
ROBUST ITERATIVE

PRUNED-TREE DETECTION AND

LDPCC DECODING

by

Xinde Hu

BS, Zhejiang University, 2002

Submitted to the Graduate Faculty of

the The School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2004



UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This thesis was presented

by

Xinde Hu

It was defended on

April 9th 2004

and approved by

Heung-no Lee, Assistant Professor, Department of Electrical Engineering

L. F. Chaparro, Associate Professor, Department of Electrical Engineering

M. McCloud, Assistant Professor, Department of Electrical Engineering

Thesis Advisor: Heung-no Lee, Assistant Professor, Department of

Electrical Engineering

ii



ROBUST ITERATIVE
PRUNED-TREE DETECTION AND

LDPCC DECODING

Xinde Hu, M.S.

University of Pittsburgh, 2004

A novel sub-optimal low-complexity equalization and turbo-iterative de-

coding scheme based on running the sum-product algorithm on an aggres-

sively pruned tree is proposed in this paper for use in a multiple transmit and

receive antenna (MIMO) system operating over severe frequency-selective

fading inter-symbol interference (ISI) channels. The receiver deals with the

issue of signal processing complexity which with a full-search equalization

grows with power-law, MNt L, where M is the M -ary channel symbol, and

Nt is the the number of transmit antennas, and L is the number of de-

lay channel-taps. The sum-product algorithm is applied to the pruned tree

which is constructed by two main operations, a sphere list detection and

a threshold-based tree search algorithms. At a particular node of the tree,

only a number of most probable branches in the tree of hypothetical symbols

are expanded and included in the list of candidates; at a particular tree-

section, all but some of most probable candidates are pruned. This pruned

tree takes the soft input and generates the soft output, and is utilized in

the turbo-iterative manner with the decoder of the low-density parity check
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code. We obtained the approximated error probability using the pair-wise

error calculation averaged over the fading ensemble, and use it to bound our

simulation results. Our current simulation results are obtained for MIMO

systems up to four transmit and four receive antennas, using 4-QAM sym-

bols. They indicate the proposed receiver performs extremely well. The

proposed transceiver system is ideal for a system of higher spectral efficiency

with even larger signal constellations. Adopting Hassbi-Vikalo’s framework,

we provide a method which enables a quick evaluation of the signal process-

ing complexity required in the proposed algorithm at a given set of system

parameters, M , Nt, Nr.

Keywords: MAP, turbo-iteration, reduced complexity, joint decoding and

equalization, MIMO, LDPC codes, wireless communication.
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1.0 INTRODUCTION

Since the Telatar’s [7] and Foschini-Gans’s [16] landmark works on the

capacity of the multi-input and multi-output fading channels, the design

of wireless communication system utilizing multiple antennas at both sides,

the transmitter and the receiver, became very popular, and a large body of

publications with regard to the enabling transceiver that attempts to attain

the capacity closely became available in the literature today. As indicated

in a very recent paper by Zheng-Tse [1], this additional resource, especially

with the availability of the number of transmit antennas, can in fact be

utilized in either directions to achieving the spectral efficiency benefit or the

diversity-benefit.

The transmitter-receiver pair discussed in this paper, uses a turbo-iterative

equalization and decoding scheme, with the powerful low-density parity-check

block codes. The transceiver can be used to attain any point in the capacity-

diversity trade-off region of the multiple input multiple output (MIMO)

system with a relatively simple change of system parameters. Some ma-

jor features of this enabling transceiver include the capability of handling

the growing signal processing complexity while maintaining the performance

as close as possible to the theoretical bounds, and the capability of dealing

with the frequency-selective channel (due to the multi-path delay-dispersion)
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which leads to severe inter-symbol interference. In particular, we focus on the

problem of reducing the signal processing complexity consumed at the stage

of equalization which generates soft-input and soft-output (SISO) messages.

This SISO equalization is combined in turbo-iterative fashion with the graph

decoders for the low-density parity-check code.

The delay dispersion is modeled as a finite impulse response (FIR) chan-

nel with L Rayleigh fading taps. This channel is depicted well in the right

of Fig 1. There are Nt transmit and Nr receive MIMO antenna systems for

delay dispersive channel environment.

In [17], a low complexity decoding and equalization scheme based on a

novel signal separation and per-antenna equalization receiver utilizing the

turbo-iteration is proposed. We noticed however, this per-antenna scheme is

still incurring a large amount of computations and comparisons. The com-

plexity measured in terms of a number of states in the ISI-trellis is increasing

exponentially fast as the memory of the channel increases. That is, the num-

ber of states in the ISI trellis is MNt×(L−1), where M is the size of the signal

constellation and the number of trellis-edges is MNt×L. For the proposed

low-complexity per-antenna equalization, the number of per-antenna trellis

states is only ML−1. However, the complexity in signal separation part is

still O(MNt×(L−1)) – the same as the complexity of the full complexity vector

maximum a posteriori (MAP) algorithm [17].

In this paper, we propose a novel reduced complexity tree-search algo-

rithm for MIMO ISI fading channels. Full complexity search algorithms,

such as Viterbi-algorithms and BCJR algorithm (MAP algorithm), makes

a sequence based decision on a trellis. The common factor of these full-

complexity receivers are such that all the possible sequences contribute in
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making the final decision of the best possible transmitted sequence. The

reduction in signal processing complexity in our case is achieved by main-

taining only a small subset of the sequences and then using them for the

calculation of the soft decision metric in the sum-product algorithm applied

at the equalization step.

The proposed tree-search algorithm utilizes the sphere list detection [5][6]

at the stage of expanding a path of a growing tree into the next level of depth.

The tree is in general MNt-ary such that there are MNt candidates expanded

from a single survivor path. Assuming the length of sequence is Ns. The tree

construction starts from the first time-epoch, k = 1, to the maximum depth

of the tree, i.e., k = Ns. At each depth of the tree, all survivor paths get

expanded into the next level, forming a list of candidates for the next level.

Among the list of candidates, a subset of them are selected using a simple

threshold detection rule and made available as survivors to the next time-

epochs. The rule insures that all but some of the most posterior-probable

paths are pruned. The posterior probability is calculated from the product

of the likelihood function and the priors. The priors are coming from the

decoder. It should be noticed that this tree-search algorithm moves only

in the forward direction, and thus it is different from the famous sequential

search algorithm like the Fano-algorithm [2].

