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Smoking is one of the leading risk factors that contribute to the development of head and 

neck squamous cell carcinoma (HNSCC). Smoking induces chromosome breaks. One of the 

most frequent and earliest alterations in HNSCC is the segmental loss of the short arm of 

chromosome 3 (3p). Another frequent observation is the activation of one of the most common 

fragile sites in HNSCC, FRA3B, which spans the FHIT gene, considered to be a tumor 

suppressor. Distal to FHIT is FANCD2, which encodes a protein required for the proper function 

of the Fanconi anemia/BRCA pathway and eventual repair of DNA damage through homologous 

recombination repair. Recently, it has been observed that FANCD2 gene and protein expression 

is decreased in HNSCC cells. Therefore, we hypothesize that 3p loss, resulting from the 

activation of the fragile site FRA3B, leads to FANCD2 gene copy loss and a defective DNA 

damage response.  Western blots showed decreased expression of FHIT protein in HNSCC cell 

lines. Fluorescence in situ hybridization revealed partial loss of FANCD2 in HNSCC cell lines 

studied. Western blotting and quantitative RT-PCR showed decreased FANCD2 protein and 

gene expression in HNSCC cell lines with FANCD2 gene copy loss. HNSCC cell lines with 

decreased FHIT protein expression, FANCD2 gene copy loss, and decreased FANCD2 gene and 

protein expression exhibited decreased FANCD2 and RAD51 focus formation. Our results 

suggest that smoking could induce breakage of the fragile site, FRA3B, leading to FANCD2 loss 

and resulting in defective DNA damage repair. The use of targeted therapy on cancer cells with 
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deficient DNA damage repair, like CHEK1 small molecule inhibitors, could improve the 

currently available cancer treatment schemes. The public health relevance of our studies involves 

the use of an abnormal FA/BRCA pathway as a marker for selective use of targeted cancer 

therapy for HNSCC. 
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1.0  INTRODUCTION 

Head and neck squamous cell carcinoma (HNSCC) represents a disease with a high public health 

impact considering that at least 80% of the oral cancers are attributed to cigarette smoke and 

alcohol consumption (Haddad and Shin 2008; Negri, et al. 1993).  This is quite disturbing for a 

disease that is the eight most common cancer worldwide, with approximately 650,000 new cases 

every year (Jemal, et al. 2008) - around 46,000 new cases reported in the United States during 

2007 only (Parkin, et al. 2005) - and 5-year survival rates decreasing from 49.2% to 43.8% 

during the last 20 years (Carvalho, et al. 2005). These figures demand a continuous investigative 

effort to unravel the intricate nature of this type of cancer in order to come up not only with 

alternative treatments but also with novel preventive measures to decrease its appearance in the 

most susceptible groups of the population.   

1.1 SMOKING AND ALCOHOL IN HNSCC 

Cigarette smoke and alcohol are the top risk factors in the development of HNSCC. Even though 

cigarette smoke or alcohol consumption represent a risk factor alone (Talamini, et al. 1990; 

Talamini, et al. 1998), the risk is greater (around 13-fold) in those individuals exposed to both 

cigarette smoke (more than 20 cigarettes per day) and alcohol (more than 5 drinks per day) at the 

same time (Castellsague, et al. 2004). The increased risk that comes about to those individuals 
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exposed to smoking and drinking and those who, on the other hand, get exposed to second hand 

smoke may be related to genetic polymorphisms in enzymes, like cytochrome p450 (e.g. 

CYP1A1, CYP2E1), glutathione S-transferase, UDP-glucuronosyltransferase and alcohol 

dehydrogenase (ADH) that detoxify tobacco carcinogens and alcohol-related genotoxic 

metabolites, respectively (Varela-Lema, et al. 2008). The inability to eliminate tobacco 

carcinogens like polycyclic aromatic hydrocarbons and nitrosamines and alcohol genotoxic 

agents like acetaldehyde may lead to the formation of DNA adducts that interfere with DNA 

synthesis and repair (Olshan, et al. 2000; Poschl and Seitz 2004). This brings the gene-

environmental interaction component to play in the genesis of HNSCC.  

1.2 FRAGILE SITES AND CHROMOSOMAL INSTABILITY IN HNSCC  

HNSCC is often characterized by chromosome instability which has been correlated with 

exposure to cigarette smoke and alcohol consumption (Reshmi and Gollin 2005; Wang, et al. 

2008), resulting in the activation of fragile sites, deletion of tumor suppressor genes like TP53, 

and amplification of oncogenes like CCND1 (Wang, et al. 2008). Cigarette smoke can activate 

one of the most commons fragile sites, FRA3B (Stein, et al. 2002). Fragile sites are specific loci 

that exhibit chromosome instability, visible as gaps and breaks on metaphase chromosomes 

following partial inhibition of DNA synthesis. Fragile sites can be divided into two groups: the 

rare fragile sites, also known as the folate-sensitive group, because they can be induced by folate 

deprivation from the cells in culture and are frequently associated with CGC repeat expansions. 

FRAXE and FRAXA belong to this group. The other group is known as common fragile sites, 

which can be induced by aphidicolin. The common fragile sites differ from the rare fragile sites 
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in that they are part of the normal chromosomal structure and are not formed by nucleotide 

expansion repeats. One of the best studied common fragile sites most studies is FRA3B (Durkin 

and Glover 2007). Located at 3p14.2, FRA3B breakage may result in a segmental aberration 

involving the short arm of chromosome 3 (3p), rather than whole arm loss (Tsui, et al. 2008). 

Deletion of 3p is frequently observed in human cancers, including breast (60%) (Matsumoto, et 

al. 1997), lung (96%) (Wistuba, et al. 2000), cervical (40-70%) (Holschneider, et al. 2005), and 

HNSCC (45-55%) (Virgilio, et al. 1996). Initially identified by positional cloning and FISH, 

FRA3B, is a large genomic region characterized by genomic breakage and instability. FRA3B 

size ranges from the t(3;8) breakpoint to a region at least 500 Kb telomeric (Le Beau, et al. 

1998).  FRA3B activation is accompanied by the deletion of part of the fragile histidine triad 

gene (FHIT). FHIT is considered to be a tumor suppressor gene because it has been found in a 

genomic region that was homozygously deleted. FHIT deletion has included exons (between 

exon 5 and 9), which leads to aberrant transcripts frequently identified in human tumors (Le 

Beau, et al. 1998). Despite these observations, the role of FHIT as a classical tumor suppressor 

gene remains to be proven. It is because of the observation that cancer cells with aberrant FHIT 

transcripts are able to translate a functional form of the FHIT protein (Le Beau, et al. 1998). 

Decreased FHIT protein expression is common in human cancers (Huebner and Croce 2003), 

including breast (Yang, et al. 2001), lung (Sasaki, et al. 2006), cervix (Holschneider, et al. 2005), 

and HNSCC (Guerin, et al. 2006; Lee, et al. 2001; Virgilio, et al. 1996).  The 1.7 MB FHIT gene, 

distributed over ~ 500 Kb, encodes a 1.2 kb mRNA and a 16.8 kDa protein. The FHIT gene is 

comprised of 10 exons. Exons 3, 4 (the first to be encoded) and 5 are proximal to translocation 

sites, like the t(3,8) and fragile sites, like the HPV integration site and the plasmid pVS2 (Figure 

1). Maestro showed that there are three commonly deleted regions at 3p (3p24-pter, 3p21.3, and 
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3p14-cen), which were suggested to be involved in the genesis and/or progression of HNSCC 

(Maestro, et al. 1993). Sequence analysis of the aberrant RT-PCR products showed that absence 

of exon 4 or 5 through exon 8 was the most common abnormality. Absence of exon 8 is probably 

crucial, since it contains the highly conserved histidine triad motif and is essential for the 

function of the FHIT protein. Absence of exon 4, leaving the starting ATG in exon 5 untouched, 

resulted in transcripts with the potential to produce intact FHIT proteins (Druck, et al. 1997). 

 

Figure 1. The FHIT gene. 

The FHIT locus at 3p14.2 showing untranslated exons exons in blue. The FHIT protein 

coding exons are labeled in red. The image was modified from Huebner (Huebner, et al. 1997).  

 

FANCD2, an important gene in the Fanconi anemia/BRCA (FA/BRCA) pathway is 

located at 3p25.3 (Hejna, et al. 2000), distal to FRA3B. Decreased FANCD2 gene and protein 

expression have been reported in head and neck cancer (Sparano, et al. 2006; Van Der Heijden, 
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et al. 2004; Wreesmann, et al. 2007). Furthermore, it has been shown that cigarette smoke 

condensate (CSC) equivalent to 20 cigarettes inhibits FANCD2 protein translation and 

monoubiquitination in bronchogenic carcinoma cells (Hays, et al. 2008). As a consequence, a 

defective FA/BRCA pathway leads to increased chromosomal instability (Hays, et al. 2008). 

This raises the question whether there is a possible interrelationship between cigarette smoking, 

fragile site breakage and DNA damage repair, particularly involving the Fanconi anemia/BRCA 

pathway.  

1.3 FANCONI ANEMIA/BRCA PATHWAY 

Fanconi anemia (FA) is a heterogeneous disease at both the phenotypic and genetic levels. 

Patients with FA present bone marrow failure, acute myelogenous leukemia (AML), skeletal 

abnormalities, defective DNA damage response, and high susceptibility to DNA cross-linking 

agents like mitomycin C (MMC). This leads to an increased predisposition to hematological and 

solid cancers, like acute myeloid leukemia and head and neck cancer, respectively. According to 

Rosenberg et al., FA patients have around a 50-fold increased risk for developing cancer in 

general and a 700-fold increased risk for developing head and neck cancer in comparison to the 

general population (Rosenberg, et al. 2008; Rosenberg, et al. 2003).  

To date, 13 FA genes have been identified and the pathway can be divided into three 

major components: the core complex (FANCA, B, C, E, F, G, L, M), the ID complex (FANCD2 

and FANCI) and the repair complex (FANCD1, FANCJ and FANCN) (Figure 2). Exposure to 

DNA inter-strand crosslinking agents like MMC leads to stalled replication forks allowing time 

for DNA damage repair. This alteration is recognized by the recombination protein A (RPA) 
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which coats the stalled replication sites or DNA damage site, activating ATR. This leads to the 

subsequent CHEK1 activation by phosphorylation. This is required to phosphorylate downstream 

targets in the FA core complex like FANCM, FANCE and FAAP-24. Alteration of any of the 

components of the FA core complex can halt the function of the whole pathway by preventing 

the monoubiquitination of FANCD2 and FANCI and the further assembly of the repair complex 

at the site of damage. The sensing of the DNA damage and further accumulation of core complex 

proteins at the DNA damage site depends on the phosphorylation of core complex members like 

FANCM, FAAP-24 and FANCE. FANCM has been suggested to have translocase activity that 

allows it to serve as a platform while recruiting and translocating the core complex to the site of 

DNA damage. The Fanconi associated protein 24 (FAAP24) is another component of the core 

complex. Interaction of FAAP24 with FANCM is required for the proper assembly of the core 

complex. This follows from the observation that in FAAP24-deficient cells, the core complex 

fails to assemble and load onto the DNA damage site. At some point, FANCE is also 

phosphorylated by CHEK1, who was previously phosphorylated by ATR, mediating the 

interaction between the core complex and the ID complex, specifically FANCD2. As a 

consequence, FANCD2 and FANCDI are translocated to the DNA damage site and get 

ubiquitinated by FANCL, which provides the ubiquitin E3 ligase activity. This step is also fueled 

by the phosphorylation of FANCD2 and FANCI by ATR or ATM. The activation of FANCD2 

by ATR occurs in response to the stalled replication fork or DNA interstrand crosslinks. ATM 

also activates FANCD2 in response to IR. 

