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Bottom-up and top-down contributions to the organization and dynamics of ventral
temporal cortex

Matthew J. Boring, PhD

University of Pittsburgh, 2022

Ventral visual cortex is a hierarchical recursive network that facilitates object recognition.
Many questions regarding the balance between bottom-up and top-down constraints on the
functional organization and response dynamics of ventral temporal cortex (VTC) remain
unanswered. Here, we map spatial and temporal properties of category-selective neural
populations in VTC and investigate long-range functional connectivity patterns that are associated
with key neural dynamics in these populations. These maps demonstrate systematic changes in
neural dynamics and functional connectivity patterns at successive stages of the ventral visual
hierarchy, which are not well characterized by fast feedforward models. Regions within VTC that
were highly selective for specific object categories demonstrated a complex organization, with
multiple adjoining patches selective for words and faces, each with distinct dynamics.

To understand how bottom-up and top-down interactions influence local neural
representations, we specifically examined the responses of one key region involved in reading,
word-selective ventral occipitotemporal cortex (wVOT), sometimes referred to as the Visual Word
Form Area. We replicate the finding that activity in this region demonstrates a dynamic shift in its
representation 250 ms after viewing real words. Early activity from wVOT was sufficient to
disambiguate visually dissimilar words, whereas later activity could disambiguate words sharing
all but one letter. This transition was strongest for real words compared to pseudowords, consonant

strings, and false fonts and was associated with increased functional connectivity with anterior



VTC and early visual cortices. This suggests that bottom-up information, potentially across
multiple eye movements, and top-down information, like phonology and semantics, encourage
dynamic shifts in wVOT representations.

Finally, we review recent and seminal findings of wWOT’s development and response
properties. In doing so, we arrive at a model wherein wVOT’s localization is constrained by
preexisting white matter pathways specialized for evolutionarily older functions, including visual
to phonological transformations necessary for lip/speech reading and visual to semantic
transformations necessary for object naming. This model help explains why wVOT responds to
non-visual linguistic stimuli and why it has a consistent localization across individuals. Together,
this work provides a systematic investigation into how bottom-up and top-down influences shape

the organization and dynamics of category-selective VTC.
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1.0 Introduction

Ventral temporal cortex (VTC) is a critical hub for object recognition in humans. In
macaques, lesions to the functionally homologous inferotemporal cortex results in a marked deficit
in the ability of animals to recognize visual objects, while preserving visuospatial cognition [1].
In humans, more localized damage to VTC causes category-specific deficits in object recognition,
such as the specific inability to recognize tools, animals, faces or words [2-6]. Early observations
of category-selective deficits in object recognition lead to the hypothesis that the visual system
was organized into domain specific modules, damage to which leads to the observed category
specific deficits [2,3,7]. More recently, advances in neuroimaging have confirmed the existence of
areas in VTC that respond selectively to certain categories of objects, including words, faces,
places, and tools [8-15]. Electrical brain stimulation of these category-selective regions, including
those selective for faces [16-18] and words [19-25], has been shown to specifically disrupt
processing of the category that region is selective for, without evoking deficits in the processing
of other categories. The degree to which these results support domain specific processing in VTC
or whether this selectivity arises from more general principles remains debated [26-32], in addition
to many other open questions regarding the bottom-up and top-down factors that influence the

organization and dynamics of category-selective activity in VTC.



1.1 Bottom-up contributions to VTC dynamics and organization

Single unit studies in macaques have been instrumental in elucidating the hierarchical
organization of ventral visual cortex [33—37]. Neurons along the ventral visual stream demonstrate
hierarchical responses, with neurons in more anterior regions pooling over neurons from more
posterior regions to form increasingly complex representations over increasingly large portions of
the visual field [34,38]. These hierarchical neural responses only take approximately 10 ms to
propagate to the next processing layer [39] and these early responses are sufficient to decode what
category of object macaques are viewing [40]. This rapid propagation of activity and the
hierarchical nature of ventral visual responses has led to the influential perspective that object
recognition is achieved through fast, feedforward, hierarchical computations [34,38,40-42]. This
perspective is useful for explaining early VTC response dynamics but, as we will see in the next
section, fails to capture important top-down influences on extended VTC processing dynamics.

In addition to explaining early neural responses collected throughout inferotemporal
cortex, the feedforward view also offers potential mechanisms whereby ecological categories of
objects tend to be clustered together in mature visual cortex. Primary visual cortex is organized
according to a topographic map of retinotopic space, which is conserved through several layers of
the ventral visual hierarchy [34,43-48]. This retinotopic map biases where patches of category-
selective neurons are located, depending on where their preferred objects tend to fall on the retina
[9,43,49,50]. For example, humans tend to foveate faces and words throughout visual
development, which can help explain why face- and word-selective regions tend to be constrained
to lateral aspects of VTC, which has foveal receptive fields [9,43,46,47,49,51]. On the other hand,
navigationally relevant information, like places, are not typically foveated and are therefore

constrained to be represented in more medial aspects of VTC [9,15,49,51,52]. Other low-level
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visual features like curvature [53] and shape [54] have also been suggested to influence where
category-selective regions are localized in VTC. The weight of each of these bottom-up features
in determining category-selective VTC organization remains an open question.

In addition to being constrained by low-level visual features, some argue that category-
selective regions in VTC require visual experience to develop [31,32,44,48,55-57]. Macaques
without exposure to faces for the first year of life did not develop face-selective patches seen in
macaques with normal experiences, but they did develop patches selective for other objects that
they were exposed to, like hands [58]. Conversely, macaques that underwent extensive training to
discriminate between abstract symbols including Latin letters or Arabic numerals developed
patches selective for these stimuli, which were not seen in untrained animals [55,56]. These
symbol-selective patches developed in similar locations across animals, which was argued to
suggest that this patch of inferotemporal cortex is innately specialized to process foveal
information with the low-level shape characteristics of the learned symbols [55,56]. Together,
studies like these suggest that extensive visual experience with specific object categories is
necessary for the formation of category-selective patches in VTC, the organization of which are
constrained by the topographical projections of low-level visual features throughout the ventral
visual hierarchy [27,44,55,56]. However, bottom-up models like these fail to capture the potential
influence of top-down interactions, including connectivity between higher-order social/affective
processing centers and VTC face-selective regions or semantic/phonological centers and VTC

word-selective regions, on the organization and dynamics of VTC [29,59-65].



1.2 Top-down contributions to VTC dynamics and organization

Most feedforward models of ventral visual processing consist of homogenous hierarchical
layers, which pool inputs solely from the previous layer and output solely to the next layer
[37,38,41]. Units in these layers quickly evaluate incoming stimuli for the presence of their
preferred feature and pass that output to the next layer, without further contributing to later stages
of processing [37,38,41]. This feedforward architecture ignores the fact that the majority of
anatomical projections in the ventral visual pathway are reciprocal or feedback [34,35].
Feedforward models also fail to capture shifts in representations that occur within VTC regions
after the first 250 ms after seeing a stimulus [19,66-68], the increasing timescales over which
regions process information when moving up the ventral visual hierarchy [69-77], and the
differences exhibited in long range connectivity patterns across layers of VTC [70,78-80].

In humans and macaques, face processing regions in the ventral visual stream undergo
dynamic shifts in the information they represent after the first 150-250 ms after being exposed to
a face [66-68]. When macaques were shown images of faces, face-selective neurons demonstrated
a coarse representation at 100 ms that could disambiguate faces from shapes and whether the face
was human or macaque. 50 ms later, the same neurons coded much more fine-grained information
like facial identity and expression [67]. Similarly in humans, early face-selective responses in
ventral occipitotemporal cortex (VOT) can disambiguate between faces versus other categories,
but become more refined after 250 ms, when they can discriminate between faces with different
expressions [66]. A similar phenomenon has also been demonstrated in word-selective VOT,
where early activity (within 250 ms after seeing a word) is sufficient to discriminate between
visually dissimilar words, but is later refined (after 250 ms) to disambiguate words sharing all but

one letter [19]. The interactions that facilitate the sharpening of these representations are not well
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understood, but could include the accumulation of bottom-up information (e.g., across eye
movements) and top-down information (e.g., from centers that specialize in emotional processing
for faces [61,81], or semantic and phonological processing for words [62,82,83]).

In addition to failing to capture the extended processing dynamics of VTC, fast
feedforward models also do not capture the heterogeneity in processing dynamics demonstrated
across layers of the ventral stream [69—-77]. Studies mapping out the dynamics of hierarchical brain
networks have consistently identified systematic differences in the timescales over which regions
integrate information [69,73,77]. Specifically, resting state neural dynamics slow when moving
along the axis extending from primary sensory/motor to association cortices [69], which has been
assumed to correlate with how these regions integrate information over time [73]. For example,
higher order visual cortices demonstrate slower cortical fluctuations at rest [84] and have been
shown to integrate dynamic visual information over relatively long timescales using fMRI [76].
On the other hand, primary visual cortices have much faster resting state dynamics [84] and
integrate information over much shorter timescales [76]. Again, these differences in neural
timescales are not well captured by fast feedforward models, which posit that visual
representations are built through quick and automatic evaluation of stimuli for the presence of their
preferred visual features, without any differences in processing dynamics across layers [37,38,41].

It has also been shown that functional connectivity patterns are heterogeneous across layers
of the ventral visual hierarchy [70,78-80], which is also not captured by fast feedforward models.
In humans, functional connectivity to visual areas systematically decreases along the hierarchical
axis of VTC, whereas functional connectivity to heteromodal association cortices increases
[78,80]. These gradients in long range functional connectivity are thought to interact with local

neural dynamics, but evidence for this association from neuroimaging modalities with high



temporal resolution is lacking [85]. In silica, circuit models of the macaque brain have
demonstrated potential mechanisms linking connectivity gradients and resting-state neural
dynamics [70]. However, in traditional fast-feedforward models, the connections of each layer are
relatively homogeneous, they link the previous layer with the next without recursion from higher
layers [37,38,41].

Long-range bidirectional connectivity between VTC and higher-level cognitive centers
likely also plays an important role in constraining the organization of category-selective regions
[29,59-65]. Although bottom-up models capture the importance of low-level features in
constraining where category-selective regions are located [44,48,55-57], they fail to explain how
congenitally blind individuals demonstrate category-selective VTC responses to auditory stimuli
like laughing, car sounds, and clapping in similar locations as face-, object-, and body-selective
regions in sighted individuals [86,87]. Similarly, braille reading in blind individuals evokes
responses from regions of VOT that selectively respond to printed words in sighted literate
individuals [88,89]. On the other hand, a model whereby cortical organization is jointly
constrained by bottom-up factors as well as connectivity to higher-order processing circuits is
better-able to explain these results through top-down interactive processes [61-63,90-93].

Specifically, long-range bidirectional anatomical pathways underlying transformations
between visual to semantic, phonological, navigational, social, and other representations may help
constrain where category-selective patches end up in VTC, in addition to the low-level visual
properties of stimuli [61-63]. For example, preexisting white matter pathways connecting VTC to
frontal, lateral temporal, and parietal language regions may bias the localization of word-selective
VOT [29,60,64,65]. This is supported by diffusion weighted imaging in preliterate children, which

can predict where word-selective VOT will develop after children learned to read [65]. Anatomical



connectivity to language centers in lateral prefrontal cortex, lateral temporal cortex, and parietal
cortex was greater for the region of VOT that would become word-selective after children learned
to read compared to adjacent face-selective cortex [65]. In summary, a balance between bottom-
up properties of visual stimuli and top-down influences from other cognitive systems likely

constrains VTC organization and dynamics.