The proposed tree-search algorithm is rather very similar to the T -algorithm

[4]. One of the novel feature of the proposed algorithm is in the use of simple

compensation rules in the steps of the sum-product algorithm, and provides

a sense of fairness among different survivor paths having different lengths

in the pruned tree. The compensation rules are used when generating the

soft-output messages, which are calculated from the probability of the paths.
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The rest of the paper is organized as follows. Baseband equivalent system

descriptions will be given in Chapter 2. In Chapter 3, we will discuss the

pair-wise error probability for MIMO fading ISI channels. In Chapter 4, the

overall robust equalization-decoding system is introduced. The analysis on

pair-wise error probability based on the LDPC code is also given in this sec-

tion. In Chapter 5, the reduced complexity equalizer using the T-algorithm

and the compensation rule is presented. The sphere list detection is dis-

cussed in Chapter 6. In Chapter 7, the simulation results for both uncoded

and coded transmission are showed and discussed. In Chapter 8, the analysis

on system computational complexity is presented. Chapter 9 contains the

conclusion.
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2.0 BASEBAND EQUIVALENT SYSTEMS

The description on the multi-input multi-output (MIMO) fading inter-

symbol interference (ISI) channels will be discussed in this section.

As shown in Fig.1, we use the tapped delay line model to describe the

MIMO fading ISI channels where each channel tap is matrix-valued instead

of scalar. From one particular transmitter to a particular receiver antenna,

the channel is delay-dispersive and thus frequency-selective. This can be

modelled as a tapped delay line filter with L channel taps, i.e, L− 1 channel

memories. The overall Nt transmit and Nr receive MIMO ISI channel can

then be modelled as the vector-matrix tapped delay line model as shown in

the right of Fig. 1.

The l-th delay taps at the kth time-epoch, hk,l, l = 0, 1..., L − 1, is an

[Nr × Nt] matrix. The Nt channel symbols transmitted can be arranged in

the [Nt × 1] vector xk. The Nr receive symbols can be grouped into the

[Nr × 1] vector rk.

The multi-input/multi-output relationship can be written as:

rk =
L−1∑
l=0

hk,lxk−l + nk

= yk + nk, (2.1)
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Figure 1: The left figure shows the MIMO RF and antenna system. The

right indicates the baseband-equivalent vector-matrix finite impulse response

channel model for MIMO system.

where we have defined the following vector variables

rk :=


r
(1)
k

...

r
(Nr)
k

 , xk :=


x

(1)
k

...

x
(Nt)
k

 ,nk :=


n

(1)
k

...

n
(Nr)
k

 ,

hk,l :=


h

(1,1)
k,l · · · h

(1,Nt)
k,l

...
. . .

...

h
(Nr,1)
k,l · · · h

(Nr,Nt)
k,l

 . (2.2)

In the second line in (2.1), yk is defined to be the clean channel output.

In (2.2), x
(j)
k , j = 1, 2, ..., Nt, is the channel symbol at the jth transmitter

antenna. The noise n
(i)
k , i = 1, 2, ..., Nr, is a circularly symmetric complex

Gaussian (CSCG) variable with zero mean and variance of No. In addition,

it is independent and identically distributed for each j and k. h
(i,j)
k,l is the

CSCG fading tap with zero mean and a certain variance which can be set
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according to multipath power delay profile. The channel h
(i,j)
k,l is independent

and identically distributed for each i and j. Moreover, on the same antenna,

the fading coefficients on different fading taps are independent as well. For

one particular fading tab, at different time-epoch, the coefficient is time-

varying with a maximum Doppler fading rate of fdm. We use the uniform

multipath power delay profile and choose the average power of a tap to be

1/L for all i and j. Perfect estimation of h is assumed in this model, but it

is known only to the receiver part.

We can write the input/output relationship for a block of size Ns by

r :=


r1

r2

...

rNs

 =



h1,0 0 0 0 · · ·

h2,1 h2,0 0 0 · · ·

0 0
. . . . . .

...

hL,L−1 · · · hL,0 0 · · ·

0 0
. . . . . .

...

0 · · · hNs,L−1 · · · hNs,0


︸ ︷︷ ︸

:=h


x1

...

xNs


︸ ︷︷ ︸

:=x

+


n1

...

nNs


︸ ︷︷ ︸

:=n

. (2.3)

In overall, the block input/output relationship can be written as

r = hx + n, (2.4)
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where h is the overall channel matrix of size [NsNt×NsNr]. This description

is convenient in describing the algorithm, and finding the theoretical error

probability bound for the channels with memory, which will be given in the

next section.
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3.0 PAIRWISE ERROR PROBABILITY

Under the assumption of perfect channel estimation of h, the probability

of transmitting codeword x and deciding in favor of another codeword x̃ is

approximated using the Chernoff upperbound by

P (x → x̃ | h) ≤ exp(−d2(x, x̃)Es/4N0), (3.1)

where d(x, x̃) is the overall Euclidean distance between y = h x and ỹ =

h x̃. The actual noise is n, and ñ is defined as ñ = r̃− ỹ. Fig. 2 shows this

situation in received signal space.

Fig. 2 shows the Euclidean distance d
(i)
k (x, x̃) = |n(i)

k − ñ
(i)
k |, on the i-th

receiver antenna at a particular time-epoch k. we can express the overall

distance d(x, x̃) by accumulating d
(i)
k (x, x̃) over all k and i, such as

d2(x, x̃) :=
Ns∑
k=1

Nr∑
i=1

d
(i)
k (x, x̃)2

=
Ns∑
k=1

Nr∑
i=1

|n(i)
k − ñ

(i)
k |

2, (3.2)

From (2.3), for a particular received signal r
(i)
k , we can write the channel

9



Correct signal

yk(i)=hk(i) x

nk(i)
( )i
kn

nk(i)-
(i)
kn =hk(i) x

( )i
ky

Received Signal: rk(i)

Figure 2: The Different Signal Vectors in the Received Signal Space

input-output relationship as

r
(i)
k =

(
0 · · · h

(i,1)
k,L−1 · · · h

(i,Nt)
k,L−1 · · · h

(i,1)
k,0 · · · h

(i,Nt)
k,0 0 · · · 0

)
︸ ︷︷ ︸

:=h(i)

k

·x+n
(i)
k ,

(3.4)

This representation will enable us to analyze the diversity benefit of fre-

quency selective channel in MIMO setting more clearly. Similar equation can

be obtained for x̃. Therefore, the distance in (3.2) can be rewritten as:

10



d2(x, x̃) =
Ns∑
k=1

Nr∑
i=1

|(r(i)
k − h

(i)
k x)− (r(i)

k − h
(i)
k x̃)|2

=
Ns∑
k=1

Nr∑
i=1

|h(i)
k (x− x̃)|2

=
Ns∑
k=1

Nr∑
i=1

h
(i)
k (x− x̃) (x− x̃)∗ (h(i)

k )∗.