The BRAFT complex, constituted by proteins like BLM helicase, topoisomerase III 

alpha, and replication protein A (RPA) also interact with the FA/BRCA. This is because the 

BLM helicase shows in vitro activity of branched DNA structures, which can occur during repair 
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of stalled replication fork by homologous recombination. The relocation of FANCD2 to the 

damage site depends on its interaction with BRCA1, an integral core complex and γ-H2AX, the 

phosphorylated version of H2AX. Ultimately, FANCD2 relocation to the site of DNA damage 

brings along homologous repair-associated proteins like BRCA1, BRCA2 (FANCD1), and 

RAD51 as well as protein members of the non-homologous end joining pathway like NBS1, the 

BLM helicase and partially other FA proteins like FANCE, FANCC and FANCJ enabling 

subsequent DNA damage repair. The observation that DNA repair factors like BRCA2 and 

PALB2 and mutated in FANCD1 and FANCN complementation groups, plus increased observe 

sensitivity of these complementation groups to DNA interstrand crosslinks, has created the 

notion that FA/BRCA pathway plays a critical role in repairing lesions that affect DNA 

replication through homologous recombination (Green and Kupfer 2009). 
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Figure 2. FA/BRCA pathway in response to DNA damage. 

For explanations see the text, Fanconi anemia/BRCA pathway. The image was modified 

from Kalb (Kalb R 2007). 
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1.4 DNA DAMAGE RESPONSE AND FA/BRCA PATHWAY 

The cells can be exposed to exogenous DNA damage agents (like IR and DNA inter-strand 

crosslinking agents) and endogenous agents (like species oxygen reactive products, meiotic 

recombination and stalled replication forks). The mechanism by which the DNA damage is 

sensed relies in a cooperative interaction between ATR and ATM through one of two ways: (1) a 

rapid cyclin dependent kinase (CDK)-independent or (2) a slow cyclin dependent kinase (CDK)-

dependent pathway. The rapid, CDK-independent sensing is conducted by the MRN (MRE11 – 

RAD50 – NBS1) complex which primarily recognizes double strand breaks (DSB). Later, the 

MRN complex interacts with ATM through protein-protein interaction of the C-terminal motif of 

NBS1 and the HEAT repeats of ATM, leading to ATM autophosphorylation on serine residues 

S1981, S367 and S1893. Following the incorporation of the MRN-ATM complex to the DSB, 

ATM phosphorylates the C-terminus of histone H2AX, yielding γ-H2AX, which is used as 

platform for MDC1 (mediator of DNA damage checkpoint 1). The latter, which has a dual 

interaction with γ-H2AX and NBS1, leads to the spreading of the H2AX phosphorylation around 

the DSB site to further incorporate other DNA damage components like 53BP1 (TP53 binding 

protein 1, an important mediator of DNA damage signaling), BRCA1 (breast cancer 1 gene, 

necessary for the activation of CHEK1 during DNA damage-induced intra-S or G2 arrest), and 

the MRN complex itself. Finally, ATM phosphorylation further activates downstream targets 

like CHEK2, which helps in spreading the DNA damage signal throughout the nucleus, leading 

to cell cycle arrest (Bartek and Lukas 2007).  

The MRN complex and ATM are also required to activate the slow, CDK-dependent 

kinase sensing of DNA damage. MRN and ATM initiate DSB resection and formation of ssDNA 

(single-strand DNA), a required structural intermediate for ATR-dependent signaling, which is 
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restricted to the S and G2 phases only. ssDNA is then coated by RPA which also binds ATRIP 

(ATR-interacting protein), facilitating the recognition of downstream phosphorylation targets 

like RAD9 and RAD17, required for further checkpoint signaling. The fully active ATR requires 

the DNA topoisomerase II-beta binding protein 1(TOPBP1), which is recruited to the ssDNA, 

for the phosphorylation of downstream targets, particularly CHEK1. CHEK1 phosphorylation 

and activation requires Claspin, a phosphorylation mediator protein, which is also requires for 

the ATR-dependent phosphorylation of RAD17 (Bartek and Lukas 2007).  

The three major checkpoints of the cell cycle are: G1/S, intra-S and G2/M. The G1/S 

checkpoint is characterized by activation of TP53, a key player in this checkpoint, which induces 

the expression of p21 and the consequent inhibition of the cyclin E-CDK2 complex. This event 

disrupts the interaction between TP53 and its negative regulator MDM2. MDM2 has ubiquitin 

ligase activity that allows the ubiquitination of TP53 and MDM2 itself, leading to their 

degradation by the proteasome pathway. Upon exposure to DNA damage, ATM phosphorylates 

TP53 at serine 15 (Ser-15) disrupting its interaction with MDM2, and allowing TP53 

accumulation. Later, ATM also phosphorylates CHK2 on threonine 68 (Thr-68) allowing its 

interaction with TP53, essential for G1 arrest. The intra-S checkpoint can be activated by either 

of two ways: first, once activated by ATM, CHEK2 phosphorylates CDC25A on serine 123 (Ser-

123). CDC25C is a phosphatase required for DNA synthesis and activation of CDK2 by 

dephosphorylation of threonines 14 and 15 (Thr-14 and 15), leading to its degradation by the 

proteasome pathway and a stoppage of the S-phase. Alternatively, CHEK1 can be also involved 

in S-phase arrest through its ability to phosphorylate CDC25A.  Second, the MRN complex can 

participate in S-phase arrest through the phosphorylation of NBS1 on serine 343 (Ser-343) by 

ATM. This event is required for the phosphorylation of SMC, part of the cohesion complex, on 
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serine 957 and 966 (Ser-957 and 966) contributing to the cohesion of sister chromatids, required 

for intra-S checkpoint activation. The activation of the G2 checkpoint is accomplished by 

phosphorylation of CHEK1 on serines 317 and 345 (Ser-317 and 345) by either ATM or ATR. 

Later, CHEK1 phosphorylates CDC25C (a mitosis-promoting phosphatase) on serine 217 (Ser-

217), resulting in binding with the 14-3-3 protein complex which prevents CDC25C 

dephosphorylation and further activation of the mitotic kinase cyclin B-CDK2. This blocks the 

cells with DNA damage from entering mitosis (Motoyama and Naka 2004).  

The integrity of the FA/BRCA pathway is important for the activation of the DNA 

damage checkpoints to keep the cell from experiencing chromosomal instability. Depletion of 

CHEK1, which has FANCE as a phosphorylation target, induces chromosomal instability and 

breaks at common fragile sites in cancer cells (Durkin, et al. 2006). Furthermore, CHEK1-

depleted cells exhibit decreased FANCD2 monoubiquitination upon exposure to DNA damage 

(Guervilly, et al. 2008). This supports the requirement of an intact CHEK1 to phosphorylate 

downstream targets like FANCE required for FANCD2 monoubiquitination and translocation to 

the damage site along with the DNA repair complex proteins. The application of CHK1 small 

molecule inhibitors (SMI) may affect the FA/BRCA pathway by inhibiting the phosphorylation 

of FA core complex targets, leading to defective DNA damage response. 

1.5 CHEK1 INHIBITION AND RADIOSENSITIZATION 

Based on our preliminary data, we have observed that OSCC cell lines with distal 11q loss have 

an increased resistance to ionizing radiation (Parikh, et al. 2007). The same observation was 

made on HNSCC cell lines with increased expression of ATR and CHEK1 and loss of TP53 
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(Parikh, et al., unpublished data). Preliminary data suggest that inhibition of ATR or CHEK1 by 

siRNA resensitizes IR-resistant HNSCC cell lines to IR (Parikh, et al., unpublished data). A 

major effort is being made to develop SMI to facilitate the targeted inhibition of kinase activity 

for the treatment of cancer (Zhang, et al. 2009).  Currently, there is a type-1 inhibitor, a CHEK1 

SMI, that has ATP-competitive ability and recognizes the active conformation of the CHEK1 

kinase in a TP53-dependent manner (Blasina, et al. 2008). Cancer cells lacking TP53, the major 

player in G1 checkpoint, retain intact S and G2/M checkpoints, which upon DNA damage, will 

allow them to arrest at such points giving them time for repair. Inhibiting CHEK1, critical for the 

function of the S and G2/M checkpoints, is lethal for TP53-deficient cancer cells which have no 

time to repair DNA damage and are forced to enter mitosis with massive DNA damage. 

Therefore, CHEK1 SMI inhibits CHEK1 selectively in TP53-deficient cancer cells without 

disturbing the surrounding normal cells. In this way, CHEK1 SMI, currently in clinical trials to 

treat solid tumors in combination with chemotherapy, represents a promising compound for 

targeted therapy in cancer cells, like HNSCC, that overexpress CHEK1 with minimal side effects 

to the patient.  
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2.0  HYPOTHESIS AND AIMS 

2.1 HYPOTHESIS 

We hypothesize that HNSCC cell lines have altered FANCD2 gene copy number, expression 

and/or monoubiquitination due to segmental loss of chromosomal arm 3p with a consequent 

decreased DNA damage response. 

2.2 AIM 1 

To determine the presence of FHIT protein expression in HNSCC cell lines. 

Our hypothesis predicts that HNSCC cell lines will exhibit decreased FHIT expression 

compared to the positive control HEK293 cell line. 

2.3 AIM 2 

To determine FANCD2 gene copy number in HNSCC cell lines. 

Our hypothesis predicts that HNSCC cell lines with 3p loss will exhibit FANCD2 copy 

number loss. 
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2.4 AIM 3 

To assess FANCD2 gene expression in HNSCC cell lines upon exposure to MMC. 

Our hypothesis predicts that HNSCC cell lines with 3p loss will show decreased 

FANCD2 gene expression compared to a FA/BRCA pathway proficient cell line upon exposure 

to MMC. 

2.5 AIM 4 

To determine whether FANCD2 is monoubiquitinated in HNSCC cell lines after exposure to 

MMC. 

Our hypothesis predicts that HNSCC cell lines with 3p loss will show decreased 

FANCD2 monoubiquitination compared to a FA/BRCA pathway proficient cell line upon 

exposure to MMC. 

2.6 AIM 5 

To determine the ability of the HNSCC cell lines to induce FANCD2 focus formation after 

exposure to MMC. 

Our hypothesis predicts that HNSCC cell lines will show decreased FANCD2 focus 

formation compared to a FA/BRCA pathway proficient cell line upon exposure to MMC. 
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2.7 AIM 7 

To determine the effect of a CHEK1 small molecule inhibitor (SMI) in HNSCC cell lines after 

IR treatment. 

In this aim, we used different doses of SMI to determine its effect in HNSCC cell lines 

after exposure to IR. The effect was measured by a clonogenic survival assay and cell cycle 

analysis. 
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3.0  MATERIALS AND METHODS 

3.1 CELL LINES AND CULTURE CONDITIONS 

 

We cultured 14 HNSCC cell lines established in the laboratory of Dr. Susanne M. Gollin, 

OHSU974 (HNSCC cell line derived from FANCA -/- patient established at the FA Cell 

Repository, at Oregon Health & Science University, Portland, OR), VU1365 (a HNSCC cell line 

derived from a FANCA -/- patient established at the Vrije University Medical Center, Amsterdam, 

The Netherlands), Human embryonic kidney 293 (HEK293) cells, and HeLa cells.  