1.3 Overview of the contributions and structure of this dissertation

In this dissertation we will investigate how long-range cortical interactions influence the
dynamics and organization of VTC at several levels, with a particular emphasis on word-selective
circuits. In Chapter 2, we map local prestimulus dynamics, information processing dynamics, and
long-range functional connectivity patterns that systematically change across layers of the ventral
visual hierarchy. This allows us to investigate the relationships between prestimulus and
information processing dynamics, and whether either of these are associated with differences in
patterns of functional connectivity. Additionally, we tested whether any of these functional
gradients were associated with a region’s ability to predict patient response time to determine if
these factors help constrain a region’s role in cognitive behavior.

In Chapter 3, we focus our attention on the organization and dynamics of VTC networks
responsible for face and word processing. Face and word processing offer an especially interesting
comparison for investigating how ventral visual cortex is organized. Faces and words are very
different along several low-level visual features like contrast, spatial frequency, curvilinearity, as
well as several high-level properties like when expertise develops for these stimuli during

childhood, their evolutionary age, and their roles in social and linguistic cognition. Despite these



differences, they share a remarkably close cortical localization in VTC that is highly consistent
across individuals [94]. Their localization is so close that the degree to which they are represented
by the same cortical areas is debated [60]. Here, we investigate the degree to which face and word
processing networks in VTC are separable within individuals, how these networks are organized
relative to one another, and how their functional dynamics compare.

In Chapter 4, we zoom in on the information processing dynamics of an important word-
selective region in VOT, sometimes referred to as the Visual Word Form Area (VWFA). Previous
studies from our group examining intracranial recordings from epilepsy patients identified a
dynamic shift in the representations in this region from an early coarse-level, which was sufficient
to disambiguate visually dissimilar words from one another, to a later (after 250 ms) fine-grained
representation, which was sufficient to disambiguate words sharing all but one letter [19]. Here,
we investigate whether this dynamic shift in representation is also exhibited in healthy individuals,
whether it generalizes to other word-like stimuli that vary in their semantic and/or phonological
associations (including false fonts, pseudowords, and consonant strings), and examine the
functional interactions that occurred while this region sharpens its representation.

Finally in Chapter 5, we review recent and seminal findings regarding the anatomy of
word-selective VOT and its role in reading. In reviewing these data, we present a model of how
reading networks develop by adapting visual to phonological pathways involved in lip/speech
reading and visual to semantic pathways involved in object naming to accomplish similar
transformations for printed words. The long-range white matter projections facilitating these
transformations, including the arcuate, inferior longitudinal, and frontooccipital fasciculi, in turn
constrain where printed words are represented in VTC, in addition to the low-level visual

properties of words. This model helps explain why, in addition to demonstrating selectivity for



printed words, word-selective VOT also responds to non-visual stimuli, like braille in the
congenitally blind [88,89], through top-down interactions with other language regions. This model
also explains how visual word recognition circuits develop in similar localizations across
individuals despite literacy being in its evolutionary infancy, due to the consistency of these long-
range white matter projections in neonates [64]. Ultimately, this model demonstrates joint
contributions of bottom-up and top-down influences on the organization and dynamics of

category-selective regions in VTC.



2.0 Interacting cortical gradients of neural timescales and functional connectivity and their

relationship to perceptual behavior

We begin our investigation into the spatial and temporal organization of object processing
in ventral visual cortex by mapping several aspects of local neural dynamics and long-range
functional connectivity along the hierarchical axis of VTC. Several studies have identified
increasing timescales of neural dynamics, decreasing connectivity to unimodal sensory regions,
and increasing connectivity to heteromodal regions across sensory and motor hierarchies
[69,74,80]. However, it is unclear how these properties interact with one another or how they
influence perceptual behavior. In this chapter, we demonstrate several functional gradients in
prestimulus dynamics, information processing, and functional connectivity extending along the
hierarchical axis of VTC. Gradients in local prestimulus dynamics were associated with changes
in functional connectivity beyond shared correlations with anatomical position. Prestimulus
dynamics and connectivity to visually responsive regions were also associated with how well a
region’s activity predicts patient response time during a 1-back task. That suggests that these
properties arise from shared neurophysiological mechanisms, which may constrain a region’s role
in perceptual behavior. This functional map of category-selective VTC provides characteristics for
future hierarchical models of the ventral stream to consider, including increasing recursive
connectivity and extended processing dynamics in higher layers. At the time of writing this
dissertation, this chapter has not been peer-reviewed but was coauthored by Mark R. Richardson

and Avniel Singh Ghuman.

10



2.1 Introduction

A neural population’s functional properties, including its dynamics and its functional
connectivity to other brain regions, are ultimately linked to that population’s role in cognition and
perception. Several gradients in functional properties have been shown to exist along the cortical
axis spanning from primary sensory/motor areas to association cortices [79,80,95,96]. For
example, gradients in the timescales over which neural populations endogenously fluctuate and
process information are demonstrated along this axis, with longer timescales further along cortical
hierarchies [69,73-75,97,98]. Gradients of functional connectivity are also seen along this axis,
with decreasing unimodal connectivity and increasing transmodal connectivity along cortical
hierarchies [78,80]. These network-level neural properties likely influence local timescales, other
computational characteristics of neural populations, and these populations’ relationship to
behavior [79,80,85,96]. However, empirical evidence linking functional gradients in local
dynamics with gradients in the long-range connectivity of neural populations is limited.
Additionally, it is unknown to what degree these gradients relate to a neural population’s role in
behavior.

One prevalent functional gradient in cortex is the increasing timescales over which neural
populations integrate information when moving from primary sensory/motor to association
cortices [69,72,74,76,97,99]. For example, rapidly varying acoustic inputs represented in low-level
auditory cortex are combined into more complex representations in higher order auditory cortex,
which operates over longer timescales [98]. These neural timescales, or temporal receptive
windows, are related to the rate of decay of representations, or autocorrelation, within neural
populations [69,74,76,97], because longer decay rates allow for more pieces of information to be

integrated into a single representation.
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Another key aspect of neural dynamics, which is less well understood, is information
processing dynamics, including the initial rate at which neural populations discriminate between
stimuli (i.e., the rise time of discriminant information in neural activity). These information
processing dynamics relate to the speed of cortical computation and thus, ultimately limit the speed
of decision and action processes [40]. Despite the importance of a neural population’s information
processing dynamics in cognition and perception, the functional characteristics that are associated
with neural populations that processes information more quickly or slowly remain unclear
[69,97,99].

In addition to anatomical gradients in neural dynamics, opposing anatomical gradients in
connectivity to association versus primary sensory/motor cortices have also been demonstrated in
human cortex. Unimodal connectivity, primarily within sensorimotor regions, decreases when
moving up cortical processing hierarchies while transmodal connectivity linking multiple sensory
domains increases [80,95]. However, it is unclear how gradients in local dynamics interact with
gradients in long-range functional connectivity. In silica, circuit models of cortical processing
suggest that inter- and intra-areal connectivity patterns help constrain a neural population’s
timescale [70,79], which has received some support from low temporal resolution measures of
brain activity [85].

Finally, the functional properties that constrain a neural population’s dynamics and long-
range cortical connectivity ultimately constrain how that population contributes to cognition and
perception. However, it is unknown whether the degree to which a neural population’s activity
predicts behavior displays anatomical gradients and/or correlates with that population’s

neurodynamics and functional connectivity.
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In the current study, category-selective neural populations in ventral temporal cortex
(VTC) were used as a model to examine the relationship between anatomical gradients in local
cortical processing and long-range cortical interactions. We also explored how information
processing dynamics, endogenous timescales (i.e., neural dynamics not directly linked to the
exogenous, stimulus-evoked response; which we estimate using the prestimulus period when no
stimulus was being presented), and long-range cortical connectivity interact with each other
beyond any shared anatomical gradients, and which of these gradients were associated with the
ability of a population’s activity to predict response time during single trials of a visual 1-back

task.

2.2 Methods

2.2.1 Intracranial electroencephalography (iEEG) patients

Stereotactic depth and surface electrocorticography (ECoG) electrodes were implanted in
ventral temporal cortex (VTC) of 41 patients (15 males, ages 19-65) for the localization of
pharmacologically intractable epileptiform activity. Different aspects of these recordings from 38
of these patients were previously reported in [100]. All patients gave written informed consent
under protocols approved by the University of Pittsburgh’s Institutional Review Board. Electrode
contacts that were identified as belonging to the seizure onset zone were not included in the
analysis.

Electrodes were localized via postoperative CT scans or postoperative magnetic resonance

images (MRI). Postoperative CT scans were co-registered to preoperative MRIs using Brainstorm
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[101]. Surface electrode contacts were projected to the nearest reconstructed cortical voxel of the
preoperative MRI scan to correct for brain-shift [102,103]. These electrode locations were then
registered to the Montreal Neurological Institute (MNI) common space via patient-specific linear
interpolations [104]. VTC was defined as grey matter below the inferior temporal gyrus spanning
from the posterior edge of the fusiform gyrus to the anterior temporal lobe in MNI common space.

Cortical distance between each electrode contact and the patient’s occipital pole was
computed using the patient’s native neural anatomy. The occipital pole was defined as the
intersection of the calcarine sulcus, inferior occipital gyrus, and superior occipital gyrus. The
geodesic (cortical) distance between this point and the cortical surface coordinate nearest to each

VTC electrode contact was computed using custom MATLAB scripts [105].

2.2.2 Experimental paradigm

All patients underwent a category localizer task containing images occupying
approximately 6° x 6° of visual angle at the center of a stimulus display monitor positioned 2
meters from the patient’s eyes. Each stimulus was presented for 900 ms on a black background.
Inter-stimulus intervals were 1500 ms with a random 0-400 ms jitter during which the patient saw
a white fixation cross. Patients were instructed to press a button every time an image was presented
twice in a row (1/6 of all trials). Repeat trials were excluded from further analysis. This left 70
trials per category to train and test the classifiers described in 2.2.4. Several patients underwent
more than one run of this experiment and therefore had 140 or 210 trials per category. All
experimental paradigms were presented via custom MATLAB scripts running the Psychophysics

toolbox [106].
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35 patients underwent a category localizer task consisting of pictures of bodies, faces,
hammers, houses, words, and non-objects. Six patients underwent category localizer tasks with
slightly different object categories but with identical stimulus parameters. One of these patients
viewed pictures of bodies, faces, shoes, hammers, houses, and phase-scrambled objects. One
viewed pictures of bodies, faces, consonant-strings, pseudowords, real words, houses, and phase-
scrambled objects. One patient viewed pictures of faces, bodies, consonant-strings, words,
hammers, and phase-scrambled objects. One viewed pictures of faces, bodies, words,
pseudowords, houses, and phase-scrambled objects. One viewed pictures of faces, bodies, words,
tools, animals, houses, and phase-scrambled objects. One viewed pictures of faces, bodies, words,

tools, animals, numbers, houses, and phase-scrambled objects.