(3.5)

where (·)∗ denotes the Hermitian (transpose conjugate) of a matrix or a

vector.

As can be seen from (3.4), since only the non-zero part of vector hk,l need

to be considered, the part in x needed at the particular k is (x
(1)
k−L+1...x

(Nt)
k−L+1...x

(Nt)
k ) =:

x̄, which is denoted as x̄. Thus, (3.5) can be rewritten as:

d2(x, x̃) =
Ns∑
k=1

Nr∑
i=1

h̄
(i)
k (x̄− ¯̃x) (x̄− ¯̃x)∗ h̄

(i)∗
k (3.6)

=
Ns∑
k=1

Nr∑
i=1

h̄
(i)
k P

(i)
k h̄

(i)∗
k (3.7)

(3.8)

where h̄
(i)
k is the non-zero part of h

(i)
k . A [NtL×NtL] matrix P

(i)
k is defined

as P
(i)
k := (x̄− ¯̃x) · (x̄− ¯̃x)∗. Since P

(i)∗
k = P

(i)
k , P

(i)
k is Hermitian symmetric

, there exists a unitary matrix V
(i)
k and a real diagonal matrix Q

(i)
k such that

V
(i)
k Q

(i)
k V

(i)∗
k = P

(i)
k . For the purpose of continuing discussion, it is beneficial

to review some properties of Q
(i)
k and V

(i)
k

11



• V
(i)
k V

(i)∗
k = I, where I is the identity matrix. The rows of V

(i)
k are a

complete basis of an NtL dimensional space.

• The element of the diagonal matrix Q
(i)
k is the eigenvalue of P

(i)
k , which is

denoted as λ
(i)
k which are all non-negative real. Each P

(i)
k has maximum

one eigenvalue.

• The matrix P
(i)
k and it’s eigenvalues are different with respect to different

k and i.

Let an [NtL × 1] vector ḡ
(i)
k denote h̄

(i)
k V

(i)∗
k . Since there are only one

non-zero value in the vector, Then we can write:

d2(x, x̃) =
Ns∑
k=1

Nr∑
i=1

λ
(i)
k |ḡ

(i)(j)
k |2. (3.9)

Thus, substituting (3.9) into (3.1), we can obtain

P (x → x̃|h) ≤
Ns∏
k=1

Nr∏
i=1

exp

(
− Es

4N0

λ
(i)
k |ḡ

(i)(j)
k |2

)
. (3.10)

For the multi-input multi-output ISI fading channel, this equation can

be used to approximate the error probability for any given channel matrix

h. It should be noticed that (3.10) also incorporates the delay diversity taps

so that frequency selectivity diversity can be analyzed as well.

Under the assumption of channel matrix, the elements of h̄
(i)
k are the

circularly symmetric complex Gaussian (CSCG) variables and independent

with each other. Since h̄
(i)
k V

(i)∗
k is an unitary transformation of h̄

(i)
k , the

elements of ḡ
(i)
k are also CSCG random variables and mutually independent.

Thus, each |ḡ(i)(j)
k |2 is χ2-distributed random variable with two degrees of

12



freedom. Given the distribution of ḡ
(i)
k , the ensemble average over ḡ

(i)
k can

be obtained as

Pe := P (x → x̃) ≤
Ns∏
k=1

Nr∏
i=1

[
1

1 + Es

4N0
λ

(i)
k

]
. (3.11)

Remark: We may assume that the eigenvalues of different P matrix are

independent with each other. Thus we can write the probability as a product

of each individual probabilities.

Comparing (3.11) with the pairwise error probability for MIMO non-ISI

fading channels from [8], we can notice that the diversity order is improved

by a factor of L when the channel has L delay taps, in addition to the space

diversity from Nt transmit antennas and Nr receive antennas. In addition,

this result can be applied to either fast fading channel or slow fading channel.

However, since fast fading channel provides more diversity benefit than slow

fading channel, we present our analysis for fast fading and obtain the system

diversity benefit, which then serves as a bound for any practical scheme can

achieve. Under the fast fading assumption, the fading coefficients at differ-

ent time-epochs are assumed to be mutually independent. The probability

averaged over Ns and Nr is,

Pe ≤
(

1

1+ Es
4N0

λ

)NsNr

. (3.12)

Recall that the λj are the eigenvalues of any matrix P , whose elements

are the distance between the x̄ and ¯̃x.

As can be seen from 3.12, the maximum diversity order this system could

achieve is dependent upon the product of the number of transmit antenna,

13



the number of receiver antenna, the number of channel fading taps and the

number of time-epochs. When coding is used in the system, any P matrix is

formed by the difference matrix between two valid codewords. Therefore, the

minimum distance between codewords becomes crucial to the error probabil-

ity. For given system settings of Nt, Nr, and certain L, a larger distance can

lead to an increase in the rank of P matrix, which will increase the diversity

benefit of the system and further decrease the error probability. Section IV

will continue on the analysis by employing LDPC coding and decoding.

14



4.0 ROBUST EQUALIZATION–DECODING SYSTEM

The system design on the equalizer and the LDPCC decoder will be

discussed in this section.

For the frequency selective channel, an equalizer will be employed to deal

with inter-symbol interference. While in the encoding-decoding part, our

design is based on Low Density Parity Check Codes in order to achieve near

capacity performance. In addition, the turbo iterations between the equalizer

and the decoder will exchange the prior information for each signal bit, as

shown in Fig. 3.

M od
De-
M od

M IM O ISI Fading

Bit to
Sym bol
M apper

Graph
Decoder

Sum-Prod.
On

A Partial
Tree

Turbo-iteration

Graph
Encoder

Figure 3: Proposed transceiver for MIMO fading ISI channels
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The Gallager’s LPDC code is a linear block code defined by a parity-

check matrix F where there are n columns, j ones in each column, k ones

in each row. The coding rate of the LDPC code Rt satisfies Rt ≤ 1 − j/k.

This parity-check matrix is generated randomly under the weight constraint.

Similar to Turbo code, the decoding process of the LDPC code uses iterations

to exchange soft information by applying the message passing algorithm [9].

