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Abstract 

Computational Materials Exploration for Capturing Carbon from the Atmosphere 

 

Paul Boone, PhD 

 

University of Pittsburgh, 2022 

 

 

 

 

Over 1 trillion tons of CO2 have been emitted into the atmosphere since we passed the 

concentration threshold for what is widely considered to be livable: 350 ppm CO2. While numerous 

negative emissions technologies have been proposed addressing this, in this dissertation I will be 

focusing solely on extracting CO2 from the atmosphere, or direct air capture (DAC). In contrast to 

capturing carbon from a point source, such as the exhaust stream of a fossil fuel power plant, 

research on DAC technologies has been much less explored and it is unknown what materials and 

process conditions will be optimal at the scale required. Porous materials, such as MOFs, are 

potential candidate materials for DAC, but because of the high number of porous materials and 

possible processes, it is impossible to test all combinations experimentally. To the best of my 

knowledge, there have been no significant computational screenings of materials or processes 

specific to DAC and I think that large efficiency gains can be made by comprehensively simulating 

various material classes under various proposed process conditions. The total number of material 

/ process combinations is still daunting in size so I will also be focusing on how we can screen 

materials and processes faster and more accurately. 

This work presents three methodology papers that facilitate and accelerate the evaluation 

of materials for DAC and one applied materials screening. In aggregate, this work includes (1) a 

correction to the instantaneous heat flux measurement as calculated by LAMMPS, (2) a strategy 

to automate the exploration of structure-property relationships for new physisorption applications, 

(3) a new Python package that implements a molecular find and replace operation on periodic 



 

 v 

structures, and (4) a computational screening of two MOFs, each with 30 functional group 

variations, for their ability to be part of a core-shell MOF in a defined DAC process. This work 

can be built on in the future to address more materials and processes, and, hopefully, will assist 

the greater academic community in finding better materials and processes for DAC so that it can 

be feasibly deployed at the necessary scale.  
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1.0 Introduction 

Over 1 trillion tons of CO2 have been emitted into the atmosphere1,2 since we passed the 

concentration threshold for what is widely considered to be livable, 350 ppm CO2. Maintaining a 

livable planet for future generations requires us to do two things: (1) stop emitting CO2 via rapid 

decarbonization of all industry, and (2) remove the excess CO2 via some form of negative 

emissions technology.3 1 trillion tons of CO2 is an extremely large number and the challenges of 

operating any process at this scale is daunting. If we were to do this in a reasonable amount of time 

for the climate, or 50 years, then this will require an industry that could remove 20 billion tons of 

CO2 / year. Removing this much CO2 will require building a new industry the size of the fossil 

fuel industry where almost none exists today.  

There are many proposed negative emissions technologies, including biofuel plus 

sequestration, artificial weathering, enhancing carbon uptake of agricultural land, and what I will 

be focusing on here: capturing CO2 directly from the atmosphere, or Direct Air Capture (DAC).4 

Because of the scale of the problem, likely all these technologies will be used in some manner, but 

they all have scaling difficulties. Growing biofuel crops, burning them for energy, and capturing 

and sequestering the carbon, if scaled to 20 billion tons CO2 / year, would use over 76% of all 

agricultural land in the world.5 Artificial weathering–using crushed limestone or olivine to increase 

CO2 uptake of the ocean–would require deployment to the entire coastline of the planet,a and 

 

a Estimated CO2 captured if process extended to entire Netherlands coastline of 451km: 9MtCO2/yr.6  

20,000 MtCO2 * (451km / 9MtCO2) = ~1e6 km. Coastline of the world is approximately 1.2e6 km. 
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require mining 65 billion tons of rock per yearb and moving it to the coastline in a carbon neutral 

manner.6,7 For comparison, the most coal ever mined globally in one year was 8 billion tons in 

2013.8 DAC, with current technology,9 would use over 200% of our current global electrical 

production.c 

Despite these sobering assessments, there is room for optimism due to the scale of possible 

technology improvements. While there has been some research on DAC, most of it is very early 

stage.9–16 Early work and cost estimates were based on processes and materials used for carbon 

capture from powerplants,17 which is not necessarily effective for capturing carbon from an 

unlimited dilute source.18 A novel material tailored specifically for the conditions of DAC 

combined with a complementary and possibly novel process can achieve significant increases in 

efficiency. And in the worst-case scenario, where energy requirements cannot be dramatically 

driven down, additional clean energy can be deployed to power the best possible process. 

While there are proposed technologies that would use carbon captured from DAC–such as 

conversion to biofuels, concrete, and building materials–no carbon utilization technology requires 

CO2 near the scale of 1 trillion tons so sequestering the CO2 is necessary.19 A typical system would 

have a DAC plant to capture CO2, which would be transported to a sequestration site, compressed 

and then pumped underground to an underground reservoir. For this system, the cost can be 

estimated as $10/tCO2 for sequestration,20 $8/tCO2
21,d to compress to the pressure required, and 

 

b Approximately 1.3 Mm3 required to remove 1 MtCO2.6  Density of olivine is ~2.5 t/m3.7 Olivine required to remove 

20 billion tons of CO2 is: (2.5 Mt/Mm3)*(1.3 Mm3 / 1 MtCO2)*20,000 MtCO2 = 65000 Mt olivine.  

c  Global electrical production for 2019 was ~27000 TWh. 430 kJ/mol = 2715 kWh/tCO2. 2715 kWh/tCO2 * 20B tCO2 

/ 27000 TWh = 201% 

d 400 MJ/tCO2 to reach 11 MPa * $0.0194/MJ (assumes $0.07 / kWh)= $7.76. 
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the cost of transportation depends on the distance from the DAC facility to the sequestration site 

but could be eliminated if the DAC facility is sited at the sequestration site. The main unknown 

cost is the DAC process itself and estimates for DAC have varied widely from $13-

$1000/tCO2.17,18 This is primarily the energy cost of the separation and if we look at a DAC process 

from the perspective of its energy cost, there are two reasonable bounds: (1) the energy usage of 

current DAC pilot plants is an estimated 10,000 MJ/tCO2,9 and (2) the thermodynamic minimum 

energy is 455 MJ / tCO2.18 To achieve the widely accepted goal of capturing CO2 for $50/tCO2 we 

need to be as close to the thermodynamic minimum energy as possible. To make this efficiency 

improvement, better materials and better processes are needed. 

The separation of CO2 from the atmosphere is a particularly challenging separation because 

the concentration of CO2 in the atmospheric is only 400 ppm–or 0.04%–and it needs to be 

concentrated to 95% CO2 for it to be transported as a liquid via pipeline.22 The concentration of 

water from humidity also must be reduced from about 1-2% to < 500ppm.22 Early analysis 

predicted that DAC would be infeasible economically based on the low concentration of the input 

gas and the thermodynamic cost of extracting all the CO2 from a given input stream.17 One 

advantage of DAC, however, is that the input stream can be considered to be unlimited and only 

the most thermodynamically favorable part of the stream needs to be extracted, based on an energy 

/ cost tradeoff between processing a larger air stream and capturing more CO2 in the stream.18 

Because of the large concentration change of CO2, we need a material and process that is highly 

selective for CO2. Likely, a multiple stage process will be required to reach the required 

concentrations. 

Currently, there are three companies with pilot-scale DAC plants. Carbon Engineering has 

a solvent-based plant that can capture 500tCO2 / year.10–12 ClimeWorks and Global Thermostat 
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have amine sorbent-based plants totaling approximately 6000 tCO2 / year that use waste heat and 

a partial vacuum to regenerate the sorbent.9,13–16 Scaling from the current deployed capacity of 

approximately 6500 tCO2 / year to 20 BtCO2 / year will require scaling up 3,000,000 times current 

capacity. The materials and processes used will change significantly at this scale; current systems 

use waste heat–which is great at small scales–but there is not enough waste heat on the planet to 

power a process at this scale, and the amount of available waste heat will decline since the biggest 

sources of waste heat are from fossil fuel combustion for power and transport, which will need to 

be decarbonized.23 There are also numerous alternative processes that have not reached pilot scale, 

such as capturing CO2 from seawater,24–26 or moisture swing adsorption,27 which uses the free 

energy change from the evaporation of water in a dry climate to drive the capture of CO2. While 

there are many proposed ideas and pilot plants of varying sizes, there is no consensus as to what 

materials or process will work best at the scale of 1 trillion tons CO2.  

While there is a large body of research on CO2 capture from power plant emissions 

including many computational screenings,28–32 the DAC literature is limited to a few research 

groups working on specific solutions,9–16,27,33,34 and, to the best of my knowledge, there have been 

no significant computational screenings of materials or processes. Because of how unexplored this 

research area is at present, I think that large efficiency gains can be made by computationally 

exploring materials and processes for DAC.  

My long-term goal is to find order-of-magnitude-level efficiency improvements by 

comprehensively simulating various material classes under various proposed process conditions. 

This will include simulating databases of known materials, predicted materials, and simulating 

materials modified with varying functional groups. The total number of porous materials that could 

be explored is daunting in size–for example, there are over 90,000 known MOFs, and over 500K 
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predicted MOFS,35 100K predicted zeolites,36 18,000 predicted porous polymer networks,37 over 

1,000,000 mixed matrix membranes–before considering an additionally varied number of possible 

processes. Because exploring everything is not feasible, in addition to targeted explorations of 

specific materials classes, I will also be focusing on how we can screen materials and processes 

faster and more accurately.  

This dissertation is a compilation of four papers, two of which have been peer reviewed in 

the Journal of Chemical Theory and Computation and the Journal of Chemical Physics, and the 

other two which have been submitted to Digital Discovery and Nanoscale. 

A property that is often overlooked when evaluating materials in an adsorption process is 

the thermal conductivity of the material. For gas adsorption processes, the energy released when a 

gas adsorbs into a material is released as heat which raises the temperature of the material. If the 

kinetics of the gas adsorption process are fast enough, the increased temperature of the material 

may dampen the continued adsorption of the gas, effectively rate-limiting the kinetics of the 

process. To avoid this problem, a good material needs a sufficiently high thermal conductivity to 

transfer the heat out of the material. Thermal conductivity calculations are needed when evaluating 

top-performing materials for DAC, but in our early trials, we discovered that the heat flux 

command required to calculate thermal conductivities is derived incorrectly in LAMMPS38,39, the 

open-source software we use for molecular dynamics. The first paper, titled “Heat flux for many-

body interactions: Corrections to LAMMPS” (Section 2), published in the Journal of Chemical 

Theory and Computation, describes this error in the instantaneous heat flux as calculated by 

LAMMPS, and presents an updated software implementation that is correctly derived. 

Because the research area of materials and processes for DAC has not been thoroughly 

explored, there is no consensus on what properties in a material are necessary for the material to 
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be part of an efficient DAC process. Mapping the structure-property relationships between material 

properties and the efficiency of DAC processes is a crucial first step to easily filter both materials 

and processes for more detailed evaluation, and also to find non-intuitive novel processes. The 

second paper (Section 3), “Towards Comprehensive Exploration of the Physisorption Space in 

Porous Pseudomaterials Using an Iterative Mutation Search Algorithm,” published in the Journal 

of Chemical Physics, presents a methodology for exploring the structure-property relationships of 

new physisorption applications. While the paper specifically addresses methane loading as a well-

defined application problem to demonstrate the methodology, this approach is designed to be 

applied to problems that have been largely unexplored to-date, such as DAC.  

The third paper (Section 4), “MOFUN: a Python package for molecular find and replace”, 

submitted to Digital Discovery, presents a new Python package that implements a molecular find 

and replace operation on periodic structures. This operation is immensely helpful for automating 

many tasks, such as adding functional groups to a range of structures, adding defects to structures, 

and parameterizing structures with force field parameters. These tasks are crucial when screening 

new materials for any application, and I apply them to DAC in the fourth paper (Section 5), 

“Designing optimal core-shell MOFs for direct air capture” submitted to Nanoscale. In this final 

paper, I computationally screen two MOFs, each with 30 functional group variations, for their 

ability to be part of a core-shell MOF in a defined DAC process.  

In aggregate, this work presents three methodologies that facilitate and accelerate the 

evaluation of materials for DAC and one applied materials evaluation of a promising new kind of 

hierarchical material called a core-shell MOF. This work can be built on in the future to address 

more materials and more processes, and, hopefully, will assist the greater academic community in 
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finding better materials and processes for DAC so that it can be feasibly deployed at the necessary 

scale. 
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2.0 Heat flux for many-body interactions: Corrections to LAMMPS 

Paul Boone, Hasan Babaei, and Christopher E. Wilmer 

Department of Chemical and Petroleum Engineering, University of Pittsburgh,  

3700 O’Hara Street, Pittsburgh, Pennsylvania 15261 

 

The virial stress tensor-based instantaneous heat flux, which is used by LAMMPS, is only 

valid for the small subset of simulations that contain only pairwise interactions. For systems that 

contain many-body interactions using 3- or 4-body potentials, a more complete derivation is 

required. We have created a software patch to LAMMPS that implements the correct heat flux 

calculation approach for 3- and 4-body potentials, based on the derivation by Torii et al40. Using 

two example systems, the error in the uncorrected code for many-body potential heat flux is shown 

to be significant and reaches nearly 100% of the many-body potential heat flux for the systems we 

studied; hence, the error of the total heat flux calculation is proportional to the fraction of the total 

heat flux transferred through the many-body potentials. This error may have consequences for 

calculating thermal conductivities calculated using the Green-Kubo method or any NEMD method 

that uses the instantaneous heat flux. We recommend that all researchers using LAMMPS for heat 

flux calculations where significant heat is transferred via the many-body potentials adopt the 

corrected code. 
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2.1 Introduction 

LAMMPS is a commonly-used open-source molecular dynamics package38 and can be 

used for, among other things, calculating thermal transport properties such as the thermal 

conductivity.41–44 There are four common methods in LAMMPS to measure the thermal 

conductivity. Three of these are based on non-equilibrium molecular dynamics (NEMD), briefly: 

(1) enforcing a temperature gradient by thermostatting two regions and measuring the molecular 

heat flux or keeping track of the energy added and removed from the thermostatted regions,45 (2) 

enforcing an energy flux by adding and removing a constant amount of energy to two defined 

regions and then measuring the resulting temperature gradient,46 and (3) defining two regions and 

swapping the kinetic energy of atoms between the two regions to create a very small temperature 

gradient, and then measuring the exchanged energy (i.e. the Muller-Plathe method47). The fourth 

approach is the Green-Kubo method,48,49 which uses the autocorrelation function of the 

instantaneous heat flux to calculate the thermal conductivity, under equilibrium conditions. In this 

paper, we describe an error with how LAMMPS calculates the instantaneous heat flux, which 

could affect thermal conductivity calculations that employ the instantaneous heat flux, such as 

some NEMD calculations (subset of case 1 above) as well as the Green-Kubo method. In general, 

this error will affect any calculation that employs the instantaneous heat flux, such as the 

calculation of per-potential heat fluxes.50,51 

In LAMMPS, the function that calculates the instantaneous heat flux uses a virial stress 

tensor form. To the best of our knowledge, a derivation for this form of the heat flux has not been 

published, besides the terse form that exists in the LAMMPS documentation52. In systems 

involving only two-body potentials, this form is valid, but it cannot be extended to systems with 

many-body potentials. Torii et al40 derive general expressions for many-body heat fluxes (which 
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we will review below in the background section) but do not address differences with the virial 

stress tensor formulation. Fan et al53 states that the LAMMPS virial stress heat flux applies only 

to two-body potentials, but does not go into detail about the derivation error in the stress-based 

form. Additionally, neither paper provides source code corrections to LAMMPS, although Fan et 

al does have an alternative GPU code available on request which is limited to specific potentials 

(the Stillinger-Weber and Tersoff potentials as currently publicized). 

The purpose of this paper is three-fold: (1) to show how the virial stress tensor formulation 

used by LAMMPS to calculate heat flux is derived and how it compares to a correctly derived 

many-body heat flux, (2) to publish publicly-available code for correctly calculating many-body 

heat flux to LAMMPS, and (3) to demonstrate its importance using different example systems. We 

analyze an idealized metal-organic framework (MOF) where heat is transferred predominantly via 

the bond and angle potentials, and the liquid-phase hydrocarbons propane, octane, and hexadecane 

with bond, angle, dihedral and improper potentials. The scale of the error in the heat flux ranges 

from significant to inconsequential, depending on the system and how much of the heat flux 

transfers through the many-body potentials. The magnitude of this effect on thermal conductivities 

calculated via the Green Kubo method is difficult to generalize and is likely system dependent. 

The hydrocarbon system is particularly illustrative of the range of error and how the distribution 

of the heat flux through different potentials affects the total error in the system.  

2.2 Background 

In LAMMPS, the heat flux is calculated using a virial stress tensor form defined per atom. 

This definition, when appropriately limited to only two-body potentials, is provably equivalent to 



 

 11 

the Irving and Kirkwood54 or Hardy55 heat fluxes. In this section, we will show a complete 

derivation of a general heat flux expression for a many-body potential based on the derivation in 

Torii, et al.40, before applying it to two-body potentials only in order to derive the virial stress 

tensor form of the heat flux used in LAMMPS. We can then compare the virial stress tensor as 

defined for many-body heat fluxes to our general derivation to see that the per atom virial stress 

tensor heat flux defined in LAMMPS is not a valid expression for the heat flux.  

We start with the definitions of the instantaneous heat flux 𝑱 and per-atom energy 𝐸𝑖:
56 

𝐸𝑖 =
1

2
𝑚𝑖𝒗𝑖

2 + 𝑈𝑖 (2 − 1) 

𝑱𝑉 =
𝑑

𝑑𝑡
∑ 𝒓𝑖𝐸𝑖

𝑖

(2 − 2) 

= ∑ 𝐸𝑖𝒗𝑖

𝑖

+ ∑ 𝒓𝑖

𝑑

𝑑𝑡
𝐸𝑖

𝑖

(2 − 3) 

Where 𝑉 is the volume, and 𝑚𝑖, 𝑣𝑖, 𝑈𝑖, and 𝒓𝑖 are the mass, velocity, potential energy, and position 

of the ith atom. We can separate equation (3) into a convective term 𝑱𝑐𝑛𝑣 =  ∑ 𝐸𝑖𝒗𝑖𝑖  and a potential 

term 𝑱𝑝𝑜𝑡 = ∑ 𝒓𝑖
𝑑

𝑑𝑡
𝐸𝑖𝑖  where 𝑱𝑐𝑛𝑣  represents the heat flux due to the movement of atoms in the 

system, and 𝑱𝑝𝑜𝑡  represents the heat flux due to changes in atom potentials. Note that 𝑱𝑐𝑛𝑣  is still 

dependent on the form of the atom potential 𝑈𝑖, which will in general involve a summation over 

all the potentials defined on the system; in this case: two-body, three-body, and four-body 

potentials. Here we define, ℙ, as the set all potentials ℙ = ℙ2 + ℙ3 + ⋯ + ℙ𝑚 defined on the 

system, where ℙ2 is all two-body potentials, ℙ3 is all 3-body potentials, and ℙm is all m-body 

potentials. Further, let ℙmi refer to the set of all m-body potentials which include the atom 𝑖, and 

let 𝑈𝜙 be the potential energy for the specific potential 𝜙. If we are looking at only two-, three- 

and four-body potentials, 𝑈𝑖 can now be defined as: 
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𝑈𝑖 = ∑ ∑
1

𝑚
𝑈𝜙

𝜙∈ℙ𝑚𝑖

4

𝑚=2

(2 − 4) 

Here, the total potential energy of atom 𝑖 is the sum of all potentials that include the atom 𝑖 divided 

by the number of atoms in each potential. In this way, the energy of each m-body potential is 

evenly divided up amongst the atoms that constitute it. There are other ways of distributing the 

potential energy between atoms but this does not affect the resulting aggregate heat flux.40,56 We 

are evenly distributing them in this derivation for simplicity (and because this is what LAMMPS 

does); interested readers can see a full derivation with arbitrarily distributed potential energies in 

the paper by Torii, et al.40 

We have three definitions for forces: (1): let 𝑭𝑖 be the sum of all forces on 𝑖, (2) let 𝑭𝑖𝜙 be 

the force on atom 𝑖 due to a specific potential 𝜙 ∈ ℙ, and (3) let 𝑭𝑖𝑗,𝜙 be the force on atom 𝑖 due 

to atom 𝑗 as part of a specific potential 𝜙 ∈ ℙ. 

