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- USING NEURAL LANGUAGE GENERATION METHODS

Rui Meng, PhD

University of Pittsburgh, 2024

Keyphrases encapsulate the core information of a text, acting as effective tools for organizing and

retrieving extensive data. Their utility spans various applications, including information retrieval,

document classification, and automatic summarization. Given the cost and limitations of manual

keyphrase assignment, there has been a growing interest in automating this process. Traditional

approaches to keyphrase assignment are categorized into extraction, which involves selecting

phrases directly from the text, and tagging, where pre-defined tags are applied. Both methods often

fail to address the complexity of natural language. For instance, a substantial fraction of keyphrases

are absent from the source text and are missed by extraction methods. This observation highlights

the need to reevaluate the paradigms within keyphrase studies and refine methodologies in automatic

keyphrase prediction.

This dissertation introduces KEYPHRASIFICATION to formulate the task of keyphrase pre-

diction. By developing a conceptual framework and defining essential properties, this work aims to

deepen the understanding of keyphrase prediction and facilitate the development of more effective

techniques. Furthermore, I propose a novel modeling approach, keyphrase generation (KPGEN),

utilizing neural language generation to learn the mapping between texts and keyphrases directly

from data to predict contextually relevant phrases in varied forms. The dissertation further presents

various enhancements and mechanisms to refine this approach.

This work makes several pivotal contributions. It reformulates keyphrase prediction as a

specialized form of summarization, thereby broadening the previous research scope. It innovates

in automatic keyphrasification with a data-driven approach, employing neural networks to predict

context-relevant phrases, overcoming the limitations of prior methodologies. Furthermore, the study

explores a range of advanced language generation techniques, from basic to pre-trained and large

language models, making it a comprehensive investigation into the task of keyphrasification.
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1.0 INTRODUCTION

A keyphrase, also referred to as a keyword, encapsulates the essential information of a piece

of data, such as a longer text, in a succinct manner. Throughout this dissertation, I use the terms

“keyphrase” and “keyword” interchangeably; however, the former is preferred as it implies the

potential inclusion of multiple words. High-quality keyphrases play a crucial role in facilitating the

understanding, organization, and retrieval of data. They find widespread applications in various

domains, such as information retrieval [92, 89, 223], text summarization [238, 46, 207], text

categorization [87], opinion mining [14] and online advertising [228].

Despite the numerous automatic keyphrase techniques developed over the past decades, a sig-

nificant performance gap remains between these systems and human capabilities. In my perspective,

several inherent shortcomings of current methodologies hinder further improvement.

This dissertation aims to address the challenge of keyphrasification, a concept encompassing

various keyphrase-related studies. Additionally, in response to the inherent limitations of traditional

automatic methods, I propose a novel paradigm that treats keyphrasification as a form of language

generation.

As the first chapter of the dissertation, this section provides a general introduction to the study.

It delves into the research motivation and outlines several core research questions.

1.1 PROBLEM STATEMENT

Keyphrases provide a concise overview of rich content and find utility across a wide range of

applications. Examples of keyphrases extracted from a scientific paper and a question posting on

StackExchange are depicted in Figure 1 and 2. In these examples, authors and question askers

employ several phrases to underline the core concepts or high-level topics discussed in the text.

This allows readers to quickly grasp the essence of the content while enabling system developers to

construct document indices and term hierarchies using these keyphrases. Academic publications

and websites featuring social tagging, such as StackExchange and Del.icio.us, serve as common

1



resources for constructing datasets for keyphrase studies due to the availability of public data.

Figure 1: A scientific publication with author-annotated keyphrases. Blue boxes denote the enclosed

keyphrases are present in the source text (title and abstract) and red boxes denote absent keyphrases.

Keyphrases are not inherently available and acquiring them through human annotation can be

costly and inefficient. Consequently, techniques for automating the process of keyphrase extraction

have been actively researched for decades. Two primary strands of automatic methods have garnered

extensive attention: extracting keyphrases directly from the original content [115, 127, 216], and

automatically assigning tags from a pre-defined tag vocabulary [175, 102, 182, 181].

Keypharase Extraction aims to identify the most important or representative phrases from a

given source text. This provides models with greater flexibility in selecting appropriate words and

phrases to summarize a text, which is particularly crucial for text-based applications where nuanced

information is necessary to distinguish one document from others.

Most existing keyphrase extraction algorithms address this problem through two main steps

[115, 193]. The first step involves acquiring a list of keyphrase candidates, with researchers

exploring the use of n-grams or noun phrases with specific part-of-speech patterns to identify

potential candidates [85, 104, 114, 209].

The second step entails ranking these candidates based on their importance to the document,
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either through supervised or unsupervised machine learning methods utilizing manually-defined

features [57, 115, 114, 96, 125, 139, 178, 216] or learned representations [150, 120, 221]. Alter-

natively, some researchers propose methods such as sequence labeling to directly output potential

keyphrases without following the explicit two-step procedure [233, 152, 2, 166, 239, 69, 212, 167].

Figure 2: A question posting on StackExchange with user-annotated labels.

Alternatively, Automatic Tagging or Tag Recommendation refers to the automated process of

suggesting useful tags for objects such as documents, images, or videos [181]. Popular websites like

Del.icio.us, Flickr, and StackExchange employ tagging systems to enable users to organize content.

However, automatic tagging faces inherent limitations, notably the inflexibility of tag vocabulary,

which is typically constructed based on existing user annotations and remains fixed. Moreover,
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tags are generally used to describe high-level topics rather than details. Consequently, Automatic

Tagging is often implemented as a fine-grained multi-label classification system.

While automatic tagging shares similarities with keyphrase extraction and the focus of this

study, there are notable differences in technical solutions, objectives, and applications. Therefore,

this dissertation does not delve extensively into automatic tagging and does not include comparisons

with tagging models.

While studies on Keyphrase Extraction and Automatic Tagging have achieved certain success

and demonstrated considerable value in real-world applications, their modeling paradigms are beset

by several major limitations [39, 128].

1. Both Keyphrase Extraction and Automatic Tagging methods are significantly hampered by their

output limitations, which inherently do not align with how humans assign keyphrases.

a. Concerning Keyphrase Extraction, all existing methods can only identify phrases present in

the source text, thus failing to capture instances such as synonymous phrases representing

key concepts, phrases describing overarching topics, or phrases with different word orders.

To further substantiate the argument regarding the output limitations of Keyphrase Ex-

traction, I examine the proportion of phrases that do not match any sub-sequence of the

source text verbatim (referred to as absent keyphrases) across four widely-used keyphrase

datasets constructed from academic publications, as shown in Table 1. The table highlights

substantial portions of absent keyphrases across all datasets. Even in datasets like NUS

and SEMEVAL, where fulltext is considered, nearly 10% of phrases cannot be located.

These absent phrases cannot be predicted using any extractive approaches, underscoring

the imperative for novel methodologies in keyphrase tasks and more robust models.

b. Regarding Automatic Tagging, which operates in the opposite direction, its output tags tend

to be high-level and abstract, often overlooking the details of the content. Additionally, it is

significantly constrained by the predefined tag vocabulary, which is fixed and limited in

terms of the number of tags available.

2. From a machine learning perspective, both methods simplify the underlying problem in distinct

ways. For instance, a common approach in keyphrase extraction involves converting the

keyphrase prediction task into binary classification or ranking problems based on n-grams
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Table 1: Statistics on absent keyphrases in four academic datasets

Dataset # Document # Keyphrase % Absent

Inspec 500 4,913 21.5%
Krapivin 460 2,641 43.8%

NUS 211 2,461 12.3%
SemEval 100 1,507 8.9%
KP20k 19,987 105,181 36.69%

within a text. In doing so, models focus on identifying features that differentiate these n-grams

rather than understanding why certain n-grams are deemed more significant or phrase-like than

others. For instance, when ranking phrase candidates, traditional extractive methods often rely

on statistical features such as TF-IDF and PageRank. However, these features only reflect the

importance of each word based on word occurrence statistics and do not capture the semantic

meaning underlying the text. Similarly, in automatic tagging, classification models are known

to prioritize capturing relationships between trivial features and class labels to optimize cost

functions [66], rather than comprehensively understanding the internal structure of the data.

1.2 MOTIVATIONS AND RESEARCH QUESTIONS

The preceding section provides an overview of two primary research directions in automatic

keyphrase generation: keyphrase extraction and automatic tagging. It also outlines the fundamental

challenges associated with these approaches. Before delving into the motivation behind this

research, it is beneficial to illustrate how and why humans assign keyphrases to a given piece of

text, providing a comprehensive understanding of this task. For instance, academic authors are

often asked with providing keyword information for their publications. By providing precise and

comprehensive keyphrases, they increase the chances of potential readers finding their work via

retrieval systems. Given their role as the primary intellectual contributors to their publications,

authors possess an intimate familiarity with the content, rendering them more qualified than third-
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party annotators for such intellectual tasks. Moreover, authors commonly assign keyphrases based

on their semantic understanding of the content, selecting representative phrases from the text and

abstracting appropriate high-level concepts and ideas.

To the best of my knowledge, there is no existing term that accurately encapsulates the general

process or action of extracting keyphrases from rich content. Therefore, I propose the introduction

of a new term – KEYPHRASIFICATION– to describe the series of studies focused on keyphrase

prediction. This term is not only independent of specific techniques used for keyphrase prediction

but also expands the conceptual scope of existing research areas such as keyphrase extraction

and automatic tagging. To illustrate, I delineate the scope addressed by each major automatic

paradigm using a Venn diagram in Figure 3. The term KEYPHRASIFICATION is partly inspired

by summarization, as it shares many similarities with keyphrasification. This study aims to define,

formulate and characterize KEYPHRASIFICATION from various perspectives, shedding light on

research endeavors in this domain.

Figure 3: A Venn diagram illustrating the scope of keyphrases addressed by the three major

paradigms in KEYPHRASIFICATION.

Moreover, I observe that a phrase, being a concise unit of natural language, inherently comprises

a sequence of words. Thus, we can approach the task of predicting phrases as a language genera-

tion problem. Consequently, I introduce a method to automate keyphrasification using language

generation techniques, termed KPGEN. This innovative approach to modeling keyphrases enables
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prediction without strict dependence on source text or predefined tag vocabulary. Leveraging

Sequence-to-Sequence Learning (SEQ2SEQ) and Deep Neural Networks, KPGEN operates in a

completely data-driven manner, capable of generating informative and natural-sounding phrases.

Additionally, I propose several variants to enhance the performance of this method across different

dimensions.

Last but not least, I explore the depth of understanding of keyphrases by large language models

and explore the potential for conducting evaluations using LLMs.

Following the elucidation of my research motivation above, I will explore the following research

questions in this dissertation, each of which is divided into several sub-questions.

1.2.1 RQ1: Defining and Understanding Keyphrasification

Currently, few studies delve into the formulation of keyphrasification and the elucidation of its

key factors. To comprehensively understand keyphrasification, I will address the following three

sub-questions for RQ1:

• RQ 1.1: How keyphrasification should be defined and formulated?

• RQ 1.2: What are the core properties of a keyphrase?

• RQ 1.3: How do humans understand, use and assign keyphrases?

1.2.2 RQ2: Keyphrasification by Language Generation

Moving beyond conventional keyphrase extraction and automatic tagging, I propose to investi-

gate automatic keyphrasification using language generation methods. While deep neural networks

have achieved remarkable success in various machine learning domains, including language gener-

ation tasks such as machine translation and summarization, several new questions emerge when

applying these techniques to keyphrasification:

• RQ 2.1: Given that neural language generation has primarily been applied to produce single

sequences, what distinct challenges does keyphrasification introduce, and which strategies could

effectively tackle these issues?
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• RQ 2.2: Since most existing sequence learning models aim to maximize the likelihood of

generating a single sequence, I question if this learning objective remains ideal for keyphrase

generation? Are there any approaches that could enhance this learning goal?

• RQ 2.3: Supervised learning methods typically demand considerable data and annotation

labor. Can we identify approaches to keyphrase generation that diminish the dependency on

extensively annotated datasets?

• RQ 2.4: Large Language Models (LLMs) have shown exceptional prowess in a variety of NLP

tasks. In the context of keyphrasification, how do LLMs perform, and what potential do they

exhibit in addressing keyphrase-centric challenges?

1.3 SCOPE DEFINITION

In this dissertation, I define the scope of my study with the following statements:

1. The focus of this study is on text-based keyphrasification, as it represents the most studied and

widely applied form of this task. While there are studies on keyphrase prediction for multimedia

sources such as image tagging [31] and audio tagging [37], these fall primarily within the realm

of automatic tagging. Given the significant variations in techniques for processing different

media types, this dissertation does not address keyphrase prediction for image, video, or audio

data. However, these areas are potential avenues for future exploration. For instance, we may

leverage data from image or video captioning studies for vision-based keyphrase prediction,

and transcriptions from phone calls or meetings for audio-based keyphrase prediction.

2. This study primarily focuses on methods based on neural networks, although a wide range

of other methods and models have been utilized in existing keyphrase prediction studies

[115, 127, 216]. One of the main contributions of this work is the introduction of a novel

paradigm that predicts phrases as language generation. Currently, neural networks are the most

practical and effective backbone for language generation models. Additionally, recent studies

have demonstrated significant improvements by replacing traditional keyphrase extraction or

automatic tagging methods with neural network-based variants, owing to their superior ability

to represent semantics and fit data.
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3. This dissertation does not include automatic tagging methods for comparison, as they exhibit no-

ticeable differences in methods, scope, and applications compared to most keyphrase prediction

studies. While automatic tagging shares similarities with keyphrase prediction in assigning tags

(which can be phrases) to indicate the main content, there are significant distinctions in technical

solutions, goals, and applications. Automatic tagging is typically formulated and implemented

as a multi-label classification problem, with a fixed and predefined tag vocabulary. This fixed

vocabulary greatly limits its ability to predict phrases effectively. Moreover, automatic tagging

is often applied for coarse-grained categorization rather than as a discriminative descriptor for

individual data points. Consequently, comparing keyphrase prediction methods with automatic

tagging methods under current evaluation settings is unnecessary.

1.4 OVERVIEW OF THE CHAPTER STRUCTURE

Chapter 3 provides an overview of related studies covering various topics pertinent to this

dissertation. Chapter 3 delves into the formulation of keyphrasification and explores its essen-

tial properties. In Chapter 4, I introduce keyphrase generation, a novel paradigm for automatic

keyphrasification, along with a comprehensive examination of critical method designs tailored for

this task. Chapter 5 presents an enhanced keyphrase generation method, which seeks to integrate

the properties introduced in Chapter 3. Chapter 6 introduces a new method aimed at reducing the

reliance on annotated data. Chapter 7 discusses preliminary results concerning the utilization of

large language models for keyphrase generation and understanding. Finally, Chapter 8 concludes

this dissertation by summarizing its contributions and discussing potential future research directions.

9



2.0 RELATED WORK

In this chapter, I will provide a comprehensive review of related studies on keyphrasification,

organized into three main paradigms aimed at automating this task: extraction, generation, and

tagging. Additionally, I will delve into recent advancements in natural language generation, which

is integral to the discussion in this dissertation. It’s important to note that my focus will primarily

be on studies utilizing deep neural networks, as they serve as the foundational technology for this

work and have shown significant improvements compared to traditional machine learning methods.

While there are several high-quality survey articles [78, 10, 144, 52, 151, 26, 136, 60] that organize

and analyze keyphrasification studies in various ways, many of them do not prioritize covering the

latest research in deep learning-based approaches.

2.1 KEYPHRASE EXTRACTION

2.1.1 Methods based on Candidate Selection

This line of methods is typically performed in two steps. Simply put, people could first collect a

large volume of phrase candidates, then compute scores on them in various ways and return the

top-ranking phrases.

The first step is to generate a list of phrase candidates with heuristic methods. One easy way is

to take all the n-grams within a text as candidates [86, 71, 128, 221], which ensures a high recall

possibility but also introduces many noises. Another way is to utilize Part-of-Speech or syntactic

parsing techniques to extract all the noun phrases as candidates since most keyphrases play as noun

phrases in the text [113, 205, 139, 104].

The second step is to score each candidate phrase for its likelihood of being a keyphrase in

the given document. The top-ranked candidates are returned as keyphrases. Both supervised and

unsupervised machine learning methods are widely employed here. For supervised methods, this

task is solved as a binary classification problem, and various types of learning methods and features

10



have been explored [57, 216, 85, 129, 117, 68]. Besides the classification paradigm, [113] modeled

keyphrase extraction as a problem of translating from the language of documents to the language

of keyphrases. To this end, they train a word alignment model that learns a translation from the

documents to the keyphrases. This approach alleviates the problem of vocabulary gaps between

source and target to a certain degree.

As for unsupervised approaches, primary ideas include finding the central nodes in text graph

[139, 71], detecting representative phrases from topical clusters [115, 114], and so on. One interest-

ing study [193] proposed to value the importance of a phrase by measuring its informativeness and

phraseness, and this method is implemented with two n-gram language models.

Many recent studies based on deep learning also fall into this category. [221] ranked n-

grams with a convolutional transformer model, which models both the text in the document and

corresponding visual features, which visually strengthens the discrimination between keyphrases

and normal content. Besides, they introduced a general-domain benchmark annotated on webpages

which greatly extended the richness of testbeds, which were previously dominated by academic text.

BERT [42] has achieved great success in Natural Language Understanding as well as down-

stream applications. [142] was one of the first studies using BERT to rank noun phrases in a

text. They also proposed to incorporate span-based features into learning, since phrases appear as

consecutive words in a text. Similarly, [188] used the BERT [42] as the base document encoder to

rank n-grams, combining a chunking module to identify high-quality phrases and a ranking module

to assign a score for each phrase.

2.1.2 Methods based on Sequence Labeling

Sequence Labeling is an effective way of modeling keyphrase extraction problems, which

assigns a label to each token in a source sequence, indicating whether each word should be part of a

keyphrase or not.

On academic datasets, [118] used sequence labeling models to extract keyphrases from text

and introduced a semi-supervised algorithm that propagates labels to leverage unannotated articles.

[70] incorporated linguistic and document-structure information into sequence labeling. [212]

discussed the issue of cross-domain keyphrase extraction, and they proposed learning a topic-
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aware representation with the help of adversarial learning. [152, 2] examined the effectiveness of

Conditional Random Fields and word embeddings trained on different corpora. [166] explored

BiLSTM-CRF models with a wider range of text embeddings, and they found BERT [42] and

SciBERT [11] models outperform the other representations.

Datasets built on social networks [124] are also widely used testbeds for Keyphrase Extraction.

[233] proposed a joint-layer recurrent neural network model to extract keyphrases from tweets,

which is one of the first applications of deep neural networks in the context of keyphrase extraction.

[163] improved [233]’s work by incorporating stacked RNN models with word embeddings, POS

tags, phonetics, and phonological features. Since re-tweets could provide contextual and historical

information for current tweets, [234, 236] proposed to explicitly utilize the retweet history to

improve keyphrase extraction. [235] proposed a mechanism to mimic human attention by analyzing

eye-tracking corpus, and it was effectively integrated with keyphrase extraction models, for both

supervised and unsupervised ones.

2.1.3 Other Methods

A special way of keyphrase extraction is to directly output the position of keyphrases in the

source text. [185] used Pointer Networks to point to the start and end positions of keyphrases in a

source text. Similarly, [190] also utilized a pointer network as the base model. However, instead of

pointing to the position of keyphrases in a source text, this model points to the words to be outputted.

Besides, they leveraged a graph convolutional network as a means to explicitly model the short- and

long-term dependency between words.

2.2 KEYPHRASE GENERATION

The main drawback of keyphrase extraction is that oftentimes keyphrases can be absent from

the source text, thus an extractive model will fail to predict those keyphrases [39]. [135] noticed

this missing piece in existing studies and first proposed the CopyRNN to address this issue, a

neural generation model that both generates words from vocabulary and points to words from the
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source text. Not only the CopyRNN can recall a significant amount of absent phrases, but also it

outperforms traditional extractive methods consistently.

Following the CopyRNN architecture, there are several studies that improve keyphrase gener-

ation with enhanced model architectures. [237] leveraged a Convolutional sequence-to-sequence

model to speed up the training and inference. [30] proposed to incorporate a coverage mechanism

to help reduce duplication in generated results and improve coverage. [240] leveraged additional

linguistic information in both inputs and outputs to facilitate the model learning, in order to reduce

generating overlapping phrases. [38] proposed KPDrop, which drops out certain present keyphrases

from the source text. The results with various training paradigms showed consistent improvements

in absent keyphrase performance.

Besides, a few studies tried to improve the model beyond training with maximum likelihood

estimation. [226] proposed semi-supervised methods by leveraging both labeled and unlabeled data

for training. [34, 226] proposed to use structure information (e.g., title of source text) to improve

keyphrase generation performance. [28] introduced reinforcement learning and adaptive rewards to

train generation models. [32] retrieved similar documents from training data to help produce more

accurate keyphrases.

The multiple target phrases pose a difficulty for sequence-to-sequence learning, and researchers

seek for novel ways to deal with the multiple phrase decoding. [231] proposed to concatenate

multiple keyphrases as a sequence for training, with which the model is expected to handle the

correlation among phrases and avoid duplicate generation. Additionally, they propose two auxiliary

modules to promote the diversity in generated phrases. Most generation models rely on Beam

Search for propagating a large number of predictions, but it also leads to great waste in decoding

due to duplicate generation. Regarding this issue, [141] used multiple decoders (each of them

generates only one keyphrase) that focus on different words of the source text by subtracting the

attention value derived from the previous decoder. [33] proposed an exclusive hierarchical decoding

framework to prevent models from generating duplicate phrases.

A newly introduced training paradigm for keyphrase generation is One2Set [227, 220], in which

target keyphrases are treated as a set instead of a concatenated sequence. Specifically, all keyphrases

are predicted in parallel, or a semi-autoregressive manner, and the mapping between the generated

and target tokens is dynamically aligned.
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Pre-training models have shown great effectiveness on various NLP tasks. [111] utilized

BERT as the base encoder and combined extractive and generative losses in training, which led to

impressive improvement on various datasets. [217] conducted a comprehensive investigation of

leveraging pre-trained SEQ2SEQ models for keyphrase generation and compared a set of effective

decoding strategies. [219] leveraged an extractor-generator backbone based on UniLM [45] and

showcased the possibility of unifying keyphrase extraction and generation.

A few studies focus on the keyphrase generation problem under the long context setting. [64]

introduced an academic keyphrase dataset FullTextKP and demonstrated that extractive summary

can serve as an efficient surrogate for the original full text. LDKP [119] is another corpus for long

context keyphrase generation containing the full text of 1.3 million scientific articles. EUROPA [168]

is a multilingual keyphrase dataset derived from legal judgments, covering 24 EU official languages.

To reduce the need for annotated data for training models, [65] examined four ways of augmen-

tation for keyphrase generation (dropout, back-translation, synonym replacement and a keyphrase-

specific variant) and showed their effectiveness for KPG in low-resource settings. [218] proposed

multiple pertaining objectives to pretrain a generation model and it exhibited decent performance

with limited training data. [133] proposed pertaining KPG models using Wikipedia, a general-

domain phrase corpus, and they generalized to unseen domains with limited training data.

2.3 AUTOMATIC TAGGING

Automatic tagging [37, 128, 12], also called Tag Recommendation [181, 122] or Social Tag

Prediction [80], refers to the automatic process assigning appropriate tags to describe an object,

e.g., video, text and audio. Since tags provide a cheap and flexible way of organizing content than

taxonomy, it has been widely used in different applications, such as image tagging [31, 192], audio

tagging [37, 31, 157] and text tagging [182, 102, 102]. Broadly speaking, assigning keyphrases in

scientific publications could also be considered as social tagging. But, in my opinion, the difference

between automatic tagging and keyphrase extraction can be seen in two ways. First, tag is usually

considered atomic, i.e. as the base unit, in automatic tagging studies. Therefore they do not pay

much attention to linguistic characteristics of tags. Second, in practice only a fixed number of tags
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are considered for modeling, since long-tail tags are of less quality and value [49]. Therefore multi-

label classification becomes the primary method for automatic tagging, especially on non-textual

contents.

For textual content, according to [181], user-centered approaches and document-centered ap-

proaches are the two major ways to address tag recommendation. The former aims at recommending

tags to a user from similar users based on their user interests. Collaborative filtering is one typ-

ical user-centered technique. However, it is considered less effective due to the sparsity of tag

annotation [49]. Document-centered approaches utilize the rich information contained in the docu-

ments. Therefore, keywords or keyphrases are often exploited as tag candidates, and techniques

for rating [22, 50, 80] or ranking [27] tags can actually be shared between automatic tagging and

keyphrase extraction studies [12]. But again, the typical setting of automatic tagging only considers

a fixed tag vocabulary, which is significantly different from the goal of general keyphrase studies.

To the best of my knowledge, [127] is the only study discussing the connection between the two

areas. In their study, collaboratively tagged documents from CiteULike were leveraged in evaluation,

to counteract the subjectivity in the author keywords. They proposed using a supervised keyphrase

extraction method for automatic tagging. However, though it alleviates the current evaluation issue

to some extent, the rarity of social tags and the difficulty of collecting them prevent people from

following this evaluation method.

2.4 NATURAL LANGUAGE GENERATION

In general, Natural Language Generation studies can be categorized into two classes, conditional

generation, and unconditional generation, depending on whether a source text is given. The former

is more widely researched and applied than the latter.

Conditional generation is to generate a target text given certain source information, and the

relationship between the source and target is defined by the task. Many NLP tasks can be formulated

as conditional generation, such as machine translation [35, 6, 173], text summarization [170, 165],

and sentence simplification [51, 241]. The Keyphrase Generation proposed in this dissertation also

falls into this category.
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Due to the great efficacy of end-to-end training for deep neural networks, Sequence-to-Sequence

Learning [36, 191] becomes the fundamental method for language generation. It is a special case of

Encoder-Decoder models, in which an encoder module is leveraged to extract information from

the source data and a decoder module is to express this information into the target format. A basic

Sequence-to-Sequence model is illustrated in Figure 4.

Different strategies have been explored to improve the performance of Sequence-to-Sequence

models. The attention mechanism [6] is a soft alignment approach that allows the model to

automatically locate the relevant input components. To make use of the important information in the

source text, some studies sought ways to copy certain parts of content from the source text and paste

them into the target text [1, 73, 232]. A discrepancy exists between the optimizing objective during

training and the metrics during evaluation. A few studies attempted to eliminate this discrepancy by

incorporating new training algorithms [121] or by modifying the optimizing objectives [173].

Figure 4: An illustration of a basic Sequence-to-Sequence architecture. The encoding process is

placed on the left side. Three words, A, B, and C, denote the source text and <EOS> in the middle

denotes the end of the source sequence. The right side shows the decoding process. The model

outputs a sequence conditioned on the source information and the ending <EOS> denotes the end

of decoding/generation.

As for unconditional generation models, the generated text is text-free and does not condition

on any source information. Generally, an unconditional generation model cannot be directly applied

to a specific task without any modification or parameter tuning, but it can provide a probability

distribution of the next word and this can be leveraged in different ways, say improving language

readability and fluency [109] or facilitate text generation for few-shot learning [230, 9].

Unconditional generation models typically generate text from left to right, which follows the

natural way humans read or write. However, many models are also trained without following
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certain orders, resulting in a better understanding of contextual information. In terms of left-

to-right unconditional models, GPT-2 [160], the successor of GPT [159], gained wide attention

due to its superior performance. It is based on the Transformer architecture and trained with

a large amount of task-free textual data. For bidirectional unconditional models, ELMo [154]

utilized bidirectional LSTM and multiple objectives for language modeling. BERT [42] proposed a

bidirectional Transformer architecture and it yields excellent performance on various NLP tasks.

BERT might be utilized as a base text encoder in this dissertation.

Large language models (LLMs) have become increasingly prominent in the field of NLP, char-

acterized by their billions of parameters and training on extensive datasets, leading to outstanding

performance in a wide array of NLP tasks. These models have demonstrated emergent capabilities

not previously seen [215, 214], surpassing traditional benchmarks in areas like question answer-

ing and summarization [23, 195]. Studies have benchmarked LLMs, indicating their capacity to

match or exceed existing standards in various NLP domains [16, 103]. The integration of tech-

niques such as instruction tuning [149, 40] and Reinforcement Learning from Human Feedback

(RLHF) [149, 184] could further amplify the potential of LLMs. Instruction tuning, where models

are fine-tuned to follow natural language instructions, can enhance the ability of LLMs to generate

accurate and relevant outputs by providing clear, task-specific guidance. RLHF, which refines model

outputs based on human feedback, could be instrumental in fine-tuning the generation process,

ensuring that the produced outputs are not only precise but also contextually appropriate. The

application of these advanced training methodologies could lead to significant improvements in the

way LLMs understand and execute the keyphrasification task, pushing the boundaries of what is

achievable with current language model technologies.
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3.0 UNDERSTANDING KEYPHRASIFICATION

3.1 MOTIVATION

In Chapter 1, I propose to use a new term – KEYPHRASIFICATION– to describe the general

process of obtaining keyphrases from rich content, such as lengthy documents, whether performed

by humans or automated systems. This term is inspired by “keyword” [44] and “phrasify” [43], the

latter referring to “to utter or express in a phrase”. Unlike specific techniques used for keyphrase

extraction, keyphrasification extends the research scope beyond existing areas such as keyphrase

extraction and automatic tagging, providing a more comprehensive framework for understanding

keyphrase-related tasks.

To date, there has been limited theoretical discussion on the formalization of keyphrasification.

