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CELLULAR AND BIOCHEMICAL REGULATION OF CDC25A PHOSPHATASE BY 

NITROSATIVE STRESS 

Robert J. Tomko Jr., Ph.D. 

University of Pittsburgh, 2008 

 

 Numerous reports correlate nitric oxide (•NO) production with stalled S-phase 

progression, but the molecular mechanism(s) of cell cycle arrest remains elusive.  Paradoxically 

numerous human tumors are exposed to vast quantities of nitric oxide and its reactive byproducts 

in situ, yet they continue to grow and proliferate.  The dual-specificity phosphatase Cdc25A 

promotes cell cycle progression by dephosphorylating and activating cyclin-dependent kinases.  

Deregulation of Cdc25A is characteristic of human tumors, accelerates the cell cycle, and 

confers resistance to apoptosis, highlighting the importance of stringent Cdc25A control.  

Biochemical and structural analyses of Cdc25A indicate the potential for inhibition by S-

nitrosation of the catalytic cysteine, providing a linkage between •NO and cytostatic signaling.  

Thus, the overall hypothesis examined in this dissertation was that Cdc25A is a target and 

transducer of signaling by •NO and •NO-derived reactive species.  The specific aims were to: 1) 

probe the susceptibility of Cdc25A to enzymatic regulation by •NO-derived reactive species; 2) 

examine regulation of Cdc25A protein in nitrosatively challenged cells; and 3) determine 

whether Cdc25A activity was limiting for S-phase progression in nitrosatively-challenged tumor 

cells.  My studies identified novel mechanisms controlling Cdc25A abundance and activity.  S-

Nitrosothiols rapidly S-nitrosated and inactivated Cdc25A in vitro, and Cdc25A activity was 

restored by reductants.  Generation of nitrosative stress in cells either by iNOS-derived •NO or 
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the cell-permeable S-nitrosating agent S-nitrosocysteine ethyl ester (SNCEE) caused translational 

inhibition of Cdc25A via hyperphosphorylation and inhibition of the eukaryotic translational 

regulator eIF2α.  Although iNOS-derived •NO and SNCEE inhibited DNA synthesis coincident 

with Cdc25A loss, restoration of Cdc25A activity in nitrosatively-challenged cells did not alter 

DNA synthesis inhibition, distinguishing nitrosative inhibition of DNA synthesis from the 

canonical intra-S-phase checkpoint.  SNCEE decoupled Cdc25A from ASK-1 and sensitized 

cells to chemotherapeutic-induced apoptosis, suggesting that Cdc25A suppression by nitrosative 

stress may lower the apoptotic threshold in nitrosatively-challenged cells by priming ASK-1 for 

activation.  In summary, these studies describe novel regulation of Cdc25A translation and 

activity, and a model wherein selective inhibition of Cdc25A phosphatase-dependent and 

independent activities can occur under nitrosative stress, and implicate Cdc25A as a regulator of 

apoptotic threshold following nitrosative insult via priming of ASK-1.   
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PREFACE 

 

When life gives you lemons, make lemonade, and then throw it in the face of the person 

who gave you the lemons until they give you the oranges you originally asked for. 

--Phil Hartman’s character Bill McNeal from News Radio 

 

 

 

 

 

All the effort you are making will ultimately pay off. 

--Fortune from a Fuel & Fuddle fortune cookie 

 

 

 

 

 

 

This thesis is dedicated to my parents, who taught me “don’t” and “shouldn’t” but never “can’t.” 
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1.0  INTRODUCTION 

1.1 GENERAL INTRODUCTION: CANCER AND CELL DIVISION 

In 2008, it is estimated that more than 1.4 million United States citizens will be diagnosed with 

cancer,1 more than the populations of 11 of the 50 states.2  Cancer is the second largest killer in 

the U.S. (over 560,000 deaths predicted for 2008) and causes 1 in 4 total deaths, with more than 

1500 deaths per day.3  This high incidence of disease strains families, medical resources, the 

healthcare system, as well as the economy.  Thus the impetus to eradicate cancer is clear.   

Before malignancies can be effectively controlled, it is necessary to understand the 

molecular mechanisms by which cancer evolves.  The origins of cancer reside in DNA; 

accumulation of mutations in the cellular genome due to normal and aberrant cellular processes 

and environmental exposures eventually override normal cell signaling to promote malignancy. 

Although the term cancer envelops many physical manifestations with diverse origins, all 

cancerous cells display at least one common phenotype:  uncontrolled or aberrant proliferation.  

Cancer is by nature a hyperproliferative disease; cancer cells undergo cell division either in the 

absence of growth signals or in the presence of anti-growth signals.  Although much progress has 

                                                 

1 American Cancer Society:   2008 Facts and Figures (http://www.cancer.org/downloads/STT/2008CAFFfinalsecured.pdf) 

2 United States Census Bureau:  Annual population estimates 2000 to 2007 (http://www.census.gov)  

3 American Cancer Society:   2008 Facts and Figures (http://www.cancer.org/downloads/STT/2008CAFFfinalsecured.pdf) 

 1 



been made in the understanding of cancer biology, the origins and targets of antigrowth signaling 

are not fully elucidated, and the effects of aberrant protein expression and activity on antigrowth 

signaling remain to be explored.  Thus, the purpose of the work described herein is to provide 

novel insight into the mechanisms by which antigrowth signals elicit their effects, and to 

examine potential mechanisms by which insensitivity to these signals is acquired.   

1.2 THE MAMMALIAN CELL DIVISION CYCLE 

The evolutionary survival of an organism is dependent upon successful transmission of its 

genetic makeup from one generation to the next.  The primary mechanism by which genetic 

material is passed down is by replication and segregation of this material in the form of 

chromosomes equally to the daughter cells originating from the dividing parent cell.  For 

successful cell division, the cell must therefore generate an exact copy of its genome, and then 

divide those copies between the daughter cells.  This is the function of the mammalian cell cycle. 

The mammalian cell cycle is divided into four principle phases, G1, S, G2, and M.  In G1, a 

newly divided cell accumulates energy and nutrients and senses its surroundings to commit to 

cell division, and readies DNA replication complexes at various sites around the genome.  

During S, the genome is replicated, as are cellular components such as centrosomes that are 

necessary for division.  G2 provides time to sense and correct any errors in DNA replication not 

repaired during S, and to prepare for mitosis.  Finally, in M-phase, the cell segregates its 

components, and physically cleaves into two daughter cells identical in makeup to each other and 

to the parent cell.   
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1.3 THE CYCLIN-DEPENDENT KINASES AS THE DRIVERS OF THE CELL 

CYCLE 

The precise timing of cell cycle events is critical to allow proper chromosomal duplication and 

segregation before cytokinesis, and failure to control these processes induces DNA damage and 

inheritance of mutations.  To ensure strict control of cell cycle progression, there are a number of 

redundant yet independent mechanisms controlling the activity of positive cell cycle regulators.  

Many of these mechanisms target the cyclin-dependent kinase (Cdk) family.  The Cdks are 

serine-threonine kinases conserved throughout eukaryotes that act to phosphorylate cell cycle 

phase-specific proteins to promote movement through specific cell cycle phases.  The Cdk 

family consists of 11 currently known members, each of which requires binding of a cyclin 

partner for activity, with the exception of Cdk5, which is activated by binding of non-cyclin 

proteins.  Cdks harbor a number of cellular roles, including protein activation, regulation of 

transcription, RNA splicing, regulation of neuronal development, apoptotic signaling, 

centrosome duplication, but were originally identified for their role in cell cycle progression.   

 Cdks 1, 2, 4, 6 and 7 are considered cell cycle-regulating Cdks, and each functions 

differentially to promote cell division.  Cdk4 and/or 6 provide the initial stimulus of cell cycle 

progression in response to extracellular nutrient-sensing, whereas Cdk2 provides the driving 

force through the G1-S transition, S-phase and early G2.  Cdk1 (called Cdc2 in yeast) promotes 

progression through late G2 and mitosis, and its destruction is a prerequisite for cytokinesis.  

Cdk7 is also known as Cdk-activating kinase (CAK) and is required for full activation of other 

Cdk complexes as described below.    