Expanding the 𝑱𝑝𝑜𝑡  term: 

𝑱𝑝𝑜𝑡 = ∑ 𝒓𝑖

𝑑

𝑑𝑡
𝐸𝑖

𝑖

 

= ∑ 𝒓𝑖

𝑑

𝑑𝑡
(

1

2
𝑚𝑖𝒗𝑖

2 + 𝑈𝑖)

𝑖

 

= ∑ 𝒓𝑖(𝑚𝑖𝒂𝑖 ⋅ 𝒗𝑖)

𝑖

+ ∑ 𝒓𝑖

𝑑

𝑑𝑡
( ∑ ∑

1

𝑚
𝑈𝜙

𝜙∈ℙ𝑚𝑖

4

𝑚=2

)

𝑖

 

= ∑ 𝒓𝑖(𝑭𝑖 ⋅ 𝒗𝑖)

𝑖

+ ∑ 𝒓𝑖 ( ∑ ∑
1

𝑚

 𝑑𝑈𝜙

𝑑𝑡
𝜙∈ℙ𝑚𝑖

4

𝑚=2

)

𝑖

(2 − 5𝑎𝑏𝑐𝑑) 

To finish our definition of the 𝑱𝑝𝑜𝑡  term, we introduce some additional notation. First, we define 

𝒓𝑗𝑘 = 𝒓𝑗 − 𝒓𝑘. We will also use the notation 𝑗 ∈ 𝜙 to mean 𝑗 is one of the atoms that constitutes 
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the potential 𝜙,  and if we take all possible pairs of the atoms in 𝜙, denoted [𝜙]2, then {𝑗, 𝑘} ∈

[𝜙]2 will mean that {𝑗, 𝑘} is one of these pairs (e.g., for a two-, three- or four-body potential, there 

will be 1, 3, and 6 pairs, respectively). We also need to express the derivative
𝑑𝑈𝜙

𝑑𝑡
 in terms of the 

forces and velocities of its constituent atoms, where 𝑟𝑗 = |𝒓𝑗| : 

 𝑑𝑈𝜙

𝑑𝑡
=  ∑

 𝑑𝑈𝜙

𝑑𝑟𝑗

𝑑𝑟𝑗

𝑑𝑡
 

𝑗∈𝜙

= − ∑ 𝑭𝑗𝜙 ⋅ 𝒗𝑗

𝑗∈𝜙

 (2 − 6) 

Now: 

𝑱𝑝𝑜𝑡 = ∑ 𝒓𝑖(𝑭𝑖 ⋅ 𝒗𝑖)

𝑖

− ∑ 𝒓𝑖 ( ∑ ∑
1

𝑚
∑ 𝑭𝑗𝜙 ⋅ 𝒗𝑗

𝑗∈𝜙 𝜙∈ℙ𝑚𝑖

4

𝑚=2

)

𝑖

 

=  ∑ 𝒓𝑖 ∑ ∑ (𝑭𝑖𝜙 ⋅ 𝒗𝑖 −
1

𝑚
∑ 𝑭𝑗𝜙 ⋅ 𝒗𝑗

𝑗∈𝜙 

)

𝜙∈ℙ𝑚𝑖

4

𝑚=2𝑖

 

=  ∑ ∑ ∑ 𝒓𝑖

𝑖∈𝜙

(𝑭𝑖𝜙 ⋅ 𝒗𝑖 −
1

𝑚
∑ 𝑭𝑗𝜙 ⋅ 𝒗𝑗

𝑗∈𝜙 

)

𝜙∈ℙ𝑚

4

𝑚=2

 

=  ∑ ∑ (
1

𝑚
∑ ∑ 𝒓𝑖(𝑭𝑖𝜙 ⋅ 𝒗𝑖 −  𝑭𝑗𝜙 ⋅ 𝒗𝑗)

𝑗∈𝜙 𝑖∈𝜙

)

𝜙∈ℙ𝑚

4

𝑚=2

 

=  ∑ ∑ (
1

𝑚
∑ [𝒓𝑖(𝑭𝑖𝜙 ⋅ 𝒗𝑖 −  𝑭𝑗𝜙 ⋅ 𝒗𝑗) + 𝒓𝑗(𝑭𝑗𝜙 ⋅ 𝒗𝑗 −  𝑭𝑖𝜙 ⋅ 𝒗𝑖)]

{𝑖,𝑗}∈[𝜙]2

)

𝜙∈ℙ𝑚

4

𝑚=2

 

=  ∑ ∑ (
1

𝑚
∑ [𝒓𝑖𝑗(𝑭𝑖𝜙 ⋅ 𝒗𝑖 −  𝑭𝑗𝜙 ⋅ 𝒗𝑗)]

{𝑖,𝑗}∈[𝜙]2

)

𝜙∈ℙ𝑚

4

𝑚=2

                          (2 − 7𝑎𝑏𝑐𝑑𝑒𝑓) 

We are able to incorporate the 𝑭𝑖 ⋅ 𝒗𝑖 term into the outer summations because the total force on 𝑖 

is equivalent to all the forces on 𝑖 due to all m-body potentials 𝜙, i.e.  𝑭𝑖 =  ∑ ∑ 𝑭𝑖𝜙 ⋅ 𝒗𝑖𝜙∈ℙ𝑚𝑖
4
𝑚=2 . 

We are then able to invert the summations and sum across all atoms 𝑖 in a potential 𝜙 for all 
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potentials, rather than summing all potentials 𝜙 that atom 𝑖 is part of. For the inner summation, if 

we sum 𝑭𝑖𝜙 ⋅ 𝒗𝑖 𝑚 times (once for every 𝑗 in the given m-body potential 𝜙), then we would need 

to divide it by 𝑚, i.e. 𝑭𝑖𝜙 ⋅ 𝒗𝑖 =  
1

𝑚
∑ 𝑭𝑖𝜙 ⋅ 𝒗𝑖𝑗 𝑖𝑛 𝜙𝑎𝑡𝑜𝑚𝑠

. Finally, to use the relative positions 𝒓𝑖𝑗, 

we need to recognize that in equation 7d for every pair {𝑖 = 𝑖1, 𝑗 = 𝑗1}, there will be a 

corresponding pair {𝑖 = 𝑗1, 𝑗 = 𝑖1} and we can sum them twice per pair if we replace the double 

sums across 𝑖 and 𝑗 with one sum across all pairs that make up the potential. 

Our final general expression for the heat flux will therefore be: 

𝑱𝑉 =  ∑ 𝐸𝑖𝒗𝑖

𝑖

+ ∑ ∑ (
1

𝑚
∑ [𝒓𝑖𝑗(𝑭𝑖𝜙 ⋅ 𝒗𝑖 −  𝑭𝑗𝜙 ⋅ 𝒗𝑗)]

{𝑖,𝑗}∈[𝜙]2

)

𝜙∈ℙ𝑚

4

𝑚=2

(2 − 8) 

This is a per-potential version of the general heat flux, meaning we sum across the various 

potentials in the system, and then across all possible pairs of atoms included in the potential. The 

term inside the outermost parentheses is the heat flux for one specific m-body potential 𝜙. To more 

easily compare to the virial stress heat flux in LAMMPS, we will also need a version of the heat 

flux that is rearranged to be per-atom, where we sum across all atoms and then across all potentials 

that include that atom. This rearrangement is straightforward; the only thing to note is that there is 

an extra factor of 2 due to the summations above being over the pairs {𝑖, 𝑗} and the one below being 

over all atoms 𝑖 and then all 𝑗 ∈ 𝜙, yielding two pairs {𝑖 = 𝑖1, 𝑗 = 𝑗1} and {𝑖 = 𝑗1, 𝑗 = 𝑖1}: 

𝑱𝑉 =  ∑ 𝐸𝑖𝒗𝑖

𝑖

+ ∑ ∑
1

2𝑚
∑ ∑[𝒓𝑖𝑗(𝑭𝑖𝜙 ⋅ 𝒗𝑖 −  𝑭𝑗𝜙 ⋅ 𝒗𝑗)]

𝑗∈𝜙 𝜙∈ℙ𝑚𝑖

4

𝑚=2𝑖

(2 − 9) 

We can now show that this equation, when limited to two-body potentials only, is equivalent to 

the Irving and Kirkwood and Hardy derivations: 
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(𝑱𝑉)ℙ2
=  ∑ 𝐸𝑖𝒗𝑖

𝑖

+ ∑
1

4
∑ ∑[𝒓𝑖𝑗(𝑭𝑖𝜙 ⋅ 𝒗𝑖 −  𝑭𝑗𝜙 ⋅ 𝒗𝑗)]

𝑗∈𝜙 𝜙∈ℙ2𝑖𝑖

 

=  ∑ 𝐸𝑖𝒗𝑖

𝑖

+ ∑
1

4
∑ ∑ [𝒓𝑖𝑗 (𝑭𝑖𝜙 ⋅ (𝒗𝑖 + 𝒗𝑗))]

𝑗 ∈ 𝜙\{𝑖}𝜙∈ℙ2𝑖𝑖

 

=  ∑ 𝐸𝑖𝒗𝑖

𝑖

+
1

2
∑ ∑ [𝒓𝑖𝑗 (𝑭𝑖𝑗 ⋅ (𝒗𝑖 + 𝒗𝑗))]

𝑗>𝑖𝑖

(2 − 10𝑎𝑏𝑐) 

For a two-body potential, there will be only two 𝑗’s for each 𝜙; one of them will be equal to 𝑖 and 

can be omitted. Then the summations ∑ ∑  𝑗∈𝜙 𝜙∈ℙ2𝑖
 can be replaced with the simpler summations 

∑ ∑  𝑗>𝑖𝑖 as long as one also replaces the force term, 𝑭𝑖𝜙 = 𝑭𝑖𝑗,𝜙 and 𝑭𝑖𝑗 = ∑ 𝑭𝑖𝑗,𝜙𝜙 . This final 

equation 10c is recognizable as Irving and Kirkwood’s definition of the molecular interaction 

component of the heat flux for a uniform system in absence of fluid flow.54 Further, equation 10c 

is also identical to Hardy’s definition of the potential component for heat flux, also for a uniform 

system in absence of fluid flow55.  

Continuing with the assumption that there are only two-body potentials defined on the 

system, we can now derive the LAMMPS virial stress tensor heat flux, starting with showing how 

a general definition of the stress tensor relates to the per-atom version that LAMMPS uses. The 

global stress tensor 𝑺 is defined to be the ensemble average of a kinetic term summed across all 𝑁 

atoms in the system and the virial tensor,57 (or stress) 𝑾(𝒓𝑁), which is a function of the 𝑁 positions 

𝒓𝑁,  

𝑺𝑉 =  〈∑ 𝑚𝑖𝝂𝑖𝝂𝑖

𝑁

𝑖=1

+ 𝑾(𝒓𝑁)〉 (2 − 11) 
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where 𝑉 is the volume, and 𝑚𝑖 and  𝑣𝑖 are the mass and velocity of atom i.  When calculating heat 

flux, LAMMPS excludes the kinetic term, leaving just the ensemble average of the virial stress. 

We can expand the virial term using the positions 𝒓𝑖 and the total force 𝑭𝑖 on atom 𝑖: 

〈𝑾(𝒓𝑁)〉 = 〈∑ 𝒓𝑖𝑭𝑖

𝑖

〉 (2 − 12) 

We can further break this up by recognizing that 𝑭𝑖 will be a summation of the forces caused by 

all the potentials defined in the system: 

〈𝑾(𝒓𝑁)〉 = 〈∑ ∑ 𝒓𝑖𝑭𝑖𝜙

𝜙∈ℙ2𝑖𝑖

+ ∑ ∑ 𝒓𝑖𝑭𝑖𝜙

𝜙∈ℙ3𝑖𝑖

+ ∑ ∑ 𝒓𝑖𝑭𝑖𝜙

𝜙∈ℙ4𝑖𝑖

 〉 =  〈∑ ∑ ∑ 𝒓𝑖𝑭𝑖𝜙

𝜙∈ℙ𝑚𝑖

4

𝑚=2𝑖

〉

                                                                                                                                                                (2 − 13)

 

To get the per-atom form of the virial stress tensor that LAMMPS uses to calculate the heat flux, 

we separate the ensemble average of the virial stress into contributions from each atom, which 

LAMMPS calls a “per-atom stress tensor” and denoted here by 𝒔𝑖: 

〈𝑾(𝒓𝑁)〉 = 〈∑ 𝒔𝑖

𝑖

 〉 (2 − 14) 

where 

𝒔𝑖 = ∑ ∑
1

𝑚
∑ 𝒓𝑗𝑭𝑗𝜙

𝑗∈𝜙 𝜙∈ℙ𝑚𝑖

4

𝑚=2

(2 − 15) 

Equation 13 is equivalent to equations 14-15.  In the former, the virial terms 𝒓𝑖𝑭𝑖𝜙 are summed 

once per atom / potential pair. In the latter, the virial terms 𝒓𝑗𝑭𝑗𝜙 are summed up by potential so 

each term will appear m times, once for every atom 𝑗 in the potential 𝜙; the sum of the virial terms 

is then divided amongst the potential’s constituent atoms. As mentioned above, the potential could 

be divided amongst the atoms in a different manner, but LAMMPS chooses to divide the potential 

evenly. 
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LAMMPS defines the instantaneous heat flux 𝑱 as:52 

(𝑱𝑉)𝐿𝐴𝑀𝑀𝑃𝑆 = ∑ 𝐸𝑖𝒗𝑖

𝑖

− ∑ 𝒔𝑖 ⋅ 𝒗𝑖

𝑖

(2 − 16) 

The 𝑱𝑐𝑛𝑣  term ∑ 𝐸𝑖𝒗𝑖𝑖  is equivalent to our derivation (equations 8-9) so we can focus on showing 

equivalence for just the 𝑱𝑝𝑜𝑡  term. Starting with the 𝑱𝑝𝑜𝑡  term from our general expression 

(equation 9), and limiting it to two body potentials, we can tie it out to the 𝑱𝑝𝑜𝑡  of the per-atom 

virial stress heat flux used in LAMMPS: 

𝑱𝑝𝑜𝑡,ℙ2
=   ∑

1

4
∑ ∑ 𝒓𝑖𝑗 (𝑭𝑖𝜙 ⋅ (𝒗𝑖 + 𝒗𝑗))

𝑗 ∈ 𝜙\{𝑖}𝜙∈ℙ2𝑖𝑖

 

=   ∑
1

4
∑ ∑ [(𝒓𝑖𝑗𝑭𝑖𝜙) ⋅ 𝒗𝑖 + (𝒓𝑖𝑗𝑭𝑖𝜙) ⋅ 𝒗𝑗]

𝑗 ∈ 𝜙\{𝑖}𝜙∈ℙ2𝑖𝑖

 

=   ∑
1

4
∑ ∑ [(𝒓𝑖𝑗𝑭𝑖𝜙) ⋅ 𝒗𝑖 + (𝒓𝑗𝑖𝑭𝑗𝜙) ⋅ 𝒗𝑗]

𝑗 ∈ 𝜙\{𝑖}𝜙∈ℙ2𝑖𝑖

 

=   ∑
1

2
∑ ∑ (𝒓𝑖𝑗𝑭𝑖𝜙) ⋅ 𝒗𝑖

𝑗 ∈ 𝜙\{𝑖}𝜙∈ℙ2𝑖𝑖

 

=   ∑
1

2
∑ ∑ (𝒓𝑖𝑭𝑖𝜙 + 𝒓𝑗𝑭𝑗𝜙) ⋅ 𝒗𝑖

𝑗 ∈ 𝜙\{𝑖}𝜙∈ℙ2𝑖𝑖

 

=   ∑
1

2
[ ∑ ∑ 𝒓𝑗𝑭𝑗𝜙

𝑗 ∈ 𝜙𝜙∈ℙ2𝑖

] ⋅ 𝒗𝑖

𝑖

 

=   ∑[𝒔𝑖]𝜙∈ℙ2i
⋅ 𝒗𝑖

𝑖

(2 − 17𝑎𝑏𝑐𝑑𝑒𝑓𝑔) 

Hence, equation 9, limited to two-body potentials, is equivalent to the LAMMPS heat flux 

definition, also limited to two-body potentials. This shows that LAMMPS’s use of the virial stress 

tensor form of the heat flux is justified, when limited to two-body potentials.  
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LAMMPS, however, extends this virial stress beyond two-body potentials to three- and 

four-body potentials by making the leap that because virial stress can describe the heat flux for 

two-body potentials, then it can also describe the heat flux for three- and four-body potentials, i.e., 

if 𝑱𝑝𝑜𝑡,ℙ2
=   ∑ [𝒔𝑖]𝜙∈ℙ2i

⋅ 𝒗𝑖𝑖 ,  then  𝑱𝑝𝑜𝑡,ℙ =   ∑ [𝒔𝑖]𝜙∈ℙ ⋅ 𝒗𝑖𝑖 . This step is not valid. It may be 

easier to see the difference between the virial stress heat flux and the correct heat flux when 

comparing the heat flux contribution between the two forms for only one three-body potential 𝜙 =

{𝑎, 𝑏, 𝑐}  ∈ ℙ3. The correct heat flux, starting from equation (8), will be: 

𝑱𝑝𝑜𝑡,𝜙={𝑎,𝑏,𝑐} = [
1

𝑚
∑ 𝒓𝑖𝑗(𝑭𝑖𝜙 ⋅ 𝒗𝑖 −  𝑭𝑗𝜙 ⋅ 𝒗𝑗)

{𝑖,𝑗}∈[𝜙]2

]

𝜙={𝑎,𝑏,𝑐}

 

=
1

3
[𝒓𝑎𝑏(𝑭𝑎𝜙 ⋅ 𝒗𝑎 −  𝑭𝑏𝜙 ⋅ 𝒗𝑏) + 𝒓𝑏𝑐(𝑭𝑏𝜙 ⋅ 𝒗𝑏 −  𝑭𝑐𝜙 ⋅ 𝒗𝑐) + 𝒓𝑎𝑐(𝑭𝑎𝜙 ⋅ 𝒗𝑎 −  𝑭𝑐𝜙 ⋅ 𝒗𝑐)] 

=
1

3
[(𝒓𝑎𝑏 + 𝒓𝑎𝑐)(𝑭𝑎𝜙 ⋅ 𝒗𝑎) +  (𝒓𝑏𝑐 − 𝒓𝑎𝑏)(𝑭𝑏𝜙 ⋅ 𝒗𝑏) + (−𝒓𝑏𝑐 − 𝒓𝑎𝑐)(𝑭𝑐𝜙 ⋅ 𝒗𝑐)] 

=
1

3
[[(𝒓𝑎𝑏 + 𝒓𝑎𝑐)𝑭𝑎𝜙] ⋅ 𝒗𝑎 + [(𝒓𝑏𝑐 − 𝒓𝑎𝑏)𝑭𝑏𝜙] ⋅ 𝒗𝑏 + [(−𝒓𝑏𝑐 − 𝒓𝑎𝑐)𝑭𝑐𝜙] ⋅ 𝒗𝑐]  (2 − 18𝑎𝑏𝑐𝑑) 

Whereas the virial stress heat flux for one three-body potential 𝜙 = {𝑎, 𝑏, 𝑐}  ∈ ℙ3, starting with 

equations 15-16: 

𝑱𝑝𝑜𝑡,𝜙∈{𝑎,𝑏,𝑐} = [∑[𝒔𝑖]𝜙 ⋅ 𝒗𝑖

𝑖

]

𝜙={𝑎,𝑏,𝑐}

 

= [∑
1

3
(∑ 𝒓𝑗𝑭𝑗𝜙

𝑗∈𝜙 

)

𝑖∈𝜙

⋅ 𝒗𝑖]

𝜙={𝑎,𝑏,𝑐}

 

=
1

3
(𝒓𝑎𝑭𝑎𝜙 + 𝒓𝑏𝑭𝑏𝜙 + 𝒓𝑐𝑭𝑐𝜙) ⋅ (𝒗𝑎 + 𝒗𝑏 + 𝒗𝑐) 

=
1

3
(𝒓𝑎𝑏𝑭𝑎𝜙 + 𝒓𝑐𝑎𝑭𝑐𝜙) ⋅ (𝒗𝑎 + 𝒗𝑏 + 𝒗𝑐) (2 − 19𝑎𝑏𝑐𝑑) 
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For the virial stress heat flux, the virial stress term is the same for all atoms in the potential; this 

can therefore be multiplied by the sum of the velocities. For the correct form of the heat flux, 

however, the terms that multiply the atom velocities are all different from one another and cannot 

be combined. Curious readers can see the implementation of equation 19 by looking at the 

referenced LAMMPS source code files58,59. 

As shown above, the virial stress heat flux that LAMMPS uses is valid for two body 

potentials; however, the virial stress heat flux cannot be extended to three- and four-body potentials 

which may lead to erroneous thermal conductivity predictions. We suspect that the reason why 

this problem has mostly gone unnoticed is because for many systems, the amount of heat flux 

being transferred via the three- or four-body potentials is diminutive, so that any error due to the 

calculation of heat flux for those potentials is rendered largely inconsequential. The error may also 

be further obscured by compensating factors when using the heat flux for the purpose of calculating 

thermal conductivity via Green-Kubo. Comparisons of the corrected and virial stress heat flux 

calculations in example systems follow in the results section. 

2.3 Notes on Implementation in LAMMPS 

The error described above applies to all many-body potentials in LAMMPS. However, in 

LAMMPS, there are two different categories of many-body potentials and these different 

categories require separate code fixes. These two different categories are (1) many-body potentials 

defined on sets of three or more atoms where the sets are defined in advance, usually due to the 

bonding structure (i.e., the angle, dihedral, and improper styles in LAMMPS), and (2) many-body 

potentials where the atoms that interact change over the course of the simulation (i.e. potentials 
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implemented via the unfortunately named “pair potential” style such as the Tersoff,  Brenner, and 

Stillinger-Weber potentials, and the AGNI  and GAP machine learning potentials). The code fix 

that we have implemented addresses the first category of potentials only. Other research groups 

are working on the second category of potentials.53 

Due to how LAMMPS stores atoms across multiple processors, the velocity for an atom 

can only be found on the processor the atom is assigned to. In order to support this, rather than 

dividing the heat flux evenly between the atoms that comprise the potential, we assign the portion 

of the heat flux that contains the velocity of an atom to that atom. For a single three-body potential 

𝜙 = {𝑎, 𝑏, 𝑐}, the heat fluxes assigned to the atoms 𝑎, 𝑏, 𝑐 will be: 

(𝑱𝑉)𝜙,𝑎 =
1

3
[(𝒓𝑎𝑏 + 𝒓𝑎𝑐)𝑭𝑎𝜙] ⋅ 𝒗𝑎 

(𝑱𝑉)𝜙,𝑏 =
1

3
[(𝒓𝑏𝑐 − 𝒓𝑎𝑏)𝑭𝑏𝜙] ⋅ 𝒗𝑏 

(𝑱𝑉)𝜙,𝑐 =
1

3
[(−𝒓𝑏𝑐 − 𝒓𝑎𝑐)𝑭𝑐𝜙] ⋅ 𝒗𝑐 (2 − 20𝑎𝑏𝑐) 

These equations are just the individual terms in equation (18d). The total heat flux assigned is 

unchanged; the only difference is that the velocity the atom 𝑎 is now only used in the calculation 

of the heat flux on atom 𝑎, and so forth with the velocities and heat fluxes for atoms 𝑏 and 𝑐. 

Dividing the heat flux in this manner guarantees us the ability to calculate the heat flux, regardless 

of boundary conditions and number of processors.  

We implemented the corrected algorithm described above for angle, dihedral and improper 

potential styles and it is currently available via our GitHub page at 

https://github.com/wilmerlab/lammps.  

https://github.com/wilmerlab/lammps
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2.4 Results and Discussion 

For the example systems, we combined a typical non-equilibrium molecular dynamics 

(NEMD) setup–we enforced a heat flux by adding and removing a fixed amount of energy from 

two regions–with measurements of the heat flux using the corrected heat flux or the uncorrected 

LAMMPS virial stress heat flux. The procedure was: a rectangular cuboid simulation box with 

periodic boundaries was filled with a crystalline solid or a liquid, and after an initial equilibration, 

we ran an NVE simulation with a fixed heat source applied to the center of the cuboid and a 

corresponding sink applied to the outer edges (see Figure 1a). After the temperature profiles 

reached steady-state, we recorded the instantaneous heat fluxes for control volumes on the left and 

right sides of the box, and averaged them over a time-frame necessary for convergence.  

The instantaneous heat fluxes were recorded separately for the convective heat flux as well 

as any defined pair, bond, angle, dihedral, and improper potentials using both the corrected and 

uncorrected LAMMPS code. Because we are using the NVE ensemble, and the heat added and 

removed is fixed, the heat flux code should self-consistently report the applied heat flux, regardless 

of the force-field parameters, and we can therefore use this as an accurate gauge of measuring the 

correctness of our implementation. We have included our simulation parameters below for 

completeness, but in all cases, the calculated heat flux should be a function of the applied energy 

and the control volume size alone. 
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Figure 1: (A) Side view of the layout of a simulation box, where the box is broken up into slabs of width and 

height 3L and depth L. Energy is added to the two center slabs (in orange) at the rate of ∆E per slab and 

removed from the two end slabs (in blue) at the same rate. The heat flux is measured in the two control 

regions (in grey). (B),(C), and (D) are snapshots of the cubic, triangular and hexagonal idealized MOFs with 

both side and end views. 