In [193], the authors emphasize two crucial features: phraseness and informativeness. Phraseness

characterizes the extent to which a sequence of words constitutes a phrase, while informativeness

measures how effectively a phrase captures the key concepts of a document. In their study, informa-

tiveness is specifically defined as the disparity between the foreground document and the background

knowledge. Additionally, [52] outlines a set of properties to illustrate keyness in keyphrases. Recent

research [155] introduces and quantifies several fundamental concepts in summarization from the

standpoint of Information Theory.

Motivated by these studies, I endeavor to define and formulate the task of keyphrasification in

this study. A well-defined formulation can facilitate a deeper understanding of this task and pave the

way for the development of automated methods in a more systematic manner. The primary objective

of this chapter is to address RQ1. Herein, I will delve into the formulation of keyphrasification

from an intuitive standpoint. Building upon previous discussions, I will delineate several pivotal

properties inherent to keyphrasification. Furthermore, I will conduct an interview study to gain

insights into how humans perceive keyphrases, as well as how they utilize and assign them. The

findings of this interview can offer valuable insights into the task and serve as crucial evidence to

substantiate my formulation.
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3.2 FORMULATING KEYPHRASIFICATION

The concept KEYPHRASIFICATION can be broadly defined as the process of summarizing

rich content using a collection of phrases, a task that can be undertaken by either humans, such as

librarians, or automated systems. Keyphrasification, akin to summarization, which represents a

more general scenario, can be viewed as a form of lossy information compression. Both processes

aim to succinctly capture the main ideas of a piece of data. However, a fundamental distinction

lies in the output format: keyphrasification condenses the content into a list of short phrases,

whereas summarization typically yields complete sentences. In this study, I exclusively focus on

text keyphrasification, which requires the source content to be in textual format.

Keyphrasification can conceptually be performed by first summarizing the essential ideas

of the source text and then expressing them succinctly in the form of phrases, as illustrated in

Fig 5. The abstract and intermediate representation, which encapsulates the core ideas of the

source text, is referred to as a semantic unit [152]. A semantic unit is considered an atomic piece

of information [8, 54]. This concept is also manifested in various forms such as factoids [200],

summary content units [145], or atomic content units [112].

In this way, we can assume that a text X , which can be a word, a phrase, or a sentence, can be

represented as a distribution over a set of abstract semantic units. The role of semantic units can be

understood like the topics in topic modeling [83, 15] and dimensions in distributional representa-

tion [140]. This assumption aligns well with the essence of keyphrasification, as keyphrases are

commonly perceived as natural, meaningful, and often unambiguous semantic units. And we can

further assume that keyphrases can be regarded as embodiments of semantic units. There are studies

that leverage keyphrases as an interpretable representation for documents [110, 211, 5]. Notably,

unlike in summarization studies, semantic units in keyphrasification focus more on specific entities

and concepts related to the content in the data, rather than encompassing facts and events.
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Figure 5: The conceptual formulation of keyphrasification.

3.3 PROPERTIES OF KEYPHRASES

Keyness and phraseness are two fundamental properties of keyphrases. Keyness refers to the

significance or importance of the summarized information, while phraseness pertains to the syntactic

quality of the output, focusing on whether the resulting phrases are well-formed and natural. While

there is existing literature and concepts from Information Theory that can help us understand

keyness, there is a notable gap in studies focusing on phraseness. Therefore, I will consolidate

several aspects of phraseness from various perspectives. All properties and their definitions will be

summarized and presented in Table 2.

3.3.1 Keyness

Keyness, as described in existing studies, encompasses concepts such as importance [155],

salience [48], and quality [39]. These terms encapsulate various facets but collectively signify

that certain words or phrases carry more weight in conveying the essence of a text than others.

Essentially, keyness involves a balance between informativeness and communication cost [105].

Informativeness pertains to the keyphrases’ role in representing the core information of the source

text, while communication cost acts as a regularization factor, encouraging a minimal "keyphrase

capacity."
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Table 2: Keyness/phraseness properties that are discussed in this study.

Category Property Description

Keyness -
keyphrases
as a whole

Coverage Whether the set of keyphrases contains a range of topics that the source
text covers

Low-redundancy Whether the semantic overlap among keyphrases in a set is low

Keyness -
individual
keyphrases

Importance Whether the keyphrase represents the essence of the source text

Relevance Whether the keyphrase is accurate and contains the same information in
the source text

Specificity Whether the keyphrase is specific to the content of the source text, in
comparison to general knowledge

Uniqueness Whether the keyphrase captures unique points of the source text

Prevalence* The extent to which it is commonly used and encountered within the
research community

Phraseness
Conciseness Whether the keyphrase is short and concise rather than long or

descriptive

Synonymity Whether the keyphrases contain multiple synonymous phrase candidates
that correspond to one semantic meaning

In what follows, I will outline a range of specific properties related to keyness. Coverage

and low redundancy address the overall relationships between the source data and all potential

keyphrases, while the remaining properties focus on individual keyphrases.

Coverage: This property pertains to the comprehensiveness of keyphrases in covering all major

topics within the source text. For instance, consider the phrase "topic tracking" in Fig 1, which

encapsulates the core research task discussed in the paper. A set of keyphrases that includes "topic

tracking" is deemed superior to one that does not, assuming all other phrases remain the same.

Low-Redundancy: This property addresses the avoidance of duplicate or semantically overlapping

phrases among keyphrases. For example, "multiple language" and "multilingual" convey similar

meanings, leading to redundancy. A set of keyphrases without such redundancies is considered

more optimal.

Importance: This property underscores the significance of the information conveyed by keyphrases

to the text’s core content, excluding peripheral details. For instance, "story link detection," while

mentioned in the paper in Fig 1, may not be essential to its main contributions and thus may not be

included as a keyphrase. Similarly, dataset names or evaluation methods, being less critical, are

typically excluded as keyphrases. Therefore, a set of keyphrases containing important information
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is preferable over those lacking such vital elements, assuming other aspects remain equal.

Relevance: Relevance emphasizes that keyphrases should directly relate to the information

presented in the source text. For instance, if a paper does not discuss “face detection” despite

its importance in the Computer Vision domain, including this phrase in the keyphrases would be

considered irrelevant. Thus, in a comparison where all other phrases are identical, sets of keyphrases

containing irrelevant terms are deemed less effective.

Note that the relevance property can overlap with attributes like accuracy, consistency, and

faithfulness, as they all pertain to how accurately keyphrases represent the content of the original

data.

Specificity: Specificity gauges the extent to which a phrase is tailored to the content of the source

text as opposed to general knowledge. Given the hierarchical nature of human knowledge perception,

keyphrases can range from specific terms found in the text to high-level concepts that encapsulate

the text’s theme. Both specific and general keyphrases serve different purposes depending on the

context.

Uniqueness: Uniqueness refers to whether a keyphrase captures distinctive aspects of the source

text that differentiate it from other texts. A low uniqueness keyphrase implies that its information

is commonplace and easily derived from general knowledge. For example in Fig 1, terms like

“hypothesis” or “stories” may lack uniqueness if they are commonly used and do not convey the

unique information of the text. Thus, in a scenario where all other keyphrases are constant, sets of

keyphrases containing common terms are considered less valuable.

3.3.2 Phraseness

Unlike keyness, which emphasizes the informational delivery of keyphrases, phraseness pertains

to the structure of keyphrases, that is, their formation and syntactic construction in actual usage.

In linguistics, a phrase is recognized as a word sequence or a singular word that holds syntactic

significance and functions as a sentence component [21]. Grammatically, phrases can assume

various forms and lengths, but in practice, keyphrases often appear as concise noun phrases.

While there are limited theoretical discussions on keyphrase morphology, I will outline some

phraseness characteristics from different perspectives.
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Conciseness: Keyphrases are preferred for their brevity compared to the more descriptive and

extended sentences. Analysis of keyphrase lengths in KP20K [135] shows that 97.82% of free-form

keyphrases comprise fewer than five words, with bigrams constituting the largest portion (43.16%).

The preference for shorter n-grams and concise expressions lacks a formal theoretical explanation

but is intuitively linked to reducing cognitive load [88, 126]. Overly long phrases can burden

communication and comprehension, leading to the creation of new, shorter symbols to convey the

same meaning, in line with the Principle of Least Effort.

Synonymity: Synonymity refers to the existence of multiple synonymous phrases conveying the

same semantic content. A semantic unit can be represented in various ways, including detailed

sentences or succinct phrases. Due to the natural language diversity, a semantic unit may be

expressed through different synonymous phrases. For instance, the terms “TDT” and “topic

tracking” in Fig 1 refer to the same concept, which could also be labeled as "topic detection and

tracking" or "topic evolution." Thus, several keyphrases might represent the same semantic idea,

each serving as a valid expression of that concept.

However, in practice, synonym redundancy is usually minimized to avoid overloading the text

with repetitive terms. This creates challenges for evaluating keyphrasification with real-world

data, as often only a limited set of synonymous keyphrases are annotated for each semantic unit,

underscoring the need for semantic-based evaluation methods in keyphrasification.

Diversity in Syntactic Forms Humans often use noun phrases as keyphrases, yet research indicates

that not all keyphrases are nouns. Syntactically, keyphrases can embody various parts of speech,

contributing differently to a sentence’s structure. For instance, in Fig 1, terms like “multilingual”

and “crosslingual” are employed to emphasize the study’s focus on multilanguage topic tracking.

Linguistics recognizes phrases as noun, adjective, adverb, verb, and prepositional phrases. Research

in [39] shows noun phrases dominating in academic publications (64.95%), with verb phrases also

present (7%). However, the analysis didn’t categorize or examine the remaining keyphrases’ types.

In another study [186], focus was on entity keyphrases, finding that about 40% of ground-truth

keyphrases in OPENKP were non-entities, exhibiting diverse forms like “join a world” and “care

tenderly”. This diversity presents challenges for models identifying keyphrases. Both studies have

limitations: [39] used an automatic POS tagger, potentially inaccurately for absent phrases, and

[186] provided only an estimated figure without methodological clarity. Additionally, OPENKP ’s
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Figure 6: An example of constituency parse tree (demo provided by AllenNLP [63, 95]).

extractive nature may lead to syntactically diverse keyphrases since annotators were restricted to the

original text.

Despite these complexities, noun phrases are predominantly used as keyphrases, possibly

because they serve as robust semantic units, offering specific, concrete information crucial for

understanding, especially in lengthy texts. Noun phrases typically face less ambiguity compared

to verbs or adjectives and can be more morphologically stable. Moreover, phrases like “is red” or

“was walking” are less informative and often can be converted into more substantive noun forms,

such as “complexity” from “complex”. Figure 6 illustrates the syntactic parsing, highlighting the

noun phrase’s centrality in sentence structure.

Practically, the prevalence of noun phrases in keyphrasification aids in the initial extraction

of keyphrase candidates. Studies like [39] suggest that simple POS tagging can identify most

keyphrase candidates, enabling a focused approach on selecting the most representative ones. This

efficiency underpins many successful keyphrase extraction methods, which typically employ a

two-step process yielding effective results.
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3.4 HUMAN PERSPECTIVES ON KEYPHRASIFICATION: INSIGHTS FROM AN

INTERVIEW STUDY

3.4.1 Motivation

Building upon the conceptual formulation of keyphrasification discussed earlier, the practical

understanding, assignment, and utilization of keyphrases by humans in real-world settings remain

less explored. To address this knowledge gap, I conducted an interview study focusing on the

academic realm to gather firsthand insights on how keyphrases are perceived and employed. The

aim was not only to enhance our understanding within the academic context but also to extrapolate

potential applications and utilities of keyphrases in broader scenarios.

The study was designed to investigate the following research questions, with a particular

emphasis on the academic use of keyphrases:

- RQ1: In the academic sphere, what purposes do keyphrases serve?

- RQ2: How important are the keyness/phraseness properties outlined in Sec 3.3, and are there

any overlooked properties?

- RQ3: What factors are considered when humans assign keyphrases for academic papers?

- RQ4: Beyond academia, in which other contexts might keyphrases prove beneficial?

3.4.2 Methods

3.4.2.1 Recruitment

To understand how keyphrases are comprehended and annotated in academia, experienced

academic researchers were targeted for interviews. Participants were recruited through online

advertisements, adhering to the following inclusion criteria: (1) they must be academic researchers,

including Ph.D. candidates; (2) aged at least 18 years; and (3) experienced in writing academic

papers and assigning keyphrases. Each participant received $20 as compensation for their time.

Interviews, lasting about an hour each, were approved by the University of Pittsburgh’s Institutional

Review Board (IRB #: STUDY20110108).
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Fifteen participants were interviewed, all of whom were doctoral students or Ph.D. graduates

from the University of Pittsburgh, averaging 4.13 years in research experience. Their backgrounds

were mainly in Information Science and Computer Science, which could limit the study’s generaliz-

ability to these fields alone.

3.4.2.2 Interview Design and Analysis

Individual semi-structured interviews were conducted remotely via Zoom, led by myself and Yu

Chi, a fellow doctoral student. These discussions focused on participants’ experiences and methods

in understanding, using, and assigning keyphrases in academic work.

To address RQ1 and RQ4, we explored participants’ perspectives on the utility and significance

of keyphrases in both academic and broader contexts. For RQ2 and RQ3, we delved into their

decision-making processes in keyphrase selection for three of their publications (with specific

identifiers, omitting actual titles for anonymity). Questions like "How do you decide whether a

phrase merits being a keyphrase, and what are your reasons?" were central to these discussions.

The complete interview guidelines, including all procedures and questions, are detailed in Ap-

pendix A. Interviews were audio-recorded and transcribed for thorough content analysis, performed

collaboratively by the interviewers.

3.4.3 Results

3.4.3.1 Academic Use Cases of Keyphrases

Exploring the practical applications of keyphrases, we sought to understand their academic use.

In academic contexts, we inquired about the scenarios in which keyphrases are utilized. The

majority (11 out of 15) of the participants viewed their primary role as aiding in search optimization.

For instance, P10 highlighted, “I do expect keywords to help in searches, so if someone is searching

for a paper I would expect that the matching algorithm will use keywords as one way to give more

relevant search results.”.

In addition to facilitating the paper search, the other four participants also mentioned that

keyphrases can be used for (1) identifying relevant reviewers; (2) leveraging trending keywords for
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paper promotion; and (3) aligning with the intended academic community or venue.

Regarding whether participants review the author-assigned keyphrases in a new research paper,

seven mentioned they scan them for a preliminary understanding of the paper, as P02 articulated, “I

think what keyphrases really give me is quickly tell me what this paper is talking about, so I can

decide whether I want to read it or not, but I don’t think it will actually help me to understand the

paper”. Conversely, eight participants felt keyphrases provided insufficient detail to comprehend

the paper fully.

3.4.3.2 Keyphrase Assignment Insights

We delved into the rationale and considerations behind keyphrase selection. Initially, we

questioned whether participants employed a systematic approach or specific paper sections as

keyphrase sources. Five respondents saw it as summarizing the paper’s core contributions, typically

finalizing keyphrases after completing the manuscript, as P08 explained, “I mainly look at the main

idea of the paper and come up words from the main ideas. I want this paper to pop up and want

people to read this paper when keywords match for relevant areas, so that’s how and why I select

the main ideas of the paper as the keywords.”.

Titles were commonly used as a keyphrase source by six participants, while others mentioned

abstracts (4 participants), literature from other authors (2 participants), and section headings (1

participant).

When asked about adherence to keyphrase assignment guidelines, four participants acknowl-

edged familiarity with official guidelines in submission platforms like AMIA [4] and the ACM

CCS (ACM Computing Classification System) [55], aimed at thematic categorization for reviewer

assignment. One participant recalled guidance from a scientific writing book, whereas the majority

described their selection process as intuitive, epitomized by P14’s remark, “my methods of choosing

keywords are kind of intuitive I think the method should be like this”

On the number of keyphrases, norms (community convention) typically guide the selection of

three to seven, as P13 noted, “it’s just basically experience. When you read a lot of papers and

they all have like five to seven key keywords, you just select that five to seven keywords.” Three

participants aimed for maximum keyphrase inclusion to enhance paper visibility. Three participants
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commented that the number does not matter and P10 suggested “quality over quantity”.

Regarding keyphrase ordering, most participants (13) stated that a certain ordering would be

applied, and the rest thought “it has some logic, but it’s not that important”. Specifically, six

participants consider importance as the major aspect, for example, according to P07 “I think, maybe

all people will defaultly, make the most important one, at the first and then gradually to the least

important one.”. Three participants use granularity as the criterion, arranging the keyphrases from

general to specific. Function is adopted by three participants, as stated by P11 “I put the more

familiar ones and hot topic in the beginning, and then some interesting topics and contributions

at the end”, though others may use other function ordering. Lastly, two participants suggested

relevance and the most relevant keyphrases would be put first. The disagreement indicates varied

strategies in keyphrase organization.

3.4.3.3 Assessing the Importance of Keyphrases Properties

This segment explores participants’ perspectives on keyphrase properties, conducted in two

stages.

In the first part, we provided the participants with a list of properties and their definitions,

inquiring if they wished to suggest additional properties. Subsequently, they were asked to rate the

importance of each attribute on a scale from 0 to 5. The average scores are displayed in Table 3.

Initially, seven attributes were listed, with Prevalence later added on a participant’s suggestion,

receiving only 12 ratings.

Properties rated above 4.40 were Importance (4.73), Conciseness (4.60), Coverage (4.47), and

Prevalence (4.42), each embodying a distinct keyphrase facet. Importance reflects the keyphrase’s

relevance to the paper’s core content, as P02 noted: "I think the most important value of keywords

is to let you understand what’s the most important part of this paper." Conciseness pertains to

phraseness, with P10 remarking on the need for brevity to avoid confusion. Coverage examines

how collectively the keyphrases encapsulate the paper’s theme, while Prevalence indicates the

keyphrase’s recognition within the research community, per P12: “it’s better to be prevalent and to

be well-known by your research community and others”.

Specificity and Uniqueness received lower ratings, attributed to their perceived limited impact
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Table 3: Participants’ rating on the importance of each keyphrase property. Most properties have 15

valid ratings except for prevalence (12 valid ratings). Definitions of most properties are listed in

Sec 3.3.

Property Avg score

Coverage 4.47
Low-redundancy 4.33

Importance 4.73
Relevance 4.33
Uniqueness 3.93
Specificity 3.80
Prevalence 4.42

Conciseness 4.60

on broadening the paper’s conversational reach or following established research trends, as high-

lighted by participants’ feedback. For the former, participants think, for example, P03: “general

terms are also sometimes important for a lot of papers because you want to have a conversation

with more general broader areas not just a very specific group or research community.”. As for

uniqueness, P15 commented that “I’m trying not to show the uniqueness of my paper but I’m trying

to follow the previous work so it is easy for others to find”. Basically, from the perspective of

promoting the visibility of a paper, a very specific or unique keyphrase would decrease the chance

of being accessed by the readers. Nevertheless, in comparison to regular phrases in the same paper,

keyphrases should be more specific or unique overall.

Table 4: Participants’ rating on the importance of keyphrases by functions/roles.

Community Paper - General Paper - Specific
Domain Topic Task Focus Contribution Goal Application Method Setting Dataset Total

Count 20 23 15 29 11 5 14 21 5 2 145
Avg score 3.5 3.7 4.7 4.3 4.6 4.0 2.5 4.1 3.4 3.5 3.9

In the second phase, participants were tasked to annotate the function or role of each keyphrase

(i.e. the keyphrase represents which aspects of the paper) in three of their papers, and rate their
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significance. To avoid confining responses, we offered examples like area, method, problem,

solution, goal, focus, domain), and we merged similar functions for analysis such as “domain” and

“broader area”, “method” and “model”.

The findings, summarized in Table 4, show a preference for properties neither too general nor too

specific. Notably, Task and Contribution were deemed vital, indicating the paper’s objectives and

innovations. Conversely, more general attributes like Domain and Topic received lower importance

ratings, possibly due to their perceived lesser direct relevance to the paper’s specific content such as

Task. Among the more detailed functions, Method was valued for its importance in representing

the paper’s approach.

3.4.3.4 General Use Cases of Keyphrases

Exploring the application of keyphrases beyond academia, we found diverse utilizations across

various sectors. Three participants highlighted the widespread use of hashtags on social media

platforms like Twitter and Instagram, noting their effectiveness in aggregating content around

specific topics. For instance, one participant described using a phrase related to global warming to

retrieve relevant tweets linked to that hashtag.

Keyphrases serve as a tool for organizing information, as observed in resource management

applications like Mendeley, where users assign custom keywords to categorize articles based on their

interests. This method aids in structuring knowledge, as P15 explained: "I’m using a Mendeley like

application, I’m assigning most of the time my own keywords to papers that I read." Furthermore,

keyphrases play a role in presenting knowledge and information, such as in word cloud visuals or

presentation slides. One participant mentioned: “I will use keyphrases for bullet points in slides of

my presentation.”

Another significant application is the labeling of digital content with tags, a practice common in

news portals, e-commerce platforms like Amazon, multimedia repositories, and Q&A sites. Tags

act as quick-reference markers that help users filter and locate specific content efficiently.

Keyphrases, due to their concise nature, are commonly used to label and categorize extensive

or complex resources, such as long articles and academic papers, and media that lack textual

descriptions, such as movies and products.
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3.5 SUMMARY

This chapter established a conceptual framework for keyphrasification and examined its various

properties. An interview study was conducted to delve into human perspectives on keyphrase

perception, assignment, and usage. The insights from these discussions highlighted the critical

role of keyphrases in summarizing content and connecting it to broader community discussions.

Findings also indicate that the process of assigning keyphrases is largely influenced by individual

and community practices, with less reliance on formalized guidelines.
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4.0 KEYPHRASE GENERATION: KEYPHRASIFICATION BY LANGUAGE

GENERATION

In previous chapters, I formulate the keyphrasification as an information compression process

and it could be implemented in two steps: summarizing the key information of a source text and then

phrasifying it. I also notice that keyphrases, though usually short pieces of text, can also demonstrate

the astounding complexity and diversity of natural language, which can hardly be captured using

traditional paradigms for predicting keyphrases. For example, the tags used in Automatic Tagging

are typically high-level, that do not reflect the thorough semantics of a text. Moreover, its tag

vocabulary is often fixed and of limited size, which can hardly stay updated with the latest trends.

Nevertheless, keyphrase extraction techniques are strictly constrained by the content given in the

text, which means they can never predict keyphrases that are absent in the text, contributing to up to

43.8% of total keyphrases (Table 1).

To overcome the aforementioned shortcomings in existing automatic keyphrase techniques, I

propose to treat individual keyphrases like a shorter sentence, that is, as a piece of natural language

that consists of a sequence of words. Specifically, I propose to utilize language generation methods

for modeling keyphrases, expecting models to predict phrases of various forms, instead of being

constrained by tag vocabularies or source texts. Furthermore, with the help of recent advances in

deep neural networks, the model training is completely data-driven and models are expected to

output good phrases in terms of both keyness and phraseness.

I name this novel paradigm for automatic keyphrasification as Keyphrase Generation (KPGEN),

and I will discuss this technique in detail in this chapter. To start with, I will introduce Sequence-

to-Sequence Learning, which serves as the backbone of KPGEN and conceptually matches the

two-step formulation (summarize and phrasify) in Chapter 3. After that, I will first present

KPGEN-ONE2ONE and KPGEN-ONE2SEQ, two implementations of KPGEN using the Seq2Seq

learning. The former learns to generate keyphrases individually and the latter predicts multiple

keyphrases in a concatenated sequence. Meanwhile, several special components are proposed,

expecting to resolve the unique challenges in keyphrasification. I conduct extensive empirical

studies to investigate their performance. The results show that the proposed KPGEN models not
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only outperform previous baselines on present keyphrase prediction (keyphrase extraction), but also

predict keyphrases that do not appear in the original text.

4.1 BACKGROUND

4.1.1 Sequence-to-Sequence Learning

Sequence-to-Sequence Learning [36, 191] is a supervised machine learning method for language

generation problems, such as machine translation and text summarization [165, 204, 172]. It

is a special case of the Encoder-Decoder Model, for the cases that both input and output data

are sequences. Many studies use Sequence-to-Sequence Learning and Encoder-Decoder Model

interchangeably.

In this study, both the source text and target keyphrases are treated as sequences of words. Then

a Sequence-to-Sequence model is adopted to compress the content of source text into a hidden

representation with an encoder, and to generate corresponding keyphrases with a decoder. In what

follows, I will first overview the Sequence-to-Sequence Learning in general. Then I will discuss

the specific RNN-based Encoder-Decoder architecture as well as the attention mechanism in detail,

which is the primary model used in this study.

In a basic Encoder-Decode architecture, an encoder module is leveraged to extract information

from the source data and a decoder module is to express this information into the target structure.

For sequence learning, typical options of encoder/decoder modules include vanilla Recurrent

Neural Networks (RNNs) [93, 47], RNNs variants such as LSTM [82] and GRU [35], as well as

Transformers [202]. I will use RNNs for example here without loss of generality.

For RNNs as well as their variants, an encoder RNN converts the variable-length input sequence

x = (x1, x2, ..., xN) into a set of hidden representation h = (h1, h2, . . . , hN), by iterating the

following equations along time t:

ht
enc = fenc(x

t, ht−1
enc ) (1)

where fenc is a non-linear function implemented by neural networks. I get the context vector hx
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acting as the representation of the whole input x through a non-linear function fproj .

henc = fproj(h
1
enc, h

2
enc, ..., h

N
enc) (2)

It is also common that I simply take the hidden state of the last time step of the encoder as the

context vector:

henc = hN
enc

(3)

Then a decoder RNN generates a variable-length sequence y = (y1, y2, ..., yN
′
) word by word,

conditioned on previous outputting word yt−1, previous decoding state ht−1
dec , and the context vector

henc:
ht
dec = fdec(yt−1, h

t−1
dec , henc)

p(yt|y1,...,t−1,x) = fout(y
t−1, ht

dec, henc)
(4)

The non-linear function fout is typically a softmax classifier, that outputs the probabilities of all the

words in the preset vocabulary. yt is the word predicted at time t, by taking the one with largest

probability after fout(·).

The encoder and decoder networks are optimized jointly with back-propagation [79, 29], by

maximizing the conditional probability of the target sequence, given the corresponding source

sequence. More formally, the optimization objective of an Encoder-Decoder model is defined by

the following likelihood function:

L = −
T ′∑
t=1

log(p(yt|y1...t−1,x)) (5)

4.1.2 Encoder-Decoder Architecture Using Gated Recurrent Unit

Specifically, I use the Gated Recurrent Unit [35], a common variant of Recurrent Neural

Networks, to implement the Encoder-Decoder model in this study.

Given a source text consisting of N words x1, . . . , xN , the encoder converts their corresponding

embeddings e1x, . . . , e
N
x into a set of N real-valued vectors henc = (h1

enc, . . . , h
N
enc) with a bidirec-

tional network, consisting of one forward GRU (GRUfwd) encoding the source from left to right

and one backward GRU (GRUbwd):

34



ht
fwd = GRUfwd(e

t
x, h

t−1
fwd),

ht
bwd = GRUbwd(e

t
x, h

t+1
bwd),

ht
enc = ⟨ht

fwd, h
t
bwd⟩.

(6)

Dropout [183] is applied to both x and h for regularization.

The decoder is a uni-directional GRU, which generates a new state ht
dec at each time-step t

given the embedding of previous word et−1
y and the recurrent state ht−1

dec .

ht
dec = GRUd(e

t−1
y , ht−1

dec ). (7)

The initial state h0
dec is derived from the final encoder state hN

enc by applying a single-layer

feed-forward neural net (FNN):

h0
dec = Ltanh

0 (hN
enc). (8)

Dropout is applied to both the embeddings ey and the GRU states hdec.

4.1.3 Attention Mechanism

Attention mechanism [6] is a common strategy used along with Sequence-to-Sequence Learning

which allows the decoder to attend to different parts of the source text at each decoding step. Instead

of encoding the input sequence into a single fixed context vector as in Eq 2, the model learns to

generate a dynamic context vector with necessary information on the source side.

Specifically, at the time step t during decoding, the model infers the importance αt,i of each

source word xi given the current decoder state ht
dec. This importance is measured by an energy

function with a 2-layer FNN:

energy(ht
dec, h

i
enc) = L1(L

tanh
2 (⟨ht

dec, h
i
enc⟩)). (9)

After normalizing all the energy values, I can obtain an importance distribution over all the

source tokens corresponding to the decoding step t:

αt = softmax(energy(ht
dec, henc)). (10)
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These attention scores are then used as weights for a refined context vector, which is then con-

catenated to the decoder state ht
dec in Eq. 7 to derive a generative distribution pa, which corresponds

to Eq. 4 in the general architecture:

pa(y
t) = Lsoftmax

3 (Ltanh
4 (⟨ht

dec,
∑
i

αt,i · hi
enc⟩)), (11)

where the output size of L3 equals to the target vocabulary size. Subscript a indicates the abstractive

nature of pa since it is a distribution over a prescribed vocabulary.

4.1.4 Encoder-Decoder Architecture Using Transformer

Transformer [202] is another common architecture for language models. Nowadays, it is more

widely adopted due to its great performance and scalability, which are the core of models that

consist of billions of parameters [23, 195].

Basically, Transformer is a multi-layer architecture, each layer applies a multi-headed self-

attention operation over the input embedding, followed by position-wise feedforward layers to

produce an output distribution over target tokens. Similar to RNN, Transformer can be applied to

implement Sequence-to-Sequence learning. As shown in Figure 7, given a source I and a target

sequence O, the model learns the transformation from I to O.

The encoder part of the model (see the left part of Figure 7) encodes the normal sentence

with a stack of L identical layers. Each layer has two sublayers: one layer is for multi-head

self-attention and the other one is a fully connected feed-forward neural network for transformation.

