifted
by the same amount. The shifted negative log-likelihoods are compared on a log scale and
each equivalence class is marked according to whether or not it is Markov with respect to
the probability measure. Additional comparisons are given in Appendix B.6.

We useBfC to exhaustively rank all directed MAG Markov equivalence classes. His-
tograms show the distribution of the MEC of the data generating graph in the ranking.
That is, each bin represents the number of times the MEC of the true graph ranked ac-
cording to the number associated with the bin. Notably, there are 248 possible positions in
the ranking for the four-variable case and 24,259 possible positions in the ranking for the
ve-variable case. Accordingly, we enumerate all possible positions in the ranking on a log
scale. Histograms for the exact BIC are given in Appendix B.7.

Finally, three causal discovery algorithms, FCI [80, 93], FCI max [63], and GFCI [57],
were applied to the same data with several standard parameter settings for comparison. The
reported number for each algorithm is the proportion of times that the Markov equivalence
class of the true graph was returned; the numbers may be directly compared to the rst bin

of the corresponding histogram.

FCI is a two stage search algorithm that attempts to recover the maximally informative
PAG for a directed MAG from data using tests of conditional independence. The rst
stage starts with a completely connected graph and uses tests to determine which adja-
cencies to remove from the PAG. The second stage uses tests to determine invariant edge
marks among the graphs in the equivalence class and orients them in the PAG [80, 93].
See Algorithm 11 for details. We use Fisher's Z test with alpha levels of 0.01 and 0.001
for testing conditional independence.

FClmax Uses a maximum probability-based search technique in the edge orientation stage
of FCI to determine which conditioning sets of variables are most likely to provide cor-

rect conditional independence statements. This approach has been shown to improve
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performance, but requires signi cantly more tests [63]. We use Fisher's Z test with alpha
levels of 0.01 and 0.001 for testing conditional independence.

GFCI optimizes a probabilistic score over DAGs using a greedy hill climbing approach
and then runs FCI using the maximal DAG as a starting point rather than a completely
connected graph [57]. We use BIC as a probabilistic score and Fisher's Z test with alpha
levels of 0.01 and 0.001 for testing conditional independence. GEQkes standard BIC

and GFCI, using a variant of BIC where the parameter penalty has been doubled.

For all experiments, we simulate data sets of 500, 5,000 and 50,000 instances. We run
experiments for 7 prespecied graphs, 4 of which have 4 vertices and 3 of which have 5
vertices, and random graphs. The random graph cases include graphs with 4 vertices and
between 0 and 3 edges, graphs with 4 vertices and between 4 and 6 edge, graphs with 5
vertices and between 0 and 5 edges, and graphs with 5 vertices and between 6 and 10 edges.
For each case, we run 1,000 repetitions. Each repetition has a unique parameterization
and in the random graph cases, have unique graphs as well|barring random repeats. All

experiments were run on a system with the following hardware:

Memory: 7.7 GiB
Processor: Inteé? Core™ i5-5200U CPU @ 2.20GHz 4

We perform paired z-tests to give an indication for whether the di erences in performance
are real. Statistical signi cance at an alpha level of 0.05 is reported as either an overline if
BfC is better or an underline if the alternative method is better. Note that there are no
reported cases wher8{C and BIC are statistically signi cant at an alpha level of 0.05. In
general, we nd that the approximation for BIC performs well with low sample sizes and

performs favorably compared to the other algorithms.
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Directed MAG

Negative Log-likelihood

MEC Recovery

BIC | BfC FCI FCl max GFCI, GFCl,
-level - - 0.01 | 0.001| 0.01 | 0.001| 0.01 | 0.001| 0.01 | 0.001
n=500 | 0.472| 0.464| 0:087| 0:02 | 0:265| 0:202| 0.617| 0.617| 0.471| 0.471
n =5,000 | 0.866| 0.864| 0:669 | 0:584 | 0:784 | 0:773| 0.927| 0.929| 0.926| 0.926
n = 50,000 | 0.962| 0.961| 0:866 | 0:864 | 0:921| 0:935| 0.981| 0.981| 0.979| 0.979