For this simulation setup, the corrected total instantaneous heat flux calculation does not require 

steady-state to be reached; the recorded instantaneous heat flux may be averaged immediately upon 

application of the heat source (see Figure 6). This is in contrast to the per-potential averages, which 

took a significant amount of time to converge after steady-state, from between 40-215M timesteps. 

Calculating the per-potential heat fluxes is usually unnecessary unless one is studying the 

distribution of heat flux between different potentials (or writing software to fix it); researchers 
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should not take the number of timesteps required for our simulations to be indicative of the number 

required to measure the total heat flux.  

2.4.1 Example System 1: Idealized MOF structures 

For testing the 3-body potential, we examined cubic, triangular and hexagonal idealized 

metal-organic framework (MOF) structures (see Figure 1(B)(C)(D)); a full description of these 

idealized MOF structures, including force field parameters, is covered in a previous paper60 and 

we will present only the briefest description here. These idealized structures are simplified models 

corresponding to common actual geometries of real MOFs; a simple geometric shape is extended 

orthogonally to the plane of the shape in a series of channels, forming a lattice that stretches over 

the whole cuboid and connects across the periodic boundaries. The force field is defined with only 

bond and angle potentials, with parameters chosen to approximate the thermal conductivity of a 

typical MOF. After relaxation of the system using NVT / NVE for 500,000 timesteps, an energy 

source and sink was applied of 0.0040 kcal / mol fs for the cubic structure, 0.0071 kcal / mol fs for 

the triangular structure, and 0.0213 kcal / mol fs for the hexagonal structure. After a steady-state 

was reached at 5M timesteps, the per potential heat flux was averaged over 15M timesteps. 
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Figure 2: Per-potential fraction of applied heat flux for both uncorrected LAMMPS and corrected 

calculations for idealized cubic, triangular and hexagonal MOFs. 

Because the lattice has zero aggregate momentum, there should be negligible heat transport 

through convection and all of the heat flux should travel through the bond and angle potentials. As 

measured for all three systems, the summation of the bond and angle heat fluxes from the corrected 

code equals the expected heat flux as calculated from the applied energy (see Figure 2). The 

uncorrected LAMMPS code shows nearly zero heat flux through the angle potential and the error 

of the total flux is equivalent to the missing angle potential, or about 15% of the expected total 

flux.  
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2.4.2 Example System 2: Propane, Octane and Hexadecane 

To demonstrate the corrected 3- and 4-body potentials work in conjunction to correctly 

predict heat flux in a real-life system, we ran simulations for propane, octane and hexadecane. 

Simulation parameters were adapted from Ohara, et al61 in order to compare directly with their 

per-potential results; a brief description of the parameters follows. Each hydrocarbon was defined 

using the united atom NERD force field62 and packed into the rectangular cuboid simulation box 

using Packmol63 to the density expected at a temperature of 0.7 times the critical temperature  (see 

Figure 3). The simulation box was set to be 3L x 3L x 20L, where L is a hydrocarbon-specific 

length equal to 1/3 of the total of the length of the hydrocarbon + a buffer of 3 Å + the Lennard-

Jones cutoff of 13.8 Å defined by the NERD forcefield. For propane, octane and hexadecane, 3L 

= 19.38 Å, 25.84 Å, and 36.17 Å, respectively. A timestep of 1 fs was used for all simulations. 

The system was equilibrated using NVT/NVE for 5M total timesteps; this larger-than-typical 

equilibration time is because we wanted a longer baseline for statistical averaging for comparing 

heat flux measurements before and after the application of a heat flux. After equilibration, an 

energy source and sink were applied of 9.4E-04 kcal / mole for propane, 8.3E-04 kcal / mole fs for 

octane, and 6.5E-04 kcal / mole fs for hexadecane in order to get an appropriate temperature 

profile. After 10M timesteps, stable temperature profiles were obtained and then heat flux data 

was recorded and averaged over 64M timesteps for propane, 132M timesteps for octane, and 234M 

timesteps for hexadecane. 
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Figure 3: Simulation box layout for propane, octane and hexadecane. 
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Similar to the case of the idealized MOFs, the summation of all the terms in the corrected 

heat flux code approximately equals the expected heat flux, regardless of the length of the 

hydrocarbon (see Figure 4).  

 

Figure 4: Per-potential fraction of applied heat flux for both uncorrected LAMMPS and corrected 

calculations for various hydrocarbons. As the length of the hydrocarbon increases, the heat transfer through 

the many-body potentials increases. C16H34 shows LAMMPS-reported heat fluxes of near zero for the angle 

and dihedral potentials, causing a total error of about 22%. 

For the uncorrected code, as the length of the hydrocarbon increases, the amount of heat transfer 

through the angle and dihedral potentials increases, leading to greater errors with longer 

hydrocarbons. For propane, the error is minimal, but for octane, the error is greater than 16% and 

for hexadecane the error reaches 22%. This compares well to the results of Ohara, et al,61 which 

roughly predict increasing dependence on the many-body potentials with increasing hydrocarbon 

length (see Figure 5). A comparable simulation of octane using improper potentials in place of 

dihedral potentials was also performed; the improper results were comparable to the dihedral 

results (see Supporting Information). 
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Figure 5: Per-potential fraction of applied heat flux for hydrocarbons from Ohara, et al, which predict 

increasing reliance on the angle and dihedral many-body terms for heat flux transfer with increasing 

hydrocarbon length. 

In addition to the total error of 16% recorded for octane, the heat flux predicted by uncorrected 

LAMMPS shows greater swings in magnitude and visually doesn’t converge as clearly (see Figure 

6). 

 



 

 29 

 

Figure 6: Total heat flux as a fraction of applied heat flux for both the uncorrected LAMMPS calculation 

(blue) and the corrected LAMMPS calculation (orange), averaged over 1M timesteps, as measured on octane. 

Prior to 3M timesteps, there is no applied heat flux (noted in grey) and the recorded instantaneous heat flux 

fluctuates around zero; after 3M timesteps, the heat flux is applied and the corrected calculation fluctuates 

around the correct value but the uncorrected calculation underestimates the real value as well as shows 

greater magnitude fluctuations. 

Any error in the long-term average of the heat flux, or any error that decorrelates the instantaneous 

heat flux may have consequences when calculating thermal conductivity via Green-Kubo; more 

research needs to be done to assess which systems are significantly affected by this error in the 

heat flux calculations.  

2.5 Conclusion 

For systems where significant heat transfer occurs within many-body potentials, the error 

in the uncorrected LAMMPS heat flux code can reach nearly 100% of the many-body potential 

heat flux, which leads to an erroneous total heat flux calculation. From our example systems, the 
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largest error in the total heat flux we saw was 22%, though it is not hard to imagine a system where 

more heat is transferred via the many-body potentials; in that case, the error would be expected to 

be proportionally higher. Care should be exercised when evaluating prior results to ensure thermal 

conductivity calculations are not erroneous due to the incorrectly defined heat flux. We have 

implemented the corrected algorithm into LAMMPS which extends the accuracy of heat flux 

measurements in LAMMPS to the 3- and 4-body potentials.  

For deciding whether it is necessary to adopt the corrected code for your calculations, we 

recommend evaluating which one of these three cases your work fits into: (1) if you are modeling 

a system composed of only 2-body potentials, you can use the uncorrected LAMMPS heat flux 

calculation safely; (2) if you are modeling a system that uses 3- or 4-body potentials implemented 

via the angle, dihedral or improper potential styles, we recommend you adopt our corrected 

LAMMPS code available at https://github.com/wilmerlab/lammps; and (3) if you are modeling a 

system with any other many-body potentials, you will need to evaluate whether the potentials have 

correct or incorrect implementations of the instantaneous heat flux. 

https://github.com/wilmerlab/lammps


 

 31 

3.0 Towards Comprehensive Exploration of the Physisorption Space in Porous 

Pseudomaterials Using an Iterative Mutation Search Algorithm 

Paul Boone and Christopher E. Wilmer 

Department of Chemical and Petroleum Engineering, University of Pittsburgh,  

3700 O’Hara Street, Pittsburgh, Pennsylvania 15261 

 

We describe an updated algorithm for efficiently exploring structure-property spaces 

relating to physisorption of gases in porous materials. This algorithm uses previously described 

“pseudomaterials,” which are crystals of randomly arranged and parameterized Lennard-Jones 

spheres, and combines it with a new iterative mutation exploration method. This algorithm is 

significantly more efficient at sampling the structure-property space than previously reported 

methods. For the sake of benchmarking to prior work, we apply this method to exploring methane 

adsorption at 35 bar (298 K) and void fraction as the main structure-property combination. We 

demonstrate the effect and importance of the changes that were required to increase efficiency over 

prior methods. The most important changes were (1) using “discrete” mutations less often, (2) 

decreasing degrees of freedom, and (3) removing biasing from mutations on bounded parameters.  

3.1 Introduction 

A reasonable starting point to evaluate a new gas adsorption problem is to simulate a range 

of relevant materials and observe the resulting structure-property relationships. From these 
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relationships, certain design rules may present themselves. We can group strategies for finding 

such structure-property relationships broadly into two categories: screening databases of 

previously reported materials,64,65 and screening novel hypothetical structures generated using 

some algorithm.29,37,66–70  

Screening already known materials to discover new structure-property relationships can 

present certain challenges: insufficient number of materials, impracticality of preparing suitable 

simulation input files from the experimental data in the quantity desired, inadequate material 

diversity, over- or under-representation of certain kinds of materials,35 etc. Additionally, by 

definition, looking only at known materials cannot capture the properties of materials that have 

yet to be discovered. For some material classes that have been sufficiently and thoroughly 

explored, this may not be a problem, but for underexplored material classes, it is likely that 

materials exist that have properties unlike what has already been discovered.  

Generating novel hypothetical materials, however, comes with its own set of (arguably 

even more daunting) challenges: structures may not have sufficient diversity (pore size, space 

groups, symmetry, atom types, atom positions, etc.) for the space to be well sampled, certain kinds 

of structures may be oversampled causing redundant and unnecessary computational evaluations 

and requiring huge numbers of structures to be generated to find the ones with interesting 

properties, and it is tremendously difficult to generate materials that are likely to be experimentally 

synthesizable. 

Strategies used to generate hypothetical materials are usually specific to the material 

classes, and numerous methods in the last decade have been proposed for MOFs,66,67,71–73 

Zeolites,68,69,74 PPNs,37 and ZIFs.29 It is important to note that both the limits of the materials class 

and the limits of the generating algorithm will determine how much of the space is explored by 
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any of these algorithms; Simon et al.75 performed a meta screening of four databases29,37,66,68 of 

generated materials plus the CoRE MOF database,64 which contains only experimentally 

synthesized MOFs, and found that while the results overlapped somewhat between generating 

algorithms, each database explored different parts of the structure-property space. For inferring 

structure-property relationships across all material classes, we either need to look at aggregate data 

across materials classes, or we need a more general generating strategy.  

In the context of the physisorption of non-polar gases (e.g., Xe/Kr, CH4) in porous crystals, 

we have previously described such a general approach76,77 based on starting with randomly 

generated porous “pseudomaterials” and mutating them. This approach is general, in principle, for 

describing any class of crystalline materials and automatically generates pseudomaterials in the 

lesser-explored parts of a user-defined property space. Although our prior work could be used to 

find useful structure-property relationships for gas storage applications, the approach was highly 

inefficient; a large number of pseudomaterials were generated in regions of the structure-property 

space that were already well explored. In this paper, we update our iterative mutation exploration 

(IME) methodology for exploring arbitrary structure-property spaces to be dramatically more 

efficient than prior methods and apply it to a well-studied benchmark application of methane 

loading at 35 bar and 298 K. Additionally, we analyze how adjusting the algorithm parameters 

affects both the efficiency and the theoretical range of exploration. The long-term purpose of this 

work is to automate the rapid exploration of structure-property relationships for new gas adsorption 

problems. 
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3.2 Methodology 

3.2.1 Pseudomaterials 

IME is an algorithm that searches through randomly generated and mutated 

pseudomaterials, which are abstract representations of rigid crystalline materials. Pseudomaterials 

are defined by a set of atom positions, atom type assignments for each atom, a unit cell vector, and 

force field parameters for pairwise forces. A pseudomaterial’s atoms may be arranged in space 

arbitrarily—there is no requirement that the atoms form known bonds, form a stable structure or 

that the pseudomaterial is synthesizable. All pairwise force field parameters may take any value in 

a defined continuous range—they do not have to correspond to known atom types or parameter 

values. Pseudomaterials are, like the crystalline materials they are meant to emulate, periodic. 

Atoms are held at fixed coordinates during molecular simulations and thus these pseudomaterials 

do not model flexible structures. When using a sufficiently wide-ranging parameter set, 

pseudomaterials can be a superset of all possible real rigid crystals. 

In this work, for the sake of simplicity, the unit cell vector is limited to be cubic, and the 

pairwise forces for each atom type are defined by the two parameters from the Lennard-Jones 

potential: epsilon and sigma. 

Unlike real materials, pseudomaterials can be easily randomly generated—within the 

allowable ranges for their properties—by randomly choosing the number of atoms, atom 

coordinates x, y and z, Lennard-Jones sigma and epsilon values for each atom type, the unit cell 

size, and then randomly assigning each atom to an atom type. We refer to this (non-iterative) 

process as random generation and we will use it to benchmark the efficiency of IME. 
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Pseudomaterials can also be continuously mutated across the allowable ranges for sigma, 

epsilon, the unit cell vector, and the atom positions. Because these parameters are continuous, we 

can observe smooth relationships between the pseudomaterial parameters and the simulated 

properties that interest us. In other words, a small change in the input parameter space will yield 

small changes in the simulated property space; roughly, similar structures share similar properties. 

Note that the number of atoms and the atom type assignments cannot change continuously and 

small changes may result in structures with very different simulated properties, which is discussed 

in more detail in Section 3.3.2.1. 

3.2.2 Overview of Iterative Mutation Exploration (IME) 

 

Figure 7: How the iterative mutation exploration strategy works on a simplified 4x4 structure property space 

𝑿𝟏 vs 𝑿𝟐: the first generation of pseudomaterials uses random generation; subsequent generations are 

created through an iterative select-mutate-simulate strategy where the parents are selected by inverse bin 

density (the number shown in each bin is the number of materials in that bin). 

We can now automate the search of a gas adsorption structure-property space by first using random 

generation to create a starting set of pseudomaterials, and then mutating their parameters to 

adaptively populate under-explored regions of the space.  
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The high-level overview of IME shown in Figure 7 is identical to our prior work.76 The 

changes we made to improve the efficiency are in the details of how materials are mutated and the 

allowable ranges of the parameters. For explicitness, we will still describe IME, before discussing 

the parameter ranges, how mutations are now implemented, and then show example results. After 

examining the example results for a full run, we will discuss in detail how our new methodology 

improves upon the efficiency of our prior search algorithm. 

Each IME run is governed by run parameters: the number of materials per generation, N, 

the number of generations, G, the number of bins per simulated property, B, and a mutation 

strength, M, which determines how much of a change a mutation should make to a pseudomaterial. 

A set of simulated properties to explore—or structure-property space—is also necessary; each 

simulated property must be calculable and have defined bounds. The defined range of each 

property is evenly divided into B property-specific bins. A bin in the structure-property space is 

defined to be the combination of all property-specific bins. For example, if we have B=10 and two 

simulated properties (a two-dimensional structure-property space), we would have 100 bins; if we 

had three simulated properties (a three-dimensional structure-property space), we would have 1000 

bins.  

The first generation of N materials (in this work, N=50), or the initial seed population, is 

created using random generation. Each simulated property is calculated and binned. For 

subsequent generations, we start by choosing parent bins from the structure-property space by 

inverse population density; we select N parent pseudomaterials by weighting all explored bins by 

how few materials they contain, then randomly selecting specific pseudomaterials from those bins 

according to those weights. Then for each selected parent pseudomaterial, we create a child 

pseudomaterial by mutating its parameters–in this case, the number of atoms, atom positions, atom 



 

 37 

type assignments, unit cell size, and all atom type sigma and epsilon values–within their defined 

ranges. The child pseudomaterials can then be simulated and binned onto the structure-property 

space, which completes the generation. We repeat this process until we reach the desired number 

of generations. Note that different convergence criteria could also be used to halt the IME 

algorithm, but in this work we only considered fixed numbers of generations. 

All source code for our IME algorithm is available on github: 

https://github.com/WilmerLab/htsohm/tree/comprehensive_exploration_methane. 

3.2.3 Simulated Structure-Property Space 

Our structure-property space in this work is defined by two simulated properties: (1) 

volumetric methane loading at 298K and 35 bar, and (2) void fraction. We chose these properties 

because methane loading has been extensively explored,66,68,75,78,79 including in our most relevant 

prior work which used randomly generated materials (no mutation-based exploration) with larger 

unit cell sizes,77 and we wanted to benchmark our results in the context of that large body of extant 

literature. 

We calculated the absolute volumetric loading as reported via RASPA80 using the grand 

Canonical Monte Carlo (GCMC) technique.81 Methane is modeled using the TraPPE force-field,82 

which has one united atom for the carbon and four hydrogens. The initial number of cycles for a 

simulation is 100; if the reported error is more than 5 V/V then an additional 100 cycles is run until 

either the error is < 5 V/V or the maximum total cycles of 2000 is exceeded. Note that we are able 

to use such low cycle numbers because our pseudomaterials are relatively simple and methane as 

defined has no rotational degrees of freedom. 

https://github.com/WilmerLab/htsohm/tree/comprehensive_exploration_methane
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Void fraction is calculated using a simple method developed specifically for this work. The 

unit cell is divided up into 0.1 Å cubelets. For every atom in the pseudomaterial, we take the sigma 

value of the atom type and use it to represent the atomic radius. All the cubelets less than one 

atomic radius plus a probe size of 1 Å from the atom center are marked as occupied. The void 

fraction is calculated as the # of empty cubelets divided by the total number of cubelets. We used 

this method instead of the helium void fraction method reported in similar prior work, which is 

intended to mimic the experimental helium adsorption experiment and can give unusual void 

fraction values (i.e., greater than one) when interactions between the probe and framework are 

very strong (as is the case for many of the pseudomaterials in in our study). Hence, we 

implemented this simple void fraction routine that ignores energetic interactions altogether and 

hence always gives results within 0-1. 

For both methane loading and void fraction, we use B = 40 bins, totaling 1600 bins across 

both simulated properties. The defined bounds for methane loading are 0-1600 V/V and the defined 

bounds for void fraction are 0-1.  

3.2.4 Pseudomaterial Parameters and Run Parameters 

We will describe below many different IME runs using different parameter sets, but they 

are all variations from a baseline parameter set, which is defined as follows (also listed in Table 

1): 1-4 atoms per unit cell, two atom types, sigma and epsilon ranges equal to the total range in 

UFF,83 a mutation strength of 20%, and a lattice size of 2-16 Å. The lattice size range of 2-16 Å 

was chosen so that a one atom system in the smallest unit cell could achieve a number density 

greater than the highest number density MOF (0.107 atoms / Å3) in the CoRE database,64 and so 

that at the opposite range of lattice size, 16 Å, a four-atom system could achieve a number density 
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lower than 1/100 of the highest number density—1.07e-3 atoms / Å3—a significantly lower density 

than the lowest number density MOF (0.016 atoms / Å3) in the CoRE database.64 The number of 

atoms was chosen to be small to minimize the degrees of freedom to improve search efficiency 

(see discussion in Section 3.3.2.2), and the number of atom types is set to two so that there can be 

some variation in type and still limit the degrees of freedom. All runs use the default number of 

materials per generation, N=50, and the number of generations, G=500, yielding 25,000 materials 

in total per run. The default mutation strength is 20%. Other possible values for the number of 

atoms, the atom types, the sigma and epsilon ranges, and mutation strength are explored further in 

Section 3.3.3. 

3.2.5 Mutation Strategies 

For this work, we define three mutation strategies: wrapped mutations, infrequent 

mutations, and bounded mutations.  

Wrapped mutations are applied to atom positions. For these mutations, a random point is 

generated within the unit cell and the shortest vector from the current atom position to this new 

point is calculated. Then, this vector is multiplied by the mutation strength and added to the original 

atom position to get the new position. If the new position is outside the unit cell, it is “wrapped” 

back inside the unit cell. For this strategy, if the mutation strength is 100%, then every atom would 

effectively get a new position with every mutation. As the mutation strength decreases, the atom 

positions of a child material will become more localized near its parent’s atom positions. Atom 

positions are mutated every generation. 

When changing atom types or the number of atoms in the unit cell of a pseudomaterial, we 

use so-called “infrequent” mutations; instead of being mutated every generation, the property is 
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mutated based on a probability 𝑝 = 𝑀2 for atom type assignments and 𝑝 = 𝑀 for the number of 

atoms, where M is the mutation strength. For each generation, at a default mutation strength of 

20%, there is a 20% chance that the number of atoms is mutated, and each atom has a 

0.202=0.04=4% chance that its type assignment is mutated. When the number of atoms is mutated, 

there is a 50% chance to add an atom and a 50% chance to remove an atom; if adding an atom 

would lead to more atoms than allowed, or if removing an atom would lead to fewer atoms than 

allowed, then no change is made. A newly added atom is randomly assigned a position and an 

atom type. For atom type assignment mutations, a new atom type is randomly selected from all 

atom types. 

Table 1: Mutation strategy and ranges for this work and our prior work. 

All other parameter mutations–unit cell length, sigma, and epsilon–use the bounded mutation 

strategy. We randomly choose a trial value from a uniform probability distribution centered around 

the starting value; if the trial is within the allowable range it is used, otherwise it is bounded to the 

allowable range: 

  

 

This work Prior work 

 

Mutation strategy Ranges Mutation strategy Ranges 

atom positions wrapped fractional wrapped fractional 

# atoms infrequent (M), ±1 atom 1 - 4 density 1 - 2701 

atom type assignments infrequent (M2) 2 biased 4 

sigma [Å] bounded 2.11 - 4.37 biased 2.11 - 4.37 

epsilon [K] bounded 2.516 - 342.176 biased 2.516 - 342.176 

lattice [Å] bounded 2.0 - 16.0 biased 25.6 - 51.2 
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𝑉𝑡𝑟𝑖𝑎𝑙 =  𝑢𝑛𝑖𝑓𝑜𝑟𝑚 (𝑉𝑝𝑎𝑟𝑒𝑛𝑡 ±
𝑀

2
∗  (𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛)) (3 − 1) 

𝑉𝑐ℎ𝑖𝑙𝑑 =  𝑉𝑚𝑖𝑛 𝑖𝑓 𝑉𝑡𝑟𝑖𝑎𝑙 <  𝑉𝑚𝑖𝑛   

𝑉𝑐ℎ𝑖𝑙𝑑 =  𝑉𝑚𝑎𝑥 𝑖𝑓 𝑉𝑡𝑟𝑖𝑎𝑙 >  𝑉𝑚𝑎𝑥  

𝑉𝑐ℎ𝑖𝑙𝑑 =  𝑉𝑡𝑟𝑖𝑎𝑙 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Here, 𝑉𝑝𝑎𝑟𝑒𝑛𝑡  is the variable to mutate, 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 are the variable’s maximum and minimum, 

𝑉𝑡𝑟𝑖𝑎𝑙 is the trial variable and 𝑉𝑐ℎ𝑖𝑙𝑑 is the final child variable. If the mutation strength is 100% and 

the starting point was in the exact center of the allowable range, then this is equivalent to randomly 

generating a new value within the range.  

