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Inducing Sets: A New Perspective for Ancestral Graph Markov Models

Bryan Andrews, PhD

University of Pittsburgh, 2022

Directed acyclic graphs (DAGs) and their corresponding Markov models have become

widely studied and applied in the fields of statistics and causality. The simple directed

structure of these models facilitates systematic learning procedures and provides an inter-

pretable representation for causal relationships. However, DAGs are ill-equipped to handle

latent variables without explicitly invoking them. This manifests as a lack of stability1 un-

der marginalization and conditioning and a disparity between statistically and causally valid

models. Meanwhile, latent confounding and selection effects occur with some regularity in

many domains. The family of maximal ancestral graphs (MAGs) extends the family of DAGs

by implicitly taking latent variables into account. In fact, the family of MAGs constitutes the

smallest superset of the family of DAGs that is stable under marginalization and condition-

ing. Accordingly, MAGs and their corresponding Markov models—ancestral graph Markov

models—provide a natural choice for statistical and causal modeling in systems with latent

confounding and selection effects.

In this work we introduce inducing sets as a new perspective for reasoning about ancestral

graph Markov models. In particular, we derive and study m-connecting sets which are a

special case of inducing sets and provide an alternative representation for MAGs. We show

that m-connecting sets admit a characterization of Markov equivalence for MAGs and a

factorization criterion equivalent to the global Markov property for directed MAGs. Using

the factorization criterion, we formulate a consistent probabilistic score with a closed-form

for the Markov models of directed MAGs. Ultimately, we design a local causal discovery

algorithm called the ancestral probability (AP) procedure which estimates the posterior

probabilities of ancestral relationships. We evaluate the AP procedure on synthetically

generated data and a real data set measuring airborne pollutants, cardiovascular health, and

respiratory health.

1A graphical family is stable under marginalization and conditioning if the corresponding set of induced
independence models is closed under marginalization and conditioning; see Section 3.4.
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2.0 Introduction

The formulation and analysis of causal models enables the study of causal relationships,

which has provided essential insights in many research areas such as economics, environmen-

tal science, and medicine. Randomized experiments where a hypothesized cause is manip-

ulated independently of a hypothesized e�ect are the gold standard for discovering causal

relationships. However, in many domains, these experiments are often infeasible, unethical,

or prohibitively expensive. Consequently, there is a growing interest in developing methods

for causal inference and discovery without the need for experimentation|methods that work

with any available experimental data and the plethora of non-experimental data. One such

approach utilizes the dual interpretation of graphical Markov models as statistical and causal

models.

2.1 Motivation

Graphical Markov models are probabilistic models that leverage conditional indepen-

dence for modeling and inference. In a graphical Markov model, a graph induces an inde-

pendence model comprised of conditional independence statements represented in a prob-

ability measure|vertices correspond to random variables and absent edges coincide with

conditional independence statements. The independence model can be characterized by a

graphical separation criterion in conjunction with the global Markov property or a prob-

abilistic factorization criterion|both characterizations may be exploited for modeling and

inference. The notions of a conditional independence statement and an independence model

are made rigorous in Section 3.1.

In recent years, graphical Markov models have become widely applied in the �elds of

statistics and causality [35, 45, 46, 50]. At the forefront of these methods are Bayesian net-

works, whose independence models are induced by directed acyclic graphs (DAGs) [16, 44,

58]. The popularity of Bayesian networks is in part due to their comprehensive theory, which
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includes thed-separation criterion and the recursive factorization criterion. Thed-separation

criterion in conjunction with the DAG component of a Bayesian network graphically en-

codes conditional independence statements represented in the probabilistic component of

the Bayesian network. Equivalently, the recursive factorization criterion in conjunction with

the DAG component of a Bayesian network algebraically encodes conditional independence

statements represented in the probabilistic component of the Bayesian network. Both char-

acterizations of the independence model induced by the DAG component of a Bayesian net-

work facilitate systematic learning procedures. Indeed, there are an abundance of algorithms

capable of learning these models from data [13, 14, 64, 86].

Figure 2.1: A causal DAG representing a randomized experiment for an ine�ective drug with

unpleasant side e�ects. Colored vertices represent selection e�ects [65].

As an example, suppose the DAG depicted in Figure 2.1 induces an independence model

comprised of conditional independence statements represented in a probability measureP.

Using the d-separation criterion and the global Markov property, the following conditional

independence statements are represented inP and graphically encoded by the DAG:

r ?? f e; s; tg j h [ P ] s ?? f h; r; t g j e [ P ] t ?? f h; r g [ P ]:

This notation is de�ned in Section 3.1 and attributed to Dawid [17]. Furthermore, the

recursive factorization induced by the DAG algebraically encodes the same set of condi-

tional independence statements. The recursive factorization criterion is characterized by the

4



equivalence of the density admitted by a probability measure with the product of conditional

densities de�ned as a variable conditioned on its parents in the graph. IfP is dominated by a

� -�nite product measure � and admits densityf (x), then the following recursive factorization

holds almost everywhere:

f (x) = f sje(x) f r jh(x) f ejht (x) f h(x) f t (x) for � -a.e.x 2 X:

This notation is de�ned in Section 3.1.

Causal assumptions connect the structural component of a graphical Markov model to

causal relationships [79]. These assumptions can be interpreted as an appeal to Occam's

razor|if the true causal model is contained within a family of graphs, then the causal

model is a graph that encodes only conditional independence statements represented in the

probability measure whose corresponding Markov model has minimal complexity. A causal

Bayesian network is a Bayesian network whose independence model is induced by a DAG,

whose edges express all the causal relationships and only the causal relationships. These

models admit the dual interpretation of graphical Markov models as statistical and causal

models. Causal Bayesian networks provide researchers with a means to calculate the e�ects

of intervention without the need for experimentation [51, 59] and have been widely applied

in many domains [22, 40, 49, 72, 77].

Unfortunately, the simplicity and theoretical convenience of DAGs comes at the cost of

representation power. The set of independence models induced by the family of DAGs is

insu�cient to represent systems with latent variables without explicitly invoking them. This

limitation manifests statistically as a lack of stability under marginalization and condition-

ing, and causally as a disparity between statistically and causally valid models. Stability

under marginalization and conditioning is discussed in Section 3.4. To emphasize this point,

consider the following example taken from [65] and attributed to Chris Meek:

The graph [Figure 2.1] represents a randomized [experiment] of an ine�ective drug with

unpleasant side-e�ects. Patients are randomly assigned to the treatment or control group

[ t ]. Those in the treatment group su�er unpleasant side-e�ects [e], the severity of which is

inuenced by the patient's general level of health [h ], with sicker patients su�ering worse

side-e�ects. Those patients who su�er su�ciently severe side-e�ects are likely to drop out
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of the study. The selection variable [s ] records whether or not a patient remains in the

study, thus for all those remaining in the study [ s = stay in ]. Since unhealthy patients who

are taking the drug are more likely to drop out, those patients in the treatment group who

remain in the study tend to be healthier than those in the control group. Finally health

status [h ] inuences how rapidly the patient recovers [r ] [65, p.234].

In this example, na•�vely comparing the recovery times of the patients remaining in the

treatment group against the patients in the control group leads to the incorrect conclusion

that the drug is bene�cial. The perceived e�ect is due to the bias towards a good general

level of health in the treatment group. Since the remaining patients in the treatment group

tend to be healthier, they also tend to recover more quickly. Furthermore, if the patient's

general level of health is allowed to act as a latent confounder, then researchers will be unable

to identify this relationship as spurious.

Figure 2.2: DAGs representing a randomized experiment for an ine�ective drug with un-

pleasant side e�ects: (i ) a DAG with a valid casual interpretation, but an invalid statistical

interpretation; ( ii, iii ) DAGs with valid statistical interpretations, but invalid causal inter-

pretations.

Figure 2.2 depicts all possible DAGs over the variables for treatment and recovery|the

variables for side e�ect, general health, and selection are latent. The DAG in (i ) is the only

valid causal model; it expresses the fact that neither treatment nor recovery cause the other.

However, it also implies that treatment and recovery are independent of each other which is

false. The DAGs in (ii, iii ) correctly imply the dependence between treatment and recovery,

but express incorrect causal relationships. Consequently, the family of DAGs is inadequate

to represent this example without explicitly invoking the latent variables.
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The ubiquity of latent variables necessitates methods capable of dealing with their sub-

tleties. DAGs can model latent variables if the latent variables are explicitly invoked and

treated as missing data. However, this approach results in a myriad of problems: there are

an in�nite number of DAGs with latent variables to consider for each independence model; a

DAG with latent variables can encode non-conditional independence constraints; the param-

eters of a Bayesian network corresponding to a DAG with latent variables are often not fully

identi�able; and assumptions about latent variables of a DAG and their parameterization in

the corresponding Bayesian network can have a profound impact on modeling and inference

including a loss of model smoothness [32, 33, 68, 76, 90].

A more elegant approach is to use a graphical family that is stable under marginalization

and conditioning. These families are usually comprised of mixed graphs which are named

for the mixture of edge types that they contain: directed, bi-directed, and undirected. Max-

imal ancestral graphs (MAGs) make up one such family. A thorough treatment of graphical

families stable under marginalization and conditioning is given by [73] and discussed in Sec-

tion 3.4. The set of independence models induced by the family of MAGs is a superset of

the set of independence models induced by DAGs. Accordingly, MAGs can represent all

(and only) independence models obtained through marginalization and conditioning of the

independence models induced by DAGs [70]. This is of interest because graphical Markov

models can represent latent confounding as the marginalization of latent variables and selec-

tion e�ects as the conditioning of latent variables|conditioning on latent variables applies

a selection e�ect [4, 79].
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Figure 2.3: Marginalization: (i ) a DAG with vertices f e; h; r; s; tg; (ii ) a MAG corresponding

to the marginalization of h. Grayed vertices represent latent variables to be marginalized.

Figure 2.3 depicts an example of marginalization in a DAG where the grayed vertices of

the DAG in ( i ) are the variables to be marginalized|the MAG in ( ii ) is the resulting graph.

The marginalization of h induces a dependence betweene and r which corresponds to the

bi-directed edge between them. Generally, latent confounding is represented with bi-directed

edges.

Figure 2.4: Conditioning: (i ) a DAG with vertices f e; h; r; s; tg; (ii ) a MAG corresponding

to the marginalization of e and conditioning ofs. Grayed vertices represent latent variables

to be marginalized and colored vertices represent latent variables to be conditioned on.

Figure 2.4 depicts an example of conditioning in a DAG where the grayed vertices of

the DAG in ( i ) are the variables to be marginalized and the colored vertices of the DAG
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in (ii ) are the variables to be conditioned on|the MAG in ( ii ) is the resulting graph. The

conditioning of s induces a dependence betweenh and t which corresponds to the undirected

edge between them. Generally, selection e�ects are represented with undirected edges.

Figure 2.5: Marginalization and conditioning: (i ) a DAG with vertices f e; h; r; s; tg; (ii ) a

MAG corresponding to the marginalization ofh and e and conditioning ofs. Grayed vertices

represent latent variables to be marginalized and colored vertices represent latent variables

to be conditioned on.

Figure 2.5 depicts an example of marginalization and conditioning in a DAG where the

grayed vertices of the DAG in (i ) are the variables to be marginalized and the colored vertices

of the DAG in (ii ) are the variables to be conditioned on|the MAG in ( ii ) is the resulting

graph. The marginalization oft and conditioning of s induces a dependence betweenr and

t which corresponds to the directed edge between them. The MAG in (ii ) is statistically

and causally valid, however, the causal interpretation of the edges of a MAG is slightly

di�erent from the causal interpretation of the edges of a DAG. The MAG in (ii ) expresses

that the variable for treatment is either a causal ancestor of the variable for recovery or a

causal ancestor of a selection variable. In actuality, treatment is an ancestor of the selection

variable. The general causal interpretation of MAGs is given in Section 3.3.

Ancestral graph Markov models are graphical Markov models whose independence mod-

els are induced by MAGs. Similar to Bayesian networks, Ancestral graph Markov models

can sometimes provide researchers with a means to calculate the e�ects of intervention with-

out the need for experimentation [62, 92]. Additionally, ancestral graph Markov models are
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equipped with the m-separation criterion [70, 66] and the heads and tails factorization cri-

terion [67, 30]. The heads and tails factorization criterion consists of multiple factorizations

for marginal densities admitted by a probability measure and only applies to ancestral graph

Markov models whose independence models are induced by directed MAGs|MAGs with no

undirected edges. The factorization criterion can be extended to all ancestral graph Markov

models by factoring the part of the model corresponding to the undirected section of the

MAG using the factorization criterion for undirected graph Markov models. These charac-

terizations may be exploited for modeling and inference, but the system of factorizations

given by the heads and tails factorization criterion does not readily admit a closed-form

objective function for model selection|a closed-form objective function for the model selec-

tion of MAGs is a key topic discussed in this dissertation. MAGs and their properties are

discussed in Section 3.3.

Graphs are not the only mathematical object used to encode conditional independence.

Imsetal Markov models use structural imsets, short for integer-valued multiset, rather than

graphs to encode the conditional independence statements represented in a probability mea-

sure. Structural imsets are equipped with an analogue to graphical separation criteria and

a product formula which can be used as a factorization criterion. Additionally, the family

of structural imsets induces a richer set of independence models [83]. Unfortunately, they

lack an intuitive interpretation and as a consequently their literature is largely theoretical.

Structural imsets and their properties are discussed in Section 3.5.

T ? f hg f rg f tg f h; r g f h; tg f r; t g f h; r; t g

u(T)
h

0 1 0 0 � 1 � 1 0 1
i >

Figure 2.6: A structural imset which induced the same independence model as the MAG in

Figure 2.4 (ii ).

Figure 2.6 depicts a structural imset which induced the same independence model as the
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MAG in Figure 2.4 (ii ). The imset is a column vector whose elements correspond to subsets

of variables, but may also be thought of as a functionu : P(f h; r; t g) ! Z mapping the

power set off h; r; t g to the integers. This representation has theoretical merits, but does

not lend itself to an intuitive interpretation, causal or otherwise. Nevertheless, structural

imsets have been successfully applied as a framework for DAG learning [37, 84, 85, 86]. To

our knowledge, an analogous application for learning MAGs does not exist and is a key topic

discussed in this dissertation.

This dissertation introduces inducing sets as a new perspective for reasoning about ances-

tral graph Markov models. Using this new perspective, we give an alternative representation

for MAGs called m-connecting sets and provide a novel factorization grounded in the the-

ory of structural imsets. Accordingly, we utilize preexisting theoretical machinery from the

literature of MAGs graphs and structural imsets and form new connections between them

in the process. To demonstrate the e�ectiveness of this new perspective, we show how the

factorization admits a closed-form estimate of the posterior probability of a model; this al-

lows ancestral graph Markov models to be compared, ranked, and averaged. Ultimately, we

develop and evaluate the ancestral probability (AP) procedure for computing the posterior

probabilities of ancestral relations among pairs of variables.

2.2 Outline

This dissertation is organized as follows. Chapter 3 introduces general background in-

formation, concepts useful for the study of ancestral graphs, and alternative independence

models. Chapter 4 introduces inducing sets andm-connecting sets as a special case of in-

ducing sets. Additionally, we review related prior work and we prove that the independence

models induced by MAGs may be characterized bym-connecting sets and their factoriza-

tion. Chapter 5 discusses curved exponential families and derives conditions under which

Lee and Hastie probability measures are curved exponential families subject to an indepen-

dence model induced by a directed MAG. Chapter 6 develops and evaluates a probabilistic

score and the ancestral probability (AP) procedure, which performs Bayesian local causal
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discovery on directed MAGs. An implementation of the AP algorithm is run on synthetically

generated data and a real data set measuring airborne pollutants, cardiovascular health, and

respiratory health. Lastly, the dissertation closes with Chapter 7 which summarizes and

discusses the main results and provides suggestions for future work.
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3.0 Background and Related Work

Throughout this dissertation we use the following conventions: upper case symbols,

such asA and B, denote sets; juxtapositions of upper case letters, such asAB = A [ B ,

denote unions; and lower case symbols, such asa and b, denote set elements or singletons.

Occasionally in �gures and subscripts the juxtaposition of lower case letters, such asab =

f a; bg, denote sets. With a few exceptions that will be noted later, upper case letter in a

sans-serif font, such asA and B denote sets of sets.

The symbolV denotes a non-empty set of variables|or a set of vertices in the graphical

context|that indexes a non-empty �nite collection of random variables (X a)a2 V with sample

spaces (Xa)a2 V . These spaces may be �nite discrete spaces or �nite-dimensional continuous

spaces. Given a subsetA � V , de�ne X A � (X a)a2 A and XA � � a2 A (Xa). Furthermore,

denote the �xed elements ofXA by xA . Lastly, let X V � X , XV � X, and xV � x.

The following symbols are reserved for sets of numbers:R denotes the real numbers,

Q denotes the rational numbers, andZ denotes the integers. Furthermore,Q+ denotes the

non-negative rational numbers, andZ+ denotes the non-negative integers. The symbol is

reserved forSjnj
++ is the set ofjnj � j nj symmetric positive de�nite matrices. The symbol?

is reserved for the empty set and the symbolP is reserved for the power set. Furthermore,

the subset of the power set bounded byl; u 2 Z+ (l � u) is de�ned as follows:

Pu
l (V) � f T � V ; l � j T j � ug:

Lastly, let Pl (V) � PjV j
l (V) and Pu(V) � Pu

0(V).

3.1 Conditional Independence

Central to this dissertation are mathematical objects that represent sets of conditional

independence statements, called independence models. Conditional independence usually

refers to probabilistic conditional independence, that is, conditional independence state-
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ments that hold in a probability measure. In this dissertation we use the term conditional

independence statement more generally, for instance, conditional independence statements

that hold in a graph correspond to separations in that graph; see Section 3.3.2. Mathematical

objects that induce independence models include but are not limited to probability measures,

mixed graphs, and structural imsets. Let the symbolO denote an abstract mathematical

object that represents conditional independence statements.

De�nition (conditional independence statement). Let V be a non-empty set of variables

with disjoint subsets A; B; C � V. A conditional independence statementover V is a state-

ment of the form \ A is conditionally independent ofB given C." Every conditional inde-

pendence statement overV corresponds to a disjoint triple of the formhA; B j Ci and should

be understood with respect to a mathematical object. For a mathematical objectO over V,

if hA; B j Ci is represented inO, then we write A ?? B j C [ O].

The punctuation of a triple anticipates the intended role for each set. The two former

components are independent sets while the third component, written after the vertical bar, is

the conditioning set. The corresponding conditional independence statement iselementary

when the two former sets are singletons andsemi-elementaryotherwise. The set of all

disjoint triples over V is denoted byT(V). Formally, an independence model is de�ned as

follows.

De�nition (independence model). Let V be a non-empty set of variables andO be a mathe-

matical object overV. The independence modelI (O) induced by O is a set of disjoint triples

de�ned as follows:

I (O) � fh A; B j Ci 2 T(V) ; A ?? B j C [ O]g:

Let V be a non-empty set of variables andO be a mathematical object overV. Classes

of independence models may be characterized axiomatically as follows. The independence

model I (O) is called asemi-graphoidwhenever conditions (i - v ) hold for every collection of

disjoint sets A; B; C; D � V:

i. triviality A ?? ? j C [ O];

ii. symmetry A ?? B j C [ O] ) B ?? A j C [ O];
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iii. decomposition A ?? BD j C [ O] ) A ?? D j C [ O];

iv. weak union A ?? BD j C [ O] ) A ?? B j CD [ O];

v. contraction A ?? B j CD [ O] and A ?? D j C [ O] ) A ?? BD j C [ O].

Furthermore, I (O) is called agraphoid whenever conditions (i - vi ) hold for every collection

of disjoint setsA; B; C; D � V:

vi. intersection A ?? B j CD [ O] and A ?? D j BC [ O] ) A ?? BD j C [ O].

Lastly, I (O) is called acompositional graphoidwhenever conditions (i - vii ) hold for every

collection of disjoint setsA; B; C; D � V:

vii. composition A ?? B j C [ O] and A ?? D j C [ O] ) A ?? BD j C [ O].

3.1.1 Probabilistic Conditional Independence

The most common independence models are induced by probability measures. LetV

be a non-empty set of variables with disjoint subsetsA; B; C � V. Furthermore, let X be

a collection of random variables indexed byV with probability measure P dominated by

� -�nite product measure � . We sayhA; B j Ci is represented inP and write A ?? B j C [ P ]

if for every measurable subsetT � XA :

P(X A 2 T j X BC = xBC ) = P(X A 2 T j X C = xC ) for P-a.e.x 2 X: (3.1)

In Equation 3.1, P(X A 2 T j X BC ) does not depend on the value ofB . Intuitively, this

conveys thatB provides no additional information aboutA when the value ofC is known.

Probabilistic conditional independence is a mathematical formalization of this notion of

irrelevance [17, 46]. IfP admits density f (x) with respect to � , then we may de�ne the

following equivalent de�nitions of conditional independence:

A ?? B j C [ P ] , f AjBC (x) = f AjC (x) for P-a.e.x 2 X (3.2)

and for some real-valued functionsg : XAC ! R and h : XBC ! R

A ?? B j C [ P ] , f ABC (x) = g(x) h(x) for P-a.e.x 2 X: (3.3)
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The independence model induced byP is denoted byI (P). Furthermore, every independence

model de�ned by a probability measure is a semi-graphoid.

Proposition 3.1.1 (Lemma 2.1 [83]). Let P be a probability measure. The induced inde-

pendence modelI (P) is a semi-graphoid.

3.2 Partially Ordered Sets

The notion of a partially ordered set provides a principled way to order the vertices of

an ancestral graph and is required to de�ne the M•obius inversion. Ancestral graphs are

discussed in Section 3.3 and the importance of the M•obius inversion becomes apparent when

we are able to understand logf as a linear combination of interaction information rates; see

Chapter 4 for details. Unless otherwise speci�ed, the symbolP denotes a �nite partially

ordered set. Furthermore, the elements ofP may be sets|hence our choice of notation. In

this dissertation all partially ordered sets are �nite.

De�nition (partial order). A partial order is a binary relation � over a setP such that

� is reexive, antisymmetric, and transitive. That is, for every collection of mathematical

objectsA; B; C 2 P:

i. reexivity A � A;

ii. antisymmetry A � B and B � A ) A = B;

iii. transitivity A � B and B � C ) A � C.

De�nition (partially ordered set). A partially ordered set, poset for short, is a setP with a

partial order � . A pair of mathematical objectsA; B 2 P arecomparableif A � B or B � A

and incomparableotherwise. If every pair of elements is comparable, then� is a total order

and P is a totally ordered set.

The canonical poset used throughout this dissertation is de�ned by the power set of a

non-empty set of variablesV ordered by inclusion:

A � B , A � B for all A; B � V:
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Figure 3.1 depicts the Hasse diagram for the posetP = P(f a; b; cg) ordered by inclusion.

Vertices represent the elements ofP where vertices appearing higher in the diagram have

greater cardinality than vertices appearing lower in the diagram and edges connect sets to

their maximal subsets|or minimal supersets.

Figure 3.1: The Hasse diagram for a posetP = P(f a; b; cg) ordered by inclusion.

Let P be a poset with partial order � and consider a pair of mathematical objects

A; B 2 P. The join of A and B, denoted A _ B, is their supremum. Similarly, the meet

of A and B, denoted A ^ B, is their in�mum. In general, the join and meet of a pair of

mathematical objects might not exist. Figure 3.1 illustrates the concepts of join and meet.

In the poset:

� f a; b; cg and f a; cg have joinf a; b; cg_f a; cg = f a; b; cg and meetf a; b; cg^f a; cg = f a; cg;

� f a; bg and f b; cg have join f a; bg _ f b; cg = f a; b; cg and meetf a; bg ^ f b; cg = f bg;

� f ag and f cg have join f ag _ f cg = f a; cg and meetf ag ^ f cg = ? .

In the poset de�ned by the power set of a non-empty set of variables ordered by inclusion,

join and meet behave identically to union and intersection respectively.

In general a Hasse diagram graphically represents a �nite posets where vertices corre-

spond to elements of the poset where vertices appearing higher in the diagram appear later
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in the partial order. Edges connect vertices to their maximal non-trivial join|or minimal

non-trivial meet.

De�nition (lattice). Let P be a poset with partial order� . If every pair of elementsa; b2 P

has a unique joina _ b2 P and meeta ^ b2 P, then P is a lattice.

The poset ordered by inclusion in Figure 3.1 illustrates the concept of a lattice. Further-

more, any totally ordered set is a lattice. LetP be a lattice with partial order � . We adopt

the notation for ceiling and oor to denote the join and meet of a subsetA � P in a lattice:

dAe� �
_

a2 A

a bAc� �
^

a2 A

a

If � is a total order, then these operations return the �rst and last elements of the set

respectively. If the partial order is not speci�ed, we adopt the order for the canonical poset.

Figure 3.1 illustrates the concepts of ceiling and oor:

� if A = ff ag; f bg; f cgg, then dAe = f a; b; cg and bAc = ? ;

� if A = ff ag; f a; bg; f a; b; cgg, then dAe = f a; b; cg and bAc = f ag.

3.2.1 M•obius Inversion

Two useful functions for analyzing a posetP are the zeta function and the M•obius

function. Let V be a non-empty set of variables andP = P(V) be a poset ordered by

inclusion. The zeta function� P : P � P ! f 0; 1g is de�ned as follows:

� P(B; A ) =

8
><

>:

0 B 6� A;

1 B � A:

The M•obius function � P : P � P ! Z is de�ned as follows:

� P(B; A ) =

8
><

>:

0 B 6� A;

� 1jAnB j B � A:

These functions may be thought of as matrices because the posets we consider are �nite.

Abusing notation, we interpret � P and � P as matrices where the �rst and second arguments
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of these functions act as the row and column indices respectively. Under this interpretation,

the M•obius function is the inverse of the zeta function in the sense that� P = � � 1
P .

� P ? f ag f bg f cg f a; bg f a; cg f b; cg f a; b; cg
2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

? 1 1 1 1 1 1 1 1

f ag 0 1 0 0 1 1 0 1

f bg 0 0 1 0 1 0 1 1

f cg 0 0 0 1 0 1 1 1

f a; bg 0 0 0 0 1 0 0 1

f a; cg 0 0 0 0 0 1 0 1

f b; cg 0 0 0 0 0 0 1 1

f a; b; cg 0 0 0 0 0 0 0 1

Figure 3.2: The zeta function of a posetP = P(f a; b; cg) ordered by inclusion|the �rst and

second arguments of the zeta function act as row and column indices respectively.

Figure 3.2 depicts the zeta function� P as a matrix for the posetP depicted in Figure

3.1. Notice that the matrix is invertible|it is an upper triangular matrix with non-zero

entries on the main diagonal. In general, the rows and columns of the matrix corresponding

to the zeta function of a poset can be rearranged in this manner. Accordingly, the matrix

corresponding to the zeta function is invertible.
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� P ? f ag f bg f cg f a; bg f a; cg f b; cg f a; b; cg
2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

? 1 � 1 � 1 � 1 1 1 1 � 1

f ag 0 1 0 0 � 1 � 1 0 1

f bg 0 0 1 0 � 1 0 � 1 1

f cg 0 0 0 1 0 � 1 � 1 1

f a; bg 0 0 0 0 1 0 0 � 1

f a; cg 0 0 0 0 0 1 0 � 1

f b; cg 0 0 0 0 0 0 1 � 1

f a; b; cg 0 0 0 0 0 0 0 1

Figure 3.3: The M•obius function of a posetP = P(f a; b; cg) ordered by inclusion|the �rst

and second arguments of the M•obius function act as row and column indices respectively.

Figure 3.3 depicts the M•obius function� P as a matrix for the posetP depicted in Figure

3.1. Again, notice that � P is invertible|it is an upper triangular matrix with non-zero

entries on the main diagonal. We encourage the reader to check that the matrices depicted

in Figures 3.2 and 3.3 are indeed inverses of each other. This relation holds in general and

provides an intuition for the so called M•obius inversion. In what follows, we provide two

Characterizations of the M•obius inversion|we will use both later in this document.

Proposition 3.2.1 (Proposition 2 [71]). Let P be a poset andg : P ! R and h : P ! R be

real-valued functions. The following expressions imply each other:

i. g(A) =
P

B 2 P h(B) � P(B; A ) for all A 2 P;

ii. h(A) =
P

B 2 P g(B) � P(B; A ) for all A 2 P.

Alternatively, if we abuse notation and treatg and h as column vectors, then the M•obius

inversion states thatg = � Ph , h = � Pg. If V is a non-empty set of variables andP = P(V)

is a poset ordered by inclusion, then the M•obius inversion simpli�es to the following equivalent

20



statements:

i. g(A) =
P

B � A (� 1)jAnB j h(B) for all A � V ;

ii. h(A) =
P

B � A g(B) for all A � V .

Corollary 3.2.1 (Corollary 1 [71]). Let P be a poset andg : P ! R and h : P ! R be

real-valued functions. The following expressions imply each other:

i. g(A) =
P

B 2 P � P(A; B ) h(B) for all A 2 P;

ii. h(A) =
P

B 2 P � P(A; B ) g(B) for all A 2 P.

Alternatively, if we abuse notation and viewg and h as column vectors then the corollary

states thatg = � >
P h , h = � >

P g. If V is a non-empty set of variables andP = P(V) is a

poset ordered by inclusion, then the corollary simpli�es to the following equivalent statements:

i. g(A) =
P

B � V (A � B )(� 1)jB nA j h(B) for all A � V ;

ii. h(A) =
P

B � V (A � B ) g(B) for all A � V .

T g(T) T h(T)
2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

? 0 ? 0

f ag 0
� P�! f ag 0

f bg 0 f bg 0

f cg 1 f cg 0

f a; bg 0 f a; bg 1

f a; cg � 1 f a; cg 0

f b; cg � 1
� P � f b; cg 0

f a; b; cg 1 f a; b; cg 1

Figure 3.4: An application of the zeta and M•obius functions of a posetP = P(f a; b; cg)

ordered by inclusion.
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Figure 3.4 depicts an application of the M•obius inversion with respect to a posetP =

P(f a; b; cg) ordered by inclusion. If g : P ! R and h : P ! R are real-valued functions

satisfying Proposition 3.2.1, then the zeta function depicted in Figure 3.2 applied tog results

in h and the M•obius function depicted in Figure 3.3 applied toh results in g; Figure 3.4

gives an example.

3.3 Ancestral Graphs

A common theme throughout this dissertation is the use of mixed graphs as independence

models. This section introduces several families of mixed graphs, including directed acyclic

graphs, acyclic directed mixed graphs, and maximal ancestral graphs.

3.3.1 Preliminaries

De�nition (mixed graph). A mixed graphG = ( V; E) is an ordered pair consisting of a vertex

set and an edge set respectively. The edge set contains a mixture of directed, bi-directed,

and undirected edges which connect pairs of vertices in the vertex set such that no pair of

vertices is connected by more than one edge of the same type.

De�nition (characteristics of mixed graphs). A few characteristics used to further re�ne

the de�nition of a mixed graph are de�ned as follows:

� a mixed graph islooplessif no edge connects a vertex to itself;

� a mixed graph hasmultiple edgesif more than one edge connects any pair of vertices;

� a mixed graph issimple if it is loopless and does not have multiple edges;

� a mixed graph isdirected if it does not contain any undirected edges;

� a mixed graph isacyclic if it does not contain any directed cycles|a sequence of com-

monly oriented edges that starts and ends with the same vertex.