 Cdk activity is regulated by phosphorylation and protein-protein interactions.  These 

regulatory events can be activating or inhibitory.  The first step in Cdk regulation is mediated  

 3 



 

Figure 1.  Regulation of the mammalian cell cycle by Cdks.   

The mammalian cell cycle is composed of four phases, G1, S, G2, and M phase.  The approximate duration 

of each phase relative to the time required for a total cell cycle is depicted by the size of the pie fraction of the circle.   

The Cdks display distinct, but overlapping temporal activities and substrate specificities.  Mitogens provide the 

initial stimulus for cell cycle progression by promoting the production of Cyclin D, which subsequently binds and 

activates Cdk4, which in turn phosphorylates and dissociates Rb from E2F, allowing transcription of cyclin E and 

genes required for DNA synthesis.   
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through activating (cyclins) and inhibitory (Cdk inhibitors, CdkIs) protein-protein interactions.  

Cdks readily bind cyclins in the absence of CdkIs, which prime them for further stimulatory 

processes.  Binding of CdkIs to Cdks or Cdk/cyclin complexes can either sequester Cdks from 

cyclins or inhibit their activity.  CdkIs are divided into two groups, based on sequence homology 

and binding specificity.  The Cip/Kip family, which encompasses the p21CIP and p27KIP 

inhibitors, bind to E-type and D-type Cdk/cyclin complexes and inactivate them (1).  The second 

group of CdkIs is known as the INK4 family, and encompasses p15, p16, p18 and p19-type 

CdkIs (1).  These CdkIs bind only to Cdk4 or Cdk6 and not to Cdk/cyclin complexes (1).  Thus 

the initial step in Cdk activation requires proper and specific binding to its cognate cyclins, and 

removal of any CdkIs by preoteasomal degradation or pre-association (in the case of INK4 

family CdkIs) of Cdks with other Cdk-binding proteins (1, 2).   

Activation of Cdk kinase activity after cyclin binding is achieved through a number of 

sequence-specific phosphorylation and dephosphorylation steps, initiated by binding of the 

cyclin cofactor (Figure 2).  Cyclin binding partially activates Cdk activity and makes it a 

substrate for inhibitory phosphorylations at Thr14 and Tyr15 (human Cdk1 nomenclature) by the 

Wee1 and Myt1 kinases (3-6).  Phosphorylation at these residues promotes activating 

phosphorylation at Cdk1-Thr161 (Thr160 in Cdk2) by the Cdk-activating kinase, although the 

Thr161-phosphorylated complexes are still inactive; the inhibitory phosphorylations at Thr14 

and Tyr15 must first be removed (7).  Phosphorylation of Thr161 by the Cdk-activating kinase is 

inhibited by association of both the INK4 and Cip/Kip family proteins with Cdks, adding a 

further regulatory role for protein-protein interaction in Cdk activation (8).  The final step 

promoting full Cdk activation is removal of the inhibitory Thr14 and Tyr15 phosphates by the 

Cdc25 dual-specificity phosphatases.   
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1.3.1 The Cdc25 family of dual-specificity phosphatases 

The Cdc25 phosphatase was first identified in the fission yeast Saccharomyces pombe as the 25th 

gene discovered that regulated the cell division cycle (9).  Mutation of the Cdc25+ gene resulted 

in overly large yeast cells, characteristic of failure to undergo mitosis (9).  Conversely, 

introduction of extra copies of the Cdc25+ gene caused mitotic initiation at reduced cell size 

similar to the Wee+ phenotype, so named because yeast lacking Wee+ divided before full cell 

size had been achieved (10-12).  Indeed, mutation of both Cdc25 and Wee genes resulted in 

normal mitoses, suggesting opposing roles for these proteins (9).  This phenotypic antagonism of 

Cdc25+ loss to the Wee+ gene provided some of the evidence that later identified Cdc25+ as a 

phosphatase, as Wee+ encoded a protein kinase (13).  Clues to the function of Cdc25 were 

originally derived from genetic studies in yeast that determined mutation of Cdc25+ could 

complement a Cdc2 (the yeast homolog of human Cdk1) mutant that was unable to drive mitosis 

(14, 15) and that Cdc25 mutation attenuated Cdc2 kinase activity (16).  Notably, Cdc25 

expression was found to peak at mitosis, consistent with a role in mitotic induction (15).  

Arguably the most important evidence that Cdc25 was a phosphatase, however, came from 

studies of p34Cdc2 showing that dephosporylation of p34Cdc2-Tyr15 is required for mitotic initiation 

(17).  A Tyr15Phe mutation in p34Cdc2 that ablates phosphorylation but resembles tyrosine 

bypasses the requirement for functional Cdc25, suggesting a role for Cdc25 in dephosphorylating 

this residue.  Early reports suggested that Cdc25+ encodes a protein that regulates the 

phosphatase activity of another protein, thus controlling p34Cdc2 phosphorylation and activity as 

Cdc25+ does not bear significant sequence homology to traditional tyrosine phosphatases (18); in 

1991 however, four independent groups reported in rapid succession that the Cdc25 gene 

products from different organisms (Homo sapiens, Drosophila, Xenopus) each harbors 
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phosphatase activity directed toward p34Cdc2 (19-22).  These studies in different organisms 

highlighted the cross-species conservation of the eukaryotic cell cycle machinery, and brought 

Cdc25 to the spotlight in cell cycle regulation.   

 

Figure 2.  Activation of the Cdks is a multi-step process.   

Activation of Cdks is tightly controlled by activating (T161) and inhibitory (T14, Y15) phosphorylation, 

and protein-protein interactions with cyclins.   

1.3.2 The human Cdc25 phosphatases 

Since the initial studies in yeast were performed, three isoforms of Cdc25 have been identified in 

humans:  Cdc25A, B and C (23, 24).  Cdc25C was originally discovered using a degenerate 

primer PCR approach based on the yeast Cdc25+ gene (23), whereas Cdc25A and Cdc25B were 

identified using the same approach based on the human Cdc25C gene sequence (24).  All three 

isoforms complement the temperature-sensitive Cdc25+ mutants in yeast, and thus were 

considered human Cdc25s on the basis of their homology and activity (23, 24).  Each human 

Cdc25 isoform is encoded by a distinct gene, located on a different chromosome:  Cdc25A maps 
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to 3p21, Cdc25B to 20p13, and Cdc25C to 5q31 (25-27).  It remains unclear how and why 

humans (and mammals) evolved three isoforms.  Notably, each gene can also generate mRNA 

splice variants (two for Cdc25A, three for Cdc25B, and five for Cdc25C), further increasing the 

complexity of Cdc25 activities in vivo (28, 29).   The determinants and patterns of expression of 

the splice variants’ protein products, however, remains unexamined.   

The three human Cdc25 isoforms share sequence homology both with the Cdc25s from 

other species as well as with each other, although this homology is limited to the C-terminal 

portion of the protein.  Thus, the human Cdc25 proteins are generally structurally divided into 

two primary domains (Figure 3),  the N-terminal domain, which shares little (if any) sequence 

homology among isoforms and the C-terminal domain, which houses the catalytic activity of the 

protein and has greater than 40% identity among the human isoforms (24).  The conserved 

protein sequence LIGD marks the end of the N-terminal domain and the beginning of the 

catalytic domain (30).   

The N-terminal region of the human Cdc25s is a regulatory domain not necessary for 

catalytic activity; rather, deletion of the N-terminus is reported to stimulate activity in in vitro 

phosphatase assays towards the small molecule substrate O-methylfluorescein phosphate 

(OMFP) (30).  The N-terminus of each Cdc25 isoform harbors a nuclear localization sequence 

(NLS) and at least one nuclear export sequence (NES), and reports describe nuclear-cytoplasmic 

shuttling for each (31-34).  In addition to the NES and NLS, there exist numerous 

phosphorylation sites in the N-terminus of each Cdc25 isoform.  The effects of these post-

translational modifications discovered to date fall into three categories:  regulation of 

localization; regulation of protein stability; and regulation of phosphatase activity.  The former is 

discussed here; the latter two will be discussed below.   
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 Each Cdc25 N-terminus contains consensus sequences for mode I-type binding sites for 

14-3-3 proteins (35-38).  The 14-3-3 family of proteins comprises phosphoserine and 

phosphothreonine-binding proteins that act as regulators of signaling proteins by interacting with 

and altering their activities or intracellular locations (36).  Indeed, all three Cdc25 isoforms 

interact with 14-3-3 proteins in cells, primarily in response to cellular stress or DNA damage (35, 

37, 39).  Some reports suggest however that binding of 14-3-3 isoforms to Cdc25B may be 

independent of phosphorylation, although the possibility that more than one 14-3-3 binding site 

exists on Cdc25B has not been ruled out (38, 39).   