The density and biased mutation strategies shown in Table 1 from our prior work are 

discussed in Section 3.3.2.1 and 3.3.2.3. 



 

 42 

3.3 Results and Discussion 

3.3.1 Results for baseline CH4 vs VF parameters 

 

Figure 8: Explored material density bin map (white: unexplored bin; black: 20 or more materials per bin; 

grey: 1 to 19 materials per bin) of methane loading vs void fraction for both IME and random generation at 

50, 500, 5,000 and 25,000 materials. 
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In Figure 8, we show the methane adsorption vs. void fraction structure-property space at 

50, 500, 5,000, and 25,000 materials for both IME and random generation. The first generation of 

50 materials is comparable between methods, since the first generation of IME uses random 

generation. At 500, 5000, and 25,000 materials, IME explores more bins than random generation. 

While continuing to generate materials using random generation would eventually explore the 

same bins if given infinite time, most of the generated materials are within a half-elliptical region 

under 200 V/V and materials farther away from this region are progressively less likely to be 

generated. Notably, the high methane loading materials found via IME are among the most 

statistically unlikely to be created using random generation.  

We ran random generation until we reached 500K materials (Figure 9). At 25,000 

materials, random generation has explored 468 bins; IME explores this number of bins at only 

1,786 materials. At 500,000 materials, random generation has explored 732 bins; IME takes only 

4,283 materials to reach the same number of bins. 

 

Figure 9: Number of bins explored vs. the number of materials for IME and random generation.  
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Figure 10 zooms in on the space explored by IME at 25,000 materials (the lower left plot 

of Figure 8), but shows each material as a separate point instead of showing bin density. Here we 

see there are two large peaks, at around the void fractions 0.2 and 0.5. The blue peak on the left is 

formed primarily by materials with small unit cell sizes being loaded by one methane / unit cell. 

The green peak on the right is from materials with slightly larger unit cells loaded to three methane 

/ unit cell. A smaller third peak (yellow), though not as well resolved, can be seen around a void 

fraction of 0.8, which may be related to the peak found in prior large-scale screening studies on 

high pressure methane adsorption.64,66,77 The materials with the highest methane loading in the 

leftmost peak have a noticeable absence of diversity in their structures: they are all high-epsilon, 

small unit cell, cubic structures and on closer inspection, you can see that there are multiple atoms 

clustered together in one location, forming an extra-high epsilon “superatom.” The three CH4 / 

unit cell (green) peak and the four CH4 / unit cell (yellow) peak are also similarly constructed from 

high epsilon superatoms, but at larger lattice sizes so that more methane can be adsorbed per unit 

cell (even if less per unit of volume). 
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Figure 10: Methane loading vs void fraction for all materials in the reference run of IME, colored by the 

number of average adsorbed methane per unit cell at 60% opacity, and relatively sized by the lattice size. 

Example materials are shown on the right, with each atom site colored by atom type epsilon. 

For our reference simulation, the number of atoms per unit cell is limited to 1-4 atoms and if we 

look separately at the materials with the highest methane loading for each of one-, two-, three- and 

four-atom materials (see Table 2), they all contain overlapped superatoms (with the exception of 

the one-atom material) where only one methane can be adsorbed per unit cell. The four-atom 

material with the highest methane loading and the three-atom and two-atom materials below are, 

except for the number of atoms, otherwise nearly identical materials; all of their atoms share the 

same sigma (i.e., size), they have nearly the same unit cell dimensions, and they all adsorb, on 

average, nearly one methane per unit cell. To compare multi-atom materials that have overlapping 

atoms with single-atom materials, we found it helpful to devise the epsilon density metric 
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(denoted
∑𝜖

𝑉
 in Table 2), which we defined as the sum of the epsilon for all atoms in the material 

divided by the unit cell volume. Compared to the four-atom material (lattice size 3.63 Å, epsilon 

density 20.73 K/Å3), the two-atom material has nearly the same methane loading but a lower 

epsilon density of 13.47 K/Å3, showing that this epsilon density is still high enough to achieve an 

average methane per unit cell near one at a lattice size near 3.63 Å. The highest methane-loading 

one-atom material has an epsilon density of 5.54 K/Å3—the maximum for one atom—and a lattice 

size of 3.95 Å, which indicates that without having overlapping atoms or defining a higher epsilon 

range, it is not possible to achieve the higher loadings in the tighter cells. 

The highest methane-loading shown in Table 2 is 774 V/V, which is greater than the density 

of solid methane. If one can choose arbitrarily high epsilon values and an appropriate sigma value, 

then it is possible to achieve arbitrarily high methane loadings; the attraction between the 

framework and methane will overcome the methane-methane repulsive forces. Because of the high 

epsilon superatom clusters, these high methane loading pseudomaterials are also very high density 

lattices where the epsilon density is high enough to force the adsorbed methane into a configuration 

denser than solid methane. Models of lattices loaded more densely than solid methane have been 

reported in more detail by other authors;84 this is an expected—though clearly non-physical—

result of our model and simulation parameters. 

  



 

 47 

Table 2: Unit cell, sigma, epsilon density, adsorbed methane per unit cell and methane loading for selected 

materials in Figure 10. 

Category Name unit cell [Å] sigma [Å] ∑𝝐/V [K/ Å3] # CH4 / uc ML [V/V] 

1 CH4 / uc peak 1-atom (id: 3481) 3.95 2.4 5.54 0.91 552 

 2-atom (id: 24249) 3.66 2.1 13.47 0.96 734 

 3-atom (id: 13499) 3.60 2.1 21.21 0.96 766 

 4-atom (id: 14447) 3.63 2.1 20.73 1.00 774 

3 CH4 / uc peak 3-atom (id: 2844) 5.45 3.0 5.88 2.92 670 

 4-atom (id: 22900) 5.44 2.7 8.39 2.96 684 

Third peak 4-atom (id: 21214) 6.52 2.3 4.93 3.67 492 

Other Samples Plates (id:15134) 5.26 2.2 9.32 1.70 424 

 BCC (id: 23030) 8.07 3.0, 4.2 0.92 0.96 68 

Amongst all the created pseudomaterials, we can find examples of plate-like materials (see 

“plates”), and BCC materials (see “BCC2”). These different material geometries show up without 

any biasing on the part of the algorithm; the algorithm is not specifically searching for materials 

with diverse structures, although we are interested in doing this in the future.  

3.3.2 Improvements from Prior Algorithm 

The results above show that our updated IME algorithm can explore the structure-property 

space much more efficiently than purely random generation and is also capable of finding locally 

optimized structures, such as shown by the two separate peaks for one CH4 / unit cell and three 

CH4 / unit cell materials. This updated algorithm is much more efficient than our prior work in 

particular because of several significant changes: (1) reducing the frequency of “discrete” 
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mutations, (2) reducing the degrees of freedom that define the pseudomaterials, and (3) correcting 

a bias in mutations on parameters with bounded upper/lower limits. 

3.3.2.1 Using “Discrete” Mutations Less Often 

In our simulations there are two cases where we apply “discrete” mutations: adding or 

removing atoms and reassigning atom types. Unlike, for example, mutations that assign atoms to 

new positions within the pseudomaterial, such “discrete” mutations cannot be made to minimally 

perturb the properties of the material. Either an atom is there, or it is not, and likewise an atom 

type can be only one of a select few types. Therefore, applying one of these discrete mutations 

often leads to a child material not landing in a bin near its parent in the structure-property space. 

As a consequence, such mutations prevent the IME method from exploring the local bins near a 

parent material.  

For example, in our prior work, we allowed the atom number density to mutate. For each 

generation, the atom number density was mutated and a corresponding number of atoms would be 

removed or added (this is the density mutation strategy listed in Table 1). Based on the mutation 

strength we used, this caused a large number of atoms to be either deleted or added with new 

random positions whenever a child material was created. For example, for a lattice size of 25-50 

Å with an atom number density range of 1e-5 to 2e-2 atoms / Å3, an average pseudomaterial in the 

middle of both the lattice size and atom number density ranges—i.e. 37.5 Å and 1e-2 atoms / Å —

would start with 527 atoms. With a 20% mutation strength the worst case scenario would be the 

lattice size increasing by 10% of the range or 2.5 Å, and the atom number density increasing by 

10% of the range or 2e-3 atoms / Å3; this would jump the number of atoms from 527 to 768, an 

addition of 241 atoms with randomly generated positions. Even with lower mutation strengths, 

where the number of atoms added or removed was small, such changes typically led to child 
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pseudomaterials far from their parents in the structure-property space. Furthermore, such large 

changes also caused child materials to regress to the mean, i.e., they would resemble purely 

randomly generated materials from the initial generation even if their parents were on the outer 

boundaries (the less explored frontier bins) of the structure-property space.  

To quantify the effect of such discrete mutations on exploration efficiency we 

systematically varied several run parameters and, in each case, counted how many bins were 

explored over the same total number of generations (see Figure 11). We let the atom number 

density range from 0.001954 to 0.11 atoms / Å3. We considered three different mutation 

frequencies that were used to mutate the atom number density: 1.0 (every time, which is how 

frequently our previously reported algorithm did number density mutations), 0.2 (20% of the time, 

which is the same as the mutation strength M, which is how frequently we do atom number 

mutations with our new algorithm) and 0.04 (4% of the time or M2). We also varied the max 

number of atoms to add or remove, which limits how many atoms can be added or removed at 

once during an atom number density mutation. The possible values here are ±1 (only one atom can 

be added or removed at a time, which is how our new algorithm works), ± 4, ±16 and ± unlimited 

(which means that we add or remove as many atoms as are needed to reach the desired atom 

number density). For simplicity, we kept the number of atom types at one for all of these runs. 
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Figure 11: Material density bin map (black: >= 20 materials in the bin, white: 0 materials in the bin) of IME 

run for 500 generations (25,000 total materials) for every combination of max number of atoms to add or 

remove (±1, ±4, ±16, ± unlimited) and mutation frequency (1.0, M = 0.2, M2 = 0.04) across methane loading vs 

void fraction. Bins explored by random generation are in orange. 

We then ran simulations for every combination of mutation frequency and max number of atoms 

to add or remove, as well as a random generation run for comparison. Bin density plots of methane 

loading vs. void fraction for each parameter are shown in Figure 11.  

The parameter set that explores the least amount of space is at ±unlimited atoms / frequency 

1.0, which is the parameter set we used in our prior algorithm. This is because in every generation 
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significant randomness is introduced by adding or deleting atoms. If you follow the column 

downwards, at frequency 0.2, the algorithm is able to access the two peaks at one CH4 / unit cell 

and three CH4 / unit cell and significantly more space is explored. At this frequency, 80% of the 

time there is no change to the number of atoms and the algorithm can optimize the atom positions 

and the other parameters to explore more space without regressing to more random structures. 

Farther down at frequency 0.04, the peaks are taller and sharper, implying that since less time is 

spent changing the number of atoms, local optimizations can be explored more extensively. Higher 

methane loading materials are found in both peaks compared to frequency 0.2, even though fewer 

bins are explored. For this example problem of methane loading vs. void fraction, there may be a 

tradeoff between total bins explored and highest methane loading found that can be adjusted using 

the mutation frequency.  

Similarly, if the max number of atoms is limited to ±1, ±4, ±16, the two peaks can be 

accessed even if density mutations occur at every generation, suggesting that for this particular 

system discrete mutations can be managed either by limiting their frequency, or by limiting the 

extent of the change introduced. 

3.3.2.2 Use Fewer Degrees of Freedom 

With too many atoms it is difficult, even with iterative mutation schemes, to generate 

pseudomaterials with the simple lattice configurations shown in Figure 10, which we know are 

needed to reach some important parts of the methane-adsorption exploration space. While having 

more atoms increases the theoretically explorable area, there is a significant efficiency cost that 

limits the actual explored space. 
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Table 3: Fixed atom IME runs with applied min and max lattice sizes.  

Lattice 

# Atoms min [Å] max [Å] 

1 2.09 8.00 

2 2.63 10.08 

4 3.31 12.70 

8 4.17 16.00 

16 5.26 20.16 

32 6.63 25.39 

64 8.35 32.00 

512 16.70 63.99 

To determine the significance of the number of atoms on the exploration efficiency, we ran IME 

with fixed numbers of atoms and only one atom type, where only the atom positions, the lattice 

size, epsilon, and sigma were allowed to mutate. We ran separate IME runs for 1, 2, 4, 8, 16, 32, 

64, and 512 atoms, as well as an additional series of runs using random generation. Lattice size 

bounds were chosen for each fixed number of atoms so that each run would explore the same atom 

number density range of 1.95e-3-0.11 atoms / Å3. Parameters for the runs are displayed in Table 

3. 
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Figure 12: Material density bin map (black: >= 20 materials in the bin, white: 0 materials in the bin) of  IME 

run for 500 generations (25,000 total materials) and bins explored by random generation (orange) across 

methane loading vs. void fraction for 1, 2, 4, 8, 16, 32, 64 and 512 atoms per unit cell. 

We can easily see the effect of the number of degrees of freedom on the exploration efficiency in 

Figure 12. The four atom IME run explores the most bins and as the number of atoms increases, 

the number of bins explored decreases, showing that the inefficiency of searching with more atoms 

is overwhelming the theoretically increased explorable area from the additional atoms. This also 

holds true for random generation.  

For both the one-atom and the 512-atom runs, random generation is exploring nearly the 

same space as IME at 25,000 materials, but the reasons why these techniques look to be converging 

to the same value are different. For the one-atom run, there are so few degrees of freedom (just 

lattice size, sigma and epsilon) that it is possible to run a sweep of those variables to get a strict 

boundary for what is possible; in this case, IME and random are both converging to the actual 

boundary of the explorable space, just at different speeds due to their computational efficiencies. 
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While it may appear that IME and random are converging similarly to a boundary for the 512-

atom run, in this case we know that the explorable space is larger and looks more like the total 

space explored in the four-atom run, so here IME and random are running into a computational 

efficiency limit, not an actual boundary of the space.  

The 2- and 8-atom runs show some anomalies that we will briefly address. There are a 

handful of easy to identify materials that we know must be present in order to have explored the 

entire structure-property space: a one CH4 / unit cell structure—corresponding to the leftmost-peak 

shown in Figure 10—that has a lattice size of about 3.6 Å and very high epsilon density from 

multiple atoms overlapping at one position, and a three CH4 / unit cell material—corresponding to 

the middle peak shown in Figure 10—that has a lattice size of about 5.4 Å created by four 

overlapped atoms. The two-atom run cannot access the rightmost 5.4 Å lattice size peak since it 

does not allow for four atoms. The 8-atom run cannot access the leftmost 3.6 Å lattice size peak 

because its minimum lattice size is 4.17 Å. This peak becomes a “shelf” of 4.17 Å lattice size 

materials; the range across the void fraction is due to how much space is filled up next to where 

the methane adsorbs in the middle of the cell. 

3.3.2.3 Unbiased Bounded Mutations 

In our prior work, we used a simple mutation strategy for bounded parameters that 

nevertheless led to a subtle inefficiency in the search process. In this strategy, a value 𝑉𝑟𝑛𝑑 would 

be chosen from a uniform distribution within the bounded range, and then that value would be 

averaged (weighted by mutation strength) with the parent’s parameter value to get the new value 

for the child material: 
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𝑉𝑟𝑛𝑑~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑉𝑚𝑖𝑛 , 𝑉max) (3 − 2) 

𝑉𝑐ℎ𝑖𝑙𝑑 = 𝑉𝑝𝑎𝑟𝑒𝑛𝑡 + 𝑀(𝑉𝑟𝑛𝑑 − 𝑉𝑝𝑎𝑟𝑒𝑛𝑡) 

 

This had a side effect we did not intend: as a parameter value got closer to its range limit, almost 

all mutations would result in a value farther from that limit. To instead get a value closer to the 

limit, you would have to randomly generate a value closer to the limit than what you already had. 

This was made somewhat worse by weighting using the mutation strength. Even if you were to 

randomly generate a value of the exact limit, you would only move towards the limit proportional 

to the mutation strength. For example, with a mutation strength of 20%, you would only be able 

to move 1/5 of the way to the limit in the best case. While it is still possible to achieve values very 

near the bounds of a parameter, it takes many attempts to get there, and the more bounded 

parameters you have, the more inefficiently the parameter space is explored. Certain areas of the 

parameter space become statistically hard-to-reach, even if they would easily explore new areas of 

the structure-property space. For the methane loading vs void fraction structure-property space we 

are exploring here, this mutation strategy is a second case of an algorithm detail causing child 

materials to “regress to the mean”; in this case, child materials are more likely to mutate to 

previously explored areas of the parameter space than to explore new areas, causing significant 

inefficiency in searching the structure-property space. 

To address this regression-to-the-mean bias, we adjusted our mutation strategy for bounded 

parameters such that regardless of the initial parameter value of the parent material, it is equally 

likely to mutate higher or lower, the precise details of which are discussed in Section 3.2.5. 
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To demonstrate the improvement shown by the new bounded mutation strategy compared to the 

original biased strategy, we ran an additional IME run of the reference parameters where we used 

the prior biased mutation strategy. The results can be seen compared to the new mutation with 

limits strategy for multiple mutation strengths in Figure 13C. At 25,000 materials, the old mutation 

strategy explored 918 bins compared 1,062 for the new mutation strategy. This is a drop 

comparable to the difference between running the new mutation strategy at 40% vs. 20% mutation 

strength. 

Table 4: allowable range for each pseudomaterial parameter for all 12 iterative mutation exploration runs. 

Run # atoms # atom types sigma / epsilon mutation strength unit cell size 

reference 

system 

1-4 2 UFF 20% 2-16 Å 

random system 1-4 2 UFF  2-16 Å 

# atoms 1 2 UFF 20% 2-16 Å 

 1-2 2 UFF 20% 2-16 Å 

 1-8 2 UFF 20% 2-16 Å 

# atom types 1-4 1 UFF 20% 2-16 Å 

 1-4 4 UFF 20% 2-16 Å 

sigma / epsilon 1-4 2 UFF±25% 20% 2-16 Å 

 1-4 2 UFF±50% 20% 2-16 Å 

mutation 

strength 

1-4 2 UFF 5% 2-16 Å 

 1-4 2 UFF 10% 2-16 Å 

 1-4 2 UFF 40% 2-16 Å 
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3.3.3 Parameter Exploration 

Finally, to explore the effects that different parameters have on the efficiency of the search 

and the total explored space, we varied the allowable ranges for the number of atoms, the number 

of atom types, sigma, epsilon and the mutation strength (ranges for all 12 runs are shown in Table 

4). For sigma and epsilon, we test two expanded ranges where the minimums are 25% and 50% 

lower, and the maximums are 25% and 50% higher than the reference UFF baseline. The epsilon 

and sigma values for the UFF, UFF+-25% and UFF+-50% are shown in Table 5. For the # of 

atoms, we test using one atom only, 1-2 atoms, and 1-8 atoms and compare to the 1-4 atoms 

baseline. For atom types, we test one atom type and four atom types and compare to the two-atom 

type baseline. For mutation strength we tested 5, 10, and 40% and compare to the 20% reference 

baseline. 

Table 5: Sigma and epsilon values for UFF, UFF+-25%, and UFF+-50%. 

 

UFF UFF ± 25% UFF ± 50% 

sigma [Å] 2.11-4.37  1.58 - 5.46 1.05-6.55 

epsilon [K] 2.516-342.176 1.89 - 427.72 1.258-513.26 

In Figure 13, we compare how changing these search parameters affects the efficiency of the 

search. The number of atom types (Figure 13A) only minimally affected our exploration 

efficiency. This is because many of the harder-to-reach bins require higher methane loading and 

will be filled by high epsilon overlapped atom materials; these kinds of materials will be nominally 

more likely to be generated if there is only one atom type (due to the decrease in degrees of 

freedom), but due to how infrequent additional atom types are added or removed, having the 

possibility of more types does not substantially affect the exploration efficiency.  
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Varying the number of atoms (Figure 13B) shows an increasing number of bins explored 

from 1 to 1-2 to 1-4 atom. A one atom simulation levels off at around 550 explored bins which is 

due to the materials having limited epsilon and no positional variation. The two-atom simulation 

starts leveling off around 900 explored bins for similar reasons, and the four and eight atom 

simulations access more space but are indistinguishable from each other. As most of the harder-

to-reach bins can be accessed by overlapped atom materials, having the possibility of more atoms 

is theoretically helpful, but for every atom added, it becomes less statistically likely for them to 

line up near a single point. Simulating more atoms might have an advantage for lower void fraction 

materials where more space can be filled in such a way that does not significantly affect the 

methane loading, but according to Figure 13B this does not result in overall more exploration.  

 

Figure 13: Bins explored vs. number of materials for the pseudomaterial parameter ranges for atom types, 

atoms, sigma and epsilon as well as the simulation parameter mutation strength. 

There is an optimal mutation strength (Figure 13C) for this system. A lower mutation strength of 

10% outperforms our default 20%; 5% mutation strength explores fewer bins through 10,000 

materials, but after that explores nominally more than our default 20%, and 40% mutation strength 

performs significantly worse. As the mutation strength approaches 100%, the efficiency will 

approach random search; as the mutation strength approaches zero, however, child materials 

become closer and closer replicas of their parents, which also inhibits exploration. While a 10% 
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mutation strength looks best for this particular set of simulation parameters, our expectation is that 

this will need to be adjusted on an application-by-application basis, and possibly by starting with 

higher mutation strengths and decreasing them as the IME run progresses. Also shown is the old 

perturbation algorithm (labeled 20% biased) as discussed in Section 3.3.2.3. Finally, as expected, 

if you increase the total range of sigma and epsilon parameters, the explored space increases 

(Figure 13D). 

We have published the data online for the exploration data sets where it can be fully 

interactively explored here: http://ch4-pseudomaterials.herokuapp.com/. 