The multi-head self-attention layer, where H refers to the number of heads, encodes the output from

the previous layer into hidden state e(s,l) (step s and layer l) as shown in Equation 12, where αenc
(s′,l)

indicates the attention distribution over the step s′ and layer l. Each hidden state processes the

hidden states in the previous layer through multi-head attention.

The right part of Figure 7 denotes the decoder for generating the target sequence. The decoder

also consists of a stack of L identical layers. In addition to the same two sub-layers as those in the

encoder part, the decoder also inserts another multi-head attention layer aiming to attend to the

encoder outputs. The bottom multi-head self-attention plays the same role as the one in the encoder,

where the hidden state d(s,l) is computed in Equation 13. The upper multi-head attention layer is
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Figure 7: Diagram of the Transformer architecture

used to seek relevant information from encoder outputs. Through the same mechanism, context

vector c(s,l) (step s and layer l) is computed in the Equation 14.

e(s,l) =
∑
s′

αenc
(s′,l)e(s′,l−1), αenc

(s′,l) =a(e(s,l), e(s′,l−1), H) (12)

d(s,l) =
∑
s′

αdec
(s′,l)

d(s′,l−1), αdec
(s′,l)

=a(d(s,l), c(s′,l−1), H) (13)

c(s,l) =
∑
s′

αdec2
(s′,l)

e(s′,L), αdec2
(s′,l)

=a(d(s,l), e(s′,L), H) (14)

Similarly, the model is trained to minimize the negative log-likelihood of the target sequence,

Lseq = −logP (O|I, θ) where θ represents all the parameters in the model.
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4.2 PROBLEM DEFINITION

Given a piece of source text x, which can be broken down into a sequence of tokens.

x = x1, x2, x3, . . . , x|x| (15)

The goal of keyphrasification is to predict a list of keyphrases y denoted as y = {y1,y2, . . . ,yY}.

Similarly, each keyphrase yi can be seen as a sequence of tokens:

yi = y1i , y
2
i , y

3
i , . . . , y

|yi|
i

(16)

where |x| and |yi| denote the length of x and yi respectively. In general, I do not assume any

specific relationship between keyphrases, therefore the target keyphrases y can be seen as a set.

4.3 METHODOLOGY

4.3.1 Overview

As mentioned in Sec 4.2, a source text can be summarized into multiple keyphrases, which

can be dependent or independent of each other. This poses a significant difference from typical

Sequence-to-Sequence Learning problems where only a single target sequence is considered. To

tackle the unique challenge of generating multiple targets, I propose two training paradigms for

applying Sequence-to-Sequence Learning to keyphrasification: One2One and One2Seq.

Simply put, their main difference lies in how target keyphrase multiplicity is handled in

constructing data points (Figure 8). With multiple target phrases {p1, . . . , pn}, One2One takes

one phrase at a time and pairs it with the source text s to form n data points (s, pi)i=1:n. During

training, a model learns a one-to-many mapping from s to pi’s, i.e., the same source string usually

has multiple corresponding target strings. In contrast, One2Seq concatenates all ground-truth

keyphrases pi into a single string:

P = <BOS>p1<SEP> · · ·<SEP>pn<EOS> (i.e., prefixed with <BOS>, joint with <SEP>, and

suffixed with <EOS>), thus forming a single data point (s, P ). A system is then trained to predict
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[Source] Language-specific Models in Multilingual Topic Tracking.…

[Target] <bos> classification <eos>

[Source] Language-specific Models in Multilingual Topic Tracking. Topic tracking is 

complicated when the stories in the stream occur in multiple languages….

[Target] <bos> classification <sep> crosslingual <sep> topic tracking <sep> 

multilingual <eos>

[Source] Language-specific Models in Multilingual Topic Tracking.…

[Target] <bos> crosslingual <eos>

[Source] Language-specific Models in Multilingual Topic Tracking.…

[Target] <bos> topic tracking <eos>

[Source] Language-specific Models in Multilingual Topic Tracking.…

[Target] <bos> multilingual <eos>

multilingual <eos>

topic tracking <eos>

text mining <eos>

latent dirichlet allocation <eos>

…

multiple language <eos>
Beams 

multilingual <sep> topic tracking <sep> crosslingual <eos>

topic tracking <sep> text analysis <sep> text mining <eos>

topic tracking <sep> classification <eos>

topic model <sep> language text multiple <eos>

…

multiple language classification <eos>

(top 5) beam search outputs

topic tracking, multilingual, text mining, multiple language, 

latent dirichlet allocation 

topic tracking, text analysis, text mining, 

multilingual, crosslingual

Low

Ranking

High

One2One
One2Seq

(top 5) beam search outputs

topic tracking, classification, 

crosslingual

greedy decoding outputs

topic tracking <sep> classification <sep> crosslingual <eos>

Figure 8: Top: comparison between One2One (left) and One2Seq (right) paradigms on the same

data point. Bottom: demonstration of the decoding process for One2One (left) and One2Seq

(mid/right) models. One2Seq can apply both beam search (mid) and greedy decoding (right).

the concatenated sequence P given s. By default, I construct P following an ordering strategy

PRES-ABS: I sort present phrases by their first occurrences in the source text, and append absent

keyphrases at the end. All ordering strategies will be discussed in §4.3.3.2.

4.3.2 Generating a Keyphrase as a Sequence of Tokens (KPGen-One2One)

One core issue that prohibits us from using the above model directly is that sequence-to-

sequence learning is initially designed for generating a single sequence. However, in practice,

a text is often assigned multiple keyphrases. In this section, I will discuss several important

components to adapt an Encoder-Decoder model for generating keyphrases. As the very first

method of Keyphrase Generation, I simplify its goal to generating one phrase at a time. I name this

method KPGEN-ONE2ONE, since given ONE source text, the model is trained to generate ONE

keyphrase at a time.

4.3.2.1 Data Preparation

In a keyphrase dataset, typically each data example contains one source text and multiple target

keyphrases. To apply the Encoder-Decoder model, I will first convert the data format into a format
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which each data point contains only one source sequence and one target sequence.

Given one data example ⟨x, {y1,y2, . . . ,yN}⟩ consisting of one source text x and N target

keyphrases yi, I simply convert it into N data points by copying multiple times the source text x,

that is, into pairs like ⟨x,y1⟩, ⟨x,y2⟩, . . . , ⟨x,yN⟩. Then the Encoder-Decoder model is ready to

be applied to learn the mapping from the source sequence to the target sequence, as shown in Fig 9.

For simplicity, (x,y) is used to denote each data pair in the rest of this section, where x is the word

sequence of a source text and y is the word sequence of one of its keyphrases.

Figure 9: An attentive Encoder-Decoder architecture for Keyphrase Generation

(KPGEN-ONE2ONE).

4.3.2.2 Incorporating Copying Mechanism: Generating with Extractive Attention

Sequence-to-Sequence models are able to generate novel phrases not featured in the source

text by their abstractive capability. However, it suffers from certain shortcomings. Firstly, by

squeezing the source information into a fixed-size vector, the model is trained to learn a meaningful

representation of text. But on the downside, it loses the fine-grained information that can be directly

seen in the source text. For example, previous analysis[39] shows that more than 60% of keyphrases

are present in the source text. Nevertheless, even for predicting absent phrases, models could utilize

some in-text information to infer related phrases. Secondly, for pure Sequence-to-Sequence models,
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a word vocabulary must be constructed in advance with the most frequent words in the corpus.

However, the number of words in the vocabulary is much smaller than the actual words in the real

world. Therefore when the models are trying to predict something that is out-of-vocabulary (OOV),

they often output a term “<unk>”, which denotes an unknown word.

To deal with this shortcoming, I propose to incorporate the Sequence-to-Sequence models with

Copying Mechanism [73, 1], or Pointer generator in [170], Forced-Attention Sentence Compression

model [137] and Pointer Softmax in [74], to facilitate the abstractive generation with extracted

information from the source end. This mechanism works like extractive attention, i.e. at each

time step of the decoding process, this extra attention locates the important information that can

be directly extracted from the source text, and ultimately the model will output the next word by

considering both the extractable information and its original generative distribution, or in another

word abstractive distribution, as in Eq. 4 and Eq. 11.

Concretely, I employ an additional module, a Softmax-based switch, to compute a scalar st

at each decoding step and use it to interpolate the abstractive distribution pa(y
t) over the pre-set

vocabulary (see Eq. 11) and the extractive distribution px(y
t) = αt over the source text tokens (see

Eq. 10):

p(yt) = st · pa(yt) + (1− st) · px(yt), (17)

where st is conditioned on both the attention-weighted source representation
∑

i α
t,i · hi

enc and

the decoder state ht
dec, Li denotes a feed-forward neural network:

st = Lsigmoid
5 (tanh(L6(

∑
i

αt,i · hi
enc) + L7(h

t
dec))). (18)

4.3.2.3 Generating Multiple Keyphrases with Beam Search

Since the model is trained to generate one phrase merely, I propose to utilize Beam Search in

order to proliferate the generated phrases.

Beam search is a heuristic search algorithm to predict approximate solutions and it is commonly

used in language generation tasks for fast searching optimal sequences. Different from existing

studies aiming for a single optimal sequence, I use Beam Search to generate K different sequences.
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Figure 10: Illustration of Beam Search used in this study. Note that the Beam Search process is

simplified due to the space limit, for example, ⟨eos⟩ is only shown for the first two sequences and

many expanded nodes are omitted.

During the decoding phase, the generation process starts with a special token ⟨bos⟩, indicating the

beginning of a sequence, and the following words are generated step by step. In the meantime, a

max heap is maintained to store the unfinished predictions with the highest probabilities. Once an

ending symbol ⟨eos⟩ is predicted, the finished sequence will be moved into the result list.

It is worth noting that typically Beam Search is quite time- and memory-consuming. Previous

studies in translation and summarization usually use a small beam size/width and large search depth

for obtaining longer sequences. But, for keyphrase generation, I opt for a shallow search with

large beam width. This is due to two major differences between this task and other problems: (1)

Keyphrases are mostly short. Based on existing statistics, the length of 99% keyphrases is less than

six words; (2) Many keyphrases are directly extractable or can find helpful cues from the source

text, thus exhaustive searching with abstractive vocabulary is unnecessary and wasting.

4.3.3 Generating Keyphrases as a Sequence of Phrases (KPGen-One2Seq)

KPGEN-ONE2ONE is trained to generate a single keyphrase for each source text. During

decoding, an exhaustive Beam Search is used to produce a large number of keyphrase sequences.
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However, this modeling and decoding strategy has a few problems: (1) Waste in training: to

accommodate the Sequence-to-Sequence modeling, one data point with multiple keyphrases has

to be split into multiple data points each has only one keyphrase, leading to a tremendous waste

in training; (2) Duplicate in generation: As an intrinsic limitation of beam search, a word with

high predicting score may dominate the beam search process and diminish the diversity of the final

output. Furthermore, the model generates all target phrases independently, therefore the duplicate

generation issue cannot be handled by the model itself, resulting in a mass of similar or synonymous

phrases being generated;

To overcome the above issues, a simple modification could be utilized, that concatenates all

the target keyphrases as one sequence and then trains the model to generate keyphrases as a whole.

I denote this way of modeling as KPGEN-ONE2SEQ, which means given ONE source text, the

model aims to generate a SEQuence of keyphrases.

4.3.3.1 Data Preparation and Model Architecture

Given one data example ⟨x,y = {y1,y2, . . . ,yP}⟩ consisting of one source text x and a set

of P target keyphrases yi that are assumed equal-weight and order-invariant, I apply an ordering

function σ(·) on the target keyphrase set, resulting a sorted list σ(y) = (ŷ1, ŷ2, . . . , ŷP). Then I

concatenate this sequence of keyphrases with a delimiter token <SEP>, and the eventual target

is a sequence of tokens that can be denoted as ỹ =
(
y11, . . . , y

N1
1 , <SEP> , y12, . . . , y

N2
2 , <SEP>

, y1m, . . . , y
Nm
m

)
, where m is the number of keyphrases and Ni is the length of i-th keyphrase.

Similar to the model architecture used in KPGEN-ONE2ONE, I adopt a sequence-to-sequence

based framework with pointer-generator and coverage mechanism adopted in [170]. Rather

than the model structure itself, I focus more on several critical factors that are specific to the

KPGEN-ONE2SEQ setting, such as the ordering for concatenating target keyphrases and decoding

strategies that fit the current setting.

4.3.3.2 Ordering for Concatenating Phrases

Concatenating multiple phrases as a sequence is a critical step for training One2Seq models. As

pointed out by [203], output ordering has significant effects on the successful training of sequence
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models.

I define six ordering strategies for concatenating target phrases as follows to investigate if

different orderings affect the performance of keyphrase generation and which orderings may be

optimal for training models in the KPGEN-ONE2SEQ setting.

RANDOM: Randomly shuffle the target phrases. As the goal of keyphrase generation is to output an

order-invariant structure (a set of phrases), I expect models trained with randomly shuffled targets

would capture such nature better than other variants with more fixed ordering.

NO-SORT: Keep phrases in original order, implying an intellectual importance by the original

authors.

LENGTH: Sort phrases by their lengths from short to long. Phrases of the same length are sorted in

original order.

ALPHA: Sort phrases in alphabetical order (by their first word).

APPEAR-PRE: Sort present phrases by their first occurrences in the source text, and prepend absent

phrases at the beginning. Absent phrases are randomly shuffled.

APPEAR-AP: Same to APPEAR-PRE but append absent phrases at the end.

4.3.3.3 Decoding Strategies

According to different task requirements, various decoding methods can be applied to generate

the target sequence y. KPGEN-ONE2ONE models focus more on generating an excessive number of

phrases by leveraging Beam Search to proliferate the output phrases. In contrast, KPGEN-ONE2SEQ

models are capable of determining the proper number of phrases to output. In light of previous

research in psychology [201, 56], I name these two decoding/search strategies as Exhaustive De-

coding and Self-terminating Decoding, respectively, due to their resemblance to the way humans

behave in serial memory tasks. Simply speaking, the major difference lies in whether a model is

capable of controlling the number of phrases to output. I describe the detailed decoding strategies

used in this study as follows:

Exhaustive Decoding Since one document often comes with many keyphrases, the capabil-

ity of producing a certain quantity of phrases is necessary for keyphrasification models. For
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KPGEN-ONE2ONE method, models are capable of generating a large number of sequences with

the help of Beam Search, and each sequence is a unique phrase. But for KPGEN-ONE2SEQ, each

produced sequence contains several phrases, and additional processes are needed to obtain a unique

phrase list.

Here I follow the method proposed by [226], to extract and rank output phrases as follows:

1. Sort all the sequences generated by Beam Search by their likelihood scores from highest to

lowest;

2. For each generated sequence, split it by <SEP> to get multiple phrases, and remove duplicated

ones;

3. Within a sequence, phrases that are generated earlier have a higher rank.

It is worth noting that the time complexity of beam search is O(Bm), where B is the beam

width, and m is the maximum length of generated sequences. Therefore the exhaustive decoding

is generally very computationally expensive, especially for KPGEN-ONE2SEQ setting where m is

much larger than in KPGEN-ONE2ONE. It is also wasteful as only a very small portion of phrases

generated by KPGEN-ONE2SEQ models are unique.

Exhaustive Decoding with Early Stopping To make KPGEN-ONE2SEQ decoding more computa-

tionally affordable, I propose to use an early-stopping for beam search. Instead of expanding all the

search branches until reaching a given maximum depth, I terminate the beam search once the best

sequence is found. That is to say, among all the active sequences of Beam Search at time t, if the

top-ranked sequence (with the highest likelihood score) yields the end-of-sequence token <EOS>,

the whole Beam Search process is shut down.

This is a common heuristic for speed-up in single-sequence generation tasks such as translation

and summarization. I observe that it is also effective for KPGEN-ONE2SEQ decoding, leading to

up to 10 times faster decoding. By the time that top sequence is completed, there are usually enough

number of predicted phrases, meanwhile, the quality of later generated sequences degenerates

drastically and most of them are duplicates of existing phrases. Therefore this early-stopping

heuristic achieves a significant efficiency gain without sacrificing the quality of output phrases.
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Self-terminating Decoding An innate characteristic of keyphrase tasks is that the number of

keyphrases varies depending on the document and dataset genre, therefore dynamically outputting a

variable number of phrases is a desirable property for keyphrase generation models. For example,

the average number of keyphrases in the training set of KP20K is 5.27 with a variance as high as

14.22.

Since the KPGEN-ONE2SEQ models are trained to generate a variable number of phrases as a

single sequence joined by delimiters, they can output multiple phrases by simply decoding a single

sequence. In other words, in contrast with KPGEN-ONE2ONE models that output a likely sequence,

the KPGEN-ONE2SEQ models implicitly perform an additional task: dynamically estimating the

proper size of the target phrase set. Once the model believes that an adequate number of phrases

have been generated, it outputs a special token <EOS> to terminate the decoding process.

One notable attribute of the self-terminating decoding strategy is that, by generating a set of

phrases in a single sequence, the model conditions its current generation on previously generated

phrases. Compared to the exhaustive strategy (i.e., phrases being generated independently by Beam

Search in parallel), KPGEN-ONE2SEQ models can address the dependency among output phrases

in a more explicit fashion. Additionally, since multiple phrases are decoded as a single sequence,

decoding can be performed more efficiently than exhaustive decoding by conducting the greedy

search or Beam Search on only the top-scored sequence.

4.4 EXPERIMENT SETTINGS

Since Sequence-to-Sequence models contain a lot of parameters and typically rely on a large

amount of data, I collect several datasets for this purpose featuring different genres and styles.

Specifically, I newly construct two datasets, one is a scientific publication dataset in the Computer

Science domain, called KP20K, and one is a social tagging dataset from an online social question-

answering community, called STACKEX.
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Table 5: Statistics on number of documents and keyphrases of each test set. #Doc#KP denotes

the number of documents/ground-truth keyphrases in the dataset. #PreKP/#AbsKP denotes the

number of present/absent ground-truth keyphrases, and #PreDoc/#AbsDoc denotes the number of

documents that contain at least one present/absent ground-truth keyphrase.

Dataset #Doc #KP #PreDoc #PreKP #AbsDoc #AbsKP

KP20K-TRAIN ≈514k
KP20K-VALID 2,000 10,530 1,900 6,655 1,646 3,875
KP20K-TEST 19,987 105,181 19,048 66,595 16,357 38,586

INSPEC 500 4,913 497 3,858 381 1,055
KRAPIVIN 460 2,641 437 1,485 417 1,156

NUS 211 2,461 207 1,263 195 1,198
SEMEVAL 100 1,507 100 671 99 836

DUC-2001 308 2,484 308 2,421 38 63

4.4.1 Training Datasets

For both training datasets, I remove duplicates and papers that overlap with the ones in testing

datasets.

– KP20K: There are several publicly-available keyphrase datasets used in previous studies but

the largest one [101] only contains 2,304 scientific publications. This amount of data can

hardly train a workable KPGEN model. Therefore, I build a brand new dataset, dubbed KP20K,

consisting of a large amount of high-quality scientific metadata in the computer science domain

from various online digital libraries, including ACM Digital Library, ScienceDirect, Wiley, Web

of Science, etc. In total, metadata of 567,830 articles is collected. After preprocessing and

cleaning, around 514,000 articles are used as the training set (KP20K-TRAIN), and the rest

are used for the validation set (KP20K-VALID, 2,000 data points) and test set (KP20K-TEST,

19,987 data points). I manually clean the data examples in the valid/test set of KP20K (clean

noisy text, replace erroneous keyphrases with actual author keyphrases, remove examples

without any ground-truth keyphrases), and use scripts to remove invalid training examples

(without any author keyphrase). I use the title and abstract as the source text and author-assigned

keywords as target keyphrases.
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4.4.2 Test Datasets

Several datasets are included in this study for evaluation use. They are constructed and annotated

in different ways, covering a wide range of topics and label distributions.

– KP20K-TEST includes around 20,000 data examples from the same source as KP20K.

– INSPEC [85] provides 2,000 journal paper abstracts and reader-annotated keyphrases. In the

original dataset, each abstract has two sets of keywords assigned by a professional annotator: a

set of controlled terms, i.e., terms restricted to the Inspec thesaurus; and a set of uncontrolled

terms that can be any suitable terms. Both the controlled terms and the uncontrolled terms may

or may not be present in the abstracts. I adopt the 500 testing papers and their corresponding

uncontrolled keyphrases for evaluation, and the remaining 1,500 papers are not used. Since all

the phrases are assigned by third-party annotators instead of the original authors, it may deviate

from the distribution of our training dataset.

– KRAPIVIN [101]: This dataset provides 2,304 papers with full-text and author-assigned

keyphrases. However, the author did not mention how to split testing data, so I selected the first

400 papers in alphabetical order as the testing data, and the remaining papers are used to train

the supervised baselines.

– NUS [146] contains 211 papers and I use both author-assigned and reader-assigned keyphrases,

which contribute to 897 and 1,600 phrases out of 2,336 total phrases. I notice that though the

latter takes the majority, there are 57 papers that do not have any reader-assigned keyphrases.

That explains why it has smaller average number of phrases than the other two reader annotated

datasets (INSPEC and SEMEVAL).

– SEMEVAL [98] provides 288 articles, spanning 4 categories in Computer Science. 100 articles

are used for testing and the rest 144 articles are not used. I use both author-annotated and

reader-anntoated keyphrases for testing.

– DUC-2001 [205] consists of 308 news articles and keyphrases are annotated by readers. This

is the only dataset used in this study that is out of the academic domain and its goal is to test the

generalizability of each model.
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4.4.3 Evaluation Metrics

I pre-process both document texts and ground-truth keyphrases, including word segmentation,

lowercasing, and replacing all digits with symbol <DIGIT>. Data examples with empty ground-

truth keyphrases are ignored in the evaluation.

I evaluate models’ performance in predicting present and absent phrases separately. Specifically,

I first lowercase the text, stem each word in the text with Porter Stemmer, and then determine the

presence of each ground-truth keyphrase by checking whether it is a sub-string of the source text.

To evaluate present phrase performance, I compute Precision/Recall/F1-score (see Eq. 19-21) for

each document taking only present ground-truth keyphrases as target and ignoring the absent ones.

P@k =
#(correct@k)

min{k,#(pred)}
(19)

R =
#(correct@k)

#(target)
(20)

F1@k =
2 ∗ P@k ∗R
P@k +R

(21)

where #(pred) and #(target) are the number of predicted and ground-truth keyphrases respec-

tively; and #(correct@k) is the number of correct predictions among the first k results. Besides

the common k value taken as 5 and 10, in this study, I am also interested in two other values:

• O denotes the number of oracle (ground truth) keyphrases. In this case, k = |Y|, which means

for each data example, the number of predicted phrases taken for evaluation is the same as the

number of ground-truth keyphrases.

• M denotes the number of predicted keyphrases. In this case, k = |Ŷ| and we simply take all

the predicted phrases for evaluation without truncation.

Specifically, F1@10 and F1@O are the two primary metrics I use for evaluating KPG models on

present keyphrase prediction – the former is the most commonly used metric and the latter improves

F1@10 by considering the number of actual ground-truth phrases. I leverage R@10, R@50 and

R@M to evaluate the performance on absent keyphrase prediction. I report the macro-averaged

scores over documents that have at least one present ground-truth phrase (corresponding to the

column #PreDoc in Table 5) and similarly to the case for absent phrase evaluation.
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4.5 RESULTS

4.5.1 Main Results

We first compare the proposed keyphrase generation models with the classic keyphrase predic-

tion models, i.e. keyphrase extraction models.

4.5.1.1 Model Settings

Six classic extraction baselines are used for comparison, including (1) four unsupervised

algorithms (Tf-Idf, TextRank [139], SingleRank [205], and ExpandRank [205]); (2) two supervised

algorithms (KEA [216] and Maui [127]) are adopted as baselines. We set up the four unsupervised

methods following the optimal settings in [77], and the two supervised methods following the

default setting as specified in their papers. I include four KPGEN models, using a basic RNN

architecture (embedding dim 150, hidden dim 300, vocabulary size 50k) and two training paradigms

(One2One and One2Seq). The copying mechanism is ablated for both models. For inference, I

use exhaustive decoding and beam width of 200 and 50 for One2One and One2Seq, respectively.

4.5.1.2 Present Keyphrase Prediction

For the present keyphrase prediction, the setting is the same as the keyphrase extraction task

in prior studies, in which we investigate how well the proposed models can be used to identify

keyphrases that appear in the original documents.

In Table 6, the results show that the four unsupervised models (Tf-idf, TextTank, SingleRank,

and ExpandRank) have a robust performance across different datasets. The ExpandRank fails to

return any result on the KP20k dataset, due to its high time complexity. The performance of the two

supervised models (i.e., Maui and KEA) is unstable on some datasets, but Maui achieved the best

performances on three datasets among all the baseline models.

As for the four KPGEN models, the RNN models with the regular attention mechanism did

not perform as well as we expected. It might be because the RNN model is only concerned with

finding the hidden semantics behind the text, which may tend to generate keyphrases or words that
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are too general and may not necessarily refer to the source text. In addition, we observe that 2.5%

(70,891/2,780,316) of keyphrases in our dataset contain out-of-vocabulary words, which the RNN

model is not able to recall, since the RNN model can only generate results with the 50,000 words in

the vocabulary. This indicates that a pure generative model may not fit the extraction task.

Table 6: Performance (F1-score) of present keyphrase prediction on scientific publications datasets

and DUC-2001. The best performing score in each column is highlighted with bold.

KP20K Inspec Krapivin NUS SemEval DUC

Model @5 @10 @O @5 @10 @O @5 @10 @O @5 @10 @O @5 @10 @O @5 @10 @O

Extraction Models

TfIdf 7.2 9.4 6.3 16.0 24.4 20.8 6.7 9.3 6.8 11.2 14.0 12.2 8.8 14.7 11.3 - 27.0 -
TextRank 18.1 15.1 18.4 28.6 33.9 33.5 18.5 16.0 21.1 23.0 21.6 23.8 21.7 22.6 22.9 - 9.7 -
SingleRank 9.9 12.4 - 21.4 29.7 - 9.6 13.7 - 14.5 16.9 - 13.2 16.9 - - 25.6 -
ExpandRank - - - 21.1 29.5 - 9.6 13.6 - 13.7 16.2 - 13.5 16.3 - - 26.9 -
KEA 4.6 4.4 5.1 2.2 2.2 2.2 1.8 1.7 1.7 7.3 7.1 8.1 6.8 6.5 6.6 - - -
Maui 0.5 0.5 0.4 3.5 4.6 3.9 0.5 0.7 0.6 0.4 0.6 0.6 1.1 1.4 1.1 - - -

Generation Models

RNN One2One 8.3 8.5 8.4 5.6 5.8 5.0 4.9 5.3 5.3 10.3 10.9 10.4 8.4 8.4 7.5 0.0 0.0 0.0
+COPY 33.1 27.9 35.5 32.1 26.9 36.0 29.0 32.4 33.6 40.2 36.2 43.2 34.2 35.2 34.8 11.3 13.9 13.2

RNN One2Seq 10.4 10.2 11.1 8.1 7.9 9.9 4.5 4.5 4.5 11.0 10.5 10.9 8.8 8.6 8.8 0.1 0.1 0.1
+COPY 31.2 26.1 31.2 31.0 27.0 33.5 32.9 38.8 38.6 37.4 36.6 39.2 33.7 35.1 36.2 11.8 15.9 14.7

4.5.1.3 Absent Keyphrase Prediction

As stated, one important motivation for this work is that we are interested in the proposed

model’s capability for predicting absent keyphrases based on the “understanding” of content. It is

worth noting that such prediction is a very challenging task. Therefore, we only provide the RNN

performances in the discussion of the results of this task. Here, we evaluate the performance within

the recall of the top 10 and top 50 results, to see how many absent keyphrases can be correctly

predicted. We use the absent keyphrases in the testing datasets for evaluation.

Table 7 presents the recall scores of predicted absent keyphrases for RNN models, in which we

observe that the best model (One2One with the copy attention) can, on average, recall 4.4%/9.0%

of keyphrases at top 10/50 predictions. This indicates that, to some extent, the proposed models

can capture the hidden semantics behind the textual content and make reasonable predictions. In

addition, with the advantage of features from the source text, the variants with copy attention
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Table 7: Performance (recall scores) of absent keyphrase prediction on five datasets. Boldface text

indicates the best performance in corresponding columns.

Average Kp20K Inspec Krapivin NUS SemEval

Model 10 50 M 10 50 M 10 50 M 10 50 M 10 50 M 10 50 M
RNN One2One 4.4 9.0 14.0 6.8 13.2 19.7 7.9 13.9 20.9 4.5 9.3 15.0 4.7 11.3 17.6 2.2 6.1 10.0

+COPY 1.2 3.5 6.2 2.4 5.8 9.8 1.2 4.0 8.5 1.4 2.3 3.3 1.5 5.6 9.6 0.4 3.5 6.1

RNN One2Seq 2.2 2.5 2.5 2.7 3.2 3.3 2.8 3.2 3.3 3.5 3.8 3.8 2.6 2.9 3.0 1.6 1.7 1.7
+COPY 3.1 4.1 4.2 4.9 6.7 6.7 4.6 6.3 6.4 1.7 2.0 2.0 4.5 6.2 6.2 2.6 3.6 3.6

outperform the vanilla ones by a significant margin, though it does not show as much improvement

as in the present keyphrase setting. As the absent keyphrase prediction highly prefers recall-oriented

models, therefore the One2One model with a large beam size (200) is innately proper for this task

setting. Comparatively, One2Seq models are able to predict absent keyphrases, but they lag behind

One2One counterparts by a large margin. I will discuss their differences in the later sections.

Table 8: Testing scores across different model architectures, training paradigms, and datasets. In

which, D0: in-distribution; D1: out-of-distribution, and D2: out-of-domain.