At the transmitter, after the information bits are encoded by LDPC

encoder, the modulator will map the coded bit stream into different constel-

lation (2BPSK, 4PSK, 16PSK etc.). Then, the transmitter will execute a

series to parallel transformation on the symbol stream and deliver them to

Nt different transmitter antennas and send the symbols simultaneously. As-

suming no decoding error occurs, a throughput of RMNt is achieved, where

2M is the modulation size (for example M = 1 for BPSK). At the receiver,

assuming the channel estimation on h is perfect but only known to the re-

ceiver, the equalizer takes received signal vector rk as input. The super

iterations (distinct to the inner iteration process inside the LDPC decoder)

started at the equalizer. The equalization process begins firstly without prior

information and the soft output will be generated then as the extrinsic Log

likelihood ratios (LLRs): LLRek
of each of the LDPC coded bit. The LDPC

decoder takes the LLRs as input. It computes as output the a posterior LLRs

(LLRdk
) of the coded bits and send them to the equalizer to extract the prior

information (LLRpk
).

LLRpk
= LLRdk

− LLRek
(4.1)

k = 1...n

16



Decoder Output LLR

The Equalizer

LDPC 
Decoder

inner iteration

Extrinsic Information for decoder
∑

∑
Extrinsic Information for Equalizer

Hard Decision

Received Signal rk

Equalizer Output LLR

Figure 4: The receiver structure, which employs an equalizer and a soft

LDPC decoder, for multiple-antenna system under ISI fading channel.
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Similarly, in the second super iteration, updated LLRek
is delivered to

the LDPC decoder as the new prior information for the LDPC decoder. After

certain number of iterations, the hard decisions will be made at the output

of the decoder. Fig. 4 shows the receiver structure. The detailed design of

LDPC encoder and decoder can be found in [9], [11], and [12]. The following

sections will focus on the proposed equalizer.
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5.0 REDUCED COMPLEXITY EQUALIZER

In this section, we will introduce the novel reduced complexity equalizer

design. First of all, the soft-input soft-output (SISO) equalization is based

on a pruned tree. The pruning decision is made based on a threshold test

on the product of the likelihood and the priors for coded system. Priors will

become available when a soft-input soft-output decoder is used at the receiver

in a turbo-iterative manner with the proposed SISO equalizer. We use the

example of binary modulation and a single transmit and receive antenna for

simplicity.

5.1 THE SUM-PRODUCT SOFT-INPUT/SOFT-OUTPUT

EQUALIZER

From (2.4), the posteriori probability can be written as

Pr{x|r} = P (x, r)P (r) (5.1)

∝ P (r|x)Pr(x) (5.2)

∝
Ns∏
k=1

P (rk|xk, · · · , xk−L+1)Pr(xk) (5.3)
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where (5.1) is due to conditional probability, the second one the Bayes’ The-

orem, and the third line is due to the assumption that the noise is additive

Gaussian white noise. This is the product part of the algorithm.

The likelihoods at each time-epoch k can be calculated with the following

way:

P (rk|xk, · · · , xk−L+1) ∝ exp(− 1

No

||rk − yk||2) (5.4)

=: L(yk), (5.5)

where in (5.5) we define the likelihood metric L(yk) to be the quantity on

the left-hand side of (5.4).

The priors Pr(xk) are initially set to equally likely for all possible xk.

After the first super-iteration with the graph decoder, the priors on channel-

symbol can be obtained from the extrinsic part of the posteriors which are

the outputs of the graph decoder. Thus, the posteriors on the sequences

Pr{x|r} can be calculated using the likelihoods and priors at each k. Then,

the posteriors on a particular time-epoch, the individual posterior on the

input-symbol vector {xk}, can be obtained by using the summation part of

this algorithm which will be described next with an example.

It might be more practical to use the log version of the algorithm which

can be obtained from taking the log on both sides of (5.3). Then, the equation

of the proportionality becomes

log(Pr{x|r}) ∝
Ns∑
k=1

[log(L(yk)) + log(Pr(xk))]. (5.6)

We note that the log likelihood part is simply the Euclidean distance

between the received sequence r and the clean channel output y for a par-

ticular candidate x. That is, the Euclidean distance d(y, r) of a particular
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candidate is thus written as

d(r, y) :=
Ns∑
k=1

d(rk, yk). (5.7)

Thus, one is now able to calculate the posterior for a particular clean

channel output y which is dependent upon the transmitted input sequence

x.

5.2 SUMMATION PART

We now use an example depicted in Fig. 5 for the illustration of the

summation part of the sum-product algorithm. Note that in this example,

we use a binary tree for simplicity. Assume Ns = 3 and the full-tree is

obtained. There are eight possible sequences, indexed from q = 0, 1, 2, . . . , 7.

For full-complexity tree search, the posteriors P (x|r) for all eight candidates

are calculated. Then the posterior on a particular input event at the epoch

k can be obtained by summing all those posteriors having that particular

input symbol at k. That is, using our example,

Pr{x2 = +1|r} =
∑

q=0,1,4,5

Pr{x(q)|r}, (5.8)

Pr{x2 = −1|r} =
∑

q=2,3,6,7

Pr{x(q)|r}. (5.9)

BCJR algorithm [3] effectively performs the same operation, but on a

trellis–instead on a tree. For a full-complexity search, BCJR algorithm is

more efficient than the use of the algorithm on a tree, without losing any

optimality. For reduced complexity scheme on MIMO settings, however,

the use of trellis-approach incurs insurmountable amount of computational
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complexity simply due to large numbers of trellis states and edges. For

example, with a binary modulation M = 4, Nt = 4 and L = 3, the number

of trellis state is 48 = 65536 which is clearly un-manageable.

5.3 PRUNING BY THRESHOLD TEST AND APPLYING

THE SUM-PRODUCT ON SURVIVED PATHS

Again referring to Fig. 5, one may notice that the summation algorithm

can be applied also to the pruned tree. However, there is one problem dealing

with the comparison of the paths having different lengths: Some are pruned

earlier than others; then how do we fairly compare them. An earlier pruned

path unfairly has an advantage of smaller Euclidean distance simply because

it is short in length.

r1 r2 r3

+1

-1

0

1

2

3

4

5

6

7

Pruned

Figure 5: Example of a pruned tree

One solution is to truncating all the sequences in comparison at a same
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length. This can be easily achieved by making the threshold based pruning

decision while accumulating the Euclidean distances of all the survived paths,

starting from the beginning of the tree. This option has a disadvantage since

it is not making use of the information available in longer-lived survivors.

The solution can be applying a compensation rule for the difference in path

lengths, which will be described in the next sub-section.