As a point of clari�cation, a directed graph is a mixed graph that only contains directed

edges, whereas a directed mixed graph can additionally contain bi-directed edges.
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De�nition (paths in mixed graphs). Let G = ( V; E) be a mixed graph. The notion of apath

and a few related concepts are de�ned as follows:

� a path � = hv1; : : : ; vm i is a sequence ofm > 1 distinct vertices where an edge connects

vi and vi +1 for all 1 � i < m ;

� the endpoints of a path � = hv1; : : : ; vm i are the �rst and last vertices f v1; vmg;

� a triple is a path � = hv1; v2; v3i with three vertices and isunshieldedif no edge connects

its endpoints v1 and v3;

� a collider on � = hv1; : : : ; vm i (m � 3) is a vertexvi (1 < i < m ) such that:

vi � 1

8
>>><

>>>:

!

!

$

9
>>>=

>>>;

vi

8
>>><

>>>:

 

$

$

9
>>>=

>>>;

vi +1

and is unshieldedif no edge connectsvi � 1 and vi +1 .

Paths are sometimes de�ned as sequences of distinct edges linked by shared endpoints,

however, in this dissertation, the notion of a path is only considered within simple mixed

graphs where the two de�nitions are equivalent.

A directed acyclic graph(DAG) is a simple directed graph that is acyclic. The family of

DAGs is of primary importance because it is both a subfamily and a constructor of mixed

graphs. Section 3.4.2 details how DAGs construct mixed graphs through a process called

latent projection. The two most prevalent families of mixed graphs that can be constructed

by a latent projection process areacyclic directed mixed graphs(ADMGs) and maximal

ancestral graph (MAGs). ADMGs are relatively easy to understand syntactically, while

MAGs are generally more convenient to work with theoretically. The families of ADMGs

and directed MAGs are equivalent with respect to representing conditional independence

statements. The family of directed MAGs is a subfamily of ADMGs so results on ADMGs

apply to directed MAGs, but not the other way around. Accordingly, prior work on both

families will be referenced throughout this dissertation, but MAGs will be the primary family

of mixed graphs discussed.
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Figure 3.5: Mixed graphs with verticesf a; bg: (i ) a mixed graph with a loop a � a and

multiple edgesa  
! b; (ii ) a acyclic directed loopless mixed graph with multiple edgesa $

! b;

(iii ) a simple acyclic directed graph.

Figure 3.5 illustrates several characteristics of mixed graphs. The mixed graphs in (ii )

and (iii ) are loopless and the mixed graph in (iii ) is simple. Furthermore, the mixed graph

in (i ) contains a directed cyclea ! b ! a, the mixed graph in (ii ) is an ADMG, and the

mixed graph in (iii ) is a DAG. Note that the multiple edgesa  
! b and the bi-directed

edgea $ b are not semantically equivalent. All families of mixed graphs discussed within

this dissertation are loopless. Accordingly, from this point on, the terms mixed graph and

loopless mixed graph will be used synonymously.

We utilize standard familial terminology from the vernacular of graphical models. Let

G = ( V; E) be a mixed graph. For a vertexa 2 V:

paG(a) � f b ; b ! a in Gg

chG(a) � f b ; b  a in Gg

spG(a) � f b ; b$ a in Gg

neG(a) � f b ; b� a in Gg

are the parents, children, spouses, and neighborsof a respectively. If any of the above edges

are present inG, then a and b are adjacent. Similarly:

anG(a) � f b ; b ! � � � ! a in G or a = bg

deG(a) � f b ; b  � � �  a in G or a = bg

disG(a) � f b ; b$ � � � $ a in G or a = bg
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antG(a) � f b ;

8
>>><

>>>:

b ! � � � ! a

b� � � � ! a

b� � � � � a

9
>>>=

>>>;

in G or a = bg

are the ancestors, descendants, district , and anterior vertices of a respectively. These

functions are applied to sets disjunctively, that is, applying one to a set of vertices is the

union of the operation applied to each vertex in the set. For example, a set of verticesA � V

has the following parents and ancestors:

paG(A) �
[

a2 A

paG(a) anG(A) �
[

a2 A

anG(a):

We use inclusive de�nitions of these functions:a 2 anG(A), a 2 deG(A), and a 2 disG(A)

for all a 2 A. These operators are not always de�ned this way|we de�ne them as such

for theoretical convenience. Notably, the de�nitions for parents, children, spouses, and

neighbors are not inclusive, however, having inclusive versions will be useful later. We de�ne

the inclusive versions of these functions as follows: pa+
G; ch+

G; sp+
G; ne+

G.

Figure 3.6: A mixed graph with verticesf a; b; c; d; eg.

Figure 3.6 illustrates concepts of parents, children, neighbors, and spouses. In the graph,

the non-trivial relations are as follows:

� c has parentsf ag, d has parentsf bg, and e has parentsf cg;

� a has childrenf cg, b has childrenf dg, and c has childrenf eg;

� a has neighborsf bg, and b has neighborsf ag;

� c has spousesf dg, d has spousesf c; eg, and e has spousesf dg.
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Similarly, Figure 3.6 illustrates concepts of ancestors, descendants, and districts. In the

graph, the non-trivial relations are as follows:

� c has ancestorsf a; cg, d has ancestorsf b; dg, and e has ancestorsf a; c; eg;

� a has descendantsf a; c; eg, b has descendantsf b; dg, and c has descendantsf c; eg;

� a has anterior verticesf a; bg, bhas anterior verticesf a; bg, c has anterior verticesf a; b; cg,

d has anterior verticesf a; b; dg, and e has anterior verticesf a; b; c; eg;

� f ag, f bg, and f c; d; eg form districts.

We now have a su�cient set of graphical concepts to de�ne the ancestral graphs and are

one step closer to de�ning MAGs.

De�nition (ancestral graph). Let G = ( V; E) be a simple mixed graph.G is ancestral if for

all vertices a 2 V:

i. chG(a) \ anG(a) = ? ;

ii. spG(a) \ anG(a) = ? ;

iii. paG(a) [ spG(a) 6= ? ) neG(a) = ? .

Criteria ( i ) states that ancestral graphs cannot have directed cycles and criteria (ii )

states that ancestral graphs cannot havealmost-directed cycles|a sequence of commonly

oriented edges that starts and ends with vertices connected by a bi-directed edge. Criteria

(iii ) states that ancestral graphs cannot have a directed arrowhead pointed into a vertex

that is connected to another vertex with an undirected edge. Accordingly, ancestral graphs

have clearly de�ned directed and undirected parts. This notion can be made rigorous using

the graphical concept of a subgraph.

Two important graphical concepts used throughout this dissertation are anterior and

ancestral sets.

De�nition (anterior set). Let G = ( V; E) be a mixed graph containing a setA � V . A is

anterior if antG(A) = A, in other words, A contains all its own anterior vertices. The set of

all anterior sets inG is denoted byA(G).

De�nition (ancestral set). Let G = ( V; E) be a mixed graph containing a setA � V . A is

ancestral if anG(A) = A, in other words, A contains all its own ancestors. Notably, ifG is

26



directed, then A(G) is the set of all ancestral sets inG.

De�nition (subgraph of mixed graphs). Let G = ( V; E) and G0 = ( V; E) be mixed graphs.

If V 0 � V and E 0 � E , then G0 is a subgraphof G|of particular interest:

� the directed subgraphof G, denoted by dir(G) = ( V 0; E0) where V 0 = f a 2 V ; paG(a) [

chG(a) [ spG(a) 6= ? g and E 0 = f e 2 E ; e is a directed or bi-directed edgeg

� the undirected subgraphof G, denoted by un(G) = ( V 0; E0) whereV 0 = f a 2 V ; paG(a) [

spG(a) = ? g and E 0 = f e 2 E ; e is an undirected edgeg;

� the induced subgraphof G over A � V, denoted by GA = ( A; E 0) where E 0 = f e 2

E ; e connects two members ofAg.

Figure 3.7: Subgraphs of the graph in Figure 3.6: (i ) the directed subgraph; (ii ) the undi-

rected subgraph.

Figure 3.8: Induced subgraphs of the graph in Figure 3.6: (i ) the induced subgraph over

f a; c; d; eg; (ii ) the induced subgraph overf a; b; d; eg.
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Proposition 3.3.1 (Proposition 3.5 [70]). Let G be an ancestral graph. IfG0 is a subgraph

of G, then G0 is an ancestral graph.

As noted earlier, DAGs are not stable under marginalization and conditioning, however,

ancestral graphs are stable under marginalization and conditioning. For any DAG with latent

confounding and selection e�ects, there is an ancestral graph over the measured variables

alone that represents the conditional independence and ancestral relations entailed by the

original DAG; in the case of a causal DAG, the ancestral relations are causal. The edges of

a causal ancestral graph may be interpreted causally as follows:

� a ! b means that a is a cause ofb or some selection variable, butb is not a cause ofa

or any selection variable;

� a $ b means thata is not a cause ofb or any selection variable, andb is not a cause of

a or any selection variable;

� a � b means that a is a cause ofb or some selection variable, andb is a cause ofa or

some selection variable.

3.3.2 Graphical Conditional Independence

Graphical separation criteria de�ne the notion of graphical conditional independence.

In this dissertation, we use the so calledm-separation criterion for mixed graphs, which

naturally extends the well known d-separation criterion for directed graphs [58, 70, 74].

Given a DAG with latent confounding and selection e�ects, inducing paths characterize

when two vertices cannot be not graphically separated conditioned on any set of vertices

that corresponds to a set of measured variables. Throughout this dissertation, the symbols

L and S denote sets of latent confounding and selection e�ects (and their corresponding

vertices) respectively.

De�nition (inducing path). Let G = ( V; E) be an ancestral graph containing verticesa; b2

V (a 6= b) and disjoint setsL; S � V n f a; bg. A path � betweena and b is inducing relative

to hL; Si if the following hold:

i. every non-endpoint on� is a member ofL or a collider;

ii. every collider on� is an ancestor ofa, b, or s 2 S.
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If L = S = ? , then � is a primitive inducing path.

Looking ahead, Figure 3.10 gives an example of a primitive inducing path. The path

ha; c; d; bi is primitively inducing in both graphs, but a and b are only adjacent in (ii ). In

the literature, inducing paths have only been de�ned for ancestral graphs, but it is likely the

case that they can be extended to all families of mixed graphs discussed in section 3.4.

In Section 3.4, we review how a DAG with latent confounding and selection e�ects may

be represented as a loopless mixed graph derived by the marginalization and conditioning

of that DAG. In the case of a loopless mixed graph, graphical conditional independence is

characterized bym-connecting paths andm-separation.

De�nition (m-connecting path). Let G = ( V; E) be a mixed graph containing vertices

a; b 2 V (a 6= b) and a subsetC � V n f a; bg. A path � betweena and b is m-connecting

relative to C if the following hold:

i. every non-collider on� is not a member ofC;

ii. every collider on� is an ancestor ofa, b, or c 2 C.

De�nition (m-separation). Let G = ( V; E) be an mixed graph containing disjoint sets

A; B; C � V. If for every a 2 A and b 2 B no m-connecting path exists betweena and b

relative to C, then A and B are m-separatedby C.

Let G = ( V; E) be a mixed graph containing disjoint setsA; B; C � V. We sayhA; B j Ci

is represented inG by mseparation and writeA ?? mB j C [ G] if A and B are m-separated

by C. The independence model induced byG is denotedI m (G).
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Figure 3.9: An ancestral graph with verticesf a; b; c; d; eg.

Figure 3.9 illustrates the concepts of inducing paths,m-connecting paths, andm-separation.

In the graph:

� ha; b; c; di is an inducing path relative tohfcg; f bgi and relative to hfcg; f egi ;

� ha; b; c; di is an m-connecting path relative tof bg and relative to f eg;

� ha; b; c; di is not m-connecting relative to f cg, f b; cg, or f c; eg becausea and d are m-

separated byf cg, f b; cg, and f c; eg respectively.

Additionally, m-connecting and inducing paths in ancestral graphs are related by the follow-

ing proposition.

Proposition 3.3.2 (Theorem 4.2 [70]). Let G = ( V; E) be an ancestral graph containing

vertices a; b2 V (a 6= b) and disjoint setsL; S � V n f a; bg. The following are equivalent:

i. there exists an inducing path betweena and b relative to hL; Si ;

ii. a and b are not m-separated byC for all S � C � V n L (a; b62C).

Occasionally, it is useful to have an alternative separation criterion for the simpli�cation

of proofs. Accordingly, we de�ne the augmented graph andm� -separation criterion for

ancestral graphs.

De�nition (collider-connecting path). Let G = ( V; E) be a mixed graph containing vertices

a; b2 V. A path � betweena and b is acollider-connecting pathif every non-endpoint vertex

on � is a collider.
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Let G = ( V; E) be a mixed graph containing a vertexa 2 V. The non-trivial collider-

connecting vertices ofa are the vertices connected toa by collider-connecting paths. Let

G = ( V; E) be a mixed graph. For a vertexa 2 V,

colG(a) � neG(a) [ pa+
G(disG(ch+

G(a)))

are the collider-connecting vertices of a. We de�ne this function to be conjunctive when

applied to sets, that is, by de�nition applying the collider-connecting function to a set of

vertices is the intersection of the operation applied to each vertex in the set. For example,

a set of verticesA � V has collider-connecting vertices:

colG(A) �
\

a2 A

colG(a):

De�nition (augmented graph). Let G = ( V; E) be a mixed graph. The augmented graph,

denoted G0 = aug(G), is the undirected graph over the same vertices such that neG0(a) =

colG(a) for all a 2 V.

De�nition (m� -separation). Let G = ( V; E) be an ancestral graph containing disjoint sets

A; B; C � V and D = ant G(ABC ). If for every a 2 A and b 2 B no m-connecting path

exists betweena and b relative to C in aug(GD ), then A and B are m� -separatedby C in G.

Let G = ( V; E) be a mixed graph containing disjoint setsA; B; C � V. We sayhA; B j Ci

is represented inGby m� -separation and writeA ?? m � B j C [ G] if A and B arem� -separated

by C. The independence model induced byG is denotedI m � (G).

Theorem 3.3.1 (Theorem 3.18 [70]). If G is an ancestral graph, thenI m � (G) = I m (G).

Since the two separation criterion are equivalent we drop the identifying subscript in

the relevant notation. The following corollary is a direct consequence of the equivalence of

m� -separation andm-separation.

Corollary 3.3.1. If G is an ancestral graph, thenI (G) =
S

A2 A(G) I (aug(GA )) .

Proof. This directly follows from the de�nition of m� -separation and Theorem 3.3.1.

Lastly, we note that an induced independence model de�ned by a mixed graph and

m-separation, including ancestral graphs, is compositional graphoid.
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Proposition 3.3.3 (Theorem 1 [74]). If G is a mixed graph, then the induced independence

model I (G) is a compositional graphoid.

3.3.3 Markov Properties

Formally, ancestral graph Markov models are characterized by them-separation criterion

in conjunction with the global Markov property.

De�nition (global Markov property). Let G = ( V; E) be a mixed graph andP be a proba-

bility measure overV. P satis�es the global Markov propertyfor G if the following holds for

all disjoint triples hA; B j Ci 2 T(V):

A ?? B j C [ G] ) A ?? B j C [ P ]:

Alternatively, P satis�es the global Markov propertyfor G if:

I (G) � I (P):

However, it is often the case that many of the conditional independence statements

characterized by the global Markov property are redundant|implied by the semi-graphoid

axiom and other conditional independence statements. Accordingly, for many graphical

families, the global Markov property is often reduced to simpler Markov properties, such

as the ordered local Markov property for ADMGs. In what follows, we introduce concepts

needed to de�ne the ordered local Markov property.

De�nition (collider-connecting set). Let G = ( V; E) be a mixed graph containing a set

A � V . A is collider-connectingif A � colG(A). That is, there exists a collider path between

a and b for all a; b2 A (a 6= b).

Let G = ( V; E) be a mixed graph containing a vertexb2 V. The set of collider-connecting

vertices forb has special property:

b?? a j colG(b) n b [ G] for all a 2 V n colG(b)

That is colG(b) n b is the set that rendersb independent of all other vertices in the

32



graph. In many cases, this special property is what allows simpli�ed Markov properties to

be constructed. In general this set is called a Markov blanket and the set consisting of a

vertex and its Markov blanket is called a closure. Accordingly, the Markov blanket and

closure for ADMGs are de�ned as follows:

mbG(b) � colG(b) n b clG(b) � colG(b)

The global Markov property can also be simpli�ed by using the concept of a consistent

order.

De�nition (consistent order). Let G = ( V; E) be an ADMG. A total order � over V is

consistent with G if:

a � b ) b62anG(a) n a for all a; b2 V:

De�nition (preceding vertices). Let G = ( V; E) be an ADMG containing a vertex b 2 V

and � be a total order consistent withG. The preceding vertices ofb with respect to � are

de�ned as follows:

pre�
G(b) � f a 2 V ; a � bg:

The concepts of a Markov blanket and a closure can be rede�ned with respect to a

consistent order which directly leads to the ordered local Markov property.

mb�
G(b) � mbG(b) \ pre�

G(b) cl�G(b) � clG(b) \ pre�
G(b)

De�nition (ordered local Markov property). Let G = ( V; E) be an ADMG, � be a total

order consistent withG, and P be a probability measure overV. If for every vertex b 2 V

and ancestral setA 2 A(G) where b2 A � pre�
G(b):

b?? A n cl�GA
(b) j mb�

GA
(b) [ P ]

then P satis�es the ordered local Markov propertyfor G with respect to � .

Theorem 3.3.2 (Theorem 2 [66]). Let G = ( V; E) be an ADMG,� be a total order consistent

with G, and P be a probability measure overV. The following are equivalent:
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i. P satis�es the global Markov property forG;

ii. P satis�es the ordered local Markov property forG with respect to� .

Lastly we introduce the augmented pairwise Markov property for ancestral graphs. This

criterion extends the pairwise Markov property for undirected graphs using graph augmen-

tation; see Lauritzen [46] for more details.

De�nition (augmented pairwise Markov property). Let G = ( V; E) be an ancestral graph

and P be a probability measure overV. If for every anterior set A 2 A(G) and pair of

verticesa; b2 A wherea 62ne+
aug(GA )(b):

a ?? b j A n f a; bg [ P ]

then P satis�es the augmented pairwise Markov propertyfor G.

Richardson and Spirtes introduced the pairwise Markov property for MAGs which also

extends the pairwise Markov property for undirected graphs [70]. Sadeghi showed that their

pairwise Markov property is equivalent to the global Markov property for compositional

graphoids [74]. We show that the augmented pairwise Markov property is equivalent to the

global Markov property for graphoids using a classic result for undirected graphs.

Theorem 3.3.3 (Theorem 1 [60]). Let G = ( V; E) be an undirected graph andP be a

probability measure overV. If I (P) is a graphoid, then the following are equivalent:

i. a ?? b j V n f a; bg [ P ] for all a; b2 V (a 62ne+
G(b));

ii. A ?? B j C [ P ] for all hA; B j Ci 2 I (G).

Theorem 3.3.4. Let G = ( V; E) be an ancestral graph andP be a probability measure over

V. If I (P) is a graphoid, then the following are equivalent:

i. P satis�es the global Markov property forG;

ii. P satis�es the augmented pairwise Markov property.

Proof. (i ) ii ): Let A 2 A(G) be an anterior set anda; b2 A (a 6= b). By Corollary 3.3.1

34



and the antecedent:

a ?? b j A n f a; bg [ aug(GA ) ] ) a ?? b j A n f a; bg [ G]

) a ?? b j A n f a; bg [ P ]:

(i ( ii ): Let A; B; C � V be disjoint sets andD = ant G(ABC ). By the antecedent:

a ?? b j D n f a; bg [ aug(GD ) ] ) a ?? b j D n f a; bg [ P ] for all a; b2 D (a 6= b):

Accordingly, by Corollary 3.3.1 and Theorem 3.3.3:

A ?? B j C [ G] ) A ?? B j C [ aug(GD ) ]

) A ?? B j C [ P ]:

3.3.4 Maximality

De�nition (maximal). Let G = ( V; E) be an ancestral graph.Gis maximal if for all a; b2 V

(a 6= b) the following are equivalent:

i. a and b are adjacent;

ii. there exists a primitive inducing path betweena and b;

iii. a and b are not m-separated byC for all C � V n f a; bg.

Proposition 3.3.2 implies that (ii ) and (iii ) are equivalent; they are included here to provide

alternative de�nitions of maximal.

A maximal ancestral graph (MAG) is an ancestral graph that is maximal. MAGs are

maximal in the sense that no additional edges can be added to the graph without changing the

independence model. Furthermore, any non-maximal ancestral graph can be made maximal

by adding bi-directed edges. Intuitively, the de�nition of maximality for ancestral graphs in

(iii) may be applied to other families of mixed graphs which utilize m-separation.
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Figure 3.10: Ancestral graphs with verticesf a; b; c; dg: (i ) a non-maximal ancestral graph;

(ii ) a maximal ancestral graph.

Figure 3.10 illustrates the concept of maximality. The ancestral graph in (i ) depicts a

graph that is not maximal and the ancestral graph in (ii ) depicts a graph that is maximal.

In general, the presence of a bi-directed edge in a MAG corresponds to one or more latent

confounders on a path between the endpoints of the bi-directed edge. However, it does not

necessarily mean that there is a latent confounder between the endpoints. For example, in

(i ) and (ii ) there could be a latent confounder betweena and c. In this case the bi-directed

edge betweena and b in (ii ) could be induced exclusively by the confounded path between

a and b mediated byc.

Theorem 3.3.5 (Theorem 5.1 [70]). Let G = ( V; E) be an ancestral graph. Then there

exists a unique maximal ancestral graph formed by adding bi-directed edges toG such that

the independence model does not change.

Accordingly, every DAG is maximal and the family of DAGs is a subset of the family

of MAGs. Additionally, transforming an ancestral graph into a MAG does not a�ect the

ancestral relations|only bi-directed edges are added. In Chapter 4 we work with MAGs

rather than ancestral graphs to develop the theory in this dissertation because they are

theoretically simpler and retain the statistical and causal properties of the corresponding

ancestral graphs.

Proposition 3.3.4. Let G = ( V; E) be a MAG:

� the directed subgraphdir(G) is a MAG;
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� the undirected subgraphun(G) is a MAG;

� the induced subgraphGA is a MAG for all anterior sets A 2 A(G).

Proof. By Proposition 3.3.1, subgraphs ofGare ancestral. The proposition is proven by �rst

showing that GA is maximal and then noting that dir(G) and un(G) are induced subgraphs

of MAGs.

Suppose there is a primitive inducing path� in GA such that the endpoint are not

adjacent. By the de�nition of induced subgraph, the endpoint are also not adjacent inG.

Furthermore, since any path inGA exists in G, � is also a primitive inducing inG. This is a

contradiction becauseG is maximal. Accordingly, GA is maximal.

In the case of the directed subgraph dir(G), consider the subgraph ofG where the undi-

rected edges have been removedG0 = ( V; E0). Notably, dir( G) is an induced subgraph ofG0.

Suppose there is a primitive inducing path� in G0 such that the endpoint are not adjacent.

By the de�nition of primitive inducing path, every non-endpoint on � is a collider. Further-

more, since removing an undirected edge can only destroy non-colliders,� is also primitively

inducing in G. This is a contradiction becauseG is maximal. Accordingly, G0 are dir(G) are

maximal. In the case of the undirected subgraph un(G), un(G) is an induced subgraph ofG.

Accordingly, un(G) is maximal.

3.3.5 Factorization

For a probability measureP, the global Markov property implies that the conditional

independence statements represented in a graph are represented inP. Equivalently, some

graphical families admit well-known factorizations that algebraically imply that the condi-

tional independence statements represented in a graph are represented inP. For instance,

DAGs provide a well known recursive factorization.

Let G = ( V; E) be a DAG. Furthermore, letX be a collection of random variables indexed

by V with probability measure P that admits density f (x) with respect to dominating � -

�nite product measure � . P satis�es the global Markov property with respect toG if and

only if

f (x) =
Y

v2 V

f vjpaG(v)(x) for � -a.e.x 2 X:
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A similar factorization was developed by Evans and Richardson for ADMGs [30, 67].

However, the factorization developed by Evans and Richardson requires multiple equations.

In Chapter 4 we develop an alternative to Evans and Richardson's factorization that only

requires a single equation.

Figure 3.11: ADMGs with verticesf a; b; c; dg.

In order to state Richardson's factorization criterion for ADMGs, we must �rst introduce

a few additional concepts. LetG = ( V; E) be a mixed graph. For a vertexa 2 V and a

subsetB � V

barG(B ) � f b2 B ; B \ deG(b) = bg

is the barren subsetof B .

De�nition (barren set). Let G = ( V; E) be an ADMG containing a setB � V . B is barren

if B = bar G(B ). That is, B is barren if it does not contain any non-trivial descendants.

Richardson's factorization criterion for ADMGs utilizes a partition function that par-

titions the variables into sets called heads. The factorization criterion is a product over

conditional density terms comprised of heads conditioned on their corresponding tails.

De�nition (head). Let G = ( V; E) be an ADMG containing a setH � V (H 6= ? ). H is

a head if it is barren in G and contained within a single district ofGanG(H ) . The set of all

heads inG is denoted byH (G).

De�nition (tail ). Let G = ( V; E) be an ADMG. For a headH 2 H (G), the tail of H is the

set

tail G(H ) � T n H [ paG(T) whereT = disGan G( H )
(H ):
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Let G = ( V; E) be an ADMG and � be the partial order

H � H 0 , H � anG(H 0) for all H; H 0 2 H (G):

Heads partition the variables with the help of two functions: �G : P(V) ! P(H (G)) which

is such that � G(A) returns the set of heads that are subsets ofA and maximal with respect

to � ; and 	 G : P(V) ! P(V) which is such that � G(A) returns the elements ofA which are

not contained in a set in � G(A):

� G(A) � f H 2 H (G) ; H � A and H 6� H 0 for all H 0 � A (H 6= H 0)g;

	 G(A) � A n
[

B 2 � G(A )

B:

For a subsetA � V , recursively de�ne the partition function:

[ A ]G �

8
><

>:

? A = ? ;

� G(A) [ [	( A)]G A 6= ? ;

where square brackets denote the partition function. The partition function removes maximal

sets fromA, and is recursively applied again to what remains.

Theorem 3.3.6 (Theorem 4.12 [30]). Let G = ( V; E) be an ADMG. Furthermore, letX be

a collection of random variables indexed byV with probability measureP that admits density

f (x) with respect to dominating� -�nite product measure � . P satis�es the global Markov

property with respect toG if and only if for every ancestral setA 2 A(G),

f A (x) =
Y

H 2 [A ]G

f H jtail G(H )(x) for � -a.e. x 2 X:
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H f ag f bg f cg f dg

T ? f ag f bg f a; b; cg

Figure 3.12: The heads and tails for the ADMG illustrated in Figure 3.11 (i ) and the Hasse

diagram for the corresponding poset over the ADMG's heads.

Figure 3.12 depicts the heads and tails for the ADMG illustrated in Figure 3.11 (i ) and

the posets and partial order. Accordingly, a probability measure obeys the global Markov

property with respect to the graph if and only if it factors as:

f abcd(x) = f djabc(x) f cjb(x) f bja(x) f a(x) for � -a.e.x 2 X

f abc(x) = f cjb(x) f bja(x) f a(x) for � -a.e.x 2 X

f ab(x) = f bja(x) f a(x) for � -a.e.x 2 X

H f ag f bg f cg f dg f a; dg f b; cg

T ? ? f ag f bg f bg f ag

Figure 3.13: The heads and tails for the ADMG illustrated in Figure 3.11 (ii ) and the Hasse

diagram for the corresponding poset over the ADMG's heads.
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Figure 3.13 depicts the heads and tails for the ADMG illustrated in Figure 3.11 (ii ) and

the posets and partial order. Accordingly, a probability measure obeys the global Markov

property with respect to the graph if and only if is factors as:

f abcd(x) = f adjb(x) f bcja(x) for � -a.e.x 2 X;

f abc(x) = f bcja(x) f a(x) for � -a.e.x 2 X;

f abd(x) = f adjb(x) f b(x) for � -a.e.x 2 X;

f ab(x) = f a(x) f b(x) for � -a.e.x 2 X;

f ac(x) = f cja(x) f a(x) for � -a.e.x 2 X;

f bd(x) = f djb(x) f b(x) for � -a.e.x 2 X:

Note that both the factorization characterized by Evans and Richardson and the factor-

ization presented in this proposal are equivalent to the global Markov property and therefore

equivalent to each other. The key di�erence is that the factorization characterized by Evans

and Richardson requires an equation for every non-empty ancestral subset of variables, while

the factorization presented in this proposal only requires a single equation.

3.3.6 Markov Equivalence

Multiple graphs representing the same independence model is made rigorous by the

notion of Markov equivalence.

De�nition (Markov equivalence). Let G = ( V; E) and G0 = ( V; E0) be mixed graphs.G and

G0 are Markov equivalentif I (G) = I (G0):

A ?? B j C [ G] , A ?? B j C [ G0] for all hA; B j Ci 2 T(V):

As noted above, there exists a unique MAG for every ancestral graph with the same

independence model. Accordingly, Markov equivalence is usually discussed in terms of MAGs

rather than ancestral graphs. Furthermore, the set of MAGs that form a Markov equivalence

class may be graphically summarized using a maximally informative partial ancestral graph
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(PAG). A maximally informative PAG is not a mixed graph, but a graph that summarizes

a set of mixed graphs. In addition to the standard set of edges used by mixed graphs,

maximally informative PAGs also include edges with circle edge marks to denote ambiguity|

the edge mark varies among the summarized graphs.

Figure 3.14: A Markov equivalence class of MAGs with verticesf a; b; c; d; eg: (i ) a maximally

informative PAG; ( ii ) a set of Markov equivalent MAGs.

De�nition (maximally informative partial ancestral graph). A maximally informative PAG

is a graph used to summarize the Markov equivalence class of a MAG and contains at most

one of six possible edge typesf! ; $ ; � ; ��� ; �! ; ��g between every pair of vertices.

If G is a MAG, then the maximally informative PAG [G] for G is a graph with the same

adjacencies asG. Furthermore, every non-circle edge mark in [G] occurs in every member of

G's Markov equivalence class and every circle edge mark in [G] corresponds to an edge mark

that varies among the members ofG's Markov equivalence class.
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Figure 3.15: The general form of a discriminating path.

The concept of a discriminating path partly characterizes whether two MAGs belong to

the same Markov equivalence class. Figure 3.15 depicts the general form of a discriminating

path, where asterisks are used to denote edge marks that may either be an arrowhead or a

tail.

De�nition (discriminating path). Let G = ( V; E) be a MAG with a path � = ha; b1; : : : ; bk ; c; di

(k � 1). We say� is a discriminating path for c if:

i. a and d are not adjacent;

ii. bi is a collider on� for all 1 � i � k;

iii. bi is a parent ofd for all 1 � i � k.