Dataset
Present (F1@O) Present (F1@10) Absent (R@50)

One2One One2Seq One2One One2Seq One2One One2Seq
RNN TRANS RNN TRANS RNN TRANS RNN TRANS RNN TRANS RNN TRANS

D0

KP20K 35.3 37.4 31.2 36.2 27.9 28.9 26.1 29.0 13.1 22.1 3.2 15.0
KRAPIVIN 35.5 33.0 33.5 36.4 27.0 26.4 26.9 28.1 13.7 23.8 3.3 16.6
D0 Average 35.4 35.2 32.3 36.3 27.4 27.7 26.5 28.5 13.4 23.0 3.2 15.8

D1

INSPEC 33.7 32.6 38.8 36.9 32.5 30.8 38.7 36.6 8.2 9.2 3.7 6.7
NUS 43.4 41.1 39.2 42.3 35.9 36.1 36.6 37.3 11.2 18.9 2.9 12.5

SEMEVAL 35.2 35.1 36.2 34.8 34.6 33.0 35.0 34.2 6.1 18.9 1.7 12.5
D1 Average 37.4 36.3 38.1 38.0 34.4 33.3 36.7 36.0 8.5 12.7 2.8 9.2

D2 DUC-2001 13.4 7.8 15.0 11.0 13.7 8.4 16.0 11.4 0.0 0.2 0.0 0.0
All Average 32.8 31.2 32.3 32.9 28.6 27.3 29.9 29.4 8.7 14.0 2.5 9.8

4.5.2 Ablation Study

In this part, I will conduct comprehensive studies to analyze the important components inside

KPGEN models and discuss their effects. Specifically, the components and factors I will be focusing

on include: model architectures (i.e., RNN and TRANSFORMER), training paradigms (i.e., One2One

or One2Seq), copy mechanism, beam width, and how to concatenate phrases for the One2Seq
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training.

To better understand model variants’ generalization properties, I categorize the 6 testing sets

into 3 classes according to their distribution similarity with the training data (KP20K), as shown in

Table 8. Concretely, KP20K and KRAPIVIN are in-distribution test sets (denoted as D0), since they

both contain scientific paper abstracts paired with keyphrases provided by their authors. INSPEC,

NUS and SEMEVAL are out-of-distribution test sets (denoted as D1), they share same type of source

text with D0, but with additionally labeled keywords by third-party annotators. DUC-2001 is

a special test set that uses news articles as its source text. Because it shares the least domain

knowledge and vocabulary with all the other test sets, I call it an out-of-domain test set (denoted as

D2).

4.5.2.1 Model Architectures: RNN vs TRANSFORMER

The first thing to notice is that on the present KPG, the models show consistent trends between

F1@10 and F1@O. I observe that TRANSFORMER models significantly outperform RNN models

when trained with the One2Seq paradigm on D0 test sets. However, when test data distribution

shift increases, on D1 test sets, RNN models starts to outperform TRANSFORMER; eventually, when

dealing with D2 test set, RNN outperforms TRANSFORMER by a large margin. On models trained

with One2One paradigm, I observe a similar trend. On D0 data, TRANSFORMER models achieve

comparable F1@10 and F1@O scores with RNN, when data distribution shift increases, RNN models

produce better results.

On the contrary, for absent KPG, TRANSFORMER outperforms RNN by a significant margin

in all experiment settings. This is especially obvious when models are trained with One2Seq

paradigm, where RNN models barely generalize to any of the testing data and produce an average

R@50 of 2.5. In the same setting, TRANSFORMER models get an average R@50 of 9.8, which is

4× higher than RNN.

To further study the different generation behaviors between RNN and TRANSFORMER, I in-

vestigate the average number of unique predictions generated by either of the models. As shown

in Figure 11, comparing results of order PRES-ABS in sub-figure a/b (RNN) with sub-figure c/d

(TRANSFORMER), I observe that TRANSFORMER is consistently generating more unique predic-
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Figure 11: Unique number of keyphrases generated during the test. Colors represent the relative per-

formance, normalized per row. Best checkpoints are selected by F1@O scores on KP20K-VALID.

tions than RNN, in both cases of greedy decoding (4.5 vs 4.2) and beam search (123.3 vs 96.8). I

suspect that generating a more diverse set of keyphrases may have a stronger effect on in-distribution

test data. The generated outputs during inference are likely to represent the distribution learned

from the training data, when the test data share the same (or similar) distribution, a larger set of

unique predictions leads to a higher recall — which further contributes to their F-scores. In contrast,

on test sets which data distribution is far from training distribution, the extra predictions may not

be as useful, and even hurts precision. Similarly, because I evaluate absent KPG by the models’

recall, TRANSFORMER models — produce more unique predictions — can always outperform RNN

models.

4.5.2.2 Training Paradigm: One2One vs One2Seq

I observe that on present KPG tasks, models trained with the One2Seq paradigm outperforms

One2One in most settings, this is particularly clear on D1 and D2 test sets. I believe this is poten-

tially due to the unique design of the One2Seq training paradigm where at every generation step,
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Figure 12: Present KPG testing scores (top: F1@10, bottom: F1@O). Colors represent the relative

performance, normalized per row.

the model conditions its decision making on all previously generated tokens (phrases). Compared

to the One2One paradigm where multiple phrases can only be generated independently by beam

search in parallel, the One2Seq paradigm can model the dependencies among tokens and the

dependencies among phrases more explicitly.

However, on absent KPG, One2One consistently outperforms One2Seq. Furthermore, only

when trained with One2One paradigm, an RNN-based model can achieve R@50 scores close

to TRANSFORMER-based models. This may because a One2Seq model tends to produce more

duplicated predictions during beam search inference. By design, every beam is a string that contains

multiple phrases that concatenated by the delimiter <SEP>, there is no guarantee that the phrase

will not appear in multiple beams. In the example shown in Figure 8, “topic tracking” is such

a duplicate prediction that appears in multiple beams. In fact, the proportion of duplicates in

One2Seq predictions is more than 90%. This is in contrast with beam search on One2One models,

where each beam only contains a single keyphrase thus has a much lower probability of generating
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duplication.1

4.5.2.3 Effect of Copy Mechanism

Copy mechanism [72] (also referred to as Pointer Generator [171] or Pointer Softmax [75]) has

demonstrated to play a critical role in tasks where texts on the source and target side may overlap,

such as summarization [171] and keyphrase generation [135]. Basically, it is an additional loss

that enables models to extract information from the source side with the help of attention. Prior

studies [135] have shown the importance of copy mechanism with RNN+One2One, but no further

comparison has been made.

In Figure 13, I present the results of four KPG model variants, equipped with and without

copy mechanism. The results show that copy mechanism leads to considerable improvements

on the present KPG, especially for RNN. TRANSFORMER benefits less from the copy, which

may be because its multi-head attentions behave similarly to the copy mechanism even without

explicit training losses. With regard to the absent KPG results, copy mechanism only helps

RNN+One2One. This suggests that TRANSFORMER can achieve consistently better abstractiveness

(absent performance) by disabling the copy mechanism at the cost of weaker extractiveness. This

dilemma cautions researchers to use copy mechanism more wisely according to specific applications.

4.5.2.4 Effect of Beam Width

One unique challenge of the KPG task is due to its multiplicity of target outputs. As a result,

a common strategy is to take multiple beams during decoding in order to obtain more phrases (as

opposed to greedy decoding). This choice is at times not only practical but in fact necessary: under

the One2One paradigm, for example, it is crucial to have multiple beams in order to generate

multiple keyphrases for a given input.

Generally speaking, KPG and its evaluation metrics are in general favors higher recall. It is thus

not totally unexpected that the high precision scores of greedy decoding are often undermined by

notable disadvantages in recall, which in turn leads to losing by large margins in F-scores when

compared to results of beam search (with multiple beams). Empirically, as shown in Figure 14,

1Due to post-processing such as stemming, One2One model may still produce duplication.
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Figure 13: Averaged scores of models with and without utilizing copy mechanism.

Figure 14: Averaged scores of models using different widths of Beam Search.
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I observe that beam search can sometimes achieve a relative gain of more than 10% in present

phrase generation , and a much larger performance boost in absent phrase generation, over greedy

decoding.

I am also interested in seeing if there exists an optimal beam width. In Figure 14, I show models’

testing performance when various beam widths are used. In present KPG task with One2One

(upper left), beam width of 16 already provides an optimal score, larger beam widths (even 200) do

not show any further advantage. Replacing the training paradigm with One2Seq (upper right), I

observe a positive correlation between beam width and testing score — larger beam widths lead to

marginally better testing scores. However, the improvement (from beam size of 10 to 50) is not

significant.

On absent KPG task (lower), both One2One and One2Seq paradigms seem to benefit from

larger beam widths. Testing score shows strong positive correlation with beam width. I observe that

this trend is consistent across different model architectures.

Overall, a larger beam width provides better scores in most settings, but the performance gain

diminishes quickly towards very large beam width. In addition, it is worth noting that larger beam

width also comes with more intense computing demands, for both space and time. As an example,

in Figure 14 (top left), I observe that with the One2One training paradigm, a beam width of 200

does not show a significant advantage over 16, however, in terms of computation, beam width

of 200 takes about 10× of the resources compared to 16. There exists a trade-off between beam

width and computational efficiency (e.g., carbon footprint). I thus hope the results can serve as

a reference for researchers, to help them choose beam width more wisely depending on specific tasks.

4.5.2.5 Effects of Phrase Ordering in One2Seq Training

In the One2One paradigm (as shown in Figure 8), each data example is split into multiple

equally weighted data pairs, thus it generates phrases without any prior on the order. In contrast,

One2Seq training has the unique capability of generating a varying number of keyphrases in a

single sequence. This inductive bias enables a model to learn dependencies among keyphrases, and

also to implicitly estimate the number of target phrases conditioned on the source text. However,
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Figure 15: Present KPG testing scores (F1@M). Colors represent the relative performance,

normalized per row.

the One2Seq approach introduces a new complication. During training, the Seq2Seq decoder

takes the concatenation of multiple target keyphrases as the target. As pointed out by [203], order

matters in sequence modeling tasks; yet the ordering among the target keyphrases has not been fully

investigated and its effect on the models’ performance remains unclear. Several studies have noted

this problem [226, 231] without further exploration.

Greedy Decoding

In Figure 15, I show the RNN and TRANSFORMER model’s F1@M on present KPG task,

equipped with greedy decoding. In this setting, the model simply chooses the token with the highest

probability at every step, and terminates either upon generating the <EOS> token or reaching the

maximum target length limit (40). This means the model predicts phrases solely relying on its

innate distribution learned from the training data, and thus this performance could somewhat reflect

to which degree the model fits the training distribution and understands the task.

Through this set of experiments, I first observe that each model demonstrates consistent perfor-

mance across all six test datasets, indicating that ordering strategies play critical roles in training
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Figure 16: Present keyphrase generation testing scores (F1@O). Colors represent the relative

performance, normalized per row.

One2Seq models when greedy decoding is applied. When using the RNN architecture, RANDOM

consistently yields lower F1@M than other ordering strategies on all datasets. This suggests that a

consistent order of the keyphrases is beneficial. However, TRANSFORMER models show a better

resistance against randomly shuffled keyphrases and produce average tier performance with the

RANDOM ordering. Meanwhile, I observe that PRES-ABS outperforms other ordering strategies by

significant margins. A possible explanation is that with this order (of occurrences in the source text),

the current target phrase is always to the right of the previous one, which can serve as an effective

prior for the attention mechanism throughout the One2Seq decoding process. I can observe similar

trends in greedy decoding models’ F1@O and F1@10.

Beam Search

Next, I show results obtained from the same set of models equipped with beam search (beam

width is 50) in Figure 12 (a/b). Compared with greedy decoding, it can be clearly observed the

overall F1@10 scores have a positive correlation with the beam width (greedy decoding is a special
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Figure 17: Absent keyphrase generation testing scores on R@50. Colors represent the relative

performance, normalized per row.

case where beam width equals 1). I observe that compared to the greedy decoding case, the pattern

among different ordering strategies appears to be less clear, with the scores distributed more evenly

across different settings (concretely, the absolute difference between max average score and min

average score is lower).

I suspect that the uniformity among different ordering strategies with beam search may be due

to the limitation of the evaluation metric F1@10. The metric F1@10 truncates a model’s predictions

to 10 top-ranked keyphrases. By investigation, I find that during greedy decoding, the number of

predictions acts as a dominant factor, this number varies greatly among different ordering. With

greedy decoding, PRES-ABS can generally predict more phrases than the others, which explains

its performance advantage (Figure 18 (a/c)). However, as the beam width increases, all models can

predict more than 10 phrases (Figure 18 (b/d)). In this case, the F1@10 is contributed more by a

model’ ability of generating more high quality keyphrases within its top-10 outputs, rather than

the amount of predictions. Therefore, the performance gap among ordering strategies is gradually

narrowed in beam search. For instance, I observe that the F1@10 difference between PRES-ABS
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Figure 18: Unique number of present keyphrases generated during test. Colors represent the

relative performance, normalized per row. Best checkpoints are selected by F1@O scores on

KP20K-VALID.

and S->L produced by RNN is 3.5/2.0/1.0/0.2 when beam width is 1/10/25/50.

To validate our assumption, I further investigate the same set of models’ performance on F1@O,

which strictly truncates the generated keyphrase list by the number of ground-truth keyphrases O

(where in most cases O < 10). Under this harsher criterion, a model is required to generate more

high-quality keyphrases within its top-O outputs. From Figure 12 (c/d), I observe that the scores are

less uniformly distributed, this indicates a larger difference between different order settings. Among

all orders, ORI produces best average F1@O with RNN, whereas ALPHA-REV and ORI-REV

produce best average F1@O with TRANSFORMER.

In our curated list of order settings, there are 3 pairs of orderings with reversed relationship (i.e.,

S->L vs L->S, ALPHA vs ALPHA-REV, ORI vs ORI-REV). Interestingly, I observe that when

beam search is applied, these orderings often show a non-negligible score difference with their

counterparts. This also suggests that order matters since specific model architecture and training

paradigm often has its own preference for the phrase ordering.
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Figure 19: Comparing models trained solely with KP20K against with additional MAGKP data.

It is also worth mentioning that when I manually check the output sequences in the test set

produced by ALPHA ordering, I notice that the model is actually able to retain alphabetical order

among the predicted keyphrases, hinting that a Seq2Seq model might be capable of learning simple

morphological dependencies even without access to any character-level representations.

Ordering in Absent KPG

I report the performance of the same set of models on the absent portion of data in Figure 17.

Although achieving relatively low R@50 in most settings, scores produced by various orderings

show clear distinctions, normalized heat maps suggest that the rankings among different orderings

tend to be consistent across all testing datasets. In general, PRES-ABS produces better absent

keyphrases across different model architectures.

4.5.2.6 Training with More Data

In this section, we further explore the possibility of improving KPG performance by scaling up

the training data. Data size has been shown as one of the most effective factors for training language

models [161, 148] but it has yet to be discussed in the context of KPG.

MagKP Dataset

We construct a new dataset, namely MAGKP, based on Microsoft Academic Graph [176]. We
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filter the original MAG v1 dataset (166 million papers, multiple domains) and only keep papers in

Computer Science and with at least one keyphrase. This results in 2.7 million data points (5× larger

than KP20K). This dataset remains noisy despite the stringent filtering criteria, this is because 1)

the data is crawled from the web and 2) some keywords are labeled by automatic systems rather

than humans. This noisy nature brings many interesting observations.

Table 9: Statistics of training datasets KP20K and MAGKP.

Dataset #Data #kp #unique kp #(word) per kp

KP20K-TRAIN 514K 2.7M 700K 1.92
MAGKP 2.7M 41.6M 6.9M 3.42

MAGKP-LN 522K 2.3M 579K 2.73
MAGKP-Nlarge 1.5M 35.5M 5.8M 3.38
MAGKP-Nsmall 522K 12.2M 2.2M 3.37

General Observations

The first thing we try is to train a KPG model with both KP20K and MAGKP. During training,

the two datasets are fed to the model in an alternate manner, we denote this data mixing strategy as

ALT. In Figure 19, we compare models’ performance when trained on both KP20K and MAGKP

against solely on KP20K. We observe the extra MAGKP data brings consistent improvement across

most model architecture and training paradigm variants. This suggests that the KPG models

discussed in this work can benefit from additional training data. Among all the settings, F1@O

of the TRANSFORMER+One2Seq is boosted by nearly 3 points on present KPG, the resulting

score outperforms other variants by a significant margin and even surpass a host of state-of-the-art

models. Again, the same setting obtains a 2.3 boost of R@50 score on the absent KPG task, makes

TRANSFORMER+One2Seq the setting that benefits the most from extra data. In contrast, the

extra MAGKP data provide only marginal improvement to RNN-based models. On present KPG,

RNN+One2Seq even has an F1@O drop when trained with more data.

Learning with Noisy Data

To further investigate the performance boost brought by the MAGKP dataset on TRANSFORMER+One2Seq,

we are curious to know which portion of the noisy data helped the most. As a naturally way to

cluster the MAGKP data, we define the noisiness by the number of keyphrases per data point. As

shown in Figure 20, the distribution of MAGKP (black border) covers a much wider spectrum on

the x-axis compared to KP20K (red). Because keyphrase labels are provided by human authors,
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Figure 20: A histogram showing the distribution of #(kp per document) on KP20K, MAGKP and its

subsets. Data points with more than 30 keyphrases are truncated.

a majority of its keyphrase numbers lie in the range of [3, 6]; however, only less than 20% of the

MAGKP data overlaps with this number distribution.

We thus break MAGKP down into a set of smaller subset: 1) MAGKP-LN is a considerably Less

Noisy subset that contains data points that have 3~6 phrases. 2) MAGKP-Nlarge is the Noisy

subset in which all data points have more than 10 keyphrases. 3) MAGKP-Nsmall is a randomly

sampled subset of MAGKP-Nlarge with the same size as MAGKP-LN.

We also define a set of data mixing strategies to compare against ALT: ONLY: models are

trained solely on a single set (or subset) of data; MX: KP20K and MAGKP (or its subset) are split

into shards (10k each) and they are randomly sampled during training; FT: models are pre-trained

on MAGKP (or its subset) and fine-tuned on KP20K.

In Figure 21, we observe that none of the MAGKP subsets can match KP20K’s performance in

the ONLY setting. Because MAGKP-LN and MAGKP-Nsmall share similar data size with KP20K,

this suggest the distributional shift between MAGKP and the 6 testing sets is significant. In the

MX setting where KP20K is mixed with noisy data, we observe a notable performance boost

compared to ONLY (yet still lower than ALT), however, we do not see clear patterns among the 4

MAGKP subsets in this setting. In the FT setting, we observe a surge in scores across all MAGKP

subsets. In present KPG, both MAGKP and MAGKP-Nlarge outperform the score achieved in the
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Figure 21: TRANSFORMER+One2Seq trained with KP20K and different subsets of MAGKP, using

four data mixing strategy. Scores are averaged over all 6 test sets.

ALT setting; similarly, in absent KPG, MAGKP, MAGKP-Nlarge and MAGKP-Nsmall exceeds

the ALT score. This is to our surprise that the subsets considered as noisy provide a greater

performance boost, while they perform poorly if “ONLY” trained on these subsets.

To sum up, during our investigation on augmenting KP20K with the noisy MAGKP data, we

obtain the best performance from a TRANSFORMER+One2Seq model that pre-trained on MAGKP

and then fine-tuned on KP20K, and this performance has outperformed current state-or-the-art

models. We conjecture that the performance gain may come from data diversity, because MAGKP

contains a much wider distribution of data compared to the author keyword distribution as in KP20K.

This inspires us to develop data augmentation techniques to exploit the diversity in unlabeled data.
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4.6 SUMMARY

In this section, I introduce two training paradigms for adapting Sequence-to-Sequence Learning

to keyphrasification and present empirical studies discussing neural KPG models from various

aspects. Results suggest that language generation is a successful paradigm for keyphrasification,

by outperforming previous state-of-the-art keyphrase extraction models by significant margins.

Besides, the results have shown that, given a carefully chosen architecture and training strategy, a

base RNN or TRANSFORMER model can perform comparably with fancy SOTA generation models.

In summary, I list some of the key takeaways as follows:

1. One2Seq excels at present KPG, while One2One performs better on absent KPG.

2. For present KPG, TRANSFORMER performs better on in-distribution data, when distribution or

domain shift increases, RNN can outperform TRANSFORMER.

3. On absent KPG, TRANSFORMER is the clear winner.

4. For One2Seq, target ordering is important in greedy decoding (with PRES-ABS being an

overall good choice).

5. The effect of target ordering tends to diminish when beam search is performed.

6. Copy mechanism helps present prediction while worsening absent performance.

7. Larger beam width is beneficial, especially for absent KPG. However, on present KPG tasks, the

benefit is diminished past a certain point and thus computational efficiency needs to be carefully

considered.
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5.0 GENERATING KEYPHRASES WITH ENHANCED DIVERSITY

(KPGEN-ONE2SEQ-DIV)

5.1 MOTIVATION

One2Seq models are expected to capture relationships among keyphrases automatically and

avoid generating duplicate phrases. However, in practice, a particular issue observed during error

analysis is that the model tends to produce identical tokens following the delimiter token. For

instance, suppose a target sequence contains n delimiter tokens at time-steps t1, . . . , tn. During

training, the model is incentivized to generate the same delimiter token at these time-steps, resulting

in significant homogeneity in the corresponding decoder states ht1
d , . . . , h

tn
d . Consequently, when

these states are used as inputs at time-steps immediately following the delimiter, the decoder tends to

produce highly similar distributions over the subsequent tokens, leading to the decoding of identical

tokens.

In reality, for a given source text, it is expected that most keyphrases refer to specific semantics

to avoid redundancy, as human annotators typically assign keyphrases that each represent distinct

aspects or topics of the text. However, under the setting of basic One2Seq models, the information

of individual keyphrases, as well as the global structural information including their correlations

and the ending state, is mixed into the hidden state of the model. Therefore, it is essential to develop

techniques to disentangle the encoded information in the model. These techniques would not only

encourage the model to learn relatively isolated representations for individual phrases but also assist

it in better controlling the generation process of both local (pertaining to individual phrases) and

global structure (pertaining to multiple phrases as a set).

Furthermore, recalling the critical characteristic of keyphrasification discussed in Chapter 3,

which is coverage, it is imperative that the generated phrases collectively cover the most important

information points from the source text. Thus, additional model enhancements could be devised to

further enhance the model’s ability to understand the global structure.

In the following sections, I will propose two components for One2Seq models aimed at

promoting the diversity of generated phrases.
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5.2 METHODS

5.2.1 Semantic Coverage

I first propose a mechanism called semantic coverage that focuses on the semantic representa-

tions of generated phrases. Specifically, I introduce another uni-directional recurrent model GRUSC

(dubbed target encoder) which encodes decoder-generated tokens yτ , where τ ∈ [0, t), into hidden

states ht
SC. This state is then taken as an extra input to the decoder GRU, modifying equation of the

decoder GRU to:

ht
dec = GRUdec(⟨xt

dec, h
t
SC⟩, ht−1

dec ). (22)

If the target encoder were to be updated with the training signal from generation (i.e., backprop-

agating error from the decoder GRU to the target encoder), the resulting decoder is essentially a

2-layer GRU with residual connections. Instead, inspired by previous representation learning works

[116, 198, 81], I train the target encoder in an self-supervised fashion (Figure 22). Specifically,

due to the autoregressive nature of the RNN-based decoder, I follow Contrastive Predictive Coding

(CPC) [198], where a Noise-Contrastive Estimation (NCE) loss is used to maximize a lower bound

on mutual information. That is, the target encoder’s final hidden state vector hM
SC is extracted, where

M is the length of target sequence, and taken as a general representation of the target phrases. Next,

the model is trained by maximizing the mutual information between these phrase representations

and the final state of the source encoder hT
enc as follows. For each phrase representation vector

hM
SC, I take the encodings HT

enc = {hT
enc,1, . . . , h

T
enc,N} of N different source texts, where hT

enc,true

is the encoder representation for the current source text, and the remaining N − 1 are negative

samples (sampled at random) from the training data. The target encoder is trained to minimize the

classification loss:

LSC = −log
g(hT

enc,true, h
M
SC)∑

i∈[1,N ] g(h
T
enc,i, h

M
SC)

,

g(ha, hb) = exp(h⊤
a Bhb)

(23)

where B is bi-linear transformation.

The motivation here is to constrain the overall representation of generated keyphrase to be

semantically close to the overall meaning of the source text. With such representations as input
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to the decoder, the semantic coverage mechanism can potentially help provide useful keyphrase

information and guide generation.

Source Encoder

MLP

<s> linear PCA <sep>

<sep>linear PCA <sep> convex function

convex function <sep>

SVD

Decoder

Target Encoder

: A : C: B

</s>

SVD

Figure 22: The architecture of the proposed model for improving keyphrase diversity. A represents

last states of a bi-directional source encoder; B represents the last state of target encoder; C indicates

decoder states where target tokens are either delimiters or end-of-sentence tokens. During orthogonal

regularization, all C states are used; during target encoder training, the mutual information between

states A with B is maximized. Red dash arrow indicates a detached path, i.e., no back-propagation

through such path.

5.2.2 Orthogonal Regularization

I also propose orthogonal regularization, which explicitly encourages the delimiter-generating

decoder states to be different from each other. This is inspired by [20], who use orthogonal

regularization to encourage representations across domains to be as distinct as possible. Specifically,

the decoder hidden states corresponding to delimiters are stacked together to form a matrix H =

⟨ht1
dec, . . . , h

tn
dec⟩ and use the following equation as the orthogonal regularization loss:

LOR =
∥∥H⊤H ⊙ (1 − In)

∥∥
2
, (24)

where H⊤ is the matrix transpose of H , In is the identity matrix of rank n, ⊙ indicates element

wise multiplication, ∥M∥2 indicates L2 norm of each element in a matrix M . This loss function

prefers orthogonality among the hidden states ht1
dec, . . . , h

tn
dec and thus improves diversity in the

tokens following the delimiters.
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5.2.3 Training Loss

I adopt the widely used negative log-likelihood loss for training the proposed models, denoted

as LNLL. The overall loss I use for optimization is:

L = LNLL + λOR · LOR + λSC · LSC, (25)

where λOR and λSC are hyper-parameters.

5.3 IMPLEMENTATION DETAILS

Implementation details of the proposed models are as follows. In all experiments, the word

embeddings are initialized with 100-dimensional random matrices. The number of hidden units in

both the encoder and decoder GRU are 150. The number of hidden units in target encoder GRU is

150. The size of vocabulary is 50,000. In all experiments, I use a dropout rate of 0.1.

During negative sampling, 16 examples are randomly sampled from the same batch, thus target

encoding loss in Equation 23 is a 17-way classification loss. Hyper-parameters λOR and λSC in

Equation 25 are selected from [0.01, 0.03, 0.1, 0.3, 1.0] based on validation sets. I use Adam [99] as

the step rule for optimization. The learning rate is 1e−3.

For exhaustive decoding, I use a beam size of 50 and a maximum sequence length of 40.

Both lowercase and stemming are performed on the ground truth and generated keyphrases during

evaluation. All the scores reported are from checkpoints with best performances (F1@O) on the

validation set.

5.4 RESULTS

5.4.1 Main Result

I conduct an ablation experiment to study the effects of orthogonal regularization and semantic

coverage mechanism on One2Seq-Div (λOR = 1.0, λSC = 0.03). As shown in Table 10, semantic
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Table 10: Ablation study with F1@O scores on five scientific publication datasets.

Model KP20K Inspec Krapivin NUS SemEval

One2Seq 31.9 30.7 32.3 38.3 31.0

+ Orth. Reg. 31.1 29.3 31.0 36.5 29.5

+ Sem. Cov. 32.9 32.1 34.5 40.2 32.9

One2Seq-Div 35.7 33.1 37.1 40.6 35.7

coverage (λSC = 0.03) provides significant boost to One2Seq’s performance on all datasets.

Orthogonal regularization (λOR = 0.3), hurts performance when is solely applied to One2Seq

model. Interestingly, when both components are enabled (One2Seq-Div), the model outperforms

One2Seq by a noticeable margin on all datasets, this suggests the two components help keyphrase

generation in a synergistic way. One future direction is to apply orthogonal regularization directly

on target encoder, since the regularizer can potentially diversify target representations at phrase

level, which may further encourage diverse keyphrase generation in decoder.

5.4.2 Visualizing Diversified Generation

To verify our assumption that target encoding and orthogonal regularization help to boost the

diversity of generated sequences, I use two metrics, one quantitative and one qualitative, to measure

the diversity of generation. I use the default parameters for t-SNE in sklearn (learning rate is 200.0,

number of iterations is 1000).

First, I calculate the average unique predicted phrases produced by both One2Seq and

One2Seq-Div (beam size is 50). The resulting numbers are 20.38 and 89.70 for One2Seq

and One2Seq-Div respectively. Second, from the model running on the KP20K validation set,

I randomly sample 2000 decoder hidden states at k steps following a delimiter (k = 1, 2, 3) and

apply an unsupervised clustering method (t-SNE [199]) on them. From Figure 23 I can see that

hidden states sampled from One2Seq-Div are easier to cluster while hidden states sampled from

One2Seq yield one mass of vectors with no obvious distinct clusters. Results on both metrics

suggest target encoding and orthogonal regularization help diversify the generation of the model.
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Figure 23: t-SNE results on decoder hidden states. Upper row: One2Seq; lower row:

One2Seq-Div; column k shows hidden states sampled from tokens at k steps following a delim-

iter.