3.4 Conclusion 

Our prior mutation algorithm explored a structure-property space less efficiently than 

merely characterizing pseudomaterials that were randomly generated. With the improvements in 

this work, our updated IME algorithm is demonstrably more efficient than random generation and 

can explore areas of the structure-property space that are inaccessible to random generation 

because of its inefficiency. For our example application of methane loading versus void fraction, 

random generation of 500K pseudomaterials explored 732 bins, a number reached in only 4,283 

psuedomaterials when using IME. This efficiency gain enables us to explore more of the structure-

property space, and we can now see examples of previously modeled materials emerging naturally 

from the IME search process, such as the heavily loaded lattices modeled by other authors.84 The 

efficiency improvements resulted from three algorithm changes: (1) limiting the frequency of 

discrete mutations, (2) reducing the number of atoms and the degrees of freedom, and (3) removing 

bias when mutating bounded parameters. With these efficiency updates, this method shows 
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promise for quickly exploring structure-property spaces for physisorption of various gases in 

porous materials. 
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4.0 MOFUN: a Python package for molecular find and replace 

Paul Boone and Christopher E. Wilmer 

Department of Chemical and Petroleum Engineering, University of Pittsburgh,  

3700 O’Hara Street, Pittsburgh, Pennsylvania 15261 

 

MOFUN is an open-source Python package that can find and replace molecular 

substructures in a larger, potentially periodic, system. In the context of molecular simulations, find 

and replace is a useful operation for adding/swapping functional groups, adding/removing solvent 

molecules or defect sites, and many other helpful system perturbations. MOFUN can also be used 

to alter force field terms on certain atoms while leaving the geometry/composition otherwise 

unchanged. The package is easily automated, which is particularly helpful for preparing input files 

for large-scale screenings. The package is freely available on GitHub at 

https://github.com/WilmerLab/mofun. 

4.1 Introduction 

MOFUN is a general purpose, open-source Python package for searching an arbitrary 

molecular structure for a pattern and replacing any instances of it with a replacement pattern–i.e., 

find and replace for molecular systems. We built MOFUN, initially, to support our own 

investigations of metal organic frameworks (MOFs), which are a class of porous materials 

composed of linkers and metal centers which self-assemble into crystalline structures.85 In the 

https://github.com/WilmerLab/mofun
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context of MOFs, MOFUN was used for (1) modifying the linkers of MOFs with various 

functional groups, (2) adding defects to MOFs, and (3) parameterizing MOFs with flexible force 

field terms. Although these operations can be carried out by editing the underlying files in a text 

editor or by adding and removing atoms individually in a visual editor such as Avogadro,86 this is 

time-consuming, error-prone and impractical when scaling to greater numbers of structures. We 

wrote MOFUN to be an automated solution to these problems. 

Prior to the development of MOFUN, a less capable molecular search-and-replace program 

called FunctionalizeThis! was developed by Wilmer.87 FunctionalizeThis! did not support finding 

and replacing bonds, which limited its use particularly when attempting to generate structures that 

can be used with flexible force fields. More recently, a free and open-source Julia package named 

PoreMatMod.jl was reported by Henle et al.88 Like MOFUN, the highly versatile package by Henle 

et al. can be used for automating crystal structure modifications and was at least partly motivated 

to facilitate research on hypothetical MOFs. While there is significant overlap in functionality 

between MOFUN and PoreMatMod.jl, there are also a few key differences. Whereas MOFUN 

searches for patterns via comparisons of distances between atoms, PoreMatMod.jl analyzes the 

molecular graph defined by how a structure’s atoms are bonded. Both approaches can handle many 

common use cases but sometimes one approach is more suitable than the other, in terms of what 

kinds of patterns can be searched for. For example, when using distances between atoms, it is 

possible to search for patterns that are not bonded, such as a molecule physisorbed to a binding 

site or matching defects between two different layers of stacked graphene. In contrast, molecular 

graph searches are much better suited to searching for substructures in a conformation-invariant 

manner, such as when looking for hydrocarbon chains that can assume varied configurations in 

space while their molecular graphs stay the same. We note that MOFUN also supports find and 
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replace of substructures that come fully parameterized to use with force fields for molecular 

dynamics (MD) simulations (in particular, for LAMMPS38). By releasing MOFUN as open-source 

and announcing it here, we hope that other researchers will also benefit from this general-purpose 

package and can use it to accelerate and expand their research. 

MOFUN is available on GitHub at https://github.com/WilmerLab/mofun under the open-

source MIT license. The version described in this paper is version 1.0. MOFUN can be installed 

from the GitHub source code, or from PyPI using pip. 

4.2 MOFUN: Algorithm Details 

In this section, we will discuss the implementation of both the find and the replace parts of 

the algorithm. We use the word structure here to mean a set of atoms with (optional) periodic 

boundaries that we want to exhaustively examine for instances of a search pattern. When we find 

an instance of the search pattern in the structure, we call this a match. Every match found can be 

replaced with a replacement pattern. While we use the word structure here because we 

predominantly use MOFUN on periodic crystal lattice structures, the software works equally well 

on molecules or any other aperiodic grouping of atoms. 

To find all instances of a search pattern in a structure, we first calculate the distances 

between all pairs of atoms in the search pattern. For there to be a match of the search pattern in the 

structure, there must be a set of atoms in the structure that share both the same distances (within a 

tolerance), and the same atom elements. Let 𝒓𝑝 be an N-length set of all positions in the search 

pattern. Let 𝒓𝑠 be the set of all atom positions in the structure plus each atom’s periodic images 

from immediately adjacent unit cells. Let 𝒓𝑚 ∈ (𝒓𝑠
𝑵

) be a subset of positions from the structure of 

https://github.com/WilmerLab/mofun
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length N that we will examine as a trial match in the structure. We will refer to specific positions 

in both 𝒓𝑝 and 𝒓𝑚 as 𝒓𝑝,𝑖  and 𝒓𝑚,𝑖, where 𝑖 ∈ [1. . 𝑁] refers to the ith element in the set.  

The trial match 𝒓𝑚 is a good match if three conditions are met. The first condition is that 

the distances (or Euclidian norm denoted by ‖. . ‖) between all pairs of atoms in the trial pattern 

must match their corresponding pairs in the search pattern within a specified tolerance 𝛿.  

∀𝑖, 𝑗 ∈ [1. . 𝑁], |‖𝒓𝑝,𝑖 − 𝒓𝑝,𝑗‖ − ‖𝒓𝑚,𝑖 − 𝒓𝑚,𝑗‖| < 𝛿 (4 − 1) 

If the distance between any pair of atoms differs from its proposed matching pair by an amount 

greater than the tolerance, the trial match is not a match. The tolerance can be set higher or lower 

for cases when a looser or tighter match is appropriate. 

The second condition is that the atom elements for the pattern must be the same as the atom 

elements of the trial match. If we let 𝐸𝑝,𝑖 be the ith element of the pattern and 𝐸𝑚,𝑖  be the ith 

element for the trial match, then: 

∀𝑖 ∈ [1. . 𝑁], 𝐸𝑝,𝑖 = 𝐸𝑚,𝑖 (4 − 2) 

The third condition is that there must exist rotation and translation operations such that when they 

are applied to the search pattern, the atom positions of the search pattern match the atom positions 

in the trial match. This condition is necessary to handle cases of symmetry and chirality in the 

search pattern. For each trial match, we calculate the translation and rotation operations necessary 

to transform the search pattern to the location of the trial match and then we exclude any matches 

where the atom positions of the transformed search pattern are not the same as those in the trial 

match.  

To rotate the search pattern into place, we select three points in the search pattern, two to 

define a direction axis, and the third to use as an orientation point. MOFUN will pick the two 

atoms in the search pattern that are farthest from each other to define the direction axis and it will 
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pick the atom that is farthest from the infinite line defined by the direction axis to be the orientation 

point. If the pattern only contains two atoms, or all the atoms are colinear, then the orientation 

point can be ignored. Rotating the search pattern to align with the match pattern requires two 

rotation transformations: (1) we rotate the search pattern so that the two atoms of the direction axis 

are pointed in the same direction as those same atoms in the match pattern, and (2) we then rotate 

the search pattern around the directional axis to line up the third atom. Since all the atoms should 

now be offset by the location of the match in space, we can translate the search pattern by the 

difference in position between any corresponding pair of atoms between the search pattern and the 

match pattern.  

 

Figure 14: (A) a search pattern for the CH3 group in Octane with counter-clockwise ordering of hydrogens, 

(B) a trial match 1 with matching counter-clockwise ordering of hydrogens, (C) a trial match 2 with non-

matching clockwise-ordering of hydrogens, and (D) the erroneous result from rotating the directional axis 

and orientation point into place when starting with the hydrogens ordered in the reverse direction. 

To demonstrate the problem posed by symmetry, let us consider searching for the CH3 group at 

the ends of an octane molecule. We can define the CH3 search pattern where the directional axis 

is the axis from the carbon to the hydrogen labeled ‘a’, and the orientation point is the hydrogen 

labeled ‘b’ (see Figure 14A). If we search an octane for this pattern, we will find six possible 

matches for each actual CH3 in the structure (or 12 matches total), one for each possible ordering 
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of the hydrogens: abc, acb, bac, bca, cab, cba. If we look at the matches that start with the ‘a’ 

hydrogen–abc, acb–there is a counter-clockwise ordering of atoms (see Figure 14B) and a 

clockwise ordering of atoms (see Figure 14C). If the atoms in the match pattern are ordered 

counter-clockwise like the search pattern then the C-H axis will align the carbon and the ‘a’ H, the 

orientation point will line up the ‘b’ H, and the third H will naturally be in the correct location. 

However, if the match pattern was numbered clockwise, then the ‘b’ H in the match pattern is in 

the location of the ‘c’ H in our search pattern and aligning it will give us a correctly situated ‘b’ 

H, but the ‘c’ H will be in the wrong location (see Figure 14D). For this example, three of the six 

possible trial matches have the same counter-clockwise ordering as the search pattern and are good 

matches, and three trial matches have clockwise ordering and are not matches. Similarly, a chiral 

search pattern in a structure will match either enantiomorph since the distances between all atoms 

are the same regardless of which enantiomorph is found, but only an enantiomorph which matches 

the chirality of the search pattern will be able to be rotated into position of the match pattern.  

Thus, the third condition–that the atom positions of a rotated and translated search pattern 

must be the same as the atom positions of the trial match–removes the bad matches caused by 

symmetric and chiral search patterns. Once we have all the possible good matches, if we still have 

multiple matches for the same group of atoms caused by symmetry, then we randomly pick one of 

the good matches. 

At this stage, inserting the replacement atoms is now straightforward. The replacement 

pattern is defined on the same coordinate system as the search pattern, so to insert the replacement 

pattern into the structure at the right position and orientation, we take the transformations we 

calculated above to transform the search pattern into place and apply them to the replacement 
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pattern. We insert the replacement pattern atoms and topology into the structure, delete the 

matched atoms and existing topology and our find and replace is complete. 

4.3 MOFUN: Optimization and Performance 

Here we describe some subtleties to the implementation of MOFUN that were necessary 

to optimize its performance.  

First, depending on the length of the search pattern, we do not search all the atoms in each 

neighboring unit cell. Searching every atom in a replicated 3x3x3 expanded unit cell could be 

prohibitively inefficient for larger structures, so we limit the set of atoms searched to only those 

within a distance d of one of the boundaries of the original unit cell, where d is the length of the 

search pattern.  

Second, we do not generate all trial matches at once as this would lead to running out of 

memory for all but the smallest systems; instead, we build up trial matches of the search pattern 

one atom at a time. The first atom in the search pattern is matched by finding all atoms in the 

structure that share the same element as the first atom in the search pattern. For each of these 

starting matching structure atoms, we create a set of nearby structure atoms–those atoms that are 

within a box 𝑥 ± 𝑑, 𝑦 ± 𝑑, 𝑧 ± 𝑑 about the matched atom–and precalculate the distances between 

every pair of atoms in this set. To match the second atom, we find all nearby structure atoms that 

match the element of the second search atom and select only the atoms where the distance from 

the second atom to the first atom matches that of the search pattern. Continuing through the search 

pattern one atom at a time, we match all nearby atoms based on their elements, and select only 

those atoms where the distances between the atom and all prior atoms match the distances in the 
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search pattern. At any stage, if there are no viable matches, then we can abort looking for matches 

using this starting element. If we reach the last atom in the search pattern and have built up one or 

more complete matches, then these are added to the list of successful matches. Another advantage 

of generating matches in this manner is that the algorithm can easily be made to operate in parallel, 

where each starting structure atom is run on a separate core. We have not found it necessary to 

implement this yet due to MOFUN’s current performance being more-than sufficient for our needs 

but parallelization is available to us if it becomes necessary.  

 

Figure 15: Time required to find or find + replace all linkers in a UiO-66 unit cell replicated to 2x2x2, 4x4x4, 

5x5x5, 6x6x6, 7x7x7, and 8x8x8. 

The performance of the optimized algorithm is O(N2), where N is the number of atoms in the 

system, and the memory usage is O(M2), where M is the maximum number of atoms within a 

distance d of any other atom. Practically, this means that system size and CPU speed will limit the 

kinds of systems that can be run. Our early naïve implementations took over 10 minutes to search 

for all linkers in a 2x2x2 replicated UiO-66 unit cell–3496 atoms, 192 linkers–and outright failed 

for systems bigger than that due to running out of memory. With the optimized algorithm, we can 

search for and replace all linkers in an 8x8x8 replicated UiO-66 unit cell–221,184 atoms and 
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12,288 linkers–in less than 6 minutes on a single core of an Apple MacBook Pro M1 Pro laptop 

(see Figure 15). This size system greatly exceeds our lab’s current needs of approximately a 4x4x4 

system with 40K atoms for use in thermal conductivity calculations; however, we did run a larger 

find and replace on a 20x20x20 system–3.5M atoms and 192K linkers–and it completed in 15 

hours. Additional optimizations could be implemented if there is a need for a find and replace 

operation at that scale.  

4.4 MOFUN: Usage Details 

Structures, search patterns, and replacement patterns can be defined directly in Python, or 

loaded in from a CML file (for typical output from Avogadro86), a P1 CIF file, a LAMMPS38 data 

file, or from any file format supported by the ASE89 package, such as XYZ, PDB, RES, etc. 

Structures can be defined with either a cubic or triclinic unit cell. MOFUN supports reading and 

writing LAMMPS data files directly, including the LAMMPS pair, bond, angle, dihedral, and 

improper styles and all coefficients necessary for defining a flexible force field. When using a 

parameterized LAMMPS data file as a replacement pattern, MOFUN can insert the appropriate 

force field terms for all interactions into the resulting structure file. MOFUN also supports 

optionally replacing only a fraction of the search pattern matches found in a structure. A 

replacement fraction can be defined so that only a given % of matched search patterns will be 

replaced. All features can be used via the Python interface, and a command line tool is also 

included that handles many common use cases.  

One of the more advanced features of MOFUN is that it can manage structure topology 

and force field parameters for flexible force fields and apply them correctly when inserting a 
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parameterized replacement pattern into a structure. This supports the insertion of two-body pair 

and bond potentials, three-body angle potentials, and four-body dihedral and improper potentials, 

as defined by LAMMPS. For each defined potential in the replacement pattern, the atoms that 

make up the potential and the potential type are inserted into structure alongside the replacement 

pattern atom positions and types. If the structure already has defined topology, then any topology 

associated with the search pattern is deleted along with its atoms prior to insertion of the 

replacement pattern, with one very important exception: if any of the atoms are shared between 

both the search pattern and the replace pattern (i.e. if the atoms share the same element and 

position), then any force field potentials defined on these atoms are overridden, rather than deleted 

and replaced. This is necessary to handle parameterizing a structure like the one shown below in 

Example 3, or when using find and replace to override the force-field terms in part of a structure 

while leaving the structure intact. If the replacement pattern defines the potential parameters (i.e. 

via a “* coeffs” section in the LAMMPS data file), then the potential parameters will also be 

carried forward into the resulting structure. While this only supports LAMMPS data files (and 

direct code in Python) at the moment, this is primarily because there is no standardized file format 

that is commonly-used to define periodic molecular structures along with full topological data and 

force-field parameters. For LAMMPS users such as ourselves, writing to a LAMMPS data file is 

extremely convenient as we can immediately simulate systems after find and replace; for users of 

other simulation packages, the LAMMPS data file should contain sufficient information to be 

converted into the file formats required by other simulation packages.   
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4.5 Examples 

 

Figure 16: (A) search pattern and search structure (a “slice” of UiO-66), (B) example 1 resulting structure 

after find and replace using a replacement pattern with an added OH functional group, and (C) example 2 

resulting structure after find and replace using a replacement pattern of a defective linker (two capping 

formate groups), as applied to 25% of the linkers. 

We have chosen three examples to demonstrate MOFUN’s capabilities: (1) functionalizing the 

MOF UiO-66, (2) adding defects to UiO-66, and (3) fully parameterizing UiO-66 across periodic 

boundary conditions starting with an unparameterized UiO-66 structure and parameterized metal 

center and linker fragments. These examples are also available online with all supporting files and 

there is expanded guidance in the software’s documentation. Since MOFUN is living software, the 

syntax shown below may change and/or additional features may be added in the future. When in 

doubt, please refer to the online documentation. For each example, we describe the process we 
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used to prepare files and run the find / replace; we include this level of detail so the example 

properly illustrates what the task involves, but a user does not have to follow this process exactly.  

4.5.1 Example 1: Functionalizing linkers in UiO-66 

The first example is how to use find and replace to functionalize a structure. We will take 

the MOF UiO-66 (Figure 16A) and functionalize all linkers with hydroxyl groups (Figure 16B). 

We will need a structure file for UiO-66 and files for a standard UiO-66 linker and a linker 

functionalized with the hydroxyl. To create the UiO-66 linker file, we used Vesta90 to pick one 

linker in the structure, deleted all other atoms, then exported to a file format that Avogadro86 can 

read. We opened the file in Avogadro and saved as CML. The replacement pattern needs to lie in 

the same coordinate system as the search pattern. The easiest way to do this is to start with the 

search pattern and simply not move any of the atoms unless you intend to move them with the 

replacement operation. We took the search pattern CML, replaced one of the hydrogens on the 

linker with an oxygen atom, and added the attached hydrogen to make the hydroxyl. We used 

Avogadro's "Fix Selected Atoms" feature to prevent all the atoms from moving except for the 

newly added ones, then ran optimize structure to let the OH group find a more appropriate position. 

If you do not fix all the atoms except for the hydroxyls, many of the atoms will move when you 

optimize and the atoms of your replacement pattern will not correspond to the same atoms in the 

search pattern. Once all the files are prepared, you can run MOFUN either using the Python 

interface or the command line interface. For Python:  
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from mofun import Atoms, replace_pattern_in_structure 

 

structure = Atoms.load("uio66.cif") 

uio66_linker = Atoms.load("uio66-linker.cml") 

uio66_linker_oh = Atoms.load("uio66-linker-oh.cml") 

 

structure_oh = replace_pattern_in_structure(structure, uio66_linker, uio66_linker_oh) 

structure_oh.save("uio66-oh.lmpdat") 

From the command line:  

mofun uio66.cif uio66-oh.cif --find uio66-linker.cml --replace uio66-linker-oh.cml 

When we are functionalizing a MOF using find and replace, we are typically replacing a pattern 

that has fewer atoms with a pattern that has more, and the larger the functional group is in the 

replacement pattern, the more likely that functional groups from different linkers will overlap. This 

may not be a problem, for example, when adding hydroxyl groups to the linker in UiO-66, but if 

one were to add more bulky functional groups overlap would likely occur. The replacement 

operation inserts the functional group exactly as specified, and the resulting structure may need to 

be relaxed using molecular dynamics for the functional group to find a more reasonable 

configuration. When we are adding bulky functional groups to a structure, we create a replacement 

pattern where the functional groups are tightly placed near the linker, as much parallel to the linker 

as possible, to limit any overlapping with functional groups on other linkers. While this tight 

configuration may be high in energy, since we then relax the structure using a flexible force field, 

the functional groups can relax into a lower energy configuration.  

4.5.2 Example 2: Adding defects to UiO-66 

While we often assume a MOF is perfectly formed when we evaluate it computationally, 

it is well known that synthesized MOFs have a variety of defects, typically missing linkers or 

missing metal centers or both.91–93 Missing linker defect rates of 5-20% is normal, depending on 
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what MOF is being synthesized and the experimental synthesis method used. With MOFUN, we 

can search for a linker and replace it with a defect site, typically just a pair of capping groups–such 

as two formates–on the metal centers the linker was formerly connected to. Since MOFUN 

supports replacing a specified fraction of all instances of a pattern found in a structure, we can 

create structures with varying defect densities. 

For this example, we will introduce defects into UiO-66 by randomly removing 25% of the 

linkers from the structure. We will first replicate the structure to a 2x2x2 so it fulfills minimum 

image conventions, which needs to be done before adding defects so that the defects aren't repeated 

in the structure. We can reuse the structure and search pattern files fro/m example 1, but we will 

need to create a replacement pattern from the search pattern where the biphenyl ring is removed 

and replaced with formate caps where the linker would attach to the metal center (see Figure 16C). 

This replacement pattern can be created in a similar manner to that described in example 1.  

To generate a structure with 25% defects, in Python: 

from mofun import Atoms, replace_pattern_in_structure 

 

structure = Atoms.load("uio66.cif").replicate((2,2,2)) 

uio66_linker = Atoms.load("uio66-linker.cml") 

uio66_linker_defective = Atoms.load("uio66-linker-defective.cml") 

 

defective = replace_pattern_in_structure(structure, uio66_linker, uio66_linker_defective, replace_fraction=0.25) 

defective.to_ase().write("uio66-defective.cif") 

From the command-line: 

mofun uio66.cif uio66-defective.cif -f uio66-linker.cml -r uio66-linker-defective.cml --replicate 2 2 2 --replace-fraction=0.25 



 

 75 

4.5.3 Example 3: Parameterizing UiO-66 with flexible force field terms 

 

Figure 17: when parameterizing a structure using two parameterized patterns, for all two-body bond terms 

b1..bn to be replicated, the patterns must share an atom, for all three-body angle terms a1..an to be replicated 

the patterns must share two atoms, and for all four-body dihedral terms d1..dn to be replicated the patterns 

must share three atoms. 

For some simulations of gas adsorption in MOFs, it is common to assume the positions of the 

structure’s atoms are fixed and only the adsorbate gases move.94 However, we do not always want 

to assume this (e.g. for thermal conductivity calculations,41 which require the atoms to move for 

heat to transfer), and many flexible force-fields have been developed that enable structures to flex 

and move.83,95–99 Despite these force-fields already existing, it can be challenging and time 

consuming to apply these force-fields to new structures: one needs to define atom types for every 

atom in the system, all topology required by the force field, and all force field parameters across 

the entire system, which may be tens of thousands of atoms and topology terms. This is a 

significant amount of work to do manually. There have been attempts to automate this,100 but it is 



 

 76 

hard to automate this process effectively and still allow for the parameter assignment process to 

be easily modified so that a researcher can validate and fix any parameter assignment issues when 

the automated system doesn’t assign reasonable parameters. Even if one starts with a fully and 

correctly parameterized structure, expanding the structure to a larger number of unit cells can also 

be non-trivial, because bonds that cross periodic boundaries need to be “remapped” across the new 

periodic boundaries of the larger, expanded unit cell in order to run a LAMMPS simulation.  