Theorem 3.3.7 (Theorem 1 [81]). Let G and G0 be MAGs. G and G0 are Markov equivalent

if and only if:

i. G and G0 have the same adjacencies;

ii. G and G0 have the same unshielded colliders;

iii. if � = ha; b1; : : : ; bk ; c; di (k � 1) is a discriminating path for c in G and G0, then c is a

collider on � in G if and only if it is a collider on � in G0.

De�nition (parametrizing sets). The parametrizing set ofG, denoted byS(G) is de�ned as

follows:

S(G) � f HT ; H 2 H (G) and T � tail G(H )g:

This de�nition is extended from directed MAGs to all MAGs by adding allcliquesof the

undirected subgraphto the set. The undirected subgraph is the graph with the same vertices
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where all directed and bi-directed edges have been removed. A clique is a complete subset

of the graph, that is, every vertex in the subset is connected to every other vertex in the

subset. The following results hold:

Proposition 3.3.5 (Proposition 3.3 [38]). Let G = ( V; E) be a MAG containing a setN � V.

N 62S(G) if and only if there exista; b2 N (a 6= b) and C � V (N � C) such thata and b

are m-separated byC n f a; bg.

Proposition 3.3.6 (Proposition 3.4 [38]). For a MAG G, we have

i. any two vertices a and b are adjacent inG if and only if f a; bg 2 S(G);

ii. for any unshielded tripleha; b; ci in G, f a; b; cg 2 S(G) if and only if b is a collider on the

triple ha; b; ci ;

iii. if � forms a discriminating path for b with endpointsa and c in G then f a; b; cg 2 S(G)

if and only if b is a collider on � .

Theorem 3.3.8 (Theorem 3.2 [38]). Let G and G0 be MAGs. G and G0 are Markov equivalent

if and only if S(G) = S(G0).

Hu and Evans re�ne the set of parametrizing sets by specifying a subset that is particu-

larly useful for e�cient calculation of Markov equivalence.

~S(G) � f T 2 S(G) ; 1 � j P2
2(T) \ S(G)j � 2 � j Tj � 3g

Corollary 3.3.2 (Corollary 3.2.1 [38]). Let G and G0 be MAGs. G and G0 are Markov

equivalent if and only if~S(G) = ~S(G0).

3.4 Stable Mixed Graphs

Suppose that the causal relationships of a system of variables can be correctly represented

by a DAG. If only some variables are measured and others are latent or measured selection

bias, then the system of variables can be represented by the marginalization and conditioning

of the DAG respectively. Accordingly, we often refer to the marginalization set asL and the

conditioning set asS. In some cases, we consider marginals and conditionals of the graph
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for theoretical purposes. That is, when we refer to a latent or selection variable, we may be

referring to a variable that has been marginalized or conditioned on.

Families of stable mixed graphs are families that are closed under this process of marginal-

ization and conditioning. Since marginalization and conditioning can correspond to latent

confounding and selection e�ects, these families of graphs are quite useful for modeling. If

a graphical family is not stable under marginalization and conditioning, then dealing with

latent confounding and selection e�ects can be more di�cult; see the example in Chapter 2.

DAGs make up an important family of graphs. In particular, Bayesian networks, which

are graphical Markov models that use DAGs, have been applied with much success across

many domains. However, when a subset of variables in a DAG are latent, independence

models induced by DAGs are generally insu�cient to encode the complete set of conditional

independence statements represented in the probability measure of a Markov model. Latent

confounding variables and selection bias are treated as marginalization and conditioning

respectively. Accordingly, this shortcoming manifests statistically as a lack of stability under

marginalization and conditioning.

In this section, we discuss previous works on mixed graphs that capture the modi�ed

independence structure of a DAG after marginalization over unobserved variables and con-

ditioning on selection variables using them-separation criterion. These include ribbonless,

summary, and ancestral graphs. Ribbonless graphs were introduced in order to straight-

forwardly deal with the problem of �nding a superset of the family of DAGs that is stable

under marginalization and conditioning while summary graphs extend ADMGs to include

undirected edges.

De�nition (summary graph). Let G = ( V; E) be a mixed graph. G is a summary graph if

for every a 2 V:

i. chG(a) \ anG(a) = ? ;

ii. paG(a) [ spG(a) 6= ? ) neG(a) = ? .

The family of summary graphs extends the family of ancestral graphs. In particular,

summary graphs are loopless rather than simple|summary graphs can contain multiple

edges. Additionally, criterion (ii ) of ancestral graphs has been removed|summary graphs
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can contain almost directed cycles. Figure 3.16 illustrates an example of a summary graph

that is not an ancestral graph.

De�nition (ribbonless graph[73]). Let G = ( V; E) be a mixed graph. G is a ribbonless

graph if for every triple ha; b; ci in G where:
8
>>><

>>>:

a ! b  c

a $ b$ c

a ! b$ c

9
>>>=

>>>;

in G and

8
>>><

>>>:

a � c

a $ c

a ! c

9
>>>=

>>>;

not in G;

for all vertices d 2 deG(b):

i. chG(d) \ anG(d) = ? ;

ii. neG(d) = ? .

The family of ribbonless graphs extends the family of a summary graphs. In particular,

the criteria of summary graphs are only required hold for descendants of colliders with a

special form. Figure 3.16 illustrates an example of a ribbonless graph that is not a summary

graph.
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Figure 3.16: Stable mixed graphs: (i) a DAG with latent and selection variables; (ii) the

projected ribbonless graph; (iii) the projected summary graph; (iv) the projected ancestral

graph. All graphs encode the same independence model over the measured variables using

m-separation.

Accordingly, the graphical families discussed in this dissertation form a hierarchy. This

hierarchy is further expanded through the application of \directed" and \maximal" modi�ers.

� RG Ribbonless Graph;

� SG Summary Graph;

� AnG Ancestral Graph;

� MAG Maximal Ancestral Graph;

� UG Undirected Graph.

� ADMG Acyclic Directed Mixed Graph;

� DAnG Directed Ancestral Graph;

� DMAG Directed Maximal Ancestral Graph;

� DAG Directed Acyclic Graph;

Ribbonless, summary, and ancestral graphs are stable under marginalization and condi-

tioning and their directed counterparts are stable under marginalization; see the top right

of Figure 3.17.

In what follows, we useF to denote a family of graphs. Furthermore, we useF(V) to
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denote a family of graphs over vertex setV.

Figure 3.17: Hasse diagrams for posets of graphical families: (i ) families of stable mixed

graphs and DAGs ordered by inclusion; (ii ) independence models of the families of stable

mixed graphs and DAGs ordered by inclusion.

Figure 3.17 (i ) depicts a Hasse diagram for a poset of graphical families ordered by

inclusion|the colored sections indicate families that induce the same independence models

as before. Figure 3.17 (ii ) depicts a Hasse diagram for the poset of independence models

induced by the families of graphs ordered by inclusion.

3.4.1 Marginalization and Conditioning

Let I be an independence model over a non-empty set of variablesV with a subsetL � V .

The resulting independence model after marginalizingL out of I , denoted� (I ; L; ? ), is the
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subset of disjoint triples that do not involve any members ofL:

� (I ; L; ? ) � fh A; B j Ci 2 T(V n L) ; hA; B j Ci 2 I g:

If I captures the conditional independence statements represented in a probability measure

P, then � (I ; L; ? ) returns the set of conditional independence relations after marginalizing

L out of P. The symbol L is used because latent variables represent one context in which

marginalization may occur.

While the various families of stable mixed graphs are all stable under marginalization

and conditioning, they were developed for di�erent purposes. In this dissertation we will

identify their di�erences based on the causal relationships and amount of information that

they can represent. Since the maximal modi�er primarily exists for statistical convenience

and the directed modi�er is used for cases where there is no conditioning, we discuss the

families of ribbonless graphs, summary graphs, and ancestral graphs

In general, families of stable mixed graphs use the various edges types of mixed graphs

as follows: directed edges identify dependence due to causal ancestry; bi-directed identify

dependence due to marginalization or latent confounding; and undirected edges identify

dependence due to conditioning or selection e�ects. The families of stable mixed graphs

di�er in how they resolve conicts of multiple sources of dependence. Figure 3.16 provides

a visual aid for the following comparison.

The family of ribbonless graphs is the most general family of stable mixed graphs. Rib-

bonless graphs include all edges that apply to a given pair of vertices. Accordingly, ribbonless

graphs can have up to three edges (directed, bi-directed, and undirected) between a pair of

vertices. For this reason, they are able to encode constraints beyond conditional indepen-

dence constraints, however, to our knowledge, the extent of these constraints has not been

studied. Note that ribbonless graphs can encode any form of constraint encoded by sum-

mary graphs. An algorithm to construct ribbonless graphs by latent projection is detailed

in Algorithm 8.

The family of summary graphs lies between ribbonless graphs and ancestral graphs in

terms of complexity. Summary graphs give priority to undirected edges and include all edges

that apply otherwise for a given pair of vertices. Accordingly, summary graphs can have up
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to two edges (directed and bi-directed) between a pair of vertices. For this reason they are

able to encode constraints beyond conditional independence constraints. These constraints

have been studied in some detail [29, 76, 90]. An algorithm to construct summary graphs

by latent projection is detailed in Algorithm 9.

The family of ancestral graphs is the simplest family of stable mixed graphs. Ancestral

graphs give �rst priority to undirected edges, second priority to directed edges, and third

priority to bi-directed edges for a given pair of vertices. Accordingly, ancestral graphs can

have up to a single edge between a pair of vertices. Due to their simplicity, ancestral graphs

only represent condition independence constraints. An algorithm to construct MAGs by

latent projection is detailed in Algorithm 10.

Let I be an independence model over a non-empty set of variablesV with a subset

S � V . The resulting independence model after conditioningI on S, denoted� (I ; ? ; S), is

the subset of disjoint triples de�ned as follows:

� (I ; ? ; S) � fh A; B j Ci 2 T(V n S) ; hA; B j CSi 2 I g:

If I captures the conditional independence statements represented in a probability measure

P, then � (I ; ? ; S) returns the set of conditional independence relations after conditioningP

on S. The symbolS is used because selection bias represent one context in which conditioning

may occur.

Combining these de�nitions, we obtain:

� (I ; L; S) � fh A; B j Ci 2 T(V n LS) ; hA; B j CSi 2 I g:

If I captures the conditional independence statements represented in a probability measure

P, then � (I ; L; S) returns the set of conditional independence relations after marginalizing

L out of P and conditioning P on S.

3.4.2 Latent Projections

We may apply the marginalization and conditioning operations directly to graphs using

the concept of latent projection. Although the concept of latent projection was introduced
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by Pearl and Verma [61], Sadeghi provides the most complete treatment of latent projection

[73]. Consider a family of graphsF. If for every graph G = ( V; E) 2 F and disjoint

sets L; S � V there is a graphG0 2 F such that I (G0) = � (I (G); L; ? ), then F is stable

under marginalization, and if there is a graphG0 2 F such that I (G0) = � (I (G); ? ; S), then

F is stable under conditioning. Furthermore, we callF stable under marginalization and

conditioning if there is a graphG0 such that I (G0) = � (I (G); L; S). Below, we de�ne an

algorithm for the latent projections of ancestral graphs. Additional algorithms for the latent

projections of ribbonless, summary, and ancestral graphs are provided in Appendix B.1

Let G = ( V; E) be a MAG such that V contains disjoint subsetsL; S � V . The resulting

graph after marginalizingL out of G and conditioning G on S, denoted � AG (G; L; S), is a

graph over the set of verticesV nLS, and edges speci�ed as follows: For all distinct vertices

a; b2 V n LS where there exists an inducing path betweena and b relative to hL; Si

if

8
>>><

>>>:

a 2 antG(b[ S) and b62antG(a [ S)

a 62antG(b[ S) and b62antG(a [ S)

a 2 antG(b[ S) and b2 antG(a [ S)

9
>>>=

>>>;

then

8
>>><

>>>:

a ! b

a $ b

a � b

9
>>>=

>>>;

in � AG (G; L; S):

That is, � AG (G; L; S) is a graph containing verticesV n LS and edges between vertices

that are m-connecting inGgiven all subsets containing the members ofS and no members of

L. Furthermore, an edge between two distinct verticesa; b2 V nLS will have an arrowhead

at a if and only if a is not an ancestor ofb or s 2 S in G, and a tail otherwise.

Richardson and Spirtes showed that latent projection has several nice properties.

Theorem 3.4.1 (Theorem 4.18 [70]). If G = ( V; E) is a MAG containing disjoint sets

L; S � V , then:

� (I (G); L; S)) = I (� AG (G; L; S))

In words, the independence model corresponding to the transformed graph is the in-

dependence model obtained by marginalizing and conditioning the independence model of

the original graph Additionally, the latent projection procedure de�ned by Richardson and

Spirtes and has several nice properties.

Corollary 3.4.1 (Corollary 4.19 [70]). If G = ( V; E) is a MAG containing disjoint sets
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L; S � V , then � AG (G; L; S) is a MAG.

Theorem 3.4.2 (Theorem 4.18 [70]). If G = ( V; E) is a MAG containing disjoint sets

L1; L2; S1; S2 � V , then:

� AG (� AG (G; L1; S1); L2; S2) = � AG (G; L1 [ L2; S1 [ S2)

Furthermore, the family of directed MAGs represents DAG under marginalization, that

is, directed MAGs are capable of representing latent confounding.

Proposition 3.4.1 (Proposition 4.13 [70]). If G is an ancestral graph which contains no

undirected edges, then neither does� (G; L; ? ).

Let G = ( V; E) be a MAG containing an anterior setA 2 A(G). Next we note the induced

subgraphGA and the latent projection � (G; V nA; ? ) are related|namely that they are the

same. First, note two useful results about the anterior relationships in ancestral graphs and

their marginals.

Corollary 3.4.2 (Corollary 3.10 [70]). Let G = ( V; E) and G0 = ( V; E0) are ancestral graphs

with the same adjacencies. If for alla; b 2 V, adjacent in G and G0, a 2 antG(b) , a 2

antG0(b), then G = G0.

Corollary 3.4.3 (Corollary 4.8 [70]). In an ancestral graphG = ( V; E) if a 2 V n L then

antG(a) n L = ant � (G;L; ? )(a).

We now show that induced subgraphs on anterior sets are the marginals over the same

vertices.

Proposition 3.4.2. Let G = ( V; E) be a MAG containing setsA; L � V that partition V.

If A 2 A(G) is an anterior set, then:

GA = � (G; L; ? ):

Proof. By construction, for all a; b 2 A adjacent in GA and G, a 2 antGA (b) if and only if

a 2 antG(b). By Corollary 3.4.3, for all a; b2 A adjacent in GA and � (g; L; ? ), a 2 antGA (b)

if and only if a 2 ant� (G;L; ? )(b). What remains to be shown is that they have the same

adjacencies.
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Take two arbitrary vertices that are not latent. We need to show that they are adjacent in

GA if and only if they are adjacent in� (G; L; ? ). By de�nition, there is an edge in� (G; L; ? )

if and only if there is an inducing path inG with respect to hL; ? i . Therefore, we show that

there is an edge inGA if and only if there is an inducing path inG with respect to hL; ? i .

In other words, there is a primitive inducing path inGA if and only if there is an inducing

path in G with respect to hL; ? i .

Every (primitive inducing) path in GA is in G by construction. Since these paths do not

include L, they are inducing inG with respect to hL; ? i .

Suppose that there is an inducing path with respect tohL; ? i in G that is not a primitive

inducing path in GA . Then there is a non-collider inL on the path. SinceL is a non-collider,

it is anterior to either an endpoint or a collider on the path. Since collider on the path are

ancestors of the endpoints by de�nition, the vertex must be anterior to an endpoint. This is

a contradiction becausea; b2 A 2 A(G).

By Corollary 3.4.2, GA = � (G; L; ? ).

3.5 Alternative Independence Models

In this dissertation, we consider several mathematical objects apart from probability

measures and graphs that induce independence models. In this section, we discuss integer-

valued multisets, multiinformation, and supermodular functions as alternative mathematical

objects that induce independence models. In this section, we introduce these objects and

their relevant properties. In particular, this work relies heavily on the theory of integer-

valued multisets orimset for short; see Studen�y [83] for more details.

De�nition (integer-valued multiset). Let V be a non-empty set of variables. Aninteger-

valued multiset over V is an integer-valued functionu: P(V) ! Z or, alternatively, an

element ofZP(V ) .

Basic operations with imsets|summation, subtraction, and multiplication by an integer|
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are de�ned coordinate-wise. Besides basic operations with imsets, an operation of a scalar

product of a real-valued functionm : P(V) ! R and an imsetu over V de�ned by

u> m �
X

T 2 P(V )

u(T) m(T)

is used. A simple example of an imset is theidenti�er of a setA � V denoted by � A and

de�ned as follows:

� A (T) �

8
><

>:

1 T = A;

0 T � V; T 6= A:

We generalize the concept of the identi�er to sets of sets. The identi�er of a set of sets

A � P(V) is denoted by� A and de�ned as follows:

� A(T) �

8
><

>:

1 T 2 A;

0 T � V; T 62A:

3.5.1 Elementary and Semi-elementary Imsets

Elementary and semi-elementary conditional independence statements can be expressed

as imsets of the same name. This becomes clear in the following sections on supermodular

functions and structural imsets.

De�nition (elementary imset). Let V be a non-empty set of variables andha; bj Ci 2 T(V)

be a disjoint triple over V. The correspondingelementary imsetover V is an imset de�ned

by the formula:

uha;bjCi � � ab[ C + � C � � a [ C � � b[ C :
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T ? f ag f bg f cg f a; bg f a; cg f b; cg f a; b; cg

uha;bjci (T)
h

0 0 0 1 0 � 1 � 1 1
i >

Figure 3.18: An elementary imset:uha;bjci .

Figure 3.19: The Hasse diagram for an elementary imset:uha;bjci .

De�nition (semi-elementary imset). Let V be a non-empty set of variables andhA; B j Ci 2

T(V) be a disjoint triple over V. The correspondingsemi-elementary imsetuhA;B jCi is de�ned

by the formula:

uhA;B jCi � � ABC + � C � � AC � � BC :

Proposition 3.5.1 (Proposition 4.2 [83]). Every semi-elementary imset is a linear combi-

nation of elementary imsets with non-negative integer coe�cients.
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3.5.2 Multiinformation

Supermodular functions, in particular the multiinformation of a probability measure, are

essential concepts for the theory of imsetal Markov models as they connect semi-elementary

imsets to probabilistic conditional independence.

De�nition (supermodular function). Let V be a non-empty set of variables. A function

m : P(V) ! R is a supermodular functionover V if

m(A [ B) + m(A \ B) � m(A) + m(B) for all A; B � V:

De�nition (multiinformation ). Let V be a non-empty set of variables containing a subset

A � V . Furthermore, let X be a collection of random variables indexed byV with probability

measureP that admits density f (x) with respect to dominating � -�nite product measure � .

The multiinformation of P is a real-valued functionmP : P(V) ! [0; 1 ) that is the relative

entropy of P with respect to the product of its one-dimensional marginals:

mP (A) �

8
><

>:

R
x2 XA

log
h

f A (x)Q
a2 A f a (x)

i
dP(x) A 6= ? ;

0 A = ? :

In the �eld of information theory, the above integral is an instance of Kullback-Liebler

divergence or relative entropy. Other terms for multiinformation in the literature include

total correlation, dependency tightness, and entaxy [83]. The following corollary gives a

nice intuition for elementary and semi-elementary imsets can be used in conjunction with

multiinformation to de�ne probabilistic conditional independence.

Proposition 3.5.2 (Corollary 2.2 [83]). Let V be a non-empty set of variables andP be a

probability measure overV. If P has �nite multiinformation mP , then mP is a non-negative

supermodular function that satis�es

mP (A) = 0 wheneverA � V (jAj � 1):

That is,

mP (ABC ) + mP (C) � mP (AC) � mP (BC) � 0 for all hA; B j Ci 2 T(V):
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These two conditions implymP (A) � mP (B ) wheneverA � B � V . Moreover, for every

hA; B j Ci 2 T(V)

mP (ABC ) + mP (C) � mP (AC) � mP (BC) = 0 , A ?? B j C [P]:

3.5.3 Structural Imsets as Independence Models

De�nition (structural imset). Let V be a non-empty set of variables andu be an imset

over V. The imset u is structural if it is a linear combination of elementary imsets with

non-negative rational coe�cients:

u �
X

hA;B jCi2 T(V )

khA;B jCi uhA;B jCi for somekhA;B jCi 2 Q+ :

One says that a disjoint triple hA; B j Ci 2 T(V) is represented in a structural imsetu

overV and writesA ?? B j C [ u ] if there existsk 2 Q+ such that u� k uhA;B jCi is a structural

imset over V. The class of represented triples then de�nes the (conditional independence)

model induced byu:

I (u) � fh A; B j Ci 2 T(V) ; A ?? B j C [ u ]g:

Unlike the previously discussed families of mixed graphs which induce compositional

graphoid independence models, structural imsets induce semi-graphoid independence models.

Proposition 3.5.3 (Lemma 4.6 [83]). A structural imset over V induces a semi-graphoid

over V.

The primary advantage of structural imsets is their representation power. In fact, struc-

tural imsets can represent the independence model of any probability measure with �nite

multiinformation [83]. Structural imsets are closely related to supermodular functions.

Proposition 3.5.4 (Proposition 5.1 [83]). Let V be a non-empty set of variables. A function

m : P(V) ! R is supermodular if and only if any of the following three conditions holds:

i. u> m � 0 for every structural imsetu over V;

ii. u> m � 0 for every semi-elementary imsetu over V;
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iii. u> m � 0 for every elementary imsetu over V.

We now give a factorization using of structural imsets.

Theorem 3.5.1 (Theorem 4.1 [83]). Let V be a non-empty set of variables andu be a

structural imset overV. Furthermore, let X be a collection of random variables indexed by

V with probability measureP that admits densityf (x) with respect to dominating� -�nite

product measure� . If P has �nite multiinformation mP , then the following are equivalent:

i. logf (x) = log f (x) �
P

T 2 P(V ) u(T) log f T (x) for P-a.e.x 2 X;

ii. u> mP = 0;

iii. A ?? B j C [ u ] ) A ?? B j C [ P ] for every hA; B j Ci 2 T(V):

Of course, along with their representation power comes complexity that makes practical

use di�cult. For that purpose, standard and characteristic imsets were developed.

3.5.4 Characteristic Imsets as Independence Models

Let V be a non-empty set of variables andP = P(V) be a poset ordered by inclusion.
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T 1 � cG(T) T uG(T)
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7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

? 0 ? 0

f ag 0
� P�! f ag 0

f bg 0 f bg 1

f cg 0 f cg 0

f a; bg 0 f a; bg � 1

f a; cg 1 f a; cg 0

f b; cg 0
� P � f b; cg � 1

f a; b; cg 1 f a; b; cg 1

Figure 3.20: A DAG with vertices f a; b; cg and an application of the zeta and M•obius func-

tion of a poset P = P(V) ordered by inclusion as a transition between the standard and

characteristic imsets of the DAG.

De�nition (standard imset). Let G = ( V; E) be a DAG. The corresponding standard imset

uG over V is de�ned as follows:

uG � � V � � ? +
X

a2 V

(� paG(a) � � pa+
G (a)):

Proposition 3.5.5 (Lemma 7.1 [83]). Let G = ( V; E) be a DAG with standard imsetuG. uG

is a structural imset whereI (uG) = I (G).

De�nition (characteristic imset). Let G = ( V; E) be a DAG with standard imset uG. The

corresponding characteristic imset is de�ned as follows:

cG(A) � 1 �
X

A� T � V

uG(T) for all A � V (jAj � 2):

Note that characteristic imsets are not de�ned on the empty set or singletons. However,

if we let cG(A) = 1 for all A � V (jAj � 1), then by the M•obius inversion:
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i. uG(A) =
P

B � V (A � B )(� 1)jB nA j (1 � cG(B )) for all A � V ;

ii. 1 � cG(A) =
P

B � V (A � B ) uG(B ) for all A � V .

Accordingly, the following corollary follows from Theorem 3.5.1, Proposition 3.5.5, and

Corollary 3.2.1.

Corollary 3.5.1. Let G = ( V; E) be a DAG with standard imsetuG and characteristic imset

cG. Let P = P(V) be a poset ordered by inclusion. Furthermore, letX be a collection of

random variables indexed byV with probability measureP that admits density f (x) with

respect to dominating� -�nite product measure � . If P has �nite multiinformation mP , then

the following are equivalent:

i. logf (x) =
P

T 2 P(V ) � PcG(T) log f T (x) for P-a.e.x 2 X;

ii. u>
GmP = 0;

iii. A ?? B j C [ G] ) A ?? B j C [ P ] for every hA; B j Ci 2 T(V).

See [37, 87] for more details.

Proposition 3.5.6 (Theorem 1 [37, 87]). Let G = ( V; E) be a DAG and� be a total order

consistent withG. For all A � V (jAj � 2):

i. cG(A) 2 f 0; 1g;

ii. cG(A) = 1 , A � pa+
G(dAe� ).

It follows that two DAGs G and G0 are Markov equivalent if and only ifcG = cG0.

There has been extensive work toward applying imsets to the problem of DAG learning

[37, 83, 84, 85, 86, 87]. However, imsets have not been applied to learning maximal ancestral

graphs. We explore this topic in Chapter 6.
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4.0 Inducing Sets

In this chapter we introduce a new perspective for reasoning about ancestral graph

Markov models, which is the primary contribution of this dissertation. Accordingly, we

de�ne the novel concept of an inducing set and the concept of anm-connecting set as a

special case. While this chapter primarily focuses on ancestral graphs, especially those that

are maximal, many of the forthcoming results may be applied to any family of stable mixed

graphs. As we have seen earlier, all families of stable mixed graphs induce the same family

of independence models; the focus on ancestral graphs is largely for theoretical convenience.

De�nition (inducing set). Let G = ( V; E) be an ancestral graph containing disjoint sets

M; L; S � V (M 6= ? ). M is an inducing set relative tohL; Si for G if one of the following

hold:

i. M is a singleton;

ii. there exists an inducing path betweena and brelative to hL; MS n f a; bgi for all a; b2 M

(a 6= b).

If L = S = ? , then M is a primitive inducing set.

Proposition 3.3.2 allows us to equivalently de�ne a primitive inducing set in terms of

m-connecting paths. Therefore, we adopt the termm-connecting setin place of primitive

inducing set.

De�nition (m-connecting set). Let G = ( V; E) be an ancestral graph containing a set

M � V (M 6= ? ). M is an m-connecting set forG if one of the following hold:

i. M is a singleton;

ii. there exists an inducing path betweena and b relative to h? ; M n f a; bgi for all a; b2 M

(a 6= b);

iii. a and bare not m-separated byC for all a; b2 M (a 6= b) and all M � C � V (a; b62C).

Proposition 3.3.2 implies that (ii ) and (iii ) are equivalent; they are included here to provide

alternative de�nitions of m-connecting set.
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Note that the concept of anm-connecting set can be extended to any family of stable

mixed graphs using (iii ). Let G = ( V; E) be a MAG. The set of allm-connecting sets forG

is denoted byM (G). Furthermore, the set ofnon-m-connecting setsfor G are de�ned as the

complement excluding the empty set and denoted byN(G) = P1(V) n M (G).

Figure 4.1: An illustration of various MAGs G and their correspondingm-connecting sets

M (G).
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Figure 4.2: A comparison of two Markov equivalent ancestral graphs that are (i ) not max-

imal and (ii ) maximal, along with their correspondingm-connecting setsM (G); their m-

connecting sets are identical.

We make the following connection betweenm-connecting sets and collider-connecting

sets. Lemma 4.0.1 shows that the set of maximalm-connecting sets and maximal collider-

connecting sets are the same.

Lemma 4.0.1. Let G = ( V; E) be a MAG containing a setM � V. For the following

conditions i ) ii :

i. M is an m-connecting set forG;

ii. M is a collider-connecting set.

Furthermore, the following are equivalent:

iii. M is a maximal m-connecting set forG;

iv. M is a maximal collider-connecting set.

Proof. (i ) ii ): If M is m-connecting forG, then suppose by way of contradiction thatM

is not collider-connecting.M not collider-connecting: There exist verticesa; b2 M (a 6= b)

such that a and b are not collider-connecting. M m-connecting forG: inducing path � ab

betweena and b relative to hL = ; ; M n f a; bgi . a and b are not collider-connecting:� ab is
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not collider-connecting. There exists a non-colliderv 2 V on � ab such that v 62L; this is a

contradiction. It follows that M is collider-connecting.

(iii ) ii ): This directly follows from that facts that every maximal m-connecting set is

m-connecting and that everym-connecting set is collider-connecting.

(i ( iv ): If M is a maximal collider-connecting set, then for alla; b 2 M (a 6= b) there

exists a collider-connecting path� ab between a and b such that every vertex on� ab is a

member ofM . It follows that every � ab is inducing relative to h? ; M n f a; bgi . Therefore,

M is m-connecting forG.

(iii , iv ): We have that if M is a maximal m-connecting set forG, then M is collider-

connecting and that if M is a maximal collider-connecting set, thenM is a maximal m-

connecting set.

If M is a maximal m-connecting set, thenM is a collider-connecting set. Suppose by

way of contradiction that M is not a maximal collider-connecting set. It follows that there is

a proper maximal collider-connecting superset ofM . But every maximal collider-connecting

set ism-connecting, so the super set is alsom-connecting; this is a contradiction.

If M is a maximal collider-connecting set, thenM is an m-connecting set. Suppose by

way of contradiction that M is not a maximal m-connecting set. It follows that there is

a proper maximal m-connecting superset ofM . But every maximal m-connecting set is

collider-connecting, so the super set is also collider-connecting; this is a contradiction.

Accordingly, M is a maximal m-connecting set if and only ifM is a maximal collider-

connecting set.

4.1 Equivalence

In this section, we show thatm-connecting sets may be used as an alternative repre-

sentation of Markov equivalence for ancestral graphs. It follows thatm-connecting sets

equivalently characterize the independence models of ancestral graphs. We also show how
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these sets relate to characteristic imsets and parametrizing sets.

4.1.1 Characterization of Markov Equivalence

Theorem 3.3.7 characterizes Markov equivalence using adjacencies, unshielded colliders,

and colliders at the end of discriminating paths. Accordingly, the forthcoming three lemmas

address each of these points. Lemma 4.1.1 details the relation betweenm-connecting sets

and adjacencies, Lemma 4.1.2 details the relation betweenm-connecting sets and unshielded

colliders, and Lemma 4.1.3 details the relation betweenm-connecting sets and the colliders

at the end of discriminating paths.

Lemma 4.1.1. Let G = ( V; E) be a MAG containing verticesa; b 2 V. The following are

equivalent:

i. a and b are adjacent;

ii. M ab � f a; bg is m-connecting.

Proof. (i ) ii ): If a and b are adjacent, then there is a primitive inducing path betweena

and b becauseG is maximal. Therefore,M ab is m-connecting.

(i ( ii ): If M ab is m-connecting set, then there is a primitive inducing path betweena and

b. Therefore,a and b are adjacent becauseG is maximal.

Lemma 4.1.2. Let G = ( V; E) be a MAG with an unshielded tripleha; b; ci . The following

are equivalent:

i. b is a collider on ha; b; ci ;

ii. M abc � f a; b; cg is m-connecting.