5.4.3 Qualitative Analysis

To illustrate the difference of predictions between our proposed models, I show an example

chosen from the KP20K validation set. In this example, there are 29 ground-truth phrases. Neither

of the models is able to generate all of the keyphrases, but it is obvious that the predictions from

One2Seq all start with “test”, while predictions from One2Seq-Div are diverse. This to some

extent verifies our assumption that without the target encoder and orthogonal regularization, decoder

states following delimiters are less diverse.
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Table 11: Example from KP20K validation set, predictions generated by One2Seq and

One2Seq-Div models.

Source a visual test development environment for gui systems
We have implemented an experimental test development environment (TDE) intended to raise the effectiveness
of tests produced for GUI systems, and raise the productivity of the GUI system tester.The environment links
a test designer , a test design library, and a test generation engine with a standard commercial capture/replay tool.

These components provide a human tester the capabilities to capture sequences of interactions with the system under
test (SUT), to visually manipulate and modify the sequences , and to create test designs that represent multiple
individual test sequences . Test development is done using a high-level model of the SUT’s GUI, and graphical
representations of test designs. TDE performs certain test maintenance tasks automatically, permitting previously
written test scripts to run on a revised version of the SUT.

One2Seq test development ; test development environment ; test ; test generation
One2Seq-Div test generation ; gui ; tool ; version ; capabilities ; systems ; design ; test ; human ; generation

Groundtruth engine ; developer ; design ; human ; standardization ; tool ; links ; graphics ; model ; libraries ; replay ; component ;
interaction ; product ; development environment ; script ; visualization ; capabilities ; systems ; experimentation ;
test designer ; environments ; test generation ; testing ; maintenance ; test maintenance ; version ; effect ; sequence

Table 12: Example from KP20K validation set, and predictions generated by One2Seq and

One2Seq-Div models.

Source Integration of a Voice Recognition System in a Social Robot Human-robot interaction

Human-robot interaction ( HRI ) (1) is one of the main fields in the study and research of robotics. Within this
field, dialogue systems and interaction by voice play an important role. When speaking about human-robot natural
dialogue we assume that the robot has the capability to accurately recognize what the human wants to transmit

verbally and even its semantic meaning, but this is not always achieved. In this article we describe the steps and
requirements that we went through in order to endow the personal social robot Maggie , developed at the
University Carlos III of Madrid, with the capability of understanding the natural language spoken by any human.
We have analyzed the different possibilities offered by current software/hardware alternatives by testing them in
real environments. We have obtained accurate data related to the speech recognition capabilities in different
environments, using the most modern audio acquisition systems and analyzing not so typical parameters such as
user age, gender, intonation, volume, and language. Finally, we propose a new model to classify recognition
results as accepted or rejected, based on a second automatic speech recognition ( ASR ) opinion.This new
approach takes into account the precalculated success rate in noise intervals for each recognition framework,
decreasing the rate of false positives and false negatives.

One2Seq voice recognition system ; social robot ; human robot interaction ; voice recognition ; hri ; speech recognition ;
automatic speech recognition ; noise intervals ; noise ; human robot ; automatic speech ; natural language

One2Seq-Div human robot interaction ; voice recognition ; social robotics ; social robots ; integration ; speech recognition ;
hri ; social robot ; robotics ; voice recognition system ; recognition ; asr ; automatic speech recognition ;

Ground Truth asr ; automatic speech recognition ; dialogue ; human robot interaction ; maggie ; social robot ;
speech recognition ; voice recognition ;

.
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6.0 DOMAIN ADAPTABLE KEYPHRASE GENERATION

6.1 MOTIVATION

In the context of keyphrase generation, the term “domain” refers to the specific subject area

or discipline that the text content belongs to. Domains can vary widely, such as computer science,

medicine, finance, or literature, each with its own terminology, stylistic features, and thematic

content. Domain adaptability in KPG involves the model’s ability to apply or adjust its keyphrase

prediction capabilities to texts from different domains, effectively recognizing and generating

relevant keyphrases that reflect the distinct characteristics and knowledge of each subject area.

The previously proposed neural models can predict relevant keyphrases, but their performance

highly depends on the training on annotated keyphrase datasets. Since most of these datasets are

limited to a single domain, it remains unclear how the trained models can be transferred to new

domains, especially in a real-world setting. Some existing studies claim their models demonstrate

a certain degree of transferability across domains. However, there is a lack of systematic studies

on domain transferring KPG, and thus the observations reported in prior works do not support a

comprehensive understanding of this topic.

In this section, I would like to look into the problem that how domain difference actually

affects the performance of KPG models when transferred across domains. Moreover, if it does pose

negative impacts, what is the implication of this observation and can we find methods to alleviate

this issue accordingly?

6.2 DOMAIN GAP IN KEYPHRASE GENERATION

Previous studies [135, 221] have touched on how much KPG models can transfer their skills

when applied across domains, but not in a systematic way. For instance, [135] show that models

trained with scientific paper datasets can generate decent quality keyphrases from news articles, in a

zero-shot manner. [221] present that training with open-domain web documents can improve the

75



model’s generalizability.

In this subsection, I revisit this topic and try to ground our discussion with thorough empirical

results. Specifically, I consider four broadly used datasets in the KPG community: KP20K [135]

contains scientific papers in computer science; OPENKP [221] is a collection of web documents;

KPTIMES [59] contains a set of news articles; STACKEX [231] are community-based Q&A posts

collected from StackExchange. All the four datasets are large enough to train KPG models from

scratch. At the same time, the documents in these datasets cover a wide spectrum of domains. I

report statistics of these four datasets in Table 13.

Table 13: Statistics of training/testing datasets used in this study. †Only 7.7m papers in MAG-CS

12M have keyphrases and are acutally used in this study.

#doc
#words
in doc

#kp
#unique

kp
#kp

per doc
#uni kp
per doc

#present kp
per doc

#absent kp
per doc

Training Sets

Wikipedia 3.2m - - - - - - -
KP20K 514.2k 161 2.7m 680.1k 5.3 1.3 3.3 1.9
OPENKP 134.9k 1104 294.2k 206.8k 2.2 1.5 2.1 0.0
KPTIMES 259.9k 803 1.3m 104.8k 5.0 0.4 2.4 2.6
STACKEX 299.0k 207 803.9k 8.1k 2.7 0.0 1.6 1.1
MAG-CS 1M 1.0m 151 9.6m 1.7m 9.6 1.7 3.4 6.2
MAG-CS 12M† 12.1m 151 115.9m 14.3m 9.6 1.2 3.4 6.2

Test Sets

KP20K 19,987 161 105.2k 55.9k 5.3 2.8 3.3 1.9
OPENKP 6,614 894 14.6k 13.6k 2.2 2.0 2.0 0.2
KPTIMES 10,000 804 50.4k 13.9k 5.0 1.4 2.4 2.6
STACKEX 16,000 205 43.1k 4.5k 2.7 0.3 1.6 1.1
JPTIMES 10,000 517 50.3k 9.0k 5.0 0.9 4.0 1.0
DUC-2001 308 701 2.5k 1.8k 8.1 6.0 7.9 0.2

On the model dimension, I consider two model architectures: TF-RAND, a 6-layer encoder-

decoder Transformer with random initialization [202]; and TF-BART, a 12-layer Transformer

initialized with BART-large [106]. I train the two models on the four datasets individually and

subsequently evaluate all the resulting eight checkpoints on the test split of each dataset. As

shown in Figure 24, in-domain scores (i.e., trained and tested on the same datasets) are placed

along the diagonal, the other elements represent cross-domain testing scores. We can see that both
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Figure 24: Cross-domain transfer performance of TF-RAND and TF-BART (F@O, the higher the

better). Y-axis: training dataset; X-axis: test dataset.

models exhibit a large gap between in-domain and out-of-domain performance. Even though the

initialization with BART can alleviate the gap to a certain degree, the difference remains significant.

Table 14: Overlap (%) of unique keyphrases between domains (train split). Numbers are normalized

by dividing the diagonal element in its column. For example, the overlap keyphrases between

KP20K and STACKEX make a proportion of 0.7% in KP20K and a 55.7% in STACKEX.

KP20K OPENKP KPTIMES STACKEX

KP20K 100 10.6 3.5 55.7
OPENKP 3.2 100 8.5 33.1
KPTIMES 0.5 4.3 100 6.9
STACKEX 0.7 1.3 0.5 100

Keyphrases are typically concepts or entities that represent important information of a document.

The collection of keyphrases in a domain can also be deemed as a representation of domain

knowledge. Therefore, to better investigate the domain gaps, I further look into the keyphrase

overlap between datasets. As shown in Table 14, only a small proportion of phrases are in common

between the four domains. I provide a T-SNE visualization of a set of phrases sampled from these

dataset in Figure 25, the phrase clusters present clear domain gaps in their semantic space.

I hypothesize that the domain specific traits in annotated data make models difficult to learn
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keyphrase patterns in a domain-general sense. Furthermore, humans may label keyphrases under an

application-oriented consideration and thus a one-size-fits-all standard for keyphrase annotation may

not exist. For example, on StackExchange, users tend to assign common tags to better expose their

questions to community experts, resulting in a small keyphrase vocabulary size. On the contrary,

the topics are more specialized in scientific papers and authors would emphasize novel concepts in

their studies. This may explain the large number of unique keyphrases found in KP20K.

6.3 DISENTANGLEMENT OF “KEY” AND “PHRASE”

In §6.2, I empirically show that KPG models do not adequately transfer to out-of-domain

data, even initialized with pre-trained language models. However, data annotation for every single

domain or application does not seem practical either, due to the high cost and the potential need

of domain-specific annotators. This motivates me to look for novel methods that can adapt KPG

models to new domains with limited cost (in terms of both data annotation and training cost).

Figure 25: T-SNE visualization of keyphrase representations from four datasets.

78



Inspired by the understanding discussion in Chapter 3, I attempt to disentangle the properties of

a keyphrase as keyness [17, 58] and phraseness [194]:

Keyness refers to the attribute that how well a phrase represents important information of a

piece of text. The degree of keyness can be document dependent and domain dependent. For

example, “cloud” is a common keyphrase in Computer Science papers, it is, in most cases, less

likely to be important in Meteorology studies. Due to its high dependence on domain-specific

information, we believe that the knowledge/notion of keyness is more likely to be acquired from

in-domain data.

Phraseness, on the other hand, focuses more on the syntactical aspect. It denotes that given a

short piece of text, without even taking into account its context, to what extent it can be grammati-

cally functional as a meaningful unit. Although the majority of keyphrases in existing datasets are

noun phrases [39], they can present in variant grammatical forms in the real world [187]. We believe

that phraseness can be independent from domains and thus can be obtained from domain-general

data.

6.4 METHODOLOGY

I propose a three-stage training procedure in which a model gradually moves its focus from

learning domain-general phraseness towards domain-specific keyness, and eventually adapts to a

new domain with only limited amount of annotated data. An overview of the proposed pipeline is

illustrated in Figure 26. First, with a Pre-Training stage (PT), the model is trained with domain-

general data to learn phraseness (§6.4.1). Subsequently, in the Domain Adaption stage (DA), the

model is exposed with unlabeled in-domain data. Within a few iterations, the model labels the data

itself and use them to gradually adapt to the new domain (§6.4.2). Lastly, in the Fine-Tuning stage

(FT), the model fully adapts itself to the new domain by leveraging a limited amount of in-domain

data with true annotations (§6.4.3). I will describe each of the three stages in detail.
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Model

In-domain data, labeled by

(Low-resource) in-domain data with true labelGeneral domain data

Initialization (random or BART)

Pre-training Domain adaptation iterations Fine-tuning

Figure 26: The proposed three-stage pipeline. A model is first pre-trained with general domain data

and learns to generate syntactically correct phrases. In the domain adaptation stage, the model adapts

to the target domain by training on domain-specific data, where the pseudo labels are generated by

the model itself. Finally, I fine-tune the model with limited amount of target domain data with true

label, to fully accomplish domain adaptation.

6.4.1 Domain-General Phrase Pre-training

The first training stage aims to capture the phraseness in general, I leverage the Wikipedia data

and community labeled phrases from the text. Wikipedia is an open-domain knowledge base that

contains rich entity-centric annotations, its articles cover a wide spectrum of topics and domains

and thus it has been extensively used as a resource of distant supervision for NLP tasks related to

entities and knowledge [67, 224, 222]. In this work, I consider four types of markup patterns in

Wikipedia text to form distant keyphrase labels:

• in-text phrases with special formatting (italic, boldface, and quotation marks);

• in-text phrases with wikilinks (denoting an entity in Wikipedia);

• “see also” phrases (denoting related entities);

• “categories” phrases (denoting superordinate entities).

Although the constructed targets using the above heuristics can be noisy if considering the keyness

aspect, I will show that they work sufficiently for training general phrase generation models.

Given a piece of Wikipedia text t and a set of community labeled phrases, I convert this data

point to the format of One2Seq as described in §4.3.3. In practice, the number of phrases within t
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Wikipedia

Artificial neural networks (ANNs), usually simply
called neural networks (NNs) or, more simply yet, neural
nets, are computing systems inspired by the biological neural
networks that constitute animal brains…

Text:

Categories:

See Also:

Source
<PRESENT>3<CATEGORY>2<ABSENT>1<INFILL>1<SEP> 

<MASK> (ANNs), usually simply called neural networks (<MASK>) or,
more simply yet, neural nets, are <INFILL> by the <MASK> that
constitute animal brains…


Target
Artificial neural networks <SEP> NNs <SEP> biological neural
networks <SEP> Computational neuroscience <SEP> ADALINE
<SEP> computing systems inspired


Figure 27: Illustration of processing Wikipedia to source-target pairs in domain general phrase

pre-training.

can be large and thus I sample a subset from them to form the target. all the phrases appear in t

are grouped as present candidates, the rest (e.g., “see-also” and categories) are grouped as absent

candidates. Additionally, I take several random spans from t as infilling candidates (similar as

[162]) for robustness. Finally, I sample a few candidates from each group and concatenate them as

the final target sequence.

On the source side, I prepend a string suggesting the cardinality of phrases in each target group

to the beginning of t. I also corrupt the source sequence by replacing a small proportion of present

and infilling phrases with a special token [MASK], expecting to improve models’ robustness [162].

An example of a processed Wikipedia data instance is shown in Figure 27.

Trained with this data, I expect a model to become a general phrase generator — given a source

text, the model can generate a sequence of phrases, regardless the specific domain a text belongs to.
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6.4.2 Domain Adaption with Transfer Labeling

In the second stage, I aim to expose the model with data from a domain of interest, so it can

learn the notion of domain-specific keyness. I propose a method, namely General-to-Specific

Transfer Labeling , which does not require any in-domain annotated data. Transfer labeling can be

considered as a special self-training method [225, 41, 143], where the key notion is to train a model

with its own predictions iteratively.

Distinct from common practice of self-training where initial models are bootstrapped with

annotated data, transfer labeling regards the domain-general model from the pre-training stage 6.4.1

as a qualified phrase predictor. I directly transfer the model to documents in a new domain to predict

pseudo labels. The resulting phrases, paired with these documents, are used to tune the model so as

to adapt it to the target domain distribution. Note that this process can be run iteratively, to gradually

adapt models to target domains.

6.4.3 Low-resource Fine-Tuning

In the third stage, I expose the model to a small amount of in-domain data with annotated

keyphrases. This aims to help the model fully adapt to the new domain and reduce the bias caused

by noisy labels from previous stages.

6.5 EXPERIMENTS

I reuse the model architecture described in §6.2 throughout this paper. And most models apply

a single iteration of transfer labeling. I will discuss the effect of multi-iteration transfer labeling in

§6.5.3.5.

6.5.1 Implementation Details

Most experiments make use of four V100 GPUs. I elaborate the training hyper-parameters

for reproducing our results in Table 15 and 16. I use beam search to produce multiple keyphrase
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predictions (beam width of 50, max length of 40 tokens). Testing scores are reported using the best

checkpoints, which achieve best performance on valid set (2,000 data instances for all domains).

Phrase masking ratio denotes for p% of target phrases, replacing their appearances in the source

text with a special token [PRESENT].

Random span ratio denotes replacing p% of words in the source text with a special token

[MASK].

Table 15: Training hyperparameters for TF-RAND. *FT denotes the fine-tuning stage in cases of

PT+FT or PT+DA+FT. Empty cell means it is the same as the leftmost value.

Hparam PT DA PT+DA/PT+DAMAG-CS FT 100/1k/10k *FT 100/1k/10k
Max source length 512
Max target length 128
Max phrase number 16 8
Max phrase length 16 8
Phrase masking rate 0.1
Random span ratio 0.05
Batch size ≈80 100 100 100 100
Learning rate 3e-4 3e-4 1e-5 3e-4 1e-5
Number of steps 200k 40k 20k/200k 2k/4k/8k 1k/2k/4k
Warmup steps 10%
Learning rate decay linear
Optimizer Adam
Adam β1 0.9
Adam β2 0.998
Adam epsilon 1e-6
Max gradient norm 2.0 2.0 1.0 1.0 1.0
Dropout 0.1
BPE Dropout 0.1 0.0 0.0 0.0 0.0
Label smoothing 0.1
Save checkpoint freq ending step ending step ending step 100/200/400 50/100/200

6.5.2 Datasets and Evaluation Metric

I consider the same four large-scale KPG datasets as described in §6.2, but instead of training

models with all annotated document-keyphrases pairs, I take a large set of unannotated documents

from each dataset for domain adaptation, and a small set of annotated examples for few-shot

fine-tuning. Specifically, in the pre-training stage (PT), I use the 2021-05-21 release of English

Wikipedia dump and process it with wikiextractor package, which results in 3,247,850 passages. In

the domain adaptation stage (DA), for each domain, I take the first 100k examples from the training

split (without keyphrases), and apply different strategies to produce pseudo labels and subsequently
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Table 16: Training hyperparameters for TF-BART. Empty cell means it is the same as the leftmost

value.

Hparam PT DA PT+DA/PT+DAMAG-CS FT 100/1k/10k
Max source length 512
Max target length 256 256 256 128
Max phrase number 16
Max phrase length 6 8 8 8
Phrase masking rate 0.1
Random span ratio 0.05
Batch size 256 256 256 16
Learning rate 1e-5
Number of steps 40k 5k 5k/20k 2k/4k/8k
Warmup steps 2.4k 300 300/1.2k 200/400/800
Learning rate decay linear
Optimizer Adam
Adam β1 0.9
Adam β2 0.98 0.98 0.98 0.999
Adam epsilon 1e-8
Weight decay 0.01
Max gradient norm 1.0 - - 0.1
Dropout 0.1
Label smoothing 0.1
Save checkpoint freq ending step ending step 100/200/400 50/100/200

train the models. In the fine-tuning stage (FT), I take the first 100/1k/10k annotated examples

(document-keyphrases pairs) from the training split to train the models.

I follow previous studies to split training/validation/test sets, and report model performance on

test splits of each dataset. A common practice in KPG studies is to evaluate the model performance

on present/absent keyphrases separately. However, the ratios of present/absent keyphrases differ

drastically among the four datasets (e.g. OPENKP is strongly extraction-oriented). Since I aim

to improve the model’s out-of-domain performance in general regardless of the keyphrases being

present or absent, I follow [7] and simply evaluate present and absent keyphrases altogether. I report

the F@O scores [231] between the generated keyphrases and the ground-truth. This metric requires

systems to model the cardinality of predicted keyphrases themselves.
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6.5.3 Results and Analyses

6.5.3.1 Zero-shot Performance

I first investigate how well models can perform after the pre-training stage, without utilizing

any in-domain annotated data. Since Wikipedia articles contain a rather wide range of phrase types,

I expect models trained on this data are capable of predicting relevant and well-formed phrases

from documents in general. My models’ testing scores are shown in the first row of Table 17

and 18, where only PT is checked. We can see that pre-training with Wikipedia data can provide

decent zero-shot performance in both settings, i.e., model is initialized randomly (Table 17) and

with pre-trained language models (18). Both settings achieve the same average F@O score of

12.2, which evinces the feasibility of using PT model to generate pseudo labels for further domain

adaptation. The scores also suggest that at the pre-training stage, the BART model (with pre-trained

initialization and more parameters) does not present an advantage in comparison to a smaller model

trained from scratch.

6.5.3.2 Domain Adaptation Strategies

I compare transfer labeling (TL, proposed in §6.4.2) with two unsupervised strategies: (1) Noun

Phrase (NP) and (2) Random Span (RS). For NP, I employ SpaCy [84] to POS-tag source texts and

extract noun phrases based on regular expressions. For RS, I follow [162], extracting random spans

as targets and masking them in the source text. For TL, all pseudo phrases are generated by a PT

model in a zero-shot manner (with greedy decoding).

As shown in Figure 28, in the single strategy setting, RS performs the best among the three

strategies and TL follows. I speculate that RS models are trained to predict randomly masked spans

based on their context, and this results in the best generalization among the three. As for the NP

strategy, since targets are only noun phrases appear in the source text, the models may have the

risk of overfitting to recognize a subset of possible phrases. TL lies in between the two discussed

strategies, the generated pseudo labels contain both present and absent phrases, and thanks to the

PT model trained with Wikipedia data, the generated targets can contain many phrase types beyond

noun phrases.
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Figure 28: Comparison of different strategies for domain adaptation with TF-RAND. TL: Transfer

Labeling. NP: Noun Phrases. RS: Random Span.

I further investigate the performance gap between RS and TL. On KP20K, the PT model can

generate 5.1 present and 2.6 absent keyphrases on average. The generated pseudo labels, albeit of

good quality, are always fixed during the training. This is due to the deterministic nature of the PT

model, which may cause overfitting and limit the model’s generalizability. In contrast, random spans

in RS are dynamically generated, therefore a model can learn to generate different target phrases

even the same documents appear multiple times during training. This motivates us to investigate

if these strategies can be synergistic by combining them. As shown in Figure 28, I observe that

combining TL and RS can lead to a significant improvement over all other strategies, indicating

that these two strategies are somewhat complementary and thus can be used together in domain

adaption. In the rest of the paper, I by default combine TL and RS in the domain adaptation stage,

by taking equal amount of data from both sides.

It is worth noting that, if I apply domain adaptation with the TL+RS mixing strategy and

evaluate models without any fine-tuning (2nd row in Table 17/18), we can observe a clear drop in

the performance of randomly initialized model (Table 17). I believe it is because using random

spans for targets worsens the phraseness of the predictions. BART initialized models, on the other
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hand, show robust performance against these noisy targets.

6.5.3.3 Performance in Low-Data Setting

As described in §6.5.2, I use 100/1k/10k in-domain examples with gold standard keyphrases to

fine-tune the model. To investigate the necessity of the PT and DA stages given the FT stage, I

conduct a set of ablation experiments, skipping some of the training stages in the full pipeline.

Table 17: Zero-shot and low-data results obtained by TF-RAND. The best average score in each

column is boldfaced.

PT DA FT KP20K OPENKP KPTIMES STACKEX Avg
TF-IDF 6.3 - - 5.2 -

0-shot
x 15.0 10.0 9.1 14.8 12.2
x x 11.2 4.6 7.7 4.3 6.9

100-shot

x 0.5 0.2 2.4 5.1 2.1
x x 14.1 5.6 5.3 11.7 9.2

x x 14.5 20.1 22.6 13.0 17.6
x x x 16.7 24.4 22.0 18.4 20.4

1k-shot

x 0.5 0.6 5.4 7.0 3.4
x x 15.0 8.6 8.9 15.4 12.0

x x 17.6 25.5 30.5 21.1 23.7
x x x 19.7 28.0 30.7 26.3 26.2

10k-shot

x 3.4 1.5 19.2 20.8 11.3
x x 16.5 13.1 13.4 23.4 16.6

x x 20.6 30.6 38.6 31.4 30.3
x x x 22.1 31.6 36.7 34.7 31.3

Avg

x 1.5 0.8 9.0 11.0 5.6
x x 15.2 9.1 9.2 16.8 12.6

x x 17.6 25.4 30.6 21.8 23.8
x x x 19.5 28.0 29.8 26.5 25.9

I start with discussing the results of randomly initialized models (Table 17). FT-only: in the

case where models are only fine-tuned with a small subset of annotated examples, models perform

rather poorly on all datasets, especially on KP20K and OPENKP, where more unique target phrases

are involved. DA+FT: different from the previous setting, here all models are first trained with 100k

pseudo labeled in-domain data points. I expect these pseudo labeled data to improve models on

both phraseness and keyness dimensions. Indeed, I observe DA+FT leads to a large performance
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Table 18: Zero-shot and low-data results of TF-BART model.

PT DA FT Avg

0-shot x 12.2
x x 12.0

Average of
few-shot

(100/1k/10k)

x 36.2
x x 36.3

x x 36.6
x x x 36.1

Table 19: Average scores (over 4 datasets) with different amount of transfer labeled data for domain

adaptation. All models are trained through three stages. The best score in each block is boldfaced.

Model DA Data 100-shot 1k-shot 10k-shot

TF-RAND
KP20K 100k 16.7 19.7 22.1
MAG-CS 1m 16.8 19.4 21.8
MAG-CS 12m 17.6 20.4 22.8

TF-BART
KP20K 100k 22.2 25.3 28.4
MAG-CS 1m 22.3 25.4 28.4
MAG-CS 12m 22.5 25.4 28.6

boost in almost all settings. This suggests the feasibility of leveraging unlabeled in-domain data

using the proposed adaptation method (TL+RS). PT+FT: the pre-training stage provides a rather

significant improvement in all settings, averaging over datasets and k-shot settings, PT+FT (23.8)

nearly doubles the performance of DA+FT (12.6). This observation indicates that the large-scale

pre-training with domain-general phrase data can be beneficial in various down-stream domains,

which is consistent with prior studies for text generation pre-training. PT+DA+FT: I observe a

further performance boost when both PT and DA stages are applied before FT. This to some extent

verifies our design that PT and DA can guide the models to focus on different perspectives of KPG

and thus work in a complementary manner.

I also investigate when the model is initialized with a pre-trained large language model, i.e.,

BART [106]. Due to space limit, I only report models’ average scores (over the four datasets, and

over the k-shot settings) in Table 18. I observe that in the pipeline, the fine-tuning stage provides

TF-BART the most significant performance boost — the average score is tripled, compared to the
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0-shot settings, even performing solely the fine-tuning stage. This may be because the BART model

was trained on a much wider range of domains of data (compared to Wikipedia, which is already

domain-general), so it may have already contained knowledge in our four testing domains. However,

the auto-regressive pre-training of BART does not train particularly on the KPG task. This explains

why it requires the BART model to fine-tune on KPG data to achieve higher performance. The

above assumption can also be support by further observations in Table 18. Results suggest that the

DA stage is not notably helpful to TF-BART’s scores, and the PT stage, on the other hand, seems

to contribute to a better score. I believe this is because the quality difference between labels used in

these two stages: PT uses community-labeled phrases (high phrase quality but domain-general) and

DA uses labels generated by the model itself (no guarantee on phrase quality but closer to target

domains). Since TF-BART only needs specific knowledge about the KPG task, the PT stage can

therefore be more helpful.

I run Wilcoxon signed-rank tests on the results of Table 17, and it shows all differences between

neighboring experiments (e.g. PT+FT vs. PT+DA+FT, both trained with KP20k and 10k-shot) are

significant (p < 0.05). For Table 18, the improvement of PT+FT over the other three settings is also

significant.

6.5.3.4 Scaling the Domain Adaptation

One advantage of self-labeling is the potential to leverage large scale unlabeled data in target

domains. I also investigate this idea and build a large domain adaptation dataset by pairing an

unlabeled dataset with pseudo labels produced by a PT model. To this end, I resort to the MAG

(Microsoft Academic Graph) dataset [177] and collect paper titles and abstracts from 12 million

scientific papers in the domain of Computer Science, filtered by ‘field of study’. The resulting

subset MAG-CS is supposed to be in a domain close to KP20K, yet it may contain noisy data points

due to errors in the MAG’s data construction process. I follow the same experiment setting as

reported in the above subsections, except that in the DA stage we either use 1 million or 12 million

pseudo-labeled MAG data points for domain adaptation. I train the models with the PT+DA+FT

pipeline and report models’ scores on KP20K test split.

As shown in Table 19, compared to our default setting which uses 100k unlabeled KP20K
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data points for domain adaptation, larger scale domain adaptation data can indeed benefit model

performance — models adapted with MAG-CS 12m documents show consistent improvements.

However, the MAG-CS 1m data (still 10 times the size of KP20K) does not show clear evidence

being helpful. I suspect the distribution gap between the domain adaptation data (i.e., MAG-CS)

and the testing data (i.e., KP20K) may have caused the extra need of generalization. Therefore, the

MAG-CS 12m data may represent a data distribution that has more overlap with KP20K and thus

being more helpful. I also observe that models initialized with BART are more robust against such

a distribution gap, on account of BART’s pre-training with large scale of text in general domain.

6.5.3.5 Multi-iteration Domain Adaptation

Prior self-training studies have demonstrated the benefit of multi-iterations of label propaga-

tion [196, 107]. I conduct experiments to investigate its effects on KPG. Specifically, I first pre-train

a TF-RAND model using Wikipedia data as in previous subsections. Then, I repeatedly perform the

domain adaptation stage multiple times. In each iteration, the model produces pseudo labels from

the in-domain documents and then train itself with this data. Finally, I fine-tune the model with

10k annotated data points, and report its test scores on KP20K. I consider two datasets, KP20K

and MAG-CS 1m, as the in-domain data for domain adaptation. As illustrated in Figure 29, the

TF-RAND model can gradually gain better test performance by iteratively performing domain

adaptation using both datasets. Due to limited computing resources, I set the maximum number of

iterations to 10. But the trend suggests that models may benefit from more DA iterations.

6.6 SUMMARY

In this study, I investigate domain gaps in the KPG task that hinder models from generalization.