Current knowledge of the N-terminal domain of the Cdc25s is derived almost entirely 

from mutagenesis, biochemical regulation of phosphorylation and primary protein sequence 

information, as no crystal structure of the regulatory domain exists for any human Cdc25.  The 

C-terminal catalytic domain however has been crystallized at better than 2.5 Å resolution for 

both Cdc25A and Cdc25B (40-42).  Topologically, the Cdc25 catalytic domain is a distinct class 

most similar to the sulfur transfer protein rhodanese, and does not harbor significant overall 

homology to any other phosphatases, including other dual-specificity phosphatases (40, 42).  

Superimposition of the two structures indicates near identical folding in all conserved regions 

with the only significant degeneration occurring in the extreme C-termini (40).  Whereas the 

Cdc25B C-terminal tail (residues 530+) folds back upon itself, perhaps to aid in substrate 

binding, the Cdc25A tail (residues 488+) is directed away from the active site, leaving it largely 

exposed (40, 42).   

 The active site of the enzymes is relatively shallow with no auxiliary loops extending 

over the active site, which distinguishes it from that of other tyrosine phosphatases (40, 42).  

This presumably is to facilitate access of the enzyme to the less obtrusive phosphoserine and  
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Figure 3.  Structural comparison of the three human Cdc25 isoforms.   

The human Cdc25 phosphatases are encoded by distinct genes, yet show sequence and structural similarity.  

The proteins are comprised of an amino-terminal regulatory domain (beige) and a carboxy-terminal catalytic domain 

(brown), the beginning of which is marked by the protein sequence L-I-G-D.  The regulatory domain of each 

contains at least one verified NLS (triangles) and one verified NES (asterisks), as well as 14-3-3 binding sites 

separating the NLS and NES (the underlined serine residue is the phosphoserine in the 14-3-3 binding motif).  The 

highly conserved tyrosine phosphatase motif HCX5R (where X is any amino acid) is displayed in bold, with the 

catalytic cysteine in larger type.  The full-length splice variant is depicted for each isoform.  Modified from (30). 
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phosphothreonine residues.  Both structures demonstrate an active site organization nearly 

identical to that found in other tyrosine phosphatases with the absolutely conserved canonical 

HCX5R catalytic motif (where X is any amino acid) organized in a loop between a β-strand and 

an α-helix.  Curiously, the crystal structure of Cdc25A failed to bind sulfate in its active site, 

whereas the Cdc25B structure readily bound both tungstate and sulfate (40, 42).  Whether this is 

purely an artifact or of biochemical significance remains unknown.   

The catalytic mechanism of Cdc25 phosphatase has been studied in great detail by the 

laboratory of Johannes Rudolph.  The catalytic mechanism of the Cdc25s is enzymatically shared 

with other dual-specificity and tyrosine phosphatases, but Cdc25 preferentially dephosphorylates 

a monoanionic phosphate group as opposed to the bisanionic groups favored by other 

phosphatases (43).  The phosphosubstrate is bound so that the charge of the phosphate is borne 

by the amide backbones and the positively charged arginine sidechain of the HCX5R motif (43).  

The enzyme dephosphorylates the substrate using a two-step mechanism characteristic of 

tyrosine phosphatases (Figure 4) in which the first step is nucleophilic attack of the phosphorus 

atom of the phosphate moiety by the catalytic thiolate, forming a covalent phosphocysteine 

intermediate.  The second step is hydrolysis of this phosphocysteine intermediate to release 

organic phosphate and regenerate the catalytic thiolate.  The rate constants have been determined 

such that phosphate is removed from Thr14 before Tyr15 (43).  Aside from the catalytic 

cysteine, a catalytic acid is required to protonate the tyrosyl, threonyl or seryl oxygen, making it 

a good leaving group.  No residue to fulfill this role has  been identified on Cdc25B, and it is 

postulated that the residue may reside on the Cdk2/cyclin A substrate because no acidic amino 

acid residue is perched appropriately in the Cdc25B crystal structure and pH dependence of 
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Cdc25B activity consistent with protonation of the substrate leaving group is observed toward 

Cdk2/cyclin A but not toward artificial substrates (44).   

1.3.3 Regulation of the cell cycle by the Cdc25s 

1.3.3.1 Basal activities 

Regulation of the mammalian cell cycle requires the cumulative efforts of all three 

phosphatases, although their expression and activities are cell cycle phase-dependent (Figure 5).   

Initiation of the mammalian cell cycle occurs in response to mitogen-stimulated expression of 

cyclin D, which activates Cdk4 complexes.  There is limited evidence for a role of the Cdc25s in 

regulating Cdk4 activity, although tyrosine dephosphorylation of Cdk4Tyr17 is a prerequisite for 

Cdk4 activation, and that this residue becomes phosphorylated in response to genotoxic stress 

(45).  Cdk4Tyr17 dephosphorylation appears to be mediated by Cdc25A, as microinjection with 

Cdc25A antibodies prevents accumulation of rat fibroblasts in mitosis 22 hours after 

synchronization and expression of a Cdk4Tyr17Phe mutant that cannot be phosphorylated bypassed 

this requirement for Cdc25A (45).  Also, incubation of immunoprecipitated Cdk4 or Cdk6 with 

recombinant Cdc25A results in an increase in Cdk4/6 kinase activity toward Rb in vitro (46), 

suggesting that dephosphorylation of Cdk4/6 may be required for their activity towards Rb in 

cells.   

Cdc25A acts as the main regulator of the G1-S transition by dephosphorylating and 

activating Cdk2/cyclin E complexes (46).  Cdc25A can dephosphorylate Cdk2/cyclin E and 

Cdk2/cyclin A both in vitro and in vivo (46). Several reports have described shortening of G1 in 

response to Cdc25A overexpression, and accelerated G1-S transition induced by Cdc25A 

correlates with increased activity of cyclin E- and cyclin A-associated kinase activity (46, 47).  
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Indeed, microinjection of Cdc25A antibodies into cells blocked entry into S-phase (48, 49) 

consistent with a requirement for Cdc25A in the G1-S transition.  Upon activation of 

Cdk2/cyclin E, a positive feedback loop is initiated in which Cdk2/cyclin E phosphorylates 

Cdc25A, increasing its activity until the cell is irreversibly commited to DNA synthesis (48).  It 

should be noted that the specific site(s) of phosphorylation by Cdk2 complexes remains 

unknown, as does the identity of the phosphatase(s) that remove the phosphorylation(s), should 

such a phosphatase exist.   