Proof. (i ) ii ): If b is a collider onha; b; ci , then:

� ha; bi is an inducing path betweena and b relative to h? ; ci : a �! b;

� ha; b; ci is an inducing path betweena and c relative to h? ; bi : a �! b  � c;

� hb; ci is an inducing path betweenb and c relative to h? ; ai : b  � c.
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Therefore,M abc is m-connecting.

(i ( ii ): If M abc is m-connecting buta and c are not adjacent, then there exists an inducing

path � betweena and c relative to h? ; bi that is not inducing relative to h? ; ? i . Accordingly,

every collider on� is an ancestor ofa, b, or c. However, there exists a colliderv 2 V on �

that is not an ancestor ofa or c, otherwise,� would be inducing relative toh? ; ? i . It follows

that v is an ancestor ofb and that b is not an ancestor ofa or c; if b was an ancestor ofa or

c, then v would also be an ancestor ofa or c. Therefore,b is a collider onha; b; ci .

Lemma 4.1.3. Let G = ( V; E) be a MAG with a discriminating pathha; b1; : : : ; bk ; c; di

(k � 1) for c. The following are equivalent:

i. c is a collider on hbk ; c; di ;

ii. M acd � f a; c; dg is m-connecting.

Proof. (i ) ii ): If c is a collider onhbk ; c; di , then:

� ha; b1; : : : ; bk ; c; di is an inducing path betweena and d relative to h? ; ci :

a �! b1 $ � � � $ bk $ c $ d wherebi ! d for all 1 � i � k|every collider on the path

is an ancestor off c; dg;

� ha; b1; : : : ; bk ; ci is an inducing path betweena and c relative to h? ; di :

a �! b1 $ � � � $ bk $ c wherebi ! d for all 1 � i � k|every collider on the path is an

ancestor ofd;

� hc; di is an inducing path betweenc and d relative to h? ; ai : c $ d.

Therefore,M acd is m-connecting.

(i ( ii ): If M acd is m-connecting buta and d are not adjacent, then there exists an inducing

path � betweena and d relative to h? ; ci that is not inducing relative to h? ; ? i . Accordingly,

every collider on� is an ancestor ofa, c, or d. However, there exists a colliderv 2 V on �

that is not an ancestor ofa or d, otherwise� would be inducing relative toh? ; ? i . It follows

that v is an ancestor ofc and that c is not an ancestor ofa or d; if c was an ancestor ofa or

d, then v would also be an ancestor ofa or d. Similarly, c is not an ancestor ofbk sincebk is

a parent of d. Therefore,c is a collider onhbk ; c; di .
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Accordingly, in conjunction with Theorem 3.3.7, the preceding three lemmas may be

used to characterize Markov equivalence.

Theorem 4.1.1. Let G = ( V; E) and G0 = ( V; E0) be MAGs. The following are equivalent:

i. G and G0 are Markov equivalent;

ii. G and G0 have the same m-connecting sets.

Proof. (i ) ii ): If G and G0 are Markov equivalent, then they have the samem-separations.

It follows from the de�nition of m-connecting set (iv ) that G and G0 have the samem-

connecting sets.

(i ( ii ): Lemma 4.1.1 implies thatG and G0 have the same adjacencies and, accordingly,

the same unshielded triples. Lemma 4.1.2 implies thatG and G0 have the same unshielded

colliders. Lemma 4.1.3 implies that if� forms a discriminating path forb in G and G0, then

b is a collider on� in G if and only if it is a collider on � in G0. Theorem 3.3.7 implies that

G and G0 are Markov equivalent.

An interesting takeaway is that the induced independence model of a MAG may be

characterized by itsm-connecting sets of cardinality two and three. Additionally, the sets

of cardinality three can be further re�ned to those that have at least one and at most

two subsets of cardinality two that are m-connecting. This is an important result used

for quickly de�ning Markov equivalence with parametrizing sets [38]. This characterization

of equivalence may be straightforwardly extended to any family of stable mixed graphs by

noting that all families of stable mixed graphs induce the same family of independence models

[73, 74]. Since them-connecting sets of a graph can be de�ned directly from the induced

independence model of the graph the result is immediate.

4.2 Relation to Other Work

In this section, we discuss how the ideas presented in this dissertation relate to previous

works. Similar ideas have been explore independently by other authors.
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4.2.1 Parametrizing Sets and Characteristic Imsets

Hu and Evan's work on parametrizing sets [38] is closely related our work onm-connecting

sets. These sets were developed concurrently with this work and published during the synthe-

sis of this dissertation. Parametrizing sets are identical tom-connecting sets, but are de�ned

using the heads and tails of an ADMG explicitly for the purpose of characterizing Markov

equivalence. Additionally, for those familiar with the work of Hu and Evans, Lemmas 4.1.1,

4.1.2, and 4.1.3 achieve the same result as Proposition 3.4 in [38].

Proposition 4.2.1. Let G = ( V; E) be a MAG containing a setM � V. The following are

equivalent:

i. M is m-connecting forG;

ii. M is a parametrizing set ofG.

Proof. The proof directly follows from Proposition 3.3.5.

Studen�y et al.'s work on characteristic imsets [87, 37] is closely related to our work on

m-connecting sets. These imsets have only been de�ned for independence models induced by

DAGs, but for these modelsm-connecting sets and characteristic imsets are nearly identical.

To facilitate this comparison, note that a set of sets can be represented by an identi�er imset

for that set of sets. With this, the only di�erence is that characteristic imsets are not de�ned

for singletons; singletons are triviallym-connecting.

Proposition 4.2.2. Let G = ( V; E) be a DAG containing a setM � V (jM j � 2) and � be

a total order consistent withG. The following are equivalent:

i. M is an m-connecting set forG;

ii. the characteristic imset cG(M ) = 1 .

Proof. (i ) ii ): If M is m-connecting, then by Lemma 4.0.1M is a collider-connecting set.

In a DAG this is only possible ifM n dM e� � paG(dM e� ). Therefore, by Proposition 3.5.6

cG(M ) = 1.

(i ( ii ): If cG(M ) = 1, then by Proposition 3.5.6 M n dM e� � paG(dM e� ). Accordingly,

there exist m-connecting paths between the members ofM n dM e� and dM e� . Further-
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more, there existm-connecting paths between all members ofM n dM e� relative to dM e� .

Therefore,M 2 M (G).

4.2.2 The Causal Inference Algorithm

The causal inference (CI) algorithm recovers a PAGG that represents a Markov equiva-

lence class of MAGs by querying a conditional independence oracleI [79]; the CI algorithm is

detailed in Appendix B.2. Algorithm 1 outlines a modi�ed version of the CI algorithm that

replaces the queries to a conditional independence oracle with queries to anm-connecting set

oracleM . This modi�cation directly follows from Lemmas 4.1.1, 4.1.2, and 4.1.3. Algorithm

1 provides a procedure to reconstruct a MAG up to its Markov equivalence class from its

m-connecting sets.

Algorithm 1: Causal Inference from M-connecting Sets CIM (M )
Input: m-connecting sets:M
Output: partial ancestral graph: G

1 Let G = ( V; E) where E = f a ��� b j a; b2 Vg ;
2 foreach edgea ��� b2 E do
3 if f a; bg 62M then
4 Removea ��� b from E ;
5 end
6 end
7 foreach unshielded triple ha; b; ci in G do
8 Rule 0: If f a; b; cg 2 M , then orient it as a collidera �! b  � c ;
9 end

10 repeat
11 Rule 1: If a �! b��� c, and a and c are not adjacent, then orient the triple as

a �! b ! c ;
12 Rule 2: If a ! b �! c or a �! b ! c, and a ��� c, then orient a ��� c as a �! c ;
13 Rule 3: If a �! b  � c, a ��� d ��� c, a and c are not adjacent, andd ��� b, then

orient d ��� b as d �! b ;
14 Rule 4: If ha; : : : ; b; c; di is a discriminating path from a to d for c and c ��� d,

then: if f a; c; dg 62M , then orient c ��� d as c ! d; otherwise orient the triple
hb; c; di as b$ c $ d ;

15 until Rules 1 - 4 no longer apply;
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4.3 Factorization

In this section we present one of the main results of this dissertation: a factorization

criterion for the log density of a probability measure. The factorization criterion is derived

from the m-connecting sets of a directed MAG for a probability measure and is equivalent

to the probability measure satisfying the global Markov property with respect to that MAG.

The general proof strategy uses an algorithm to construct the primary and secondary imsets

out of the non-m-connecting sets; see Algorithm 3. Applying the M•obius inversion to the

primary imset yields a structural imset that induces the same independence model as the

directed MAG. The secondary imset is incorporated into the factorization as an adjustment

term. Ultimately we show: (i ) the factorization criterion holding implies that the dot product

of the structural imset with the multiinformation of the probability measure equals zero; (ii )

the dot product of the structural imset with the multiinformation of the probability measure

equaling zero implies that the global Markov property holds; and (iii ) the global Markov

property holding implies that the factorization criterion holds.

To facilitate the forthcoming discussion, we de�ne several new terms. LetV be a non-

empty set of variables. Furthermore, letX be a collection of random variables indexed by

V with probability measure P that admits density f (x) with respect to dominating � -�nite

product measure� . We de�ne a function � A : XA ! R as a linear combination of log density

terms motivated by the M•obius inversion.

� A (x) =
X

B � A

(� 1)jAnB j logf B (x) log f A (x) =
X

B � A

� B (x)

The expectation of � A (x) with respect to P has been previously studied in the �eld of

information theory by several researchers including McGill, who coined the term interaction

information [53]. Accordingly, we call� A (x) the interaction information rate.

We provide an analogous term for a non-empty set of sets. LetA � P(V) be a set of

sets:

� A(x) �
X

T 2 A

� T (x)

We de�ne the following case for sets of sets and shorthand for the corresponding� term. Let
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A; B � V (A 6= ? ) be disjoint sets:

MAjB �
[

T � AB
A� T

f Tg � AjB (x) � � M A j B
(x) � AjB � � M A j B

Similar to above, we call� AjB (x) the conditional interaction information rate.

� AjB (x) =
X

T � AB
A� T

� T (x)

=
X

T � AB
B � T

(� 1)jAB nT j logf T (x)

Another case is when the set of sets corresponds to a semi-elementary imset that has

been transformed by the M•obius inversion. LetA; B; C � V (AB 6= ? ) be disjoint sets.

NA;B jC �
[

T � ABC
T 6�AC
T 6�BC

f Tg � A;B jC (x) � � NA;B j C
(x) � A;B jC � � NA;B j C

The expectation of � A;B jC (x) with respect to P is the well-known information theoretic

concept of mutual information. Accordingly, we call� A;B jC (x) the mutual information rate.

The mutual information rate corresponds to the imsets constructed by Algorithm 3.

Additionally, these terms are closely related to conditional independence. LetA; B; C � V

(AB 6= ? ) be disjoint sets.

� A;B jC (x) =
X

T � ABC
T 6�AC
T 6�BC

� T (x)

=
X

T � ABC

� T (x) +
X

T � C

� T (x) �
X

T � AC

� T (x) �
X

T � BC

� T (x)

= log f ABC (x) + log f C (x) � logf AC (x) � logf BC (x):

A ?? B j C [ P ] , � A;B jC (x) = 0 for P-a.e.x 2 X (4.1)
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This relation can be expressed more generally using imsets. LetP = P(V) be a poset

ordered by inclusion and note that� P� A =
P

T � A � T .

� A;B jC =
X

T � ABC
T 6�AC
T 6�BC

� T

=
X

T � ABC

� T +
X

T � C

� T �
X

T � AC

� T �
X

T � BC

� T

= � P� ABC + � P� C � � P� AC � � P� BC

= � P [� ABC + � C � � AC � � BC ]

= � PuhA;B jCi :

Accordingly,

uhA;B jCi = � P� A;B jC :

A ?? B j C [ P ] , (� P� A;B jC )> mP = 0 (4.2)

The non-m-connecting set terms constructed by the Algorithm 3 are exactly the non-

m-connecting sets for a directed MAG, and we use their correspondence to conditional

independence in a probability measure to show the equivalence between the factorization

and the global Markov property.

4.3.1 Preliminaries

To facilitate the forthcoming proofs, we introduce the concept of constrained subsets.

De�nition (constrained subsets). Let V be a non-empty set of variables containing sets

A; B � V. Let R � P(V) be a set of sets. The subset operator applied toA with respect to

B constrained byR, denoted byA � R B, is the conjunction:

i. A � B ;

ii. A 2 R.

Let b2 V be a variable. The subset operator applied toA with respect to B constrained by

b, denoted byA � b B, is the conjunction:
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i. A � B ;

ii. b2 A.

The subset operator applied toA with respect to B constrained by R and b, denoted by

A � b
R B, is the conjunction:

i. A � B ;

ii. b2 A 2 R.

Additionally, a maximal constrained subset, denoted byA 2 dBeb
R, is a maximal set satisfying

A � b
R B.

Proposition 4.3.1 shows that the induced subgraph of a MAG over an anterior set is a

MAG and induces an independence subset over the shared variables.

Proposition 4.3.1. Let G = ( V; E) be a MAG containing a setA � V . If A is an anterior

set, then the induced subgraphGA is a MAG and:

I (GA ) = fhA; B j Ci 2 T(A) ; hA; B j Ci 2 I (G)g:

Proof. By Proposition 3.3.4,GA is a MAG and by Proposition 3.4.2I (GA ) = fhA; B j Ci 2

T(A) ; hA; B j Ci 2 I (G)g.

Corollary 4.3.1. Let G = ( V; E) be a directed MAG containing a setA � V . If A is an

ancestral set, then the induced subgraphGA is a directed MAG and:

I (GA ) = fhA; B j Ci 2 T(A) ; hA; B j Ci 2 I (G)g:

Proof. The proof immediately follows from Propositions 3.4.1 and 4.3.1.

Lemma 4.3.1 shows that them-connecting sets of the induced subgraph of a MAG over

an anterior set is the induced set ofm-connecting sets. That is, for an ancestral subset

A � V , M (GA ) is the set ofm-connecting sets containing everym-connecting set present in

M (G) over the members ofA.

Lemma 4.3.1. Let G = ( V; E) be a MAG containing an anterior subsetA � V . If M � A,

then the following are equivalent:
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i. M is m-connecting forG;

ii. M is m-connecting forGA .

Proof. The proof immediately follows from Proposition 3.4.2 and the de�nitions of marginal-

ization and m-connecting set.

Lemma 4.3.2 shows that barren vertices have a unique maximal collider-connecting set.

Lemma 4.3.2. Let G = ( V; E) be a directed MAG containing a vertexb 2 barG(V). There

is exactly one maximal collider-connecting set containingb.

Proof. Let A; C 2 dVeb
colG(b) be maximal collider-connecting sets containingb and note

that jAj = jCj. If jAj = jCj = 1, then A = C = f bg and there is exactly one maximal

collider-connecting set.

If jAj = jCj > 1, then for all a 2 A (a 6= b) and all c 2 C (c 6= b), there exists a collider

path � ab betweena and b and a collider path� bc betweenb and c. In what follows, we show

that a and c are collider-connecting; ifa = c this is trivial.

Construct a path � ac as follows. Traverse� ab from a to b until reaching a vertex v 2 V

such that v is on � bc. Let � av be the subpath of� ab betweena and v. Similarly, traverse � bc

from v to c . let � vc be the subpath of� bc betweenv and c. Then � ac is the path formed by

concatenating� av and � vc.

If v = b, then v is a collider on� ac sinceb2 barG(V). If v 6= b, then v is a collider on� ab

and � bc. It follows that v is a collider on� ac. Thereforea and c are collider-connecting. Since

every a 2 A and c 2 C are collider-connecting,A = C and there is exactly one maximal

collider-connecting set containingv.

Corollary 4.3.2 shows that barren vertices have a unique maximalm-connecting set. It

is worth noting that the unique maximal m-connecting set of a vertex is also the unique

maximal collider-connecting set for that vertex.

Corollary 4.3.2. Let G = ( V; E) be a directed MAG containing a vertexb2 barG(V). There

is exactly one maximal m-connecting set containingb.

Proof. The proof immediately follows from Lemmas 4.0.1 and 4.3.2.
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Lemma 4.3.3 shows thatm-connecting sets may be characterized by the existence of

inducing paths between a barren vertex and the other vertices in the set.

Lemma 4.3.3. Let G = ( V; E) be a directed MAG containing a setM � V and letL = VnM .

If b2 barG(M ), then the following are equivalent:

i. there exists an inducing path betweena and b relative to hL; M n f a; bgi for all a 2 M nb;

ii. M is m-connecting forG.

Proof. (i ) ii ): Suppose by way of contradiction thatM is not m-connecting forG. Then

there existsa; c 2 M nb (a 6= c) such that there is no inducing path betweena and c relative

to hL; M n f a; cgi . However, there exists an inducing path� ab between a and b relative

to hL; M n f a; bgi and an inducing path � bc between b and c relative to hL; M n f b; cgi .

Construct the path � ac by traversing � ab from a to b until reaching somed 2 � bc then

traversing � bc from d to c.

Note the status of every non-endpoint vertex on� ac. In particular, check if each non-

endpoint vertex is a non-collider on� ac and member ofL, a collider on� ac and an ancestor

of M , or neither. By construction, every non-endpoint vertex on� ac has the same status

as on� ab and � bc except ford. Therefore, all non-endpoint vertices other thand satisfy the

criteria required for � ac to be inducing relative to hL; M n f a; cgi .

Accordingly, we consider the possible scenarios ford. If d = b, then d is a collider on� ac

and a trivial ancestor ofM sinceb 2 barG(M ). If d 6= b is a non-collider on� ac, then d is a

non-collider on� ab or � bc and d 2 L. If d 6= b is a collider on� ac and d is a collider on� ab

or � bc, then d 2 anG(M ). If d is a collider on� ac and a non-collider on� ab and � bc, then d is

an ancestor ofa, c, or a collider on� ac; accordinglyd 2 anG(M ).

Therefore,d satis�es the criteria required for� ac to be inducing relative tohL; M n f a; cgi .

The path � ac is inducing for hL; M n f a; cgi ; this is a contradiction.

(i ( ii ): This is trivial by the de�nition of m-connecting set.

Algorithm 3 uses a helper algorithm to construct pairs ofm-connecting and non-m-

connecting sets; see Algorithm 2.
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Algorithm 2: Pairs (G; b)
Input: directed MAG: G = ( V; E), barren vertex: b2 barG(V)
Output: ordered lists: M G;b, NG;b

1 Initialize ordered lists M G;b = hi and NG;b = hi;
2 Let R = f N ; N � b

N(G) Vg ;

3 repeat
4 Pick N 2 dVeb

R and M 2 dN eb
M (G) ;

5 Append N to NG;b and M to M G;b ;
6 foreach T � N do
7 if b2 T and T 6� M then
8 RemoveT from R ;
9 end

10 end
11 until R = ? ;

Algorithm 2 requires several new concepts. Accordingly, we de�ne the following notation.

Let G = ( V; E) be a directed MAG, P = P(V) be a poset ordered by inclusion, andb 2

barG(V) be a barren vertex. Additionally, we useM G;b and NG;b to de�ne the ordered lists

output by Algorithm 2. These are ordered lists ofm-connecting, non-m-connecting sets

respectively:

M G;b = hM G;b
1 ; : : : ; M G;b

n i NG;b = hN G;b
1 ; : : : ; N G;b

n i

wheren = jM G;bj.

Additionally, we de�ne the restricted universe of sets with respect toN G;b
i and b:

UG;b
i �

[

T � N G;b
i

b2 T

f Tg:

We simplify notation and useNG;b
i;i to de�ne sets of sets that corresponds to the conditional

independence statementb?? N G;b
i n M G;b

i j M G;b
i n b. Let A = b, B = N G;b

i n M G;b
i , and
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C = M G;b
i n b, then

ABC = ( N G;b
i n M G;b

i ) [ (M G;b
i n b) [ b

= N G;b
i

AC = ( M G;b
i n b) [ b

= M G;b
i

BC = ( N G;b
i n M G;b

i ) [ (M G;b
i n b)

= N G;b
i n b:

Therefore, de�ne

NG;b
i;i �

[

T 2 UG;b
i

T 6�M G;b
i

f Tg =
[

T � N G;b
i

b2 T
T 6�M G;b

i

f Tg =
[

T � ABC
T 6�AC
T 6�BC

f Tg:

Accordingly

� A;B jC = � NG;b
i;i

and uhA;B jCi = � P� NG;b
i;i

:

Lemma 4.3.4 states that the non-m-connecting sets constructed at each step of Algorithm

3 are the non-m-connecting sets containingb that have not yet been accounted for inN(G).

Lemma 4.3.4. Let G = ( V; E) be a directed MAG containing vertexb 2 V with preceding

vertices R = pre �
G(b) and ancestral setA 2 A(G) such that b 2 A � R. If M GA ;b; NGA ;b =

Pairs (GA ; b) are the ordered lists constructed by Algorithm 2, then

n[

i =1

NGA ;b
i;i = f T � b

N(G) Ag:

Proof. By Corollary 4.3.1 GA is a directed MAG and by Lemma 4.3.1f T � N(G);b Ag =

f T � N(GA );b Ag. Let T � N(GA );b A be a non-m-connecting subset ofA containing b and

suppose by way of contradiction thatT 62N GA ;b
i;i for any 1 � i � n.

Note that T � N GA ;b
i for some 1� i � n sinceN GA ;b

1 = A. Pick i such that T � N GA ;b
i .

If T 6� M GA ;b
i , then T 2 N GA ;b

i;i ; this is a contradiction. Otherwise, there existsT � N GA ;b
j �

M GA ;b
i for someN GA ;b

j 2 N GA ;b by maximality. Repeat this logic until T 2 N GA ;b
j;j or M GA ;b

j

has no maximal non-m-connecting subsets; the latter is a contradiction.

Thus, there exists 1� i � n such that T 2 N GA ;b
i;i and

S n
i =1 N GA ;b

i;i = f T � N(G);b Ag.
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Let G = ( V; E) be a directed MAG and� be a total order consistent withG. Accordingly,

the set of setsN(G) is the set of all non-m-connecting sets forG and the imset � N(G) is the

identi�er of N(G). Algorithm 3 characterizes� N(G) as a linear combination of imsets whose

M•obius inversions are semi-elementary imsets. Two new imsets are subsequently constructed

from the linear combination imsets|one is the sum of the (absolute) positive components

and the other is the sum of the (absolute) negative components. We call these imsets the

primary and secondary imsets respectively. It follows that the M•obius inversion of the newly

constructed imsets are structural imsets and induce semi-graphoids. Notably, the primary

imset induces the same independence model asG but is not part of the factorization, while

the secondary imset induces a strict independence subset but is part of the factorization.

Algorithm 3 begins by de�ning a setR as the set of all variablesV. As the algorithm

loops, variables are removed one at a time andR contains the remaining variables. A vertex

b is selected to be removed from the remaining verticesR whereb is the last vertex according

to � . Algorithm 2 is called to construct ordered listsM G;b and NG;b. The ordered listsM G;b

and NG;b contain m-connecting and non-m-connecting sets respectively; all sets containb.

By Corollary 4.3.2, each setN G;b
i in NG;b has exactly one unique maximalm-connecting

subsetM G;b
i that contains b. Accordingly, we construct pairs of non-m-connecting andm-

connecting sets by addingM G;b
i and N G;b

i terms to M G;b and NG;b respectively where each

N G;b
i is paired with the correspondingM G;b

i .

In each loop on Algorithm 2, we pick a maximal non-m-connecting setN G;b
i that contains

b from R and the previously described pairing process is repeated. All subsets ofN G;b
i and

supersets ofM G;b
i are removed fromR.

New m-connecting and non-m-connecting sets are added toM G;b and NG;b respectively

using this process untilR does not contain any more sets. At this point, the pairs forb

and R have been extracted and Algorithm 2 returnsM G;b and NG;b. In general the N G;b
i

terms are subsets of vertices containingb and the M G;b
i terms are the closure ofb within the

correspondingN G;b
i , that is, b?? N G;b

i n M G;b
i j M G;b

i n b [ GN G;b
i

]|this is shown in Lemma

4.3.5.

Additionally, Lemma 4.3.1 impliesb?? N G;b
i n M G;b

i j M G;b
i n b [ G]. These conditional

independence statements are represented by theNG;b
i;i imsets and by Lemma 4.3.4 their union
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is equivalent to the non-m-connecting sets ofGR that contain b, that is, � f T 2 N(GR ) ; b2 T g. Using

the principle of inclusion and exclusion, we de�ne the union in terms of the sum of positive

and negative intersection terms represented by theNG;b
J;K imsets. These positive and negative

terms reect the conditional independence statements used in the de�nition of the ordered

local Markov property. Once these components have been accounted for in the imsets,b is

removed fromR and the process of constructing pairs begins again with a newb and R.

When R = ? , the algorithm is complete.
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Algorithm 3: Non-m-connecting Sets as Imsets NSI (G; � )
Input: directed MAG: G = ( V; E), total order consistent with G: �
Output: imsets: u� ;+

N(G) , u� ;�
N(G)

1 Initialize imsets u� ;+
N(G) : P(V) ! 0 and u� ;�

N(G) : P(V) ! 0 ;

2 Let R = V ;
3 repeat
4 Let b= dRe� ;
5 Let M GR ;b; NGR ;b = Pairs (GR ; b) ;
6 Initialize lists A = hi and B = hi ;
7 foreach J � f 1; : : : ; jM GR ;bjg do
8 foreach K � J whereK 6= ? do
9 if NGR ;b

J;K 6= ? then
10 if jJ n K j mod 2 = 0 and NGR ;b

J;K 62B then
11 Append NGR ;b

J;K to A ;
12 else if jJ n K j mod 2 = 0 and NGR ;b

J;K 2 B then
13 RemoveNGR ;b

J;K from B ;
14 else if jJ n K j mod 2 = 1 and NGR ;b

J;K 62A then
15 Append NGR ;b

J;K to B ;
16 else if jJ n K j mod 2 = 1 and NGR ;b

J;K 2 A then
17 RemoveNGR ;b

J;K from A ;
18 end
19 end
20 end
21 end
22 foreach N 2 A do
23 u� ;+

N(G) = u� ;+
N(G) + � N ;

24 end
25 foreach N 2 B do
26 u� ;�

N(G) = u� ;�
N(G) + � N ;

27 end
28 Removeb from R ;
29 until R = ? ;

Algorithms 3 require several new concepts. Accordingly, we de�ne the following notation.

Let G = ( V; E) be a directed MAG, P = P(V) be a poset ordered by inclusion, andb 2

barG(V) be a barren vertex. Additionally, we useM G;b and NG;b to de�ne the ordered lists

80



output by Algorithm 2. We expand this notation to intersection terms as follows:

M G;b
K �

\

k2 K

M G;b
k N G;b

J �
\

j 2 J

N G;b
j UG;b

J �
[

T � N G;b
J

b2 T

f Tg M G;b
J;K � M G;b

K \ N G;b
J :

We simplify notation and useNG;b
J;K to de�ne sets of sets which correspond to the condi-

tional independence statementb?? N G;r
J n M G;b

J;K j M G;b
J;K n b. If A = b, B = N G;b

J n M G;b
J;K , and

C = M G;b
J;K n b, then

ABC = ( N G;b
J n M G;b

J;K ) [ (M G;b
J;K n b) [ b

= N G;b
J

AC = ( M G;b
J;K n b) [ b

= M G;b
J;K

BC = ( N G;b
J n M G;b

J;K ) [ (M G;b
J;K n b)

= N G;b
J n b:

Therefore, de�ne

NG;b
J;K �

[

T 2 UG;b
J

T 6�M G;b
J;K

f Tg =
[

T � N G;b
J

b2 T
T 6�M G;b

J;K

f Tg =
[

T � ABC
T 6�AC
T 6�BC

f Tg:

Accordingly

� A;B jC = � NG;b
J;K

= � b;N G;b
J nM G;b

J;K jM G;b
J;K nb and � P� NG;b

J;K
= uhb;N G;b

J nM G;b
J;K jM G;b

J;K nbi :

Now we show that the output of Algorithm 3 characterize the set identi�er for the non-

m-connecting sets; Appendix B.3 shows that Algorithm 3 does not necessarily give the most

e�cient solution.

De�nition (inclusion/exclusion for imsets[91]). Let V be a non-empty set of variables and

N1; : : : ; Nn � P(V) be n sets of sets. The concept of inclusion/exclusion is extended to

imsets as follows:

� S n
i =1 N i =

X

J �f 1;:::;n g
J 6= ?

(� 1)jJ j� 1 � T
j 2 J N j :
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Several applications of De Morgan's laws gives an alternative form as follows:

� T n
i =1 N i =

X

J �f 1;:::;n g
J 6= ?

(� 1)jJ j� 1 � S
j 2 J N j :

Proposition 4.3.2. If G = ( V; E) be a directed MAG,� be a total order consistent withG,

P = P(V) be a poset ordered by inclusion, then:

� N(GR ) =
X

b2 V

� f T � b
N ( GR ) GR g = u� ;+

N(GR ) � u� ;�
N(GR )

whereR = pre �
G(b) for all b2 V.

Proof. Let G = ( V; E) be a directed MAG, � be a total order consistent with G, P =

P(V) be a poset ordered by inclusion, andRb = pre �
G(b). Furthermore, let M GR ;b; NGR ;b =

Pairs (GR ; b):

M GR ;b = hM GR ;b
1 ; : : : ; M GR ;b

nb
i NGR ;b = hN GR ;b

1 ; : : : ; N GR ;b
nb

i

wherenb = jM GR ;bj.

� f T � b
N ( GR ) Rg = � S n

i =1 N
GR ;b
i;i

(Lemma 4.3.4)

= �
S n

i =1

2

6
6
6
4

S

T 2 U
GR ;b
i

T 6�M
GR ;b
i

f T g

3

7
7
7
5

=
X

J �f 1;:::;n bg
J 6= ?

(� 1)jJ j� 1 �
T

j 2 J

2

6
6
6
6
4

S

T 2 U
GR ;b
j

T 6�M
GR ;b
j

f T g

3

7
7
7
7
5

(inclusion/exclusion)

=
X

J �f 1;:::;n bg
J 6= ?

(� 1)jJ j� 1 �
T

j 2 J

2

6
6
6
6
4

S

T 2 U
GR ;b
J

T 6�M
GR ;b
j

f T g

3

7
7
7
7
5

(UGR ;b
j ! UGR ;b

J )

=
X

J �f 1;:::;n bg
J 6= ?

(� 1)jJ j� 1
X

K � J
K 6= ?

(� 1)jK j� 1 �
S

k 2 K

2

6
6
6
4

S

T 2 U
GR ;b
J

T 6�M
GR ;b
k

f T g

3

7
7
7
5

(inclusion/exclusion)
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=
X

J �f 1;:::;n bg
J 6= ?

X

K � J
K 6= ?

(� 1)jJ nK j �
S

k 2 K

2

6
6
6
4

S

T 2 U
GR ;b
J

T 6�M
GR ;b
k

f T g

3

7
7
7
5

=
X

J �f 1;:::;n bg
J 6= ?

X

K � J
K 6= ?

(� 1)jJ nK j �
S

k 2 K

2

6
6
6
4

U
GR ;b
J n

S

T 2 U
GR ;b
J

T � M
GR ;b
k

f T g

3

7
7
7
5

(complement)

=
X

J �f 1;:::;n bg
J 6= ?

X

K � J
K 6= ?