I attempt to alleviate this issue by proposing a three-stage pipeline to strategically enhance models’

abilities on keyness and phraseness. Essentially, I consider phraseness as a domain-general property

and can be acquired from Wikipedia data as distant supervision. Then I use self-labeling to distill

the phraseness into data in a new domain, and the resulting pseudo labels are used for domain
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Figure 29: Trend of 10k-shot performance on KP20K with iterative self-labeling for 10 iterations.

adaptation, as the labels can reflect the keyness and phraseness of the new domain. Finally, I

fine-tune the model with limited amount of target domain data with true labels. By taking the

advantage of open-domain knowledge on the web, I believe this general-to-specific paradigm is

generic and can be applied to a wide variety of machine learning tasks. As a next step, I plan to

employ the proposed method for text classification and information retrieval, to see whether the

domain-general phrase model can produce reliable class labels and queries for domain adaptation.
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7.0 EXPLORING KEYPHRASIFICATION WITH LARGE LANGUAGE MODELS

7.1 MOTIVATION

The advent of large language models (LLMs) with billions of parameters, pre-trained on

extensive datasets, has revolutionized the field of NLP, showcasing extraordinary capabilities and

emergent behaviors unprecedented in earlier models [23, 195, 214]. Studies [16, 103] evaluating

LLMs have demonstrated their potential to match or even surpass traditional models in tasks like

question answering and summarization. This raises the intriguing question of whether LLMs can

effectively generate keyphrases from text and if they exhibit advanced phrase understanding abilities

akin to the Chain-of-Thought reasoning observed in complex tasks.

To investigate these aspects, I plan to conduct empirical research on the performance of OpenAI’s

LLMs in keyphrase generation, aiming to gauge their alignment with human-like understanding of

keyphrases. This exploration will involve testing LLMs against datasets crafted to assess semantic

understanding, keyness, and phraseness, as discussed in Chapter 3. The outcomes of this research

will provide insights into LLMs’ strengths and weaknesses in keyphrasification, guiding future

directions in keyphrase generation studies.

7.2 EMPIRICAL ANALYSIS OF LLMS IN KEYPHRASE GENERATION

7.2.1 Experiment Setting

This section presents an evaluation of various large language models on three keyphrase

generation datasets: INSPEC, SEMEVAL, and DUC-2001, focusing on the generation of present

keyphrases to maintain a consistent comparison with extractive methods.

As multiple prior works [103, 180, 179, 123] have conducted similar empirical studies on

OpenAI models, I mainly reference the results from [179], which mainly compares GPT-3.5-turbo

to various models specifically trained for keyphrase prediction. Additionally, I incorporate results
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Table 20: Prompts used to predict keyphrases from the text document.

Model Prompt

Prompt 1 (kw) Extract keywords from this text: [DOCUMENT]

Prompt 2 (kp) Extract keyphrases from this text: [DOCUMENT]

Prompt 3 (10kw) Extract 10 keywords from the text below: [DOCUMENT]

Prompt 4 (10kp) Extract 10 short keyphrases (no longer than 5 words) from
the text below: [DOCUMENT]

from two other LLMs: text-davinci-003 and GPT-3.5-turbo-instruct, updating the

performance metrics for GPT-3.5-turbo (API name gpt-3.5-turbo-1106, version 20231106).

These models, fine-tuned on instructional data [149], excel in various language generation tasks,

though they are not exclusively designed for conversational alignment. The prompts utilized across

all models are detailed in Table 20.

A crucial aspect of the evaluation is data post-processing, as LLMs may present keyphrases in

differing formats, such as starting with a phrase like "the keywords extracted from the text are:"

or using various delimiters (e.g., commas, semicolons, new lines). Therefore, it is essential to

normalize the outputs for a fair and consistent comparison across models.

7.2.2 Results

The detailed results are shown in Table ??, comparing multiple extractive baselines and a

generative TRANSFORMER model trained on KP20K and MAGKP. Overall, LLMs showed superior

performance on the INSPEC dataset but were outpaced on DUC-2001 and SEMEVAL. This

could be attributed to the extensive availability of scientific paper metadata online, likely making

academic keyphrases a significant component of OpenAI LLMs’ pre-training data. The varied use of

delimiters like commas, semicolons, and line breaks in the models’ outputs suggests a pre-training

bias towards certain output formats.

The LLMs’ better performance on INSPEC, which consists of Computer Science papers
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Table 21: Performance on DUC-2001, INSPEC and SEMEVAL test sets. The best extraction and

generation scores in each column are in bold.

MODEL
DUC2001 INSPEC SEMEVAL2010

F1@5 F1@10 F1@15 F1@5 F1@10 F1@15 F1@5 F1@10 F1@15

STATISTICAL EXTRACTION MODELS

TF-IDF [91] 9.21 10.63 11.06 11.28 13.88 13.83 2.81 3.48 3.91

YAKE [25] 12.27 14.37 14.76 18.08 19.62 20.11 11.76 14.4 15.19

GRAPH-BASED EXTRACTION MODELS

TextRank [138] 11.80 18.28 20.22 27.04 25.08 36.65 3.80 5.38 7.65

SingleRank [206] 20.43 25.59 25.70 27.79 34.46 36.05 5.90 9.02 10.58

TopicRank [19] 21.56 23.12 20.87 25.38 28.46 29.49 12.12 12.90 13.54

PositionRank [53] 23.35 28.57 28.60 28.12 32.87 33.32 9.84 13.34 14.33

MultipartiteRank [18] 23.20 25.00 25.24 25.96 29.57 30.85 12.13 13.79 14.92

EMBEDDING-BASED EXTRACTION MODELS

EmbedRankd2v [13] 24.02 28.12 28.82 31.51 37.94 37.96 3.02 5.08 7.23

EmbedRanks2v [13] 27.16 31.85 31.52 29.88 37.09 38.40 5.40 8.91 10.06

KeyGames [169] 24.42 28.28 29.77 32.12 40.48 40.94 11.93 14.35 14.62

SIFRank [189] 24.27 27.43 27.86 29.11 38.80 39.59 - - -

SIFRank+ [189] 30.88 33.37 32.24 28.49 36.77 38.82 - - -

JointGL [108] 28.62 35.52 36.29 32.61 40.17 41.09 13.02 19.35 21.72

GENERATION MODELS

TRANSFORMER,KP20K + MAGKP [134] 16.50 20.23 - 34.74 41.46 - 36.30 36.23 -

text-davinci-003 - kw 14.05 19.32 20.64 38.39 47.90 48.45 24.80 30.10 30.45

GPT-3.5-turbo-instruct - kw 11.92 16.74 19.83 23.98 33.16 36.80 16.15 20.92 23.42

GPT-3.5-turbo - kw 18.02 24.06 25.38 35.27 46.83 48.63 22.88 30.38 31.19

GPT-3.5-turbo - kp 19.63 23.80 24.26 34.60 43.12 44.28 20.77 27.46 28.49

GPT-3.5-turbo - 10kw 18.87 25.10 25.09 32.22 44.71 44.73 26.10 33.99 33.99

GPT-3.5-turbo - 10kp 6.42 7.89 7.91 18.32 19.85 19.88 8.48 8.72 8.72
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Table 22: Number of keyphrases predicted by different models. Numbers in parentheses suggest the

number of total/present/absent ground-truth keyphrases in each dataset.

MODEL
DUC2001 (8.1/7.9/0.2) INSPEC (9.8/7.8/2.0) SEMEVAL2010 (15.1/6.7/8.3)

#pred #pre_pred #ab_pred #pred #pre_pred #ab_pred #pred #pre_pred #ab_pred

TRANSFORMER,KP20K + MAGKP [134] 134.5 34.5 100.0 143.1 21.9 121.2 169.7 21.6 148.1

text-davinci-003 - kw 13.6 11.7 1.9 8.8 8.2 0.6 9.1 8.5 0.6

GPT-3.5-turbo-instruct - kw 21.6 19.5 2.1 16.8 15.4 1.5 20.6 18.6 2.0

GPT-3.5-turbo - kw 12.6 11.5 1.2 10.6 9.8 0.7 11.6 10.6 0.97

GPT-3.5-turbo - kp 12.2 9.5 2.7 9.4 8.4 1.0 11.2 9.7 1.5

GPT-3.5-turbo - 10kw 10.0 9.5 0.5 10.0 9.4 0.6 10.0 9.3 0.7

GPT-3.5-turbo - 10kp 10.2 2.5 7.7 9.5 4.0 5.5 10.0 3.9 6.1

with author-assigned keywords, suggests that this task aligns well with the models’ training data.

However, potential data contamination could also influence this performance, as INSPEC papers

may have been included in their pre-training. The datasets for DUC-2001 and SEMEVAL, annotated

under distinct guidelines [97, 206], did not show strong results, indicating a need for further fine-

tuning or instruction-specific training for these tasks.

Comparatively, GPT-3.5-turbo and text-davinci-003 exhibited similar performances

on scientific datasets, with GPT-3.5-turbo showing excellence in DUC-2001. As the suc-

cessor of text-davinci-003, GPT-3.5-turbo-instruct, however, presented weaker

performance across all datasets, underscoring the impact of pretraining on LLMs’ effectiveness

in keyphrase tasks. Despite this, the chat-aligned GPT-3.5-turbo demonstrated improved

keyphrase generation capabilities.

The experiment revealed the significance of prompt design, as shown by the varying perfor-

mances of GPT-3.5-turbo with different prompts. By explicitly defining keyphrase number

or length in prompts like 10kw and 10kp, I could steer the model’s output more precisely. For

instance, the 10kw prompt led to improved scores on SEMEVAL, aligning the model output closer

to the dataset’s average keyphrase count. This suggests that prompt engineering could act as

hyperparameter tuning, optimizing model performance for specific tasks. However, 10kp is a

number-controlled variant of kp, but the model’s behavior has drastically changed and results in
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much worse performance. I investigated the outputs and noticed that the model generates phrases

that are absent from the text, instead of following the prompt of “extract”. While prompt engineering

allows for substantial model control, it doesn’t always guarantee adherence to instructions. This

inconsistency highlights the potential for optimization in future model iterations. More details can

be seen in the number of predicted keyphrases as shown in Table 22. By explicitly specifying the

number to predict in the prompt, both 10kw and 10kp output keyphrases of the desired number,

whereas the number by the other models is subject to the prior knowledge learned during training.
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7.3 LLMS ON PHRASE SEMANTIC UNDERSTANDING

7.3.1 Motivation

Phrase semantics present unique challenges due to natural language’s compositionality and

ambiguity. The same set of words can yield phrases with vastly different meanings, exemplified

by "traffic light" versus "light traffic." Understanding phrase semantics [100, 197, 3, 153] involves

tasks that assess a model’s ability to discern the semantic relationships between phrases, such as

identifying semantic similarities or differences between phrase pairs.

Traditional approaches to these tasks typically employ either embedding-based or fine-tuning

strategies. Embedding-based methods [210, 94, 164, 61, 229] generate vector representations

for phrases, using vector similarity as a proxy for semantic relatedness. However, this approach

often oversimplifies the complex relationships between phrases. On the other hand, fine-tuning

methods [210, 156] adapt a pretrained model (like BERT) to a specific task, such as semantic

classification or relatedness regression, but this requires substantial task-specific data, which may

not be readily available.

LLMs stand out for their ability to generalize to new tasks using just a few instructions, a

significant advantage in data-sparse situations. Additionally, in-context few-shot learning and chain-

of-thought prompting have demonstrated effectiveness in transferring knowledge to unfamiliar tasks

and enhancing reasoning capabilities. The potential of LLMs in phrase semantic understanding

remains underexplored and warrants investigation.

In this section, I will investigate how well LLMs understand phrase semantics by instruction-

following.

7.3.2 Methods

We compare three types of models to evaluate their performance in understanding phrase

semantics:

• Embedding similarity based methods: These methods encode phrases into dense vectors and

measure semantic relatedness through vector similarity. For classification, the phrase with the
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highest vector similarity is selected, while for regression tasks, the similarity score itself is used

as the prediction.

• Fine-tuning based methods: This approach involves adding a prediction head to a pretrained

model, fine-tuning it to capture the nuances of specific semantic tasks. In this study, results are

reported for a classification dataset, PiC-PS, where a training split is available.

• Natural language instruction based methods: Leveraging instruction-tuned models like

GPT-3 [24] and FLAN [40], this method provides task details in natural language as part of

the input, guiding the model to generate the required output. Techniques such as in-context

few-shot learning [23] and chain-of-thought prompting [215, 214] are employed to enhance the

model’s task-specific predictions and reasoning capabilities.

7.3.3 Experiment Setting

To evaluate phrase semantics understanding, three datasets were utilized:

• Turney [197]: Comprising 2,180 examples derived from WordNet, this dataset pairs one bigram

phrase with five unigrams, where one unigram is a synonym of the bigram, and the others are

related distractors. As a multiple-choice classification task, it challenges the model to identify

the synonym from the unigrams, with performance measured by accuracy.

• BiRD [3]: This is a bigram relatedness dataset using the Best–Worst Scaling (BWS) annotation.

In contrast to common annotation techniques that use a discrete 0 to 5 scale, BWS is expected

to provide more reliable and discriminating annotations. Specifically, it employs comparative

annotations, where annotators are given multiple items at a time and asked to select which item

is the best and worst. BiRD consists of 3,345 pairs of bigram phrases, each including a pair of

phrases and a human rating of similarity between 0 and 1. The Pearson correlation coefficient

between the model predictions and human judgments is reported.

• PiC-PS (Phrase-in-Context - Phrase Similarity) [156]: PiC-PS is a binary classification task and

it contains 2,000 examples for testing. The model is tasked to predict whether two noun phrases

are semantically similar or not in the same context. The challenge of this task is that, without

taking the contextual information into account, very likely the two phrases are interpreted as

synonyms. The accuracy score is reported.

98



For Turney and BiRD, I follow the setting by [210] to reproduce baselines. For PiC-PS, I

adopt the setting by [156] and reuse their reported scores. I run GPT-3.5-turbo (API name gpt-

3.5-turbo-1106, version 20231106) and GPT-4-turbo (API name gpt-4-1106-preview, version

20231106) on these datasets. Sample data and prompts are detailed in Table 23. In instances where

the OpenAI API response does not yield a valid output, a default similarity score of -1 is assigned.

The potential of few-shot learning to enhance LLM performance was also considered. Given the

absence of a development set for Turney and BiRD, 10 examples from each test split were allocated

as a makeshift development set, leaving 2,170 and 3,335 examples for final testing, respectively.

Table 23: Prompts used to predict keyphrases from the text document.

Task Prompt Ground-
truth

Output

Turney

Given 5 word candidates (delimited by |), you are tasked to answer which
word is most semantically similar to a given phrase.

Please respond with the word only, without any explanation.
Among 5 words "proverb | sabre | stockpiling | moonlighter | jigsaw",

which word is most similar to the phrase "saber saw"?

jigsaw jigsaw

BiRD

Given two phrases, you are tasked to predict the semantic relatedness of
them.

Now, given two "access road" and "road access", what is their semantic
relatedness?

Please only output a number within the range [0, 100].

0.684

The semantic relatedness between
"access road" and "road access" is
100.

These phrases are semantically
identical, as they convey the same
meaning with the words in a differ-
ent order.

PiC

Given a pair of phrases sharing the same context, you are tasked to
answer whether the two phrases have the same semantic meaning. Now
here is the test, in the two sentences below:

- This was also the first address of his sister Hannah’s shop where she
sold James Gillray’s prints before moving to Bond Street.

- This was also the inaugural speech of his sister Hannah’s shop where
she sold James Gillray’s prints before moving to Bond Street.

The phrase pair "first address" and "inaugural speech" has the same
semantic meaning is (only output Yes or No):

yes yes

PiC+CoT

Given a pair of phrases sharing the same context, you are tasked to
answer whether the two phrases have the same semantic meaning. Now
here is the test, in the two sentences below:

- On the local circuit, Faiz emerged champion in 3 events and obtained
medals in both the Foil and Sabre U-12 events.

- On the community competitions, Faiz emerged champion in 3 events
and obtained medals in both the Foil and Sabre U-12 events.

Please answer whether the phrase pair "local circuit" and "community
competitions" has the same semantic meaning. Let’s think step by step,
briefly explain the similarity/difference between the two phrases, and
end the respond with only Yes or No).

yes

The phrases "local circuit" and
"community competitions" have a
similar semantic meaning.

Both phrases refer to events or
competitions that take place within a
specific local or community setting.
Therefore, the answer is Yes.
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7.3.4 Results

Table 24: The scores on two phrase semantic similarity datasets. The numbers in parentheses

indicate how many times the model failed/refused to return a valid answer.

Model Turney (2,170)
Accuray

BiRD (3,335)
PCC

Baselines (Embedding+Cosine)

BERT 42.5 0.445
BERT-Large 42.5 0.476
SpanBERT 20.8 0.257
SpanBERT-Large 41.0 0.330
Phrase-BERT 57.1 0.689

LLMs (Instruction)

GPT-3.5-Turbo, 0-shot 86.2 0.762 (4)
GPT-3.5-Turbo, 2-shot 86.4 0.698 (36)
GPT-3.5-Turbo, 4-shot 87.4 0.685 (54)
GPT-4-Turbo, 0-shot 85.9 0.727 (3)
GPT-4-Turbo, 2-shot 87.0 0.587 (1309)

Table 25: The scores on PiC-PS.

Model PiC-PS Accuracy

Baselines M1: Embedding+Cosine M2: Fine-tuned Classifiers

BERT 64.10 68.85
SpanBERT 64.00 66.85
SpanBERT-Large 66.30 69.25
SentenceBERT 60.30 62.55
PhraseBERT 63.40 66.10
SimCSE 62.50 66.65

LLMs M3: w/o CoT M4: w/ CoT

GPT-3.5-Turbo, 0-shot 60.80 65.85
GPT-3.5-Turbo, 1-shot 67.95 67.45
GPT-3.5-Turbo, 2-shot 70.00 61.70
GPT-3.5-Turbo, 4-shot 69.80 64.50
GPT-4-Turbo, 0-shot 73.85 63.05
GPT-4-Turbo, 2-shot 73.15 69.60

The results of phrase semantic similarity are presented in Table 24 and 25. The evaluation of

phrase semantic similarity across the datasets shows that instruction-based methods employing
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LLMs set new benchmarks (Turney from 57.1 to 87.4, BiRD from 0.689 to 0.762, PiC-PS from

69.25 to 73.85). Interestingly, the highest scores varied across different models and configurations.

For instance, despite GPT-4-Turbo being an advancement over GPT-3.5-Turbo, it only scored higher

on PiC-PS without Chain-of-Thought (CoT) prompting.

In Turney’s benchmark, the previous best accuracy score (57.1) was achieved by an embedding-

based method utilizing Phrase-BERT and cosine similarity. However, cosine similarity, as a proxy

measure, may not sufficiently capture the intricate semantic relationship between two phrases. Large

Language Models (LLMs) significantly outperform this previous score on Turney’s benchmark

by a substantial margin (+30.3 points), primarily due to their enhanced language understanding

capabilities. Additionally, their ability to follow instructions enables adaptation to new tasks without

requiring any training data. Furthermore, it’s worth noting that further improvements can be attained

by providing a few-shot examples within the context, allowing the model to glean more task-specific

information for refining its predictions.

BiRD directly evaluates models’ similarity predictions by Pearson correlation coefficient, which

may favor embedding-based methods as they were trained by optimizing the similarities between

phrases [210], whereas LLMs output similarities in natural language, similar to the way that humans

annotate the data [3]. The result shows that LLMs are still able to outrun baselines by a clear margin.

However, the performance deteriorates when few-shot examples are provided. One possible reason

is the values provided in the examples potentially bias the models’ prediction. Another non-trivial

impact of the few-shot prompt is that, it significantly increases the chance that OpenAI APIs refuse

to answer as instructed. The frequency of failure responses is shown in parentheses in Table 24,

and we can see that it has a more severe influence on GPT-4-Turbo, leading to 1,309 refusal

responses, and one example is “As an AI language model, I don’t have the capability to calculate

semantic relatedness with a precise numerical score. Semantic relatedness is typically determined

using complex algorithms or models that analyze the meanings of words and phrases in context.

However, I can provide a qualitative assessment.” Further prompt tuning or repeated sampling may

alleviate this problem.

PiC-PS is a context-dependent test, asking the model if two phrases carry distinct meanings in

the same context. The task is arguably more challenging as the difference between them can be

subtle and models need to comprehend the context for support. The previous best score (69.25) is
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achieved by SpanBERT-Large with a fine-tuned classifier. Surprisingly, the best LLM only attains a

minor improvement (about 4 points). The few-shot demonstration benefits GPT-3.5-Turbo the

most when two examples are used, but it worsens the performance of GPT-4-Turbo. Additionally,

the result shows that the chain-of-thought prompt leads to degradation in general. The models

appear to give a very reasonable interpretation and few invalid responses are detected. A response

from GPT-4-Turbo is shown as follow:

Input:
Given a pair of phrases sharing the same context, you are tasked to answer whether the two phrases
have the same semantic meaning.
Here are 2 examples:

Example #1, in the two sentences below:
- Carty attended a Saturday morning acting class at Phildene Stage School from the age of four,
which had an attached agency.
- Carty attended a Saturday morning acting class at Phildene Stage School from the age of four,
which had an accompanying business that represents actors.
Whether the phrase pair "attached agency" and "accompanying business that represents actors" has
the same semantic meaning? Let’s think step by step: Both phrases describe a business connected to
the Stage School, with the primary function of representing actors.
So the answer is: Yes

Example #2, in the two sentences below:
- after theo’s apparent death, she decides to leave first colony and ends up traveling with the apostles.
- after theo’s apparent death, she decides to leave original settlement and ends up traveling with the
apostles.
Whether the phrase pair "first colony" and "original settlement" has the same semantic meaning?
Let’s think step by step: Both phrases refer to an initial establishment or habitation, but "first colony"
carries specific connotations of being part of a series of colonies or a larger colonization effort,
whereas "original settlement" is a more neutral term for any first habitation.
So the answer is: No

Now here is the test, in the two sentences below:
- The software was ported to a wide set of Unix and Linux variants.
- The software was ported to a spacious collection of Unix and Linux variants.
Please answer whether the phrase pair "wide set" and "spacious collection" has the same semantic
meaning.
Let’s think step by step, briefly explain the similarity/difference between the two phrases, and end
the response with only Yes or No)."

Ground-truth: No.

Response:
The phrase "wide set" refers to a broad range or assortment, emphasizing the diversity or number
within a group. The phrase "spacious collection" is not commonly used in this context; "spacious"
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typically describes a physical space that is large or roomy. However, if we interpret "spacious
collection" as an attempt to convey a large assortment, then it could be seen as a less conventional
way of expressing a similar idea to "wide set," with the focus being on the size of the collection
rather than its diversity.

So, while the phrases are not identical in their usual contexts and connotations, in the context of
describing the extent of software compatibility across different Unix and Linux variants, they could
be understood to mean a similar thing: a large and varied group.
The answer is: Yes.
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7.4 LLMS ON KEYNESS AND PHRASENESS UNDERSTANDING

7.4.1 Motivation

Previous sections have highlighted the strong performance of Large Language Models (LLMs)

in keyphrase generation and phrasal semantic understanding, as demonstrated through benchmarking

on various datasets. However, these models have not been evaluated specifically on their abilities

to understand keyphrase-related factors, namely keyness and phraseness. To address this gap,

I propose constructing two datasets aimed at testing LLMs’ capability in discerning phrases of

different degrees of keyness or phraseness.

7.4.2 Dataset Construction

Inspired by existing datasets on phrasal semantics, I intend to develop a multi-choice dataset

to assess models’ understanding of keyness and phraseness. This dataset consists of 500 papers

selected from the KP20K test split, each with precisely four author keywords (5,371 papers meet

this criterion out of 19,987). Adhering to the definitions provided in [194], I outline the process for

constructing distractors below:

• Keyness/Informativeness:

– Definition: Measures how effectively a phrase captures or illustrates the key ideas in a set

of documents.

– Data construction: The original authors’ annotated keywords serve as positive labels, while

four random keyphrases are sampled from other documents, deemed irrelevant to the

source document. This evaluation can be conducted in four settings based on whether the

target is a positive keyphrase or a negative one (identifying non-keyphrases vs. identifying

keyphrases) and whether the source context is provided to the model (with context vs.

without context). The absence of context significantly raises the difficulty level, as the

model must discern, from five phrase candidates, which four are likely from the same

document and semantically related.

• Phraseness:

– Definition: Measures the degree to which a word sequence is considered a phrase.
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– Data construction: The original authors’ annotated keywords are positive labels, while four

n-grams from the same document, excluding all noun phrases, are randomly selected as

negatives. To reduce false negatives, the length of sampled n-grams ranges from 2 to 4

words. Phraseness is considered a context-free characteristic, leading to two evaluation

settings: (1) Identifying non-keyphrases by spotting one non-phrase n-gram (negative)

among five candidates, with the remaining four being well-formed phrases (positives).

(2) Identifying keyphrases by identifying one well-formed phrase (positive) among five

candidates, with the remaining four being non-phrases (negatives).

7.4.3 Results

Since there are no suitable baseline methods available for keyness and phraseness prediction, I

exclusively evaluate the performance of two OpenAI Large Language Models (LLMs) using the

prompts outlined in Table 26.

Table 26: Accuracy scores of keyness/phraseness prediction by various LLMs.

Identify Non-keyphrase Identify Keyphrase
Keyness

w/ context
Keyness

w/o context Phraseness Keyness
w/ context Phraseness

GPT-3.5-Turbo 96.6 66.2 88.8 96.6 79.6
GPT-4-Turbo 95.8 70.0 97.8 97.4 89.2

The performance scores are summarized in Table 26. Both LLMs exhibit excellent keyness

prediction when provided with context. However, when the context is absent, the scores notably

decrease, indicating the difficulty of linking abstract keyphrases without the source text as a reference

point. Regarding phraseness, typically viewed as a simpler task of selecting well-formed phrases

from random n-grams and vice versa, GPT-3.5-Turbo surprisingly makes incorrect predictions in

over 10% of test cases, highlighting the challenge even in this seemingly straightforward task. On

the other hand, GPT-4-Turbo significantly improves phraseness scores. Comparing the settings of

identifying non-keyphrases and identifying keyphrases, the models show similar performance in

keyness prediction. It seems easier to predict a random n-gram from several well-formed phrases
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(97.8 vs. 89.2 accuracy), although more false negatives may occur in the identifying keyphrase

setting.

7.4.4 Summary

In this chapter, I conduct a comprehensive series of experiments to assess the performance of

Large Language Models (LLMs) in keyphrase generation and understanding.

Initially, I conduct an empirical study that evaluates multiple LLMs on three widely recognized

keyphrase benchmarks, comparing their performance against previous state-of-the-art keyphrase

models. The results on in-domain datasets highlight the impressive performance of LLMs, attributed

to their larger model size and exposure to extensive pretraining data. Furthermore, this study

underscores the critical importance of using appropriate prompts to achieve optimal results.

Following that, I delve into analyzing the performance of LLMs in phrasal semantic understand-

ing, employing instruction-following methods and comparing them against various baseline models.

While LLMs exhibit superior performance across three benchmarks, the utilization of few-shot

demonstration and chain-of-thought prompts yields mixed results. This prompts further exploration

and analysis to ascertain why chain-of-thought prompts may struggle in semantic reasoning tasks.

Additionally, I introduce a novel dataset designed to evaluate LLMs’ proficiency in understand-

ing keyness and phraseness, which are fundamental characteristics of keyphrases. Through this

preliminary evaluation, it becomes evident that current LLMs possess the capability to differentiate

keyphrases from other phrases. However, certain challenges persist in specific evaluation settings,

indicating areas for improvement.

Overall, LLMs demonstrate remarkable capabilities in keyphrase-related tasks. Future studies

should focus on exploring additional applications of LLMs in keyphrase tasks, including automatic

evaluation methods and other potential use cases.
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Table 27: Data examples of keyness/phraseness prediction under various settings and the corre-

sponding prompts for LLMs.

Setting Prompt Ground-
truth

Model
Output

Identify
Non-
keyphrase

Keyness
w/

context

Given a list of 5 phrases that will be used as keyphrases to describe the core topics of a document,
there is one irrelevant phrase among them.
You are tasked to identify which one is the irrelevant phrase (not a keyphrase).
Please respond with the phrase directly, without any explanation.

The document is as follows: Search strategies on a new health information retrieval system .
Purpose - The goals of this study are: to evaluate the merits of a newly developed health infor-
mation retrieval system; to investigate users’ search strategies when using the new search system;
and to study the relationships between users’ search strategies and their prior topic knowledge.
Design/methodology/approach - The paper developed a new health information retrieval system
called MeshMed. A term browser and a tree browser are included in the new system in addition
to the traditional search box. The term browser allows a user to search Medical Subject Heading
(MeSH) terms using natural language...

Here are 5 keyphrase candidates: ["information systems", "hospitals", "knowledge management",
"cost-effective design", "information retrieval"].
Now tell me which phrase is unlikely to be a keyphrase (irrelevant)? Answer:

cost-
effective
design

hospitals

Keyness
w/o

context

Given a list of 5 phrases that will be used as keyphrases to describe the core topics of a document,
there is one irrelevant phrase among them.
You are tasked to identify which one is the irrelevant phrase (not a keyphrase).
Please respond with the phrase directly, without any explanation.

Here are 5 keyphrase candidates: ["content dissemination", "wireless lan", "friendship relations",
"user characteristics", "social media website"].

Now tell me which phrase is unlikely to be a keyphrase (irrelevant)? Answer:

wireless
lan

friend-
ship
relations

Phrase-
ness

Given a list of 5 keyphrase candidates, most of them are well-formed noun phrases (keyphrases for
a document) and one is likely to be a random phrase.
You are tasked to identify which one is not a well-formed phrase (not a noun phrase nor keyphrase).
Please respond with the phrase directly, without any explanation.