One tactic to overcome these challenges for structures that can be deconstructed into 

distinct parts is to assign force-field parameters to the constituent parts of the structure and then 

use find and replace to apply the force field to the entire structure. In this example, we apply this 

technique to MOFs: we assign parameters to a MOF’s metal center and linker and then replace all 

unparameterized metal centers and linkers in the full structure with their corresponding 

parameterized versions.  

The patterns for the parameterized linker and the parameterized metal center will need to 

overlap; every desired force-field term will need to be included fully in at least one of the patterns 

so some atoms and force-field terms will be defined in both files. For 2-body terms, only the atom 

that connects the metal center to the linker needs to be shared between the patterns. For 3-body 

(angle) or 4-body (dihedral / improper) terms there will need to be two or three atoms of overlap, 

respectively (see Figure 17). Linker and metal center files can be prepared similarly to Example 1 

above and parameterized manually, or possibly in an automated manner using the rough UFF 

parameterizer included in MOFUN (information on the UFF parameterizer is beyond the scope of 

this paper, but can be found in the documentation online), or with other packages.100 For Python:  
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from mofun import Atoms, replace_pattern_in_structure 

 

structure = Atoms.load("uio66.cif") 

uio66_linker = Atoms.load("uio66-linker-Zr.cml") 

uio66_linker_params = Atoms.load("uio66-linker-Zr-parameterized.lmpdat") 

uio66_mc = Atoms.load("uio66-metal-center.cml") 

uio66_mc_params = Atoms.load("uio66-metal-center-parameterized.lmpdat") 

 

param1 = replace_pattern_in_structure(structure, uio66_mc, uio66_mc_params) 

param2 = replace_pattern_in_structure(param1, uio66_linker, uio66_linker_params) 

param2.save("uio66-parameterized.lmpdat") 

From the command-line:  

mofun uio66.cif uio66-param1.lmpdat --find uio66-metal-center.cml \ 

--replace uio66-metal-center-parameterized.lmpdat 

 

mofun uio66-param1.lmpdat uio66-parameterized.lmpdat --find uio66-linker-Zr.cml \ 

--replace uio66-linker-Zr-parameterized.lmpdat 

4.6 Conclusion 

MOFUN is an open-source Python package for generalized molecular find and replace. In 

our own lab, this is enabling us to quickly screen MOFs with various functional groups at different 

defect percentages, and easily apply force field parameters to structures. MOFUN is a great tool 

for automation, but there are some limitations. While MOFUN fully supports force-fields defined 

in LAMMPS, there is no inherent format support for other molecular packages, except for 

outputting CIF files containing topology and force-field parameters. When doing a replacement 

operation, MOFUN places the replacement atoms exactly as specified and does not check if this 

placement overlaps with other atoms in the system, so using MOFUN requires the researcher to 

setup the find and replace operation in a reasonable manner and potentially relax the system after 

the replace operation. At present, MOFUN is primarily optimized for smaller systems (< 40K 
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atoms), though still works (albeit, more slowly) for larger systems. By making this code available 

to other labs, we hope that this will enable other labs to perform more ambitious screening and 

simulation studies.  
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Metal-organic frameworks (MOFs), along with other novel adsorbents, are frequently 

proposed as candidate materials to selectively adsorb CO2 for carbon capture processes. However, 

adsorbents designed to strongly bind CO2 nearly always bind H2O strongly (sometimes even more 

so). Given that water is present in significant quantities in the inlet streams of most carbon capture 

processes, a method that avoids H2O competition for the CO2 binding sites would be 

technologically valuable. In this paper, we consider a novel core-shell MOF design strategy, where 

a high-CO2-capacity MOF “core” is protected from competitive H2O-binding via a MOF “shell” 
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that has very slow water diffusion. We consider a high-frequency adsorption/desorption cycle that 

regenerates the adsorbents before water can pass through the shell and enter the core. To identify 

optimal core-shell MOF pairs, we use a combination of experimental measurements, 

computational modeling, and multiphysics modeling. Our library of MOFs is created from two 

starting MOFs–UiO-66 and UiO-67–augmented with 30 possible functional group variations, 

yielding 1,740 possible core-shell MOF pairs. After defining a performance score to rank these 

pairs, we identified 10 core-shell MOF candidates that significantly outperform any of the MOFs 

functioning alone.  

5.1 Introduction 

Negative emissions technologies such as direct air capture (DAC) are necessary to limit 

planetary warming.3 There are now several companies with DAC pilot plants, such as 

ClimeWorks, Carbon Engineering and Global Thermostat, whose processes are based on aqueous 

or solid sorbents that capture CO2 and a vacuum or temperature swing to regenerate the sorbent 

that utilizes waste heat.9,10,12–16 However, scaling these pilot plants from the current total of 6,500 t 

CO2 /year to the required scale of >12 Gt CO2 / year is a non-trivial process that will strain global 

resource limitations on water, energy and land.5 To make the resource cost of DAC more 

manageable, there need to be novel breakthroughs in both material design and process design.  

DAC technologies typically consist of either solvents or sorbents that remove CO2 from 

the atmosphere, where it is present a very low concentration (~400 ppm). Most sorbents require 

lower regeneration temperatures but larger facilities to obtain the same capture capacity as their 

solvent counterparts.101–104 It is possible to reduce a sorbent-based DAC facility’s size and capture 
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cost by improving the sorbent through chemical functionalization or coupling the sorbent with an 

additional material, either via surface coatings or impregnation. In prior work, a composite 

material of the metal-organic framework (MOF) NbOFFIVE-1-Ni@PA affixed to the surface of 

polyacrylate (PA) led to a CO2 loading capacity improvement of 10.8% relative to the lone 

MOF.105 Additionally, coupling sorbents, which typically have poor thermal conductivities, with 

unorthodox processes has been shown to lead to lower regeneration duty requirements. For 

example, microwave-assisted desorption of CO2 saturated Lewatit VP OC 1065 (benzylamine-

functionalized, porous polystyrene particles) showed marked improvement in productivity 

compared to temperature and/or pressure swing desorption due to the use of radiative heating.106   

Here we consider novel MOF designs to achieve higher performance in a DAC process. 

MOFs are a promising and very tunable class of materials; inorganic metal centers and organic 

ligands can be combined in different ways to create porous materials of varying geometries and 

surface chemistries.85 Over 90,000 MOFs have been synthesized to date35 and have demonstrated 

uses for gas storage, gas separation, catalysis and more.107 However, it can still be difficult to 

design a single MOF that fulfills all of the requirements of a challenging process. One particular 

challenge of using MOFs in a DAC process is that water is present in the atmosphere at higher 

concentrations than CO2, and typically adsorption sites that bind strongly to CO2 bind even more 

strongly to H2O, leading to unfavorable competitive adsorption. The presence of water may also 

negatively affect the stability of the MOF.108–110 A MOF with otherwise very high CO2 / N2 

selectivity may not be viable under humid conditions for a DAC process.  

One means of addressing this problem is by constructing a stratified MOF,111 the simplest 

being a “core-shell” MOF consisting of a core MOF surrounded by a shell of another MOF.112 The 

resulting composite material can exhibit unique properties that neither individual MOF possesses. 
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The first core-shell MOFs were synthesized in 2009113,114 and core-shell MOFs have shown 

promise for a number of applications112 and specifically for CO2 separation and capture.115–117 

Furthermore, a vast quantity of different stratified MOFs is possible from even a small 

basis set of individual chemical components. The properties of such MOFs would derive from the 

compositions of the individual strata and the sequence of those strata in the hierarchical structure. 

It would be time-consuming and impractical to synthesize every possible combination of materials 

to identify ideal strata compositions and sequences for a specified process and set of properties. 

We can greatly accelerate this discovery process by computationally screening a wide set of 

materials to identify promising MOFs and combinations to pursue in the lab. To the best of our 

knowledge, there have not been any attempts to develop a core-shell MOF process for CO2 capture, 

or to attempt to identify promising core-shell MOF candidates computationally.  

 

Figure 18: Overview of the strategy for designing optimal core-shell MOFs for DAC. A library of MOFs are 

combinatorically assembled into all of the possible core-shell MOF pairs, and then each pair is 

computationally evaluated to find candidates for experimental synthesis. Optimal designs should prevent H2O 

from reaching the core while allowing for significant CO2 adsorption in the core. Note that we include in our 

consideration core-shell MOF “pairs” where the core and the shell are the same MOF. 
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Figure 19: UiO-67 (left) and UiO-66 (right) structures showing biphenyl and phenyl ligands. 

The purpose of this work is to identify core-shell MOFs that outperform their constituent MOFs 

in a DAC process. We define a ranking methodology to score all potential core-shell MOF pairs 

and identify 10 core-shell MOF pairs that have a performance at least 25% greater than their core 

or shell individually. 

Certain selected MOFs were synthesized experimentally and their single component N2, 

CO2, and H2O isotherms were collected. Sorption selectivities were calculated and compared to 

predictions to validate the computational approach. One core-shell MOF combination, 

amino1⊂methyl2, was then simulated in COMSOL Multiphysics® to demonstrate the core-shell 

concept at the pellet scale. 
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5.2 Methodology 

5.2.1 Overview 

We chose UiO-66 and UiO-67118 (Figure 19) as our base MOFs (original MOFs that will 

be modified with different functional groups) because they are good candidates for CO2 capture 

due to their high adsorption selectivity of CO2 over N2.109,119 To create our MOF library, we 

substituted one or more hydrogens on the linkers with 16 functional groups (see Figure 20). For 

many of the functional groups, we allowed for substitution either once or twice per linker, resulting 

in 30 different forms of each base MOF. Because the base MOFs UiO-66 and UiO-67 have 

different unit cell sizes, a core-shell MOF can’t be a mix of both MOFs; the core-shell MOF must 

be composed of one kind or the other. However, 30 functional variations per base MOF makes 

possible about 302 core-shell MOF combinations per base MOF. 

 

Figure 20: Chemical diagrams of functional groups used to modify UiO-66 and UiO-67 linkers. 
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5.2.2 Idealized Adsorption/Desorption Cycle 

In this study, we assume an idealized adsorption/desorption cycle (as shown in Figure 21), 

where the adsorption step is carried out over a time scale such that CO2 saturates the core MOF 

but before water is able to diffuse through the shell MOF. In our model process, we assume that 

spherical pellets of a core-shell MOF are arranged in a shallow bed reactor, such that every pellet 

is exposed simultaneously to the input gas stream at the onset of the adsorption step. The input gas 

stream is assumed to be atmospheric temperature, pressure, and humidity, all of which depend on 

the time of day, the season of year, the weather, and other factors. For the purposes of this model, 

we are assuming the input gas stream is 298K, with partial pressures of 42 Pa CO2, 79 kPa N2 and 

50% relative humidity. 

With a shell that allows for faster CO2 diffusion as compared to water, the CO2 will reach 

the core before the water. The results of this process are dependent on the exact timing of the 

switch from adsorption to regeneration: too early and very little CO2 reaches the core, too late and 

both the core and shell reach equilibrium loading (i.e., where the core would be saturated with 

H2O). In both cases, there would be no benefit to using a core-shell MOF design. Therefore, a 

core-shell MOF process requires thoughtful design and timing to be effective. 
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Figure 21: Schematic overview of our idealized adsorption/desorption cycle process used to investigate core-

shell MOF candidates. We assume 100% evacuation of adsorbed gases during the desorption step, which can 

be mediated via imposing a vacuum or raising the temperature (or both), but in this idealized model the 

specific desorption conditions are intentionally ignored. 

In this work we are sizing the pellets so that the water in the input gas stream breaks through into 

the core at 100 seconds, at which time the pellets are regenerated. For simplicity, we assume 100% 

evacuation of all gases during the regeneration step, and so in this idealized model wo do not 

specify whether desorption is due to imposing a vacuum, raising of the temperature of the reactor 

bed, or both.  

For this process to be selective for CO2, the shell MOF of the pellet must be diffusion-

selective for CO2 over H2O, and the core MOF must be adsorption-selective for CO2 over N2. This 

process is designed to allow different core-shell MOF combinations to be directly compared, and 

as a proof of concept demonstrating the viability of using a core-shell MOF for direct air capture. 

5.2.3 Experimental 

To compare with the simulation results, five MOFs, UiO-67, amino1-UiO-67, amino2-UiO-

67, methyl1-UiO-67, and methyl2-UiO-67 were synthesized and characterized. The structures, 

compositions, and porosities of these MOFs were determined. CO2, N2 and water vapor sorption 
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isotherms at 298 K were collected, and these data were then used to calculate experimental 

adsorption selectivity (see Appendix B.2).  

5.2.4 Determination of Water Breakthrough Times and Pellet Loadings 

First, we calculate the breakthrough time of water according to the system shown in Figure 

22. Let 𝑥 = 0 be the boundary between the core-shell MOF pellet and the gas stream, let 𝑥 = 𝑥0 

be the boundary between the core MOF and the shell MOF, and let 𝑥 = 𝑥1 be an arbitrary limit to 

the core MOF. The concentration profile of a gas in this system can be calculated using the 

diffusion equation, a Dirichlet boundary condition at 𝑥 = 0, and a Neumann boundary condition 

at 𝑥 = 𝑥1: 

 
𝜕𝑐𝑔𝑎𝑠

𝜕𝑡
= 𝐷𝑔𝑎𝑠

𝜕2𝑐𝑔𝑎𝑠

𝜕𝑥2  (5 - 1) 

 At 𝑥 = 0, 𝑐𝑔𝑎𝑠 = 𝐴𝑔𝑎𝑠,𝑒𝑞 (5 - 2) 

 At 𝑥 = 𝑥1, 
𝜕𝑐𝑔𝑎𝑠

𝜕𝑥
= 0 (5 - 3) 

Here, cgas is the concentration of the gas, Dgas is the diffusivity of the gas, and Agas,eq is the 

equilibrium adsorption of the gas in the shell MOF. This partial differential equation can be solved 

analytically and is used to determine breakthrough times for both CO2 and H2O at 𝑥 = 𝑥0.  
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Figure 22: A 1-D infinite slab model of the outer region of a core-shell MOF used to estimate breakthrough 

times and fluxes of both H2O and CO2. 

There are two major notes to consider here. The first is that the properties of the core are not being 

considered at this point, and the diffusivity of the shell is applied across the entire system 0 ≤ 𝑥 ≤

 𝑥1. The rationale for including a core region, even though we are only interested in calculating 

shell properties, is to allow the concentrations and fluxes at the core-shell boundary to vary (i.e., 

not to be fixed) while maintaining simple boundary conditions elsewhere. For calculating 

breakthrough times through the shell, the diffusivity of the core should not significantly affect this 

calculation, and this simplification is necessary in order to evaluate a shell independently from a 

core. The second note to consider is that we are explicitly using the infinite slab version of the 

diffusion equation, not the spherical form. This is because we will be sizing the particles based on 

the results of the calculated breakthrough times so the radius of the core and the thickness of the 

shell are not known in advance. A more detailed 2D multi-physics model with spherical geometry 

is described below in Section 4.3.6. 

We define the breakthrough time of a gas into the core as the smallest time (𝑡 = 𝜏𝑔𝑎𝑠) such 

that 𝑐𝑔𝑎𝑠(𝑥 = 𝑥0, 𝜏𝑔𝑎𝑠) ≥  0.01 ⋅ 𝑐𝐶𝑂2,𝑒𝑞. In other words, the breakthrough time of a gas (𝜏𝑔𝑎𝑠) 
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occurs when the concentration of the gas (𝑐𝑔𝑎𝑠) at the core-shell MOF boundary (𝑥0) is greater 

than 1% of the equilibrium loading of CO2 (𝑐𝐶𝑂2,𝑒𝑞). 

For each core-shell MOF, the thickness of the shell (𝑥0) is chosen so that the breakthrough 

time of H2O (𝜏𝐻2𝑂) equals 100 seconds. The breakthrough time of CO2 (𝜏𝐶𝑂2
) is calculated using 

this 𝑥0. We assume a flux of CO2 through the shell to the core based on the solution diffusion 

model. 

  𝑗 =
𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦

 𝑠ℎ𝑒𝑙𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
=

𝐴𝐶𝑂2,𝑒𝑞𝐷𝐶𝑂2

𝑥0
 (5 - 4) 

The core is sized so that at 100s the core will be fully loaded with CO2, given the flux j and 

assuming the core-shell MOF is a sphere. At 100s, the total loading of H2O in moles (𝑀𝐻2𝑂) is 

calculated as the surface area of the core with radius (𝑟𝑐𝑜𝑟𝑒) multiplied by the integral of the 

concentration profile: 

 𝑀𝐻2𝑂 = 4𝜋𝑟𝑐𝑜𝑟𝑒
2 ∫ 𝑐𝐻2𝑂(𝑡 = 100𝑠)

𝑥0

0
 𝑑𝑥 (5 - 5) 

We assume N2 reaches equilibrium loading in both the shell and core, 𝑀𝑁2
= 𝐴𝑁2,𝑒𝑞,𝑠ℎ𝑒𝑙𝑙 ⋅ 𝑉𝑠ℎ𝑒𝑙𝑙 +

 𝐴𝑁2,𝑒𝑞,𝑐𝑜𝑟𝑒 ⋅ 𝑉𝑐𝑜𝑟𝑒 , and CO2 reaches equilibrium loading only in the core: 𝑀𝐶𝑂2
= 𝐴𝐶𝑂2,𝑒𝑞,𝑐𝑜𝑟𝑒 ⋅

𝑉𝑐𝑜𝑟𝑒. In this calculation, CO2 loading of the shell is intentionally neglected because we assume 

H2O will out-compete CO2 for binding sites (note that this is a conservative assumption, as any 

CO2 captured in the shell would improve process performance). At 100 seconds the core-shell 

MOF is regenerated and complete evacuation of all N2, CO2 and H2O in the core-shell MOF is 

assumed. 



 

 90 

5.2.5 Scoring of Core-Shell MOF Pairs 

Core-shell MOFs are scored as the output stream CO2 concentration of the core-shell MOF 

divided by the output stream CO2 concentration of standalone UiO-67:  

 𝑠𝑐𝑜𝑟𝑒 =
(

𝑀𝐶𝑂2
𝑀𝐶𝑂2

+𝑀𝐻2𝑂+𝑀𝑁2
)

𝐶⊂𝑆

(
𝑀𝐶𝑂2

𝑀𝐶𝑂2
+𝑀𝐻2𝑂+𝑀𝑁2

)
𝑈𝑖𝑂67

 (5 - 6) 

C⊂S denotes the core⊂shell MOF (e.g. trifluoromethyl2⊂amino1). This gives us a dimensionless 

number where values are a multiple (or fraction) of the CO2 concentration in the output stream of 

a non-functionalized non-core-shell MOF UiO-67 under the same process. The main purpose of 

the scores is not to predict the absolute CO2 concentration of the output gas stream but to be able 

to fairly compare different core-shell MOF pairs and rank them compared to each other and the 

individual core and shell that they are composed of. 

For the core to saturate with CO2 by the breakthrough time of water, the CO2 diffusivity of 

the core must be similar to the CO2 diffusivity of the shell. To ensure that we are only pairing 

shells with cores that have comparable CO2 diffusivity, we set the score to 0 for any core that has 

CO2 diffusivity < 1/10 that of the shell. 

5.2.6 COMSOL Multiphysics® Modeling 

A multiphysics model of a spherical core-shell pellet was developed in COMSOL 

Multiphysics® to simulate the diffusion and adsorption of CO2 and H2O in a macro-scale core-

shell MOF. This model is 2D-axisymmetric along the centerline of the pellet, as shown in Figure 

23. The core size and shell thickness for a given core-shell MOF was chosen to match the same 
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properties in our scoring model. For the example amino1⊂methyl2, this is a 0.453 cm radius core 

and a 0.04 cm thickness shell. 

 

Figure 23: Setup of COMSOL Multiphysics® model of a single core-shell spherical pellet. Air flows in from 

the bottom over a 0.453 cm radius core + 0.04 cm thick shell pellet.  

Adsorption of CO2, N2 and H2O was modeled in COMSOL by curve-fitting the following 

Langmuir equation to experimental isotherm data: 

 𝐶𝑃,𝑖 =
𝐶𝑃,𝑚𝑎𝑥,𝑖⋅𝐾𝐿,𝑖⋅𝐶𝑖

1+𝐾𝐿,𝑖⋅𝐶𝑖
 (5-7) 

where 𝐶𝑃,𝑖 [mol/kg] is the concentration of gas adsorbed, 𝐶𝑃,𝑚𝑎𝑥,𝑖 [mol/kg] is the maximum amount 

of gas the MOF can hold, 𝐾𝐿,𝑖 [m3/mol] is the Langmuir constant, and 𝐶𝑖 [kg/m3] is the 

concentration of available gas to adsorb. The Langmuir curve fits along with the fitted values for 

the constants in this equation are provided in Appendix B.3.  
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5.2.7 Adsorption and diffusion simulations 

For every functionalized MOF, we ran molecular dynamics simulations in the NVT 

ensemble and calculated self-diffusion coefficients for CO2, N2, and H2O. We also performed 

grand canonical Monte Carlo (GCMC) simulations to calculate adsorption of CO2 and N2 and used 

the Widom insertion method120 to determine Henrys constants for H2O. CO2 and N2 were modeled 

using the TraPPE82 force field parameters and H2O was modeled using TIP4P121,122. Framework 

charges were calculated using EQeq123 and the framework atoms were modeled with Lennard-

Jones parameters from UFF.83 Experimental N2, CO2, and H2O isotherms were collected and the 

Henry’s constant selectivities were calculated for comparison to the computational results. We 

employed custom force-field parameters for the NH2-CO2 interaction to better reflect 

chemisorption. Full details can be found in Appendix B.1. 

5.3 Results and Discussion 

Molecular simulations of gas adsorption and diffusion were carried out on all MOFs, 

followed by calculations using a 1-D infinite slab model to determine water breakthrough times in 

every shell MOF candidate. These various data were then used to score every core-shell MOF 

combination in order to rank them from best to worst. In addition to validating the simple 1-D slab 

model using finite element modeling with COMSOL Multiphysics®, we also synthesized certain 

MOF combinations and measured the adsorption of CO2 and N2. 