(� 1)jJ nK j �

U
GR ;b
J n

2

6
6
6
4

T
k 2 K

S

T 2 U
GR ;b
J

T � M
GR ;b
k

f T g

3

7
7
7
5

(De Morgan's law)

=
X

J �f 1;:::;n bg
J 6= ?

X

K � J
K 6= ?

(� 1)jJ nK j �

U
GR ;b
J n

2

6
6
6
6
4

T
k 2 K

S

T 2 U
GR ;b
J

T � M
GR ;b
J;K

f T g

3

7
7
7
7
5

(M GR ;b
k ! M GR ;b

J;K )

=
X

J �f 1;:::;n bg
J 6= ?

X

K � J
K 6= ?

(� 1)jJ nK j �

U
GR ;b
J n

2

6
6
6
6
4

S

T 2 U
GR ;b
J

T � M
GR ;b
J;K

f T g

3

7
7
7
7
5

=
X

J �f 1;:::;n bg
J 6= ?

X

K � J
K 6= ?

(� 1)jJ nK j � S

T 2 U
GR ;b
J

T 6�M
GR ;b
J;K

f T g (complement)

=
X

J �f 1;:::;n bg
J 6= ?

X

K � J
K 6= ?

(� 1)jJ nK j �
N

GR ;b
J;K

Accordingly,

� N(GR ) =
X

b2 V

� f T � b
N ( GR ) GR g

=
X

b2 V

X

J �f 1;:::;n bg
J 6= ?

X

K � J
K 6= ?

(� 1)jJ nK j �
N

GR ;b
J;K

= u� ;+
N(GR ) � u� ;�

N(GR )

whereR = pre �
G(b) for all b2 V.

In what follows, we give an illustrative example of Algorithm 3. Figure 4.3 depicts a

directed MAG G = ( V; E), its m-connecting setsM (G), and its non-m-connecting setsN(G).

Consider the total order� over V such that e � a � d � b � c.
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Figure 4.3: A directed MAG with verticesf a; b; c; d; eg and the correspondingm-connecting

and non-m-connecting sets for the directed MAG.

Run Pairs (Gabcde; c) to construct ordered lists NGabcde ;c = hfa; b; c; eg; f a; c; d; egi and

M Gabcde ;c = hfa; b; cg; f c; d; egi .
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Figure 4.4: A visualization of Pairs (Gabcde; c) applied to the directed MAG in Figure 4.3

and the corresponding base conditional terms.

The intersection terms are as follows|these terms correspond to intersections over mem-

bers ofNGabcde ;c indexed by the loop on line 7 of Algorithm 3.

Intersection Terms:

N Gabcde ;c
1 = f a; b; c; eg M Gabcde ;c

1 = f a; b; cg

N Gabcde ;c
2 = f a; c; d; eg M Gabcde ;c

2 = f c; d; eg

N Gabcde ;c
12 = f a; c; eg M Gabcde ;c

12 = f cg

The conditional terms are as follows|these terms correspond to those appended and

removed on lines 11, 13, 15, and 17.
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Conditional Terms:

NGabcde ;c
1;1 = f N 2 N(G) ; � c;ejab(N ) = 1 g

NGabcde ;c
2;2 = f N 2 N(G) ; � c;ajcd(N ) = 1 g

NGabcde ;c
12;1 = f N 2 N(G) ; � c;eja(N ) = 1 g

NGabcde ;c
12;2 = f N 2 N(G) ; � c;aje(N ) = 1 g

NGabcde ;c
12;12 = f N 2 N(G) ; � c;ae(N ) = 1 g

The positive and negative conditional terms are as follows|the positive terms are on

the left and correspond to the listA in Algorithm 3 and the negative terms are on the right

and correspond to the listB in Algorithm 3.

Positive Conditional Terms:

NGabcde ;c
1;1 = f N 2 N(G) ; � c;ejab(N ) = 1 g

NGabcde ;c
2;2 = f N 2 N(G) ; � c;ajde(N ) = 1 g

NGabcde ;c
12;12 = f N 2 N(G) ; � c;ae(N ) = 1 g

Negative Conditional Terms:

NGabcde ;c
12;1 = f N 2 N(G) ; � c;eja(N ) = 1 g

NGabcde ;c
12;2 = f N 2 N(G) ; � c;aje(N ) = 1 g

Accordingly, the non-m-connecting set terms added on lines 23 and 26 of Algorithm 3 are

as follows|these imsets represent all non-m-connecting subsets off a; b; c; d; eg that contain

c.

� f T � c
N ( G) f a;b;c;d;egg = � c;ejab+ � c;ajde+ � c;ae � � c;eja � � c;aje

= [ � abce + � ace + � bce + � ce] + [ � acde + � acd + � ace + � ac]

+ [ � ace + � ac + � ce] � [� ace + � ce] � [� ace + � ac]

Run Pairs (Gabde; b) to construct ordered lists NGabde ;b = hfa; b; d; egi and M Gabde ;b =

hfa; bgi .
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Figure 4.5: A visualization ofPairs (Gabde; b) applied to the directed MAG in Figure 4.3 and

the corresponding base conditional terms.

The intersection terms are as follows|these terms correspond to intersections over mem-

bers ofNGabde ;b indexed by the loop on line 7 of Algorithm 3.

Intersection Terms: Positive Conditional Terms:

N Gabde ;b
1 = f a; b; d; eg M Gabde ;b

1 = f a; bg NGabde ;b
1;1 = f N 2 N(G) ; � b;deja(N ) = 1 g

Accordingly, the non-m-connecting set terms added on lines 23 and 26 of Algorithm 3 are

as follows|these imsets represent all non-m-connecting subsets off a; b; d; eg that contain b.

� f T � b
N ( G) f a;b;d;egg = � b;deja

= [ � abde + � abd + � abe + � bde + � bd + � be]

Run Pairs (Gade; d) to construct ordered listsNGade ;d = hfa; d; egi and M Gade ;d = hfd; egi .
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Figure 4.6: A visualization ofPairs (Gade; d) applied to the directed MAG in Figure 4.3 and

the corresponding base conditional terms.

The intersection terms are as follows|these terms correspond to intersections over mem-

bers ofNGade ;d indexed by the loop on line 7 of Algorithm 3.

Intersection Terms: Positive Conditional Terms:

N Gade ;d
1 = f a; d; eg M Gade ;d

1 = f d; eg NGade ;d
1;1 = f N 2 N(G) ; � d;aje(N ) = 1 g

Accordingly, the non-m-connecting set terms added on lines 23 and 26 of Algorithm 3

are as follows|these imsets represent all non-m-connecting subsets off a; d; eg that contain

d.

� f T � d
N ( G) f a;d;egg = � d;aje

= [ � ade + � ad]

Run Pairs (Gae; a) to construct ordered listsNGae ;a = hfa; egi and M Gae ;a = hfagi .
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Figure 4.7: A visualization ofPairs (Gae; a) applied to the directed MAG in Figure 4.3 and

the corresponding base conditional terms.

The intersection terms are as follows|these terms correspond to intersections over mem-

bers ofNGae ;a indexed by the loop on line 7 of Algorithm 3.

Intersection Terms: Positive Conditional Terms:

N Gae ;a
1 = f a; eg M Gae ;a

1 = f ag NGae ;a
1;1 = f N 2 N(G) ; � a;e(N ) = 1 g

Accordingly, the non-m-connecting set terms added on lines 23 and 26 of Algorithm 3

are as follows|these imsets represent all non-m-connecting subsets off a; eg that contain a.

� f T � a
N ( G) f a;egg = � ae

Run Pairs (Ge; e) to construct ordered listsNGe ;e = hi and M Ge ;e = hi.
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Figure 4.8: A visualization of Pairs (Ge,e) applied to the directed MAG in Figure 4.3 and

the corresponding base conditional terms.

There are no intersection terms. Accordingly, the non-m-connecting set terms added on

lines 23 and 26 of Algorithm 3 are as follows (there are none)|these imsets represent all

non-m-connecting subsets off eg that contain e.

Combining the results from all the iterations of the procedure, we get

u� ;+
N(G) = � c;ejab+ � c;ajde+ � c;ae+ � b;deja+ � d;aje+ � a;e

u� ;�
N(G) = � c;eja+ � c;aje

or

u� ;+
N(G) = [ � abce + � ace + � bce + � ce] + [ � acde + � acd + � ace + � ac] + [ � ace + � ac + � ce]

+ [ � abde + � abd + � abe + � bde + � bd + � be] + [ � ade + � ad] + � ae

u� ;�
N(G) = [ � ace + � ce] + [ � ace + � ac]

where the linear combination contains all the non-m-connecting set terms.

Let V be a non-empty set of variables andP = P(V) be a poset ordered by inclusion.

Applying the M•obius inversion, we get

� Pu� ;+
N(G) = uhc;ejabi + uhc;ajdei + uhc;aei + uhb;dejai + uhd;ajei + uha;ei

� Pu� ;�
N(G) = uhc;ejai + uhc;ajei
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or

� Pu� ;+
N(G) = [ � abce + � ab � � abc � � abe] + [ � acde + � de � � ade � � cde] + [ � ace � � ae � � c]

+ [ � abde + � a � � ade � � ab] + [ � ade + � e � � ae + � de] + [ � ae � � a � � e]

� Pu� ;�
N(G) = [ � ace + � a � � ac � � ae] + [ � ace + � e � � ae � � ce]

Clearly � Pu� ;+
N(G) and � Pu� ;�

N(G) are structural imsets.

4.3.2 Factorization Implies Markov

In this section, we provide the necessary lemmas to prove that if the factorization pre-

sented in Section 4.3.4 holds, then the global Markov property holds. However, in order

to do so we �rst introduce the concept of a minimal latent set. The minimal latent set is

de�ned as follows. LetG = ( V; E) be an ADMG such that A 2 A(G) is an ancestral set and

b= dAe� with preceding verticesR = pre �
G(b):

ml�G(A) � spGR
(disGA (b)) n disGA (b):

Let L = V n A be the set of latent variables. Intuitively, ml�G(A) de�nes the minimal subset

of latent vertices Lmin � L for which every member is automatically added to the ordered

Markov blanket and order closure when added toA:

mb�
Gl [ A

(b) � l [ mb�
GA

(b) for all l 2 Lmin ;

cl�Gl [ A
(b) � l [ cl�GA

(b) for all l 2 Lmin :

This concept was originally introduced by Richardson to construct maximal ancestral sets

and is made rigorous in Lemma 5 of [66]. These sets were used to simplify the set of

conditional independence statements required to characterize independence models induced

by ADMGs [66].
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A � e
A(G) f a; b; c; d; e; f; gg

bA = e

RA = f a; b; c; d; e; f; gg

LA = RA n A

MRA = f b; c; d; eg

bA ?? RA n (bA [ LA ) j MA n bA [ GA ]

LA 2 f fg; f; g; ? g LA 2 f cfg; cf g LA 2 f abcdfg; abcdf; abcdg;

bcdfg; abcd; abdg; bcdf;

bcdg; cdfg; abd; bdf; bdg;

cdf; dfg; bd; df; dg; dg

Figure 4.9: An illustration of the minimal latent sets.

Figure 4.9 illustrates the minimal latent set for an ADMG G = ( V; E) and ancestral

set e 2 A 2 A(G). Let bA = dAe� with preceding verticesRA = pre �
G(bA ), LA = RA n A,

MA = colGA (bA ), and Lmin
A = ml �

G(A). All possible sets forLA are listed and partitioned by

MA at the bottom of the �gure. In particular, MA is the closure ofbA with respect to A.

The minimal latent set Lmin
A is the minimal subset ofLA intersected with MRA = colGR A

(bA )

for each partition. Note that Lmin
A need not be one of the possible sets ofLA ; see Figure 4.9
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when Lmin
A = f cg and LA 2 ff c; f; gg; f c; f gg.

Lemma 4.3.5 uses the concept of a minimal latent set to extract conditional independence

statements from a directed MAG.

Lemma 4.3.5. Let G = ( V; E) be a directed MAG, P = P(V) be the poset ordered by

inclusion, � be a total order consistent withG, and u� ;+
N(G) ; u� ;�

N(G) = NSI (G; � ) be the imsets

constructed by Algorithm 3. IfG contains a vertexb2 V with preceding verticesR = pre �
G(b),

then for M = colGR (b):

b?? R n M j M n b [ � Pu� ;+
N(G) ]:

Furthermore, if G contains an ancestral setA 2 A(G) such that b 2 A � R, then for

L = ml �
G(A), N = M n L, and MA = colGA (b):

b?? N n MA j MA n b [ � Pu� ;+
N(G) ]:

Proof. By Corollary 4.3.1 GR is a directed MAG.

By Proposition 3.5.3 the independence model induced by a structural imset is a semi-

graphoid. Accordingly, we may apply the semi-graphoid axioms.

Let MGR ;b and NGR ;b be the ordered lists constructed by Algorithm 2 and letn be their

cardinality. The structural imset � Pu� ;+
N(G) is constructed as the sum over a set of semi-

elementary imsets including the semi-elementary imsets de�ned as� P�
N

GR ;b
i;i

for 1 � i � n.

Accordingly

b?? N GR ;b
i n M GR ;b

i j M GR ;b
i n b [ � Pu� ;+

N(G) ]:

By construction N GR ;b
1 = R and by Lemma 4.0.1M GR ;b

1 = M , therefore

b?? R n M j M n b [ � Pu� ;+
N(G) ]:

Note MA � N � M (becauseN � M only removes latent vertices). By Lemma 4.0.1

MA 2 dN eb
M (GR ) .

If L = ? , then MA = N = M (becauseMA = M ). Accordingly N n MA = ? and by

semi-graphoid axiom of triviality

b?? N n MA j MA n b [ � Pu� ;+
N(G) ]:
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If L 6= ? , then assume by way of contradiction thatN is not a maximal non-m-connecting

superset ofMA . But if we add a member ofL to N , then we changeMA . Therefore,N is

maximal and N GR ;b
i = N and M GR ;b

i = MA for some 1� i � n. Accordingly

b?? N n MA j MA n b [ � Pu� ;+
N(G) ]:

We now extend the ideas of Lemma 4.3.5 to incorporate the conditional independence

statements required by the ordered local Markov property. LetG = ( V; E) be a directed

MAG, � be a total order consistent with G, and A 2 A(G) be an ancestral set where

bA = dAe� , RA = pre �
G(bA ). Let MA = colG(bA ), MRA = colGR A

(bA ), Lmin
A = ml �

G(A) and

NA = MRA n Lmin
A . Furthermore, let LA = RA n A be the latent set with respect toA.

Let BA = bA [ Lmin
A be the union of the barren vertexbA in GRA with the minimal

latent set Lmin
A . Let CA = MRA n BA be the ordered Markov blanket of the barren vertex

bA excluding the set of minimal latent setLmin
A . Let DA = deGR A

(Lmin
A ) n Lmin

A be the proper

descendants of the set of minimal latent setLmin
A contained in the set of preceding variables

RA with respect to the barren vertexbA and the total order � . Let FA = RA n MRA DA be

the variables in the set of preceding variablesRA with respect to the barren vertexbA and

the total order � that have not already been assigned to a set. Accordingly,BA , CA , DA ,

and FA partition RA . Ultimately, we show that BA ?? FA j CA [ uPu� ;+
N(G) ].
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Figure 4.10: The Hasse diagram for the poset over sets ordered by inclusion.

Intuitively, the sets in Figure 4.10 are:

A 2 A(G) an ancestral set;

bA = dAe� the last vertex in A with respect to � ;

RA = pre �
G(bA ) the preceding vertices ofbA with respect to � ;

MA = colGA (bA ) the maximal m-connecting set with respect toA and b;

MRA = colGR A
(bA ) the maximal m-connecting set with respect toRA and b;

LA = RA n A the latent set with respect toA;

Lmin
A = ml �

G(A) the minimal latent set with respect to A and � ;

NA = MRA n Lmin
A the maximal non-m-connecting subset ofMRA ;

BA = bA [ Lmin
A the independent set containingb;

CA = MRA n BA the conditioning set;

DA = deGR A
(Lmin

A ) n Lmin
A the set to be dropped;

FA = RA n MRA DA the independent set not containingbA .
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Figure 4.11: An illustration of how various sets interact and partition each other.

Figure 4.12: An illustration of how various sets interact and partition each other.
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CA = NA n bA becauseNA � MRA :

CA = MRA n BA

= MRA n (bA [ Lmin
A ) (B = bA [ Lmin

A )

= ( MRA n bA ) \ (MRA n Lmin
A ) (distributive property)

= MRA n bA \ NA (NA = MRA n Lmin
A )

= NA n bA (MRA \ NA = NA )

RA = AL A becauseA � RA :

RA = ( RA \ A) [ LA (LA = RA n A)

= AL A (RA \ A = A)

MRA = NA Lmin
A becauseLmin

A = ml �
G(A) � colGR A

(bA ) = MRA :

MRA = NA [ (MRA \ Lmin
A ) (NA = MRA n Lmin

A )

= NA Lmin
A (MRA \ Lmin

A = Lmin
A )

In order to facilitate the forthcoming proof we de�ne a few alternative relations.FA =

(A n NA ) [ (LA n MRA DA ) becauseLA \ A = ? and Lmin
A DA � LA . Note that DA � LA

becauseDA = deG(Lmin
A ) and A is an ancestral set.

FA = RA n MRA DA

= RA n (MRA DA [ (LA \ A)) ( LA \ A = ? )

= RA n (MRA DA LA \ MRA DA A) (distributive property)

= AL A n (NA Lmin
A DA LA \ MRA DA A) (change notation)

= AL A n (NA LA \ MRA DA A) (Lmin
A DA � LA )

= ( AL A n NA LA ) [ (AL A n MRA DA A) (distributive property)

= ( A n NA ) [ (LA n MRA DA ) (simplify di�erences)

NA n bA = ( NA n MA ) [ (MA n bA ) becausebA 2 MA � NA . Note that MA � NA because
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MA � MRA and MA \ LA = ? .

NA n bA = NA n (MA \ bA ) (bA = MA \ bA )

= NA n ((MA \ bA ) [ (MA \ (NA n MA ))) ( MA \ (NA n MA ) = ? )

= NA n (MA \ (bA [ (NA n MA ))) (distributive property)

= ( NA n MA ) [ (NA n (bA [ (NA n MA ))) (distributive property)

= ( NA n MA ) [ ((NA n bA ) \ (NA n (NA n MA ))) (distributive property)

= ( NA n MA ) [ ((NA n bA ) \ (NA \ MA )) ( NA n (NA n MA ) = NA \ MA )

= ( NA n MA ) [ ((NA n bA ) \ MA ) (NA \ MA = MA )

= ( NA n MA ) [ (MA n bA ) (( NA n bA ) \ MA = MA n bA )

A n MA � (A n NA ) [ (NA n MA ) becauseMA � NA :

A n MA = A n (NA \ MA ) (MA = NA \ MA )

= A n ((NA \ MA ) [ (NA \ (A n NA ))) ( NA \ (A n NA ) = ? )

= A n (NA \ (MA [ (A n NA ))) (distributive property)

= ( A n NA ) [ (A n (MA [ (A n NA ))) (distributive property)

= ( A n NA ) [ ((A n MA ) \ (A n (A n NA ))) (distributive property)

= ( A n NA ) [ ((A n MA ) \ (A \ NA )) ( A n (A n NA ) = A \ NA )

� (A n NA ) [ ((A n MA ) \ NA ) (A \ NA � NA )

= ( A n NA ) [ (NA n MA ) (( A n MA ) \ NA = NA n MA )

Algorithm 4 outlines a generalized process to extract conditional independence state-

ments from a directed MAG. The conditional independence statements are used to construct

a structural imset whose induced independence model is a subset of the induced indepen-

dence model of the graph and a subset of the independence model induced by the output of

Algorithm 3. Furthermore, the conditional independence statements required by the ordered

local Markov property are represented in the constructed imset. This is a key result for the

formulation of the factorization presented in Section 4.3.4.
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Algorithm 4: Ordered Local Markov Property OLMP (G; � ; A)
Input: directed MAG: G = ( V; E), total order consistent with G: � ,

ancestral set:A 2 A(G)
Output: structural imset: uA

1 Let bA = dAe� , RA = pre �
G(bA ), MRA = colGR A

(bA ), Lmin
A = ml �

G(A),

NA = MRA n Lmin
A ;

2 Let BA = bA [ Lmin
A , CA = MRA n BA , DA = deGR A

(Lmin
A ) n Lmin

A ,

FA = RA n MRA DA ;
3 Initialize imset uA : P(V) ! 0 ;
4 Let i = 1, r A

i = bBA c� , RA
i = pre �

G(r A
i ) ;

5 repeat
6 Let B A

i = BA \ RA
i , CA

i = CA \ RA
i , D A

i = DA \ RA
i , F A

i = FA \ RA
i ;

7 if r A
i 2 disGR A

(bA ) then
8 Let M A

i = colGR A
i

(r A
i ) ;

9 uA = uA + uhr A
i ;RA

i nM A
i jM A

i nr A
i i // Lemma 4.3.5 ;

10 uA = uA + uhr A
i ;F A

i jB A
i CA

i nr A
i i // decomposition and weak union ;

11 if r A
i 2 CA then

12 uA = uA + uhr A
i [ B A

i ;F A
i jCA

i � 1 i // contraction ;

13 end
14 else if r A

i 2 CA FA then
15 Let A0 = RA

i n DA ;
16 uA = uA + OLMP (G; � ; A0) // recursive call ;
17 uA = uA + uhB A

i ;r A
i jCA

i F A
i nr A

i i // decomposition and weak union;

18 if r A
i 2 CA then

19 uA = uA + uhB A
i ;r A

i [ F A
1 jCA

i � 1 i // contraction ;

20 end
21 end
22 uA = uA + uhB A

i ;F A
i jCA

i i // weak union or contraction ;

23 if r A
i 6= bA then

24 Let i = i + 1, r A
i = bRA n RA

i � 1c� , RA
i = pre �

G(r A
i ) ;

25 end
26 until r A

i = bA ;
27 Let MA = colGA (bA ) ;
28 uA = uA + uhbA ;A nNA jNA nbA i // decomposition ;
29 uA = uA + uhbA ;N A nM A jM A nbA i // Lemma 4.3.5 ;
30 uA = uA + uhbA ;A nM A jM A nbA i // contraction ;

Applications of the symmetry semi-graphoid axiom are not noted in the algorithm.
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In the following series of �gures, we give an illustrative example of the steps of Algorithm

4. Let G = ( V; E) be a directed MAG, � be a total order consistent withG, and A1; A2 2

A(G) be ancestral sets. Additionally, letP = P(V) be the poset ordered by inclusion.

We construct the structural imsetuA 1 by adding semi-elementary imsets touA 1 throughout

Algorithm 4. Note that uA 1 is guaranteed to be structural since it is constructed as a linear

combination of semi-elementary imsets touA 1 with positive integral coe�cients.

A1 = f a; b; d; e; gg

bA 1 = e

RA 1 = f a; b; c; d; e; f; gg

uA 1 : P(RA 1 ) ! 0

Figure 4.13: An illustration of the setup ofOLMP (G,� ,A1) (step i ).

Figure 4.13 initializes many of the sets used throughout the example forOLMP (G,� ,A1).
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A1 = f a; b; d; e; gg

RA 1
1z }| {

a � b � c|{z}
r A 1

1

�

L A 1
1z }| {

d � f � g � e

r A 1
1 2 disGR A 1

(bA 1 ) n CA 1

uA 1 = uA 1 + uhc;abj? i + uhc;ajbi + uhc;ajbi

Figure 4.14: An illustration of OLMP (G,� ,A1) (step ii ).

Figure 4.14 depicts the �rst step ofOLMP (G,� ,A1) where r A 1
1 = c, RA 1

1 = f a; b; cg, and

M A 1
1 = f cg. Note that r A 1

1 2 disGR A 1
(bA 1 ) n CA 1 . Semi-elementary imsets corresponding to

the following conditional independence statements are added touA 1 :

line 9 : r A 1
1 ?? RA 1

1 n M A 1
1 j M A 1

1 n r A 1
1 [ � Pu� ;+

N(G) ]

line 10 :r A 1
1 ?? F A 1

1 j B A 1
1 CA 1

1 [ � Pu� ;+
N(G) ]

line 22 :B A 1
1 ?? F A 1

1 j CA 1
1 [ � Pu� ;+

N(G) ]

Instantiating the sets:

line 9 : c ?? abj ? [ � Pu� ;+
N(G) ] (Lemma 4.3.5)

line 10 :c ?? a j b [ � Pu� ;+
N(G) ] (weak union|(line 9))

line 22 :c ?? a j b [ � Pu� ;+
N(G) ] (line 10)
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A1 = f a; b; d; e; gg

RA 1
2z }| {

a � b � c � d|{z}
r A 1

2

�

L A 1
2z }| {

f � g � e

r A 1
2 2 CA 1 \ disGR A 1

(bA 1 )

uA 1 = uA 1 + uhd;ajbci + uhd;ajbci + uhcd;ajbi + uhc;ajbdi

Figure 4.15: An illustration of OLMP (G,� ,A1) (step iii ).

Figure 4.15 depicts the step ofOLMP (G,� ,A1) where r A 1
2 = d, RA 1

2 = f a; b; c; dg, and

M A 1
2 = f b; c; dg. Note that r A 1

2 2 CA 1 \ disGR A 1
(bA 1 ) and CA 1

1 = CA 1
2 nr A 1

2 . Semi-elementary

imsets corresponding to the following conditional independence statements are added touA 1 :

line 9 : r A 1
2 ?? RA 1

2 n M A 1
2 j M A 1

2 n r A 1
2 [ � Pu� ;+

N(G) ]

line 10 :r A 1
2 ?? F A 1

2 j B A 1
2 CA 1

2 [ � Pu� ;+
N(G) ]

line 12 :r A 1
2 [ B A 1

2 ?? F A 1
2 j CA 1

1 [ � Pu� ;+
N(G) ]

line 22 :B A 1
2 ?? F A 1

2 j CA 1
2 [ � Pu� ;+

N(G) ]
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Instantiating the sets:

line 9 : d ?? a j bc[ � Pu� ;+
N(G) ] (Lemma 4.3.5)

line 10 :d ?? a j bc[ � Pu� ;+
N(G) ] (line 9)

line 12a :c ?? a j b [ � Pu� ;+
N(G) ] (previous step|(step ii ))

line 12b :cd ?? a j b [ � Pu� ;+
N(G) ] (contraction|(line 10 + line 12a))

line 22 :c ?? a j bd[ � Pu� ;+
N(G) ] (weak union|(line 12b))

A1 = f a; b; d; e; gg

RA 1
3z }| {

a � b � c � d � f
|{z}

r A 1
3

�

L A 1
3z }| {

g � e

r A 1
3 62CA 1 FA 1 [ disGR A 1

(bA )

uA 1 = uA 1 + uhc;ajbdi

Figure 4.16: An illustration of OLMP (G,� ,A1) (step iv ).

Figure 4.16 depicts the step ofOLMP (G,� ,A1) where r A 1
3 = f , RA 1

3 = f a; b; c; d; fg,

and M A 1
3 = f c; f g. Note that r A 1

3 62CA 1 FA 1 [ disGR A 1
(bA ). A semi-elementary imset

corresponding to the following conditional independence statement is added touA 1 :

line 22 :B A 1
3 ?? F A 1

3 j CA 1
3 [ � Pu� ;+

N(G) ]
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Instantiating the sets:

line 22a :c ?? a j bd[ � Pu� ;+
N(G) ] (previous step|(step iii ))

line 22b :c ?? a j bd[ � Pu� ;+
N(G) ] (line 22a)

A1 = f a; b; d; e; gg

RA 1
4z }| {

a � b � c � d � f � g
|{z}

r A 1
4

�

L A 1
4z}|{

e

r A 1
4 2 FA 1 n disGR A 1

(bA 1 )

A2 = f a; b; c; d; gg

uA 1 = uA 1 + OLMP (G; � ; A2)

Figure 4.17: An illustration of OLMP (G,� ,A1) (step v).

Figure 4.17 depicts the step ofOLMP (G,� ,A1) where r A 1
4 = g, RA 1

4 = f a; b; c; d; f; gg,

and M A 1
4 = f c; f; gg. Note that r A 1

4 2 FA 1 n disGR A 1
(bA 1 ). Algorithm 4 performs a recursive

call with A2 = f a; b; c; d; gg.
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A2 = f a; b; c; d; gg

bA 2 = g

RA 2 = f a; b; c; d; f; gg

uA 2 : P(RA 2 ) ! 0

Figure 4.18: An illustration of the setup ofOLMP (G,� ,A2) (step vi ).

Figure 4.18 initializes many of the sets used throughout the example forOLMP (G,� ,A2).
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A2 = f a; b; c; d; gg

RA 2
1z }| {

a � b � c � d � f
|{z}

r A 2
1

�

L A 2
1z }| {

g � e

r A 2
1 2 disGR A 2

(bA 2 ) n CA 2

uA 2 = uA 2 + uhf;abd jci + uhf;abd jci + uhf;abd jci

Figure 4.19: An illustration of OLMP (G,� ,A2) (step vii ).

Figure 4.19 depicts the �rst step ofOLMP (G,� ,A2) wherer A 2
1 = f , RA 2

1 = f a; b; c; d; fg,

andM A 2
1 = f c; f g. Note that r A 2

1 2 disGR A 2
(bA 2 )nCA 2 . Semi-elementary imsets corresponding

to the following conditional independence statements are added touA 2 :

line 9 : r A 2
1 ?? RA 2

1 n M A 2
1 j M A 2

1 n r A 2
1 [ � Pu� ;+

N(G) ]

line 10 :r A 2
1 ?? F A 2

1 j B A 2
1 CA 2

1 [ � Pu� ;+
N(G) ]

line 22 :B A 2
1 ?? F A 2

1 j CA 2
1 [ � Pu� ;+

N(G) ]

Instantiating the sets:

line 9 : f ?? abdj c [ � Pu� ;+
N(G) ] (Lemma 4.3.5)

line 10 : f ?? abdj c [ � Pu� ;+
N(G) ] (line 9)

line 22 : f ?? abdj c [ � Pu� ;+
N(G) ] (line 10)
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A2 = f a; b; c; d; gg

RA 2
2z }| {

a � b � c � d � f � g
|{z}

r A 2
2 = bA 2

�

L A 2
2z}|{
e

r A 2
2 2 disGR A 2

(bA 2 ) n CA 2

uA 2 = uA 2 + uhg;abdjcf i + uhg;abdjcf i + uhfg;abdjci

Figure 4.20: An illustration of OLMP (G,� ,A2) (step viii ).

Figure 4.20 depicts the step ofOLMP (G,� ,A2) where r A 2
2 = g, RA 2

2 = f a; b; c; d; f; gg,

and M A 2
2 = f c; f; gg. Note that r A 2

2 2 disGR A 2
(bA 2 ) n CA 2 . Semi-elementary imsets corre-

sponding to the following conditional independence statements are added touA 2 :

line 9 : r A 2
2 ?? RA 2

2 n M A 2
2 j M A 2

2 n r A 2
2 [ � Pu� ;+

N(G) ]

line 10 :r A 2
2 ?? F A 2

2 j B A 2
2 CA 2

2 [ � Pu� ;+
N(G) ]

line 22 :B A 2
2 ?? F A 2

2 j CA 2
2 [ � Pu� ;+

N(G) ]

Instantiating the sets:

line 9 : g ?? abdj cf [ � Pu� ;+
N(G) ] (Lemma 4.3.5)

line 10 :g ?? abdj cf [ � Pu� ;+
N(G) ]: (line 9)

line 22a :f ?? abdj c [ � Pu� ;+
N(G) ] (previous step|(step vii ))

line 22b :fg ?? abdj c [ � Pu� ;+
N(G) ] (contraction|(line 10 + line 22a))
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SinceR2 = bA 2 , the main loop of OLMP (G,� ,A2) is done.