Here are 5 keyphrase candidates: ["image-based rendering", "lumiproxy", "surface fitting", "as
Trefftz methods", "sampling"].

Now tell me which one is not a well-formed phrase? Answer:

as trefftz
methods

lu-
miproxy

Identify
Keyphrase

Keyness
w/

context

Given a list of 6 phrases that will be used as keyphrases to describe the core topics of a document,
there is only one phrase considered relevant.
You are tasked to identify which one is the relevant phrase (a keyphrase).
Please respond with the phrase directly, without any explanation.
The document is as follows: distributed multivariate regression based on influential observations
. Large-scale data sets are sometimes logically and physically distributed in separate databases.
The issues of mining these data sets are not just their sizes, but also the distributed nature. The
complication is that communicating all the data to a central database would be too slow. To reduce
communication costs, one could compress the data during transmission. Another method is random
sampling. We propose an approach for distributed multivariate regression based on sampling
and discuss its relationship with the compression method. The central idea is motivated by the
observation that, although communication is limited, each individual site can still scan and process
all the data it holds. Thus it is possible for the site to communicate only influential samples without
seeing data in other sites. We exploit this observation and derive a method that provides tradeoff
between communication cost and accuracy. Experimental results show that it is better than the
compression method and random sampling..

Here are 6 keyphrase candidates: ["reliability function", "learning curve", "unfolding", "optimal
scheduling", "electre", "range-reduction"],

Now tell me which phrase is likely to be a keyphrase (relevant)? Answer:

learning
curve

multi-
variate
regres-
sion

Phrase-
ness

Given a list of 6 keyphrase candidates, most of them are random n-grams and only one is a well-
formed noun phrase (likely to be a keyphrase for a document).
You are tasked to identify which one is the well-formed noun phrase.
Please respond with the phrase directly, without any explanation.

Here are 6 keyphrase candidates: ["30] using fundamental", "solutions (", "and the", "of the MFS
over", "s2-continuous poset", "(TM) ["],

Now tell me which phrase is likely to be the well-formed noun phrase (a keyphrase)? Answer:

s2-
continuous
poset

and the
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8.0 CONCLUSION AND FUTURE WORKS

The preceding chapters have addressed each of the research questions outlined in the Introduc-

tion (Chapter 1). This concluding chapter aims to consolidate the key findings and insights derived

from the research conducted in this dissertation. Additionally, it will explore potential avenues for

future research.

8.1 CONCLUSION

As an extensively studied natural language processing task, traditional methods for automatic

keyphrase assignment, namely keyphrase extraction and automatic tagging, have demonstrated

limitations in replicating human-like keyphrase prediction capabilities. Motivated by these short-

comings, I reexamined the constraints of previous studies and introduced a more comprehensive

formulation of this task, which I termed Keyphrasification. This task is conceptually defined as

the process of summarizing source content and conveying condensed information through phrases.

To validate this conceptualization, I conducted an interview study involving 15 participants to

understand human perceptions and behaviors regarding keyphrases. The results confirmed that most

participants adhere to the proposed formulation of keyphrasification when assigning keyphrases.

Additionally, a set of properties related to keyphrasification was discussed and assessed by the

participants, shedding light on their significance. These findings are anticipated to deepen our

understanding of keyphrase-related tasks and facilitate the design of future models in this domain.

Building on the framework discussed earlier, I propose an approach to automatic keyphrasifi-

cation, namely Keyphrase Generation, employing neural language generation techniques. This

innovative modeling approach addresses the limitations of prior methods by learning to mimic

human preferences for assigning keyphrases in a data-driven manner. Several key techniques are

explored and thoroughly evaluated to tackle the unique challenges of this task, including different

model architectures, training strategies, beam search, and the copy mechanism. The keyphrase

generation method presented here outperforms traditional keyphrase extraction benchmarks and
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uniquely predicts keyphrases that do not appear in the source text. This method combines the

strengths of keyphrase extraction and automatic tagging, showcasing its advanced capability. More-

over, I endeavored to incorporate the specific keyphrase properties defined in the framework into

modeling, resulting in the KPGen-One2Seq-Div variant. The results demonstrate that deliberate

measures aimed at introducing semantic coverage and uniqueness significantly enhance the diversity

in the generated phrases.

Nevertheless, previous methods heavily rely on annotated data and often exhibit weak general-

ization across domains. To address this issue, I proposed a three-stage pipeline aimed at enhancing

models’ abilities in both keyness and phraseness. This approach involves strategically distilling

domain-general phrase knowledge and domain-specific knowledge through a Phrase-oriented

Generative Pre-training. Experimental results demonstrate that the proposed method is effective

in generating high-quality keyphrases in new domains, even with limited in-domain annotated data.

Lastly, In a series of experiments, I explore the performance of Large Language Models

(LLMs) in keyphrase generation and understanding. Initially, I assess multiple LLMs on three

keyphrase benchmarks, finding that on in-domain datasets, LLMs excel due to their larger model

size and extensive pretraining data, underscoring the importance of appropriate prompts. Next,

I investigate LLMs’ performance in phrasal semantic understanding via instruction-following,

noting their superiority on three benchmarks but mixed outcomes with few-shot demonstration

and chain-of-thought prompts, suggesting the need for further prompt exploration and analysis.

Finally, I introduce a new dataset to evaluate LLMs’ comprehension of keyness and phraseness,

revealing their capability to differentiate keyphrases from other phrases, albeit with some remaining

challenges under certain settings.

Throughout this study, the investigation into automatic keyphrasification evolves across three

generations of neural language modeling techniques. It begins with the initial models, which are

trained from scratch on task-specific data, progresses through models pre-trained on a vast corpus of

domain-general text and fine-tuned for specific tasks or domains with minimal additional training,

and culminates with the latest large language models (LLMs) capable of adapting to a wide array of

NLP tasks through instruction following alone. As the scale of both model size and data volume

increases, we witness an enhancement in the capabilities of language models, alongside a trend

towards performance saturation on established keyphrase benchmarks. While current models seem
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to effectively address the keyphrase assignment challenge, I argue that LLMs pave the way for novel

applications related to keyphrases. This advancement necessitates the development of more refined

task designs to fully assess the potential of LLMs in understanding and assigning keyphrases.

8.2 DISCUSSION

8.2.1 Misunderstandings in Keyphrasification

The findings discussed in Chapter 3 indicate that individuals typically select keyphrases based

on their personal criteria, which are shaped by practice and experience, and often lack formal

instruction. Furthermore, the practical utility of keyphrases, as discussed in the literature [76],

may not be widely recognized by actual users. These factors contribute to a general ambiguity

and misunderstanding regarding the purpose and importance of keyphrasification, resulting in a

tendency for keyphrases to be assigned haphazardly. Consequently, it is imperative to define the

task of keyphrasification clearly, elucidate the value of keyphrases, and provide specific guidelines

for their assignment.

I think the significance of keyphrases varies across different applications and scenarios, which

can be classified into three main categories:

• Indexing Terms: In an ideal setup, when a user employs a specific term in a search query,

documents tagged with that term should appear prominently in the search results. However, the

effectiveness of this system diminishes if the same term is assigned across numerous documents.

Therefore, content-specific phrases, which are often “extractable” from the content, are marked

as keyphrases. With advancements in language understanding technologies, neural search mod-

els are increasingly capable of identifying significant terms within content, including non-textual

data [213], seemingly reducing the reliance on traditional keyword-based indexing. Exploring

more sophisticated methods to integrate keyphrases and additional metadata seamlessly into

neural search represents a valuable direction for future research.

• Social Tagging or Folksonomy: This involves users within a community assigning tags or

labels to content to facilitate organization, exemplified by hashtags on Twitter, topic labels
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on StackOverflow, and the selection of academic paper reviewers by keywords. Although

there is no strict rule for tag assignment, each tag aims to represent a resource group, creating

a community-based taxonomy. Thus these tags should be recognizable to a segment of the

community, representing a category, topic, or interest. While automatic models can predict tags

from historical data, a notable challenge is the dynamic nature of tagging trends, which these

models might not always capture. Investigating the evolution and the taxonomy of tags presents

an interesting research avenue.

• Keyphrases for readers: Analogous to structured abstracts [147, 158, 132], structured keyphrases [90]

can offer a clear outline, aiding readers, particularly professionals like academic researchers

and patent attorneys, in comprehending the main themes of extensive texts. A systematic

format not only assists readers in swiftly locating relevant content but also guides authors in

crafting meaningful keyphrases. Moreover, search engines can leverage this structured data

for enhanced functionality, e.g. filtering results by keyword types. Unlike structured abstracts,

which often follow the IMRAD format (Introduction, Methods, Results, and Discussion), a

distinct annotation framework for keyphrases should be developed to elucidate the connection

between the document and its keyphrases. The interview study in Chapter 3 suggests possible

keyphrase functions/roles such as method, problem, solution, goal, focus, and domain, which

could structure this annotation. However, the norm of keyword types should be adaptable to the

conventions and practices of different research fields.

The exploration of keyphrasification practices reveals the need for a structured and deliberate

approach to keyphrase assignment. As we have seen, the selection and application of keyphrases

are influenced by a variety of factors, from individual discretion to broader community norms. The

diversity in the use and recognition of keyphrases across different contexts highlights the complexity

of this problem. Moving forward, it is crucial to cultivate a more systematic and informed method-

ology in keyphrasification to ensure that keyphrases fulfill their potential as pivotal navigational and

informational tools in the digital information landscape. Furthermore, a more precise understanding

of keyphrase assignment practices, coupled with well-defined keyphrase frameworks, will lay the

groundwork for advancing research in automated keyphrasification methods.
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8.2.2 Emerging Opportunities with Large Language Models (LLMs)

The central focus of this dissertation has been the investigation of automated keyphrasification

solutions, traversing through three generations of neural language modeling. The journey begins

with neural network models trained from scratch on task-specific and domain-specific data, advances

through models pre-trained on extensive domain-general text and fine-tuned for particular tasks with

minimal training, and culminates with Large Language Models (LLMs) that adapt to new tasks and

domains through instruction following only. The evolution of language modeling has consistently

elevated the performance of automatic keyphrasification across various domains and scenarios, as

demonstrated in Chapter 7, and showcased their effectiveness on unseen tasks without extensive

model tuning. This progress supersedes the traditional modeling approaches discussed in earlier

chapters, which typically rely on considerable amounts of task-specific training data (e.g., KP20K

and STACKEX) and intricate modeling techniques (e.g., copying attention, semantic coverage).

However, I contend that LLMs unlock additional avenues for keyphrase research and application.

As identified earlier, numerous real-world applications for keyphrases are still underexplored.

Leveraging LLMs’ advanced capabilities opens up new possibilities for investigating the untapped

potential of keyphrases. For example, LLMs’ ability to identify crucial phrases, evidenced in

Chapter 7, suggests their utility in classifying keyphrases according to their functions or roles, thus

facilitating further applications. Another intriguing prospect is automating keyphrase evaluation

using LLMs. Recent studies have shown GPT-4’s adeptness in evaluating tasks like summarization

and long-form question answering through specialized prompts, such as chain-of-thought and

form-filling. Capitalizing on LLMs’ capacity to discern semantically similar phrases could lead to

the creation of an automated evaluation framework, with its effectiveness measured against human

judgments. Insights from Chapter 3 could guide the formulation of such an evaluative mechanism.

8.3 FUTURE WORKS

In this section, I will discuss several research directions that are worth exploring in the future.
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8.3.1 Enhancing User Interaction through Keyphrasification

Investigating how keyphrases influence user-system interactions is a fascinating yet complex

area. Keyphrases, as concise summaries of detailed content, can significantly reduce the cognitive

burden on users who engage with extensive information resources, like searching or reviewing

lengthy documents. The development of interactive systems that leverage generated keyphrases to

facilitate user interactions with data, and evaluating their impact, can offer valuable perspectives

on the practical utility of keyphrases in real-world scenarios. This exploration can enrich our

understanding of keyphrases’ role in improving information accessibility and user experience.

8.3.2 Keyphrase Generation for Non-Textual Content

The extension of keyphrasification techniques to encompass non-textual media, including im-

ages, videos, and audio files, represents a pioneering frontier in information accessing. Investigating

the generation and application of keyphrases for such multimodal content offers a pathway to

enhance indexing and retrieval processes, enabling more nuanced and efficient searches. This

approach could transform how users interact with and extract value from diverse media types,

providing a unified framework for summarizing and navigating complex information resources. By

developing algorithms capable of discerning and encapsulating the essence of visual and auditory

information into concise keyphrases, we can facilitate a more intuitive and accessible retrieval

experience, bridging the gap between various content forms and their textual representations.

8.3.3 Integration of Keyphrasification with Other Tasks

Examining how keyphrasification can be combined with other NLP tasks like document sum-

marization, topic modeling, or information retrieval to enhance overall text understanding and

information extraction capabilities.

Currently, keyphrases are often utilized in a simplistic, non-hierarchical manner, overlooking

the potential depth of their interrelations. A promising avenue for enhancing various NLP tasks

is to employ a keyphrase-driven taxonomy, structuring information in a hierarchy that reflects the

underlying knowledge relationships encapsulated by keyphrases. This approach not only organizes

113



data more effectively but also facilitates more logical and user-friendly access to large volumes of

information.

Further research should also focus on developing sophisticated techniques for embedding

keyphrases into information retrieval systems, thereby augmenting search relevance and accuracy,

and enriching the user experience with features like personalized search outcomes tailored to

individual user-generated keyphrases.

8.3.4 Other Directions

I would like to highlight several promising research areas that merit further investigation. Some

of these topics have been touched upon in my previous work but are not extensively covered in this

dissertation:

• Cross-domain and Cross-lingual Keyphrasification: This area focuses on assessing the

adaptability of keyphrasification models across various domains and languages, aiming to

understand their flexibility in different textual environments. In Chapter 6, we introduced

a method for distilling ‘keyness’ and ‘phraseness’ through pseudo data labeling. The study

in [62] proposed a retrieval-augmented approach to mitigate data scarcity in low-resource

languages. Further research is needed to evaluate the disparities between domains and languages

comprehensively. Additionally, the extraction of bilingual phrase pairs represents a fertile

ground for future exploration.

• Keyphrasification Models with Limited or No Supervision: The extensive need for annotated

training data is a significant bottleneck in the advancement of keyphrasification models. Studies

like [174] and [133] have introduced data-efficient methodologies to lessen this dependency.

Developing robust methods that can intuitively guide models to grasp the inductive biases of

specific tasks continues to be a formidable challenge, despite the rise of LLMs. Data synthesis

and augmentation leveraging language models have yielded promising outcomes in some

domains [208, 130], suggesting that this approach warrants deeper exploration.
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8.4 RELATED PUBLICATIONS

Throughout my doctoral studies, I authored 10 publications connected to the theme of keyphrasi-

fication, each contributing directly or indirectly to the substance of this dissertation. A comprehen-

sive list of these publications is detailed in Table 28. These papers are arranged not by chronological

order, but by their respective research objectives and contributions. This organization aims to

provide readers with a clearer understanding of the research trajectory undertaken in this endeavor.
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Table 28: A list of publications related to this dissertation.

Title •Author List •Conference / Journal Chapter Core Contribution

1. Deep Keyphrase Generation [135]
Meng, R., Zhao, S., Han, S., He, D., Brusilovsky, P., & Chi, Y.
ACL, 2017.

Chapter 4 First study of keyphrase
generation.

2. An Empirical Study on Neural Keyphrase
Generation [134]
Meng, R., Yuan, X., Wang, T., Zhao, S., Trischler, A., & He, D.
NAACL, 2021

Chapter 4 Comprehensive empirical
study.

3. One Size Does Not Fit All: Generating and Evaluating
Variable Number of Keyphrases [231]
Yuan, X., Wang, T., Meng, R., Thaker, K., Brusilovsky, P., He,
D., & Trischler, A.
ACL, 2020.

Chapter 5
Proposed semantic coverage
and orthogonal
regularization.

4. General-to-Specific Transfer Labeling for Domain
Adaptable Keyphrase Generation [133]
Meng, R., Wang, T., Yuan, X., Zhou, Y., & He, D.
Findings of ACL, 2023.

Chapter 6 Low-resource KPG.

5. Unsupervised Deep Keyphrase Generation [174]
Shen, X., Wang, Y., Meng, R., & Shang, J.
AAAI, 2022.

Not
included Unsupervised KPG.

6. Generating Keyphrases for Readers: A Controllable
Keyphrase Generation Framework [90]
Jiang, Y., Meng, R., Huang, Y., Lu, W., & Liu, J.
Journal of the Association for Information Science and
Technology, 2023.

Not
included Structured KGP.

7. Bringing Structure into Summaries: a Faceted
Summarization Dataset for Long Scientific Documents [132]
Meng, R., Thaker, K., Zhang, L., Dong, Y., Yuan, X., Wang, T.,
& He, D.
ACL 2021.

Not
included Structured summarization.

8. Retrieval-Augmented Multilingual Keyphrase Generation
with Retriever-Generator Iterative Training [62]
Gao, Y., Yin, Q., Li, Z., Meng, R., Zhao, T., Yin, B., King, I, &
Lyu, M. R.
Findings of NAACL 2022.

Not
included Cross-lingual KPG.

9. AugTriever: Unsupervised Dense Retrieval by Scalable
Data Augmentation [130]
Meng, R., Liu, Y., Yavuz, S., Agarwal, D., Tu, L., Yu, N., Zhang,
J, Bhat, M., & Zhou, Y.
arXiv:2212.08841.

Not
included

KPG as a data augmentation
for dense retrieval.

10. From Fundamentals to Recent Advances: A Tutorial on
Keyphrasification [131]
Meng, R., Mahata, D., & Boudin, F. , Y.
ECIR Tutorial 2022.

Chapter 3 Tutorial on
Keyphrasification.
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Appendix A INTERVIEW PROTOCOL

Purpose of the Study

We are interested in how humans evaluate the keyphrases that are used to describe the key content

of the text.

Part 0: Introduction

• Start recording. Avoid using identifying names.

• Warm-up and background information of the participant:

– Which department are you from? What year are you in your current program?

– Tell me a bit about your research interests.

Definition: A keyphrase or a keyword is a short sequence of one or multiple words that describes the

key content of a longer text. The common forms and use cases of keyphrases include author-assigned

keywords to articles, user-generated tags to blogs, or online content...I try not to describe more

because that might hijack your answer. . .

Part 1: Keyphrase Use Cases

• From your experience, in what scenarios have you ever used keyphrases (This can be keyphrases

created by you or you use keyphrases created by others)?

• How do you use keyphrases in this scenario?

• To what extent keyphrases are important to you in this scenario, why?

• Is there any other case in which no keyphrase is provided, but you would like to have keyphrase,

why?

• Talking about keypharses in research articles, when you search for papers, do you read the

author-assigned keyphrases?

• When you make sense of a newly found paper, do you read the author-assigned keyphrases?

– If not, how do you quickly get the key content of a newly found paper?
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– If so, do you think keyphrase is useful for understanding the content of the paper? How

useful?

– To what extent title, abstract, keywords help you to get the idea of the paper?

• As an author, do you expect readers to read the keyphrases of your papers? What do you expect

them to get/obtain from your keyphrases?

For the next part, we want to focus on the author-assigned keyphrases in the research articles.

We found three of your most recent published articles (use identifiers, original names of the articles

will be removed). Next, we want to talk about the keyphrases in each article one by one together

with you. We know there is no right or wrong answer when authors assign keyphrases, so what we

are interested in are your considerations and reasons behind each keyphrase.

[For each article of the three ask the following questions:] Ask the participants to generate a set

of keyphrases that best represent the article. [remove the original keyphrases if available]

Part 2-1: Keyphrase Evaluation - Single Keyphrase

For article XXX, keyphrase YYY...

• How did you come up with this keyphrase?

• How important is this keyphrase in representing the article (scale of 1-5)? Why?

• What is the role (or function) of this keyphrase in representing this article?

• (Prompts: e.g., “area,” “method,” “data,” “problem,” “solution,” “goal,” “technology,” “focus,”

“domain,” etc. )

• How do you expect this keyphrase to be used?

Part 2-2: Keyphrase Evaluation - A Set of Keyphrases

• What’s your strategy in composing this set of keyphrases that represent this article?

• If there any relationships between the keyphrases in one set?

• How did you decide the number of keywords to include in this article?

• Does the sequence/order of keyphrases in this article matter to you? If not, why? If so, how do

you decide on the ordering?
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• Is there any other alternative keyphrases you considered but not included in your final set? What

are they, and why?

• Why do you use noun/verbal phrases?

Part 2-3: Keyphrase Evaluation - General Strategy

• Do you have any general strategy in composing a set of keyphrases that represent your article?

[Prompts: What is your preference in keyword selection: general terms or field-specific ones?]

• Is there any part of the article that you typically refer to when you assign keyphrases? [What is

the role of title, abstract, different sections, in your keyphrase assignment process?]

• Does your strategy vary by where you publish?

• Any barriers that you could think about when you assigning keyphrases? (If so, what would

help you to deal with them?) Verb phrase/noun phrase

• Have you ever read any instruction/guidance provided by any publisher on how you should

choose keywords for your articles?

• If not constrained by the publisher, how many keyphrases you would select to represent your

articles?

Part 3-1: Abstract & Keyphrase Evaluation - General Strategy

• Do you have any general strategy in writing the abstract of your articles?

• Is there any part of the article that you typical refer to when you write abstract?

• Does your strategy vary by where you publish?

• Any barriers that you could think about when you write abstract?

• Have you ever read any instruction/guidance how you should write abstract?

• Is there any alignment or relationship between your keyphrase selection strategy and abstract

writing strategy?

Part 3-2: Abstract & Keyphrase evaluation - Priority

Below is a tentative keyphrase evaluation framework. For each criterion listed, please tell us:
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• Do the criterion and the description make sense to you?

• From 1 to 5, please rate how important it is in your keyphrase evaluation and selection practice.

1 means not important at all, and 5 means very important.

• Does the criterion apply to abstract summarization?

Table 29: Keyness/phraseness properties that are discussed in this study.

Category Property Description

Keyness -
keyphrases
as a whole

Coverage Whether the set of keyphrases contains a range of topics that the source
text covers

Low-redundancy Whether the semantic overlap among keyphrases in a set is low

Keyness -
individual
keyphrases

Importance Whether the keyphrase represents the essence of the source text

Relevance Whether the keyphrase is accurate and contains the same information in
the source text

Specificity Whether the keyphrase is specific to the content of the source text, in
comparison to general knowledge

Uniqueness Whether the keyphrase captures unique points of the source text

Phraseness
Conciseness Whether the keyphrase is short and concise rather than long or

descriptive

Synonymity Whether the keyphrases contain multiple synonymous phrase candidates
that correspond to one semantic meaning

Part 4: Debriefing

• If not talking about any technical constraints, what functions or features would help you with

your keyphrase selection?

• Is there anything else that you want to add?

• Thank you so much for your time! If you have any questions or concerns, please feel free to

contact [investigators].

• Stop recording. Who else do you think we should talk to?
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Appendix B COMPLETE EMPIRICAL RESULTS

In this section, we report the full set of our experimental results pertaining to the discussion in

Chapter 4.

In Table 30, we report all the testing scores on present keyphrase generation tasks. For

all experiments, we use F1@5, F1@10, F1@O and F1@M to evaluate a model’s performance.

Additionally, we provide an average score for each of the 4 metrics over all datasets (over each row

in Table 30).

In Table 31, we report all the testing scores on absent keyphrase generation tasks. For all

experiments, we use R@10 and R@50 to evaluate a model’s performance. Additionally, we provide

an average score for each of the 2 metrics over all datasets (over each row in Table 31).

In table 32, we report detailed present testing scores when model trained with One2Seq

paradigm, using different ordering strategies. For all experiments, we use F1@5, F1@10, F1@O

and F1@M to evaluate a model’s performance.

In table 33, we report detailed absent testing scores when the model trained with One2Seq

paradigm, using different ordering strategies. For all experiments, we use R@10 and R@50 to

evaluate a model’s performance.
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Table 30: Detailed performance (F1-score) of present keyphrase prediction on six datasets. Boldface/Underline text indicates the

best/2nd-best performance in corresponding columns.

Average Kp20K Krapivin Inspec NUS SemEval DUC

Model 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M

One2One variants

RNN-O2O-KP20k 30.0 28.7 32.7 15.6 33.1 27.9 35.5 11.4 32.1 26.9 36.0 11.5 29.0 32.4 33.6 23.5 40.2 36.2 43.2 18.1 34.2 35.2 34.8 19.6 11.3 13.9 13.2 9.7

RNN-O2O-KP20k-nocopy 6.2 6.5 6.1 6.6 8.3 8.5 8.4 8.5 5.6 5.8 5.0 5.8 4.9 5.3 5.3 5.4 10.3 10.9 10.4 11.1 8.4 8.4 7.5 9.0 0.0 0.0 0.0 0.0

RNN-O2O-KP20k+MagKP-ALT 31.2 30.6 34.3 13.3 32.4 27.4 34.7 9.0 32.4 28.2 35.6 9.4 32.3 37.8 38.4 21.0 40.2 38.2 43.4 15.1 35.4 35.4 37.4 16.6 14.2 16.4 16.4 8.8

BIGRNN-O2O-KP20k 31.9 31.1 35.3 13.4 35.5 29.5 38.1 9.2 34.3 29.1 38.8 9.4 31.1 36.4 37.2 20.6 42.6 39.3 45.8 15.5 34.5 36.2 37.0 17.4 13.4 16.2 15.0 8.2

BIGRNN-O2O-magkp20k-ALT 31.5 30.7 34.5 12.0 33.2 27.8 35.3 8.1 32.4 28.2 36.5 8.3 32.4 37.1 37.9 19.1 41.3 38.1 44.8 13.6 35.7 35.8 36.0 15.4 14.3 17.3 16.2 7.8

TF-O2O-KP20k 28.3 27.3 31.3 15.2 34.5 28.9 37.4 11.8 29.7 26.5 33.2 11.3 28.1 30.8 32.6 23.7 37.7 36.1 41.3 17.7 33.0 33.0 35.3 19.4 6.9 8.3 7.8 7.1

TF-O2O-KP20k-nocopy 22.0 20.5 23.9 17.4 28.5 24.0 31.2 19.0 24.7 20.9 29.0 16.0 16.6 18.2 18.4 19.0 33.7 30.2 35.3 24.0 25.3 25.9 25.8 22.1 3.4 4.1 3.7 4.2

TF-O2O-KP20k+MagKP-ALT 29.9 29.0 32.5 14.0 33.8 28.2 36.5 10.1 32.8 27.6 35.0 9.7 29.0 33.5 34.0 22.5 39.6 37.9 42.0 15.9 33.7 34.8 35.7 18.3 10.8 12.2 11.9 7.7

One2Seq variants (trained in PRES-ABS)

RNN-O2S-KP20k 29.7 29.9 32.2 22.4 31.2 26.1 31.2 16.4 31.0 27.0 33.5 18.2 32.9 38.8 38.6 32.8 37.4 36.6 39.2 25.6 33.7 35.1 36.2 26.7 11.8 15.9 14.7 14.5

RNN-O2S-KP20k-nocopy 7.1 7.0 7.5 7.0 10.4 10.2 11.1 10.2 8.1 7.9 9.9 7.9 4.5 4.5 4.5 4.5 11.0 10.5 10.9 10.6 8.8 8.6 8.8 8.6 0.1 0.1 0.1 0.1

RNN-O2S+KP20k+MagKP-ALT 28.1 29.1 31.0 22.0 28.3 23.9 28.2 15.3 28.1 25.8 30.7 17.1 32.9 40.3 39.6 33.4 35.2 33.4 36.4 23.8 30.9 33.2 34.2 26.2 13.3 18.3 17.2 16.1

BIGRNN-O2S-KP20k 28.9 29.1 31.7 22.7 30.2 25.7 30.4 16.7 29.9 26.4 32.4 18.2 31.9 37.7 37.9 32.5 37.6 35.7 39.8 27.1 32.6 33.7 35.5 27.3 11.5 15.0 14.1 14.5

BIGRNN-O2S-KP20k+MagKP-ALT 29.1 29.6 31.6 21.3 28.2 23.7 28.2 15.0 29.0 25.7 31.0 16.9 34.8 41.2 40.1 32.2 36.0 34.5 37.8 24.3 32.1 33.8 34.8 24.0 14.3 18.6 17.4 15.3

TF-O2S-KP20k 30.6 29.5 33.0 25.6 34.6 29.0 36.2 21.6 32.6 28.2 36.4 21.9 31.7 36.8 37.1 34.7 40.3 37.4 42.2 32.2 33.9 34.1 34.8 30.9 10.2 11.5 11.1 12.1

TF-O2S-KP20k-nocopy 25.7 24.5 27.2 23.8 32.4 29.0 33.9 28.0 28.5 25.1 31.6 24.2 23.4 24.7 25.2 24.8 37.1 34.6 37.5 33.6 27.4 28.4 29.5 26.9 5.3 5.1 5.2 5.2

TF-O2S-KP20k+MagKP-ALT 32.8 32.2 35.9 25.3 36.8 30.2 37.7 19.3 35.3 30.0 37.6 20.6 32.4 38.9 39.4 36.1 41.8 39.3 44.2 29.7 35.7 36.6 39.0 30.1 14.9 18.5 17.6 16.0

TRANSFORMER+One2Seq (trained in PRES-ABS)

MagKP-LN-ONLY 26.2 26.8 27.7 25.4 28.1 25.2 28.0 21.1 27.9 26.4 28.7 24.1 29.7 34.5 34.3 35.8 33.7 34.2 35.0 32.0 29.0 30.3 30.4 29.4 8.6 10.0 9.4 10.2

MagKP-Nsmall-ONLY 22.4 23.3 23.4 22.7 20.8 20.0 20.9 18.9 25.3 24.3 26.0 23.3 31.0 34.5 34.1 33.7 26.3 27.2 27.1 26.3 24.1 26.3 24.9 26.4 6.9 7.6 7.5 7.8

MagKP-Nlarge-ONLY 22.0 23.3 23.6 22.6 20.5 19.7 21.1 18.5 24.8 23.7 25.6 22.5 32.9 36.7 36.4 35.8 26.1 26.8 28.2 26.4 21.4 25.0 23.2 24.4 6.1 7.8 7.3 7.9

MagKP-ONLY 25.0 26.9 27.3 25.0 25.3 22.4 25.5 18.9 26.1 25.2 27.8 22.1 31.5 39.0 37.4 37.6 29.9 31.1 31.4 28.8 26.5 30.3 29.2 28.7 11.0 13.3 12.6 13.6

MagKP-LN-MX 31.5 30.8 34.4 24.8 35.6 29.3 36.9 19.9 34.3 28.6 37.9 20.5 31.6 38.0 37.8 35.0 41.7 38.7 44.4 30.0 32.7 35.1 34.4 29.0 13.5 15.4 14.8 14.6

MagKP-Nsmall-MX 31.1 30.8 33.6 26.5 35.4 29.2 36.5 21.4 34.2 28.8 37.0 23.0 31.9 38.4 37.3 37.5 40.6 38.7 42.6 32.8 33.2 36.1 35.4 30.7 11.1 13.4 12.5 13.3

MagKP-Nlarge-MX 31.8 31.1 34.7 26.5 36.3 30.0 37.1 21.1 35.0 29.7 37.0 23.3 31.9 37.9 38.3 38.2 42.0 39.7 44.9 31.8 34.3 35.2 37.6 30.7 11.4 13.9 13.4 13.8

MagKP-MX 32.2 32.1 34.9 26.9 36.3 29.8 37.4 20.2 35.1 30.1 37.2 23.0 32.1 39.8 38.5 38.9 41.4 40.0 44.8 31.5 34.9 36.7 36.8 31.4 13.5 16.0 14.8 16.1

MagKP-LN-FT 32.1 31.3 34.7 25.9 36.2 29.8 37.7 21.0 35.1 29.6 36.2 21.5 32.3 38.1 38.3 36.8 41.5 39.5 44.9 31.0 35.5 36.2 36.8 31.0 11.9 14.8 14.1 14.4

MagKP-Nsmall-FT 32.7 31.8 35.7 26.5 36.4 30.1 37.7 20.6 35.8 30.6 39.4 22.5 32.6 38.4 38.5 37.6 43.2 39.7 45.5 31.3 35.1 35.7 37.5 31.1 13.3 16.5 15.4 16.1

MagKP-Nlarge-FT 33.6 32.9 36.6 26.0 37.0 30.3 37.9 19.9 36.7 30.8 39.0 22.0 33.5 39.6 39.8 36.9 44.0 40.2 47.8 30.2 34.4 36.5 35.9 31.0 16.0 19.7 19.2 16.2
MagKP-FT 33.6 32.3 36.4 26.7 37.1 30.5 38.3 20.6 36.3 30.7 38.5 22.8 32.6 38.1 38.5 36.5 44.1 40.2 46.1 32.6 36.7 37.1 39.3 31.9 15.1 17.4 17.4 15.8

122



Table 31: Detailed performance (recall scores) of absent keyphrase prediction on six datasets. Boldface/Underline text indicates the

best/2nd-best performance in corresponding columns.