We now describe the simpler solution which is applying the threshold-

based pruning-rule while expanding the tree in a forward direction. Referring

again to Fig. 5, we note at k = 2, the first path were pruned. From the k = 1

epoch to k = 2, a survivor path gets expanded into MNt candidates. Thus,

the total candidate in our smaller example is 4, 2 survivors at k = 1 and 2

branches out of each survivor. First, we calculate the accumulated metric

up to the current exploration depth k = ko (ko = 2 in this example) for each

of the candidates using (5.3)–
∏ko

k=1 L(yk)Pr(xk)–or use the log version of it,

(5.6). Then, the rejection rule is as follows:

1. Find the best metric path and set its associated metric value–say Bk.

2. Prune all candidates whose accumulated metric is larger than Bk/T where

0 < T < 1.0 is a predefined constant

Simmons [4] investigated similar rules based on trellis structure. We

extend the idea with the tree structure for more efficient application towards

the MIMO fading ISI channels.

5.4 COMPENSATION PART

As part of the proposed transceiver system, the super-iterations will be

carried out between the equalizer and decoder by exchanging the extrinsic
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information. Therefore, instead of decide only one path in the equalizer

tree structure, the soft-output is needed for the Turbo-like super iteration to

minimize the errors.

For each early pruned path, a certain amount of Euclidean distance

should be added, to complete the calculation of the overall cumulative metric

needed in the sum-product algorithm, to the calculation of the overall dis-

tance of the path. This is to compensate for the part that are not explored,

and its corresponding distance which would have been exactly evaluated only

if the path had survived to the end of the tree. In this problem, we seek a

simpler solution such that we choose a single compensation Ck per each miss-

ing edge. If a path is pruned at k = j, for example, then a metric
∑Ns

k=j Ck is

added to all those paths in which missing edge is starting from k = j. This

value Ck is the sufficient minimum metric such that all pruned paths at the

k-th tree section must satisfy this requirement, even though a pruned path

may have smaller edge metric than Ck. However, the compensation Ck is

varied for different tree-sections. Without giving a proof (due to the limited

space provided), we state the following lemmas:

Lemma 1 Let βk−1 and βk be the minimum forward-cumulative distances at

the k−1-th and k-th tree sections respectively, and let T ′ be the corresponding

Euclidean distance for the threshold ratio T . Then, a compensation rule

satisfying the following inequality

Ck ≥ βk − βk−1 + T ′ (5.10)

at each tree-section is sufficient, such that if any path whose edge metric at

k is greater than or equal to the right hand side it always gets rejected by the

threshold test.
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Lemma 1 readily leads to the following compensation rule, which is sum-

marized in the following Theorem.

Theorem 1 For a path pruned at k = j where 1 ≤ j ≤ Ns, we consider the

following compensation rule
∑Ns

k=j Ck:

Ns∑
k=j

Ck ≥ βNs − βj + (Ns − j)× T ′. (5.11)

This rule is sufficient.

By applying the sum-product tree search algorithm and the compensation

rules, the MIMO system is able to handle the case of high modulation size and

large number of transmit antennas. Meantime, when we consider the error

performance of this system, although it is a sub-optimal approach compared

to full trellis search, the bit error rate (BER) is very close to the theoretical

bound for uncoded information source, which will be shown in the simulation

result section. However, as the number of antennas or the constellation

size further increases, even with this design, the complexity still could be

forbiddingly high. Again using Fig. 5 as an example, we could see that

each survivor path will be expended into MNt candidates. This number is

2 for the system shown in Fig. 5, but if we have M = 16 and Nt = 4, the

number will be 65536. In T-algorithm, the cumulative metric for each of

these candidates need to be computed before the threshold test, which is an

unreachable amount of computing for real time communication system. In

order to solve this problem, we propose the sphere list detection algorithm

to generate a shorter candidate list before the threshold test, and further

reduce the computational complexity.
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6.0 SPHERE LIST DETECTION

Motivation for sphere list detection (SLD) is to allow a large constella-

tion and a large number of antennas so that the system could enable higher

spectral efficiency. The detailed discussion about SLD will be given in this

section.

Hochwald and Brink [5] first used the sphere decoding algorithm and

shows very promising for the MIMO flat fading channels. For the channel

with intersymbol-interference, we develop the list sphere detection rules and

combine it with the threshold testing process.

6.1 SLD IN ISI CHANNEL

In the tree-pruning operation, a survived node is expanded and the ex-

panded path becomes the candidates intended for the threshold test. The

SLD is applied at the expansion phase of this routine such that each node in

the tree is expanded only when they are within the sphere of a pre-chosen ra-

dius from the channel output on that branch. Thus, the number of per-node

expanded candidates is much smaller than the full list of size MNt . Note

that our channel has L-taps and thus a received signal vector at a particular

branch has contribution from up to L − 1 previous channel symbols. The
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previous symbols are stored in the memory of the node. Using them, we

can cancel out the contribution of the previous symbols at each node. It is

worthwhile to note that this cancellation is exact on the correct path and

in-exact on an incorrect path. The consequence of this cancellation is an in-

creased number of candidates in the list on the correct path. On all incorrect

paths, however, it leads to an increase in the effective noise level and thus

the number of candidates will be dramatically reduced. We note that this is

one of the properties very much desired in our reduced complexity scheme.

The result of this cancellation is denoted by r′k:

r′k = rk −
∑L−1

l=1 hk,lx̄k−l (6.1)

= hk,0xk + Dk + nk. (6.2)

where x̄k−l is the previous signal on the path, and Dk is the cancellation

error. Dk = 0 on the correct path.

6.2 SPHERE LIST DETECTION IN THE STAGE OF

EXPANDING EACH SURVIVOR PATH

The goal of the sphere list detection is to generate a list of most posterior-

probable candidates given the received signal. After the cancellation process,

the probability of a particular signal vector xk being the correct signal is

determined by the Euclidean distance, since the noise is Gaussian, i.e.,

||r′k − hk,0xk||2 (6.3)
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where r′k is the received signal due only to the current input vector xk. Thus,

we use the distance measure to find the list: only those signal vectors with

an Euclidean distance less than a certain radius will be kept in the candidate

list. However, an exhaustive search can again grow to an unmanageable size,

which is not desired. Using the SLD, the list can be obtained in an efficient

manner, thanks to Fincke-Pohst algorithm [6]. The process of sphere list

detection, as flow-charted in Fig. 6, starts with the unconstrained estimation

of xk. Hochwald and Brink [5] used the maximum likelihood (ML) estimator

x̂k,ML : = arg max P(r′k|xk)

= (h∗k,0hk,0)
−1h∗k,0r

′
k. (6.4)

The estimator requires the hl matrix to be full rank. In case it is not a

full rank matrix, the estimator may encounter a large estimation error due

to matrix-inversion operation. This motivates us to devise a regularized

estimator. We propose the Minimum Mean Square Estimator (MMSE):

x̂k := arg min E{||xk − x̂k||2}. (6.5)

This can be simplified to be:

x̂k = (h∗k,0hk,0 + Rn)−1h∗k,0r
′
k, (6.6)

where Rn = N0INt×Nt is the noise covariance matrix. With the MMSE

estimator x̂k, the Euclidean distance detection criteria can be written as:

||r′k − hk,0xk|| = (xk − x̂k)
∗(h∗k,0hk,0 + Rn)(xk − x̂k)

+r′∗k (I − hk,0(h
∗
k,0hk,0 + Rn)−1h∗k,0)r

′
k.