3.1.1 HNSCC cell lines 

HNSCC cell lines were grown Minimal Essential Medium (Gibco Invitrogen), supplemented 

with 1% non-essential amino acids, 1% L-glutamine, 50 μg/ml gentamicin and 10% (v/v) FBS 

(FBS from Irvine Scientific Santa Ana, California, where all other supplements from Gibco 

Invitrogen, Carlsbad, CA). HNSCC cell lines were also grown in T25 flasks, incubated at 37°C 

in 5% CO2 humidified incubator, and fed every 2 to 3 days. When 70 to 80% confluency was 

reached, the cells were subcultured (White, et al. 2007). The subculture of HNSCC cell lines was 

performed by rinsing HNSCC cell lines once in about 2 ml of 1X Hanks’ Balanced Salt Solution 
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(HBSS; Irvine Scientific, Santa Ana, California). Then, 1.5 − 2 ml of 0.05% trypsin- 

0.02%EDTA (Gibco Invitrogen, Carlsbad, CA) was added to the flask to promote detachment of 

adherent cells. The flasks were incubated at 37°C in 5% CO2 humidified incubator for no more 

than 5 min. During this time, the flasks were taken out of the incubator at least twice and were 

smacked to ease the detachment of the cells. Later, the trypsin was inactivated by the addition of 

M10 medium at a volume equal the initial amount of trypsin added to the flasks. 

3.1.2 Controls 

The OHS974 cell line (FA Cell Repository, Oregon Health & Science University, Portland, OR) 

was cultured under the same conditions as the HNSCC cell lines from Dr. Gollin’s laboratory. 

The VU1365 cell line was cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco 

Invitrogen, Carlsbad, CA), supplemented with 1% nonessential amino acids, 0.05 mg/ml 

penicillinstreptomycin-L-glutamine, and 10% FBS (Gibco Invitrogen, Carlsbad, CA) (van 

Zeeburg, et al. 2005). HEK293 and HeLa cells were cultured under the same conditions as 

VU1365. The subculture of OHSU974, VU1365 and HEK293 was conducted as described for 

the HNSCC cell lines. 

3.2  GENERATION OF DNA DAMAGE 

To induce DNA damage, the cells were continuously exposed to 80nM of mitomycin C (MMC) 

(Sigma, St. Louis, MO) for 24 hr for immunoblotting and quantitative reverse transcriptase PCR 

and 1 hr for focus formation. 
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3.3 FLUORESCENCE IN SITU HYBRIDIZATION 

Fluorescence in situ hybridization (FISH) was performed to determine FANCD2 gene copy 

number in HNSCC cell lines. The general FISH procedure was carried out as described earlier 

(Parikh, et al. 2007). To prepare mitotic cells for FISH analyses, HNSCC cells were harvested 

following a 5 hr treatment with 0.1 µg/ml ColcemidTM (Irvine Scientific, Santa Ana, California), 

hypotonic KCl (0.075 M) treatment for 16 min, and fixation in 3:1 methanol: glacial acetic acid. 

All other cells were harvested using the same method, except that 1 hr of ColcemidTM was 

preferred for nontumor cells. FISH analysis was used to detect copy number changes in the 

FANCD2 gene in the HNSCC cell lines. For FISH analysis, cells were harvested, dropped onto 

slides, treated with 10 mg/ml RNase/2X SSC (0.6M NaCl, 0.06M Sodium Citrate, pH 7.0), and 

dehydrated using a graded series (70, 80, and 100%) of ethanol washes. Chromatin was 

denatured with 70% formamide and the cells were dehydrated in a second graded series of 

ethanol washes. The FANCD2 probe for FISH was prepared following DNA extraction from 

BACs RP11-1022P15 and RP11-572M14 purchased from The Children’s Hospital of Oakland 

Research Institute (CHORI, Oakland, CA). The BAC DNA was isolated using a BAC DNA 

miniprep procedure and labeled using a nick translation kit from Vysis/Abbott Molecular Inc. 

(Des Plaines, IL). The labeled DNA was precipitated with ethanol, resuspended in hybridization 

buffer, denatured for 5 min at 75°C, and preannealed for 15–30 min at 37°C. Each probe was 

hybridized for 16 hr at 37°C, after which slides were washed with 2X SSC/0.05% Tween-20. 

Slides were counterstained with 0.05 µg/ml 4',6-diamidino-2-phenylindole (DAPI) in 2X SSC 

and mounted with antifade (1,4-phenylene-diamine 1 mg/ml, in 86% glycerol/PBS, pH 8.0) 

(Sigma, St. Louis, MO) prior to analysis. All FISH analyses were carried out using an Olympus 

BX-61 epiflorescence microscope (Olympus Microscopes, Melville, NY). An Applied Imaging 
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CytoVision workstation with Genus v3.6 software was used for image capture and analysis 

(Applied Imaging, San Jose, CA). 

3.4 RNA EXTRACTION AND QUANTITATIVE REVERSE TRANSCRIPTASE PCR 

RNA was extracted by adding 1 ml of TRIzol® (Invitrogen, Carlsbad, CA) directly to the cells in 

the T25 flasks. TRIzol® was repeatedly pipetted over the cells to enhance cell lysis and produce 

a higher RNA yield. The tubes containing TRIzol and RNA mix were kept on ice prior to avoid 

RNA degradation. Then, 0.1 ml of 1-Bromo-3-chloropropane (BCP) (Sigma, St. Louis, MO) was 

added per 1ml of TRIzol into 2 ml microcentrifuge tubes. The mix was shaken vigorously by 

hand for 15 sec and incubated at room temperature (RT) for 3 min. The tubes were centrifuged 

for 15 min at 12,000 x g at 4°C. Following centrifugation, there were two layers. The upper 

aqueous layer containing RNA was transferred to a clean tube and mixed with 0.5 ml of 

isopropyl alcohol plus 1 µl of Glycogen (20µg/µl) for each ml of TRIzol® used. After incubation 

at RT for 10 min, the tubes were centrifuged at 12,000 x g at 4°C. After centrifugation, the RNA 

was in the pellet. The supernatant was removed and the pellet was washed one time with 70% 

Ethanol and centrifuged at 12,000 x g for 5 min at 4°C. After removing the supernatant, the RNA 

was slightly dried out (for about 5 min), but not dried completely. Then, the RNA pellets were 

resuspended in 100 µl of RNAse/DNAse free water and RNA purification was carried out using 

an RNeasy Mini Kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions. The 

RNA samples were cleaned of unwanted DNA using a DNA-free DNase Kit (Ambion, Foster 

City, CA) following the manufacturer’s instructions. RNA concentrations were determined using 

the SmartSpec 3000 (Bio-Rad, Hercules, CA) and normalized to 40ng/ml. A good quality sample 

 19 



had a 260/280 ratio of about 2.0 and a concentration of at least 40 µg/ml. Samples with ratios 

less than 1.6 and concentrations less than 30 µg/ml were re-extracted. The reverse transcription 

reaction was conducted with three inputs from each sample (400ng, 100ng and a negative control 

with no reverse transcriptase) for quality control. Universal Reference (UR) RNA (Stratagene, 

La Jolla, CA) was also included in the RT reaction at the same concentrations as the test 

samples. The reagents used in one reverse transcription reaction were as follows: 

Table 1. Master Mix and Reverse Transcriptase reaction set-up. 

Input  
Reagents 

 
Company 

400ng 100ng No Reverse 
Transcriptase 

(NRT) 
10X PCR Buffer II Applied Biosystems 10 µl 10 µl 10 µl 

MgCl2 (25mM) Applied Biosystems 30 µl 30 µl 30 µl 
dNTPs (25mM) Roche Molecular 

Biochemicals 
4 µl 4 µl 4 µl 

MMLV (10U/µl) Epicentre 1 µl 1 µl 0 µl 
RNase Inhibitor (40U/µl) Applied Biosystems 1 µl 1 µl 1 µl 

Hex Primers (500 µM) Applied Biosystems 2.5 µl 2.5 µl 2.5 µl 
Nuclease-free water Applied Biosystems 41.5 µl 49 µl 42.5 µl 

Total  90 µl 97.5 µl 90 µl 
RNA  10 µl 2.5 µl 10 µl 

 

The ThermoCycler conditions were as follows: 25°C for 10 min, 48°C for 40 min, 95°C 

for 5 min and hold at 10°C. Later, the PCR products from the UR and test samples were diluted 

by 2.5 in nuclease-free water (100µl of cDNA + 150µl of nuclease-free water). The 

concentrations were then diluted to 160ng, 40ng and 160NRT.  

TaqMan® primers and probes for FANCD2 (Hs00276992_m1), 18S (Hs99999901_s1), 

and universal reference RNA were purchased from Applied Biosystems (Applied Biosystems, 

Foster City, CA). Quantitative reverse transcriptase PCR (QPCR) was performed on the cDNA 

using the ABI 7700 Sequence detection instrument (Applied Biosystems) and analyzed using the 
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relative quantitation method (User Bulletin, PE Applied Biosystems) as in (Huang, et al. 2002). 

For the QPCR, 2X TaqMan Buffer was prepared to make either a final volume of 1ml or 5ml, 

depending on the number of samples to be analyzed, as follows: 

Table 2. Master Mix for 2X TaqMan Buffer set-up. 

Reagents Company Final volume of 1ml Final volume of 5ml 
10X Buffer A Applied Biosystems 200 µl 1 ml 

Nuclease-free water Applied Biosystems 486 µl 2.43 ml 
dNTPs (25mM) Roche Molecular 

Biochemicals 
24 µl 120 µl 

MgCl2 (25mM) Applied Biosystems 280 µl 1.4 ml 
Amplitaq Gold® 
DNA Polymerase 

Applied Biosystems 10 µl 50 µl 

 

 The reagents used to set-up one QPCR reaction were as follows:  

Table 3. Master Mix for QPCR set-up. 

Reagents Company Volume 
2X TaqMan Buffer Self-made in our laboratory 10 µl 

Primers [reverse and forward 
(5µM) each] and probe (105µM) 

stock concentrate mix 

Applied Biosystems  
1 µl 

Nuclease-free water Applied Biosystems 7 µl 
cDNA  2 µl 

 

The ThermoCycler conditions for the QPCR were 95°C for 12 min for one cycle and 40 

cycles of 95°C for 15 sec followed by 63°C for 60 sec. Each sample was run in triplicate along 

with the no reverse transcriptase control. No template controls were also set-up for each plate 

consisting of QPCR master mix but without cDNA. The RNA levels were quantified relative to 

the Universal Reference RNA. 
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3.5 IMMUNOBLOTTING 

To evaluate FANCD2 protein monoubiquitination, we prepared total protein lysates from 

HNSCC cell lines as described previously (Garcia-Higuera, et al. 2001; Parikh, et al. 2007) with 

some modifications. Flasks of cells were trypsinized and washed in ice cold 1X PBS and lysed in 

2X lysis buffer containing 100 mM Tris-HCl (pH 6.8), 12% 2-mercaptoethanol, 4% sodium 

dodecyl sulfate (SDS), 1mM dithiothreitol (DTT), 10 µg/ml of leupeptin, 10 µg/ml pepstatin and 

1nM of phenyl methyl sulfonyl fluoride (PMSF). The cell lysates were boiled for 5 min. Protein 

concentrations were determined using the Bio-Rad RC DC Protein Assay Kit, due to the high 

concentration of detergent like SDS and reducing agents like DTT and 2-mercaptoethanol. The 

SmartSpec 3000 (Bio-Rad, Hercules, CA) was used for the photometric readings of protein 

concentrations. Cell lysates were normalized to 1 µg/ml. 20 to 30 µl of the samples were run by 

Tris-HCl polyacrylamide gradient gels electrophoresis of 6% and 12%. Also, 10 µl of Precision 

Plus Protein standards were loaded in the gel to keep track of the running bands. The gels were 

run at 75 V for 25 min and later increased to 135 V until the bands reached the lower bottom of 

the gel in approximately 1 hr and 30 min. Later, the proteins were transferred to Hybond N+ 

nylon membrane (Amersham Biosciences, Piscataway, NJ) at 135 V for 1 hr and 30 min. During 

the transfer, the electrophoresis chamber was kept submerged in ice all the time to avoid the 

destruction of the membrane due to the excessive heat generated from the high voltage. 