Average Kp20K Inspec Krapivin NUS SemEval DUC

Model 10 50 M 10 50 M 10 50 M 10 50 M 10 50 M 10 50 M 10 50 M

One2One variants

RNN-O2O-KP20k 4.4 9.0 14.0 6.8 13.2 19.7 7.9 13.9 20.9 4.5 9.3 15.0 4.7 11.3 17.6 2.2 6.1 10.0 0.0 0.0 0.6
RNN-O2O-KP20k-nocopy 1.2 3.5 6.2 2.4 5.8 9.8 1.2 4.0 8.5 1.4 2.3 3.3 1.5 5.6 9.6 0.4 3.5 6.1 0.0 0.0 0.0
RNN-O2O-KP20k+MagKP-ALT 5.2 9.9 15.2 6.6 13.3 19.5 8.4 16.3 23.9 5.7 10.6 18.1 7.0 13.8 18.8 3.2 5.2 10.0 0.0 0.1 0.8

BIGRNN-O2O-KP20k 7.6 14.2 19.7 11.5 20.4 28.0 13.0 22.7 31.7 6.0 12.6 18.9 10.1 18.6 24.9 4.3 10.1 13.7 0.4 0.8 0.8
BIGRNN-O2O-magkp20k-ALT 6.7 12.3 18.2 9.1 16.7 23.5 12.5 20.9 29.1 7.1 12.4 19.7 7.6 15.1 23.5 3.6 8.2 12.8 0.3 0.3 0.4

TF-O2O-KP20k 7.6 14.3 20.9 12.7 22.3 30.9 13.0 24.0 33.3 4.7 10.4 17.6 10.1 18.9 27.3 4.8 9.9 15.7 0.0 0.2 0.2
TF-O2O-KP20k-nocopy 8.9 15.5 22.5 14.0 24.4 33.5 15.2 25.9 39.0 5.1 10.4 14.1 13.2 22.1 30.9 6.1 10.5 17.2 0.0 0.0 0.1
TF-O2O-KP20k+MagKP-ALT 8.3 14.9 21.7 12.5 21.7 30.4 13.2 23.9 34.7 6.2 13.3 21.1 11.4 20.2 27.4 6.1 10.1 16.1 0.1 0.2 0.2

One2Seq variants (trained in PRES-ABS)

RNN-O2S-KP20k 2.2 2.5 2.5 2.7 3.2 3.3 2.8 3.2 3.3 3.5 3.8 3.8 2.6 2.9 3.0 1.6 1.7 1.7 0.0 0.0 0.0
RNN-O2S-KP20k-nocopy 3.1 4.1 4.2 4.9 6.7 6.7 4.6 6.3 6.4 1.7 2.0 2.0 4.5 6.2 6.2 2.6 3.6 3.6 0.0 0.0 0.0
RNN-O2S+KP20k+MagKP-ALT 2.0 2.7 2.8 2.6 3.2 3.3 2.4 3.2 3.4 3.7 5.1 5.1 1.4 2.5 2.6 2.0 2.0 2.1 0.0 0.0 0.0

BIGRNN-O2S-KP20k 1.7 1.8 1.8 1.9 2.0 2.0 2.6 2.6 2.6 2.5 2.6 2.6 2.2 2.3 2.3 1.0 1.0 1.0 0.3 0.3 0.3
BIGRNN-O2S-KP20k+MagKP-ALT 2.7 3.1 3.1 3.2 3.7 3.8 4.6 5.4 5.4 3.7 4.2 4.2 2.9 3.6 3.6 1.8 1.9 1.9 0.0 0.0 0.0

TF-O2S-KP20k 7.2 10.1 10.5 11.1 15.1 15.6 12.2 16.8 17.7 5.0 8.1 8.6 9.0 12.5 12.7 5.9 8.3 8.4 0.0 0.0 0.0
TF-O2S-KP20k-nocopy 8.1 11.2 11.7 13.2 18.1 18.5 14.5 20.0 21.1 5.3 7.4 7.5 10.5 15.1 15.8 5.2 6.9 7.2 0.0 0.0 0.0
TF-O2S-KP20k+MagKP-ALT 9.7 12.4 13.2 13.8 16.5 17.1 15.9 19.3 20.7 10.8 15.9 16.5 12.2 15.3 16.4 5.4 7.4 8.1 0.1 0.3 0.3

TRANSFORMER+One2Seq +MAGKP (trained in PRES-ABS)

MagKP-LN-ONLY 4.1 5.7 6.9 6.0 8.3 9.6 6.4 9.6 12.0 2.9 5.0 6.2 7.2 8.7 10.4 1.9 2.8 3.3 0.0 0.0 0.0
MagKP-Nsmall-ONLY 3.2 4.2 4.9 3.6 4.5 5.2 7.3 8.8 10.4 4.7 6.2 7.5 1.8 3.0 3.8 1.8 2.5 2.6 0.0 0.0 0.0
MagKP-Nlarge-ONLY 3.3 4.3 4.8 3.4 4.6 5.1 8.3 10.4 11.1 4.4 5.7 6.5 2.2 2.9 3.2 1.6 2.1 2.7 0.0 0.0 0.0
MagKP-ONLY 4.5 6.1 7.5 4.5 6.0 7.4 9.6 12.9 15.2 6.8 9.4 11.9 3.5 4.9 6.4 2.5 3.3 3.8 0.1 0.2 0.2

MagKP-LN-MX 8.9 11.7 12.4 13.0 16.8 17.4 15.3 19.4 19.9 6.7 10.6 11.7 12.0 15.6 17.2 6.3 8.1 8.4 0.0 0.0 0.1
MagKP-Nsmall-MX 8.9 11.7 12.8 13.1 16.8 18.0 15.2 18.7 20.7 8.1 12.7 14.5 12.2 15.2 16.2 4.3 6.1 6.9 0.1 0.4 0.4
MagKP-Nlarge-MX 9.1 11.1 12.1 13.3 15.7 16.6 15.7 19.2 21.5 8.9 12.4 13.8 11.5 13.8 14.5 5.2 5.7 6.1 0.0 0.0 0.0
MagKP-MX 9.1 10.9 12.0 12.4 14.4 15.4 15.9 17.5 19.9 10.6 14.3 16.1 10.5 12.5 13.8 5.2 6.2 6.7 0.2 0.3 0.3

MagKP-LN-FT 8.3 11.0 11.5 13.0 16.4 16.9 13.7 16.9 17.9 7.5 11.1 11.5 10.2 14.4 14.6 5.4 7.3 7.8 0.0 0.0 0.0
MagKP-Nsmall-FT 10.0 12.8 14.3 14.3 18.1 19.4 16.9 20.1 23.0 10.6 15.3 16.6 11.9 15.5 17.4 6.0 7.9 9.2 0.2 0.2 0.2
MagKP-Nlarge-FT 10.2 13.6 14.7 15.1 19.1 20.5 17.7 21.4 23.8 10.8 15.4 16.5 11.2 16.8 17.5 6.4 8.8 9.5 0.3 0.3 0.4
MagKP-FT 9.9 13.3 14.1 14.8 19.0 19.9 17.4 21.6 23.3 8.9 14.0 15.3 11.5 16.3 17.0 6.3 8.5 8.8 0.2 0.2 0.2
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Table 32: Detailed present keyphrase prediction performance (F1-score) of One2Seq trained with different orders.

Average Kp20K Krapivin Inspec NUS SemEval DUC

Model 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M 5 10 O M

RNN Greedy

RANDOM 21.6 21.6 21.5 21.6 28.6 28.6 28.5 28.6 27.2 27.2 27.0 27.2 17.7 17.7 17.8 17.7 29.2 29.2 28.7 29.2 21.1 21.1 21.3 21.1 5.4 5.4 5.4 5.4
ALPHA 24.7 24.7 23.9 24.7 29.0 29.0 27.3 29.0 28.4 28.4 26.2 28.4 22.6 22.6 22.4 22.6 31.9 31.8 31.0 31.8 28.2 28.2 28.3 28.2 8.1 8.2 8.2 8.2
ALPHA-REV 24.5 24.5 23.4 24.5 29.4 29.4 27.5 29.4 27.9 28.0 25.5 28.0 22.4 22.3 21.9 22.3 31.1 31.1 30.6 31.1 28.0 27.9 26.4 27.9 8.2 8.2 8.2 8.2
S->L 24.1 24.1 23.9 24.1 31.0 31.0 29.8 31.0 30.2 30.2 29.3 30.2 19.6 19.6 19.4 19.6 32.0 32.0 33.1 32.0 25.8 25.8 26.0 25.8 5.6 5.6 5.6 5.6
L->S 23.6 23.6 23.1 23.6 28.1 28.1 27.0 28.1 27.7 27.7 26.3 27.7 21.7 21.7 21.7 21.7 28.9 28.9 28.7 28.9 25.2 25.2 24.9 25.2 9.8 9.8 9.8 9.8
ORI 24.4 24.4 24.5 24.4 30.5 30.5 30.7 30.5 30.6 30.6 31.0 30.6 22.0 22.0 21.9 22.0 31.8 31.8 31.7 31.8 24.5 24.5 24.6 24.5 7.3 7.3 7.3 7.3
ORI-REV 21.5 21.5 21.3 21.5 28.4 28.4 27.7 28.4 26.9 26.9 26.0 26.9 18.1 18.1 18.1 18.1 27.2 27.2 27.3 27.2 22.5 22.5 22.5 22.5 6.2 6.2 6.2 6.2
PRES-ABS 26.9 26.9 26.7 26.9 31.8 31.8 31.4 31.8 31.3 31.4 31.4 31.4 24.7 24.8 24.8 24.8 35.1 35.2 34.6 35.2 30.3 30.4 30.0 30.4 8.1 8.1 8.1 8.1
ABS-PRES 24.3 24.3 24.2 24.3 29.0 29.0 28.2 29.0 29.1 29.1 29.3 29.1 22.4 22.3 22.3 22.3 31.1 31.1 30.9 31.1 26.7 26.7 26.8 26.7 7.7 7.7 7.7 7.7

TRANSFORMER Greedy

RANDOM 24.2 24.2 24.3 24.2 33.3 33.3 33.1 33.3 28.9 28.9 29.6 28.9 20.6 20.5 20.6 20.5 31.6 31.6 31.8 31.6 24.9 24.9 25.0 24.9 5.9 5.9 5.9 5.9
ALPHA 23.5 23.5 22.4 23.5 32.8 32.9 29.8 32.9 25.9 25.8 24.2 25.8 21.8 21.8 21.8 21.8 30.2 30.2 28.9 30.2 24.9 25.0 24.9 25.0 5.2 5.2 5.2 5.2
ALPHA-REV 23.4 23.4 22.8 23.4 30.9 30.9 29.1 30.9 26.1 26.1 24.4 26.1 22.5 22.5 22.5 22.5 29.8 29.7 29.8 29.7 25.0 25.0 24.9 25.0 6.0 6.0 6.0 6.0
S->L 24.7 24.7 24.3 24.7 33.3 33.3 31.9 33.3 31.0 31.0 30.0 31.0 21.9 21.9 22.0 21.9 30.4 30.4 30.8 30.4 25.2 25.2 24.8 25.2 6.3 6.3 6.3 6.3
L->S 23.5 23.5 23.3 23.5 29.8 29.8 28.9 29.8 26.9 26.9 26.2 26.9 23.2 23.2 23.2 23.2 31.0 30.9 31.5 30.9 23.6 23.6 23.8 23.6 6.3 6.3 6.3 6.3
ORI 24.5 24.5 24.7 24.5 32.8 32.8 33.4 32.8 27.6 27.6 27.7 27.6 22.3 22.3 22.3 22.3 31.6 31.6 31.9 31.6 26.7 26.7 27.1 26.7 5.9 5.9 5.9 5.9
ORI-REV 22.7 22.7 22.5 22.7 30.6 30.6 29.5 30.6 26.4 26.4 26.0 26.4 19.7 19.7 19.8 19.7 30.2 30.2 30.5 30.2 24.1 24.1 23.8 24.1 5.3 5.3 5.3 5.3
PRES-ABS 26.8 26.8 27.5 26.8 34.0 34.0 34.7 34.0 31.8 31.9 33.8 31.9 25.8 25.8 25.7 25.8 34.2 34.3 35.2 34.3 28.0 28.0 28.4 28.0 6.9 7.0 7.0 7.0
ABS-PRES 20.3 20.3 20.3 20.3 31.2 31.3 31.0 31.3 23.8 23.8 24.3 23.8 16.1 16.1 16.1 16.1 25.8 25.8 25.6 25.8 21.2 21.2 21.3 21.2 3.7 3.7 3.7 3.7

RNN beam50

RANDOM 30.3 29.3 33.0 24.4 31.9 25.9 33.9 19.6 32.0 26.8 34.3 20.5 31.9 36.3 37.0 33.2 39.2 35.4 42.7 28.9 34.5 35.9 35.8 29.8 12.4 15.6 14.5 14.3
ALPHA 30.8 30.2 33.2 22.6 32.6 27.1 33.5 17.4 33.0 28.1 34.4 18.9 31.8 37.5 37.5 31.3 39.6 37.4 42.7 26.7 34.5 35.2 35.8 26.9 13.5 15.9 15.4 14.1
ALPHA-REV 30.3 29.7 32.7 23.3 32.6 27.2 33.0 18.5 32.1 27.6 34.0 19.5 30.9 36.1 37.1 31.8 39.8 37.4 41.6 27.9 33.3 33.9 35.6 28.4 13.2 16.0 14.9 13.6
S->L 30.8 29.6 33.3 21.2 32.6 26.6 33.6 17.0 33.4 27.3 34.7 18.3 32.5 36.6 37.5 29.5 38.4 35.3 40.2 24.3 33.9 34.7 37.3 25.4 14.2 17.0 16.7 13.0
L->S 31.4 30.6 33.4 27.7 32.4 27.4 32.8 22.6 33.5 28.2 34.6 23.9 33.3 38.1 38.4 36.1 38.5 37.5 41.5 33.0 35.4 34.4 36.4 33.3 15.1 17.9 17.1 17.2
ORI 31.6 30.4 34.4 23.2 32.4 26.2 34.4 17.2 33.1 28.0 36.5 19.2 34.5 39.8 41.1 34.3 40.0 36.3 42.0 26.8 35.5 35.3 36.5 27.4 14.0 16.8 15.8 14.6
ORI-REV 31.1 29.6 33.1 26.6 32.0 26.9 33.6 22.9 32.3 27.5 34.6 23.5 33.0 35.5 37.1 32.4 39.6 36.4 40.8 32.8 35.2 34.1 35.9 31.8 14.7 17.0 16.7 16.4
PRES-ABS 29.7 29.9 32.2 22.4 31.2 26.1 31.2 16.4 31.0 27.0 33.5 18.2 32.9 38.8 38.6 32.8 37.4 36.6 39.2 25.6 33.7 35.1 36.2 26.7 11.8 15.9 14.7 14.5
ABS-PRES 29.1 29.9 32.1 19.7 31.7 27.0 32.7 13.8 31.0 27.7 34.3 15.5 31.7 37.1 37.6 29.9 38.3 37.5 40.9 22.8 31.5 35.3 34.6 23.5 10.5 14.5 12.8 12.7

TRANSFORMER beam50

RANDOM 30.3 28.8 32.1 25.4 34.4 28.2 35.8 22.8 33.9 29.0 34.9 23.8 31.3 34.9 35.4 32.9 38.9 36.9 41.3 32.4 34.0 33.4 35.5 29.8 9.3 10.5 9.9 10.7
ALPHA 30.4 28.9 31.9 25.2 34.7 29.2 35.2 22.8 33.4 27.6 34.2 21.5 30.9 34.3 35.0 33.2 39.9 37.4 42.1 32.4 33.8 33.9 33.9 30.6 9.9 11.2 10.8 11.1
ALPHA-REV 30.3 29.8 33.2 25.4 34.7 29.0 35.5 21.8 32.7 27.5 36.5 21.7 30.4 36.1 35.6 34.0 40.4 37.6 44.3 31.4 31.6 34.8 34.0 30.6 12.0 13.8 13.1 12.7
S->L 30.4 29.3 32.0 25.6 34.4 28.5 34.9 22.2 33.7 28.5 34.6 23.5 31.1 35.6 35.8 33.1 40.5 37.9 41.6 32.3 32.6 34.0 33.7 31.2 10.1 11.6 11.6 11.4
L->S 30.8 29.9 32.7 25.9 34.7 29.0 35.5 22.6 33.5 29.0 34.7 22.7 31.8 35.6 36.3 33.6 40.7 38.4 42.4 32.5 33.5 34.3 35.3 31.5 10.6 12.9 12.2 12.7
ORI 30.2 29.4 32.4 25.3 34.4 28.5 36.1 21.8 33.6 29.2 34.2 23.2 31.9 36.6 35.9 34.1 38.5 37.6 41.7 31.9 34.3 34.1 36.8 29.9 8.7 10.2 9.6 10.6
ORI-REV 31.0 30.1 33.2 27.1 34.6 28.9 35.5 24.1 33.9 28.7 35.5 24.5 32.7 36.3 37.5 33.8 40.1 38.3 42.7 34.3 32.5 34.8 34.5 32.3 11.9 13.8 13.4 13.5
PRES-ABS 30.6 29.5 33.0 25.6 34.6 29.0 36.2 21.6 32.6 28.2 36.4 21.9 31.7 36.8 37.1 34.7 40.3 37.4 42.2 32.2 33.9 34.1 34.8 30.9 10.2 11.5 11.1 12.1
ABS-PRES 29.7 29.3 32.0 22.3 34.3 28.9 35.4 17.9 32.5 28.0 35.9 18.0 30.7 34.9 34.8 32.5 38.4 38.4 40.9 26.9 33.1 34.5 34.4 27.9 9.4 11.1 10.6 10.3

124



Table 33: Detailed absent keyphrase prediction performance (recall scores) of One2Seq trained with different orders.

Average Kp20K Inspec Krapivin NUS SemEval DUC

Model 10 50 M 10 50 M 10 50 M 10 50 M 10 50 M 10 50 M 10 50 M

RNN Greedy

RANDOM 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.0 0.0 0.0
ALPHA 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.0 0.0 0.0 0.7 0.7 0.7 0.0 0.0 0.0
ALPHA-REV 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.0 0.0 0.0
S->L 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.0 0.0 0.0
L->S 0.2 0.2 0.2 0.2 0.2 0.2 0.6 0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 0.6 0.0 0.0 0.0
ORI 0.3 0.3 0.3 0.2 0.2 0.2 0.6 0.6 0.6 0.1 0.1 0.1 0.2 0.2 0.2 0.5 0.5 0.5 0.0 0.0 0.0
ORI-REV 0.1 0.1 0.1 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.3 0.0 0.0 0.0
PRES-ABS 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.5 0.5 0.3 0.3 0.3 0.2 0.2 0.2 0.3 0.3 0.3 0.0 0.0 0.0
ABS-PRES 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.3 0.0 0.0 0.0 0.4 0.4 0.4 0.0 0.0 0.0

TRANSFORMER Greedy

RANDOM 1.9 1.9 1.9 2.8 2.8 2.8 2.4 2.4 2.4 0.8 0.8 0.8 3.1 3.1 3.1 2.1 2.1 2.1 0.0 0.0 0.0
ALPHA 1.6 1.6 1.6 3.0 3.0 3.0 3.6 3.6 3.6 0.8 0.8 0.8 0.9 0.9 0.9 1.1 1.1 1.1 0.0 0.0 0.0
ALPHA-REV 1.6 1.6 1.6 2.5 2.5 2.5 3.9 3.9 3.9 1.1 1.1 1.1 1.4 1.4 1.4 0.7 0.7 0.7 0.0 0.0 0.0
S->L 1.5 1.5 1.5 2.8 2.8 2.8 2.5 2.5 2.5 0.4 0.4 0.4 1.8 1.8 1.8 1.3 1.3 1.3 0.0 0.0 0.0
L->S 1.3 1.3 1.3 2.4 2.4 2.4 2.4 2.4 2.4 0.6 0.6 0.6 1.6 1.6 1.6 0.8 0.8 0.8 0.0 0.0 0.0
ORI 1.5 1.5 1.5 2.5 2.5 2.5 3.3 3.3 3.3 1.1 1.1 1.1 1.2 1.2 1.2 0.9 0.9 0.9 0.1 0.1 0.1
ORI-REV 1.1 1.1 1.1 2.5 2.5 2.5 2.2 2.2 2.2 0.5 0.5 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.0 0.0 0.0
PRES-ABS 1.3 1.3 1.3 2.3 2.3 2.3 2.7 2.7 2.7 0.8 0.8 0.8 1.0 1.0 1.0 1.2 1.2 1.2 0.0 0.0 0.0
ABS-PRES 1.8 1.8 1.8 2.8 2.8 2.8 4.0 4.0 4.0 0.7 0.7 0.7 2.0 2.0 2.0 1.6 1.6 1.6 0.0 0.0 0.0

RNN beam50

RANDOM 1.9 2.1 2.1 2.4 2.7 2.7 2.4 2.7 2.7 3.3 3.6 3.6 1.5 1.9 1.9 1.5 1.6 1.6 0.0 0.0 0.0
ALPHA 2.1 2.4 2.4 2.5 2.7 2.7 2.9 3.1 3.1 3.4 3.8 3.8 2.4 2.6 2.6 1.8 2.0 2.0 0.0 0.0 0.0
ALPHA-REV 1.4 1.5 1.5 2.0 2.1 2.1 2.1 2.2 2.2 1.7 1.7 1.7 2.1 2.2 2.2 0.6 0.8 0.8 0.0 0.0 0.0
S->L 1.7 1.9 1.9 2.1 2.2 2.2 2.1 2.2 2.2 2.8 3.6 3.6 1.3 1.4 1.4 1.9 2.0 2.0 0.0 0.0 0.2
L->S 1.4 1.4 1.4 1.8 1.8 1.8 2.1 2.1 2.1 2.5 2.5 2.5 1.1 1.1 1.1 0.8 0.8 0.8 0.0 0.0 0.0
ORI 1.9 2.3 2.3 2.3 2.7 2.7 2.7 3.2 3.2 3.0 3.6 3.6 2.3 2.8 2.8 1.2 1.9 1.9 0.0 0.0 0.0
ORI-REV 1.5 1.6 1.6 1.9 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 1.3 1.4 1.4 1.5 1.6 1.6 0.0 0.0 0.0
PRES-ABS 2.2 2.5 2.5 2.7 3.2 3.3 2.8 3.2 3.3 3.5 3.8 3.8 2.6 2.9 3.0 1.6 1.7 1.7 0.0 0.0 0.0
ABS-PRES 1.1 1.1 1.1 1.2 1.3 1.3 1.5 1.5 1.5 1.6 1.6 1.6 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0

TRANSFORMER beam50

RANDOM 6.7 8.0 8.2 10.2 12.5 12.8 11.5 13.1 13.3 3.8 5.7 5.8 10.0 11.2 11.5 4.9 5.7 6.0 0.1 0.1 0.1
ALPHA 7.3 9.6 9.7 11.8 14.8 14.9 12.9 17.2 17.3 5.0 7.2 7.5 9.1 11.5 11.5 5.2 6.7 6.7 0.0 0.1 0.1
ALPHA-REV 6.5 9.7 9.8 10.3 14.3 14.6 10.2 15.4 15.6 3.8 5.7 5.9 8.9 15.6 15.8 5.7 7.2 7.2 0.0 0.0 0.0
S->L 6.5 8.5 8.6 10.3 13.1 13.2 11.0 14.2 14.3 3.7 6.0 6.0 9.0 11.0 11.3 5.0 6.6 6.9 0.0 0.0 0.0
L->S 6.8 9.5 9.8 11.1 15.3 15.7 11.6 15.1 15.6 4.2 6.7 7.4 9.2 12.7 12.8 4.9 7.1 7.2 0.0 0.0 0.0
ORI 7.0 10.0 10.4 11.2 15.3 15.7 12.3 16.9 17.6 4.1 6.4 6.7 9.9 14.4 14.9 4.5 7.0 7.3 0.1 0.1 0.1
ORI-REV 7.2 10.4 10.8 11.3 16.0 16.6 12.2 16.9 17.3 4.6 7.2 7.9 9.8 13.7 14.3 5.3 8.2 8.3 0.0 0.3 0.3
PRES-ABS 7.2 10.1 10.5 11.1 15.1 15.6 12.2 16.8 17.7 5.0 8.1 8.6 9.0 12.5 12.7 5.9 8.3 8.4 0.0 0.0 0.0
ABS-PRES 6.2 7.0 7.1 10.2 11.4 11.4 10.6 11.3 11.3 4.2 5.7 5.9 7.5 7.8 7.8 4.9 6.0 6.0 0.0 0.0 0.0

125



BIBLIOGRAPHY

[1] M. Allamanis, H. Peng, and C. Sutton. A Convolutional Attention Network for Extreme
Summarization of Source Code. ArXiv e-prints, February 2016.

[2] Rabah Alzaidy, Cornelia Caragea, and C Lee Giles. Bi-lstm-crf sequence labeling for
keyphrase extraction from scholarly documents. In The world wide web conference, pages
2551–2557, 2019.

[3] Shima Asaadi, Saif Mohammad, and Svetlana Kiritchenko. Big bird: A large, fine-grained,
bigram relatedness dataset for examining semantic composition. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 505–516, 2019.

[4] American Medical Informatics Association. Amia 2023 annual symposium call for participa-
tion. https://amia.org/education-events/amia-2023-annual-symposium/

call-participation.

[5] Prafulla Bafna, Dhanya Pramod, Shailaja Shrwaikar, and Atiya Hassan. Semantic key
phrase-based model for document management. Benchmarking: An International Journal,
2019.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[7] Hareesh Bahuleyan and Layla El Asri. Diverse keyphrase generation with neural unlike-
lihood training. In Proceedings of the 28th International Conference on Computational
Linguistics, pages 5271–5287, 2020.

[8] Jie Bao, Prithwish Basu, Mike Dean, Craig Partridge, Ananthram Swami, Will Leland, and
James A Hendler. Towards a theory of semantic communication. In 2011 IEEE Network
Science Workshop, pages 110–117. IEEE, 2011.

[9] Christos Baziotis, Barry Haddow, and Alexandra Birch. Language model prior for low-
resource neural machine translation. arXiv preprint arXiv:2004.14928, 2020.
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