Initially, S-phase was thought to be controlled solely by Cdc25A, as Cdc25B and 

Cdc25C had been reported to control dephosphorylation of Cdk1/cyclin B, and Cdc25A 

dephosphorylated the S-phase Cdk/cyclin complexes.  However, later reports illustrated potential 

roles for these phosphatases in S-phase progression as well.  Cdc25B dephosphorylates phospho-

Thr14 and phospho-Tyr15 on Cdk2/cyclin E and Cdk2/cyclin A complexes (50, 51).  In HeLa 

cells, Cdc25B levels accumulate in S-phase and antisense oligonucleotides toward Cdc25B cause 

S-phase delay (52).   It remains unclear however whether this represents a cell-type specific 

effect, because microinjection of antisense Cdc25B oligonucleotides into Fs68 fibroblasts or 

Cdc25B antibodies into Hs68 cells failed to suppress DNA synthesis (51, 53).  Similarly, some 

reports have indicated that Cdc25C is required for S-phase progression, as Cdc25C antisense 

oligonucleotides prevented DNA synthesis in Fs68 fibroblasts, and reintroduction of Cdc25C by 

microinjection restored it (53), while other reports indicated that microinjection of Cdc25C 

antibodies into cells failed to elicit any effect (48, 51).  These biochemical experiments are 

supported by the observations that Cdc25B and/or C knockout mice (described below) display no 

obvious S-phase defect (54-56).   
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Regulation of G2 and M events by the Cdc25s is complex, requiring the cumulative but 

distinct temporal and spatial efforts of all three phosphatases.  Cdc25A and B appear to be 

primarily responsible for movement through G2, as overexpression of either these phosphatases 

in S or G2 cells triggers mitotic initiation whereas Cdc25C overexpression alone does not (57, 

58).  In agreement, cells with reduced Cdc25A or B levels are delayed in G2/M progression (59). 

The current model of Cdc25-dependent mitotic initiation requires activation of differentially 

located Cdk1/cyclin B by different phosphatases.  Cdk1/cyclin B accumulates in the cytoplasm 

during interphase although Cdk1 is distributed throughout both the cytoplasm and the nucleus 

(60, 61).  Prior to mitosis, Cdk1/cyclin B accumulates at the centrosome, where the initial 

activation of this complex occurs (60-62).  Cdc25B activity peaks before that of Cdc25C (51), 

and is responsible for initial Cdk1/cyclin B activation at the centrosome (59).  Activation of 

centrosomal Cdk1/cyclin B initiates a positive feedback loop in which phosphorylation of 

Cdc25A and Cdc25C by Cdk1/cyclin B stimulates their activities and, in the case of Cdc25A, 

stabilizes the normally labile protein (57, 63).  These phosphatases in turn promote full activation 

of nuclear and cytoplasmic Cdk1/cyclin B, initiating mitosis (57).  This model is supported by 

evidence that Cdk1/cyclin B phosphorylates Cdc25A and Cdc25C and that mutation of these 

phosphorylation sites prevents mitotic Cdc25A stabilization (57, 63).  In agreement with a 

function for all three Cdc25 isoforms in mitosis, depletion of Cdc25A with siRNA decreases 

Cdk1/cyclin B activation and inhibits progression into mitosis (57), while microinjection of 

antibodies against Cdc25C or expression of a catalytically inactive Cdc25C mutant inhibits 

mitotic entry in HeLa cells (64, 65).  Similarly, Cdc25B suppression by siRNA in HeLa cells 

delays mitotic entry (59).  Also, microinjection of pre-metaphase Hs68 cells with Cdc25B 

antibodies inhibits cell division, and injection with GST-Cdc25B reinstates cytokinesis (51).   
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Figure 4.  Catalytic mechanism of Cdc25. 

The Cdc25 phosphatases dephosphorylate their substrates using a two-step mechanism that is conserved 

among tyrosine phosphatases.  In the first step, the catalytic thiolate (Cys-S-) attacks the nucleophilic phosphorous 

atom of the phosphosubstrate, generating a covalent bond.  Protonation of the tyrosyl, threonyl, or seryl oxygen by 

the catalytic acid (Acidic AA) generates a good leaving group, and the substrate is expelled from the active site, 

leaving a thiophosphate intermediate.  In the second step, the catalytic acid, now a base, abstracts a proton from a 

water molecule, promoting nucleophilic attack of the phosphorous atom, and release of organic phosphate with 

regeneration of the catalytic thiolate.  The identity of the catalytic acid remains unknown, although some evidence 

suggests it may reside on the substrate (44).   
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Aside from regulation of Cdks in the cell cycle, there is recent evidence accumulating 

that the Cdc25s may have distinct roles in additional cellular processes required for cell division, 

although substantial data exists to support this hypothesis only for Cdc25B.   Aside from 

initiation of Cdk1/cyclin B activation, Cdc25B is responsible for the proper formation and 

separation of the centrosome-linked microtubule networks.  Accumulation of Cdc25B in the 

cytoplasm triggers mitotic microtubule nucleation at the centrosomes (64, 66) whereas treatment 

of HeLa cells with Cdc25 inhibitor BN82685 or with Cdc25B siRNA alters microtubule spindle 

assembly, resulting in lagging chromosomes, failure to localize γ-tubulin to the centrosomes and 

centrosomal separation delay (59, 66, 67).  Cdc25B also appears to regulate centrosome 

duplication as overexpression of catalytically active Cdc25B results in centrosome 

overreplication (66).  Preliminary evidence suggests Cdc25A may regulate chromatin 

condensation, consistent with its role of activating Cdk1/cyclin B in the nucleus, as Cdc25A 

siRNA increases the time between centrosome separation and DNA condensation (59).  Notably, 

active Cdc25C is located microscopically and biochemically in the Golgi apparatus and the 

centrosomes, although a function for Cdc25C at these organelles has not yet been uncovered (68, 

69).   

1.3.3.2 The Cdc25s as regulators of cell cycle checkpoints 

The human genetic code contains more than 3 billion base pairs of DNA.  Faithful 

replication and segregation of this blueprint equally into daughter cells without generation of 

errors or the accumulation of damage is essentially impossible.  Each cell experiences 

spontaneous hydrolysis of approximately 18,000 purines, 100 to 500 spontaneous cytosine 

deaminations and greater than 1200 methylations (both intentional and not) from endogenous 

sources every day at 37oC (70).  Generation of intracellular free radicals, exposure to ultraviolet  

 16 



 

Figure 5.  Regulation of Cdks and the cell cycle by the Cdc25 phosphatases.   

The Cdc25 phosphatases dephosphorylate and activate Cdk/cyclin complexes in distinct but overlapping 

phases of the cell cycle.  Cdc25A may be required for activation of Cdk4 complexes via dephosphorylation of 

Cdk4Tyr17.  Cdc25A is responsible for the G1-S transition by activating Cdk2/cyclin E complexes.  Recent evidence 

suggests that Cdc25A, B, and C combine their efforts to promote DNA synthesis in S-phase, and Cdc25A and B 

appear necessary for progression through G2 up to the G2-M transition, where the cumulative efforts of all three 

Cdc25 isoforms are required via distinct spatial and temporal activities for the initiation of mitosis.  Question marks 

indicate activities that are supported by limited experimental evidence, and dotted arrows illustrate known positive 

feedback phosphorylations by Cdk/cyclin complexes.  The T-bar from Cdk1/cyclin A to Cdc25B represents 

inhibitory phosphorylation that targets Cdc25B for ubiquitin-proteasomal degradation, thus limiting its activity.   
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and ionizing radiation, as well as numerous environmental insults such as cigarette smoke, 

radioactive materials and manmade chemicals also contribute to the constant assault suffered by 

DNA.  The genome itself even encodes regions that are difficult to replicate (due to nucleotide 

repeats and repetitive DNA elements, and perhaps DNA inflexibility/conformation); attempts to  

replicate these sections or sections of damaged DNA can result in accumulation of mutations that 

are passed down to daughter cells upon cell divisions; thus, it is necessary to find and correct 

these lesions before cell division occurs.   

To ease this process, cells have evolved several so-called “cell cycle checkpoints” to slow 

or stop cell cycle progression in cells either with damage to DNA or other physiological stresses 

that challenge cell division (for example, nucleotide depletion, replication fork stalling, aberrant 

DNA structures, failure to attach chromosomal kinetochores to the mitotic spindle), allowing 

time to rectify the stress(es).  There exist several cell cycle checkpoints and they are named after 

the phase(s) of the cell cycle in which they act, namely the G1, S-phase, G2/M and M-phase 

checkpoints.   

 Each of these checkpoints is triggered by a cascade of protein-DNA and protein-protein 

interactions, and kinase activities (Figure 6).  The process is initialized by the recognition of 

aberrant DNA, which in turn promotes binding of mediator proteins and activation of 

transducing checkpoint (Chk) kinases.  Activation of the Chk kinases results in phosphorylation 

of target proteins that induce cell cycle arrest.  As the Cdks are one of the major driving forces of 

the cell cycle, they are a target for inhibition by the checkpoints.  Inhibition of the Cdks is 

mediated primarily by inactivation of Cdk-associated Cdc25 activity, resulting in Thr14- and 

Tyr15-hyperphosphorylated Cdks.  
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Figure 6.  The DNA Damage Checkpoint Cascade. 