A2 = f a; b; c; d; gg

bA 2 = e

uA 2 = uA 2 + uhg;abdjci + uhg;cj? i + uhg;abcdj? i

Figure 4.21: An illustration of OLMP (G,� ,A2) (step ix ).

Figure 4.21 depicts the step ofOLMP (G,� ,A2) after completing the main loop. Semi-

elementary imsets corresponding to the following conditional independence statements are

added to uA 2 :

line 28 :bA 2 ?? A2 n NA 2 j NA 2 n bA 2 [ � Pu� ;+
N(G) ]

line 29 :bA 2 ?? NA 2 n MA 2 j MA 2 n bA 2 [ � Pu� ;+
N(G) ]

line 30 :bA 2 ?? A2 n MA 2 j MA 2 n bA 2 [ � Pu� ;+
N(G) ]

Instantiating the sets:

line 28a :fg ?? abdj c [ � Pu� ;+
N(G) ] (previous step|(step viii ))

line 28b :g ?? abdj c [ � Pu� ;+
N(G) ] (decomposition|(line 28a))

line 29 :g ?? c j ? [ � Pu� ;+
N(G) ] (Lemma 4.3.5)

line 30 :g ?? abcdj ? [ � Pu� ;+
N(G) ] (contraction|(line 28b + line 29))
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A1 = f a; b; d; e; gg

RA 1
4z }| {

a � b � c � d � f � g
|{z}

r A 1
4

�

L A 1
4z}|{

e

r A 1
4 2 FA 1 n disGR A 1

(bA 1 )

uA 1 = uA 1 + OLMP (G; � ; A2)

uA 1 = uA 1 + uhc;gjabdi + uhc;agjbdi

Figure 4.22: An illustration of OLMP (G,� ,A1) (step x).

Figure 4.22 depicts the step ofOLMP (G,� ,A1) where r A 1
4 = g, RA 1

4 = f a; b; c; d; f; gg,

and M A 1
4 = f c; f; gg. Algorithm 4 returns to this step after a recursive call. Note that

r A 1
4 2 FA 1 ndisGR A 1

(bA 1 ). Semi-elementary imsets corresponding to the following conditional

independence statements are added touA 1 :

line 17 :B A 1
4 ?? r A 1

4 j CA 1
4 F A 1

4 n r A 1
4 [ � Pu� ;+

N(G) ]

line 22 :B A 1
4 ?? F A 1

4 j CA 1
4 [ � Pu� ;+

N(G) ]
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Instantiating the sets:

line 17a :abcd?? g j ? [ � Pu� ;+
N(G) ] (recursive call|(step ix ))

line 17b :c ?? g j abd[ � Pu� ;+
N(G) ] (weak union|(line 17a)

line 22a :c ?? a j bd[ � Pu� ;+
N(G) ] (previous step|(step iv ))

line 22b :c ?? ag j bd[ � Pu� ;+
N(G) ] (contraction|(line 17b + line 22a))

A1 = f a; b; d; e; gg

RA 1
5z }| {

a � b � c � d � f � g � e|{z}
r A 1

5 = bA 1

r A 1
5 2 disGR A 1

(bA 1 ) n CA 1

uA 1 = uA 1 + uhe;afg jbcdi + uhe;agjbcdi + uhce;agjbdi

Figure 4.23: An illustration of OLMP (G,� ,A1) (step xi ).

Figure 4.23 depicts the step ofOLMP (G,� ,A1) where r A 1
5 = e, RA 1

5 = f a; b; c; d; e; f; gg,

and M A 1
5 = f b; c; d; eg. Note that r A 1

5 2 disGR A 1
(bA 1 ) n CA 1 . Semi-elementary imsets corre-

sponding to the following conditional independence statements are added touA 1 :

line 9 : r A 1
5 ?? RA 1

5 n M A 1
5 j M A 1

5 n r A 1
5 [ � Pu� ;+

N(G) ]

line 10 :r A 1
5 ?? F A 1

5 j B A 1
5 CA 1

5 n r A 1
5 [ � Pu� ;+

N(G) ]

line 22 :B A 1
5 ?? F A 1

5 j CA 1
5 [ � Pu� ;+

N(G) ]
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Instantiating the sets:

line 9 : e ?? afg j bcd[ � Pu� ;+
N(G) ] (Lemma 4.3.5)

line 10 :e ?? ag j bcd[ � Pu� ;+
N(G) ] (decomposition|(line 9))

line 22a :c ?? ag j bd[ � Pu� ;+
N(G) ] (previous step|(step x))

line 22b :ce?? ag j bd[ � Pu� ;+
N(G) ] (contraction|(line 10 + line 22a))

Sincer5 = bA 1 , the main loop of OLMP (G,� ,A1) is done.

A1 = f a; b; d; e; gg

bA 1 = e

uA 1 = uA 1 + uhe;agjbdi + uhe;? jbdi + uhe;agjbdi

Figure 4.24: An illustration of OLMP (G,� ,A1) (step xii ).

Figure 4.24 depicts the step ofOLMP (G,� ,A1) after completing the main loop. Semi-

elementary imsets corresponding to the following conditional independence statements are

added to uA 1 :

line 28 :bA 1 ?? A1 n NA 1 j NA 1 n bA 1 [ � Pu� ;+
N(G) ]

line 29 :bA 1 ?? NA 1 n MA 1 j MA 1 n bA 1 [ � Pu� ;+
N(G) ]

line 30 :bA 1 ?? A1 n MA 1 j MA 1 n bA 1 [ � Pu� ;+
N(G) ]
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Instantiating the sets:

line 28a :ce?? ag j bd[ � Pu� ;+
N(G) ] (previous step|(step xi ))

line 28b :e ?? ag j bd[ � Pu� ;+
N(G) ] (decomposition|(line 28a))

line 29 :e ?? ? j bd[ � Pu� ;+
N(G) ] (Lemma 4.3.5)

line 30 :e ?? ag j bd[ � Pu� ;+
N(G) ] (line 28b)

Lemma 4.3.6. Let G = ( V; E) be a directed MAG and� be a total order consistent with

G. Let A 2 A(G) and b = dAe� with preceding verticesR = pre �
G(b). Let r 2 R and

R0 = pre �
G(r ). If r 2 disGR (b), then:

colGR 0(r ) � colGR (b):

If r 62disGR (b), and B = b [ ml�G(A):

colGR 0(r ) \ B = ? :

Proof. Note that GR0 is a subgraph ofGR so any vertices and paths inGR0 are in GR . Pick

vertex a 2 colGR 0(r ) and path � ar in GR0 betweena and r such that � ar is a collider-connecting

path. Furthermore, r = dR0e� so � ar must have an arrowhead directed intor .

For the �rst statement, we show that a 2 colGR (b). Sincer 2 disGR (b), there is a path � br

in GR betweenb and r consisting entirely of bi-directed edges. Accordingly, the composition

of � ar from a to r with � br from r to b is a collider-connecting path betweena and b in GR .

It follows that colGR 0(r ) � colGR (b).

For the second statement, we show that ifa 2 B, then r 2 disGR (b); this is the contrapos-

itive statement. Sincea 2 B, there is a path � ab in GR betweena and b consisting entirely

of bi-directed edges. Accordingly, the composition of� ab from b to a with � ar from a to r is

a collider-connecting path betweenb and r in GR . It follows that colGR 0(r ) \ B = ?

Lemma 4.3.7. Let G = ( V; E) be a directed MAG, P = P(V) be the poset ordered by

inclusion, � be a total order consistent withG, and u� ;+
N(G) ; u� ;�

N(G) = NSI (G; � ) be the imsets

constructed by Algorithm 3. IfA 2 A(G) is an ancestral set anduA = OLMP (G; � ; A) is

the imset constructed by Algorithm 4, thenuA is a structural imset andI (uA ) � I (� Pu� ;+
N(G)).
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Furthermore, if bA = dAe� and MA = colGA (bA ), then:

bA ?? A n MA j MA n bA [ uA ]:

Proof. SinceuA is de�ned as the sum of semi-elementary imsets,uA is a structural imset.

Additionally, bA ?? A nMA j MA nbA [ uA ] by line 30. Consider the recursive call on line 16:

Note that A0 is ancestral because it is de�ned as an ancestral set minus a set that contains

all of its descendants. LetbA 0 = dA0e� and RA 0 = pre �
G(bA 0) and note that RA 0 � RA .

Accordingly, each time the algorithm is called recursively, the set of preceding variables is

smaller. Since these sets are �nite, Algorithm 4 is guaranteed to terminate.

We show that the conditional independence statement represented by semi-elementary

imset added touA are either represented in� Pu� ;+
N(G) by Lemma 4.3.5 or implied by preexisting

conditional independence statements represented inu. Accordingly, I (uA ) � I (� Pu� ;+
N(G)).

Let RA = pre �
G(bA ), MRA = colGR A

(bA ), Lmin
A = ml �

G(A), NA = MRA n Lmin
A , and LA =

RA nA. Let BA = bA [ Lmin
A , CA = MRA nBA , DA = deGR A

(Lmin
A ) nLmin

A , FA = RA nMRA DA .

We proceed by induction. For the base case, letr A
1 = bBA c� , RA

1 = pre �
G(r A

1 ), and

M A
1 = colGR A

1
(r A

1 ). Let B A
1 = BA \ RA

1 , CA
1 = CA \ RA

1 , D A
1 = DA \ RA

1 , and F A
1 = FA \ RA

1

be the sets constrained to the set of variablesRA
1 . Note that r A

1 2 disGR A
i

(bA ). By Lemma

4.3.5,

r A
1 ?? RA

1 n M A
1 j M A

1 n r A
1 [ � Pu� ;+

N(G) ]:

Thus line 9 is satis�ed. By changing notation,

r A
1 ?? B A

1 CA
1 D A

1 F A
1 n M A

1 j M A
1 n r A

1 [ � Pu� ;+
N(G) ]:

By Lemma 4.3.6M A
1 � B A

1 CA
1 . By the decomposition and weak union semi-graphoid axioms,

r A
1 ?? F A

1 j B A
1 CA

1 n r A
1 [ � Pu� ;+

N(G) ]:

Thus line 10 is satis�ed. Noting that B A
1 = r A

1 ,

B A
1 ?? F A

1 j CA
1 [ � Pu� ;+

N(G) ]:
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Thus line 22 is satis�ed.

Let r A
i = bRA n RA

i � 1c� , RA
i = pre �

G(r A
i ), and M A

i = colGR A
i

(r A
i ). Let B A

i = BA \ RA
i ,

CA
i = CA \ RA

i , D A
i = DA \ RA

i , and F A
i = FA \ RA

i be the sets constrained to the set of

variablesRA
i . By the inductive hypothesis:

B A
i � 1 ?? F A

i � 1 j CA
i � 1 [ � Pu� ;+

N(G) ]:

If r A
i 2 disGR A

i
(bA ), then by Lemma 4.3.5,

r A
i ?? RA

i n MRA
i

j MRA
i

n r A
i [ � Pu� ;+

N(G) ]:

Thus line 9 is satis�ed. By changing notation,

r A
i ?? B A

i CA
i D A

i F A
i n M A

i j M A
i n r A

i [ � Pu� ;+
N(G) ]:

By Lemma 4.3.6M A
i � B A

i CA
i . By the decomposition and weak union semi-graphoid axioms,

r A
i ?? F A

i j B A
i CA

i n r A
i [ � Pu� ;+

N(G) ]:

Thus line 10 is satis�ed.

If r A
i 2 BA , then B A

i = r A
i [ B A

i � 1, CA
i = CA

i � 1, D A
i = D A

i � 1, and F A
i = F A

i � 1. By changing

notation,

r A
i ?? F A

i j B A
i � 1CA

i [ � Pu� ;+
N(G) ]:

By changing the notation of the inductive hypothesis,

B A
i � 1 ?? F A

i j CA
i [ � Pu� ;+

N(G) ]:

By the symmetry and contraction semi-graphoid axioms,

B A
i ?? F A

i j CA
i [ � Pu� ;+

N(G) ]:

Thus line 22 is satis�ed.
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If r A
i 2 CA , then B A

i = B A
i � 1, CA

i = r A
i [ CA

i � 1, D A
i = D A

i � 1, and F A
i = F A

i � 1. By changing

notation,

r A
i ?? F A

i j B A
i CA

i � 1 [ � Pu� ;+
N(G) ]:

By changing the notation of the inductive hypothesis,

B A
i ?? F A

i j CA
i � 1 [ � Pu� ;+

N(G) ]:

By the symmetry and contraction semi-graphoid axioms,

r A
i [ B A

i ?? F A
i j CA

i � 1 [ � Pu� ;+
N(G) ]:

Thus line 12 satis�es the lemma. By the symmetry and weak union semi-graphoid axioms,

B A
i ?? F A

i j CA
i [ � Pu� ;+

N(G) ]:

Thus line 22 is satis�ed.

Else if r A
i 2 CA FA , then let A0 = RA

i n DA , bA 0 = dA0e� , and MA 0 = colGA 0(bA 0). Note

that A0 is ancestral because it is de�ned as an ancestral set minus a set that contains all of

its descendants. Note thatbA 0 = r A
i . Since we show that all other lines are satis�ed and

Algorithm 4 terminates, lines 16 is satis�ed. Accordingly,

bA 0 ?? A0n MA 0 j MA 0 n bA 0 [ � Pu� ;+
N(G) ]:

By changing notation,

r A
i ?? B A

i CA
i F A

i n MA 0 j MA 0 n r A
i [ � Pu� ;+

N(G) ]:

By Lemma 4.3.6MA 0 � CA
i F A

i . By the symmetry, decomposition, and weak union semi-

graphoid axioms,

B A
i ?? r A

i j CA
i F A

i n r A
i [ � Pu� ;+

N(G) ]:

Thus line 17 is satis�ed.

If r A
i 2 FA , then B A

i = B A
i � 1, CA

i = CA
i � 1, D A

i = D A
i � 1, and F A

i = r A
i [ F A

i � 1. By changing
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notation,

B A
i ?? r A

i j CA
i F A

i � 1 [ � Pu� ;+
N(G) ]:

By changing the notation of the inductive hypothesis,

B A
i ?? F A

i � 1 j CA
i [ � Pu� ;+

N(G) ]:

By the contraction semi-graphoid axiom,

B A
i ?? F A

i j CA
i [ � Pu� ;+

N(G) ]:

Thus line 22 is satis�ed.

If r A
i 2 CA , then B A

i = B A
i � 1, CA

i = r A
i [ CA

i � 1, D A
i = D A

i � 1, and F A
i = F A

i � 1. By changing

notation,

B A
i ?? r A

i j CA
i � 1F A

i [ � Pu� ;+
N(G) ]:

By changing the notation of the inductive hypothesis,

B A
i ?? F A

i j CA
i � 1 [ � Pu� ;+

N(G) ]:

By the contraction semi-graphoid axiom,

B A
i ?? r A

i [ F A
i j CA

i � 1 [ � Pu� ;+
N(G) ]:

Thus line 19 is satis�ed. By the weak union semi-graphoid axiom,

B A
i ?? F A

i j CA
i [ � Pu� ;+

N(G) ]:

Thus line 22 is satis�ed.

If r A
i 2 DA , then B A

i = B A
i � 1, CA

i = CA
i � 1 D A

i = r A
i [ D A

i � 1, and F A
i = F A

i � 1. By changing

the notation of the inductive hypothesis,

B A
i ?? F A

i j CA
i [ � Pu� ;+

N(G) ]:

Thus line 22 is satis�ed.
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Accordingly,

BA ?? FA j CA [ � Pu� ;+
N(G) ]:

Note that BA = bA [ Lmin
A , CA = NA nbA , and FA � (A nNA ) [ (LA nMRA DA ). By changing

notation and the decomposition semi-graphoid axiom,

b [ Lmin
A ?? (A n NA ) [ (LA n MRA DA ) j NA n bA [ � Pu� ;+

N(G) ]:

By the symmetry and decomposition semi-graphoid axioms,

bA ?? A n NA j NA n bA [ � Pu� ;+
N(G) ]:

Thus line 28 is satis�ed. Note thatNA nbA = ( NA nMA ) [ (MA nbA ) becausebA 2 MA � NA .

By expanding notation,

bA ?? A n NA j (NA n MA ) [ (MA n b) [ � Pu� ;+
N(G) ]

By Lemma 4.3.5,

bA ?? NA n MA j MA n bA [ � Pu� ;+
N(G) ]:

Thus line 29 is satis�ed. By the contraction and decomposition semi-graphoid axioms,

bA ?? (A n NA ) [ (NA n MA ) j MA n bA [ � Pu� ;+
N(G) ]:

Note that A n MA � (A n NA ) [ (NA n MA ) becauseMA � NA . By the decomposition

semi-graphoid axiom,

bA ?? A n MA j MA n bA [ � Pu� ;+
N(G) ]:

Thus line 30 is satis�ed.

Corollary 4.3.3. Let G = ( V; E) be a directed MAG,P = P(V) be the poset ordered by

inclusion, and � be a total order consistent withG. If b 2 V and A 2 A(G) such that

b2 A � pre�
G(b), then

b?? A n clGA (b) j mbGA (b) [ � Pu� ;+
N(G) ]

where� Pu� ;+
N(G) is the structural imset derived by applying the M•obius inversion to the primary

imset constructed by Algorithm 3.
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Proof. The proof follows from the de�nitions of Markov blanket and closure and above

lemmas and corollaries.

4.3.3 Markov Implies Factorization

In this section, we provide the necessary lemmas to prove that if the global Markov

property holds, then the factorization presented in Section 4.3.4 holds. The intuition for

Lemma 4.3.8 is given by the ordered local Markov property. In what follows,b is a barren

vertex and M n b is its Markov blanket with respect to the setN .

Lemma 4.3.8. Let G = ( V; E) be a directed MAG containing a setN � V (N 6= ? ). If

b2 barG(N ) and M 2 dN eb
M (G) , then:

b?? N n M j M n b [ G]:

Proof. By Proposition 3.3.3 the induced independence modelI (G) is a compositional graphoid.

Accordingly, graphoid axioms (i - vi ) may be applied. Consider the cases whereN is m-

connecting and notm-connecting.

If N is m-connecting, then by maximallyM = N . By the triviality graphoid axiom

b?? N n M j M n b [ G]:

If N is not m-connecting, thenM � N . Pick a vertex a 2 N n M and let Na = M [ a.

By maximally Na is non-m-connecting. By Lemma 4.3.3, sinceb 2 barG(N ), no inducing

path exists betweena and b relative to hV n Na; M n bi . By Proposition 3.3.2 if no inducing

path exists betweena and b relative to hV n Na; M n bi , then a and b are m-separated byC

for someM n b � C � Na (a; b62C). According

b?? a j M n b [ G] for all a 2 N n M:

By the composition graphoid axiom

b?? N n M j M n b [ G]:
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Lemma 4.3.9. Let G = ( V; E) be a directed MAG and� be a total order consistent withG.

Furthermore, let X be a collection of random variables indexed byV with probability measure

P that admits densityf (x) with respect to dominating� -�nite product measure � . If P has

�nite multiinformation mP and satis�es the global Markov property forG, then:

X

N 2 P(V )

u� ;+
N(G)(N ) � N (x) = 0 for P-a.ex 2 X

and
X

N 2 P(V )

u� ;�
N(G)(N ) � N (x) = 0 for P-a.ex 2 X

whereu� ;+
N(G) and u� ;�

N(G) are the imsets constructed by Algorithm 3.

Proof. Pick a variableb2 V and let R = pre �
G(b). By Corollary 4.3.1 the induced subgraph

GR is a directed MAG and I (GR) � I (G). By Proposition 3.3.3 the induced independence

model I (GR) is a compositional graphoid. Accordingly, graphoid axioms (i - vi ) may be

applied. Run Pair (GR ; b) = N GR ;b; M GR ;b; n. Pick J � f 1; : : : ; ng and let M 2 dN G;b
J eb

M (G) .

Note that

M � N G;b
J � N G;b

i for all i 2 J:

By maximality, since M � N G;b
i and M G;b

i 2 dN G;b
i eb

M (G) for all i 2 J ,

M � M G;b
i for all i 2 J:

Accordingly,

M � M G;b
J;K for all K � J:

By Lemma 4.3.8

b?? N G;b
J n M j M n b [ GR ]:

By the weak union graphoid axiom

b?? N G;b
J n M G;b

J;K j M G;b
J;K n b [ GR ] for all K � J:

Therefore, sinceI (GR) � I (G) and P satis�es the global Markov property forG,

b?? N G;b
J n M G;b

J;K j M G;b
J;K n b [ P ] for all K � J:
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By Equation 3.2, since the imsets constructed by Algorithm 3 are constructed as sums over

NG;b
J;K terms:

X

N 2 P(V )

u� ;+
N(G)(N ) � N (x) = 0 for P-a.ex 2 X

and
X

N 2 P(V )

u� ;�
N(G)(N ) � N (x) = 0 for P-a.ex 2 X:

4.3.4 Formalization and Alternatives

In this section, we present the factorization and several alternatives. Notably, while the

factorizations presented in this chapter are de�ned from probability measures with �nite

multiinformation, a similar proof could be given for positive measures.

Theorem 4.3.1. Let G = ( V; E) be a directed MAG, P = P(V) be a poset ordered by

inclusion, and � be a total order consistent withG. Furthermore, let X be a collection of

random variables indexed byV with probability measureP that admits density f (x) with

respect to dominating� -�nite product measure � . If P has �nite multiinformation mP , then

the following are equivalent:

i. logf (x) =
P

M 2 M (G) � M (x) �
P

N 2 P(V ) u� ;�
N(G)(N ) � N (x) for P-a.e. x 2 X;

ii. (� Pu� ;+
N(G))

> mP = 0;

iii. A ?? B j C [ G] ) A ?? B j C [ P ] for every hA; B j Ci 2 T(V);

whereu� ;+
N(G) and u� ;�

N(G) are the imsets constructed by Algorithm 3.

Proof. (i ) ii ): By the M•obius inversion

logf (x) =
X

T 2 P(V )

� T (x)

=
X

M 2 M (G)

� M (x) +
X

N 2 P(V )

� N(G)(N ) � N (x)

=
X

M 2 M (G)

� M (x) +
X

N 2 P(V )

u� ;+
N(G)(N ) � N (x) �

X

N 2 P(V )

u� ;�
N(G)(N ) � N (x):
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By the antecedent

logf (x) =
X

M 2 M (G)

� M (x) �
X

N 2 P(V )

u� ;�
N(G)(N ) � N (x) for P-a.e.x 2 X:

Therefore
X

N 2 P(V )

u� ;+
N(G)(N ) � N (x) = 0 for P-a.e.x 2 X:

By integrating with respect to P

Z

x2 X

X

N 2 P(V )

u� ;+
N(G)(N ) � N (x) dP(x) =

X

N 2 P(V )

u� ;+
N(G)(N )

Z

x2 X
� N (x) dP(x)

=
X

N 2 P(V )

u� ;+
N(G)(N )

X

T � N

� P(N; T )
Z

x2 X
logf T (x) dP(x)

=
X

N 2 P(V )

u� ;+
N(G)(N )

X

T � N

� P(N; T ) mP (T)

= ( � Pu� ;+
N(G))

> mP :

Accordingly

(� Pu� ;+
N(G))

> mP = 0:

(ii ) iii ): By Corollary 4.3.3, if b2 V and A 2 A(G) such that b2 A � pre�
G(b), then

b?? A n clGA (b) j mbGA (b) [ � Pu� ;+
N(G) ]:

By Theorem 3.5.1 and the antecedent, ifb 2 V and A 2 A(G) such that b 2 A � pre�
G(b),

then

b?? A n clGA (b) j mbGA (b) [ P ]:

By Theorem 3.3.2

A ?? B j C [ G] ) A ?? B j C [ P ] for everyhA; B j Ci 2 T(V):
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(i ( iii ): By the M•obius inversion and Lemma 4.3.9

logf (x) =
X

T 2 P(V )

� T (x)

=
X

M 2 M (G)

� M (x) +
X

N 2 N(G)

� N (x)

=
X

M 2 M (G)

� M (x) +
X

N 2 N(G)

u� ;+
N(G)(N ) � N (x) �

X

N 2 N(G)

u� ;�
N(G)(N ) � N (x)

=
X

M 2 M (G)

� M (x) �
X

N 2 N(G)

u� ;�
N(G)(N ) � N (x) for P-a.e. x 2 X:

In general, we refer toi of Theorem 3.5.1 as the factorization which we may alternatively

characterize and with a structural imset:

logf (x) =
X

M 2 M (G)

� M (x) �
X

N 2 N(G)

u� ;�
N(G)(N ) � N (x)

=
X

N 2 P(V )

(� M (G)(N ) � u� ;�
N(G)(N )) � N (x)

=
X

N 2 P(V )

(1 � u� ;+
N(G)(N )) � N (x)

= log f (x) �
X

N 2 N(G)

u� ;+
N(G)(N ) � N (x)

and with heads and tails:

logf (x) =
X

M 2 M (G)

� M (x) �
X

N 2 N(G)

u� ;�
N(G)(N ) � N (x)

=
X

H 2 H (G)

� H jtail G(H )(x) �
X

N 2 N(G)

u� ;�
N(G)(N ) � N (x)
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and with conditional densities:

logf (x) =
X

M 2 M (G)

� M (x) �
X

N 2 N(G)

u� ;�
N(G)(N ) � N (x)

=
X

b2 V

X

N � cl�G (b)
b2 N

(� M (G)(N ) � u� ;�
N(G)(N )) � N (x)

=
X

b2 V

X

N � cl�G (b)
b2 N

(1 � u� ;+
N(G)(N )) � N (x)

=
X

b2 V

�
logf bjmb �

G (b)(x) �
X

N � cl�G (b)
b2 N

u� ;+
N(G)(N ) � N (x)

�

The last alternative has a nice intuition using a special case of unfaithful DAGs [11]

which we call dominating DAGs.

De�nition (dominating DAG). Let G = ( V; E) be a directed MAG with consistent total

order � . The dominating DAG G0 = dom(G; � ) is the DAG over the same vertices such that

paG0(b) = mb �
G(b) for all b2 V.

Accordingly, the last alternative can be expressed as an adjusted version of the recursive

factorization for the dominating DAG:

logf (x) =
X

b2 V

�
logf bjpadom( G;� ) (b)(x) �

X

N � pa+
dom( G;� ) (b)
b2 N

u� ;+
N(G)(N ) � N (x)

�
:

Appendix B.4 show that while it may be the case that the factorization does not need

an adjustment term, our current proof strategy is insu�cient.

4.3.5 Worked-out Examples

The �rst equality is the originally posed factorization, the second equality is the second

alternative, and the third equality is the third alternative. The last line of the �rst two

equalities makes up the adjustment term and the last line of the third equality includes

terms required to construct a Markov DAG factorization in addition to the adjustment

term.
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Figure 4.3 wheree � a � d � b � c:

logf (x) = � abcde(x) + � bcde(x) + � abcd(x) + � abc(x) + � bcd(x) + � cde(x) + � ab(x)

+ � bc(x) + � cd(x) + � de(x) + � a(x) + � b(x) + � c(x) + � d(x) + � e(x)

� � ace(x) � � ce(x) � � ace(x) � � ac(x)

= � bcdjae(x) + � bcja(x) + � cdje(x) + � bja(x) + � dje(x) + � a(x) + � c(x) + � e(x)

� � c;eja(x) � � c;aje(x)

= log f cjabde(x) + log f bja(x) + log f dje(x) + log f a(x) + log f e(x)

� � c;ejab(x) � � c;ajde(x) � � c;ae(x)

For directed MAGs with �ve vertices or fewer, no adjustment term is needed if the correct

total order is chosen. That means that we can simplify the factorization for small graphs;

this is worked out exhaustively in Appendix C. However, it also illuminates the fact that the

factorization gives di�erent decompositions for di�erent total orders. Theorem 4.3.1 implies

that if the result holds for any total order consistent with G, then the result must hold for

all total orders consistent with G.

Figure 3.11 (i ) where a � b � c � d:

logf (x) = � abcd(x) + � abd(x) + � acd(x) + � bcd(x) + � ab(x) + � ad(x)

+ � bc(x) + � bd(x) + � cd(x) + � a(x) + � b(x) + � c(x) + � d(x)

= � djabc(x) + � cjb(x) + � bja(x) + � a(x)

= log f djabc(x) + log f cjb(x) + log f bja(x) + log f a(x)

Figure 3.11 (ii ) where a � b � c � d:

logf (x) = � abc(x) + � abd(x) + � ac(x) + � ad(x) + � bc(x)

+ � bd(x) + � a(x) + � b(x) + � c(x) + � d(x)

= � adjb(x) + � bcja(x) + � djb(x) + � cja(x) + � b(x) + � a(x)

= log f djab(x) + log f cjab(x) + log f b(x) + log f a(x)

124



Figure 4.1 (i ) where a � b � c:

logf (x) = � ab(x) + � bc(x) + � a(x) + � b(x) + � c(x)

= � cjb(x) + � bja(x) + � a(x)

= log f cjb(x) + log f bja(x) + log f a(x)

Figure 4.1 (ii ) where a � c � b:

logf (x) = � abc(x) + � ab(x) + � bc(x) + � a(x) + � b(x) + � c(x)

= � bjac(x) + � c(x) + � a(x)

= log f bjac(x) + log f c(x) + log f a(x)

Figure 4.1 (iii ) where a � d � b � c:

logf (x) = � abcd(x) + � abc(x) + � bcd(x) + � ab(x) + � bc(x)

+ � cd(x) + � a(x) + � b(x) + � c(x) + � d(x)

= � bcjad(x) + � cjd(x) + � bja(x) + � d(x) + � a(x)

= log f cjabd(x) + log f bja(x) + log f d(x) + log f a(x)

� � a;cjd(x)

Figure 4.1 (iv ) where a � c � b � d:

logf (x) = � abcd(x) + � abc(x) + � acd(x) + � bcd(x) + � ab(x) + � bc(x)

+ � bd(x) + � cd(x) + � a(x) + � b(x) + � c(x) + � d(x)

= � cdjab(x) + � bcja(x) + � djb(x) + � bja(x) + � c(x) + � a(x)

= log f djabc(x) + log f bjac(x) + log f c(x) + log f a(x)

� � a;djb(x)
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Figure 4.1 (vi ) where a � b � c � d:

logf (x) = � abcd(x) + � abc(x) + � abd(x) + � acd(x) + � bcd(x) + � ab(x)

+ � ac(x) + � bd(x) + � cd(x) + � a(x) + � b(x) + � c(x) + � d(x)

= � abcd(x) + � abc(x) + � abd(x) + � acd(x) + � bcd(x) + � ab(x)

+ � ac(x) + � bd(x) + � cd(x) + � a(x) + � b(x) + � c(x) + � d(x)

= log f djabc(x) + log f cjab(x) + log f b(x) + log f a(x)

� � c;d(x)

In the following chapter we discuss curved exponential families and apply the factoriza-

tion to these families in order to develop probabilistic score for learning ancestral relation-

ships.
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5.0 MAG Curved Exponential Families

In this chapter we discuss exponential families whose independence models are described

by MAGs|ancestral graph Markov models. Exponential families are attributed to Darmois,

Koopman, and Pitman, who independently published the following de�ning theoretical re-

sult. The Darmois-Koopman-Pitman theorem states that a probability measure belongs to

an exponential family if and only if the dimension of the su�cient statistic for data drawn

from that probability measure is independent of the sample size of the data [1, 6]. Another

de�ning theoretical result for exponential families was discovered in Bayesian statistics and

states that a probability measure belongs to an exponential family if and only if that proba-

bility measure has a conjugate prior [34]. For these reasons, exponential families have found

wide application in probabilistic graphical models [45].