Figure 6.1: An evaluation of the approximate log-likelihood and BIC for the speci ed directed
MAG with n = f50Q 5;00Q 50,000y. The approximate and exact shifted negative log-
likelihoods are compared for a random parameterization. The approximate BIC ranking
of the data generating MEC amongst all MECs is shown using histograms. The rate of
recovery for the data generating MEC given by the highest scoring approximate BIC score
is compared against several other state-of-the-art algorithms. Statistical signi cance at an
alpha level of 0.05 is reported as either an overline BC is better or an underline if the
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Figure 6.1 the prespeci ed graph is the simplest example showing that there may be no
total order over the districts of a MAG. Notably, the prespeci ed graph is Markov equivalent
to a DAG which perhaps explains the performance of GFCI|GFCI reduces to a state-of-the-
art score based procedure in this case. The approximate log-likelihood closely aligns with
the exact log-likelihood with clear separation of Markov versus not Markov as! 1 ; the
approximate BIC performs nearly identically to BIC and consistently ranks the correct MEC
in the top 10 with the ranking converging to a point-mass in the rst binasn!1 ; the
top ranked approximate BIC model performs worse than GFCI, but better than the other

methods in MEC recovery.
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Directed MAG

Negative Log-likelihood

MEC Recovery

BIC | Bftc FCI FCl max GFClI, GFCl,
-level - - 0.01 | 0.001| 0.01 | 0.001| 0.01 | 0.001| 0.01 | 0.001
n=500 | 0.749| 0.749| 0.862| 0.755| 0:698 | 0:621| 0:37 | 0:345| 0:16 | O:161
n =5,000 | 0.967| 0.966| 0.986| 0.998| 0.966| 0.978| 0:922 | 0:927 | 0:829| 0:83
n =50,000| 0.997| 0.997| 0:988| 1.0 | 0:988| 1.0 | 0.995| 1.0 | 0.994| 0.999

Figure 6.2: An evaluation of the approximate log-likelihood and BIC for the speci ed directed
MAG with n = f50Q 5;000 50,00Qy. Statistical signi cance at an alpha level of 0.05 is
reported as either an overline iBfC is better or an underline if the alternative method is

better.

Figure 6.2 the prespeci ed graph is a MAG from the simplest MEC that does not contain

a DAG in graphs with four vertices. The approximate log-likelihood closely aligns with the
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exact log-likelihood with clear separation of Markov versus not Markov as ! 1 ; the
approximate BIC performs nearly identically to BIC and consistently ranks the correct MEC
in the top 10 with the ranking converging to a point-mass in the rstbinasn!1 ; the top
ranked approximate BIC model performs worse than FCI, about the same as R}, and

better than GFCI with low sample sizes and about the same otherwise in MEC recovery.
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Directed MAG

Negative Log-likelihood

MEC Recovery

BIC | BiC FCI FCl max GFCl, GFCl;
-level - - 0.01 | 0.001, 0.01 | 0.001| 0.01 | 0.001| 0.01 | 0.001
n=500 | 0.392| 0.39 | 0:037| 0:012 | 0:038 | 0:012| 0:081| 0:038 | 0:041| 0:024
n=5,000 | 0.764| 0.763| 0:348 | 0:247| 0:348 | 0:247 | 0:549| 0:49 | 0:499 | 0:466
n =50,000| 0.941| 0.943| 0:832| 0:787 | 0:832| 0:787 | 0:861 | 0:862 | 0:844 | 0:843

Figure 6.3: An evaluation of the approximate log-likelihood and BIC for the speci ed directed
MAG with n = f50Q 5;00Q 50,00Qy. Statistical signi cance at an alpha level of 0.05 is

reported as either an overline iBfC is better or an underline if the alternative method is

better.

Figure 6.3 the prespeci ed graph is the simplest example of a discriminating path in
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graphs with four vertices. The approximate log-likelihood closely aligns with the exact log-
likelihood with clear separation of Markov versus not Markov as ! 1 ; the approximate
BIC performs nearly identically to BIC and consistently ranks the correct MEC in the top
10 with the ranking converging to a point-mass in the rst binasn!1 ; the top ranked

approximate BIC model performs better than the other methods in MEC recovery.
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Directed MAG