Sensing of and response to DNA damage in the form either of DNA breaks (single- and double-stranded), 

mutated or mismatched bases, and replication stress (stalled or collapsed replication forks) is mediated by DNA-

binding proteins that associate with mediators, promoting phosphorylation and activation of the transducer kinases 

Chk1 and Chk2.  These kinases in turn phosphorylate target proteins, including the Cdc25s, inactivating them either 

by phosphorylation-dependent sequestration by 14-3-3 proteins, or by proteolytic degradation.  In addition to Chk 

kinase-mediated inactivation of the Cdc25s, p53 can be phosphorylated and thus stabilized either by the Chk kinases 

or directly by the DNA damage-sensing kinases ATM and ATR.  Adapted from (83). 
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Targeting of the Cdc25s by checkpoint initiation is biphasic, with a rapid phase (within 

an hour) and a sustained phase that takes several hours to initiate.  Rapid inactivation of the 

Cdc25s following checkpoint activation is mediated by phosphorylation.  Following checkpoint 

initiation, the Chk kinases, p38, glycogen synthase kinase 3β (GSK-3β) and MAPKAPK-2 can 

phosphorylate the Cdc25s at specific residues that regulate their stability and intracellular  

location (71-76).   The mechanism by which the Cdc25s are inactivated following checkpoint 

initiation differs somewhat among isoforms: Cdc25A protein is rapidly degraded (71, 72, 74, 76-

80) in a p53-independent fashion (72), whereas Cdc25B and Cdc25C are phosphorylated on 

serine (Ser) residues (Ser309 in Cdc25B (39), Ser216 for Cdc25C (35)), generating binding sites 

for 14-3-3, which sequesters Cdc25B and Cdc25C away from their Cdk substrates (35, 

75)(Figure 7).  Cdc25C protein degradation via the ubiquitin-proteasome pathway can be 

triggered in response to some agents, although the mechanism of targeting is poorly understood 

(81, 82).   Sustained suppression of Cdc25 activity following checkpoint activation is mediated at 

the level of gene transcription.  Following DNA damage, p21 binds and represses transcription 

from the Cdc25A promoter (84); a similar event occurs in response to hypoxia, in which p21 

displaces c-Myc from the Cdc25A promoter (85).   

p53 also requires a cell cycle-dependent element (CDE)/cell cycle homology region 

(CHR) site distal to the p53 binding site, and does not directly bind p53 (86).  Inhibition through 

this site is independent of the p53 binding site and vice versa.  Repression through the CDE/CHR 

site appears to be regulated by p21-dependent and p21-independent mediators (86).  There are no 

reported transcriptional suppressors of Cdc25B following checkpoint activation.  Curiously, 

Cdc25B protein levels are rapidly increased following checkpoint initiation via a post-

transcriptional mechanism, and this appears to regulate cell cycle reentry (87, 88).   
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1.3.4 Cdc25A as the master regulator of cell cycle progression 

Although the conventional cell cycle paradigm prescribes essential roles for each Cdc25 isoform, 

recent studies have questioned the necessity of Cdc25B and C in the mammalian cell cycle.  

Cdc25A is the only reported isoform active in G1, implying Cdc25B and C are not necessary for 

early cell cycle events.  Cdc25A knockout mice are not viable and fail to develop beyond the 

blast phase (89).  In contrast, Cdc25B mice progress normally through development, and the 

males are completely absent of a phenotype; females are sterile due to their inability to activate 

maturation-promoting factor (ie, meiotic cell Cdk1/cyclin B) but otherwise normal (56).  

Similarly, Cdc25C-null mice are viable and apparently normal (54).  Subsequently Cdc25B/C- 

null mice were generated from Cdc25B-null males and Cdc25C-null females, and these too 

display no apparent phenotype (55).  This implies that Cdc25A alone is sufficient to sustain the 

mammalian cell cycle.  

In favor of a model where Cdc25A is the primary essential regulator of cell cycle 

progression, Cdc25A+/- mouse embryonic fibroblasts (MEF) display higher levels of phospho-

Cdk1/2Tyr15 and have a shortened proliferative lifespan, although levels of Cdc25B and C are 

similar between Cdc25A+/+ and Cdc25A+/- MEFs (89).  These hemizygous MEFs also 

demonstrate difficulty recovering from G2 checkpoint, suggesting either that Cdc25A activity is 

limiting for cell cycle reentry from checkpoint (89).  Collectively, the data from knockout mouse 

models and heterozygous MEFs indicate that Cdc25A is indispensable for normal cell cycling, 

whereas Cdc25B and C are not necessary.   
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Figure 7.  Regulation of the Cdc25s by checkpoint signaling.   

Induction of cellular stress activates the Chk kinases and/or p38, GSK-3β, and MAPKAPK-2, which in turn 

phosphorylate each Cdc25 isoform on specific residues (see text for details).  Phosphorylation of Cdc25A targets it 

for ubiquitination by the SCFβ-TrCP complex and subsequent proteasomal degradation.  Phosphorylation of Cdc25B 

and Cdc25C completes 14-3-3 binding sites, promotes 14-3-3-binding, and sequestration of the phosphatases away 

from their Cdk substrates.  The culmination of these events is hyperphosphorylation and inactivation of Cdk 

complexes, slowing or stopping the cell cycle.   

 

1.3.4.1 The role of Cdc25A in malignancy 

Several hallmarks of human cancers have been described (90).  Acquisition of these 

phenotypes is essential for the successful and continued proliferation of the cancerous cells in the 

host.  These characteristics include a limitless replicative potential, resistance to anti-growth 

signals, and resistance to apoptosis (90).  As an essential cell cycle regulator, aberrant control of 

Cdc25A has the potential to provide cells with the means to escape anti-growth signals and 

proliferate inappropriately.  Examination of the available clinical data supports this hypothesis 

 22 



(91).  Cdc25A is overexpressed in numerous human cancers derived from a distinct array of 

cellular tissues, including esophageal, thyroid, breast, ovarian, non-small cell lung, colorectal, 

laryngeal, hepatocelluar, head and neck, and non-Hodgkin’s lymphoma (reviewed in (91)).  

Indeed, in many cases, Cdc25A levels correlate with poor prognosis or particularly aggressive 

cancers (91).   

A particularly insightful study in 2003 identified several distinct modes of Cdc25A 

deregulation in breast cancer cell lines (92).  Although the levels of Cdc25A mRNA were largely 

unaltered and only slightly (two to three-fold) higher than in normal human mammary epithelial 

cells in the most severe cases, the protein levels of Cdc25A were as much as 49 times higher, and 

the phosphatase activity as much as nine times higher (92).  This indicates that deregulation of 

basal protein levels generally occurs at a post-transcriptional level, and that protein levels and 

phosphatase activity are not necessarily correlated one-to-one.  Notably, Cdc25A was not 

destroyed in response to ionizing radiation (IR) in some of these cell lines, indicating that 

deregulation of the checkpoint signaling machinery may also contribute to Cdc25A deregulation 

in breast cancer (92).   