2.2.3 Intracranial recordings

Local field potentials were collected from IEEG electrodes via a GrapeVine Neural
Interface (Ripple, LLC) sampling at 1 kHz. Notch filters at 60/120/180 Hz were applied online.
Stimulus presentation was synchronized to the neural recordings via parallel port triggers sent from
the stimulus displaying computer to the neural data acquisition computer. The signal was off-line
filtered from 0.2-115 Hz using two-pass fourth order butter-worth filters via the FieldTrip toolbox
[107]. In addition to analyzing these single trial potentials (stP), we also extracted and analyzed
the single trial high frequency broadband (stHFBB) activity of these electrodes, since these two
components of the local field potential have been shown to contain complimentary information
[108].

StHFBB activity was extracted via Morlet wavelet decompositions from 70-150 Hz over
200 ms Hanning windows with 10 ms spacing. The resulting power spectral densities were then

15



averaged over these frequency components and normalized to a baseline period from 500 ms to 50
ms prior to stimulus onset to yield the stHFBB activity. Data was then epoched from -500 to 1500
ms around stimulus presentation. Trials during which the stP amplitude changed more than 25
microvolts across a 1 ms sample, or during which stPs exceeded an absolute value greater than
350 microvolts, or during which either the stHFBB or stPs deviated more than 3 standard

deviations from the mean were all assumed to contain noise and were therefore excluded.

2.2.4 Multivariate temporal pattern analysis

Sliding, leave-one-out cross-validated, Gaussian Naive Bayes classifiers were applied to
100 ms time windows with 10 ms stride to determine if stHFBB or stP recorded from individual
VTC contacts contained category-discriminant information. The input to these classifiers was 100
ms (100 samples) of stP and 100 ms (10 samples) of stHFBB from a single electrode contact. The
output of the classifier was the category of object presented during the corresponding trial. This
procedure was repeated for all VTC contacts from time windows beginning at 100 ms prior to
stimulus onset to 1000 ms after stimulus onset.

The category-discriminant information content within each neural population was
estimated by computing the mutual information (Z(S’,S)) between the output of the Gaussian Naive
Bayes classifiers (predicted category labels, S’) for a given 100 ms time window of neural activity

and the actual presented stimulus (S):

P(s'.s)

I(S,: S) — P(S) ngZ(P(s’)P(S))’

where P(S’,S) is the joint probability of the classifier correctly predicting the stimulus

category S when the category was S, P(S’) is the proportion of times the classifier guessed a trial
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was of stimulus S, and P(S) is the proportion of trials which the stimulus presented was S. This
allowed us to estimate the category-discriminant information contained within 100 ms time
windows without estimating a joint probability table of neural responses that was intractable
[109,110]. It has been shown that this estimate of information, which relies on a P(S’,S) derived
by an external classifier and not the actual neural code, is an underestimate of the neural
information content [111]. Therefore, our calculated information is a lower bound for the actual
neural information content.

Information content was averaged across all stimulus categories presented to the patient so
as not to preclude electrode contacts as being selective for only one object category [28]. A
threshold for significant category-discriminant information was determined by randomly shuffling
stimulus labels for a subset of VTC electrode contacts and repeating the same classification
analysis 1,000 times for each electrode contact [112]. Electrode contacts with the same number of
runs of the category-localizer task demonstrated very similar null distributions and therefore we
applied the result of this permutation test to all VTC electrode contacts. The threshold was chosen
such that none of the random permutations for any electrode contacts in the subset reached the
threshold, which corresponds to p <.001, corrected for multiple temporal comparisons. Electrode
contacts with peak category-discriminant neural information exceeding this threshold were defined
as category-discriminant.

We performed a similar decoding analysis to determine the time-course of visual responses
in individual VTC contacts. This was done by classifying single trial baseline periods (100 ms to
0 ms prestimulus presentation) of neural activity from these neural populations against sliding 100
ms time-windows from -90 to 1000 ms post-stimulus presentation for all object categories treated

as one class. This yielded a time-course of visual responses in each sampled neural population. By
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randomly permuting the label of the baseline versus evoked data and repeating the analysis in a
subset of electrode contacts 1,000 times, we defined a threshold of visual information that no
random permutation of the data achieved, corresponding to the p < .001, chance level, corrected
for multiple temporal comparisons. We used this threshold to define visually responsive brain
regions and those that were not, which were separated to calculate their differential contributions
of functional connectivity to VTC electrode contacts with significant category-discriminant

information.

2.2.5 Estimating the dynamic properties of neural information processing

To estimate properties of the information processing dynamics of neural populations across
VTC, the information time-courses derived from the Naive-Bayes classifiers were first smoothed
with a running average filter (width 50 ms). Next, onset latency of category-discriminant
information was defined as the last time point that an electrode contact was below 10 % of the
maximum information prior to the peak information. The initial rise in category-discriminant
information was defined as the time between the onset and the point where the information time-
course first exceeded 90 % of the peak information. These cutoffs were chosen to ensure that small
deviations from chance-level information and peak information did not affect the estimated
quantities. Our main findings were robust to specific choices in threshold (Figure 29). Finally, we
estimated the duration of information maintenance as the time between when the neural population
first reached 90% of its peak information to when the neural population’s information first fell
below 50% of this maximum after peaking. Similar dynamic properties were also estimated for
visual response time-courses (Figure 3) and information processing time-courses for specific
object categories (Figure 26 & Table 4).
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2.2.6 Defining category-selective VTC electrode contacts

To determine if neural populations with sensitivity to different object categories
demonstrated differences in the gradients of their local dynamics or long-range functional
connectivity, we isolated category-discriminant VTC neural populations that responded primarily
to one object category. To do this we computed the event related potential and event related
broadband responses to each category during the 1-back task. Next, any of the previously defined
category-discriminant neural populations that contained maximum information to the same
category that evoked the maximum response across either of these averages was classified as
selective to that object category. We then characterized the information onset latency, slope, and
connectivity of these neural populations using the procedures described above. For these analyses
we used the category-specific information processing time-course derived from the Naive Bayes

classifiers prior to averaging over all categories in the main analysis.

2.2.7 Information processing simulations

Simulations were used to test if increases in information processing duration exhibited
along the ventral visual hierarchy could be explained by differences in peak information
magnitude. Specifically, information time-courses were approximated as normal probability
density functions (PDFs) parameterized by a mean, standard deviation, and magnitude (constant
scaling). Normally distributed noise with the same standard deviation as prestimulus (-400 to O
ms) information in category-selective VTC electrode contacts was then added to these curves.

1000 simulated signals were computed for each different PDF magnitude and standard deviation.
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Information processing duration was calculated using the same procedure described for the
actual signal, by calculating the time between when the signal first reached 90 % of its maximum
amplitude and the last time it was below 10 % of its maximum before that. We then calculated the
Spearman correlation between information processing duration when varying the PDF’s standard
deviation (to mimic changes in slope of the information processing time-course) and when varying
the information’s peak amplitude. Peak amplitude was varied from the minimum to maximum
peak information in category-selective VTC electrode contacts. During the simulation
investigating the effect of slope on information processing duration, signal amplitude was fixed at

the average peak information in category-selective VTC electrode contacts.

2.2.8 Characterizing endogenous neural timescales

The endogenous timescales of VTC populations were characterized by computing the
autocorrelation of prestimulus (-500 ms to stimulus onset) stPs and stHFBB activity from 1-250
ms lags during each clean trial of the 1-back task. These prestimulus autocorrelation functions
were then averaged over all trials. The average autocorrelation function for each electrode contact
was then fit with a single exponential decay function:

ACF(t) =ty + Nyet/T

The neural timescale (tau), which measures the rate at which the autocorrelation function
decays, was then correlated with several other functional properties of the neural population. This
estimation of neural autocorrelations and computation of tau is similar to the procedure described

in [74].
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2.2.9 Functional connectivity

To determine the connectedness of VTC neural populations to the rest of the brain, phase-
locking values (PLVs) were calculated between neural populations with above chance levels of
category-discriminant information and all other electrodes within the same patient (regardless of
category-discriminant information content). Electrode contacts within 1 cm of the category-
discriminant electrode were not included in the analysis to rule out effects caused purely by volume
conduction. PLVs measure instantaneous phase-coupling across different brain regions
independent of differences in amplitude, unlike coherence metrics [113]. This makes PLVs more
sensitive to detecting weakly coupled oscillators despite differences in amplitude [114]. This
coupling of oscillations is thought to indicate event-related communication between electrode
contacts.

The instantaneous phase of each electrode contact during all category-localizer trials was
computed via convolution of the filtered neural activity (from 1-115 Hz) with Morlet wavelets of
frequencies ranging from 1-60 Hz (width = 5). This convolution allowed the separation of signal
phase from envelope at each frequency [115]. Next, the PLV was computed by taking the vector
average of the phase difference between two electrode contacts at each time point. PLVs close to
1 indicate two electrode contacts have similar phase differences at this frequency and time point
across all trials. Conversely, if this number is close to 0, the phase difference between these
electrode contacts is random at this given frequency and time point.

A spectral window of interest was defined to capture the part of the PLV spectrogram that
showed increased functional connectivity across all category-discriminant VTC neural
populations. We chose to focus on the time windows from -450 to O ms before stimulus onset to

capture prestimulus functional connectivity of the neural populations. Next, we determined which
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frequency components demonstrated increased stimulus-evoked functional connectivity across
VTC. To do this we averaged the PLVs from 50 to 500 ms and performed a paired t-test against
the average PLV from -450 ms to 0 ms before stimulus presentation between the category-selective
VTC electrode contacts and the rest of the electrode contacts in the same patient. This analysis
revealed that frequency components between 1 and 22 Hz all had significantly greater phase-
locking across all category-discriminant VTC electrode contacts relative to baseline on average
from 50 to 500 ms after stimulus presentation (p < .001, corrected).

Therefore, we averaged the PLVs across electrode contacts from 2 to 22 Hz (discarding 1
Hz frequency band to increase the temporal precision of our estimated phase-locking), and -450 to
0 ms before stimulus onset to calculate the functional connectedness of these same regions. We
separately averaged the connectivity of category-discriminant VTC neural populations with
visually responsive regions (defined above) and those that were not to determine if there were
connectivity differences across these neural populations. Average functional connectivity from -
450 to 0 ms prestimulus and 50-500 ms after stimulus presentation were strongly correlated with
one another (p = .96, p <.001). Thus, results do not substantially change if either the prestimulus

or post stimulus PLV is used.

2.2.10 Predicting patient response time from category-selective VTC

To test for differences in the correlation between category-selective VTC population
activity and behavior, patient RT was predicted using the neural activity from each category-
selective contact. Specifically, a sliding window L2-regularized multiple regression (100 ms
window, 10 ms stride) was used to predict patient RT from stP and stHFBB activity using a leave-
one-trial-out cross-validation procedure. Only trials when the patient correctly reported that an
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object was repeated twice in a row were included in the analysis. The maximum Spearman
correlation between the patient’s RTs and the sliding-window RT predictions from 0-1000 ms after
stimulus presentation was considered as the neural population’s correlation with behavior. This
correlation was then correlated with that population’s dynamics, connectivity, and anatomical

location.