Membranes were blocked in 5% non-fat dry milk in 1X PBS with 0.1% Tween-20 (TPBS) for 1 

hr at RT. Membranes were incubated with mouse monoclonal anti-FANCD2 FI17 (Santa Cruz 

Biotechnology, Santa Cruz, CA) antibody at 1:1000 dilutions in 0.5% BSA/TPBS ) overnight at 

4ºC, followed by incubation with either HRP-conjugated goat anti-mouse IgG at a 1:5000 

dilution or HRP-conjugated goat anti-rabbit IgG at a 1:2,500 dilution both in 5% non-fat dry 
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milk in 1X PBS with 0.1% Tween-20. Other antibodies used were rabbit polyclonal anti-TP53 at 

a 1:1000 dilution, rabbit polyclonal anti-phospho-TP53 at a 1:100 dilution, rabbit polyclonal 

anti-FHIT at a 1:5000 dilution and, mouse monoclonal anti-RAD9 at a 1.5 µg/ml dilution. The 

proteins were visualized using the Western Lighting™ Chemiluminescence Reagent (Perkin 

Elmer, Boston, MA) according to the manufacturer’s instructions. To verify equal protein 

loading in the gels, membranes were cut and probed with antibodies against proteins from 

housekeeping genes like β-actin (Abcam, Cambridge, MA) at a 1,5000 dilution and α-actinin 

(Santa Cruz Biotechnology) at a 1:5000 dilution in 0.5% BSA/TPBS. Antibodies against β-actin 

were used when the expected band of the protein of interest was larger than 60 kDa. Antibodies 

against α-actinin were used when the expected band of the protein of interest was lower than 60 

kDa.  As far as FANCD2, in untreated cells we expected to see a band at 155kDa, the non-

monoubiquitinated form of FANCD2, also known as the short form (FANCD2-S). After 

treatment of the cells with MMC, we expected to see an additional band that ran a little higher 

(162 kDa) because of the addition of the ubiquitin to FANCD2. This band is also known as the 

long form (FANCD2-L). The FANCD2-L/FANCD2-S ratio was determined by a densitometric 

analysis using Un-Scan-It Gel™ (Silk Scientific, Orem, UT). This program is able to determine 

the intensity of the bands from a western blot by measuring the number of pixels from each band, 

therefore, providing a numerical value for each band observed in the gel. The expected MW of 

the bands from the proteins studied were as follows: 53 kDa for total TP53, 53 kDa for phospho-

TP53, 17 kDa for FHIT, and 50 kDa for RAD9. 
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3.6 IMMUNOFLUORESCENCE MICROSCOPY 

FANCD2 focus formation was tested after exposing HNSCC to 80nM MMC. The cell lines were 

passaged into single-well chamber slides one day prior the treatment with MMC. A parallel set 

of chamber slides was also prepared as a normal control (culture medium only). After treatment, 

the wells were washed with 1X Hanks’ Balanced Salt Solution (HBSS) (Irvine Scientific), fresh 

medium was added and the cells were returned to incubate for 3 hr to allow for DNA repair. 

After repair, cells were washed with 1X PBS, fixed in 4% paraformaldehyde (PFA) in 1X PBS 

for 20 min and permeabilized with 0.5% Triton-X (Sigma) in 1X PBS for 10 min. After 

permeabilization, cells were blocked with 5% Bovine Serum Albumin (BSA) (Sigma) in 0.2% 

Tween-20/PBS for 30 min. Then, cells were incubated with affinity-purified E35 rabbit 

polyclonal anti-FANCD2 antibody at a 1:200 dilution and mouse monoclonal anti-RAD51 at a 

dilution of 1:500 both in blocking buffer for 2 hr at room temperature. After washing three times 

for 5 min each with 0.2% Tween-20/PBS, cells were then incubated with both anti-rabbit FITC-

conjugated antibody at 15µg/ml and anti-mouse TRITC-conjugated antibody at  15µg/ml in 

blocking buffer for 1 hr at room temperature. Then, after washing three times for 5 min each 

with 0.2% Tween-20/PBS, cells were counterstained with 0.05 µg/ml 4',6-diamidino-2-

phenylindole (DAPI) in 2X SSC for 2 min and mounted using antifade (1,4-phenylene-diamine 1 

mg/ml, in 86% glycerol/PBS, pH 8.0) (Sigma, St. Louis, MO) ) (Hussain, et al. 2004). The 

number of cells showing FANCD2 and RAD51 focus formation were scored by using an 

Olympus BX-61 epiflorescence microscope (Olympus Microscopes, Melville, NY). An Applied 

Imaging CytoVision workstation with Genus v3.6 software was used for image capture and 

analysis (Applied Imaging, San Jose, CA). A total of 100 cells were scored from control and 

MMC-treated chamber slides for each of the cell lines. 
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3.7 PREPARATION AND USE OF THE CHEK1 SMALL MOLECULE INHIBITOR 

(SMI) 

Initially, the CHEK1 SMI was provided in powder form and 10mM stock solution was prepared 

in 100% DMSO (stock solution) by using the compound’s formula weight. Then, 1 ml of 1 mM 

CHEK1 SMI working solution was prepared by diluting 100 µl of 10 mM CHEK1 SMI stock 

solution in 900 µl of 100% DMSO. Finally, the 1 mM working solution previously prepared was 

used to prepare the different concentrations of CHEK1 SMI (180 nM, 360 nM and 540 nM) by 

diluting 1 mM CHEK1 SMI working solution directly in fresh medium. The amount of medium 

containing CHEK1 SMI to be used depended on how many plates were going to be treated. To 

preserve the compound stability, it was kept protected from the light at room temperature 

according to manufacturer’s instructions. 

3.8 CLONOGENIC SURVIVAL ASSAY 

To determine the effect of the CHEK1 SMI on cell survival, HNSCC cell lines were tested when 

70 to 80% confluency was reached to ensure that cells were actively dividing.  After washing the 

cells once with 1X Hanks’ Balanced Salt Solution (HBSS) (Irvine Scientific), 0.05% trypsin- 

0.02%EDTA (Gibco Invitrogen) was added to the flasks and were incubated for 2 to 5 min at 

37°C in 5% CO2 humidified incubator. To ease the detachment of the cells, the flasks were taken 
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out of the incubator and tapped a couple of times. Prolonged exposure of the cells (more than 5 

min) to trypsin was avoided to reduce cellular stress. M10 medium was added to the flask at a 

volume of twice of the volume of trypsin to inactivate the trypsin. The cells and the medium 

were placed in a 15 ml conical tube and centrifuged at 600 x g for 6 min. The supernatant was 

discarded and cells were resuspended in 1 to 2 ml of media depending on the size of the pellet. 

Cells were mixed and 20 µl of the suspension were mixed with 20µl of 0.5% of Trypan 

Blue/saline solution in a separate tube. Then, 10µl of the mix were placed in a hemacytometer 

for cell counting.  For the clonogenic survival assay, 2 x 103 cells were plated in triplicate in 60 

mm Petri dishes. Cells were allowed to attach for 24 hr prior treatment with IR. Then, the cells 

were treated with increasing doses of IR at 0, 2.5, 5.0 and 10.0 Gy and were simultaneously 

treated with increasing doses of CHEK1 SMI for 24 hr immediately after IR treatment. 

Following the manufacturer’s recommendations, we used 4X (180nM), 8X (360nM) and 12X 

(540nM) of the CHEK1 SMI EC50 (45nM). As a control, the cells were untreated with IR. Also, 

as a CHEK1 SMI control the cells were exposed to DMSO only, which was used to dilute the 

CHEK1 SMI. Medium was changed 24 hr after treatment with fresh medium without SMI and 

changed again at day 7. After 12 days of incubation the medium was removed from the cell 

colonies and they were fixed with 70% ethanol for 5 min. Then, the ethanol was discarded and 

10% Giemsa (Sigma) in water was added to the plates for 5 min to stain the cell colonies. Later, 

the plates were washed with tap water to eliminate the Giemsa. The plates were dried on the 

bench overnight. Prior to counting, a grid was drawn on the bottom of the plates to facilitate cell 

colony counting. The colony counting was conducted under a dissecting microscope (Olympus). 

A colony was considered as such if comprised of at least 50 cells. Experiments were performed 
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in triplicate and error was calculated as one standard deviation from the mean (Franken, et al. 

2006; Parikh, et al. 2007). 

3.9 FLOW CYTOMETRY 

To assess the effect of the CHEK1 SMI on the cell cycle, we conducted a cell cycle analysis with 

propidium iodide (PI) staining by flow cytometry. For this procedure, 5 x 105 cells were fixed in 

70% ethanol and stored at -20°C in 1.5 ml centrifuge tubes. The day of the analysis, the cells 

were centrifuged at 200 x g for 5 min, the supernatant was removed, and the cells were washed 

twice in 1X PBS. After the washes, the pelleted cells were suspended in 500 µl of 50 μg/ml 

Propidium Iodide with 10 μg/ml RNAse A solution in 1X PBS. After an incubation of 30 min, 

the cells were taken to the University of Pittsburgh Cancer Institute Flow Cytometry lab and 

analyzed in a Dako CyAn ADP (DAKO) flow cytometer (Darzynkiewicz and Juan 2001). At 

least 50,000 cells per sample were analyzed by the equipment. The results were further analyzed 

using the software ModFit LT (Verity Software house, Topsham, ME). Based on DNA content 

alone, this software uses a mathematical model called deconvolution to discern the three cell 

cycle populations G0/G1, S, and G2/M. In this way, we were able to determine any change in the 

cell cycle populations after exposure of HNSCC cell lines to CHEK1 SMI and IR.  
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4.0  RESULTS 

4.1 CELL LINE DESCRIPTION 

This study was conducted on fourteen HNSCC cell lines originally generated in the laboratory of 

Dr. Susanne M. Gollin (White, et al. 2007), two HNSCC cell lines derived from FA patients, 

HeLa and HEK293 cells.  

Table 4. Characteristics of the patients and cell lines used in the study. 

 
Cell line 

Smoking/ 
alcohol 
history1 

Family 
history of 
HNSCC1 

 
3ploss2

 
Ploidy2 

 
Ethnicity 

 
HPV1 

UPCI:SCC029B +/+ - - 3 Caucasian - 
UPCI:SCC032 +/+ + + 2 Caucasian - 
UPCI:SCC040 -/+ + - 3 Caucasian - 
UPCI:SCC066 +/+ + - 4 Caucasian - 
UPCI:SCC070 +/+ + + 3 Caucasian - 
UPCI:SCC078 -/+ + + 3-4 Caucasian - 
UPCI:SCC084 +/+ - + 2 Caucasian - 
UPCI:SCC099 +/+ + - 2-4 Caucasian + 
UPCI:SCC103 +/- - + 5 Caucasian - 
UPCI:SCC104 +/+ - + 4-5 Caucasian - 
UPCI:SCC105 +/+ + - 3 Caucasian - 
UPCI:SCC116 +/+ + + 3-4 Caucasian - 
UPCI:SCC131 +/+ - - 4 Caucasian - 
UPCI:SCC142 +/+ U - 3 Caucasian - 

OHSU974 U U U 3 Caucasian - 
VU1365 U U U 3 Caucasian - 

HeLa U U U 4 Caucasian - 
“U” refers to Unknown. The data were obtained from White1 and Martin2 (Martin, et al. 2008; 

White, et al. 2007). 
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As depicted in Table 4, previous studies in our laboratory have already shown that around 85% 

of the HNSCC cell lines studied here come from patients with a positive smoking and drinking 

history.  