Calculated gas loadings varied from about 1e-2 to 1e1 V/V (cm3 gas STP / cm3 framework) 

with most functional groups having N2 loading > H2O loading > CO2 loading (see selected MOFs 
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in Figure 24a). This ordering follows the relative partial pressures of each species in the ambient 

environment. The fluorinated groups fluoro8 and trifluoromethyl2 are notable exceptions, showing 

very high H2O loading. Diffusivities varied more widely, from about 1e-7 to 3e-2 Å2 / fs, with most 

MOFs having a N2 diffusivity > CO2 diffusivity > H2O diffusivity (see selected MOFs in Figure 

24b). There are some MOFs that do not show the same diffusivity ordering, but those have very 

low diffusivity and very high uncertainty, such as cyclohexylamino2.  

 

Figure 24: (a) Gas loadings of CO2, N2 and H2O for selected MOFs based on UiO-67. Vertical lines are the 

amount of each gas in the atmosphere. (b) Diffusivities of CO2, N2 and H2O for selected MOFs based on UiO-

67, with error bars to 95% confidence interval. 

The simulated gas loadings can be validated by comparing the adsorption selectivity of CO2/ N2 

calculated using both the predicted gas loadings and the experimentally measured gas loadings 

(see Appendix B.2.4.5 ). The predicted selectivities exhibit a similar trend within UiO-67, methyl-

UiO-67, methyl2-UiO-67 and UiO-67, amino-UiO-67, amino2-UiO-67, respectively (Appendix 
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Figure 12-Appendix Figure 13). However, when comparing amino- and methyl- functionalized 

MOFs, the simulation and experimental results do not follow a similar trend (Appendix Figure 14-

Appendix Figure 15), prior to our adjustment of the NH2-CO2 interaction force field terms, which 

is due to chemisorptive effects not being modeled in the non-adjusted simulation model. Overall, 

general agreement between experimentally and computationally derived selectivities provides 

confidence that our models can be reasonably used to rank candidate MOF materials. 

For UiO-66, there was no observable diffusion in 21 of 28 functionalized structures at the 

timescales simulated; this is likely because the pore size of UiO-66 is too small to reasonably pack 

larger functional groups into the empty space, leaving no room for a gas to diffuse through a rigid 

framework. Of the remaining functionalized structures, only one has a positive diffusive selectivity 

for CO2 over H2O: fluoro4-UiO-66. However, this fluorine group has a very high adsorption of 

water, which will cause the perm-selectivity of CO2/H2O to be less than one, making it selective 

for water over CO2. Therefore, none of the screened UiO-66-based MOFs are suitable as 

candidates for the shell. Since the layers within stratified MOFs should have similar unit cell 

parameters, we therefore will only be considering and scoring UiO-67 functional groups as 

potential core-shell MOFs. 

For UiO-67, some of the denser functional groups, such as the hydrocarbons with two 

groups per linker reported no diffusion, likely due to similar causes as UiO-66. For all other groups, 

we have diffusivity data, and largely all structures are diffusion selective for CO2 over H2O. There 

are many different functionalized UiO-67 structures to choose from for a core-shell MOF. 

Diffusivities and gas loadings for all functionalized MOFs can be seen in in Appendix Figure 4-

Appendix Figure 5.  
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Figure 25: Scores for all UiO-67-based core-shell MOF combinations (excluding any MOF where all core-shell 

MOFs derived from it had scores less than 1.0). Black boxes are a guide to highlight the scores for non-core-

shell MOFs under the same process. Numbers indicate every core-shell MOF combination where the 

combination has a higher score than both MOFs that compose it. Bold numbers show combinations with at 

least a 25% higher score than both MOFs that compose it. 

When evaluating UiO-67-based core-shell MOF scores, we are looking for two things: (1) a score 

that is higher than both its individual core or shell under the same process, and (2) a high absolute 

score. Scores for all core-shell MOF combinations are shown in Figure 25: Scores for all UiO-67-

based core-shell MOF combinations (excluding any MOF where all core-shell MOFs derived from 
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it had scores less than 1.0). Black boxes are a guide to highlight the scores for non-core-shell MOFs 

under the same process. Numbers indicate every core-shell MOF combination where the 

combination has a higher score than both MOFs that compose it. Bold numbers show combinations 

with at least a 25% higher score than both MOFs that compose it. and there are examples of core-

shell MOFs that outperform their constituent core and shell, and core-shell MOFs that 

underperform.  

The top 10 core-shell MOFs that most outperform their constituent core and shell are 

shown in Table 6. The shell MOFs are varied, but the core MOFs are dominated by the two 

fluorinated groups, trifluoromethyl2 and fluoro8. Both fluorinated MOFs are entirely non-viable as 

a standalone MOF for either a diffusion-based or adsorption-based separation process. Their 

affinity for water makes them perm-selective for water over CO2 and hence cannot be used as a 

membrane or shell, and the water loading also makes them adsorption-selective for water over CO2 

so they cannot be used by themselves in a standalone adsorption process. However, because they 

have a higher CO2/N2 adsorption selectivity than most of the other MOFs in our dataset, they can 

be paired with almost any other MOF to improve on that MOF’s performance. The top three 

improved core-shell MOFs are trifluoromethyl2⊂amino1, trifluoromethyl2⊂hydroxy2, and 

fluoro8⊂hydroxy2, all of which show improvement greater than 40% over the score of the 

standalone shell under the same process. This is a prime example of how pairing two MOFs into 

a core-shell MOF can make it possible for one to mitigate the negative traits of the other, thereby 

unlocking its positive traits. 
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The three highest scoring core-shell MOF combinations (see Table 7) have an amine shell and 

three different cores: butoxy2, cyclohexylamino1, and trifluoromethyl2. All three of these show 

some improvement over their individual core and shells, from 5-7%. The next seven highest-

scoring pairs do not show improvement over their individual core and shells, and in some cases, 

such as cyclohexylamino1⊂cyclohexylamino1, butoxy2⊂butoxy2, and amino2⊂amino2, the core 

and shell are the same MOF. All three of these MOFs have high adsorption selectivity for CO2 / 

N2 and high diffusion selectivity for CO2 / H2O, making them good candidates for this process 

when not part of a core-shell MOF. If it is possible to find a MOF with both properties we want, 

then this will always be a simpler approach than synthesizing a core-shell MOF.   

Table 6: Top ten core-shell MOFs by greatest improvement over scores of their core and shell individually. 

# Core MOF Shell MOF Score 

(core-only) 

Score 

(shell-only) 

Score 

(core-shell) 

Improvement 

1 trifluoromethyl2 amino1 < 0 2.10 3.11 48% 

2 trifluoromethyl2 hydroxy2 < 0 1.21 1.75 45% 

3 fluoro8 hydroxy2 < 0 1.21 1.69 40% 

4 trifluoromethyl2 butoxy1 

 

< 0 1.87 2.44 31% 

5 fluoro8 methyl1 < 0 1.14 1.49 30% 

6 trifluoromethyl2 methyl2 < 0 1.58 2.04 29% 

7 trifluoromethyl2 methyl1 < 0 1.14 1.47 28% 

8 fluoro8 UiO-67 < 0 1.00 1.28 28% 

9 trifluoromethyl2 pentylamino < 0 1.86 2.38 28% 

10 propanamino hydroxy2 1.05 1.21 1.52 26% 
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Figure 26: CO2 / H2O perm-selectivity of shell vs CO2 / N2 adsorption selectivity of core. 

As we have defined the system above, the thickness of the shell decreases the better the shell is at 

separating out the CO2. Concurrently, the size of the core decreases the better the core is at storing 

Table 7: Top core-shell MOFs by absolute score. 

# Core MOF Shell MOF Score 

(core-only) 

Score 

(shell-only) 

Score 

(core-shell) 

Improvement 

1 butoxy2 amino2 3.50 3.26 3.74 7% 

2 cyclohexylamino1 amino2 3.53 3.26 3.69 5% 

3 trifluoromethyl2 amino2 - 3.26 3.68 13% 

4 butoxy2 cyclohexylamino1 3.50 3.53 3.57 1% 

5 cyclohexylamino1 cyclohexylamino1 3.53 3.53 3.53 0% 

6 trifluoromethyl2 cyclohexylamino1 - 3.53 3.52 0% 

7 butoxy2 butoxy2 3.50 3.50 3.50 0% 

8 cyclohexylamino1 butoxy2 3.53 3.50 3.46 -2% 

9 trifluoromethyl2 butoxy2 - 3.50 3.44 -2% 

10 amino2 amino2 3.26 3.26 3.26 0% 
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CO2. For excellent shells (𝜏𝐶𝑂2 ≪ 𝜏𝐻2𝑂, high jco2), adsorption in the core-shell MOF is determined 

primarily by the adsorption of the core, and the resulting CO2 concentration depends on the 

adsorption selectivity of CO2 / N2. We can plot the perm-selectivity of CO2 / H2O vs the adsorption-

selectivity of CO2 / N2 to rank or identify good candidate core shell MOFs (see Figure 26) without 

calculating full scores. Note that the perm-selectivity cannot be interpreted as a strict selectivity 

since this is not a membrane process (i.e. a selectivity of 1 does not divide shells that are selective 

vs shells that are not selective for this process) but it can be used to rank shells. Using Figure 26, 

we can arrive at the same conclusions (minus the quantitative metric) as the fully calculated scores. 

The three highest-performing MOFs–cyclohexylamino1, butoxy2 and amino1-can be readily 

identified in the upper-right hand corner. Since their properties are superior to every other MOF 

evaluated, they will not form a significantly improved core-shell MOF with any of the other MOFs. 

CF3 has comparable CO2 / N2 selectivity as the highest performers, and as a core will improve 

almost every other MOF, but especially the MOFs with high CO2 / H2O perm-selectivity and low 

CO2 / N2 adsorption selectivity (upper left corner). Besides the quantitative comparison, this plot 

is also missing comparative absolute diffusions, so it is possible to wrongly identify a possible 

core-shell MOF pair if the diffusions of the MOFs vary widely. However, it is a simple way of 

validating the calculated scores and understanding the factors that are driving the scores. 

Although the 1-D infinite slab model is simple enough to solve analytically, it does not 

capture many important effects that would take place in a real carbon capture process. In addition 

to the loss of fidelity from considering a slab vs. a sphere, real fluid flows also experience friction, 

variations in pressure, turbulence, etc. We primarily expect these factors to significantly affect the 

timescales over which the gases adsorb/diffuse into/through the core-shell MOF pellets, as 

opposed to the equilibrium loading capacity, for example. 
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As a first step to investigate how a core-shell MOF would perform in pellet form under 

more realistic conditions, we simulated a core-shell MOF pellet in COMSOL Multiphysics®. We 

selected amino1⊂methyl2 as our core-shell MOF system because we had experimental gas sorption 

isotherms for both MOFs from validating our gas loading calculations. Subsequently, we modeled 

separate core and shell domains (as opposed to a homogenous core-shell MOF throughout the 

pellet). The core domain (amino1) of the spherical pellet had a radius of 0.453 cm, and the 

surrounding shell domain— methyl2— had a thickness of 0.04 cm. Figure 27 shows a snapshot of 

the CO2 and H2O concentrations throughout the pellet at t = 990 s. Note that we expect the 

timescales of adsorption/diffusion to vary from the simplified 1-D slab model, hence the longer 

breakthrough time than 100 s used elsewhere. As intended, the CO2 enters the core before H2O 

can reach it, which demonstrates that the shell is preventing H2O from accessing the core over this 

short time period. Further multiphysics simulations could be performed for more core-shell MOF 

combinations, however, this case study serves as a proof-of-concept for the basic principle of the 

core-shell MOF design. 

 

Figure 27: CO2 concentrations (left) and H2O concentrations (right) in a simulated amino1⊂methyl2 

spherical pellet at t = 990 s.  

Our methodology for scoring core-shell MOFs is intended to be simple and to efficiently rank 

core-shell MOF pairs so that top candidates can be scrutinized in more detail. We did not 
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incorporate multi-gas adsorption simulations or multi-gas diffusion calculations, so cases where 

CO2, H2O, or N2 interfere with the adsorption or diffusion of another gas is explicitly not modeled. 

Since the gas loading of H2O is derived from its Henry’s coefficient, if H2O is not in the Henry’s 

regime for a specific MOF then the H2O loading predictions will be high. All simulations are 

performed on an ideal crystal, when synthesized MOFs typically have varying kinds of defects in 

their crystal structure which can affect their properties. Out of necessity our models neglect many 

of the complex details of real materials and processes, and synthesis and testing of core-shell MOFs 

is required to validate our proposed candidate materials. It is also important to emphasize our 

idealized adsorption/desorption process, where every MOF pellet is exposed to the input gas 

stream simultaneously. In future work, more realistic process simulations will be needed to predict 

the efficacy of these materials in more conventional reactors.  

We have only looked at two different base MOFs–UiO-66 and UiO-67–with 30 functional 

groups, or only 60 total MOFs out of the more than 90,000 MOFs that have been synthesized. An 

exciting research area could be to search for better core-shell MOF pairs by broadening the search 

to new base MOFs or new functional groups. Because the best MOFs identified in this work–

amino2, cyclohexylamino1, butoxy2–perform well for both the core and shell, any new MOF that 

would pair nicely with them must either be a significantly superior core or shell. The fluorinated 

MOFs could be possibilities as core MOFs if their CO2 /N2 adsorption selectivity can be improved. 

Regardless, we recommend doing two searches: one for high CO2 / H2O perm-selectivity materials, 

and the other for materials with high CO2 /N2 adsorption selectivity in the absence of water. 
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5.4 Conclusion 

Computational screening of material properties is vital to sift through the vast number of 

potential stratified MOF combinations, which is exponentially larger than the number of available 

MOFs themselves. This work represents the first major step in that direction by identifying MOFs 

that could be good shells or good cores as part of a core-shell MOF used to separate CO2 from the 

atmosphere.  

We have looked at the MOFs UiO-66 and UiO-67 augmented with 16 different functional 

groups (leading to 30 functional group variations) and experimentally tested gas sorption on five 

UiO-67 analogues to verify computational predictions. All functionalized UiO-66 MOFs were 

eliminated from further consideration as none of them were sufficiently selective for CO2 or well-

suited for acting as a shell. For UiO-67, we identified multiple possible combinations where a core-

shell MOF was better than either of the component MOFs in isolation. Notably, when the fluorine-

based functional groups– fluoro8 and trifluoromethyl2–were used as the core, they almost always 

resulted in an improved core-shell MOF. Hence, a result from our study with potentially broader 

applications is that a MOF that is selective for an undesirable gas in a standard adsorption or 

diffusive process may still be high-performing when used as a core in a core-shell MOF.  

We also found that the MOFs amino2, cyclohexylamino1 and butoxy2 had the best 

separation when not part of a core-shell MOF–this was due to them having good properties for 

being both a core and a shell. Finding a core-shell MOF where the core and shell serve two distinct 

needs therefore requires that (1) there must not already be a single MOF that has superior 

characteristics across both needs, and (2) there must be two distinct MOFs that individually fulfill 

one need but do not fulfill the other need.  
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Finally, A multiphysics case study of a core-shell amino1⊂methyl2 pellet was performed 

to demonstrate that the core-shell MOF design can be applied to the pellet-scale to effectively 

block water from the core while it loads with CO2. This paper provides a framework for 

computationally screening MOF combinations for a given application and lays the foundation for 

a novel approach to hybrid solid sorbent materials optimization. 
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Appendix A LAMMPS corrected heat flux for improper potentials 

In LAMMPS, improper potentials are four-body potentials and unlike the dihedral four-

body potentials, the atoms making up an improper potential do not need to be connected via bonds. 

Any four atoms IJKL may be used, and the improper potential is defined using the angle between 

the planes IJK and JKL. As defined, this potential may be used for both traditional improper 

definitions (see Appendix Figure 1(A)) or in our case for replicating a dihedral potential using an 

improper potential (see Appendix Figure 1(B)). 

 
Appendix Figure 1: (A) atoms IJKL for a typical improper, and (B) atoms IJKL for a dihedral defined using 

an improper. 

There is no improper potential defined in LAMMPS that directly corresponds to the dihedral 

potential OPLS, but we were able to parameterize the CVFF potential to get a reasonable 

comparison so we could compare per-term energies. For OPLS, the potential is: 

𝐸 = 𝐾1[1 + cos(𝜙)] + 𝐾2[1 − cos(2𝜙)] + 𝐾3[1 + cos(3𝜙)] + 𝐾4[1 − cos(4𝜙)] 

The parameters for octane from the NERD FF62 are 𝐾1= 1.411074 Kcal / mol, 𝐾2= -0.271015 Kcal 

/ mol, 𝐾1= 3.145743 Kcal / mol, and 𝐾4= 0. 

For CVFF, the potential is: 

𝐸 = 𝐾[1 + 𝑑 cos(𝑛𝜙)] 
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If we choose the parameters, 𝐾 = 𝐾3, 𝑑 = 1, 𝑛 = 3, the CVFF potential will be equivalent 

to the third term of the OPLS potential, which represents the highest mode and dominates the 

energy. This should give a good approximation to the OPLS potential used for the dihedral. The 

specifics here are mostly unnecessary, since as we mention in the full paper, the total heat flux 

should self-consistently match the applied heat flux, regardless of the parameters we choose. As 

can be seen from Appendix Figure 2, the improper results closely match the dihedral results, 

demonstrating that our implementation of the improper potential in LAMMPS is correct. 

 

Appendix Figure 2: Per-potential fraction of applied heat flux for both uncorrected LAMMPS and corrected 

calculations for octane, as calculated using dihedral or improper potentials. 
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Appendix B Supplementary Info to CSMOF paper 

Appendix B.1 Computational Predictions 

Appendix B.1.1 Preparation of Functionalized MOF files 

To create functionalized variations of each base MOF, we used the find and replace 

operation of MOFUN124 to find all linkers in each base MOF and replace them with functionalized 

linkers. For both the UiO-66 and UiO-67 MOFs, we built functionalized forms of the linkers in 

Avogadro86 for each of the 30 functional group variations. We assigned Universal Force Field 

(UFF)83 atom types and parameters to each of the functionalized linkers using MOFUN’s rule-

based UFF typer and parameterizer. For the larger functional groups, we kept the functional group 

atoms as near as possible to the linker to avoid overlapping with other functional groups once the 

functionalized form was incorporated into the MOF. These functionalized and parameterized 

linkers were then substituted into UiO-66 or UiO-67. As the functional groups were placed in a 

relatively compressed configuration to avoid overlap, we ran a short NVT molecular dynamics 

simulation in LAMMPS38 to relax the functional group into a reasonable configuration. The atoms 

of the MOF’s metal center and parent ligand were kept fixed; only the functional group atoms 

were allowed to move based on their assigned UFF parameters. We ran 2,000 timesteps of an NVT 

molecular dynamics simulation for each of 1e-5, 1e-4, 1e-3, and 1e-2 fs and finished with 12,000 

timesteps at 0.1 fs. For some of the denser structures, the UFF parameters occasionally resulted in 

the two hydrogens from an H-C-H unit in an alkane chain being unreasonably close to each other, 

and sometimes overlapping on the same point. For structures with this problem, we increased the 
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force constant of the H-C-H angle from ~75 kcal / mol to 200 kcal /mol and reran the NVT 

simulation. After the functional groups were relaxed, the final coordinates of all the atoms were 

stored for use in fixed framework diffusion and adsorption simulations.  

Appendix B.1.2 Diffusion Calculations 

Diffusion calculations were run in LAMMPS38 with the NVT ensemble at 298K. Because 

the framework was modeled as fixed for computational efficiency, NVT was required to keep the 

gas molecules at standard temperature. For each UiO-67-based MOF and gas, 10 molecules of the 

gas were randomly inserted into the MOF using Packmol63 for five independent simulations, giving 

50 trajectories per gas total. The trajectories for the centers of each gas molecule were averaged 

together to calculate the mean squared displacement (MSD). The diffusivity was calculated by 

attempting fits to MSD vs time at various intervals from 0.1 to 0.5 of the total simulation time and 

selecting the fit with the highest R2. Per the procedure described in Maginn, et al,125 the uncertainty 

was estimated by generating 500 random subsets (of 50 trajectories each) randomly selected with 

replacement from the original 50 trajectories and estimating the diffusivities of each subset. Upper 

and lower bounds on the diffusivities were calculated using a 95% confidence interval. 

The same procedure was used for UiO-66-based MOFs and gases, but only 10 molecules 

total of the gas were simulated or 10 trajectories total. We eliminated UiO-66-based MOFs for 

consideration based on the results of the diffusivities calculated with the 10 initial trajectories and 

did not run the additional 40 trajectories. The two CH3 functional groups were added to our 

simulation list after we disqualified UiO-66 so we only report CH3 for UiO-67. 
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Appendix B.1.3 Gas Loading Calculations 

Single component gas adsorption calculations were run in RASPA31 using GCMC32 to get 

absolute gas loadings in V/V (cm3 gas [STP] / cm3 framework) at typical atmospheric 

concentrations: 78% N2 (79,033 Pa), 400 ppm CO2(42.18 Pa), and 50% relative humidity H2O. It 

can be difficult and computationally expensive to calculate H2O adsorption this way;126,127 so 

instead, we calculated Henry’s constants for H2O, and estimated loading at 50% humidity by 

multiplying the Henry’s constant by the partial pressure of 50% of the saturation loading of H2O 

of the TIP4P model, or 2050 Pa.  

Appendix B.1.4 Custom CO2-NH2 Interaction Force-Field Parameters 

Our GCMC simulations of gas loading do not allow bonds to break and reform (i.e., for 

chemical reactions to take place). For most functional groups we have chosen to study, only 

physisorption of gases is expected. However, CO2 is expected to chemically react with the amino 

groups (for further details on the likely mechanism, see reference 128). Modeling the full reaction 

pathway is complex and beyond the scope of our investigation, where we are primarily interested 

in the amount of CO2 that loads into the pores. Thus, to emulate such chemisorption behavior, we 

simply adjusted the strength of the CO2-framework interactions by amplifying the Lennard-Jones 

parameter for CO2-amino interactions from the UFF default values. We ran four sets of adsorption 

simulations for the MOFs UiO-67-amino1 and UiO-67-amino2 with different epsilon strengths: 1x, 

2x, 10x and 100x of normal. These simulation results were compared to experimental values (see 

Appendix Figure 3) and the epsilon strength that is closest to the experimental values for amino1 

and amino2 is 10x. The 100x simulations reported gas loadings above that shown in Appendix 
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Figure 3. The 10x epsilon parameters were used for both the diffusion and adsorption calculations 

for the amino1 and amino2 MOFs. 

 

Appendix Figure 3: Simulated CO2 loadings at 1x, 2x, and 10x of the normal CO2-amino interaction strength 

epsilon compared to experimental CO2 loadings for the two MOFs UiO-67-amino1 and UiO-67-amino2. 
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Appendix B.1.5 Simulated Diffusivities 

 

Appendix Figure 4: Simulated diffusivities of CO2, N2, and H2O for all UiO-66 and UiO-67 functional groups. 

Error bars to 95% confidence shown for all points. 
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Appendix B.1.6 Simulated Gas Loadings 

Appendix Figure 5:  Simulated gas loading of CO2, N2, and H2O for all UiO-66 and UiO-67 functional groups. 