2.2.11 Statistics

Spearman rank-order correlations were used to calculate the correlations between
anatomical position and aspects of the neural information time-courses calculated above.
Spearman rank-order partial correlations were used to calculate the correlation between variables
while correcting for correlations shared with other variables. Benjamini-Hochberg False
Discovery Rate estimation which is valid for dependent hypothesis tests was used where noted
[116]. Paired T-tests were used to determine if there were differences in the dynamics of processing
different levels of information (visual vs. category-discriminant) in the same electrode contacts.

Rank-order mixed-effects models were used to control for random effects of cross-patient
variability while examining the main effects of connectivity and anatomical position on
information processing dynamics. We chose to fit these mixed-effects models with equal slopes
but random intercepts across patients to ensure the models converged. Because observations in
mixed-effects models are not independent, it is difficult to determine the appropriate degrees of
freedom. This makes estimation of p-values impossible without appropriate approximation.
Therefore, to derive p-values for the main effects of the mixed-effects models, we use the
Satterthwaite approximation, which has been shown to produce acceptable Type 1 error rates with
relatively few samples [117].
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Linear multiple regression models were used to compare gradients of information
processing in VTC neural populations that were selective for different object categories. We only
included the categories that most patients saw (bodies, words, faces, hammers, houses, and phase-
scrambled objects). Specifically, linear models were used to predict information onset latency,
peak, processing duration, maintenance duration, and connectedness as a function of the category-
selective neural populations’ distance from the occipital pole with an added factor indicating which
category the neural population was selective for (Figure 26). Linear mixed-effects models were
initially used for this analysis to simultaneously control for random effects across patients.
However, these models failed to converge, likely indicating an insufficient number of data points
per category and patient to estimate these random effects. Because face-selective electrode
contacts were most prevalent in our population we used this as our baseline and compared all other
categories to face-selective electrode contacts (Table 4). Analysis of covariance was also used to
determine if there was a significant difference in information processing gradients or

connectedness across hemispheres (Appendix A.1.1).

2.3 Results

Activity was recorded from 1,955 VTC electrode contacts (out of a total of 4,090
intracranial electrode contacts distributed throughout the brain) in 35 patients with
pharmacologically intractable epilepsy (Figure 23) as they viewed images of objects (face, body,
word, hammer, house, or phase scrambled image) during a 1-back task. Multivariate Naive Bayes
classifiers were used to predict the category of object participants were viewing during individual

trials of the task using sliding 100 ms windows of single trial potentials (stP) and single trial high
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frequency broadband activity (stHFBB) recorded from individual electrode contacts. At this stage
of the analysis, these signal components were combined since previous studies have suggested that
they contain complementary information [108], though in further analyses they were examined
separately. Out of the 1,955 VTC electrode contacts, activity recorded from 390 electrode contacts
(mean = 11; SD = 14 electrode contacts per patient) could reliably predict (p < .001, corrected via
permutation testing) which category participants were viewing during single trials of the task
(Figure 1). The time-course of category-discriminant information processing in these category-
discriminant neural populations was calculated by computing the mutual information (in bits)
between the classifier outputs and the true category labels. The functional properties of these
populations were computed to examine the relationship between these variables and anatomical
axes of VTC (see Methods). Specifically, we examined gradients of, and interactions between,
nine factors: two stimulus response timescales (factors 1 and 2): initial rise duration and
maintanence of category-discriminant information (see Figure 2A for illustration); category-
discriminant information onset time and peak magnitude (factors 3 and 4; see Figure 2A for
illustration); two endogenous (prestimulus) timescales (factors 5 and 6): the timescale of decay,
“tau”, for the prestimulus stP and stHFBB autocorrelation functions (see Figure 4A for
illustration); functional connectivity to visually responsive populations and to populations that
were not significantly visually responsive (factors 7 and 8); and the accuracy of a neural

population’s activity for predicting behavioral response time (RT; factor 9).
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Figure 1. Category discriminant electrode contacts. Spatial topography of electrode contacts recording from
neural populations that achieved peak category-discriminant information greater than chance at the p <.001
level corrected for multiple temporal comparisons. The proportion of left vs. right hemisphere category-
discriminant contacts was comparable to the proportion of total left vs. right hemisphere VTC implants (see

Appendix A.1).

The cortical distance from the occipital pole, which roughly corresponds to the fovea in
primary visual cortex, was used to approximate the position of neural populations along the
hierarchical axis of the ventral visual stream [34]. Distance along this axis was correlated with

several aspects of information processing in these category-discriminant neural populations
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(Figure 2; see Figure 24 for an example from a single subject). Along this axis, neural populations
demonstrated increasing onset latencies and increasing durations of their initial rises in category-
discriminant information. Additionally, neural populations maintained category-discriminant
information longer after peaking, despite reaching smaller peak magnitudes, when moving along
the visual hierarchy. See Figure 28 for simulations demonstrating the independence of peak

magnitude and rise duration metrics.

In addition to examining discriminant information, we also examined the dynamics of the
non-discriminant neural responses. Specifically, gradients in category-indiscriminant visual
responses (discriminating all categories from baseline rather than categories from one another as
in Figure 2) in the same neural populations were examined (Figure 3). Populations demonstrated
increasing onset latencies and decreasing peak magnitudes of visual responsiveness when moving
along the ventral visual hierarchy, like the gradients observed for category-discriminant
information. However, there was no comparable increase in the duration of the initial rise in visual
responsiveness along this axis and visual responsiveness was maintained for shorter durations in
populations further along the visual hierarchy, which was opposite of the gradient observed for
category-discriminant information. The contrast between visual response dynamics and category-
discriminant information processing dynamics highlight differences in the neural encoding of these

two levels of stimulus information [39,67].
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Figure 2. Category-discriminant information processing gradients along the ventral visual hierarchy. A) The
time-course of category-discriminant information processing was computed for each neural population. The
average time-course across category-discriminant VTC populations is illustrated here. From each neural
population’s information processing time-course, the information onset time (panel B), processing duration
(C), peak magnitude (D), and maintenance duration (E) were computed. Simulations confirmed that
decreases in information amplitude and information processing duration are independent using our methods
(Figure 28). B) The onset of category-discriminant information, defined as the timepoint the information
reached 10% of the maximum before peaking, was significantly correlated with the position of that neural
population along the ventral visual hierarchy. The black line indicates the least-squares regression fit.
Spearman’s p and associated p-value shown on top right (n = 390). Spearman correlation was used because it
is both more robust to outliers relative to Pearson’s and is sensitive to non-linear monotonic relationships
between variables, though this also means that the line drawn is not representative of the p. Slope of the least-
squares regression line (m) indicated a 13 ms per centimeter increase in onset latency moving along VTC.
Information onset was significantly associated with distance along the visual hierarchy even after correcting
for cross-patient differences in onset latency (T(388) = 7.20, p < .001, tied-rank mixed-effects model). C) The
duration of the initial rise in category-discriminant information, defined as the time between the onset of
information and the time it took the population to reach 90% of its peak information, was negatively
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correlated with distance along the visual hierarchy. The 90% threshold is used for the peak time because it
better captures the initial rise in cases where there is a shallow peak among an extended plateau in the
discriminant information time-course. Note: All correlations remain significant across a substantial range of
the heuristic thresholds chosen to define them (Figure 29), thus the selection of 10% and 90%o as thresholds
for onset and peak time do not drive these effects. The slope of the least-squares regression line indicated a 6
ms increase in the duration of the initial rise of information per cm of VTC. This relationship did not reach p
<.05 when correcting for random cross-patient effects (T(388) = -1.55, p = .12, tied-rank mixed-effects
model). D) Peak category-discriminant information was negatively correlated with distance along the visual
hierarchy, with a decrease of -0.0035 bits/cm. This relationship did not reach p < .05 when correcting for
random cross-patient effects (T(388) = -1.62, p = .11, tied-rank mixed-effects model). E) Information
maintenance duration, defined as the time between when the information first reached 90% and the time
when it first decayed to 50%o of the peak, was positively correlated with distance along the visual hierarchy.
The slope of the least-squares regression line indicated a 7 ms increase in the duration of maintenance of
information per cm of VTC. This relationship trended to p < .05 significance when correcting for random

cross-patient effects (T(388) = 1.87, p =.063, tied-rank mixed-effects model).
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Figure 3. Visual response dynamics along the ventral visual hierarchy. Visual response dynamics were
extracted by classifying all stimulus categories versus baseline with similar classifiers used to extract
category-discriminant information (Figure 2). A) Onset of the visual response was positively correlated with a
neural population’s distance along the visual hierarchy. This effect held when correcting for random cross-
patient effects (T(388) = 6.23, p < .001, tied-rank mixed-effects model). Onset latency of the visual response
was not significantly different than the onset of category-discriminant information (T(389) = 0.11, p = .91,
paired T-test). B) Duration of the initial increase in visual responsiveness was not significantly correlated with
distance along the visual hierarchy, unlike the significant positive correlation observed for category-
discriminant information (Figure 2C). C) Peak magnitude of visual responsiveness was negatively correlated
with distance along the visual hierarchy. This effect held when correcting for random cross-patient effects
(T(388) =-2.26, p < .001, tied-rank mixed-effects model). D) Visual response maintenance duration was also
negatively correlated with distance along the visual hierarchy, which held when correcting for random cross-
patient effects (T(388) = 5.45, p < .001, tied-rank mixed-effects model). This was opposite of the relationship
between information maintenance duration and distance along the visual hierarchy observed for category-

discriminant information (Figure 2E).
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Next, the endogenous neural timescales of VTC populations were quantified by computing
the autocorrelation of prestimulus activity at multiple temporal lags and modelling the resulting
autocorrelation function with an exponential decay function (Figure 4). When moving along the
visual hierarchy, neural populations demonstrated increasing time-constants of decay (tau) in the
autocorrelation function of their prestimulus stP, indicating that their activity exhibited longer
timescales/slower dynamics along this axis. This is consistent with previous studies observing
slower timescales when moving up sensory processing hierarchies [74,76,77,80,96,99].
Conversely, neural populations demonstrated shorter timescales in their prestimulus stHFBB
activity when moving along the ventral visual hierarchy. Time-constants across stP and stHFBB
signal components were not significantly correlated with one another across electrode contacts
(p(390) = -0.05, p =.33), highlighting the differentiability of these two aspects of the neural signal
[100,119,120]. These results show that these components of the endogenous neural activity

demonstrate distinct timescales that have opposite gradients along the ventral visual hierarchy.
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Figure 4. Prestimulus neural timescales along the ventral visual hierarchy. A) For each neural population,
the autocorrelation function during the -500 to 0 ms prestimulus period was computed for temporal lags
ranging from 1 to 250 ms, averaged across trials (black line is the average across populations), and fit with a
single exponential decay function (gray line). The timescale (tau) indicates how fast the fitted exponential
function decays (red dashed line; computed like those in [74]) and was correlated with other functional
properties of the category-discriminant neural populations’ activity. B) The autocorrelation function of single
trial potentials (stP) decayed more slowly when moving up the visual hierarchy, indicating that stP in more
anterior VTC had higher autocorrelations at greater lags (longer timescales) relative to more posterior neural
populations. This relationship held when correcting for random cross-patient effects (T(388) = 8.03, p <.001,
tied-rank mixed-effects model). C) The autocorrelation function of single trial high frequency broadband
(stHFBB) decayed more quickly when moving up the visual hierarchy, indicating that stHFBB in more
anterior VTC had lower autocorrelations at greater lags (shorter timescales) relative to more posterior neural
populations. This relationship also held when correcting for random cross-patient effects (T(388) = -5.32, p <

.001, tied-rank mixed-effects model).