Although these studies provide correlative evidence of a role for Cdc25A in 

carcinogenesis, several studies have provided more direct evidence for Cdc25A deregulation 

contributing to tumor formation (Figure 8).  Early studies showed that expression of human 

Cdc25A could cooperate with oncogenic RasG12V or Rb loss to transform rat fibroblasts as 

assayed by anchorage-independent growth in soft agar and loss of contact inhibition by focus 

formation assay (93).  In agreement with this study, transgenic mice expressing Cdc25A and H-

Ras under the control of the mouse mammary tumor virus (MMTV) promoter display a 

decreased tumor-free latency compared to H-ras-MMTV transgenic mice, from 20 weeks of age 
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to 12 weeks (94).   Similarly, transgenic mice expressing Cdc25A and Erb2/neu under control of 

the MMTV promoter display no difference in the median time of tumor-free survival, but display 

greatly accelerated growth of breast tumors compared to MMTV-Erb2/neu transgenic mice alone 

as determined by tumor volume (94).  These observations are corroborated by reciprocal studies 

in which Cdc25A+/- MEFs display resistance to transformation by H-ras in conjunction with a 

dominant-negative p53 compared to wild-type MEFs.  Indeed, transgenic Cdc25A+/- mice also 

harboring MMTV H-ras or MMTV-neu display increased tumor latency.  Interestingly, 

Induction of tumor formation by MMTV-myc is not affected by Cdc25A heterozygosity, 

suggesting that Cdc25A may cooperate selectively with oncogenes or tumor suppressors to 

induce transformation; alternatively, it may represent the fact that the CDC25A gene is a target 

for the myc oncogene, making this “two-hit” redundant. 

Recent studies have also implicated Cdc25A in directly generating accumulation of DNA 

damage, thus contributing to genomic instability in tumor cells.  Ectopic expression of Cdc25A 

alone is sufficient to induce expression of the DNA damage/checkpoint markers p53, γH2AX, 

phospho-Ser317 and phospho-Ser345 Chk1, phospho-Thr68 Chk2, and Rad17-associated 

phospho-serine (95).  Also, breast tumors derived from MMTV-Cdc25A/neu mice display 

increased frequency of karyotypic abnormalities compared to tumors from MMTV-neu mice, 

consistent with a role for Cdc25A in the induction of genomic instability (94).   

Although severe destabilization of the genome is normally a cytotoxic event, the ability 

of Cdc25A to induce DNA damage without inducing cell death may lie in its ability to regulate 

apoptosis.  Reports exist citing both pro- and anti-apoptotic activities of Cdc25A (96-100), and it 

has even been suggested that Cdc25A intracellular localization may determine whether it elicits 

pro- or antiapoptotic effects (101).  Most evidence that Cdc25A is pro-apoptotic is derived from 
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studies examining c-Myc-induced apoptosis (97, 98, 100) and is dependent upon ectopic Cdc25A 

expression, drawing into question their physiological relevance.  It has been postulated that the 

role of Cdc25A in c-Myc-induced apoptosis may derive from mismatching cell cycle and growth 

factor signals as a result of deregulated Cdc25A (102).  Those authors also observed 

downregulation of Cdc25A but not c-Myc during TNFα-induced apoptosis in N.1 ovarian 

carcinoma cells and that Cdc25A overexpression suppressed apoptosis in non-transformed rat 

423 cells in response to serum withdrawal (96).  Notably, these cells did not express detectable 

levels of c-Myc, consistent with the above hypothesis (96, 102).  Irrespective of its potential role 

in c-Myc-regulated apoptosis, an elaborate study demonstrated inhibition of apoptosis signal-

regulating kinase-1 (ASK-1) by Cdc25A in a phosphatase activity-independent manner (103).  

The authors identified Cdc25A in a yeast two-hybrid assay for ASK-1-interacting proteins and 

further studies found that Cdc25A colocalized with ASK-1 in 293 and OVCAR-8 cells and was 

associated with ASK-1 in reciprocal immunoprecipitates from mammalian cells.  Moreover, 

Cdc25A overexpression diminished activation of the downstream kinases of ASK-1, and blunted 

apoptosis in response to oxidative stress.  As ASK-1 is activated in response to a number of 

genotoxic stimuli (104), it is attractive to posit that Cdc25A may blunt apoptotic signaling in 

response to other noxious stimuli as well as to oxidative stress.   

 25 



 

Figure 8.  Cdc25A deregulation promotes tumorigenesis. 

Overexpression of Cdc25A promotes many characteristics of human cancers.  Early studies demonstrated 

that Cdc25A cooperates with H-RasG12V or Rb-/- in rodent fibroblasts to promote focus formation and anchorage-

independent growth in soft-agar (93).  This evidence is supported by studies in a MMTV-H-ras model of breast 

tumorigenesis in which Cdc25A+/- MEFs were resistant to transformation whereas overexpression of Cdc25A 

increased tumor incidence, size, and promoted apparent genomic instability (89, 94).   Also, Cdc25A binds to and 

inhibits the activity of ASK-1 (103), and attenuates apoptotic induction in response to H2O2 and serum-deprivation 

(96, 103).  Several studies have demonstrated that Cdc25A overexpression promotes accumulation of DNA damage 

and premature progression through the cell cycle both in the presence and absence of checkpoint activation (46, 57, 

71, 94, 95, 105). 
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1.4 REGULATION OF CDC25A ACTIVITY 

Stringent control over Cdc25A expression and activity are essential to allow productive cell 

growth under the appropriate signals without unwarranted proliferation.  Deregulation of 

Cdc25A promotes tumorigenesis, damages DNA, and prevents apoptosis (89, 93-96, 103).   

These data support the observation that overexpression of Cdc25A is a hallmark of human 

cancers (91).   Cells have thus evolved multiple mechanisms to control the levels and function of 

Cdc25A both on a cellular or biochemical level.  The summation of these restraints allows for 

fine-tuning of Cdc25A activity in response to the cell environment, and prevents aberrant 

accumulation of Cdc25A protein or activity.   

1.4.1.1 Cellular regulation 

Regulation of Cdc25A is temporally and spatially complex, involving changes in the 

expression and intracellular localization in response to intra- and extracellular stimuli.  Reports 

describing control of Cdc25A transcription and stability abound in the literature.  Transcription 

of Cdc25A is controlled by numerous transcription factors eliciting both postive (c-Myc, STAT3, 

E2F) and negative (p53, p21, STAT3, and HIF-1α) control over the CDC25A promoter.  

Negative regulation of Cdc25A transcription by p21 and HIF-1α in response to stress has already 

been discussed (see Section 1.4.2.2) (84, 85).  Transcription from the CDC25A gene first occurs 

in early G1 in response to mitogen-stimulated E2F release from Rb by Cdk4 (106, 107).  c-Myc 

is also capable of inducing transcription from the CDC25A gene (97), and recent studies suggest 

that it cooperates with STAT3 in response to mitogens to promote Cdc25A transcription (108).  
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Without c-Myc, STAT3 fails to regulate Cdc25A transcription, indicating that these two 

transcription factors likely collaborate to induce Cdc25A expression.  Surprisingly, STAT3 also 

can negatively regulate Cdc25A transcription in response to H2O2 by forming a transcriptional 

repressor complex with Rb that binds the CDC25A promoter (108).  Finally, p53 decreases 

expression from the CDC25A gene and this action is dependent upon p53 DNA-binding, but 

apparently not to the CDC25A promoter as chromatin immunoprecipitation experiments failed to 

identify p53-bound DNA fragments associated with the Cdc25A promoter (109). 

The most-studied aspect of Cdc25A expression is the regulation of the Cdc25A protein 

half-life.  The protein half-life of Cdc25A is regulated by the ubiquitin-proteasome system; two 

different E3 ubiquitin ligases have been identified that target Cdc25A for proteolysis, and they 

operate in different phases of the cell cycle.  The half-life of Cdc25A in G1, S, and G2 cells is 

regulated by the Skp/Cullin/F-box (SCF) family E3 ligase Skp1/Cul1/β-transducin repeat-

containing protein (β-TrCP).  Proteolysis induced by SCFβ-TrCP-mediated ubiquitination is 

extremely rapid; multiple groups have estimated the Cdc25A protein half-life in interphase HeLa 

cells as less than 10 minutes (110, 111).  Recognition of Cdc25A by SCFβ-TrCP is a complex 

process that is not fully understood, but requires two independent phosphorylation events.  The 

first is likely a priming phosphorylation at Ser76, which is catalyzed by GSK-3β during G1 (76) 

and by Chk1 during S-phase and G2 (74, 112).  The second event is subject to debate, but 

appears to require phosphorylation of Ser82 and at least one of serines 79 and 88 (77, 78).  