Fifty percent of the HNSCC cell lines from patients with a smoking and alcohol history 

showed loss of the short arm of chromosome 3 (3p). This is consistent with the observation that 

3p loss is a common and early observation, not only in head and neck cancer (Tsui, et al. 2008), 

but also in breast (Maitra, et al. 2001), lung (Todd, et al. 1997), and ovarian cancer (Todd, et al. 

1997),  among others. Therefore, it is reasonable to investigate the effects of 3p loss in HNSCC 

cell lines. 

4.2 DECREASED FHIT PROTEIN EXPRESSION IN HNSCC CELL LINES 

Previous studies have shown the presence of aberrant FHIT gene expression in our HNSCC cell 

lines suggesting breakage at chromosome band 3p14.2, which encompass the fragile site FRA3B 

(Virgilio, et al. 1996). HEK293 cells, which have been suggested to have a potential neuronal 

origin (Shaw, et al. 2002), were used as a positive control because it has been observed that 

endogenous FHIT protein is strongly expressed by these adenovirus 5 T-antigen-transformed 

cells (Druck, et al. 1997; Ishii, et al. 2006). A rabbit anti-FHIT polyclonal antibody that  

recognizes the entire 17 kDa FHIT protein (Druck, et al. 1997) was used to detect endogenous 

levels of FHIT protein expression in the HNSCC cell lines. As shown in Figure 3, we observed 

that FHIT protein expression was downregulated in twelve of the fourteen HNSCC cell lines, 

including UPCI:SCC032, 040, 066, 084, 099, 103, 105, 116, 131, 142 and 029B. Nine of the 
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twelve FHIT protein-deficient HNSCC cell lines came from patients with smoking history. Only 

UPCI:SCC040 and 142 came from patients without a smoking history (or with an unknown 

smoking history). Decreased FHIT protein expression was also observed in OHSU974 and 

VU1365 cell lines (HNSCC cell lines derived from FA patients). Only UPCI:SCC078 and 104 

showed FHIT bands with reduced intensity compared to the FHIT-positive control, HEK293. It 

is worth noting that UPCI:SCC078 comes from a patient who had an alcohol consumption 

history only, while UPCI:SCC104 comes from a patient with both a history of smoking and 

alcohol consumption. Considering that the fragile site FRA3B encompasses the FHIT gene and 

that reduced FHIT gene and protein expression have been observed in cells without activated 

FRA3B, particularly in cancer cells from patients with a smoking history (Stein, et al. 2002), our 

results are consistent with previous observations. 

 

Figure 3. FHIT protein expression in HNSCC cell lines. 

FHIT protein expression was evaluated in fourteen UPCI:SCC HNSCC cell lines by western 

blotting. Decreased FHIT protein expression was observed in 11 HNSCC cell lines. Only two 

HNSCC cell lines, UPCI:SCC078 and 104 show the expected band for the FHIT protein (17 

kDa). Two HNSCC cell lines, OHSU973 and VU1365 derived from FANCA -/- patients also 

showed decreased FHIT protein expression. HEK293 was used as positive control. 
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4.3 FANCD2 GENE COPY NUMBER LOSS IN HNSCC CELL LINES 

We next investigated whether there is a correlation between decreased FHIT expression and 

FANCD2 gene copy number. For this purpose, FISH was conducted in fourteen UPCI:SCC cell 

lines and two FA-derived HNSCC cell lines to determine the of FANCD2 gene copy number 

status. FANCD2 gene copy number was determined by using a BAC probe to FANCD2, labeled 

with SpectrumGreen™ relative to the number of chromosome 3 centromeres in each cell line, 

marked using the CEP3 probe labeled with SpectrumOrange™. We observed that eleven of the 

fourteen cell lines evaluated (UPCI:SCC029, 032, 040, 070, 078, 084, 099, 104, 105, 116, 131, 

and 142) showed relative FANCD2 gene copy number loss (Figures 4 and 5). HNSCC cell lines, 

OHSU974 and VU1465 also showed FANCD2 gene copy number loss. Contrary to this 

observation UPCI:SCC066 and 131 did not show FANCD2 gene copy number loss. HeLa cells 

were used as a FA/BRCA pathway proficient control and they did not show FANCD2 gene copy 

number loss. Ideally, a normal cell lines is used as control but since OKF6/TERT-1 show 

decrease FANCD2 protein and gene expression we decided to use a proficient FA/BRCA 

pathway cell line even though it is a cancer cell. Thus, HNSCC cell lines that exhibited 

decreased FHIT protein expression also showed FANCD2 gene copy loss. The only exceptions 

were UPCI:SCC078 and 104, which showed FHIT protein expression and FANCD2 gene copy 

number loss. Another interesting observation was that UPCI:SCC066 and 103 did not show 

FANCD2 gene copy number loss but they showed decreased FHIT protein expression. 
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Figure 4. Loss of FANCD2 gene copy number in fourteen HNSCC cell lines determined by FISH 

Percentage of cells showing FANCD2 gene copy number loss by FISH. The blue bars indicate 

the percentage of cells with relative loss compared to CEP3. Red bars indicate percentage of 

cells with single copy loss and green bars indicate percentage of cells with loss of more than 2 

copies. 
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Figure 5. FISH results for FANCD2 compared to CEP3 

FISH using BAC probes mapping to FANCD2, labeled with SpectrumGreen™ (green signal) 

and CEP3 labeled with SpectrumOrange™ (orange signal) demonstrates that FANCD2 is lost in 

HNSCC cell lines (A) UPCI:SCC104, (B) UPCI:SCC070, and (C) HNSCC cell line OHSU974, 

derived from a FA patient. (D) HeLa cells showed no FANCD2 loss. 

4.4 INDUCTION OF FANCD2 GENE EXPRESSION IN RESPONSE TO MMC IS 

DECREASED IN HNSCC CELL LINES 

To determine if loss of FANCD2 gene copy number influences gene expression, HNSCC cell 

lines were exposed to 80 ng/ml MMC for 24 hr. RNA was extracted for QPCR. As negative 

 33 



controls, we included OHSU-974 and VU-1365 which are HNSCC cell lines derived from FA 

patients. They were considered to be good negative controls because they have a mutated 

FANCA gene, part of the FA core complex. Therefore, upon exposure to MMC, the FA core 

complex integrity is compromised, failing to assemble at the DNA damage site. This eventually 

leads to defective FANCD2 monoubiquitination and DNA damage repair. We also included 

HeLa as a FA/BRCA pathway proficient cell line. The hTERT transfected keratinocytes, 

OKF6/TERT-1, were not used as a normal control because they have decreased FANCD2 gene 

and protein expression (Dr. Toshiyasu Taniguchi, personal communication). When untreated 

with MMC, we observed 1 to 3-fold decrease FANCD2 baseline expression in seven of the 

fourteen HNSCC cell lines (UPCI:SCC070, 084, 099, 104, 116, 131, and 142) compared to the 

FA/BRCA proficient HeLa cell line (Figure 6, blue bars). The same observation was made in the 

HNSCC cell lines derived from FA patients, OSHU974 and VU1365. On the contrary, HNSCC 

cell lines (UPCI:SCC029B, 032, 066, 078, 105, and 131) showed baseline FANCD2 gene 

expression similar to or higher than the FA/BRCA proficient HeLa cell line. 

We also observed 1.5 to 2.5-fold decreased induction of FANCD2 gene expression upon 

exposure to MMC in all the HNSCC cell lines, including the HNSCC derived from FA patients 

(Figure 6, red bars and Figure 7). On the contrary, only two of the fourteen cell lines 

(UPCI:SCC040 and UPCI:SCC103) exhibited similar or higher induction of the FANCD2 gene 

expression. 
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Figure 6. FANCD2 baseline and induced expression in HNSCC cell lines with and without exposure 

to MMC. 

 

 

Figure 7. Induced FANCD2 gene expression in HNSCC cell lines upon exposure to 80 ng/ml  MMC. 

4.5 FANCD2 PROTEIN EXPRESSION IS DECREASED IN HNSCC CELL LINES 

To determine FANCD2 protein expression, western blotting was performed on lysates derived 

from HNSCC cell lines exposed to 80 ng/ml for 24 hr. When cells are not exposed to MMC 

FANCD2 is seen as a band of 155 kDa called short form (S) or faster migrating. After the cells 

 35 



are exposed to MMC, FA pathway activation leads to the formation of the core complex and 

FANCD2 monoubiquitination. The latter is observed as a shift in the migration of the 155 kDa 

band to a higher migrating band of 165 kDa called the long form (L) or slower migrating band, 

resulting in a pattern of double bands. Therefore, the lower band is the non-monoubiquitinated 

FANCD2 (Short form, S) and the upper band is the monoubiquitinated FANCD2 (Long form, 

L). A ratio of the L/S forms is used as an indicator of the level of FANCD2 monoubiquitination. 

We observed that 11 of the 14 HNSCC cell lines showed decreased overall FANCD2 protein 

expression that ranged from mildly (UPCI:SCC084, 104, and 142) to moderately decreased 

(UPCI:SCC029B, 066, 099, 103, 032, 078, 105, and 131) compared to the FA/BRCA proficient 

HeLa cell line (Figure 8). Only three HNSCC cell lines (UPCI:SCC040, 070 and 116) exhibited 

FANCD2 protein expression similar to the FA/BRCA proficient HeLa cell line. 
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Figure 8. FANCD2 western blot of HNSCC cell lines. 

FANCD2 protein expression was evaluated in 14 HNSCC cell lines including the HNSCC cell 

lines derived from FA patients, OHSU974 (OH) and VU1365 (VU) and the FA/BRCA pathway 

proficient cell line (HeLa). 
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The induction of the FANCD2 monoubiquitinated form (L) was also assessed in HNSCC 

cell lines upon exposure to 80 ng/ml of MMC for 24 hr. By comparing the L/S ratio of the 

HNSCC cell lines to the FA/BRCA proficient cell line, we observed that only two HNSCC cell 

lines showed 0.5-fold decreased induction [UPCI:SCC105 (L/S Ratio: 0.68) and UPCISCC116 

(L/S Ratio: 0.70)] compared to the FA/BRCA proficient cell line [HeLa (L/S Ratio: 1.24)]. The 

remaining 12 HNSCC cell lines showed an equal or higher induction ratio [UPCI:SCC029B (L/S 

Ratio: 1.74), UPCI:SCC040 (L/S Ratio: 1.24), UPCI:SCC066 (L/S Ratio: 3.82), UPCI:SCC084 

(L/S Ratio: 4.55), UPCI:SCC099 (L/S Ratio: 1.22), UPCI:SCC103 (L/S Ratio: 2.49), 

UPCI:SCC104 (L/S Ratio: 4.07), UPCI:SCC131 (L/S Ratio: 4.07), UPCI:SCC032 (L/S Ratio: 

1.65), UPCI:SCC070 (L/S Ratio: 1.11), UPCI:SCC078 (L/S Ratio: 1.95), and UPCI:SCC142 

(L/S Ratio: 1.36)] compared to the FA/BRCA proficient cell line (Figure 8). HNSCC cell lines 

derived from FA patients were also included in the study and they show both displayed 

decreased overall FANCD2 protein expression and decreased induction of the monoubiquitinated 

form (L) with and without treatment with MMC [OHSU974 (L/S Ratio: 0.00) and VU1365 L/S 