Gradients in both information processing dynamics and neural timescales were present in
individual patients (Figure 24) and several generalized across patients (linear mixed-effects models
Figure 2 & Figure 3 captions). The gradient of information processing onset was stronger in the
left compared to the right hemisphere (Appendix A.1.1). Notably, neural populations selective for

individual categories demonstrated different gradients in neural dynamics relative to those
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selective for other categories along the ventral visual hierarchy, with face-selective populations
generally displaying shallower posterior-anterior gradients Appendix A.1.2, Figure 25, Table 4).
Given the differences in prestimulus neural timescales exhibited in stP and stHFBB, we
recomputed gradients in information processing dynamics from these signal components
separately. With a few notable exceptions, stimulus related information processing dynamics
demonstrated similar gradients for stP and stHFBB across these components when moving along

the visual hierarchy (Appendix A.1.3 and Figure 26).

After examining gradients in information processing and endogenous timescales, we
examined gradients in functional connectivity along the ventral visual hierarchy. Specifically, a
measure of functional connectedness to the rest of the brain, the average prestimulus phase-locking
value (PLV), was calculated between the 390 category-discriminant VTC electrode contacts and
all other electrode contacts implanted within the same patient (on average 115 electrode contacts,
SD = 41; note that none of the results reported below change substantially whether functional
connectivity was calculated during the prestimulus or the poststimulus period as the Spearman
correlation between the prestimulus and poststimulus connectivity metrics was > 0.95). These
“other” electrode contacts were located across the entire brain, not only in VTC (Figure 23).
Previous fMRI studies suggest opposite gradients in functional connectivity to unimodal sensory
vs. association and transmodal areas when moving along sensory processing streams [80,95].
Therefore, we separately computed the functional connectivity of VTC category-selective contacts
to visually responsive contacts (p<0.001, for visual response vs. baseline, corrected for multiple
temporal comparisons) and to those that were not visually responsive. Also, given the wide

variability of electrode coverage across patients, pooling connectivity across visually responsive
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and not visually responsive contacts allowed us to partially overcome this cross-patient anatomical
heterogeneity.

Connectivity between VTC electrode contacts and visually responsive contacts decreased
when moving up the visual hierarchy. In contrast, the connectivity between VTC contacts and
contacts that were not significantly visually responsive increased when moving up the visual
hierarchy (Figure 5). Decreasing functional connectivity to visually responsive regions and
increasing functional connectivity to regions that do not demonstrate strong visual responses is
generally consistent with previous fMRI studies showing opposing anatomical gradients along
VTC for functional connectivity to unimodal versus transmodal regions [80].

Additionally, gradients in local neural dynamics and long-range cortical interactions were
examined to determine how they correlate to a neural population’s role in visual perceptual
behavior. This was done by predicting the RT of patients, using sliding windows of neural activity
recorded at each category-selective VTC electrode contact, during trials of the 1-back task where
patients correctly responded that an object was presented twice in a row. How predictive the
activity in an electrode contact was of RT was used as a measure of how much the activity from
that neural population contributed to perceptual behavior. When considering stP and stHFBB
together, the ability of a VTC neural population’s activity to predict RT was not significantly
correlated with distance along the visual hierarchy (p(390) = .02, p = .75). However, when
considering them separately, a neural population’s ability to predict RT decreased along the visual
hierarchy when looking at stHFBB but increased when looking at stP. These differences highlight
nuances in large-scale neuroanatomical gradients when considering different aspects of the neural

signal [100,119,120].
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Figure 5. Gradients in long-range functional connectivity along the ventral visual hierarchy. The change in
connectivity to visually responsive regions moving along VTC was opposite of the change in connectivity to
populations that were not visually responsive. Connectivity to significantly visually responsive regions
decreased along this axis, even when accounting for random cross-patient effects (T(388) = -4.42, p <.001,
tied-rank mixed-effects model). On the other hand, connectivity to regions that were not significantly visually
responsive increased along this axis, even when accounting for random cross-patient effects (T(388) = 3.98, p

<.001, tied-rank mixed-effects model).

Given corresponding anatomical gradients in local dynamics and long-range cortical
interactions, a key question is, to what degree these gradients are interrelated beyond shared
anatomical axes. To explore this question, the partial correlations between these functional
properties of category-selective VTC populations were calculated after removing the effects of

distance along the visual hierarchy (Figure 6). Note that Spearman’s partial correlation was used
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to remove any monotonic relationship to distance along the visual hierarchy, not only linear
relationships (see Figure 27 for the non-partialed correlations).

The negative partial correlation between a neural population’s stP timescale and its
functional connectivity to visually responsive populations throughout the brain was significant.
This suggest that parts of VTC that communicate strongly with other visually responsive regions
have shorter timescales. Furthermore, the negative partial correlations were significant between
the magnitude of a neural population’s peak category-discriminant information and both its
connectivity to visually responsive regions and those that were not. This shows that neural
populations with stronger connectivity, especially to non-visual areas have less category-
discriminant activity.

None of the measures of endogenous or stimulus-response timescale (prestimulus stP and
stHFBB tau, initial rise duration, and maintenance) were significantly correlated with one another,
with or without removing the effects of distance along the visual hierarchy (Figure 6 and Figure
27). Thus, though there are gradients in neural timescales across VTC using each of these
measures, neither these timescales nor their gradients are significantly correlated to one another
even though they were measured from the same neural populations. This indicates that neural
timescales are context dependent (prestimulus vs stimulus response, initial rise duration vs.
maintenance, stP vs. stHFBB, etc. are all not significantly correlated) and measuring one type of

timescale cannot be used to infer the general timescale of a neural population.
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Figure 6. Interactions between local dynamics, long-range cortical interactions, and behavioral correlations.
Partial correlation matrix between local dynamic properties and long-range cortical interactions after
removing the effect of cortical distance along the visual hierarchy (see Figure 27 for non-partialed
correlations). Colored squares are significant at the p < .05 level (uncorrected). The false-discovery rate
adjusted critical value corresponds to p = £ .146. Within each square is the partial Spearman correlation
coefficient for the variables in the corresponding row and column. The matrix is symmetric across the
diagonal. Several properties of the local information processing dynamics, including information onset, peak
magnitude, duration of the initial rise, and the amount of time the information was maintained, were related
to one another besides sharing a common anatomical gradient. The partial correlation between peak
information and functional connectivity was also significant after removing the effect of distance along the
visual hierarchy. The partial correlation between neural timescale (stP tau) and connectivity to visually
responsive regions (PLVy) was also significant as was the partial correlation between both connectivity to
visual regions and stP timescale and a neural populations ability to predict patient response time (RT) during
the 1-back task.
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Partial correlations between nearly all the stimulus response variables (peak information,
onset time, initial rise duration, and maintenance duration), other than the two timescales discussed
in the previous paragraph (initial rise duration vs. maintenance duration), were significantly
correlated with one another. This suggests that there are interactive factors driving these different
aspects of the stimulus response.

The partial correlation between the ability of a neural population to predict RT and that
neural population’s connectivity to visually responsive brain regions and the partial correlation
between a neural population’s ability to predict RT and that neural population’s prestimulus stP
timescale after removing the effect of distance along the visual hierarchy were both significant
(Figure 6). Thus, neural populations which integrate information over visual brain regions with
short stP timescales were more predictive of behavior during the 1-back task observed here. This
demonstrates that aspects of both local neural dynamics and long-range cortical interactions are

intimately linked to a neural population’s role in visual perceptual behavior.

2.4 Discussion

Taken together, these results illustrate interrelationships between a neural population’s
anatomical location, its local dynamics, and its long-range functional connectivity, which
ultimately influence that population’s role in perception. In the current study, progressing along
the ventral visual hierarchy was associated with decreases in peak category-discriminant
information, longer information onsets, longer durations of initial information processing, longer
periods of information maintenance, longer prestimulus stP timescales but shorter prestimulus

stHFBB timescales, and opposing changes in connectivity to visual and non-visual brain regions.
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These results suggest that the anatomical and physiological gradients that exist along the visual
hierarchy influence almost all aspects of prestimulus and information processing dynamics, which
may constrain how these neural populations process information and their computational role in
cognition. Indeed, a subset of these functional gradients were correlated with the ability of a neural
population’s activity to predict the speed of behavioral responses during a visual 1-back task.
Furthermore, many aspects of stimulus response dynamics shared significant interrelationships
with one another beyond any shared relationship with anatomical location. Functional connectivity
was correlated to aspects of both the stimulus response and prestimulus timescales, demonstrating
how long-distance interactions can influence local neurodynamics. However, prestimulus and
poststimulus information processing timescales were not strongly correlated to one another, nor
were the initial rise and maintenance of the visual response, suggesting that different aspects of
neural dynamics arise through different processes and mechanisms.

Previous studies have observed that neural populations demonstrate longer timescales
when moving from primary sensory and motor regions to association cortices [69,74,76,97,99].
The increasing endogenous timescales of stP activity along the ventral visual hierarchy observed
here further support this organizing principle of cortex. Notably though, the endogenous stHFBB
timescales demonstrated the opposite relationship along VTC, with shorter timescales in more
anterior parts of VTC. Furthermore, the timescale of the stP and stHFBB were uncorrelated,
demonstrating a dissociation between the dynamics of these two signal components recorded from
the same neural population. This highlights a need to better understand the differences in the
physiological origins of stP and stHFBB signal components [100,119,120].

The duration that category-discriminant neural populations initially process category-

selective information increased along the ventral visual hierarchy, which may be the result of
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increased computational demands involved in forming more complex and individuated
representations in more anterior category-selective neural populations [121-124]. However, in
traditional models of perception, neural units are passive visual feature detectors, that either fire
or not depending on the presence or absence of their preferred features [125]. In these models,
little difference should be seen in the speed that neural populations process information further
downstream because these passive feature detectors, even if they are sensitive to complex features,
should respond rapidly and automatically to the presence of that feature [125]. In this study, the
duration of the initial rise in visual responsiveness did not change along the hierarchy, which fits
with these traditional models. However, the divergence in the duration of category-discriminant
versus visual response dynamics does not fit with these models. Instead, these results support a
model of ventral visual representations that evolve through time, with information processing
dynamics governed by interactions between the information being processed locally and globally
through long-range connections, which reflect top-down and recurrent interactions [19,66-68].
Long-range functional connectivity demonstrated a crossover effect along the ventral
visual hierarchy, with decreasing connectivity to visually responsive regions and increasing
connectivity to those that were not, consistent with previous fMRI studies [80,95]. Some of these
gradients in functional connectivity were also associated with gradients in neural timescales even
after controlling for effects of distance along the visual hierarchy. Specifically, neural populations
that were more strongly connected to visually responsive regions demonstrated shorter endogenous
stP timescales. One potential explanation for this result is that neural populations which integrate
primarily visual inputs have faster timescales compared to neural populations that have more
diverse inputs so that they are prepared to rapidly process incoming visual information [34,69,80].