Phosphorylation of these serines creates a phosphodegron surrounding a DSG amino acid motif, 

which is a common recognition motif for β-TrCP-binding (113).  The kinase(s) responsible for 

this second phosphorylation event remains unknown, although Cdk2 has been proposed as a 

potential candidate kinase on the basis that chemical or genetic inhibition of Cdk2 kinase activity 
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increases Cdc25A half-life (110).  The kinase(s) responsible for the second phosphorylation 

event would have to be active in G1, S, and G2 phases, which is consistent with the temporal 

profile of Cdk2 kinase activity.  Additionally, phosphorylation of Cdc25A by Cdk2/cyclin E 

increases Cdc25A activity (48), which would result in a self-attenuating regulation of Cdk2 

activity.  This type of autoregulatory system is attractive because it would prevent transient 

fluxes in Cdc25 or Cdk2 activity from prematurely triggering DNA synthesis or progression 

through G2.   

The SCFβ-TrCP ubiquitin ligase is also responsible for the accelerated proteolysis of 

Cdc25A following checkpoint activation in G1, S and G2 cells (76-78).  In response to 

checkpoint activation, Cdc25A is phosphorylated on a number of serines in its N-terminus, 

which promotes more efficient recognition of Cdc25A by SCFβ-TrCP and enhanced ubiquitination 

and degradation.  Several reports have identified Chk1, Chk2, GSK-3β, and p38 as the kinases 

that phosphorylate Cdc25A following checkpoint signaling by replication stress, DNA damage, 

or osmotic stress (76, 114).  The sites of phosphorylation differ among these kinases (reviewed 

in (114)), but can include Ser76, Ser124, Ser178, Ser279, and Ser293.  The function(s) of these 

serine phosphorylations (with the exception of phospho-Ser76) is poorly understood.  It has been 

hypothesized that phosphorylation of serines 124, 178, 279, and 293 in response to stress may 

change the conformation of Cdc25A, enhancing ubiquitylation kinetics and thus Cdc25A 

degradation, although this model remains to be evaluated (114). 

In contrast to interphase Cdc25A, mitotic Cdc25A is much more stable with an apparent 

half-life of at least 20 minutes (57, 111).  Once Cdk1/cyclin B becomes activated at the G2-M 

transition, Cdc25A is uncoupled from SCFβ-TrCP-mediated degradation by phosphorylation at 

Ser18 and Ser116 (and perhaps Ser320) by Cdk1/cyclin B (57, 115).  Dephosphorylation of (at 
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least) Ser116 and Ser320 is mediated by Cdc14A, although the physiological significance is not 

known (115).  Regardless, phospho-Ser18/Ser116-mediated Cdc25A accumulation is necessary 

to achieve threshold activation of Cdk1/cyclin B to trigger the irreversible commitment to 

mitosis, as a high threshold for Cdc25 activity would prevent minor fluctuations in Cdc25 

activity from triggering mitosis prematurely (57).  This stable form of Cdc25A persists until 

mitotic exit, at which point the cell cycle machinery must be reset to prevent aberrant 

progression through the G1-S transition.  During mitotic exit the Anaphase-promoting complex, 

or cyclosome (APC/C), is activated.  Like the SCFβ-TrCP complex, the APC/C is a RING-finger 

family multi-protein ubiquitin ligase that recognizes and ubiquitinates proteins involved in 

mitosis for degradation by the proteasome (113).  Targeting of Cdc25A by the APC/C is 

mediated by a KEN-box motif in the N-terminus (111).  Destruction of Cdc25A during late 

mitosis and early G1 ensures that it does not trigger activation of Cdk4 and Cdk2 complexes 

prematurely during the subsequent cell cycle.  An additional level of Cdc25A control is mediated 

by Chk1 phosphorylation and occurs in interphase cells.  Phosphorylation of Cdc25A at Ser178 

and T507 by Chk1 promotes binding of 14-3-3 to Cdc25A and restricts its activity toward 

Cdk1/cyclin B to prevent premature mitotic entry (37).   

1.4.1.2 Biochemical regulation  

Elucidation of the crystal structure of the Cdc25A catalytic domain unexpectedly 

revealed a disulfide bond between the active site Cys431 and Cys385 in some crystals (42).  The 

authors originally postulated that the enzyme may be self-inhibited under conditions of oxidative 

stress.  Enzymatic analysis of Cdc25B later revealed that the pKa of the catalytic cysteine is 

extremely low (5.6 vs. 8.3 for free cysteine), indicating it exists primarily as a thiolate anion at 

physiological pH (44).  Given the high identity in the primary sequence and the nearly-identical 
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three dimensional structures of the Cdc25A and B catalytic domains, it is anticipated that the 

Cdc25A catalytic cysteine also exists as a thiolate.  Whereas thiols are not particularly reactive 

with oxidants such as H2O2, thiolates react with H2O2 with rates from approximately 101 to 105 

M-1s-1 (116).  Based on these observations it was hypothesized that the activity of Cdc25 

phosphatases would be inhibited by oxidation of the catalytic cysteine in response to oxidative 

stimuli such as H2O2.  A thorough kinetic analysis confirmed this hypothesis indicating rates of 

inactivation of all three Cdc25 isoforms by H2O2 on the order of 100 M-1s-1, more than 400-fold 

faster than the oxidation of the major cellular reductant glutathione (GSH)(117).  Loss of activity 

was accompanied by the formation of a disulfide bond between the catalytic cysteine and a three-

dimensionally adjacent cysteine (now referred to as the back-door cysteine) as determined by 

mass spectrometry (MS).  This study also discovered that the back-door cysteine acts to protect 

the catalytic cysteine from more severe oxidation (presumably by disulfide formation) in 

response to mild oxidative conditions, as mutation of this residue resulted in the loss of disulfide 

formation and the appearance of the “irreversible” catalytic sulfinic acid   (117).  Most 

interestingly, whereas up to 50 mM GSH failed to significantly restore Cdc25B activity 

following H2O2 treatment, the low molecular mass (LMM) dithiol protein thioredoxin (Trx) was 

able to restore Cdc25B containing this intramolecular disulfide  bond to the reduced active form 

at a rate 2000 times greater than DTT, indicating that Trx is likely the intracellular agent 

responsible for maintaining Cdc25 enzymes in their reduced active form in vivo (117).  As this 

enhanced activity toward Cdc25 cannot be explained merely by reduction potentials (-270 mV 

for Trx (118) vs. -330 mV for DTT (119)), other forces (likely protein-protein interactions) must 

enhance Trx activity toward Cdc25.   
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Cdc25C from HeLa cells treated with H2O2 undergoes a redox-sensitive change in 

migration that is dependent upon the integrity of the catalytic cysteine and the predicted back-

door cysteine (120).  Oxidation of Cdc25C is accompanied by a shortening of its protein half-life 

and an increase in association with 14-3-3, suggesting that the oxidized form of Cdc25C is 

removed from cellular circulation and subsequently degraded (120).  Reports also abound of loss 

of Cdc25A expression following H2O2 treatment, but the mechanism is subject to debate (108, 

121).  Generation of a STAT3-Rb complex that represses transcription of Cdc25A has been 

described following H2O2 treatment.  Cdc25A protein levels are also decreased by H2O2 in 

HeLa cells, which have inactivated Rb due to the human papilloma virus (122, 123), and 

treatment with the peroxide-generating isoquinoline Caulibugulone A shortened Cdc25A protein 

half-life via activation of p38 (121), questioning whether a transcriptional mechanism is 

involve

e (•NO) and •NO-derived reactive species (RNS), which have gone 

essentially unexamined.   

1.5 NITROGEN OXIDES 

                                                

d.   