(6.7)
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The second term in (6.7) is a constant for different xk. Thus, the sphere

list detection criteria is to find every candidate xk which satisfied:

(xk − x̂k)
∗(h∗k,0hk,0 + Rn)(xk − x̂k) ≤ R2 (6.8)

where R is the sphere radius. In this criteria, we applied the Fincke-Pohst

algorithm [6]. As shown in Fig. 6, we use the Cholesky factorization on

(h∗k,0hk,0 + Rn): h∗k,0hk,0 + Rn = U ∗U , where U is an upper triangular

[Nt × Nt] matrix. Since the (h∗k,0hk,0 + Rn) is a positive definite matrix

(the sum of two positive definite matrix is still positive definite), the upper

triangular matrix U always exists with all diagonal elements being positive

real numbers. Therefore, (6.8) can be written as:

(xk − x̂k)
∗U ∗U (xk − x̂k)

=
Nt∑
i=i

U2
ii[x

i
k − x̂i

k +
Nt∑

j=i+1

Uij

Uii

(xj
k − x̂j

k)]
2

≤ R2 (6.9)

It should be noticed that each term in the sum over i, i = 1, 2, ...Nt is

nonnegative. Starting the summation from i = Nt without loss of generality,

we also note that as soon as part of the summation exceeds R2, say at i = t,

the total sum is definitely is bigger than R2. Therefore, there is no need

to proceed further for all dimensions for i < t. Considering at i = Nt, for

instance, we can choose all candidates for xNt
k which satisfies:

U2
NtNt

(xNt
k − x̂Nt

k )2 ≤ R2. (6.10)

For each candidate xNt
k , we continue to choose a candidate of xNt−1

k by

again using 6.9. Now we decide on the last two elements of vectors. Similarly,
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this process can continue on until i = 1. It is possible that no candidate value

could be found upon ith dimension. In such cases, the process will continue

by going back to the choice of xi+1
k , until some xi

k was found. The Fig. 6

shows the detailed flow-chart of sphere list detection process.

Unconstrained estimation

= h* [h h*+ Rn]-1 rk’ˆkxInput r, h, Nt, R

(h* h+Rn) = U*U
(Cholesky Factorization) Start with i = Nt

( ) ( ) ( ) ( )

2
2 2

1
ˆ ˆ( )p p j j

t tN N
pj

pp k k k k
ppp i j p

u
u x x x x Ru= = +

 
 
  

− + − ≤∑ ∑
no

i = 1?

i := i-1
yes

yes Found a Candidate

Searching in the current dimension, pick xi

i := i +1

no

Output Candidate

Figure 6: The Procedure of Sphere List Detection.

Upon completing the SLD process, a list of candidates is obtained and

extends a survivor to the next time-epoch. Gathering all the candidates

from all survivors, we can do the threshold testing on each of them. With

compensation, soft output for each bit of coded information will be generated

and delivered to the decoder as the prior information.

30



7.0 SIMULATION RESULTS

In this section, we discuss extensively the computer simulation results.

We use SNR per-information-bit when drawing the curve compared with

the theoretical bounds. If SNRr is defined as Signal-to-Noise Ratio per

received channel, then SNR/bit will be:

SNR = SNRr ·Nr/[Rt · log2(M) ·Nt]. (7.1)

Where Rt is the coding rate, i.e., Rt = 1/2 for rate-half LDPC code. In

addition, Gray mapping is applied in our simulation on the system.

7.1 UNCODED RESULTS: (NT = 4, NR = 4)MIMO SYSTEM

FOR BPSK/4-QAM

Fig. 7 shows the performance of the equalizer system with BPSK modu-

lation. Without utilizing the sphere list detection, the T-algorithm is applied

to this system with uncoded transmission. The BER curve is drawn com-

pared with the Matched Filter Bound (MFB) over a (Nt = 4, Nr = 4, L = 3)

system [17] with same order of diversity gained. By keeping an average of
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less than 10 survivors–a large reduction compared with 256 states in full trel-

lis search– the BER performance is shown to be within 2 dB from the ideal

MFB.

The performance under 4-QAM system is shown in Fig. 8. In this case,

full complexity trellis has 65536 transitions on each of which a posterior

probability is needed to be calculated each time-epoch. By combining the

sphere list detection and the T-algorithm, we keep the average length of

candidate lists under 20 at the output of SLD, and the average number

of survivors around 15, which is comparable to the complexity of BPSK

case. Thus, the spectral efficiency is doubled while keeping the computational

complexity at the same level. The BER performance is shown to be about

2 dB away from the matched filter bound. In both case, the channel is slow

faded with a normalized Doppler fading rate , fdm · T , of 1/256, where T is

the symbol period.

7.2 CODED RESULTS: (NT = 4,NR = 4) MIMO SYSTEM

WITH LDPC CODE

When the equalizer and decoder is combined, the decoder can either take

the hard output of equalizer to do the decoding, or utilize the soft information

so that the super-iteration could be applied between the two parts. We

assume the channel is fast fading channel with a normalized Doppler fading

rate , fdm · T , of 1/16.

As discussed in Chapter IV, (??) shows the pairwise error probability of

LDPC coded system. For our setting with a (4096, 4,8) LDPC code, cal-

culating the exact error probability for different SNR is not straightforward
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Figure 7: 4× 4 system BPSK modulation, without SLD
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Figure 8: 4× 4 system 4-QAM modulation, with SLD
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for channels with ISI. However, we could generate the probability by doing

ensemble average over a randomly selected code with certain minimum dis-

tance. As shown in [9], the parameter σ is a constant for an LDPC code

with particular column weight and row weight. For an (4096,4,8) LDPC

code, the minimum distance between two codewords, Dmin, is 257 [9], where

Dmin = σ Ns. Thus, we can obtain the mean bit error probability by doing

simulation with the following steps:

Step 1 By doing Bernouli trials with parameter p = σ, we generate 1000

sequences, and each of them has a length of Ns and a mean weight of

Dmin.

Step 2 For each sequence, we generate [Ns × Nr] P
(i)
k matrices and obtain

the corresponding eigenvalues which we use to evaluate (3.12) to get Pe.