Notably, the partial correlation between connectivity to regions that did not demonstrate strong
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visual responses and poststimulus stP timescale was not significant. Previous models have not
investigated differential effects of long-range cortical interactions with visual versus non-visual
regions on the timescale of neural populations [70]. This may be an important consideration for
future models. Given the variable coverage of brain regions across patients in the current study,
future studies are necessary to tease apart the impact that connectivity with specific brain regions
has on local cortical dynamics.

Neural populations that demonstrated higher peak category-discriminant neural activity
had earlier onsets, shorter durations of initial rise, and maintained that information longer. Our
simulations demonstrated that our measures of peak and duration are independent, confirming that
this correlation is physiological and not an artifact of the analysis (Figure 28). Longer initial rises
in category-discriminant information with smaller peak information may reflect evidence
accumulation over longer timescales in these neural populations [69]. Whereas partial correlations
between local neural dynamics and long-range cortical interactions demonstrates that, in addition
to sharing strong gradients along the primary axis of sensory processing systems, these properties
of neural populations are closely linked to each other. These links between local dynamics and
long-range cortical interactions are likely conferred in part by shared biochemical, microstructural,
and macrostructural connectivity gradients that exist along the ventral visual axis beginning early
in cortical development [79,80,95,126,127].

Functional gradients in VTC were also correlated with the degree to which a neural
population’s activity could predict perceptual behavior. In the current study, increased functional
connectivity to visually responsive regions and shorter prestimulus stP timescales were associated
with a greater ability for a neural population’s activity to predict RT after removing the effect of

distance along VTC. This suggests that these neural populations may play a larger role in the basic
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visual discrimination task studied here. Behaviors involving more complex perceptual
representations and/or more complex behavioral decisions may rely more heavily on neural
populations with longer timescales and on higher order cortical regions [19,66,128-131]. Future
studies are required to determine if finer level of visual discrimination involving longer response
times [132] reflect contributions from neural populations with different information processing
timescales and functional connectivity patterns compared to those involved in the 1-back task
studied here.

There were not significant correlations between stimulus response timescales and
endogenous timescales, or between onset dynamics and maintenance dynamics. Different aspects
of task-evoked timescales were not closely linked to one another, suggesting the physiological
drivers of initial information processing and maintenance may be independent. Additionally,
endogenous neurodynamic timescales did not generalize to stimulus related information
processing timescales. Notably, this is unlike functional connectivity patterns, which were highly
correlated across the stimulus response and prestimulus periods. The lack of significant correlation
highlights that endogenous neural timescales are not necessarily tightly related to task-evoked
information processing dynamics [71,75,133,134]. Thus, inferences about a region’s
computational role in cognition, including its temporal integration and segregation [73] or
temporal response windows [76,77], cannot be inferred from endogenous dynamics alone, as
stimulus response and endogenous timescales are not necessarily strongly correlated. There is no
single principle or process that governs a neural population's timescales, e.g. timescales are not a
static and inherent property of a neural population [73]. Rather, these results suggest that different
kinds of timescales are governed by different combinations of factors that can depend on cognitive

and neural context.
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The current study highlights how large-scale anatomical and functional gradients interact
to constrain local neural processing dynamics and computation. The anatomical gradients of
dynamics and connectivity demonstrated here impose important constraints for future
neurobiological models of visual perception. This architecture may help the brain achieve abstract
and conceptual representations seen in more anterior VTC neural populations [121,123,124].
While the present study examined these effects in visual processing, it is likely that similar
principles apply to other hierarchically organized sensory and cognitive systems [80,97,98].
Indeed, gradients in physiological, and thus functional, organization are likely in part conferred by
corresponding gradients in growth factors and, in turn, gene expression during and persisting after
cortical development [80,96,126,127]. Interactions among response properties and functional
connectivity patterns of neural populations suggest that shared neurophysiological mechanisms tie
large-scale and local processing dynamics together. Distinctions among and between endogenous
and stimulus response timescales suggest that these neurodynamics are caused by distinct
neurobiological mechanisms and play different roles in the brain. These results highlight the
mutual interrelationships between a neural population’s position in the processing hierarchy, its

functional connectivity, and its local dynamics, constraining its role in cognition.
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3.0 Multiple adjoining word- and face-selective regions in ventral temporal cortex exhibit

distinct dynamics

Next, we sought to map out the VTC circuits responsible for face and word processing.
Faces and words vary significantly along several axes, including their low-level visual properties,
when expertise for these stimuli develops during childhood, and their evolutionary age [94].
However, their cortical localizations in VTC are remarkably close to one another, leading some to
believe they are processed by the same visual circuits [60]. In this investigation, we isolated several
neural populations highly selective for either words or faces that were not selective to the other
category, demonstrating that the processing circuits for these objects are, at least, partially
separable. Further, the maps drawn here illustrate a mosaic of word-selective regions across VTC
which demonstrate distinct temporal dynamics, suggesting that they play different roles in word-
processing. This highlights the importance of an extended basal temporal language system in
reading. This chapter was published as MJ Boring, EH Silson, MJ Ward, RM Richardson, JA
Fiez, Cl Baker, AS Ghuman. Multiple adjoining word- and face-selective regions in ventral

temporal cortex exhibit distinct dynamics. J. Neurosci. 41, 6314-6327 (2021).

3.1 Introduction

Investigations into the spatial organization of category-selectivity in ventral temporal
cortex (VTC) have been instrumental in establishing several organizational principles of the visual

system. Functional magnetic resonance imaging (fMRI) studies have helped identify lateral-
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medial biases in ventral stream responses to objects depending on where they typically appear in
the visual field (retinotopic eccentricity) [9,49,135]. Specifically, lateral regions of VTC are
selective for objects that tend to be viewed centrally (foveated), like words and faces, whereas
more medial regions are selective for objects that tend to fall on the periphery of the retina, like
navigationally relevant information such as buildings [49,136-138]. This broad principle of
organization by eccentricity fails to inform us about how representations of different stimuli that
are foveated, like words and faces, are organized in VTC relative to one another.

Despite sharing similar typical retinotopic eccentricity, word and face stimuli are highly
distinct along several axes that are also hypothesized to influence where they are processed in VTC
[94]. Word- and face-processing operate on very different low-level visual properties [139], follow
different developmental trajectories [65], and feed into distinct networks that support either
language or social interactions [140,141], respectively. Despite this, the cortical localizations for
word- and face-processing in VTC are remarkably close together, and it remains debated whether
or not there are regions in VTC that independently encode word or face information at all [28].

Neuroimaging studies have separately mapped word- and face-processing networks in
VTC. Printed word recognition is thought to be carried out in part by a network of regions along
the left occipitotemporal sulcus, that differ in the complexity of their responses and are thought to
be hierarchically organized [122,136,142-144]. Face-processing is thought to be carried out in part
by a network of regions distributed bilaterally along the midfusiform sulcus [145,146]. However,
few studies have investigated VTC’s responses to word and face stimuli within the same
participants [8,147-150]. Those that have, have relied on low sample sizes or imaging modalities
with differential sensitivity to different aspects of neural activity (like high and low-frequency

neural activity [151,152]). Therefore, much remains unknown about how visual word- and face-

45



processing networks organize relative to one another, and to what degree they overlap [8,148-
150,153].

Further, word- and face-selective regions have primarily been mapped using methods
lacking high spatiotemporal resolution. Therefore, it is unclear if the nodes within these processing
networks differ in the temporal dynamics of their responses, although previous studies have
suggested that different regions may contribute to distinct stages of word- and face-processing
[122,129,154]. Further, category-selective maps derived from BOLD responses may be
incomplete due to BOLD’s increased sensitivity to early stimulus evoked activity (100-300 ms
after stimulus presentations) relative to later responses [128,155] and greater correlation with high
frequency broadband activity in invasive neural recordings compared to lower-frequency electrical
potentials [152,155].

In the present study, we characterized the spatial organization and functional dynamics of
word- and face-processing networks within VTC using intracranial electroencephalography
(iIEEG) data collected from 36 patients with pharmacologically intractable epilepsy and 7 T fMRI

data collected from eight healthy participants.

3.2 Methods

3.2.1 Intracranial EEG data collection and preprocessing

3.2.1.1 Participants
38 patients (14 males, ages 19-65, 32 righthanded) had intracranial surface and/or depth

electrodes implanted for the treatment of pharmacologically intractable epilepsy. Depth electrodes
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were produced by Ad-Tech Medical and PMT Corporation and were 0.86 and 0.8 mm in diameter,
respectively. Grid electrodes were produced by PMT Corporation and were 4 mm in diameter.
Because depth electrode contacts are cylindrical, the surface area of the recording site was similar
across grid and strip electrode contacts. To be concise, “electrode contacts” are referenced to as
“electrodes” throughout the manuscript. No consistent differences in neural responses were
observed between grid and depth electrodes. Only electrodes implanted in ventral temporal cortex,
defined as below the inferior temporal gyrus and anterior to the posterior tip of the fusiform in the
participant-centered space, were considered in this study. Two patients did not have any electrodes
within this region of interest, therefore only data from 36 participants were analyzed for this study.
Electrodes identified as belonging to the seizure onset zone based on the clinical report or showing
epileptiform activity during the tasks were excluded from the analysis. All participants gave
written informed consent. The study was approved by the University of Pittsburgh Institutional
Review Board. Patients were monetarily compensated for their time.

Electrodes were localized via either post-operative magnetic resonance imaging (MRI) or
computed tomography scans co-registered to the pre-operative MRI using Brainstorm [101].
Surface electrodes were projected to the nearest point on the pre-operative cortical surface
automatically parcellated via Freesurfer [102] to correct for brain shift [103]. Electrode coordinates
were then co-registered via surface-based transformations to the fsaverage template using

Freesurfer cortical reconstructions.

3.2.1.2 Experimental design
All participants underwent a category localizer task where they viewed grayscale images
presented on a computer screen positioned two meters from their face. Images occupied

approximately 6 x 6 degrees of visual angle and were presented for 900 ms with 1500 ms inter-
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stimulus interval with random 400 ms jitter. Participants were instructed to press a button every
time an image was presented twice in a row (1/6 of the trials). These repeat trials were excluded
from the analysis yielding 70 trials per stimulus category left for analysis. Several participants
underwent multiple runs of this task and therefore had 140-210 trials per stimulus category.

31 of the participants saw pictures of faces, words, bodies, hammers, houses, and phase-
scrambled faces. The remaining participants viewed a modified set of stimuli with the same
viewing parameters described above. One participant viewed pictures of consonant-strings and
pseudowords instead of hammers, two viewed shoes instead of words, one viewed consonant-
strings and pseudowords instead of hammers and houses, and one viewed general tools and animals
instead of hammers.

A subset of the participants that underwent the category localizer task also participated in
word and/or face individuation tasks (Table 1). These tasks shared identical presentation
parameters as the category-localizer task (i.e., inter-stimulus interval, stimulus-on time, and
viewing angle) but contained different images. Twelve underwent a word individuation task that
included pictures of real words, pseudowords, and consonant-strings or false fonts. Participants
again were instructed to respond if a given stimulus was repeated twice in a row. Every stimulus
(i.e., individual word) was presented sixty times. Twenty underwent a face individuation task
where they viewed individuals of varying identity and emotions. Participants were instructed to

indicate if each face was male or female during this task. Each identity was repeated 60 times.
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Table 1. iEEG participant coverage.