Ratio: 0.21)]. 
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4.6 DECREASED FANCD2 AND RAD51 FOCUS FORMATION IN HNSCC CELL 

LINES 

To determine the functionality of the FA/BRCA pathway and its effect on DNA damage repair 

through the activation of homologous recombination repair (HR), we evaluated the ability of the 

HNSCC cell lines to form FANCD2 and RAD51 foci, respectively. Specific antibodies against 

FANCD2 and RAD51 were used in a co-staining procedure. FANCD2 and RAD51 foci were 

counted in parallel by changing the filters in the same microscopic field. We observed that 

untreated HNSCC cell lines exhibited endogenous FANCD2 and RAD51 focus formation 

ranging from 11% to 49% of focus positive cells (Figure 9, 10, 11 and 12). No endogenous 

FANCD2 focus formation was observed in HNSCC cell lines derived from FA patients 

(OHSU974 and VU1365) as depicted in Figure 13. HNSCC cell lines derived from FA patients 

(OHSU974 and VU1365) only showed a scattered staining for FANCD2 and RAD51. The 

untreated FA/BRCA proficient cell lines showed endogenous FANCD2 and RAD51 foci 

formation as 24% of cells expressed foci (Figure 9 and 10) as depicted in Figure 14. After 

exposure to MMC, HNSCC cell lines showed induction of FANCD2 and RAD51 focus 

formation in a lower percentage of cells compared to the FA/BRCA proficient cell line, ranging 

from 35% to 89% of cells with foci (Figures 9 and 10). Only UPCI:SCC040, 103 and 104 

showed higher frequency of FANCD2 and RAD51 foci formation among HNSCC cell lines from 

the general population. Even though HNSCC cell lines derived from FA patients did not show 

either FANCD2 or RAD51 focus formation, they still showed a scattered staining for FANCD2 

and RAD51. This indicates the inability of OHSU974 and VU1365 to form FANCD2 and 

RAD51 foci. After exposure to MMC, the FA/BRCA proficient cell lines showed increased 

FANCD2 and RAD51 focus formation in 98% of the cells. Figures 9 and 10 also shows that after 
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exposure to MMC, some of cells comprising the HNSCC cell population did show FANCD2 and 

RAD51 focus formation while others did not. This was not observed in the FA/BRCA proficient 

HeLa cell line, which showed FANCD2 and RAD51 focus formation in all of the cells under the 

same conditions. These results show that the HNSCC under study have a limited ability to induce 

both FANCD2 and RAD51 foci upon exposure to MMC. 

 

Figure 9. Bar graph showing the percentage of HNSCC cells with FANCD2 foci. 

The distribution of FANCD2 foci was assessed in HNSCC cell lines from the general population, 

HNSCC cell lines derived from FA patients (OHSU974 and VU1365), and a FA/BRCA 

proficient cell line (HeLa) treated and untreated with MMC for 24 hr. 

 

Figure 10. Bar graph showing the percentage of HNSCC cells with RAD51 foci. 

The bar graph shows the distribution of RAD51 foci in HNSCC cell lines derived from patients 

from the general population, HNSCC cell lines derived from FA patients (OHSU974 and 
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VU1365), and a FA/BRCA proficient cell line (HeLa) treated and untreated with MMC for 24 

hr. FANCD2 and RAD51 foci were counted in the same cells by changing the filters in the same 

microscopic field. 

 

 

Figure 11. UPCI:SCC131 showing decreased FANCD2 and RAD51 focus formation. 

Decreased FANCD2 and RAD51 focus formation in UPCI:SCC131 with and without exposure 

to 80 ng/ml of  MMC for 24 hr. (A) Untreated cells; (B) cells treated with 80 ng/ml of MMC 

showed decreased FANCD2 and RAD51 foci. 

 

Figure 12. UPCI:SCC142 showing decreased FANCD2 and RAD51 focus formation. 
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Decreased FANCD2 and RAD51 focus formation in UPCI:SCC142 with and without exposure 

to 80ng/ml of  MMC for 24 hr. (A) Untreated cells; (B) cells treated with 80 ng/mlof  MMC 

showed decreased FANCD2 and RAD51 foci. 

 

Figure 13. HNSCC derived from FA patient OHSU974 showing absence of FANCD2 and RAD51 

focus formation. 

Absence of FANCD2 and RAD51 focus formation in the HNSCC cell line derived from a FA 

patient. (A) Untreated cells; (B) cells treated with 80 ng/ml of MMC. The diffused brightness of 

the nuclei is caused by the inability of the cells to form FANCD2 foci. 
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Figure 14. FA/BRCA pathway proficient cell line HeLa exhibiting FANCD2 and RAD51 focus 

formation. 

FANCD2 and RAD51 focus formation in the FA/BRCA proficient HeLa cells with and without 

exposure to 80ng/ml of MMC for 24 hr. (A) Untreated cells; (B) cells treated with 80 ng/ml of 

MMC. 

 

 We observed that overall, the HNSCC cell lines exhibited a consistent pattern of 

FANCD2 gene expression, FANCD2 monoubiquitination, and FANCD2 focus formation (Figure 

15). The same pattern was observed in the HNSCC cell lines derived from FA patients and the 

FA/BRCA pathway proficient cell line. Only UPCI:SCC084, 104 and 131 showed increased 

FANCD2 monoubiquitination which does not coincides the observed decreased FANCD2 gene 

expression and FANCD2 focus formation in each cell line. 
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Figure 15. Graph showing the L/S ratio of FANCD2 monoubiquitination, quantitation of FANCD2 

gene expression, and cells percentage of FANCD2 focus formation. 

4.7 HNSCC CELL LINES DO NOT SURVIVE 10 GY IR 

Our laboratory previously showed that HNSCC cell lines, particularly those with distal 11q loss, 

are radioresistant to 10 Gy and usually exhibit increased ATR and CHEK1 over expression along 

with decreased TP53 expression (Parikh, et al unpublished data). HNSCC cell lines with distal 

11q loss show also loss of the G1 checkpoint as a result of a decreased TP53 expression, and an 

accumulation of the cell population at the G2/M boundary upon exposure to IR. This enables 

HNSCC lines with 11q loss time to repair DNA damage before entering S phase or mitosis 

(Parikh, et al unpublished data). Previous data showed that inhibition of CHEK1 by siRNA 

radiosensitizes HNSCC cell lines with distal 11q loss. This is because inhibition of CHEK1 leads 

to the abrogation of the G2/M checkpoint and cell death of HNSCC with 11q loss (by premature 

chromatin condensation or mitotic catastrophe) by entering prematurely to S phase or M phase 

(Parikh et al, unpublished data). These previous observations make HNSCC with distal 11q loss 

a suitable candidate for CHEK1 Small Molecule Inhibitor (SMI) therapy. To determine the 
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radiosensitizing properties of a CHEK1 SMI, HNSCC cell lines were plated in 60 mm dishes for 

a clonogenic survival assay and exposed to different doses of SMI and IR.  While performing the 

clonogenic survival assay, we did not observe cell survival at 10 Gy in HNSCC with 11q loss as 

observed previously in UPCI:SCC078, 131, and 136 (Parikh et al, unpublished data). We saw no 

cell survival in HNSCC cell lines without 11q13 amplification or 11q loss at 10 Gy. Despite 

these results, the percentage of survival in UPCI:SCC078 and 099 matched the previous results 

at 2.5 Gy (56% and 22%, respectively) and 5 Gy (10% and 3%, respectively) (Figures 16 and 

17). This was not the case for UPCI:SCC131 and 136 which level of survival was decreased by 

20 to 30% (Figures 18 and 19) from what was observed previously in our laboratory. 

Considering these findings, there are a couple of things to consider. First, it may be possible that 

the cell lines we have been working with are cross-contaminated with another cell line or the 

original vials were mislabeled. To illustrate this point, let’s present an example. Imagine at some 

point in the past, there was a young college intern student in our laboratory helping a Ph.D. 

student with the tissue culture. He or she was assigned to prepare some HNSCC cells lines to 

cryopreserve in the liquid nitrogen tank for storage. At some point, someone walks into the 

room, asks him/her a question and he/she, unintentionally transfers the cells into the wrong 

cryovial. Later, he or she registers the vial in the liquid nitrogen tank log book. Back to the 

present, I pick that same vial thinking that I have the right cell line when in reality, it is not. 

Another possibility is that, cells could have undergone genetic changes after many passages that 

made them behave differently. Even though each cell line has been showing a unique pattern of 

growth and behavior in culture, which was easily recognized and suggests that they are the 

proper cell lines on which we have been working, a current effort is on its way to repeat these 

experiments in HNSCC cell lines at lower passage. 
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Figure 16. Clonogenic survival assay on UPCI:SCC078 
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Figure 17. Clonogenic survival assay on UPCI:SCC099 after exposure to CHEK1 SMI and IR. 

 

 

Figure 18. Clonogenic survival assay on UPCI:SCC131 after exposure to CHEK1 SMI and IR. 
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Figure 19. Clonogenic survival assay on UPCI:SCC136 after exposure to CHEK1 SMI and IR. 

 

4.8 DECREASED CELL SURVIVAL IN TP53 MUTANT HNSCC CELL LINES 

AFTER EXPOSURE TO THE CHEK1 SMI 

According to Blasina, the CHEK1 SMI is able to hypersensitize TP53-mutant cancer cells when 

administered along with a DNA damaging agent. This effect is not expected upon administration 

of the CHEK1 SMI alone for 24 hr (Blasina, et al. 2008). Blasina’s group did not use a cell 

survival assay. Instead, when the cells reached 90% confluency (8 days after plating) they 

trypsinized the cells and counted them with a Coulter counter. To determine the radiosensitizing 

properties of the CHEK1 SMI, we plated HNSCC cell lines in 60 mm dishes for a clonogenic 

survival assay and exposed to different doses of SMI and IR.  Despite their findings we observed 
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decreased cell survival in UPCI:SCC099, 131 and 136 (all of them TP53 deficient - Figure 20, 

A) upon exposure to the CHEK1 SMI alone. UPCI:SCC078, (TP53 proficient - Figure 20, A), 

did not show decreased cell survival upon exposure to the CHEK1 SMI alone. 

 

            Figure 20. Western blotting for (A) total TP53 and (B) phospho-TP53 (ser15) in UPCI:SCC078, 099,  

116 and 131 untreated and treated with 80 ng/ml MMC. 

 

The administration of the CHEK1 SMI along with increasing doses of IR produced about 

20 to 30% decreased cell survival in both TP53 deficient and proficient HNSCC cell lines. For 

the TP53 deficient HNSCC cell lines, this could indicate a potential radiosensitizing effect of the 

CHEK1 SMI. In the case of the TP53 proficient HNSCC cell line UPCI:SCC078, the CHEK1 

SMI unexpectedly produced decreased cell survival when administered along with IR. This was 

unexpected because UPCI:SCC078 is a TP53-proficient cell line, bearing an intact G1 

checkpoint, which indicates that the CHEK1 SMI would not be able to abrogate the G2/M 

checkpoint in this HNSCC cell line. We know by western blotting that UPCI:SCC078 is TP53- 

proficient (Figure 20, A). One way that the CHEK1 SMI could have radiosensitized 

UPCI:SCC078 is if the observed band in the TP53 western blot is a truncated version and 

therefore, nonfunctional. But, we can rule out this possibility based on the observation that TP53 
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can be phosphorylated in UPCI:SCC078 (Figure 20, B), confirming the functionality of TP53 

and the ability of UPCI:SCC078 to bear an intact G1 checkpoint.  

4.9 THE CHEK1 SMI ABROGATES THE G2/M CHECKPOINT IN TP53-

DEFICIENT HNSCC CELL LINES. 