Negative Log-likelihood

MEC Recovery

BIC | BfC FCI FCl max GFCI, GFCl,
-level - - 0.01 | 0.001| 0.01 | 0.001| 0.01 | 0.001| 0.01 | 0.001
n =500 | 0.354| 0.356| 0.843| 0.676| 0:337 | 0:281| 0:285| 0:253 | 0:172| 0:174

n =5,000 | 0.746| 0.749| 0.978| 0.997| 0:744| 0.75 | 0:568 | 0:578 | 0:501| 0:51

n = 50,000 | 0.928| 0.927| 0.985| 0.996| 0:92 | 0.927| 0:775| 0:779| 0:711| 0:715

Figure 6.4: An evaluation of the approximate log-likelihood and BIC for the speci ed directed
MAG with n = f50Q 5;00Q 50,00Qy. Statistical signi cance at an alpha level of 0.05 is
reported as either an overline iBfC is better or an underline if the alternative method is

better.
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In general, FCI tends to overestimate colliders and GFCI tends to underestimate colliders.
Figure 6.4 the prespeci ed graph is a bi-directed four-cycle, which perhaps explains the poor
performance of GFCI. The approximate log-likelihood closely aligns with the exact log-
likelihood with clear separation of Markov versus not Markov as ! 1 ; the approximate
BIC performs nearly identically to BIC and consistently ranks the correct MEC in the top
10 with the ranking converging to a point-mass in the rst binasn!1 ; the top ranked
approximate BIC model performs worse than FCI, about the same as Fgi, and better

than GFCI in MEC recovery.
Random Directed MAGs withjVj =4 and JEj 2 [0; 3]

MEC Recovery

BIC | Bftc FCI FCl max GFClI, GFCl,
-level - - 0.01 | 0.001| 0.01 | 0.001| 0.01 | 0.001| 0.01 | 0.001
n =500 0.81 | 0.809 94| 0:564 | 0.793| 0:732| 0:78 | 0:777| 0:704 | 0:704
n =5,000 | 0.977| 0.977 75| 0.983| 0:968 | 0.985| 0.973| 0.978| 0:947 | 0:947
n = 50,000 | 0.993| 0.993| 0:977 | 0.997| 0:977| 0.996| 0.993| 0.994| 0.996| 0.997

Figure 6.5: An evaluation of the approximate BIC for random directed MAGs with speci ed
edge ranges aneh = f50Q 5;000 50,000y. Statistical signi cance at an alpha level of 0.05
is reported as either an overline iBfC is better or an underline if the alternative method is

better.

Figure 6.5 the approximate BIC performs nearly identically to BIC and consistently

ranks the correct MEC in the top 10 with the ranking converging to a point-mass in the
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rstbinas n!1 ;the top ranked approximate BIC model performs better than the other
methods with low sample size and about the same otherwise in MEC recovery.

Random Directed MAGs withjVj =4 and JEj 2 [4; 6]

MEC Recovery

BIC | BfC FCI FClmax GFCl, GFCl,
-level - - | 0.01|0.001| 0.01 |0.001| 0.01 |0.001| 0.01 | 0.001
n=500 | 0.41 | 0.41 | 0:237| 0:125| 0:305| 0:226 | 0:153 | 0:194 | 0:238 | 0:147
n = 5,000 | 0.801| 0.803| 0:693 | 0:624 | 0:707 | 0:662 | 0:582 | 0:637 | 0:666 | 0:574
n = 50,000 | 0.941| 0.939| 0:875 | 0:861 | 0:873 | 0:867 | 0:851 | 0:863 | 0:864 | 0:851

Figure 6.6: An evaluation of the approximate BIC for random directed MAGs with speci ed
edge ranges anch = f50Q 5;000 50,000g. Statistical signi cance at an alpha level of 0.05
is reported as either an overline iBfC is better or an underline if the alternative method is

better.