Step 3 Perform Step 2 1000 times with different sequences, and find the

average of Pe.

Step 4 Calculate bit error probability Pb by

Pb = Pe
Dmin

Ns

(
Ns
Dmin

)
(7.2)

as the approximation for bit error probability.

This theoretical error probability can be used to compare with the system

error probability, as can be seen in Fig. 10 and Fig. 11.

Fig. 9 shows the overall system performance when the equalizer gener-

ates the hard output vectors without applying the compensation rules. The

LDPC decoder could reach the error free zone at about 8.5 dB with only one

super-iteration. However, the error correcting capacity of LDPC decoder is

constrained by the hard output of the equalizer, which further weaken the
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efficiency of super-iteration. As shown in following results, employing soft

output does help to improve the error correcting performance.

Another observation is that when coding is employed, middle SNR (6-

9dB) is most crucial in BER, where the equation-decoding algorithm works

less ideal than higher SNR region. This factor leads to a larger performance

difference with the theoretical bound compared with the uncoded simulation.

When compensation rule is applied to generate the soft-output, the BER

performance is further improved by 1.5 dB, as shown in Fig. 10. Compared

with the pairwise error probability bound shown in this figure, the decod-

ing output, which reflects the overall system performance without super-

iterations, is about 1 dB away from the theoretical error probability bound

obtained by pair-wise error analysis. In addition, with the help of LDPCC

decoder output as soft-input to equalizer, the equalizer output error rate

is greatly decreased. So does the decoder output. Fig. 11 shows the ef-

fect of super-iterations. After 3 super-iterations, the error performance is

within 0.8 dB away with the error probability approximation, as shown in

the figure. Compared to the full complexity exhaustive search, our approach

could reach closely to the theoretical bound, while keeping only averagely

15 survivors each time-epoch. Compared to 65536 transition calculations in

full trellis search under similar system settings, we saved more than 99% of

computational complexity.
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Figure 9: Overall System Performance with Hard Equalizer Output
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8.0 SYSTEM COMPUTATIONAL COMPLEXITY

ESTIMATION

In this section, the relationship between the computational complexity

and system parameters is discussed. The analysis is focused on the sphere

list detection, which consumes the dominating parts of computations. In

addition, the effects upon complexity as the number of transmit/receive an-

tennas, or modulation size is increased is investigated. The theoretical com-

putational complexity analysis can help estimate the data processing speed

and applicability for the proposed system in a particular system setting. For

an example, at a particular processing speed, system parameters such as M

Nt Nr can be selected in order to reach processing time limit.

In the sphere list detection part, for each survivor, the SLD rules is

applied and a list of candidates is generated assuming the path is correct.

The number of transmit/receive antennas (Nt/Nr) or modulation size affects

the number of computations required. Besides, the predefined search radius

R is also a key factor overall. Therefore, the general problem will be:

• Choice of radius R

• The number of operations used for a particular system,
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The paper[14] by Vikalo and Hassibi discussed the complexity issue on

the MIMO flat fading channel case. We adopt their mathematical framework

and apply t to the MIMO frequency-selective fading channel.

Given Nt transmit antennas, without loss of generality, we choose to start

the search for qualified candidates from the Nt-th antenna to the first one.

Although most points visited will not appear on the final candidates list,

each point visited will lead to a certain amount of operations. The overall

structure of the algorithm can be represented as a tree, which is shown in

Fig. 12.

t = 1

t = 2

Nt = 4
t = 3

t = 4

Figure 12: Sample of computation process structure

At a particular level of the tree, the amount of operations used for each

point visited is the same; while they are different at different levels of the tree.

Therefore, the overall number of computations can be obtained by summing

up all those individual sum of computations at different levels. The number

of computation per point in the tree can be calculated by

fp(t) = 8t + 17 (8.1)
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Then, for a system with Nt transmit antennas, Nr receive antennas, and

noise variance of N0, we can write the overall number of computations, de-

noted as V , as (8.2)

V (Nt, Nr, N0) =
Nt∑
t=1

(N (t)
p ) fp(t). (8.2)

where N
(t)
p is the expected number of points visited in t-th level.

For a particular point x̃k, the probability that it is visited during the

sphere list detection process depends on the Euclidean distance between x̃k

and the correct signal vector xk. Supposing the point x̃k was in the final list,

the following equation must hold:

||r′k − h
(k)
0 × x̃k|| ≤ R2 (8.3)

where r′k is the received signal vector after correct-path cancellation, as de-

scribed in section VI. A. Since r′k = hk,0xk +Dk +nk, the cancellation error

Dk ,i.e., Dk = 0 on correct paths can be expressed as

Dk =
L−1∑
l=1

hk,l(xk−l − x̄k−l), (8.4)

where x̄k−l is the previous signal on the path. Recall that each element of

hk,l is CSCG variable, thus each element of Dk can be viewed as a CSCG

variable with zero mean as well. Thus, (8.3) can be expressed as

||nk + Dk + h0(xk − x̃k)|| ≤ R2. (8.5)

Considering the vector of εk := nk+Dk, each element of εk is CSCG vari-

ables with zero mean and thus can be viewed as noise with larger variance,

denoted as Ne. In medium to high SNR region, which most of our attention
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lies on, erroneous path tends to have the minimum difference with the cor-

rect path. Therefore, within the list of survivors leading different paths at

any time-epoch, we may assume that there is the correct path and all the

other incorrect paths are due to minimum distance error events for an estima-

tion in complexity analysis. Now, we can estimate the overall computations

V (Nt, Nr, N0) as

V (Nt, Nr, σ
2)

=
Nt∑
t=1

fp(t)
∞∑
l=0

γ(
R2

2(Ne + l)
,
Nr −Nt + t

2
) g

(l)
t ,

where γ(·, ·) is the incomplete Gamma function in the χ2 distribution, which

represents the probability of a particular point having a distance less than

R. g
(l)
t denotes the number of constellation points in the tth hyper-space with

a distance of l, in which the neighboring points have the unit distance. Ac-

cording to Eular’s idea addressed in [13], for 16QAM system for an example,

g
(l)
t can be calculated by

g
(l)
t =

∑
λ

1

2t
(t
l)M

λ
t,Nt

where Mλ
t,Nt

is the coefficient of xλ in this polynomial

(1 + x + x4 + x9)m(1 + 2x + x4)k−m (8.6)

Following this result, we can evaluate the amount of computation used for

systems with different M , Nt,Nr and different search radius R. Fig. 13 and

Fig. 14 show the results for 4-QAM and 16QAM constellations respectively

with different R.
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Figure 13: The complexity with 4-QAM modulation, the SNR per transmit

antenna is 10 dB. The graph shows the general trend as the search radius

increases

44



0 5 10 15
10

2

10
3

10
4

10
5

10
6

10
7

10
8

r�

co
m

pu
ta

tio
na

l c
om

pl
ex

ity
 (

N
um

be
r 

of
 fl

op
s)

The computational complexity with 16QAM modulation

1X1
2X2
4X4

Figure 14: The complexity with 16QAM modulation
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In Fig. 13, the number of computations used in systems with different Nt

and Nr is shown. For the same search radius R, the computational complexity

increases as the number of transmitter and receiver antennas increases as

expected. In addition, for a particular system, increasing R will lead to larger

computational complexity as well. When the radius R reaches a certain limit,

all constellation points are included in the sphere. After that, further increase

on R will not increase the computational complexity. This is observed in

the figures. Moreover, increasing the constellation size has similar effect as

increasing Nt or Nr, as Fig. 14 shows.