Blasina reported that upon exposure to the DNA damaging agent, Gemcitabine, TP53-deficient 

cancer cells showed a prominent S-phase arrest (Blasina, et al. 2008).  This would have enabled 

the cancer cells to undergo DNA damage repair through the activation of the intra-S checkpoint 

or the G2/M checkpoint before entering mitosis. Upon administration of the CHEK1 SMI, the S-

phase arrest was decreased, yielding increased G2/M and G0-G1 cell population (Blasina, et al. 

2008). In UPCI:SCC078 (TP53 proficient), we did not see a noticeable change in the cell cycle 

profile, with and without either IR or the combination of CHEK1 SMI and IR, which would be 

expected in TP53-proficient cells. On the other hand, UPCI:SCC099 (TP53-deficient) showed 

about a 20% increase in the G2/M cell population (Figure 21) at 5 Gy, indicating arrest at this 

point in the cell cycle, which was considerably reduced after exposure to the CHEK1 SMI. The 

observed increase in the G2/M cell population is accompanied by an increase in the G1 cell 

population from 42% to 64%, indicating that the cancer cells are attempting to re-enter the cell 

cycle without undergoing DNA damage repair. It is also worth noting that when UPCI:SCC099 

is exposed to the CHEK1 SMI, an increase in the G2/M peak was also observed suggesting that 

in the absence of the G1 checkpoint, the G2/M checkpoint could be abrogated in TP53 deficient 

HNSCC cell lines like UPCI:SCC099 upon exposure to the CHEK1 SMI alone. Our results 
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indicate that the CHEK1 SMI overrides the G2/M checkpoint in TP53 deficient HNSCC cell 

lines. 

 

Figure 21. Cell cycle analysis of (A) UPCI:SCC078 (TP53 wild-type) and (B) 099 (TP53-mutant) 

treated and untreated with 5 Gy and 180 nM of CHEK1 SMI.   
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5.0  DISCUSSION 

5.1 FHIT AND THE DEFECTIVE FA/BRCA PATHWAY IN HNSCC CELL LINES 

One of the most frequent early alterations in HNSCC is 3p loss (Tsui, et al. 2008). The band, 

3p14.2 is a hotspot for chromosome breakage and harbors a common fragile site, FRA3B, 

breakage of which can be induced by cigarette smoke, and other chemical compounds like 

aphidicolin (Durkin and Glover 2007; Stein, et al. 2002). FRA3B spans the tumor suppressor 

gene FHIT, and decreased FHIT protein expression is commonly observed in human cancers 

(Chang, et al. 2002; Huebner and Croce 2003) and is an indication of FRA3B breakage. FHIT is 

not the only tumor suppressor gene residing on the short arm of chromosome 3. FANCD2, part 

of the ID complex of the FA/BRCA pathway and required for the functionality of the pathway, is 

located distal to FRA3B at 3p25.3 (Hejna, et al. 2000). This means that upon breakage of 

FRA3B and a decreased FHIT protein expression, a segmental deletion of 3p could lead to 

FANCD2 gene copy number loss. Despite the vast amount of evidence that shows that a 

decreased FHIT protein expression is common in human cancers (Huebner and Croce 2003), 

including breast (Yang, et al. 2001), lung (Sasaki, et al. 2006), cervix (Holschneider, et al. 2005), 

and HNSCC (Guerin, et al. 2006; Lee, et al. 2001; Virgilio, et al. 1996), it was just recently that 

D’Agostini showed that early loss of Fhit protein expression in the rat bronchial epithelium is 

induced by exposure to environmental cigarette smoke, suggesting that Fhit is a critical target of 
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environmental cigarette smoke (D'Agostini, et al. 2006). The observed decreased FHIT protein 

expression in around 85% of our HNSCC cell lines correlates with one of the first studies of the 

FHIT gene in HNSCC cell lines conducted shortly after its identification (Virgilio, et al. 1996).  

A review of the literature shows that the relationship between FRA3B breakage, 3p deletion, and 

FANCD2 loss has not been extensively investigated. A couple studies report that the short arm of 

chromosome 3 is one of the most frequently deleted genomic regions in esophageal cancer, 

which includes the tumor suppressor gene FANCD2 as one of the top three genes deleted in that 

chromosome arm (Chen, et al. 2008; Sparano, et al. 2006). Moreover, only one study has 

evaluated the effect of an intact FA/BRCA pathway for a proper response to DNA replication 

stress (Howlett, et al. 2005). Howlett showed that disruption of the FA/BRCA pathway using 

FANCD2 siRNA in human colon cancer HCT116 cells resulted in 2–3-fold increased induction 

of chromosome gaps and breaks at both FRA3B and FRA16D fragile sites, as detected by FISH, 

at 0.2 and 0.4 µM APH, when compared with control siRNA transfected cells (Howlett, et al. 

2005). To date, the relationship between FRA3B activation, 3p loss, FANCD2 loss, and the DNA 

damage response through the FA/BRCA pathway has not been documented in human cancers, 

particularly HNSCC.  

Our results demonstrate that decreased FHIT protein expression correlates with FANCD2 

gene copy loss and smoking history in HNSCC cell lines from patients with smoking history in 

ten of the fourteen HNSCC lines. Smoking and alcohol consumption history from the original 

patients from whom the HNSCC cell lines were derived is summarized in Table 4. The 

observation that FANCD2 is lost in HNSCC cell lines correlates with previous studies in our 

laboratory in which 50% of the HNSCC cell lines studied showed 3p loss, highlighting the 

location of FANCD2 at this hot spot of genetic alterations (Martin, et al. 2008). Even though we 
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do not know the smoking history of the FA patients from whom HNSCC cell lines OHSU974 

and VU1365 were derived, the observed decreased FHIT protein in these cell lines correlates 

with the observed decreased FHIT protein expression in the sporadic HNSCC cell lines. This 

suggests that breakage 3p14.2, the location of FRA3B/FHIT, is also plausible in these cell lines, 

possibly due to their DNA damage response defects. Howlett showed that disruption of the 

FA/BRCA pathway using FANCD2 siRNA in human colon cancer HCT116 cells resulted in 2–

3-fold increased induction of chromosome gaps and breaks at both FRA3B and FRA16D fragile 

sites (Howlett, et al. 2005). These results suggest that an intact FA/BRCA pathway is required to 

prevent FRA3B breakage. Therefore, FANCD2 loss could lead to a decreased ability of the cells 

to prevent FRA3B breakage upon exposure to environmental insults like cigarette smoke. On the 

other hand, HPV integration could be a source of FRA3B breakage. On the other hand, DNA 

sites of viral integration could promote FRA3B breakage. The Human papillomavirus has been 

associated with FRA3B breakage (Ohta, et al. 1996). But, considering that only UPCI:SCC099 is 

HPV positive leaves this possibility on the side as a possible mechanism leading to breakage at 

3p14.2 and decreased FHIT protein expression in the FA patient derived  and our HNSCC cell 

lines.    

Only two sporadic HNSCC cell lines, UPCI:SCC078 and 104 showed FHIT protein 

expression, which suggests that there is no breakage at 3p14.2. Despite this observation 

UPCI:SCC078 and 104 still exhibited FANCD2 gene copy number loss. First, this discordant 

observation could be due to an actual breakage in the FHIT gene leading to a mutant truncated 

form of the FHIT protein, detectable by western blot (Kisielewski, et al. 1998) and further loss of 

FANCD2. This scenario is plausible, based on previous studies in our laboratory that have shown 

by FISH that FHIT exon 10 is lost in 90% of the cells in both UPCI:SCC78 and 104 (White, et 
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al. unpublished data). The formation of aberrant FHIT transcripts able to encode partial proteins 

with or without the HIT domain is also possible through an in-frame methionine codon in exon 6 

(Ohta, et al. 1996; Virgilio, et al. 1996). Another possibility could be that despite 3p deletion, 

then FHIT gene may not be deleted. This assumption is based on Maestros’ investigations in 

which they mapped three commonly deleted regions at 3p (3p24-ter, 3p21.3, and 3p14-cen). 

Therefore, if 3p loss occurs at either 3p24-pter or 3p21.3, FANCD2 could be deleted while FHIT 

remains intact (Maestro, et al. 1993). On other hand, only two sporadic HNSCC cell lines, 

UPCI:SCC066 and 103 show decreased FHIT expression without FANCD2 gene copy number 

loss, which could be due to the inactivation of the FHIT gene by promoter methylation (Chang, 

et al. 2002). This eventually could lead to a decreased FHIT protein expression, suggesting that, 

in the absence of FRA3B breakage FANCD2 would not be deleted as detected by FISH.   

Fifty percent of the HNSCC cell lines derived from patients with smoking history showed 

decreased FHIT expression and FANCD2 gene copy loss which also correlates with decreased 

induction of FANCD2 gene expression. Even though FHIT-deficient HNSCC cell lines did not 

exhibit a noticeable decrease in FANCD2 baseline expression (Figure 6), we observed overall 

decreased induction of the FANCD2 gene expression upon exposure to MMC as shown in Figure 

7. The lack of a noticeable decrease in FANCD2 baseline expression seems plausible when 

considering the ploidy of the HNSCC cell lines (Table 4). The majority of the HNSCC cell lines 

show a ploidy ranging from 2 to 5. Therefore, HNSCC cell lines, like UPCI:SCC104, which has 

a ploidy of 4 to 5 may have lost two copies of FANCD2, leaving it with three copies of the gene. 

Regarding the decreased induction of FANCD2 gene expression, it could be due to constitutive 

activation of FANCD2 in HNSCC cell lines in response to the constantly generated endogenous 

chromosomal instability possibly originated by numerous structural and numerical aberrations. 
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After all, chromosomal instability is one of the most characteristic features of HNSCC cell lines 

(Reshmi and Gollin 2005).  After exposure to an additional external source of DNA damage, like 

MMC, HNSCC cell lines already experiencing chromosomal instability will have minimal 

induction of FANCD2 gene expression due to the constitutively high FANCD2 gene expression.  

Overall decreased FANCD2 protein expression, ranging from mildly to moderately 

decreased was also characteristic of FHIT-deficient HNSCC cell lines. Three HNSCC cell lines 

(UCPI:SCC084, 104 and 142) which showed mildly decreased FANCD2 protein expression 

correlated well with the observed decreased FHIT protein expression, decreased baseline and 

induced FANCD2 gene expression and gene copy loss. This was not the case for UPCI:SCC066 

and 078, which showed moderately decreased FANCD2 protein expression. Even though 

UPCI:SCC066 showed decreased FHIT expression and mildly decreased FANCD2 protein 

expression, it does not show FANCD2 gene copy loss or decreased FANCD2 baseline gene 

expression. Although, it has not been reported yet, FANCD2 promoter methylation could explain 

the observed moderately decreased FANCD2 protein expression in UPCI:SCC066. But, then 

FANCD2 gene expression should be lower in this cell line, which is not the case. UPCI:SCC066 

show almost 2-fold increased FANCD3 basal expression compared to the FA/BRCA proficient 

HeLa cell line (Figure 6). On the other hand, despite the observation of FANCD2 gene copy loss 

and mildly decreased FANCD2 protein expression, UPCI:SCC078 showed FHIT expression 

which indicates no 3p14.2 breakage. Considering that UPCI:SCC078 was derived from a patient 

without a smoking history, exposure of the patient to environmental cigarette smoke could have 

triggered 3p loss at either 3p24-pter or 3p21.3, leading to deletion of FANCD2 and intact FHIT 

gene (Maestro, et al. 1993).  
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The ability of the FHIT protein-deficient HNSCC cells to form FANCD2 foci after 

exposure to MMC was not compromised, except in UPCI:SCC105 and 116. Decreased FANCD2 

monoubiquitination can be observed in cell lines derived from FA patients lacking one of the 

protein members of the core complex. The integrity of the FA core complex is required for 

FANCD2 monoubiquitination as it is supposed to be the ubiquitin ligase (E3) for FANCD2 

monoubiquitination (Taniguchi, et al. 2002). Moreover, although the mechanisms responsible for 

the inhibition of FANCD2 monoubiquitination remain unclear, the importance of the 

deubiquitinating has been suggested of the enzyme, USP1, which deubiquitinates 

monoubiquitinated FANCD2 and negatively regulates the Fanconi anemia pathway (Jacquemont 

and Taniguchi 2007). Our results resolve the above mentioned possibilities to explain the 

observed decreased FANCD2 monoubiquitination in HNSCC cell lines.  