Atmospheric CO2, N2, and H2O partial pressures shown by vertical yellow, grey and blue lines. Error bars to 

95% confidence shown for all points (though error for most points is too small to be visible). 
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Appendix B.2 Experimental  

Appendix B.2.1 General Methods 

All purchased chemicals were used without further purification. Powder X-ray diffraction 

patterns were collected using a Bruker AXS D8 Discover powder diffractometer at 40 kV, 40 mA 

for Cu Kα (λ = 1.5406 Å) with a scan speed of 0.20 sec/step from 5 to 30º at a step size of 0.02º. 

The data were analyzed using the EVA program from the Bruker Powder Analysis Software 

package. The simulated powder patterns were calculated using Mercury 3.8 based on MOF crystal 

structures. 

Thermogravimetric analysis (TGA) was conducted on a TGA Q500 thermal analysis 

system under a constant N2 UHP flow from room temperature to 800 °C at a rate of 1 °C/min.   

Gas adsorption isotherms were collected on a Micromeritics 3-flex gas adsorption analyzer. 

As-synthesized MOF crystals soaking in DMF were exchanged with 10 mL of dry methanol three 

times a day at 65 oC for one day. Then, the crystals were dried under a N2 stream until they became 

a free-flowing powder. Approximately 40-60 mg of each sample were added into a pre-weighed 

sample analysis tube that had been evacuated and backfilled with He before massing. The samples 

were degassed at 298 K under vacuum for ~24 hours until the pressure change rate was no more 

than 3.5 mTorr/min. A liquid N2 bath was used for the N2 adsorption experiments at 77 K. A 

water/ethylene glycol bath was used for isotherms collected at 298 K. UHP grade N2 and CO2 gas 

adsorbates (99.999 %) were used in this study.  

1H NMR spectra were obtained using Bruker Avance III 400 MHz spectrometers. Chemical 

shifts are in parts per million (ppm) using the residual solvent peak (DMSO-d6 or D2O) as 

references. MOF samples were digested with DMSO-d6 and a small amount of K3PO4 and D2O. 
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Appendix B.2.2 Synthesis and characterization of MOF ligands 

B.2.2.1 Dimethyl 2-nitro-1, 1'-biphenyl-4,4'-dicarboxylate (1) 

Compound 1 was synthesized according to literature conditions.129 

 

 

 

 

B.2.2.2 Dimethyl 2-amino-1, 1'-biphenyl-4,4'-dicarboxylate (2)  

To a 100 mL Schlenk flask equipped with a stir bar were added compound 1 

(710 mg, 2 mmol), 10 wt. % palladium on carbon (70 mg) and ethyl acetate (30 mL). 

The Schlenk flask was quickly evacuated on a vacuum line and then backfilled with 

argon gas. This evacuation and backfill process was repeated 3 times. The Schlenk flask 

was then evacuated and attached to a H2 balloon. The reaction mixture was stirred at 

room temperature under H2 atmosphere and monitored via thin layer chromatography (TLC). After 

6 hours, the reaction was stopped by removing Pd catalyst via vacuum filtration through a celite 

cake. The filtrate was concentrated in vacuo to yield light yellow solid compound 2 (570 mg, 93%). 

Compound 2 was used without further purification. 1H NMR (400 MHz, CDCl3) δ 8.15 (m, 2H), 

7.53 (m, 2H), 7.49 (dd, J = 7.9, 1.4 Hz, 1H), 7.47 (d, J = 1.4 Hz, 1H), 7.22 (d, J = 7.9 Hz, 1H), 

3.97 (s, 3H), 3.94 (s, 3H), 3.88 (s, 2H). 
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B.2.2.3 2-Amino-1, 1'-biphenyl-4,4'-dicarboxylic acid (3)  

Compound 3 was synthesized using compound 2 as starting material based on 

literature conditions.129 1H NMR (400 MHz, DMSO-d6) δ 12.83 (s, 2H), 8.03 (d, J = 

8.5 Hz, 2H), 7.63 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 1.5 Hz, 1H), 7.22 (dd, J = 7.5, 1.5 

Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 5.25 (s, 2H). 

B.2.2.4 Dimethyl-2,2'-dinitro-[1,1'-biphenyl]-4,4'-dicarboxylate (4)130 

To a solution of commercial dimethyl-biphenyl-4,4´-dicarboxylate (10 g, 37 

mmol) in 100 mL of concentrated H2SO4 at ~278 K a mixture of nitric acid (56%, 12 

mL, 74 mmol) in 15 mL of concentrated sulfuric acid was added dropwise. The 

reaction mixture was stirred vigorously for 2 h at ~278 K and then was carefully 

poured onto ice (300 g). The pale yellow precipitated was filtered, washed with 

abundant cold water until neutral pH and air-dried to obtain 9.8 g of compound 4. 1H NMR (400 

MHz, DMSO-d6) δ: 8.77 (s, 2H), 8.23 (dd, J = 7.8, 1.7 Hz, 2H), 7.35 (d, J = 7.8 Hz, 2H), 3.98 (s, 

6H). 
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B.2.2.5 Dimethyl 2,2'-diamino-[1,1'-biphenyl]-4,4'-dicarboxylate (5) 

A 250-mL three-necked round-bottomed flask was charged with 2.0 g of 10 

wt.% Pd/C, 5 g of 4 (13.8 mmol), and 165 mL of THF. The flask was then evacuated 

and attached to a H2 balloon. The reaction mixture was stirred at room temperature 

under H2 atmosphere and monitored via thin layer chromatography (TLC). After 

filtration over Celite, the solvent was removed in vacuo affording 3.3 g of light 

yellow compound 5. 1H NMR (400 MHz, DMSO-d6) δ: 7.42 (d, J = 1.3 Hz, 2H), 7.26 (dd, J = 7.8, 

1.3 Hz, 2H), 7.09 (d, J = 7.8 Hz, 2H), 4.95 (s, 4H), 3.82 (s, 6H). 

B.2.2.6 2,2'-diamino-[1,1'-biphenyl]-4,4'-dicarboxylic acid (5)130 

Compound 4 (3.75 g, 12.5 mmol) was dissolved in a mixture of 50:50 v/v 

THF/5% KOH (total volume 200 mL). The mixture was stirred overnight at 353 K. 

The aqueous layer was separated, then concentrated HCl was added until acid pH to 

give a yellowish solid. The solid was filtered, washed with abundant cold water and 

air-dried to obtain the desired product (3.01 g). 1H NMR (400 MHz, DMSO-d6) δ: 7.47 (d, J = 1.4 

Hz, 2H), 7.28 (dd, J = 7.8, 1.4 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H).  



 

 116 

B.2.2.7 Dimethyl 2-methyl-1, 1'-biphenyl-4,4'-dicarboxylate (6)131  

Ethylene glycol dimethyl ether (DME, 200 mL) was bubbled with nitrogen for 

about one hour before introduced into nitrogen-protected solid mixture of methyl 4-

iodo-3-methylbenzoate (5.0 g, 18.1 mmol), 4-methoxyl carbonylphenylboronic acid 

(3.9 g, 21.7 mmol), potassium carbonate (7.5 g, 54.25 mmol) and tetrakis 

(triphenylphosphine) palladium (0.3 g, 0.26 mmol). The mixture was allowed to reflux 

for 3 days under nitrogen protection. After cooling to room temperature, the solvent was 

evaporated to dryness. The residue was washed with a large amount of water followed by acetone. 

After removing the solvent, the residue was purified with column chromatography (silica gel, 

CH2Cl2) to give the ester as a white solid (3.4 g). 1H NMR (400 MHz, DMSO-d6) δ 8.05 (s, 2H), 

7.94 (s, 1H), 7.86 (s, 1H), 7.56 (s, 1H), 7.41 (s, 1H), 3.89 (s, 6H), 2.30 (s, 3H). 

B.2.2.8 2-methyl-1, 1'-biphenyl-4,4'-dicarboxylate (7)131 

Compound 5 (3.0 g, 10.6 mmol) was suspended in a mixture of THF/MeOH 

(50 mL, v/v = 1/1,) and 30 mL aqueous solution of 2 M KOH. The resultant mixture 

was stirred and refluxed overnight. After cooling to room temperature, organic solvents 

were removed, and the remaining solution was acidified with 1 M HCl to give a 

precipitate, which was collected and washed with water. Dried in the oven to produce 2.0 g of 

compound 6. 1H NMR (DMSO-d6, 400 MHz) δ: 12.98 (s, 2H), 8.02 (s, 2H), 7.91 (s, 1H), 7.86 (s, 

1H), 7.53 (s, 2H), 7.38 (s, 1H), 2.30 (s, 3H).  
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B.2.2.9 Dimethyl 2,2’-dimethyl-1, 1'-biphenyl-4,4'-dicarboxylate (8)131 

Methyl 4-iodo-3-methylbenzoate (5.0 g, 18.1 mmol) and copper powder (20.0 g, 

314.7 mmol) were thoroughly mixed under argon atmosphere. The resulting mixture was 

heated up to 250 oC overnight. After cooling, the reaction mixture was extracted with 

chloroform (30 mL x 3). The combined extracts were evaporated to dryness. Flash 

chromatography with ethyl acetate/hexanes (5% - 10%) as eluent afforded dimethyl 2,2'-

dimethylbiphenyl-4,4'-dicarboxylate (1.4 g). 1H NMR (CDCl3, 400 MHz) δ: 7.90 (d, 2H), 7.89 

(dd, 2H), 7.10 (d, 2H), 3.87 (s, 6H), 2.0 (s, 6H). 

B.2.2.10 2,2’-dimethyl-1, 1'-biphenyl-4,4'-dicarboxylate (9)131 

Compound 7(1.0, 3.3 mmol) was suspended in a mixture of THF/MeOH (50 mL, 

v/v = 1/1, THF = tetrahydrofuran, MeOH = methanol), to which an aqueous solution of 

2 M KOH (20 mL) was added. The resulting mixture was stirred and refluxed overnight. 

After cooling to room temperature, organic solvents were evaporated, and the remaining 

aqueous solution was acidified with 1 M HCl to give a precipitate, which was collected by 

filtration, washed with water, and dried in the oven to produce 0.6 g of compound 8. 1H NMR 

(DMSO-d6, 400 MHz) δ: 12.97 (s, 2H), 7.92 (d, 2H), 7.86 (dd, 2H), 7.23 (d, 2H), 2.05 (s, 6H). 
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Appendix B.2.3 Synthesis of MOFs 

B.2.3.1 Synthesis of UiO-67 

To a 20 mL Pyrex vial was added ZrCl4 (9.8 mg, 0.04 mmol), DMF (10 mL), CH3COOH 

(0.5 mL) and 1, 1'-biphenyl-4,4'-dicarboxylic acid (H2-BPDC) (9.3 mg, 0.04 mmol). After 

sonication for 5 min, the vial was placed in in a 100 ºC for 24 hours. The reaction suspension was 

then centrifuged at 10,000 rpm for 3 min to obtain white precipitate. The precipitate was washed 

with fresh DMF (16 mL, 4x) and dispersed in DMF (5 mL).  

B.2.3.2 Synthesis of NH2-UiO-67 

To a 20 mL Pyrex vial was added ZrCl4 (9.8 mg, 0.04 mmol), DMF (10 mL), CH3COOH 

(0.5 mL) and 2-amino-1, 1'-biphenyl-4,4'-dicarboxylic acid (H2-NH2-BPDC) (9.9 mg, 0.04 mmol). 

After sonication for 5 min, the vial was placed in in a 100 ºC for 24 hours. The reaction suspension 

was then centrifuged at 10,000 rpm for 3 min to obtain white precipitate. The precipitate was 

washed with fresh DMF (16 mL, 4x) and dispersed in DMF (5 mL).  

B.2.3.3 Synthesis of (NH2)2-UiO-67 

To a 20 mL Pyrex vial was added ZrCl4 (9.8 mg, 0.04 mmol), DMF (10 mL), CH3COOH 

(0.5 mL) and 2,2’-diamono-1, 1'-biphenyl-4,4'-dicarboxylic acid (H2-2NH2-BPDC) (10.5 mg, 0.04 

mmol). After sonication for 5 min, the vial was placed in in a 100 ºC for 24 hours. The reaction 
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suspension was then centrifuged at 10,000 rpm for 3 min to obtain white precipitate. The 

precipitate was washed with fresh DMF (16 mL, 4x) and dispersed in DMF (5 mL).  

B.2.3.4 Synthesis of CH3-UiO-67 

To a 20 mL Pyrex vial was added ZrCl4 (9.8 mg, 0.04 mmol), DMF (10 mL), CH3COOH 

(0.5 mL) and 2-methyl-1, 1'-biphenyl-4,4'-dicarboxylic acid (H2-Me-BPDC) (9.8 mg, 0.04 mmol). 

After sonication for 5 min, the vial was placed in in a 100 ºC for 24 hours. The reaction suspension 

was then centrifuged at 10,000 rpm for 3 min to obtain white precipitate. The precipitate was 

washed with fresh DMF (16 mL, 4x) and dispersed in DMF (5 mL).  

B.2.3.5 Synthesis of (CH3)2-UiO-67 

To a 20 mL Pyrex vial was added ZrCl4 (9.8 mg, 0.04 mmol), DMF (10 mL), CH3COOH 

(0.5 mL) and 2,2’-dimethyl-1, 1'-biphenyl-4,4'-dicarboxylic acid (H2-Me2-BPDC) (10.4 mg, 0.04 

mmol). After sonication for 5 min, the vial was placed in in a 100 ºC for 24 hours. The reaction 

suspension was then centrifuged at 10,000 rpm for 3 min to obtain white precipitate. The 

precipitate was washed with fresh DMF (16 mL, 4x) and dispersed in DMF (5 mL).  
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Appendix B.2.4 Characterization of MOFs 

B.2.4.1 Powder X-ray diffraction data 

 

Appendix Figure 6: Simulated PXRD pattern of UiO-67 (black) and experimental PXRD of as synthesized 

UiO-67 (dark red), NH2-UiO-67 (blue), (NH2)2-UiO-67 (orange), CH3-UiO-67 (green) and (CH3)2-UiO-67 

(dark blue). These data confirm the crystallinity and phase purity of the synthesized MOFs. 
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B.2.4.2 Thermogravimetric analysis 

 

 

Appendix Figure 7: TGA curves of UiO-67 (dark red), NH2-UiO-67 (blue), (NH2)2-UiO-67 (orange), CH3-

UiO-67 (green) and (CH3)2-UiO-67 (dark blue). 

 

  



 

 122 

B.2.4.3 Elemental analysis 

Elemental and thermogravimetric analyses were used to determine the MOF molecular 

formulas. The theoretical molecular formulas Zr6O4(OH)4(X-BPDC)n1•n2DMF were determined 

based on TGA analysis according to literature method.132 TGA analysis of MOFs revealed an 

initial loss of ~4% between 90-200 °C corresponding to the DMF molecules within the framework 

(Appendix Figure 7). In TGA analysis, we denoted the mass right before the MOF samples started 

to decompose (~450 oC) as a, which represented Zr6O4(OH)4(X-BPDC)n. The final mass in TGA 

analysis after reaching plateau at ~500-750 oC was the remaining ZrO2. This was then used to 

calculate mass b for Zr6O4(OH)4 in the corresponding MOFs. The difference between mass a and 

b was attributed to ligands and used to calculate the number of ligand X-BPDC per molecule. 

 

UiO-67 

Zr6O4(OH)4(BPDC)5.7•DMF, weight loss % in TGA by 200 oC: 3.7% 

Calcd.: C,46.57; H, 2.67; N, 0.66. Found: C, 46.99; H, 2.58; N, 0.34  

 

NH2-UiO-67 

Zr6O4(OH)4(NH2-BPDC)5.4•0.8DMF, weight loss % in TGA by 200 oC: 2.8% 

Calcd.: C,45.17; H, 2.80; N, 4.19. Found: C, 45.23; H, 2.89; N, 4.21  

 

(NH2)2-UiO-67 

Zr6O4(OH)4(2NH2-BPDC)5.6•1.4DMF, weight loss % in TGA by 200 oC: 4.6% 

Calcd.: C,43.34; H, 3.12; N, 7.89. Found: C, 43.39; H, 3.07; N, 7.83   
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CH3-UiO-67 

Zr6O4(OH)4(CH3-BPDC)5.4•1.2DMF, weight loss % in TGA by 200 oC: 4.2% 

Calcd.: C,46.57; H, 3.18; N, 0.80. Found: C, 46.53; H, 3.12; N, 0.74 

 

(CH3)2-UiO-67 

Zr6O4(OH)4((CH3)2-BPDC)5.8•1.1DMF, weight loss % in TGA by 200 oC: 3.5% 

Calcd.: C,51.12; H, 3.60; N, 0.68. Found: C, 50.99; H, 3.58; N, 0.64  
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B.2.4.4 Gas sorption data 

 

Appendix Figure 8: N2 sorption isotherms of UiO-67 (dark red), NH2-UiO-67 (blue), (NH2)2-UiO-67 (orange), 

CH3-UiO-67 (green) and (CH3)2-UiO-67 (dark blue) at 77 K. Filled and hollow circles indicate adsorption and 

desorption respectively. These data were used to calculate the Branauer-Emmett-Teller (BET) surface areas 

for the MOFs:  UiO-67, 2572 m2/g ; NH2-UiO-67, 2074 m2/g ; (NH2)2-UiO-67, 1705 m2/g; CH3-UiO-67, 2042 

m2/g;  and (CH3)2-UiO-67, 1647 m2/g. These values are consistent with literature data for UiO-67133,134 as well 

as NH2-UiO-67 and CH3-UiO-67.134 The difunctionalized analogues have lower BET surface areas, as 

expected due to the additional functional groups. 
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Appendix Figure 9: CO2 adsorption isotherms of UiO-67 (dark red square), NH2-UiO-67 (blue circle), (NH2)2-

UiO-67 (orange left-triangle), CH3-UiO-67 (green down-triangle) and (CH3)2-UiO-67 (dark blue right-

triangle) at 298 K.  
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Appendix Figure 10: N2 adsorption isotherms of UiO-67 (dark red square), NH2-UiO-67 (blue circle), (NH2)2-

UiO-67 (orange left-triangle), CH3-UiO-67 (green down-triangle) and (CH3)2-UiO-67 (dark blue right-

triangle) at 298 K. 
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Appendix Figure 11: Water adsorption isotherms of UiO-67 (dark red square), NH2-UiO-67 (blue circle), 

(NH2)2-UiO-67 (orange left-triangle), CH3-UiO-67 (green down-triangle) and (CH3)2-UiO-67 (dark blue right-

triangle) at 298 K. 
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B.2.4.5 Calculation of CO2: N2 adsorption selectivity 

 

Appendix Table 1: Experimental CO2:N2 adsorption selectivity 

 

CO2-298 K (cm3/g) 

@ 42 Pa 

N2-298 K(cm3/g) 

@ 79 kPa 

CO2/N2     

Adsorption Selectivity 

UiO-67 0.029 6.29 9.33 

NH2-UiO-67 0.032 3.38 17.8 

(NH2)2-UiO-67 0.058 2.84 38.4 

CH3-UiO-67 0.033 3.54 17.5 

(CH3)2-UiO-67 0.013 2.68 9.42 

 

CO2:N2 adsorption selectivity was calculated using following equation: 

𝐴𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑎
42

𝑏
7.9 ∗ 104

 

a: CO2 loading at 42 Pa, 298 K 

b: N2 loading at 79 KPa, 298 K 
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Appendix Table 2: Comparison of experimental and simulated CO2:N2 adsorption selectivity. 

 
CO2/N2     

Adsorption Selectivity 

Simulation 

(default epsilon / 10x epsilon) 

UiO-67 9.33 7.11 

NH2-UiO-67 17.8 7.45 / 11.01 

(NH2)2-UiO-67 38.4 8.33 / 16.45 

CH3-UiO-67 17.5 13.5 

( CH3)2-UiO-67 9.42 10.0 

 

 

 

Appendix Figure 12: Comparison between experimental and simulated CO2:N2 adsorption selectivity of UiO-

67, NH2-UiO-67 and (NH2)2-UiO-67: (left) simulation data with default force field parameters for NH2-CO2 

interaction, (right) simulation data with 10x epsilon force field parameters for NH2-CO2 interaction. 
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Appendix Figure 13: Comparison between experimental and simulated CO2:N2 adsorption selectivity of UiO-

67, CH3-UiO-67 and (CH3)2-UiO-67. 

 

Appendix Figure 14: Comparison between experimental and simulated CO2:N2 adsorption selectivity of UiO-

67, NH2-UiO-67 and CH3-UiO-67: (left) simulation data with default force field parameters for NH2-CO2 

interaction, (right) simulation data with 10x epsilon force field parameters for NH2-CO2 interaction. 
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Appendix Figure 15: Comparison between experimental and simulated CO2:N2 adsorption selectivity of UiO-

67, (NH2)2-UiO-67 and (CH3)2-UiO-67: (left) simulation data with default force field parameters for NH2-CO2 

interaction, (right) simulation data with 10x epsilon force field parameters for NH2-CO2 interaction. 
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Appendix B.3 COMSOL Multiphysics® model  

For the COMSOL Multiphysics® model case study, the Langmuir equation (Equation X) 

was fitted to experimental data in order to simulate gas adsorption. The fitted constants from that 

equation (KL and CPmax) are presented for CO2, H2O and N2 in Appendix Table 3 for the two MOFs 

simulated in this paper: NH2 and (CH3)2. The diffusivity values of CO2, H2O and N2 for these two 

MOFs are also reported in this table. Appendix Figure 16 shows our modeled Langmuir curve fits 

to experimental data for CO2, H2O and N2 for NH2 and (CH3)2.  

Appendix Table 3: Langmuir adsorption constants (KL), adsorption maximums (CPmax), and diffusivity 

values for the two MOFs modeled in this paper. 

Gas Constant NH2 (CH3)2 

CO2 KL [m3/mol] 0.197871 0.321812 

CPmax [mol/kg] 8.375795 1.72746 

DCO2 [m2/s] 5.05E-09 3.45E-09 

H2O KL [m3/mol] 2.121584 0.691886 

CPmax [mol/kg] 11.81449 15.87641 

DH2O [m2/s] 6.15E-11 9.24E-11 

N2 KL [m3/mol] 0.006575 0.00263 

CPmax [mol/kg] 26.45345 50.87282 

DH2O [m2/s] 1.26E-08 6.75E-09 
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Appendix Figure 16: Experimental vs. modeled Langmuir adsorption isotherms for CO2 (left), H2O (middle), 

and N2 (right). Experimental values are shown with markers; modeled values are shown with solid lines. 

Values for our simulated core MOF, NH2, are shown in blue; values for our simulated shell MOF, (CH3)2, are 

shown in red. 
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