The analysis in complexity offers a way to estimate the amount of compu-

tation, which can be used to estimate the system processing time and decide

the applicability even before actual implementation.( For example, for a sys-

tem with Nt = 8, Nr = 8, and 4-QAM, given a chip with a processing speed

of 106, the search radius should be around 6 or 7 in order to achieve the rate

of 16 bits/sec. Even for this reduced complexity design,a system with large

constellation size or large amount of parallel antennas may still require un-

manageable size of computing to maintain an reliable communication. Thus,

this kind of estimation is quite helpful for system implementation.
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9.0 CONCLUSION

We have proposed a novel transmitter-receiver system design with a

new reduced complexity tree-search based soft-input soft-output equalization

method which can be combined in to the graph-decoder in turbo-iterative

manner. The simple but novel compensation rule allows the generation of

soft-output messages and contributes to a significant reduction in the bit er-

ror rates. In overall, we have presented an enabling transmitter and receiver

pair which may be useful in deriving up the spectral efficiency dramatically,

into the region of tens of bits/sec/Hz, employing bigger signal constellations

and more number of transmit antennas. The increase in the signal process-

ing complexity is handled by the proposed procedure of reduced complexity

schemes. The quality performance of the proposed receiver is insured with

the use of turbo-iterative decoding and equalization steps, and the use of

powerful block code. We notice that from the pair-wise error analysis, the

low-density parity-check codes posses a large minimum Hamming distance

and thus achieve very high order of signal diversity from all dimensions, in-

cluding space, time, and frequency. Furthermore, based on the pair-wise

error probability, we provide an analytical framework which enables us to

calculate an upper bound on the overall error probability, ensemble-averaged

over the fading channel. The bounds show that the simulation results of the
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low-complexity scheme deviates from the bounds only within a few dB. Fi-

nally, a delineation of different signal processing complexities upon choosing

different system parameters is presented. Future work includes the study of

finding the direct trade-off relationship of the signal-processing complexity

to the probability of errors and to the capacity of the channels.
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APPENDIX

In this section, we offer the detailed proof of the compensation rule. First,

define

α̂m′

xi
(k)

=
∑k

1 γ̂m′

xi
(k)

, (.1)

where γ̂m′

xi
(k)

is the Euclidean distance in a particular time section. The amount

of compensation for each time section will be Ĉ. For those surviving-to-end

paths, β̂ will be the cumulative metric backward for each transition inside

each path

β̂m′

xi
(k)

=
∑N

j=k+1 γ̂m′,m
xi
(j)

. (.2)

For those leaves, one compensation will be assigned for each time sec-

tion until the end of the codeword, as indicated in the figure. The more

compensation, the more distance with the best path.

As part of the reduced complexity algorithm, the compensation will not

involve much complexity in computation. So the Ĉ will be uniform for same

time section.
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β̂x(k)
=

N∑
j=k+1

Ĉj (.3)

The compensation principle is

• Ĉ should satisfy that the additional distance will be larger than the worst

survivor in this time section.

• Ĉ should small enough to get them fairly compete with survivors.

0 0

1

α1(0)

α7(1)

1

0

2

α8(1)

α8(2)

7

0

γ 7(1)

γ 7(3)

γ 8(1)

γ 8(3)

0 ……
α6(0)

Example: BPSK system and 
block size of 9. Compensation: C8

α8(0) α9(0)α7(0) γ 7(0) γ 8(0)

α9(1)

γ 8(2) α9(2)8

9 α9(3)
γ 7(2)

3
Compensation: C7+C8 α8(3)

Figure 15: The example with block length of 9.
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An example is illustrated in the Fig. 15. The analysis is concentrate on

the last 3 time sections out of block length of 9.

In this example, α is the cumulative metric of γ:

α9(0) = α8(0) + γ8(0)

α9(2) = α8(0) + γ8(1)

...

(.4)

In time section 7.8.9, we define

σ = mini(α9(i))

λ = mini(α8(i))

θ = mini(α7(i)).

(.5)

Survived pathes satisfy

α8(0), α8(1) < λ + T ′

α9(2), α9(3) < σ + T ′.
(.6)

where T’ is the constant term in (.6).

Ĉ7 and Ĉ8 represents the compensation for nodes ended in 7th and 8th

time section. Therefore:

α8(0) + Ĉ8 > σ + T ′

α7(1) + Ĉ7 > λ + T ′

α7(1) + Ĉ7 + Ĉ8 > σ + T ′,

(.7)

Given these requirement, we consider the worst situation, which means
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the compensation should be greater than the worst survivor

α8(1) = σ

α8(0) = σ

α9(3) = λ + T ′.

(.8)

This situation indicates the best survivor’s leaves all get pruned in the next

time section. Therefore

α8(1) + Ĉ8 > α9(3) = α8(1) + λ− σ + T ′. (.9)

That is:

Ĉ8 > λ− σ + T ′. (.10)

For the 7th time epoch

β̂x(7)
= Ĉ8 + Ĉ7

= λ− σ + T ′ + σ − θ + T ′

= λ− θ + 2T ′. (.11)

Generally, the compensation will be

β̂x(k)
=

N∑
j=k

Ĉk

= min
m

(αN(m))−min
m′

(αj(m
′)) + (N − k) · T ′, (.12)

where N is the block length, and k is the time epoch this path ends

This formula gives the bound of legal compensation, but this amount

neglect the differences among pruned paths. Unlike assume all pruned paths
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have the near-surviving parameter, another factor F ≥ 1 employed will be

even more helpful:

β̂x(k)
= F ·minm(αN(m))−minm′(αj(m

′)) + (N − k) · T ′. (.13)
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