Recruitment of FANCD2 to the DNA damage site, by focus formation, is an indication of 

an intact FA core complex and functional FA/BRCA pathway required for the assembly of the 

repair complex (BRCA1, BRCA2, RAD51) for DNA damage repair (Hussain, et al. 2004; 

Taniguchi, et al. 2002). FHIT deficient HNSCC cell lines showed decreased FANCD2 and 

RAD51 focus formation. It is worth noting that not all the cells within a cell line showed a 

uniform response to MMC compared to the FA/BRCA proficient HeLa cell line. In Figure 11, 

we can see that while some cells in the microscopic field showed both FANCD2 and RAD51 

focus formation, others do not. This observation could indicate that a subset of HNSCC cells 

within a cell population may be actually FHIT deficient with the corresponding FANCD2 gene 

copy loss, decreased FANCD2 gene and protein expression, and ultimately, a decreased ability to 

form FANCD2 and RAD51 foci. Furthermore, this could also imply that upon exposure to 

MMC, only a subset of HNSCC cells within a cell population could be able to repair DNA 
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damage via activation of the FA/BRCA pathway. The remaining cell population may be unable 

to activate DNA damage repair and would eventually accumulate so many genetic alterations 

that it would eventually undergo apoptosis.  

 When considering all of the data together, FANCD2 gene expression, protein 

monoubiquitination and focus formation, we observed that UPCI:SCC084 and 104 exhibited 

increased FANCD2 monoubiquitination compared to the other HNSCC cell lines studied, 

including the FA/BRCA proficient cell line. Could it be possible that UPCI:SCC084 and 104 are 

experiencing higher induction of FANCD2 monoubiquitination? 11q13 amplification is a 

common event in HNSCC, leading to the overexpression of genes clustered in that chromosomal 

region, including cyclin D1 (CCND1), tumor amplified and overexpressed sequence 1 (TAOS1) 

and protein phosphatase 1alpha (PPP1CA) (Hsu, et al. 2006). Interestingly, the RAD9 protein is 

part of the 9-1-1 complex and an early activator of ATR also located at 11q13.1-13.2 

(Lieberman, et al. 1996). RAD9 has been reported to be necessary for proper activation of the 

FA/BRCA pathway upon exposure to DNA damage, particularly by regulating FANCD2 

monoubiquitination as shown by siRNA experiments (Guervilly, et al. 2008). By interrogating a 

small subset of HNSCC cell lines for RAD9 protein expression, we found out that 

UPCI:SCC084 and 104 showed 1.5 and 1.4-fold increased RAD9 protein expression respectively 

by western blot (Figure 22). Then, based on this observation the possibility exists that RAD9 

increased protein expression may be promoting the increased induction of FANCD2 

monoubiquitination in UPCI:SCC078 and 104 upon exposure to MMC. It is worth noting that 

UPCI:SCC029B and  66 showed 1.7 and 1.2-fold increased RAD9 protein expression, which 

does not seem influence the FANCD2 monoubiquitination. 
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Figure 22. RAD9 protein expression in HNSCC cell lines and the HEK293 cell line. 

Immunoblotting was performed to detect protein expression levels for RAD9. We 

observed increased protein expression in HNSCC cell lines (1) UPCI:SCC029B, (3) 066, (4) 

084, and (5) 104. Decreased protein expression was observed in (2) 040. (6) HEK293 was used 

as a control.  

5.2 CHEK1 INHIBITION AND A DEFECTIVE FA/BRCA PATHWAY IN HNSCC 

CELL LINES 

There is increasing interest for using CHEK1 inhibitors as chemotherapeutic agents in cancer 

treatment (Zhang, et al. 2009). The FA/BRCA pathway is activated through a downstream 

phosphorylation cascade mediated by either the ATM or ATR kinase and downstream effectors 

like CHEK1 to phosphorylate key FA core complex proteins like FANCM (Collis, et al. 2008) 

and FANCE (Wang, et al. 2007). Upon inhibition of CHEK1 by siRNA, FANCD2 

monoubiquitination was impaired in HNSCC as recently described (Chen, et al. 2009), where 

FANCD2 deficient cells were hypersensitive to CHEK1 inhibition. It could be possible that the 

observed radiosensitizing properties of CHEK1 inhibition in HNSCC cell lines could be due in 

part to the further deregulation of an already defective FA/BRCA pathway. 

The administration of CHEK1 SMI in HNSCC cell lines induces radiosensitization and 

changes in the cell cycle. Previously in our laboratory, it has been observed that upon treatment 
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with IR, HNSCC cell lines with distal 11q loss showed accumulation of cells in G2/M. Inhibition 

of CHEK1 by siRNA in HNSCC cell lines with distal 11q loss caused a reduction in the 

accumulation of cells in G2/M and increased radiosensitivity. On the other hand, HNSCC cell 

lines without distal 11q loss treated with IR showed a modest G2/M accumulation compared to 

HNSCC cell lines with distal 11q loss and modest radiosensitivity. Inhibition of CHEK1 by 

siRNA in HNSCC cell lines without distal 11q loss did not cause G2/M accumulation (Parikh et 

al, unpublished data). Interestingly, after treating HNSCC cell lines with IR and the CHEK1 SMI 

we observed the opposite effect. When treated with IR only, HNSCC cell lines without distal 11q 

loss, i.e., UPCI:SCC099 showed increased accumulation of cells at G2/M (from 21% to 46%) as 

compared to the HNSCC cell lines with distal 11q loss (from 15% to 18%). After the 

administration of the CHEK1 SMI and IR, HNSCC cell lines without distal 11q loss showed a 

decreased accumulation of cells in G2/M (from 46% to 30) as compared to the HNSCC cell lines 

with distal 11q loss (from 18% to 14%). The administration of the CHEK1 SMI along with 

increasing doses of IR produced 20 to 30% decreased cell survival in all HNSCC cell lines.  

It is important to note these results while taking into consideration a couple of 

characteristics exhibited by these cell lines, the TP53 status and FHIT protein expression. 

Western blotting studies showed that UPCI:SCC078 has wild type TP53, while UPCI:SCC099 

exhibited decreased TP53 protein expression. Also, UPCI:SCC078 showed FHIT protein 

expression compared to decreased FHIT expression shown by UPCI:SCC099. Hu showed in 

epithelial cells from mouse kidney that Fhit -/- cells have an over-activated ATR-CHK1 pathway 

which allows them to accumulate in G2 after exposure to IR. The strong S and G2 response 

facilitated homologous recombination repair and radioresistance to Fhit -/- cells. After treatment 

with either ATR or CHEK1 siRNA, Fhit -/- cells were radiosensitized, concluding that the 
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radioresistant phenotype observed in Fhit -/- cells depends on a strong checkpoint response (Hu, 

et al. 2005). Parikh performed QPCR and western blotting for ATR and CHEK1 in 

UPCI:SCC099 showing that the ATR-CHK1 pathway was not over-activated (Parikh et al, 

unpublished data). It appears that decreased FHIT protein expression does not correlate well with 

an over-activated ATR-CHK1 pathway in HNSCC cell lines. Considering the TP53 protein 

expression in HNSCC cell lines, we see a correlation between the observed changes in the cell 

cycle and radiosensitization in UPCI:SCC099 (TP53 mutant) compared to UPCI:SCC078 (TP53 

wild-type) upon exposure to the CHEK1 SMI. These observations agreed with the expected 

specific effect of the CHEK1 SMI on TP53 mutant cancer cells (Blasina, et al. 2008). 

Finally, it could be possible that the high levels of chromosomal instability (an 

endogenous DNA damaging event) experienced by HNSCC cell lines (Reshmi and Gollin 2005) 

together with the administration of CHEK1 SMI may explain why we see decreased cell survival 

when the UPCI:SCC099 and 131 cell lines are exposed to the CHEK1 SMI alone. Our results 

demonstrate that a defective FA/BRCA pathway prevails in HNSCC cell lines derived from 

patients who smoked. These cell lines are mainly characterized by FANCD2 gene copy loss 

which correlates with decreased FHIT protein expression suggesting 3p14.2 loss. Thus, we 

propose that smoking may play a role in the observed decreased FHIT expression, 3p14.2 

deletion, FANCD2 gene copy loss and consequently, the defective FA/BRCA pathway. 

Several questions pertaining to this study remain unanswered which could have 

contributed to its completeness. First, does the decreased FANCD2 and RAD51 focus formation 

observed in HNSCC cell lines make these cells more sensitive to inter-strand crosslinking agents 

like MMC? This question could have been answered by performing a MMC sensitivity assay as 

previously described (Taniguchi, et al. 2002) with an expected increased sensitivity in those 
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HNSCC cell lines with decreased FANCD2 and RAD51 focus formation. Second, considering 

the heterogeneous cell population in each HNSCC cell line, are those cells exhibiting absent 

FANCD2 and RAD51 focus formation proficient for the components of the DNA repair complex 

of the FA/BRCA pathway, named BRCA1, BRCA2/FANCD1, FANCJ or FANCN? By using 

Laser Capture Microdissection (LCM) we could have been able to separate HNSCC cell lines 

that showed no FANCD2/RAD51 formation from those exhibiting foci formation and study them 

in parallel. This could provide a better understanding the heterogeneity of the cell population in 

each cell line, potentially useful information when considering therapeutic strategies in such 

complex cell populations. Therefore, further investigation of the FA/BRCA pathway in HNSCC 

is warranted. 
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6.0  PUBLIC HEALTH SIGNIFICANCE 

Head and neck squamous cell carcinoma (HNSCC) is a clear example of a type of cancer whose 

origin is caused by environmental factors like smoking and alcohol. Smoking itself is a serious 

public health issue that has been associated with chromosomal instability in HNSCC. 

Investigating the molecular mechanisms behind the influence of environmental factors in the 

genesis of cancer could improve our understanding of this enigmatic disease. The loss of the 

short arm of chromosome 3 (3p) is one of the most frequent events in HNSCC and it has been 

linked to smoking and the activation of the common fragile site, FRA3B. Our results 

demonstrate that FRA3B was likely activated in HNSCC cell lines which show decreased FHIT 

protein expression. This observation correlates with FANCD2 gene copy loss and abnormal 

DNA damage repair. The use of targeted therapy on cancer cells with deficient DNA damage 

repair could improve the currently available cancer treatment schemes. As an example, targeted 

inhibition of CHEK1, an important mediator of the G2/M cell cycle checkpoint, not only disrupts 

the previously mentioned checkpoint but also could disrupts the FA/BRCA pathway in cancer 

cells by inhibiting the phosphorylation of CHEK1 downstream targets like FANCE, FANCM 

and FANCD2, leading to chemo- or radiosensitization. Therefore, an abnormal FA/BRCA 

pathway could be used as a marker for selective use of targeted cancer therapy for HNSCC. 
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