De�nition (exponential family). An exponential family is a family of probability measures

that admit densities with respect to� -�nite measure � proportional to:

f (x j � ) / exp
�
� > t(x) �  (� )

�

where � 2 � � f � 2 Rk ;
R

x2 X exp
�
� > t(x)

�
d� (x) < 1g is the natural parameter of dimen-

sion k, t(x) is the su�cient statistic, and  (� ) �
R

x2 X exp
�
� > t(x)

�
d� (x) is the cumulant

function.

When the natural parameter space is an open set, the exponential family is regular.

Furthermore, a minimal exponential family is an exponential family where the components

of the su�cient statistics t(x) are linearly independent. We are interested in minimal regular

exponential families whose natural parameter spaces are constrained to smooth manifolds|

curved exponential families.

De�nition (curved exponential family). A curved exponential familyis a minimal regular

exponential family whose natural parameter space is constrained to a manifold characterized

by a smooth bijective function called adi�eomorphism � : � ! Rk� m � Rm for 1 � m � k.
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Accordingly, a curved exponential family is de�ned as follows:

FEF � f P� 2 FEF ; �( � )> = [ �; C ]g

where C is constant. For more details about exponential families and curved exponential

families see [5, 43].

Let P� be an exponential family with natural parameter space �. One way to constrain

the natural parameter space of an exponential family is to restrict the members of the family

to probability measures whose induced independence models are subsets of a prespeci�ed

independence model:

FEF (I ) � f P� 2 FEF ; I = I (P� )g:

If the prede�ned independence model is induced by a MAGG, then the result is an family

of ancestral graph Markov models:

FEF (G) � f P� 2 FEF ; I (G) = I (P� )g:

We denote the parameter space constrained by an independence modelI (O) as � O. However,

not all exponential families constrained by independence models induced by MAGs are curved

exponential families. In this chapter, we discuss curved exponential families constrained by

the independence models induced by MAGs. The families discussed include the following:

� CG Conditional Gaussian;

� LH Lee and Hastie;

� M Multinomial;

� G Gaussian.

128



Figure 5.1: The Hasse diagram for the poset over families of probability measures ordered

by inclusion.

Figure 5.1 depicts a Hasse diagram for a poset of families of probability measures ordered

by inclusion|the colored section indicates families that are known to be curved exponential

families when restricted by a MAG and the uncolored section indicates families that require

additional restrictions to be curved exponential families. In particular, di�eomorphisms

were given for Gaussian probability measures by Spirites et al. [82, 70] and for multinomial

probability measures by Evans and Richardson [30].

In the forthcoming sections, we discuss conditional Gaussian, Gaussian, and Lee and

Hastie probability measures respectively. Notably, conditional Gaussian and Lee and Hastie

probability measures constrained by independence models induced by MAGs have not been

shown to be curved exponential families. We provide an additional condition for MAGs

such that Lee and Hastie probability measures constrained by independence models induced

by MAGs satisfying the condition are curved exponential families. An analogous proof for

conditional Gaussian is outside the scope of this dissertation.
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5.1 Conditional Gaussian Probability Measures

The family of conditional Gaussian probability measures is the most general exponential

family of probability measures discussed in this dissertation. In fact, the other families we

discuss are subfamilies of conditional Gaussian probability measures. Conditional Gaussian

probability measures where studied in detail by Lauritzen [46] and model mixtures of con-

tinuous and discrete variables where the conditional distribution of the continuous variables

given the discrete variables is Gaussian. Following Lauritzen's notation, we use � to denote

continuous variables and � to denote discrete variables.

Let V be a non-empty set of variables partitioned by sets �; � 2 V which denote the

continuous and discrete variables respectively. Letg(x � ) : x � ! R, h(x � ) : x � ! Rj � j , and

K (x � ) : x � ! Sj � j
++ . A conditional Gaussian probability measure is a probability measure

whose density has the following form:

f (x j � ) / exp
�
g(x � ) + h(x � )> x � �

1
2

x>
� K (x � )x �

�
:

Furthermore, if K (x � ) is constant, then the probability measure is a homogeneous condi-

tional Gaussian probability measure. Let

g� (x � ) = g(x � ) +
1
2

h(x � )> K (x � )h(x � ) � � (x � ) = K (x � )> h(x � ):

The density of a conditional Gaussian probability measure can be put in a form where in

the cases of only continuous or discrete variables, the probability measure is Gaussian or

multinomial respectively

f (x j � ) /
�
g� (x � ) �

1
2

(x � � � � (x � ))> K (x � )(x � � � � (x � ))
�

:

For more details about conditional Gaussian probability measures see [46].

Notably, our prior assumption about multiinformation hold for this family of probability

measures.

Proposition 5.1.1 (Corollary 4.1 [83]). Let V be a non-empty set of variables andX be a

non-empty collection of random variables indexed byV with probability measureP� dominated
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by � -�nite product measure � . If P� is a conditional Gaussian probability measure overV,

then P� has �nite multiinformation.

However, current theoretical results cannot guarantee that families of conditional Gaus-

sian probability measures restricted by the independence models of MAGs are curved expo-

nential families. This is due to the fact that conditional Gaussian probability measure are

not closed under marginalization.

5.1.1 Conditional Gaussian Marginalization Condition

Unfortunately, while conditional Gaussian probability measures are closed under condi-

tioning, they are not closed under marginalization. Lauritzen accounted for this by de�ning

the concept of a weak marginal. Intuitively, a weak marginal is the conditional Gaussian

probability measure over a marginal set of variables that is as close as possible to the actual

marginal.

De�nition (weak marginal). Let V be a non-empty set of variables containing a setA �

V . Furthermore, let X be a collection of random variables indexed byV with conditional

Gaussian probability measureP� that admits density f (x j � ) with respect to dominating

� -�nite product measure � . Lastly, denote the density of the weak marginal with respect to

A as f [A ]. As mentioned above, the weak marginal is \close" to the actual marginal in the

following sense. Iff A is a conditional Gaussian density, thenf [A ] = f A , otherwisef [A ] is the

conditional Gaussian distribution that minimizes:

inf
� 2 �

Z

x2 X
log

�
f A (x j � )
f [A ](x j � )

�
dP� (x):

In the �eld of information theory, the above integral is the Kullback-Liebler divergence

or relative entropy of the weak marginal with respect to the actual marginal. To be clear,

f A (x j � ) is the actual marginal of a conditional Gaussian density but not necessarily a

conditional Gaussian density. On the other hand,f [A ](x j � ) is the weak marginal of a

conditional Gaussian density and a conditional Gaussian density.

It turns out that conditional Gaussian probability measures are closed under marginal-

ization subject to the following condition.
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De�nition (conditional Gaussian marginalization condition). Let V be a non-empty set of

variables partitioned by sets �; � � V which denote the continuous and discrete variables

respectively. Furthermore, letP be a conditional Gaussian probability measure that admits

density f with respect to � -�nite product measure � . If A; L � V such that L = V nA, then

f A is conditional Gaussian if and only if:

A \ � ?? L \ � j A \ � [ P ]:

That is, the continuous variables in the margin are independent of the marginalized discrete

variables given the discrete variables in the margin. Accordingly, this condition characterizes

when an actual marginal and a weak marginal are equivalent [31, 46].

We call this the conditional Gaussian MAG condition (CGMC) because conditional Gaus-

sian probability measures whose induced independence models are subsets of MAGs that

satisfy this condition are curved exponential families. This result is not proven here, but

should be straightforward to prove using the analogous proofs for multinomial and Gaussian

probability measures. Notably, there are MAGs that do not satisfy this condition that are

Markov equivalent to a MAG that does satisfy this condition

If P is a conditional Gaussian probability measure whose independence model is re-

stricted by I (G), then the following is a necessary and su�cient condition forP to satisfy

the conditional Gaussian marginalization condition with respect to the ancestral set of the

directed subgraph.

De�nition (conditional Gaussian MAG condition). Let G = ( V; E) be a MAG whose ver-

tices are partitioned by sets �; � � V which denote the continuous and discrete vertices

respectively. If there existsG0 2 [G] and G00= dir( G0) such that:

HT 6� � ) H � �

for all H 2 H (G00) and T = tail G00(H ), then G satis�es the conditional Gaussian MAG

condition (CGMC).

Proposition 5.1.2. Let G = ( V; E) be a MAG whose vertices are partitioned by sets� ; � �

V which denote the continuous and discrete vertices respectively. Ifdir(G) = G0 = ( V 0; E0),
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then following are equivalent:

i. HT 6� � ) H � � for all H 2 H (G0) and T = tail G0(H );

ii. A \ � ?? L \ � j A \ � [ G0] for all A 2 A(G0) and L = V 0n A.

Proof. (i ) ii ):

By the antecedent, the descendants of continuous variables must also be continuous and

the districts are either completely continuous or completely discrete.

Let A 2 A(G) and L = V 0nA. If A \ � = ? , then A \ � ?? L \ � j A \ � [ G] by the

triviality semi-graphoid axiom.

If A \ � 6= ? , then let a 2 A \ � and B = V 0ndeG0(L \ �). By de�nition a ?? B nclG0
B

(a) j

mbG0
B

(a) [ G0
B ].

The district must be continuous by the antecedent: disG0
B

(a) � A \ �. Since A is

ancestral, all the districts parents must be inA as well. All the district's descendants must

be continuous by the antecedent and accordingly, inB if not latent. If not latent, then in A

and becauseA is ancestral, their parents are inA. Therefore, mbG0
B

(a) � A n a.

By the antecedent and since the continuous descendants are continuous,L \ � � B .

Since mbG0
B

(a) � A n a and a 2 A, L \ � � B n clG0
B

(a).

By the weak union semi-graphoid axiom,a ?? L \ � j A na [ G0
B ]. By Proposition 3.4.2,

I (G0
B ) � I (G0). By the intersection semi-graphoid axiom,A \ � ?? L \ � j A \ � [ G].

(i ( ii ):

Assume by way of contradiction that there existsH 2 H (G0) such that HT \ � 6= ? and

H \ � 6= ? whereT = tail G0(H ) and A \ � ?? L \ � j A \ � [ G0] for all A 2 A(G0). Let

B = H \ � and A = anG0(HT nB). a 2 HT \ � and b2 B such that a and bare adjacent in

G0. Therefore,a 6?? b j A \ � [ G] by maximally. Accordingly, A \ � 6?? L \ � j A \ � [ G0].

This is a contradiction.

We conjecture that the CGMC de�nes exactly the set of MAGs that describe the indepen-

dence models of conditional Gaussian probability measures. That is, conditional Gaussian

probability measures cannot represent the same set of conditional independence statements
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as a directed MAG that does not satisfy the marginalization condition|it is parametrically

impossible.

Conjecture 5.1.1. Let G = ( V; E) be a MAG whose variables are partitioned by sets� ; � �

V which denote the continuous and discrete variables respectively and letP� be a conditional

Gaussian probability measure. IfG does not satisfy the CGMC andI (P� ) � I (G), then there

existsa; b2 � and C 2 V n f a; bg wheredeG(a) \ deG(b) \ � 6= ? such that:

i. a ?? b j C [ G];

ii. a 6?? b j C [ P� ].

5.2 Gaussian Probability Measures

5.2.1 Gaussian Parameterization

In this section, we detail the parameterization of MAGs for Gaussian probability mea-

sures, discussed in detail by Richardson and Spirtes [70]. LetG = ( V; E) be a MAG. De�ne

D = chG(V) [ spG(V) and U = V nD as the directed and undirected vertices ofGrespectively.

� De�ne � (G) � SjUj
++ to be the set of matrices (�)ab

a;b2 V
= � ab that satisfy:

(�) ab
a;b2 V

� � ab 2

8
><

>:

R a 2 ne+
G(b);

f 0g otherwise:

� De�ne 
 (G) � SjD j
++ to be the set of matrices (
)ab

a;b2 V
= ! ab that satisfy:

(
) ab
a;b2 V

� ! ab 2

8
><

>:

R a 2 sp+
G(b);

f 0g otherwise:
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� De�ne B(G) � RjV j�j V j to be the set of matrices (B)ab
a;b2 V

= � ab that satisfy:

(B )ab
a;b2 V

� � ab 2

8
><

>:

R a 2 chG(b);

f 0g otherwise:

� De�ne µ(G) � RjV j to be the set of real numbers.

The parameterization ofG given by the di�eomorphism � � 1
G : � � 
 � B � µ ! � G is de�ned

as follows:

� � 1
G (� ; 
 ; B; � ) =

2

4
� > K

� 1
2vec(K )>

3

5

where

K = ( I � B )>

2

4
� � 1 0

0 


3

5

� 1

(I � B )

and I is the jV j � j V j identity matrix. Accordingly, the family of Gaussian MAG probability

measures is a curved exponential family characterized by the inverse di�eomorphism �G.

Proposition 5.2.1 (Theorem 8.23 [70]). For a MAG G = ( V; E), FG(G) is a curved expo-

nential family, with dimension 2jV j + jE j.

Furthermore, these curved exponential families correspond exactly to the independence

models induced by the corresponding directed MAG.

Proposition 5.2.2 (Theorem 8.14 [70]). Let Gbe a MAG. If FG(G) is the family of Gaussian

probability measures parameterized byG and FG(I (G)) is the family of Gaussian probability

measures constrained byI (G), then

FG(G) = FG(I (G)):

Conveniently, all the parameters used to de�ne the di�eomorphism have meaningful

interpretations:

� K and � are the precision matrix mean vector respectively;

� � ab corresponds to the coe�cient ofb in the regression ofa on its parents paG(a);

� ! ab corresponds to the covariance between the residuals ofa regressed on its parents
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paG(a) and the residuals ofb regressed on its parents paG(b);

� � ab corresponds to an edge potential in un(G).

In Section 5.3, we repurpose Richardson and Spirtes parameterization for the family of Lee

and Hastie probability measures.

5.3 Lee and Hastie Probability Measures

In this section, we consider a subfamily of conditional Gaussian probability measures �rst

characterized by Lee and Hastie [47]|Accordingly, we call these measures Lee and Hastie

probability measures. Raghu et al. provide a summary of methods developed to learn

Markov equivalence classes of MAGs [63] on data generated from Lee and Hastie probability

measures.

The family of Lee and Hastie probability measures is the special case of the family of

homogeneous conditional Gaussian probability measures. The covariance matrix is constant

for di�erent values of the discrete variables and the discrete variables factorize as a pairwise

discrete Markov random �eld (MRF). When the independence model of a probability measure

is described by an undirected graph, that model is called a Markov random �eld; see [45] for

details on pairwise MRFs.

We give a di�eomorphism to show that Lee and Hastie probability measures whose

independence models are restricted by MAGs are curved exponential families. However, we

�rst describe a transformation to facilitate the discussion of the di�eomorphism and provide

an additional condition for Lee and Hastie probability measures to be curved exponential

families.

5.3.1 Binary Transformation

We show that the family of Lee and Hastie probability measures is an exponential family

using the following transformation. LetV be a non-empty set of variables partitioned by sets

� ; � � V which denote the continuous and discrete variables respectively. Furthermore, let
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X be a collection of random variables indexed byV with conditional Gaussian probability

measureP� that admits density f (x j � ) with respect to dominating � -�nite product measure

� . Accordingly, X = X� � X� whereX� � Rj � j and X� � Z j � j
+ .

V

xa xb xc

7.9 1 3.8

0.2 3 4.8

3.9 4 0.5

2.2 2 7.3

7.9 2 0.2

3.9 1 9.7

0.3 4 9.8

z(G)
�!

z(x)
�!

W

x(a;1) x(b;1) x(b;2) x(b;3) x(c;1)

7.9 1 0 0 3.8

0.2 0 0 1 4.8

3.9 0 0 0 0.5

2.2 0 1 0 7.3

7.9 0 1 0 0.2

3.9 1 0 0 9.7

0.3 0 0 0 9.8

Figure 5.2: An illustration of the binary transformation

De�ne the binary transformation of V with respect to A � V as follows:

zA (V) � WA = f a 2 A � Z+ ; a2 � j a1jg

where subscripts are used to index the �rst or second part of a transformed variable andjw1j

equals the number of non-redundant categories for discrete random variables and one for

continuous variables. De�ne the binary transformation ofx with respect to A as a function
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zA : X ! RjWA \ � j � f 0; 1gjWA \ � j :

(zA (x))a
a2 WA

� za =

8
><

>:

xa1 a1 2 �

� xa1 ;a2 a1 2 �

where� xa1 ;a2 is the Kronecker delta. Additionally, we de�ne a corresponding transformation

for directed MAGs.

Algorithm 5: Binary Transformation z(G)
Input: MAG: G = ( V; E)
Output: MAG: G0 = ( W; F )

1 W = f a 2 V � Z+ ; a2 � j a1jg ;
2 F = ? ;
3 foreach a; b2 W (a 6= b) do
4 if a1  b1 in G then
5 Add a  b to F ;
6 else if a1 $ b1 in G then
7 Add a $ b to F ;
8 else if a1 � b1 in G then
9 Add a � b to F ;

10 end
11 end

We show that the transformed graph is a directed MAG which has the same conditional

independence relationships.

Proposition 5.3.1. Let G = ( V; E) be a MAG. If z(G) = ( W; F ) is the transformed graph,

then z(G) is a MAG and

A ?? B j C [ G] , WA ?? WB j WC [ z(G) ]

Proof. By construction, z(G) is a ancestral graph. We consider the contrapositive for the

double implication.

If A 6?? B j C [ G], then there is an m-connecting path � between a 2 A and b 2 B

relative to C in G. Construct � 0 in z(G) by replacing each vertexv 2 � with w 2 z(v). By

construction, � 0 is an m-connecting path betweena0 2 WA and b0 2 WB relative to WC in
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z(G). Accordingly WA 6?? WB j WC [ z(G) ].

If WA 6?? WB j WC [ G], then there is an m-connecting path � 0 between a 2 WA and

b 2 WB relative to WC in z(G). Construct � 0 in G by replacing each vertexw 2 � with

v = w1. If any w 2 � appears more than once, then remove all vertices the between the �rst

and last occurrence ofw and the last occurrence ofw. By construction, � 0 is anm-connecting

path betweena0 2 A and b0 2 B relative to C in G. Accordingly A 6?? B j C [ G].

Accordingly, z(G) is an ancestral graph andA ?? B j C [ G] , WA ?? WB j WC [ z(G) ];

maximality follows from the maximality of G.

5.3.2 Lee and Hastie MAG condition

Lee and Hastie probability measures require an additional condition for MAGs such that

Lee and Hastie probability measures constrained by independence models induced by MAGs

satisfying the condition are curved exponential families.

De�nition (Lee and Hastie MAG condition). Let V be a non-empty set of variables par-

titioned by sets � ; � � V which denote the continuous and discrete variables respectively.

Furthermore, let A; B; C � V be disjoint sets andD � � n AB . G satis�es the Lee and

Hastie MAG condition (LHMC) if:

i. G satis�es the CGMC;

ii. A ?? B j C [ G] ) A ?? B j CD [ G] for all hA; B j Ci 2 T(V) and D � � n AB .

If conditioning on a set of discrete variables induces dependence between two other sets

of variables, then marginalizing the same set of discrete variables will result in a mixture of

two or more marginal Lee and Hastie densities and induce the same dependency.

An intuition for this comes from the similarity between Lee and Hastie and Gaussian

probability measures. Figure 5.3 illustrates the case where two continuous variables cause a

discrete variable that otherwise have no relation. In this case we would expect to see that

the continuous variables are marginally independent, however, this is not the case. The light

gray points give the marginal of the Gaussian probability measure with the same parameter-

ization. Accordingly, the Lee and Hastie probability measure appears similar to a Gaussian
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Figure 5.3: Lee and Hastie probability measures and violations of the marginalization con-

dition. The contours give three standard deviations and the solid black line gives the �rst

principal component.

probability measure subject to a selection e�ect. This selection e�ect induces a marginal

dependence between the two continuous parents, which would otherwise be marginally in-

dependent.

Accordingly, the LHMC ensures that these induced dependencies do not occur. Graph-

ically, this implies that the discrete variables are contained within the undirected subgraph

of MAGs.

5.3.3 Lee and Hastie Parameterization

Let G = ( V; E) be a directed MAG satisfying the LHMC whose variables are partitioned

by sets � ; � � V which denote the continuous and discrete variables respectively, and let

z(G) = ( W; F ) be the transformed directed MAG. De�neD = ch z(G)(W) [ spz(G)(W) and

U = W n D as the directed and undirected vertices ofz(G) respectively. Furthermore,

X be a collection of random variables indexed byV. We rede�ne Richardson and Spirtes

parameterization ofG for Lee and Hastie probability measures as follows:
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� De�ne � (G) � SjUj
++ to be the set of matrices (�)ab

a;b2 U
� � ab that satisfy:

(�) ab
a;b2 U

� � ab 2

8
>>>>><

>>>>>:

R a = band a1 2 � or a1 2 neG(b1);

f 1g a = band a1 2 �;

f 0g otherwise:

� De�ne 
 (G) � SjD j
++ to be the set of matrices (
)ab

a;b2 D
� ! ab that satisfy:

(
) ab
a;b2 D

� ! ab 2

8
><

>:

R a1 2 sp+
G(b1);

f 0g otherwise:

� De�ne B(G) � RjW j�j W j to be the set of matrices (B)ab
a;b2 W

� � ab that satisfy:

(B )ab
a;b2 W

� � ab 2

8
><

>:

R a1 2 chG(b1);

f 0g otherwise:

� De�ne µ(G) � RjW j to be the set of real numbers.

The parameterization ofG given by the di�eomorphism � � 1
G : � � 
 � B � µ ! � G is

de�ned as follows:

� � 1
G (� ; 
 ; B; � ) �

2

4
� > K

� 1
2vec(K )>

3

5

where

K � (I � B )>

2

4
� � 1 0

0 


3

5

� 1

(I � B )

and I is the jWj � j Wj identity matrix. A parameterization is maximal if for all a; b2 V:

a1 2 ne+
G(b1) ) � ab 6= 0;

a1 2 sp+
G(b1) ) ! ab 6= 0;

a1 2 chG(b1) ) � ab 6= 0:

We show the family of Lee and Hastie MAG probability measures is a curved exponential
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family characterized by the inverse di�eomorphism �G. The parameterization given by Lee

and Hastie di�ers from the parameterization given here and we have not veri�ed that the two

are equivalent. Notably, the parameterization given by Lee and Hastie uses more parameters,

so it is possible that they describe a more general family of probability measures. However,

the parameterization given by Lee and Hastie is not minimal, so it is also possible that our

parameterization is a minimal characterization of the same family of probability measures.

5.3.4 Lee and Hastie as Curved Exponential Families

Let z � z(x) and zA � zA (x). Lee and Hastie probability measures form an exponential

family as follows:

� > �
h
� > K � 1

2vec(K )>
i

t(x) �

2

4
z

vec(zz> )

3

5

where vec(A) is the vectorization of matrix A into a column vector. In what follows, we show

that Lee and Hastie probability measures are conditional Gaussian probability measures.

We abuse notation and use the following shorthand� A = � WA and K AB = K WA WB for all

A; B 2 V.

� > t(x) = � > Kz �
1
2

vec(K )> vec(zz> )

= � > Kz �
1
2

z> K z

= z>
� K �� � � + z>

� K �� � � + � >
� K �� z� + � >

� K �� z� �
1
2

z>
� K �� z� � z>

� K �� z� �
1
2

z>
� K �� z�

= � >
� K �� z� �

1
2

z>
� K �� z� + � >

� K �� z� + ( K �� � � + K �� (� � � z� ))> z� �
1
2

z>
� K �� z�

= g(z� ) + h(z� )> z� �
1
2

z>
� K �� z�

Accordingly,

g(z� ) = � >
� K �� z� �

1
2

z>
� K �� z� + � >

� K �� z� h(z� ) = K �� � � + K �� (� � � z� ):
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Therefore

g� (z� ) = g(z� ) +
1
2

h(z� )> K � 1
�� h(z� )

= � >
� K �� z� �

1
2

z>
� K �� z� + � >

� K �� z�

+
1
2

(K �� � � + K �� (� � � z� ))> K � 1
�� (K �� � � + K �� (� � � z� ))

= �
1
2

z>
� K �� z� + � >

� K �� z� +
1
2

� >
� K �� � � + � >

� K �� � �

+
1
2

� >
� K �� K � 1

�� K �� � � � � >
� K �� K � 1

�� K �� z� +
1
2

z>
� K �� K � 1

�� K �� z�

= �
1
2

z>
� (K �� � K �� K � 1

�� K �� )z� + � >
� (K �� � K �� K � 1

�� K �� )z�

+
1
2

� >
� K �� � � + � >

� K �� � � +
1
2

� >
� K �� � � �

1
2

� >
� (K �� � K �� K � 1

�� K �� )� �

= �
1
2

z>
� � � 1

�� z� + � >
� � � 1

�� z� +
1
2

(� > K � � � >
� � � 1

�� � � )

where � is the covariance matrix and the transformation � � 1
AA = K AA � K AB K � 1

BB K BA is

given in Bishop [10] and

� � (z� ) = K � 1
�� h(z� )

= � � + K � 1
�� K �� (� � � z� ):

Accordingly, a Lee and Hastie density is proportional to the following:

f (x j � ) / exp

2

4g� (z� )
| {z }

MRF

�
1
2

(z� � � � (z� ))> K �� (z� � � � (z� ))
| {z }

mean shifted Gaussian

3

5

Notably, the pairwise edge potentials and the pairwise MRF should be associated with the

undirected augmented graph rather than the original directed MAG.

Proposition 5.3.2. Let G = ( V; E) be a directed MAG satisfying the LHMC. If� � 1
G :

� � 
 � B � µ ! � G is the di�eomorphism corresponding to the parameterization ofG, then

� � 1
G is a bijection.

Proof. � � 1
G is surjective by construction, therefore we show that �� 1

G is injective.

If D = ch z(G)(W) [ spz(G)(W) and U = W n D are the directed and undirected vertices
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of z(G) respectively, then:

f (x j � ) / exp
�

�
1
2

z>
U � � 1

UUzU + � >
U � � 1

UUzU +
1
2

(� > K � � � >
U � � 1

UU � U )

�
1
2

(zD � � D (zU ))> K DD (zD � � D (zU ))
�
:

Notably, D � z(�) and � � 1
UU = � and the directed part of a Lee and Hastie probability

measure is Gaussian. Accordingly, we check the undirected non-constant part of Lee and

Hastie probability measures. IfA = U \ � and B = U \ �, then:

�
1
2

z>
U � � 1

UUzU + � >
U � � 1

UUzU = �
1
2

z>
U � zU + � >

U � zU

= �
1
2

z>
A � AA zA � z>

A � AB zB �
1
2

z>
B � BB zB

+ � >
A � AA zA + � >

A � AB zB + � >
B � BA zA + � >

B � BB zB

=
X

a2 A

X

a02 A

�
1
2

� aa0za0za �
X

a2 A

X

b2 B

� abzazb +
X

b2 B

X

b02 B

�
1
2

� bb0zbzb0

+
X

a2 A

"
X

a02 Anza1

� aa0� a0 +
X

b2 B

� ab� b

#

za +
X

b2 B

"
X

a2 A

� ab� a +
X

b2 B

� bb0� b0

#

zb

=
X

a2 A

X

a02 Anza1

�
1
2

� aa0za0za �
X

a2 A

X

b2 B

� abzazb +
X

b2 B

X

b02 B

�
1
2

� bb0zbzb0

+
X

a2 A

"
X

a02 Anza1

� aa0� a0 +
X

b2 B

� ab� b + � a �
1
2

#

za +
X

b2 B

"
X

a2 A

� ab� a +
X

b2 B

� bb0� b0

#

zb:

The �rst three terms are edge potentials, where the lambda terms are non-zero if and

only if the two corresponding vertices are adjacent. Accordingly, every unique value of the

lambda terms results in a di�erent probability measure. The last two terms are vertex

potentials. Therefore, for �xed lambda terms, every unique value of the mu terms results in

a di�erent probability measure. It follows that the di�eomorphism is a bijection.

The Lee and Hastie family of probability measures uses the same parameterization as the

Gaussian family of probability measures after transforming the variables. Thus, by applying

the transformation to both the variables and the graph, we have that Lee and Hastie directed

MAG probability measures are curved exponential families.

Corollary 5.3.1. If G = ( V; E) is a directed MAG andz(G) = ( W; F ) be the transformed
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directed MAG, then FLH (G) is a curved exponential family with dimensionjWj + j� j + jF j.

Proof. The proof follows from Proposition 5.2.1 because Lee and Hastie exponential Families

and Gaussian exponential families use the same di�eomorphism.

Proposition 5.3.3 (Proposition 3.1 [46]). Let X be a collection of random variables andP�

be a probability measure onX that admits densityf (x) with respect to dominating� -�nite

product measure� . If f (x) > 0 is positive for all x 2 X, then I (P� ) is a graphoid.

Lemma 5.3.1. Let X be a collection of random variables andP� be a probability measure

on X that admits densityf (x) with respect to dominating� -�nite product measure � . If P�

is a Lee and Hastie probability measure, thenI (P� ) is a graphoid.

Proof. This directly follows from Proposition 5.3.3 and the well-known fact that the density

admitted by a Gaussian probability measure is positive.

Proposition 5.3.4 (Lemma 8.17 [70]). If K is a precision matrix parameterized by a MAG

G = ( V; E), and a; b2 V are not adjacent inaug(G) then (K )ab = 0.

Lemma 5.3.2. Let G = ( V; E) be a directed MAG andP� be a Lee and Hastie probability

measure overV. If � is maximal parameterization with respect toG, then for all disjoint

A; B; C � V whereanG(ABC ) = V

A ?? B j C [ G] , A ?? B j C [ P� ]:

Proof. Let G = ( V; E) be a directed MAG andX be a collection of random variables indexed

by V with probability measureP� that admits density f (x j � ) with respect to dominating � -

�nite product measure � . We note that G and z(G) have the same conditional independence

relationships by Proposition 5.3.1 and apply the Proposition 5.3.4. LetA; B; C � V be three

sets that partition V. Let D = AB and de�ne r = z � � as the residual ofz given the mean.