Word

Tasks Electrodes in Face- Word- House- medial to Alternating
Number . . . word- and face-
completed VTC selective selective selective face- .
. selective
selective
1 CL L:6 0 0 0 N/A N/A
2 CL L:11 0 0 0 N/A N/A
3 CL L:34,R: 18 0 0 L:2,R:2 N/A N/A
4 CL L:20,R: 14 0 0 R:2 N/A N/A
5 CL R: 18 R: 2 0 0 N/A N/A
6 (Figure 10B) CL L:11 L:1 L:1 0 Yes N/A
7 CL, WID L:17 L:2 L:1 0 No No
8 CL R: 9 0 0 R: 2 N/A N/A
9 CL, WID R: 21 0 R:1 0 N/A N/A
10 (Figure CL, WID, . . . . .
10B) FID L: 25, R: 16 L:2,R:1 L:2 0 Yes Yes
11 CL, FID L:4,R: 23 R:5 L:1,R:1 R:5 Yes Yes
12 CL, FID R: 42 R:8 R: 4 R: 6 Yes Yes
13 CL, FID L:38 0 L:2 L:2 N/A N/A
14 CL, FID L:23,R:24 L:2,R:1 0 L:2,R:2 N/A N/A
15 CL, FID L:30 L:1 0 L:2 N/A N/A
16 CL, FID L:23,R: 11 0 L:1 R: 3 N/A N/A
17 (Figure CL, WID, . . . .
108) FID L:48 L:6 L:4 L:2 Yes Yes
18 CL, FID L:23 0 0 L:7 N/A N/A
19 CL L:4 0 L:2 L:2 N/A N/A
20 CL L:23 0 0 0 N/A N/A
21 CL R: 11 0 0 R:1 N/A N/A
22 CL, WID, R: 41 0 R: 6 0 N/A N/A
FID
23 CL L:10 L:1 L:2 0 No No
24 CL, FID L: 26, R: 25 L:3,R: 1 R: 2 R:1 Yes Yes
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Table 1 continued

25 EILD' WID, L: 21, R: 19 0 L:6,R: 1 0 N/A N/A
26 CcL L:21,R: 28 L:2 L:3 R:3 No No
27 CL, FID L:5 R: 18
0 L:1,R:5 R:3 N/A N/A
28 (Figure CL, WID, L 55
10A) FID ' L:6 L:4 0 Yes Yes
29 CL, FID L: 42
L:2 L:2 0 Yes No
30 CL, FID L: 26, R: 28
L:1,R:2 R: 1 L:2,R: 1 Yes No
31 CL, WID, L: 19, R: 36
FID L:1,R:6 0 R: 2 N/A N/A
32 CL, WID L: 10, R: 34
L:1 0 L:1,R:3 N/A N/A
33 CL, WID, L 39, R 50
FID 0 L:4 L:3,R:2 N/A N/A
34 CL, WID L 24, R: 27
R: 2 L:5 R:2 L:1,R:3 No No
35 CL, FID L: 116
L:16 L:8 L:6 Yes Yes
36 CL, WID, L:129
FID L: 33 L: 15 L:12 Yes Yes
CL: 32, . .
Total: 36 WID: 12 | L883,R:513 | L:80,R:28 | L:64,R:23 | L:a4Rr.a1 | L 70, L:5/9,
FID: 20 R: 4/5 R: 3/5

Number of word-, face-, and house-selective electrodes in the left (L) and right I hemisphere of each iIEEG
participant out of the total number of implanted VTC electrodes. All participants underwent a category
localizer task (CL) from which word, face, and house-selectivity was determined by comparing electrode
responses to six categories of objects (see 3.2.1.4 and Figure 7B). The table indicates whether any word-

selective electrodes were medial to any face-selective electrodes in participants that had at least one word-
and one face-selective electrode within the same hemisphere. The table also indicates whether there was

alternation of word- and face-selective electrodes along the medial to lateral axis within participants that had
at least two word-selective electrodes and one face-selective electrode within the same hemisphere or vice-
versa. Participants with insufficient coverage word or face-selective regions to determine their relative
anatomical location are listed as not available (N/A). A subset of participants also participated in a face

Individuation task (FID) or word individuation task (WID) from which the individuation capacity of word-

and face-selective electrodes was tested. Participants illustrated in figures are noted next to the corresponding

participant number.
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Local field potentials were recorded via a GrapeVine Neural Interface (Ripple, LLC)
sampling at 1 kHz. Notch filters at 60/120/180 Hz were applied online. Data was subsequently
filtered from 0.1-115 Hz to isolate single trial potentials (stP) or decomposed via Morlet wave
convolution to determine the power from 40-100 Hz to isolate single trial high frequency broad-
band activity (stHFBB). These stHFBB responses were then Z-scored based on the baseline period
from 500-0 ms proceeding stimulus onsets. It has been previously shown that these two aspects of
the local-field potential, stP and stHFBB, contain complementary information [108], though also
potentially arise from different neurophysiological generators [120,152,155,156]. Therefore, to
assess the overall selectivity across VTC we use both as features in the classifiers described in
3.2.1.4. We also investigated the independent contributions of these signal components to our
category-selectivity maps (Figure 12). Trials where the stHFBB or stP exceeded 5 standard
deviations from the mean were thought to contain noise and therefore excluded from further

analysis.

3.2.1.3 Determining language laterality

Records from preclinical magnetoencephalography (MEG) language mapping sessions
were used to determine the laterality of language function for 30 of the 36 iEEG participants.
Language mapping records for the remainder of the participants could not be located. The
preclinical language mapping records contained laboratory technician notes indicating whether
MEG activity during reading, listening, and word-repetition tasks was lateralized to the left or right
hemisphere. The original data from these sessions was not available to conduct more precise

analyses of language laterality for these participants.
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3.2.1.4 Multivariate temporal pattern analysis

To determine which electrodes contained information about word and face categories,
leave-one trial out cross-validated Gaussian Naive Bayes classifiers were used to predict the
category of object participants were viewing given a sliding 100 ms of neural activity from one
IEEG electrode during the category-localizer task (six-way classification). Signals from stP and
stHFBB were both fed in as features to a single classifier for the main selectivity maps. This
procedure was repeated from 100 ms prior to 900 ms after stimulus onset with 10 ms time-step to
derive a time-course of decoding at each VTC electrode. We also ran separate classifiers on only
features from stP or stHFBB to investigate the independent sources of information contained
within these signal components. We ensured the number of features fed into these two types of
classifiers was consistent by averaging 10 ms bins of stP, since stHFBB was sampled only every
10 ms, before classification.

Face-selective iIEEG electrodes were defined as those that achieved a peak sensitivity (d”)
of decoding for faces greater than the chance at the p < .05 level, Bonferroni corrected for multiple
comparisons in time and across the total number of electrodes within a participant. Sensitivity (d’)
describes the separation between a classifier’s noise and signal distributions and is defined as the
inverse normal cumulative distribution function (Z”) of the true positive rate (TPR) minus the
inverse normal cumulative distribution function of the false positive rate (FPR),

Z'(TPR) — Z'(FPR).

The Bonferroni corrected d’ sensitivity threshold was found by performing a binomial test
on a null distribution of 1 million d’ sensitivities that were obtained by randomly classifying
permutations of the trial labels. A small number of electrodes responded to all categories except

faces, which resulted in above-chance face classification, since the distribution of responses to
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faces was significantly different from the responses to other object categories. Therefore, we
imposed an additional criterion to determine selectivity: face-selective channels had to
demonstrate a maximum peak event-related potential or event-related broadband response to faces
relative to the other object categories. An identical procedure was done to define word- and house-
selective electrodes.

To determine the independence of word and face selectivity within electrodes, we repeated
the above multivariate pattern analysis for word- and face-selective electrodes after removing trials
from the category they were most selective to. Word-selective electrodes were determined to also
be selective for face stimuli if, after removing trials when words were presented, we could reliably
predict trials where faces were presented from the other object categories (d’ sensitivity
corresponding to p < .05, Bonferroni corrected for multiple temporal and electrode comparisons
within participants using the same permutation test described above). Further, we stipulated that
this d’ for faces must be greater than the d’ for all the remaining object categories. An identical
procedure was used to define face-selective electrodes that were also selective for words.

To determine if word- and face-selective electrodes contained exemplar-level information
about either faces or words, we performed pairwise classification of the face and word
individuation stimuli for the electrodes on which we had data (Table 1). Specifically, in the case
of word individuation, we used three-fold cross-validated Gaussian Naive Bayes classifiers to
predict which of two real words a participant was viewing based on sliding 100 ms of data from
the word-selective electrodes. Three-fold cross-validation was used instead of leave-one-out cross
validation (which was used for assessing category-level selectivity) to save computational time as
there were many more models (stimulus pairs) tested with the exemplar classifier. We repeated

this procedure across all pairs of real words of the same length and averaged the time-courses of

53



this pairwise decoding (56 pairs of words). We determined the p < .05 chance-level of this average
pairwise decoding by repeating this procedure 1,000 times on data with shuffled trial labels in a
subset of the word-selective electrodes [112]. These global null distributions were similar across
the randomly subsampled electrodes and therefore we chose a d’ threshold corresponding to the
highest p <.05 level obtained from this randomly chosen subset. We ran similar pairwise decoding
and threshold definition on real word versus pseudowords of the same length (36 pairs) and real
word versus false font stimuli (136 pairs) to determine if electrodes that could not individuate real
words could perform these finer discriminations compared to those tested in the category localizer
task.

Similarly, for face individuation we performed pairwise decoding of face stimuli during
sliding 100 ms time-windows of face-selective electrode activity. We then averaged these time-
courses across all 120 pairwise face classifications and calculated the p < .05 corrected level by
repeating the permutation analysis described for the word individuation task on a random subset

of face-selective electrodes.

3.2.1.5 Spatiotemporal k-means clustering

We used a spatiotemporal variant of k-means clustering to determine if spatially contiguous
word- or face-selective regions demonstrated distinct temporal dynamics. For word- and face-
selective electrodes, we separately standardized the d’ sensitivity time-courses derived from the
category-level multivariate classifiers of left and right hemisphere electrodes from 100 to 600 ms
post stimulus onset. We then concatenated this matrix with the electrodes’ MNI-coordinate, which
was multiplied by a constant (spatial weighting parameter) that modulated the weight of the spatial
versus temporal components of the signal to the clustering algorithm. We then performed k-means

clustering using Euclidean distances and 100 repeats with random initializations to determine
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clusters of nearby word- or face-selective electrodes within each hemisphere that demonstrated
correlated dynamics. Because the d’ time-courses were standardized, Euclidean distances were
equivalent to correlation distance for the temporal data and Euclidean distance for the spatial data.

To determine the optimal weighting of spatial and temporal signal components and optimal
number of clusters, we calculated the total spatial and temporal variance explained by the
clustering solutions run with several spatial weighting parameters. This was performed for k = 1
to 10 clusters per hemisphere per faces or words. The elbow method was used to determine the
optimal number of clusters per hemisphere. The optimal number of clusters was 4 for right
hemisphere face-selective electrodes, 3 for right hemisphere word-selective electrodes, 3 for left
hemisphere face-selective electrodes, and 4 for left hemisphere word-selective electrodes. We
chose the spatial weighting parameter that explained the maximum amount of variance across k =
3 to 4 clusters per hemisphere per category (spatial weight = 300). Small deviations in the
spatiotemporal weighting parameter did not strongly affect the overall organization of
spatiotemporal clusters. The dynamics of these electrode clusters were then determined by
averaging the selectivity time-courses (d” derived using Multivariate temporal pattern analysis)

across the electrodes belonging to each cluster.