Figure 6.6 the approximate BIC performs nearly identically to BIC and consistently
ranks the correct MEC in the top 10 with the ranking converging to a point-mass in the
rstbinas n!1 ;the top ranked approximate BIC model performs better than the other

methods in MEC recovery.
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BIC

Bfc

sample size

n = 500

n = 5,000

n = 50,000

n = 500

n = 5,000

n = 50,000

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5

Figure 6.6

Table 6.1: Mean run time for graphs (std in parentheses) with 4 vertices in seconds with two

0.65 (0.18)
0.57 (0.04)
0.58 (0.05)
0.56 (0.04)
0.55 (0.03)
0.57 (0.04)

0.65 (0.17)
0.57 (0.04)
0.58 (0.05)
0.56 (0.04)
0.54 (0.03)
0.57 (0.04)

0.65 (0.18)
0.56 (0.04)
0.58 (0.05)
0.56 (0.04)
0.54 (0.03)
0.57 (0.03)

0.01 (0.0)
0.01 (0.0)
0.01 (0.0)
0.01 (0.0)
0.01 (0.0)
0.01 (0.0)

0.01 (0.0)
0.01 (0.0)
0.01 (0.0)
0.01 (0.0)
0.01 (0.0)
0.01 (0.0)

0.01 (0.0)
0.01 (0.0)
0.01 (0.0)
0.01 (0.0)
0.01 (0.0)
0.01 (0.0)

decimal places of precision for BIC an&{C. Statistical signi cance at an alpha level of 0.05

is reported as either an overline iBfC is better or an underline if the alternative method is

better.

Takes approximately 5% of the run time or two orders of magnitude. As a point of

reference, the time to compute the sample covariance in these experiments generally took

between 2 and 5 milliseconds.
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BIC

Bfc

Directed MAG

Negative Log-likelihood

MEC Recovery

FCI

FCl max

GFClI,

GFCl,

repetitions

100

100 | 1,000

1,000

1,000

1,000

1,000

-level

0.01 | 0.001

0.01 | 0.001

0.01 | 0.001

0.01

0.001

n =500
n = 5,000
n = 50,000

0.49
0.91
1.0

0.47] 0.544
0.93| 0.932
1.0 | 0.985

0.836| 0.702
0.978| 0.999
0:975| 0.998

0:499 | 0:444
0.933| 0.948
0:975| 0.998

0:223| 0:213

0:08

0:08

0:779| 0:786
0.99 | 0.991

0:575
0.977

0:576
0.977

Figure 6.7: An evaluation of the approximate log-likelihood and BIC for the speci ed directed

MAG with n = f50Q 5;000 50,00Qy. Statistical signi cance at an alpha level of 0.05 is

reported as either an overline iBfC is better or an underline if the alternative method is

better.

Figure 6.7 the prespeci ed graph is a MAG from a MEC with ve vertices that does not
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contain a DAG. The approximate log-likelihood closely aligns with the exact log-likelihood
with clear separation of Markov versus not Markovams ! 1 ; the approximate BIC performs
nearly identically to BIC and consistently ranks the correct MEC in the top 10 with the
ranking converging to a point-mass in the rst binasn!1 ; the top ranked approximate
BIC model performs worse than FCI, about the same as Fgly, and better than GFCI with

low sample sizes and about the same otherwise in MEC recovery. In this case, FCI does well

because it is general biased towards bi-directed edges.
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BIC

Bfc

Directed MAG

Negative Log-likelihood

MEC Recovery

FCI

GFClI,

GFCl,

repetitions

100

100 | 1,000

1,000

1,000

1,000

1,000

-level

0.01 | 0.001

0.01 | 0.001

0.01

0.001

0.01

0.001

n =500
n = 5,000
n = 50,000

0.12
0.53
0.77

0.14| 0.138
0.54| 0.538
0.79] 0.804

0:006| 0.0

0:005| 0.0

0.0

0.0

0.0

0.0

0:052 | 0:028

0:048 | 0:028

0:041

0:029

0:032

0:02

0:307| 0:23

0:296 | 0:221

0:304

0:247

0:28

0:221

Figure 6.8: An evaluation of the approximate log-likelihood and BIC for the speci ed directed

MAG with n

= 500 5;000 50,000y. Statistical signi cance at an alpha level of 0.05 is

reported as either an overline iBfC is better or an underline if the alternative method is

better.
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Figure 6.8 the prespeci ed graph contains a discriminating path of length ve in graphs
with ve vertices. The approximate log-likelihood closely aligns with the exact log-likelihood
with poor separation of Markov versus not Markov, but tending towards good separation as
n!l ;the approximate BIC performs nearly identically to BIC and consistently ranks the
correct MEC in the top 100 with the ranking converging to a point-mass in the rst bin as

n'!l ;the top ranked approximate BIC model performs better than the other methods in
MEC
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