We use the shorthandK WA WA = K AA .

logf (x j � ) / �
1
2

r >
C K CC rC � r >

C K CD rD �
1
2

r >
D K DD rD
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r >
C K CC rC =

X

c2 C

X

c02 C

K cc0 r c r c0

r >
C K CD rD =

X

c2 C

X

d2 D

K cd r c rd

=
X

a2 A

X

c2 C

K ac ra r c +
X

b2 B

X

c2 C

K bc rb r c

r >
D K DD rD =

X

d2 D

X

d02 D

K dd0 rd rd0

=
X

a2 A

X

a02 A

K aa0 ra ra0 +
X

a2 A

X

b2 B

K ab ra rb +
X

b2 B

X

b02 B

K bb0 rb rb0

logf (x j � ) / �
1
2

X

a2 A

X

a02 A

K aa0 ra ra0 �
X

a2 A

X

c2 C

K ac ra r c

�
1
2

X

b2 B

X

b02 B

K bb0 rb rb0 �
X

b2 B

X

c2 C

K bc rb r c

�
1
2

X

c2 C

X

c02 C

K cc0 r c r c0 �
1
2

X

a2 A

X

b2 B

K ab ra rb

Let a 2 A and b 2 B be variables. From the equation above, we see thatf (x j � ) can

be split into a function of f ag [ C and a function of f bg [ C if and only if K a;b = 0. This

occurs if and only if a and b are not adjacent in aug(z(G)). Furthermore, f (x j � ) can be

split into a function of f ag [ C and a function of f bg [ C if and only if a ?? b j C [ P� ].

Accordingly, a ?? b j C [ P� ] if and only if K a;b = 0.

Theorem 5.3.1. Let G be a directed MAG satisfying the LHMC. IfFLH (G) is the family of

Lee and Hastie probability measures parameterized byG and FLH (I (G) is the family of Lee

and Hastie probability measures constrained byI (G), then

FLH (G) = FLH (I (G)):

Proof. This follows from the LHMC, Theorem 3.3.4, and Lemmas 5.3.1 and 5.3.2.
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6.0 Scoring Criterion and Applications

In this chapter we discuss an application of the factorization derived in the Section 4.3.

In particular, we formulate a consistent probabilistic score with a closed-form solution for

exponential families whose independence models are described by directed MAGs|directed

ancestral graph Markov models. The families discussed in this dissertation are subfamilies of

conditional Gaussian probability measures and include the families of Gaussian probability

measures and multinomial probability measures.

The consistent probabilistic score developed in this chapter is formulated by employing

an approximation of the maximum log-likelihood with respect to a directed MAG in the well

known Bayesian information criterion (BIC). Notably, the BIC using the exact maximum

log-likelihood with respect to a directed MAG also provides a consistent probabilistic score,

however, the resulting score does not always have a closed-form solution for the families of

probability measures considered in this dissertation. Furthermore, calculation of the exact

maximum log-likelihood with respect to a MAG requires the development of family speci�c

solvers|solvers have been developed for Gaussian and multinomial directed ancestral graph

Markov models [20, 30]. In contrast, the approximate maximum log-likelihood calculation

developed in this chapter only requires knowledge of the unconstrained probability density.

We compare the ability of the exact and approximate probabilistic scores to recover the

correct Markov equivalence class for Gaussian directed ancestral graph Markov models and

report run times.

Historically, methods that optimize a score for directed MAG Markov equivalence class

recovery have not seen much development due to theoretical complications. Instead, directed

MAG Markov equivalence class recovery has been done by the fast causal inference (FCI)

algorithm and its variants. These methods rely on a series of conditional independence

tests in order to learn a Markov equivalence class; this approach readily handles latent

variables. Accordingly, there is an abundance of FCI variants in the literature [57, 63, 80, 93].

However, in these approaches, errors made by conditional independence tests can propagate,

compound, and result in poor overall performance. Furthermore, these methods give no
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indication of how much better the best Markov equivalence class is compared to the next

best Markov equivalence class [78]. These issues are non-existent in methods that optimize

a score, which motivates their development.

Indeed, in the past �ve years there has been an inux of methods capable of learning

directed MAGs by optimizing a score. These methods include: a method that searches over

causal orders [8], a continuous optimization method [9], an integer programming method

[12], a method that scores conditional independence statements [41, 42], steepest ascent hill

climbing methods [56, 88], and a method that uses an independence-based subroutine to

determine local structures [89]. The majority of these methods use the exact score described

above and are therefore candidates for the approximate score. By switching out the exact

score for the approximate score, these methods gain exibility and computational e�ciency.

Additionally, Appendix B.5 shows the similarity between one of these methods and our

score. We compare the probabilistic scores against the FCI algorithm and two of its variants

to compare the performance of a score based approach to a constraint based approach.

Ultimately, we design a local causal discovery algorithm called the ancestral probability

(AP) procedure, which estimates the posterior probabilities of ancestral relationships using

the probabilistic score developed in this chapter. The idea of local causal discovery, originally

formulated by Cooper as a constraint based approach and later extended to score based

methods by Mani [15, 52], focus on local subsets of variables in order to e�ciently target

speci�c causal relationships. We evaluate the AP procedure on synthetically generated data

and a real data set measuring airborne pollutants, cardiovascular health, and respiratory

health.

6.1 Asymptotic Behavior of Directed MAG Curved Exponential Families

In this section, we formulate a consistent probabilistic score with a closed-form for curved

exponential families whose independence models are described by directed MAGs. We in-

vestigate the theoretical and empirical asymptotic behavior of curved exponential families

subject to the parametric constraints of independence models induced by directed MAG. We
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compare the ability of the probabilistic score to recover the correct Markov equivalence class

against the well-known FCI algorithm and two of it variants.

6.1.1 Theoretical Evaluation

Let G = ( V; E) be a directed MAG. Furthermore, let X be a collection of random

variables indexed byV with probability measure P� that admits density f (x j � ) with

respect to dominating� -�nite product measure � . Throughout this section, letP� belong to

a curved exponential family with parameter space � andx1; : : : ; xn iid� f (x j � ). It will be

useful to review preexisting theoretical results. De�ne log-likelihood as follows:

`(�̂ j x1; : : : ; xn ) �
nX

i =1

logf (x i j �̂ )

where �̂ 2 �. Berks proved strong consistency for the maximum likelihood parameter

estimates of exponential families under mild regularity conditions [7]. If� 2 � G, then:

�̂ mle
G;n

a.s.�! �:

Therefore, by the continuous mapping theorem:

`(�̂ mle
G;n j x1; : : : xn ) a.s.�! `(� j x1; : : : xn ):

Haughton provides a computationally e�cient approximation of marginal likelihood for

curved exponential families called the Bayesian information criterion (BIC) using the maxi-

mum likelihood and a parameter penalty [36, 75]:

BIC(G; x1; : : : ; xn ) � `(�̂ mle
G;n j x1; : : : ; xn ) �

j� Gj
2

log(n)

and approximates the log marginal likelihood up to a constant under mild regularity condi-

tions:

log Pr(x1; : : : ; xn j G) = log
Z

� 2 � G

nY

i =1

f (x i j � ) d� (� )

= BIC( G; x1; : : : ; xn ) + Op(1):
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Notably, P� satis�es the global Markov condition with respect to a directed MAGG if and

only if � 2 � G. The BIC is a consistent score for model selection.

Proposition 6.1.1 (Proposition 1.2 [36]). Let G = ( V; E) and G0 = ( V; E0) be directed

MAGs. Furthermore, let X be a collection of random variables indexed byV with probability

measureP� that admits densityf (x j � ) with respect to dominating� -�nite product measure

� . If x1; : : : ; xn iid� f (x j � ) and either � 2 (� G0 n � G) or (� G \ � G0) with j� G0j < j� Gj, then:

lim
n!1

Pr(BIC( G; x1; : : : ; xn ) < BIC(G0; x1; : : : ; xn )) = 1

where� G0 � � G if I (G) � I (G0).

The BIC has a closed-form solution for the curved exponential families when the pa-

rameter space is constrained by an independence model induced by a DAG. Unfortunately,

this is not always the case when the parameter space is constrained by an independence

model induced by a directed MAG. We develop an approximation for the BIC that has a

closed-form solution in both cases.

Let G0 = dom(G; � ) and de�ne an approximate log-likelihood using the factorization with

respect toG and � :

^̀�
G(�̂ j x1; : : : ; xn ) �

X

b2 V

� nX

i =1

logf bjpaG0(b)(x i j �̂ ) �
X

N � pa+
G0(b)

b2 N

u� ;+
N(G)(N )

nX

i =1

� N (x i j �̂ )
�

Accordingly, we de�ne the following score which approximates the BIC:

^BIC(G; � ; x1; : : : ; xn ) � ^̀�
G(�̂ mle

G0;n j x1; : : : ; xn ) �
j� Gj

2
log(n):

which simpli�es to BIC if G is a DAG and has nice asymptotic properties.

Proposition 6.1.2. Let G = ( V; E) and G0 = ( V; E0) be directed MAGs and� and � 0 be total

orders consistent withG and G0 respectively. Furthermore, letX be a collection of random

variables indexed byV with probability measureP� that admits densityf (x j � ) with respect

to dominating � -�nite product measure � .

150



If x1; : : : ; xn iid� f (x j � ) and � 2 � G0 n � G, then:

lim
n!1

1
n

�
�
� ^BIC(G0; � 0; x1; : : : ; xn ) � ^BIC(G; � ; x1; : : : ; xn )

�
�
� = ( � Pu� ;+

N(G))
> mP� :

If x1; : : : ; xn iid� f (x j � ) and � 2 � G \ � G0 with j� Gj < j� G0j, then:

lim
n!1

1
logn

�
�
� ^BIC(G0; � 0; x1; : : : ; xn ) � ^BIC(G; � ; x1; : : : ; xn )

�
�
� =

j� Gj � j � G0j
2

:

Proof. Let G00= dom(G,� ). If x1; : : : ; xn iid� f (x j � ) and � 2 � G0 n � G, then:

lim
n!1

1
n

�
�
� ^BIC(G0; � 0 x1; : : : ; xn ) � ^BIC(G; � ; x1; : : : ; xn )

�
�
�

= lim
n!1

1
n

`(�̂ mle
G0;n j x1; : : : ; xn ) � lim

n!1

1
n

^̀�
G(�̂ mle

G00;n j x1; : : : ; xn ) � lim
n!1

j� G0j � j � Gj
2n

log(n)

= ( � P� P(V ))> mP� � (� P� M (G) � � Pu� ;�
N(G))

> mP�

= ( � Pu� ;+
N(G))

> mP� :

If x1; : : : ; xn iid� f (x j � ) and � 2 � G \ � G0 with j� Gj < j� G0j, then:

lim
n!1

1
logn

�
�
� ^BIC(G0; � 0; x1; : : : ; xn ) � ^BIC(G; � ; x1; : : : ; xn )

�
�
�

= lim
n!1

1
logn

h
`(�̂ mle

G0;n j x1; : : : ; xn ) � ^̀�
G(�̂ mle

G00;n j x1; : : : ; xn )
i

�
j� G0j � j � Gj

2

=
j� Gj � j � j2j j

2
:

The approximate BIC is a consistent score for model selection.

Corollary 6.1.1. Let G = ( V; E) and G0 = ( V; E0) be directed MAGs and� and � 0 be total

orders consistent withG and G0 respectively. Furthermore, letX be a collection of random

variables indexed byV with probability measureP� that admits densityf (x j � ) with respect

to dominating � -�nite product measure � . If x1; : : : ; xn iid� f (x j � ) and either � 2 (� G0 n � G)

or (� G \ � G0) with j� G0j < j� Gj, then:

lim
n!1

Pr( ^BIC(G; � ; x1; : : : ; xn ) < ^BIC(G0; � 0; x1; : : : ; xn )) = 1

where� G0 � � G if I (G) � I (G0).
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Proof. The proof directly follows from Proposition 6.1.2.

In what follows, we reason about the asymptotic properties of the approximate BIC and

its relation to the marginal likelihood. We �rst note the following result.

Proposition 6.1.3 (Theorem 1 [18]). Let G = ( V; E) be a directed MAG. Furthermore, let

X be a collection of random variables indexed byV with probability measureP� that admits

density f (x j � ) with respect to dominating� -�nite product measure � . If x1; : : : ; xn iid� f (x j

� ), then:

lim
n!1

log

R
�̂ 2 � G

Q n
i =1 f (x i j �̂ ) d� (� )

Q n
i =1 f (x i j � )

= � lim
n!1

n inf
�̂ 2 � G

Z

x2 X
log

"
f (x j � )

f (x j �̂ )

#

dP� (x) + Op(n
1
2 )

whereinf �̂ 2 � G

R
x2 X log

h
f (x j� )
f (x j �̂ )

i
dP� (x) = 0 if and only if � 2 � G.

Theorem 6.1.1. Let G = ( V; E) and G0 = ( V; E0) be directed MAGs and� and � 0 be total

orders consistent withG and G0 respectively. Furthermore, letX be a collection of random

variables indexed byV with probability measureP� that admits densityf (x j � ) with respect

to dominating � -�nite product measure � .

If x1; : : : ; xn iid� f (x j � ) and � 2 � G, then:

^BIC(G; � ; x1; : : : ; xn ) = BIC( G; x1; : : : ; xn ) almost surely:

If x1; : : : ; xn iid� f (x j � ) and � 2 � G0 n � G, then:

lim
n!1

�
�
�Pr(x1; : : : ; xn j G) � exp ^BIC(G; � x1; : : : ; xn )

�
�
�

exp ^BIC(G0; � 0; x1; : : : ; xn )
= Op(exp� n)

Proof. If � 2 � G, then ^BIC(G; � ; x1; : : : ; xn ) = BIC( G; x1; : : : ; xn ) almost surely by the

continuous mapping theorem and strong consistency of the maximum likelihood estimate. If

� 2 � G0 n � G, then:

lim
n!1

log

�
�
�Pr(x1; : : : ; xn j G) � exp ^BIC(G; � ; x1; : : : ; xn )

�
�
�

exp ^BIC(G0; � 0; x1; : : : ; xn )

� lim
n!1

log
max

h
Pr(x1; : : : ; xn j G); exp ^BIC(G; � ; x1; : : : ; xn )

i

exp ^BIC(G0; � 0; x1; : : : ; xn )
:
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If exp ^BIC(G; � ; x1; : : : ; xn ) > Pr(x1; : : : ; xn j G), then the results directly follows from

Proposition 6.1.2. If Pr(x1; : : : ; xn j G) > exp ^BIC(G; � ; x1; : : : ; xn ), then the result directly

follows from Proposition 6.1.3.

Accordingly, the BIC and approximate BIC are equal almost surely when the probability

measure is Markov with respect to the directed MAG. Furthermore, the di�erence between

the log marginal likelihood and approximate BIC tends towards zero exponentially when

the probability measure is not Markov with respect to the directed MAG relative to the

approximate BIC for a directed MAG that is Markov with respect to the probability measure.

6.1.2 Empirical Evaluation

We supplement the theoretical evaluation with an empirical evaluation on synthetic data

simulated from Gaussian densities as follows:

Algorithm 6: Simulate (G; n)
Input: directed MAG: G, number of instances:n
Output: data: x1; : : : xn

1 repeat

2 
 = ( ! ab) where! ab �

( Uniform [� 0:7; � 0:3] [ [0:3; 0:7] if a $ b in G
Uniform [1:0; 3:0] if i = j in G
0 otherwise

;

3 until 
 is positive-de�nite;

4 B = ( � ab) where� ab �
n Uniform [� 0:7; � 0:3] [ [0:3; 0:7] if a  b in G

0 otherwise
;

5 � = ( I � B )� 1 
 ( I � B )�> ;
6 x1; : : : xn � Gaussian(0; � ; n) ;

We compare our log-likelihood approximation against the maximum log-likelihood. The

maximum log-likelihood is calculated using an R implementation of the iterative condi-

tional �tting (ICF) procedure: https://CRAN.R-project.org/package=ggm [20]. Notably,

ICF optimizes the likelihood for curved exponential families constrained MAG independence

models, however, this space is not guaranteed to be convex. Accordingly, ICF does not

necessarily converge to the MLE|in practice rarely converges to something other than then
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MLE [21]. Furthermore, we are using a general implementation of ICF and not one that

was designed to be e�cient in this scenario. For comparison purposes, the approximate

and exact negative log-likelihoods are shifted so that their smallest values are equal to 1.

Notably, the smallest log-likelihoods always correspond to the saturated model, which is the

same for both the approximate and exact methods. Accordingly, both methods are shifted

by the same amount. The shifted negative log-likelihoods are compared on a log scale and

each equivalence class is marked according to whether or not it is Markov with respect to

the probability measure. Additional comparisons are given in Appendix B.6.

We use ^BIC to exhaustively rank all directed MAG Markov equivalence classes. His-

tograms show the distribution of the MEC of the data generating graph in the ranking.

That is, each bin represents the number of times the MEC of the true graph ranked ac-

cording to the number associated with the bin. Notably, there are 248 possible positions in

the ranking for the four-variable case and 24,259 possible positions in the ranking for the

�ve-variable case. Accordingly, we enumerate all possible positions in the ranking on a log

scale. Histograms for the exact BIC are given in Appendix B.7.

Finally, three causal discovery algorithms, FCI [80, 93], FCI max [63], and GFCI [57],

were applied to the same data with several standard parameter settings for comparison. The

reported number for each algorithm is the proportion of times that the Markov equivalence

class of the true graph was returned; the numbers may be directly compared to the �rst bin

of the corresponding histogram.

� FCI is a two stage search algorithm that attempts to recover the maximally informative

PAG for a directed MAG from data using tests of conditional independence. The �rst

stage starts with a completely connected graph and uses tests to determine which adja-

cencies to remove from the PAG. The second stage uses tests to determine invariant edge

marks among the graphs in the equivalence class and orients them in the PAG [80, 93].

See Algorithm 11 for details. We use Fisher's Z test with alpha levels of 0.01 and 0.001

for testing conditional independence.

� FCImax uses a maximum probability-based search technique in the edge orientation stage

of FCI to determine which conditioning sets of variables are most likely to provide cor-

rect conditional independence statements. This approach has been shown to improve
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performance, but requires signi�cantly more tests [63]. We use Fisher's Z test with alpha

levels of 0.01 and 0.001 for testing conditional independence.

� GFCI optimizes a probabilistic score over DAGs using a greedy hill climbing approach

and then runs FCI using the maximal DAG as a starting point rather than a completely

connected graph [57]. We use BIC as a probabilistic score and Fisher's Z test with alpha

levels of 0.01 and 0.001 for testing conditional independence. GFCI1 uses standard BIC

and GFCI2 using a variant of BIC where the parameter penalty has been doubled.

For all experiments, we simulate data sets of 500, 5,000 and 50,000 instances. We run

experiments for 7 prespeci�ed graphs, 4 of which have 4 vertices and 3 of which have 5

vertices, and random graphs. The random graph cases include graphs with 4 vertices and

between 0 and 3 edges, graphs with 4 vertices and between 4 and 6 edge, graphs with 5

vertices and between 0 and 5 edges, and graphs with 5 vertices and between 6 and 10 edges.

For each case, we run 1,000 repetitions. Each repetition has a unique parameterization

and in the random graph cases, have unique graphs as well|barring random repeats. All

experiments were run on a system with the following hardware:

� Memory: 7.7 GiB

� Processor: Intel® CoreTM i5-5200U CPU @ 2.20GHz� 4

We perform paired z-tests to give an indication for whether the di�erences in performance

are real. Statistical signi�cance at an alpha level of 0.05 is reported as either an overline if

^BIC is better or an underline if the alternative method is better. Note that there are no

reported cases where ^BIC and BIC are statistically signi�cant at an alpha level of 0.05. In

general, we �nd that the approximation for BIC performs well with low sample sizes and

performs favorably compared to the other algorithms.
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Directed MAG

Negative Log-likelihood

MEC Recovery

BIC ^BIC FCI FCImax GFCI1 GFCI2

� -level - - 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001

n = 500 0.472 0.464 0:087 0:02 0:265 0:202 0.617 0.617 0.471 0.471

n = 5,000 0.866 0.864 0:669 0:584 0:784 0:773 0.927 0.929 0.926 0.926

n = 50,000 0.962 0.961 0:866 0:864 0:921 0:935 0.981 0.981 0.979 0.979

Figure 6.1: An evaluation of the approximate log-likelihood and BIC for the speci�ed directed

MAG with n = f 500; 5;000; 50;000g. The approximate and exact shifted negative log-

likelihoods are compared for a random parameterization. The approximate BIC ranking

of the data generating MEC amongst all MECs is shown using histograms. The rate of

recovery for the data generating MEC given by the highest scoring approximate BIC score

is compared against several other state-of-the-art algorithms. Statistical signi�cance at an

alpha level of 0.05 is reported as either an overline if̂BIC is better or an underline if the

alternative method is better.
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Figure 6.1 the prespeci�ed graph is the simplest example showing that there may be no

total order over the districts of a MAG. Notably, the prespeci�ed graph is Markov equivalent

to a DAG which perhaps explains the performance of GFCI|GFCI reduces to a state-of-the-

art score based procedure in this case. The approximate log-likelihood closely aligns with

the exact log-likelihood with clear separation of Markov versus not Markov asn ! 1 ; the

approximate BIC performs nearly identically to BIC and consistently ranks the correct MEC

in the top 10 with the ranking converging to a point-mass in the �rst bin asn ! 1 ; the

top ranked approximate BIC model performs worse than GFCI, but better than the other

methods in MEC recovery.
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Directed MAG

Negative Log-likelihood

MEC Recovery

BIC ^BIC FCI FCImax GFCI1 GFCI2

� -level - - 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001

n = 500 0.749 0.749 0.862 0.755 0:698 0:621 0:37 0:345 0:16 0:161

n = 5,000 0.967 0.966 0.986 0.998 0.966 0.978 0:922 0:927 0:829 0:83

n = 50,000 0.997 0.997 0:988 1.0 0:988 1.0 0.995 1.0 0.994 0.999

Figure 6.2: An evaluation of the approximate log-likelihood and BIC for the speci�ed directed

MAG with n = f 500; 5;000; 50;000g. Statistical signi�cance at an alpha level of 0.05 is

reported as either an overline if ^BIC is better or an underline if the alternative method is

better.

Figure 6.2 the prespeci�ed graph is a MAG from the simplest MEC that does not contain

a DAG in graphs with four vertices. The approximate log-likelihood closely aligns with the
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exact log-likelihood with clear separation of Markov versus not Markov asn ! 1 ; the

approximate BIC performs nearly identically to BIC and consistently ranks the correct MEC

in the top 10 with the ranking converging to a point-mass in the �rst bin asn ! 1 ; the top

ranked approximate BIC model performs worse than FCI, about the same as FCImax , and

better than GFCI with low sample sizes and about the same otherwise in MEC recovery.
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Directed MAG

Negative Log-likelihood

MEC Recovery

BIC ^BIC FCI FCImax GFCI1 GFCI2

� -level - - 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001

n = 500 0.392 0.39 0:037 0:012 0:038 0:012 0:081 0:038 0:041 0:024

n = 5,000 0.764 0.763 0:348 0:247 0:348 0:247 0:549 0:49 0:499 0:466

n = 50,000 0.941 0.943 0:832 0:787 0:832 0:787 0:861 0:862 0:844 0:843

Figure 6.3: An evaluation of the approximate log-likelihood and BIC for the speci�ed directed

MAG with n = f 500; 5;000; 50;000g. Statistical signi�cance at an alpha level of 0.05 is

reported as either an overline if ^BIC is better or an underline if the alternative method is

better.

Figure 6.3 the prespeci�ed graph is the simplest example of a discriminating path in
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graphs with four vertices. The approximate log-likelihood closely aligns with the exact log-

likelihood with clear separation of Markov versus not Markov asn ! 1 ; the approximate

BIC performs nearly identically to BIC and consistently ranks the correct MEC in the top

10 with the ranking converging to a point-mass in the �rst bin asn ! 1 ; the top ranked

approximate BIC model performs better than the other methods in MEC recovery.
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Directed MAG

Negative Log-likelihood

MEC Recovery

BIC ^BIC FCI FCImax GFCI1 GFCI2

� -level - - 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001

n = 500 0.354 0.356 0.843 0.676 0:337 0:281 0:285 0:253 0:172 0:174

n = 5,000 0.746 0.749 0.978 0.997 0:744 0.75 0:568 0:578 0:501 0:51

n = 50,000 0.928 0.927 0.985 0.996 0:92 0.927 0:775 0:779 0:711 0:715

Figure 6.4: An evaluation of the approximate log-likelihood and BIC for the speci�ed directed

MAG with n = f 500; 5;000; 50;000g. Statistical signi�cance at an alpha level of 0.05 is

reported as either an overline if ^BIC is better or an underline if the alternative method is

better.
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In general, FCI tends to overestimate colliders and GFCI tends to underestimate colliders.

Figure 6.4 the prespeci�ed graph is a bi-directed four-cycle, which perhaps explains the poor

performance of GFCI. The approximate log-likelihood closely aligns with the exact log-

likelihood with clear separation of Markov versus not Markov asn ! 1 ; the approximate

BIC performs nearly identically to BIC and consistently ranks the correct MEC in the top

10 with the ranking converging to a point-mass in the �rst bin asn ! 1 ; the top ranked

approximate BIC model performs worse than FCI, about the same as FCImax , and better

than GFCI in MEC recovery.

Random Directed MAGs with jV j = 4 and jE j 2 [0; 3]

MEC Recovery

BIC ^BIC FCI FCImax GFCI1 GFCI2

� -level - - 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001

n = 500 0.81 0.809 0:694 0:564 0.793 0:732 0:78 0:777 0:704 0:704

n = 5,000 0.977 0.977 0.975 0.983 0:968 0.985 0.973 0.978 0:947 0:947

n = 50,000 0.993 0.993 0:977 0.997 0:977 0.996 0.993 0.994 0.996 0.997

Figure 6.5: An evaluation of the approximate BIC for random directed MAGs with speci�ed

edge ranges andn = f 500; 5;000; 50;000g. Statistical signi�cance at an alpha level of 0.05

is reported as either an overline if ^BIC is better or an underline if the alternative method is

better.

Figure 6.5 the approximate BIC performs nearly identically to BIC and consistently

ranks the correct MEC in the top 10 with the ranking converging to a point-mass in the
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�rst bin as n ! 1 ; the top ranked approximate BIC model performs better than the other

methods with low sample size and about the same otherwise in MEC recovery.

Random Directed MAGs with jV j = 4 and jE j 2 [4; 6]

MEC Recovery

BIC ^BIC FCI FCImax GFCI1 GFCI2

� -level - - 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001

n = 500 0.41 0.41 0:237 0:125 0:305 0:226 0:153 0:194 0:238 0:147

n = 5,000 0.801 0.803 0:693 0:624 0:707 0:662 0:582 0:637 0:666 0:574

n = 50,000 0.941 0.939 0:875 0:861 0:873 0:867 0:851 0:863 0:864 0:851

Figure 6.6: An evaluation of the approximate BIC for random directed MAGs with speci�ed

edge ranges andn = f 500; 5;000; 50;000g. Statistical signi�cance at an alpha level of 0.05

is reported as either an overline if ^BIC is better or an underline if the alternative method is

better.

Figure 6.6 the approximate BIC performs nearly identically to BIC and consistently

ranks the correct MEC in the top 10 with the ranking converging to a point-mass in the

�rst bin as n ! 1 ; the top ranked approximate BIC model performs better than the other

methods in MEC recovery.
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BIC ^BIC

sample size n = 500 n = 5,000 n = 50,000 n = 500 n = 5,000 n = 50,000

Figure 6.1 0.65 (0.18) 0.65 (0.17) 0.65 (0.18) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)

Figure 6.2 0.57 (0.04) 0.57 (0.04) 0.56 (0.04) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)

Figure 6.3 0.58 (0.05) 0.58 (0.05) 0.58 (0.05) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)

Figure 6.4 0.56 (0.04) 0.56 (0.04) 0.56 (0.04) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)

Figure 6.5 0.55 (0.03) 0.54 (0.03) 0.54 (0.03) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)

Figure 6.6 0.57 (0.04) 0.57 (0.04) 0.57 (0.03) 0.01 (0.0) 0.01 (0.0) 0.01 (0.0)

Table 6.1: Mean run time for graphs (std in parentheses) with 4 vertices in seconds with two

decimal places of precision for BIC and^BIC. Statistical signi�cance at an alpha level of 0.05

is reported as either an overline if ^BIC is better or an underline if the alternative method is

better.

Takes approximately 5% of the run time or two orders of magnitude. As a point of

reference, the time to compute the sample covariance in these experiments generally took

between 2 and 5 milliseconds.
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Directed MAG

Negative Log-likelihood

MEC Recovery

BIC ^BIC FCI FCImax GFCI1 GFCI2

repetitions 100 100 1,000 1,000 1,000 1,000 1,000

� -level - - - 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001

n = 500 0.49 0.47 0.544 0.836 0.702 0:499 0:444 0:223 0:213 0:08 0:08

n = 5,000 0.91 0.93 0.932 0.978 0.999 0.933 0.948 0:779 0:786 0:575 0:576

n = 50,000 1.0 1.0 0.985 0:975 0.998 0:975 0.998 0.99 0.991 0.977 0.977

Figure 6.7: An evaluation of the approximate log-likelihood and BIC for the speci�ed directed

MAG with n = f 500; 5;000; 50;000g. Statistical signi�cance at an alpha level of 0.05 is

reported as either an overline if ^BIC is better or an underline if the alternative method is

better.

Figure 6.7 the prespeci�ed graph is a MAG from a MEC with �ve vertices that does not
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contain a DAG. The approximate log-likelihood closely aligns with the exact log-likelihood

with clear separation of Markov versus not Markov asn ! 1 ; the approximate BIC performs

nearly identically to BIC and consistently ranks the correct MEC in the top 10 with the

ranking converging to a point-mass in the �rst bin asn ! 1 ; the top ranked approximate

BIC model performs worse than FCI, about the same as FCImax , and better than GFCI with

low sample sizes and about the same otherwise in MEC recovery. In this case, FCI does well

because it is general biased towards bi-directed edges.
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Directed MAG

Negative Log-likelihood

MEC Recovery

BIC ^BIC FCI FCImax GFCI1 GFCI2

repetitions 100 100 1,000 1,000 1,000 1,000 1,000

� -level - - - 0.01 0.001 0.01 0.001 0.01 0.001 0.01 0.001

n = 500 0.12 0.14 0.138 0:006 0:0 0:005 0:0 0:0 0:0 0:0 0:0

n = 5,000 0.53 0.54 0.538 0:052 0:028 0:048 0:028 0:041 0:029 0:032 0:02

n = 50,000 0.77 0.79 0.804 0:307 0:23 0:296 0:221 0:304 0:247 0:28 0:221

Figure 6.8: An evaluation of the approximate log-likelihood and BIC for the speci�ed directed

MAG with n = f 500; 5;000; 50;000g. Statistical signi�cance at an alpha level of 0.05 is

reported as either an overline if ^BIC is better or an underline if the alternative method is

better.
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Figure 6.8 the prespeci�ed graph contains a discriminating path of length �ve in graphs

with �ve vertices. The approximate log-likelihood closely aligns with the exact log-likelihood

with poor separation of Markov versus not Markov, but tending towards good separation as

n ! 1 ; the approximate BIC performs nearly identically to BIC and consistently ranks the

correct MEC in the top 100 with the ranking converging to a point-mass in the �rst bin as

n ! 1 ; the top ranked approximate BIC model performs better than the other methods in

MEC
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