3.2.1.6 Statistical analyses

Two sample T-tests were used to compare peak d’ sensitivity, peak latency, and onset
latency for right versus left word- and face-selective electrodes. Onset latency was defined as the
first time point that the d’ sensitivity reached a p <.001 threshold, which was non-parametrically
defined using the d’ sensitivities of all object-selective electrodes from 500-0 ms prior to stimulus
onset. Spearman’s rank-order correlations were used to test for relationships between peak d’

sensitivities and latency. We used linear mixed effects models to compare face and real word
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individuation in the category-selective clusters identified by the spatiotemporal k-means
algorithm. Linear mixed effects models allowed us to determine if there were differences in peak
individuation d’ or latency across these clusters while correcting for cross-subject differences. We
only compared spatiotemporal clusters with greater than 10 electrodes with individuation data. The
Satterthwaite approximation was used to estimate the degrees of freedom in these linear mixed
effects models to compute the reported p-values. The time points corresponding to the leading

edge of the classification window were used for all temporal statistical analyses.

3.2.2 fMRI data collection and preprocessing

3.2.2.1 Participants

Eight participants (six females, mean age 25 years) participated in the fMRI experiment.
All participants were right-handed, had normal or corrected to normal vision and gave written
informed consent. The National institutes of Health Institutional review Board approved the

consent and protocol (protocol 93 M-0170, clinical trials #NCT00001360). Participants were

monetarily compensated for their time.

3.2.2.2 fMRI scanning parameters

All fMRI scans were conducted on a 7 T Siemens Mangetom scanner at the Clinical
Research Center on the National Institutes of Health campus. Partial volumes of the occipital and
temporal cortices were acquired using a 32-channel head-coil (42 slices, 1.2x1.2x1.2 mm; 10%

interslice gap; TR =2 s, TE = 27 ms; matrix size = 170x170).
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3.2.2.3 Experimental paradigm

Participants fixated centrally whilst images of words, faces and houses were presented in
blocks (16 seconds per block). These images were taken from the same category localizer task
presented to IEEG patients. In each block 20 exemplar stimuli were presented (300 ms with a 500
ms ISI). Participants performed a one-back task, responding, via MRI compatible response box,

whenever the same image appeared twice in a row. Participants completed 10 runs of the localizer.

3.2.2.4 fMRI data preprocessing
All data were analyzed using the Analysis of Functional Neurolmages (AFNI) software
package [157]. Prior to statistical analysis, all images were motion corrected to the first volume of

the first run. Post motion-correction data were detrended.

3.2.2.5 Statistical analysis

To identify word-, face- and house-selective regions, we performed a general linear model
(GLM) analysis using the AFNI functions 3ddeconvolve and 3dREMLfit. The data at each time-
point were treated as the sum of all effects thought to be present at that time point and the time
series was compared against a Generalized Least Squares Regression model fit with REML
estimation of the temporal auto-correlation structure. Responses were modelled by convolving a
standard gamma function with a 16 second square wave for each condition (words, faces &
houses). Estimated motion parameters were included as additional regressors of no-interest and
fourth-order polynomials were included to account for any slow drifts in the MRI signal over time.
Significance was determined by comparing the beta estimates for each condition (normalized by

the grand mean of each voxel for each run) against baseline.
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3.2.2.6 Split-half analysis

For each participant, the ten localizer runs were divided into odd and even splits. In each
split, we performed the same GLM analysis as described above and looked for significant voxels
for the contrast of words versus faces. Despite having only half of the data, we observed significant
word selectivity that was medial of face selectivity consistently across participants. To quantify
this selectivity in an independent manner, we first defined medial word-selective regions within a
split (e.g., odd) and then sampled the data from the other half (e.g., even). ROIs were defined using
data spatially smoothed with a 2 mm Gaussian kernel to generate spatially contiguous clusters,
whereas the test data was not spatially smoothed. To avoid any bias in node selection, this process
was then reversed, and the average computed. Within each ROI we calculated the average T-value

for each condition versus baseline.

3.3 Results

From 1,396 intracranial electrode contacts implanted within or on the surface of VTC of
36 patients, we isolated those implanted in regions that were highly selective for either faces,
words, or houses. Highly face-selective electrodes were defined as those that had both (1) single-
trial responses that could significantly discriminate face presentations from presentations of five
other object categories (words, houses, bodies, hammers, and phase-scrambled objects; p < .05
level, Bonferroni corrected for multiple spatial and temporal comparisons within participant; see
Methods) and (2) responded maximally to faces compared to all other object categories on average.

This ensured that electrodes designated as highly “face-selective” were those that responded
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maximally and were significantly selective for faces compared to the five other object categories.
An identical procedure was used to define word- and house-selective electrodes.

108 electrodes demonstrated primarily face-selective responses (80 in the left, 28 in the
right), 87 demonstrated primarily word-selective responses (64 in the left, 23 in the right), and 85
demonstrated primarily house-selective responses (44 in the left, and 41 in the right) (Figure 7).
Figure 8 and Table 1 illustrate the distribution of object-selective electrodes across participants.
The greater number of left versus right object-selective electrodes was comparable to the greater
coverage of left VTC relative to right VTC in our patient population (883 electrodes implanted in
the left, 513 in the right, Figure 7A). Although some word- and face-selective electrodes
demonstrated partial selectivity for the other object category, there were several examples of
electrodes that were strongly tuned to only words or faces (Figure 9). This suggests that the neural

circuits responsible for processing words and faces are, at least, partially dissociable [4,28,158].
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Figure 7. Spatial topography of word- and face-selective iEEG electrodes. A) Heat map of electrode coverage
(both category-selective and non-selective) across 36 iEEG participants. Electrodes below the inferior
temporal sulcus and anterior to the posterior edge of the fusiform gyrus on the participant’s native space
were considered VTC. There was a greater proportion of left hemisphere coverage relative to right
hemisphere coverage. B) Electrodes that responded preferentially to words, faces, or houses and could
significantly discriminate these stimuli from all others using six-way Naive Bayes classification (p < .05,
Bonferroni corrected within participant). House-selective electrodes are primarily medial to word- and face-
selective electrodes. Multiple adjoining word- and face-selective patches are found along the medio-lateral
axis of ventral temporal cortex, bilaterally. Depth stereotactic EEG electrodes have been brought to the

ventral surface for clarity.
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face-selective electrodes word-selective electrodes

Figure 8. Distribution of face-selective and word-selective electrodes by participant. Distribution of highly
face-selective (left) and word-selective (right) electrodes by participant. Color represents individual
participants and corresponds across figure panels. Each group-level cluster of word- and face-selective

electrodes is represented by data from multiple participants.
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Figure 9. Independence of word- and face-processing networks. A) Average decoding time-course for word-
(top, n = 39) and face- (bottom, n = 75) selective electrodes that contained significant amounts of information
about the other object category. 21 out of 28 (75 %) face-selective electrodes in the right hemisphere and 54
out of 80 (66 %0) in the left hemisphere could significantly discriminate words from the other object categories
excluding faces (e.g. d’ sensitivity for words was above chance for 5-way classification of the non-face object
categories) at the p < .05 level (Bonferroni corrected for multiple comparisons in time and electrodes within
participant, see Methods). 9 out of 23 (39 %) word-selective electrodes in the right hemisphere and 30 out of
64 (47 %) in the left hemisphere could discriminate faces from the other object categories excluding words.
Error bars indicate standard error from the mean across electrodes. Colored bars under the curves indicate
times where the average selectivity is above chance (p <.001 corrected for temporal comparisons). B)
Average decoding time-course for word- (top, n = 48) and face- (bottom, n = 33) selective electrodes that did
not contain above chance information for the other object category. Although decoding accuracy was above
chance at later time points for the non-preferred category across the population of electrodes, decoding
accuracy was much smaller for the non-preferred compared to preferred category. C) Example decoding
time-courses from three highly word-selective electrodes that did not display face selectivity. D) Decoding
time-courses of three highly face-selective electrodes that did not display word selectivity. The patient from

which the middle electrode recording was obtained was not presented with pictures of hammers.
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To assess how word- and face-processing networks organize relative to one another, the
spatial topography of word-, face-, and house-selective electrodes was examined. At the group
level, selectivity to house stimuli was found primarily along the left and right parahippocampal
gyrus, with some cases where selectivity extended into the collateral sulcus and medial fusiform
gyrus. These patches were generally medial to word- and face-selective locations, consistent with
previous fTMRI and iEEG studies [136-138,143,159]. Face selectivity was found primarily along
the left and right fusiform gyrus with some face-selective regions within the lingual gyrus, and
occipitotemporal sulcus (Figure 7B). Consistent with prior findings [136], word-selective regions
were found on the lateral bank of the fusiform and into the occipitotemporal sulcus in the left
hemisphere. Word-selective regions were also found anterior to most prior reports from fMRI, in
locations that generally have poor signal due to susceptibility artifacts [160]. In contrast to most
maps of word- and face-selective regions obtained from fMRI [8,65,147-149,161,162], a mosaic
of word-selective regions were also found medial to face-selective regions, on the medial bank of
the fusiform and into the collateral sulcus. Each of these face-, word-, and house-selective regions
were found in multiple participants (Figure 8), demonstrating relatively consistent localization of
these regions at a group level.

Interdigitation of word- and face-selective regions was seen in the left hemisphere of 5 out
of 9 participants with at least two word-selective electrodes and one face-selective electrode or
vice-versa and in the right hemisphere of 3 out of 5 such participants (Table 1, see Figure 10 for
examples). Word-selective regions were found strictly medial to face-selective regions in the left
hemisphere of 7 out of 10 participants with at least one word- and one face-selective electrode and
in right hemisphere of 4 out of 5 participants (Table 1, see Figure 10 for an example). Thus, highly

word-selective regions medial to face-selective regions were not simply a consequence of
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individual variability in a group-level map but instead was detected in most participants that had
coverage of both face- and word-selective VTC.

Because word-selective patches were found medial to face-selective patches in the IEEG
data, which is generally not observed in 3 T fMRI studies [8,148,153], we sought to determine if
a similar organization existed in healthy participants using the higher resolution of 7 T fMRI.
When contrasting responses to words and faces in eight participants, face selectivity was primarily
centered on the midfusiform sulcus while word selectivity was greatest in the occipitotemporal
sulcus (Figure 11). Consistent with the IEEG results, six of the eight participants demonstrated left
word-selective regions medial to face-selective regions on the fusiform gyrus. In these medial
word-selective patches, responses to words were significantly greater than responses to both face
and house stimuli (p < .001, split-halves analysis). These medial word-selective regions were
approximately 1/3" the size of more lateral word-selective regions (mean size of lateral word-
selective regions: 398 voxels; std. error: 43 versus medial regions: 139 voxels; std. error: 29 voxels;
p <.01). Also, 7 out of 8 of the healthy participants demonstrated word-selective patches near the
anterior tip of the fusiform, despite susceptibility artifacts [160], consistent with the IEEG data
(Figure 7B). Altogether, the map of word