Although the mechanisms governing Cdc25 activity following oxidants and reactive 

oxygen species (ROS), relatively little attention has been paid to other families of reactive 

species such as nitric oxid

Nitrogen makes up approximately 78% of the Earth’s atmosphere, and is the fourth most 

common element by mass in living systems.4  Incorporation of nitrogen into biomolecules is 

 

4 Nelson, David L., and Cox, Michael M.  Principles of Biochemistry.  4th Ed.  New York:  Lehninger, 2005. 

 32 



essential for all living species, yet most life forms cannot utilize elemental nitrogen.  Instead, 

fixation of atmospheric dinitrogen to usable forms such as NO3
- and NH3 by nitrogen-fixing life 

forms known as diazotrophs (generally bacteria) must occur.  These fixed nitrogen sources are 

absorbed by plants, which then transfer nitrogen to herbivores and omnivores, and subsequently 

to carnivores via their respective ingestions of nitrogen-containing species.5  Nitrogen is 

contained in DNA, RNA, and every amino acid, and is utilized in various forms both macro- and 

unimolecularly for cellular signaling.  This section will familiarize the reader with the role of 

oxygen-containing forms of nitrogen (nitrogen oxides) in physiological and pathological control 

of cellular processes with a focus on the mammalian cell cycle.   

1.5.1 •NO and RNS:  origin, properties, and fate 

                                                

Nitric oxide (•NO) is a diatomic free radical molecule produced in many eukaryotic organisms 

that is involved in processes ranging from bioluminescence to vasodilation.  In fact, •NO was 

first described as “endothelium-derived relaxation factor” due to its potent vasodilatory effects 

on vascular smooth muscle (124, 125).  In humans, the most well-recognized source of •NO is 

the nitric oxide synthase (NOS) enzymes endothelial NOS (eNOS), neuronal NOS (nNOS) and 

inducible NOS (iNOS).  •NO is produced differentially by the NOS enzymes; eNOS and nNOS 

generally elicit production of low quantities of •NO while iNOS generally produces high 

quantitites of •NO.  These enzymes catalyze the O2- and reduced nicotinamide adenine 

dinucleotide phosphate (NADPH)-dependent five-electron oxidation of the imino nitrogen of L-

arginine to produce •NO and L-citrulline (and oxidized NADPH, or NADP+)(126).  The NOS 

 

5 http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/N/NitrogenCycle.html 
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enzymes function as homodimers and are dependent upon the tight binding of several cofactors, 

namely flavin mononucleotide, flavin adenine dinucleotide, tetrahydrobiopterin, and heme iron, 

which pass electrons from NADPH to the imino nitrogen of L-arginine (126).  Additionally, 

nNOS and eNOS are Ca2+-dependent enzymes, as they bind calmodulin.  The reaction 

stoichio

 the literature suggests this is the primary 

metry is generally thought to occur as displayed in scheme 1:   

L-Arg + 1.5 NADPH + 1.5 H+ + 2 O2       •NO + L-Citrulline + 1.5 NADP+ + 2 H2O  (1) 

There is some debate as to whether or not the NOS enzymes truly produce •NO or some other 

species; it has been suggested that peroxynitrite (ONNO-)(127), nitroxyl (NO-/HNO)(127), H2O2 

(128), and/or superoxide (•O2
-)(129-131) could be formed from NOS enzymes.  Alternatively, it 

may be necessary for closely-associated superoxide dismutase (SOD) activity to generate •NO 

from NOS enzymes by Cu(II)-SOD-mediated oxidation of NO- to •NO (127).  For the purposes 

of this thesis, I will not discriminate between the possible nitrogen oxide(s) and ROS that may 

initially be produced by NOS enzymes; instead I will consider •NO the primary product of NOS 

enzymes under physiological conditions, as the bulk of

product and I have no evidence to suggest otherwise.   

 It should be mentioned that there are other biological sources of •NO aside from the NOS 

enzymes; release of •NO by S-nitrosothiols (RSNOs) in the circulatory system is well-

documented, and it has been suggested that RSNOs may act as a physiological storehouse for 

•NO bioactivity in the bloodstream (132).  Under hypoxic conditions, xanthine oxidase catalyzes 

the nicotinamide adenine dinucleotide-dependent reduction of NO3
- and NO2

- (as well as organic 

nitrates such as nitroglycerin) to •NO (133).  Reduction of NO2
- by deoxyhemoglobin and eNOS 

under oxygen-deficient conditions have also recently been reported (134, 135).  Nitrated lipids 
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are als

h as 

transiti

o capable of donating •NO in protic solvents (136) by homolysis and/or transition 

metal/ascorbate-assisted reduction (137). 

•NO is a relatively stable radical with a half-life of 5 to 15 seconds, and is readily soluble 

in both aqueous and hydrophobic phases (with more favorable partitioning into hydrophobic 

phases), allowing its diffusion into and out of cells, with a radius up to 100 – 200 µm through 

biological milieu (138).  •NO can thus execute both autocrine and paracrine signaling.  •NO has 

an unpaired electron, and it can both accept and donate an electron (e-) to generate the non-

radicals NO-/HNO and nitrosonium (NO+), respectively (139).  •NO is surprisingly unreactive 

considering that it is a free radical, and reacts only with other paramagnetic species suc

on metals and free radicals.  Many of these reactions are relatively unstable with the 

ultimate end-products of •NO formation in situ generally being considered NO2
- and NO3

-.   

•NO reacts readily with the diradical O2 in 2:1 empirical stoichiometry to generate 

nitrogen dioxide, •NO2.  The •NO2 product, also a radical, is readily reactive with numerous 

biomolecules including additional •NO2, •NO, thiols, ascorbate, tyrosine, tryptophan, and 

unsaturated fatty acids (140), and elicits primarily oxidation of targets and/or formation of 

nitrated biomolecules via one-electron oxidations, radical recombination, or addition across 

double bonds (140, 141).  Recombination of •NO2 with •NO yields the potent nitrosant N2O3.  

The formation of this species in biologically relevant amounts has been questioned due to the 

relatively slow autooxidation rate of •NO at physiologically relevant concentrations (142).  

Nonetheless, recent experiments have shown acceleration of •NO autooxidation in lipid 

membranes, as the local •NO and O2 concentrations are higher than in aqueous medium due to 

their preferential solubility in hydrophobic environments (142, 143).  In addition, it has recently 

been demonstrated that hemoglobin is capable of reducing nitrite to N2O3 via catalytic reaction 
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of metheme-bound NO2
- (which shows partial Fe(II)-•NO2 character) with •NO, regenerating 

hemoglobin and releasing N2O3 (144).  These studies raise the possibility that N2O3 may 

accumulate and thus have significant biological effects in vivo; it has recently been hypothesized 

that N2O3 accounts for up to 90% of  nitrosation in cells (145), and evidence demonstrating 

quench

lative detoxification of ONOO- by disproportionation to NO3
-, and a 

reequil

ommon 

ing of N-nitrosation by azide (which reacts selectively with N2O3) upon cogeneration of 

•NO and •O2
- support this hypothesis under some conditions (146).   

Reaction of •NO with •O2
- occurs at a diffusion-limited rate of 1.9 x 1010 M-1s-1 (147).  

The product is ONOO-, which upon protonation (the pKa is altered by solution composition, but 

ranges from 6.5 to 7.5, (147, 148)) decomposes either via homolysis to •NO2 and hydroxyl 

radical (•OH), or by intramolecular rearrangement to NO3
- + H+ (149).  ONOO- itself is a strong 

oxidant (Eo(ONOOH, H+ / •NO2) at pH 7 = 1.4 V, (150)) and is a potent oxidant of thiols and 

lipids (151, 152).  ONOO- can also be rapidly scavenged by CO2, which is present in high 

soluble concentrations in many tissues, generating the unstable species nitrosoperoxocarbonate 

(ONOOCO2
-), which subsequently undergoes homolytic cleavage to •NO2 and CO3

•- (153) or 

rearranges to nitrate and CO2.  The result of shunting of ONOO- into nitrosoperoxocarbonate 

appears to be two-fold:  a re

ibration of ONOO--mediated two-e- oxidations to one-e- oxidations mediated by •NO2 

and/or CO3
•- (154).   

Direct •NO recombination with thiyl radicals (RS•) has also been described, but will be 

discussed in Section 1.5.2.3.  One additional well-studied interaction of •NO is with transition 

metals.  Interaction of •NO with transition metals fall into three categories:  1) direct reaction of 

•NO with the metal center to generate metal-nitrosyls, 2) •NO oxidation of metals in dioxygen 

metal complexes, and 3) reduction of high valence metal-oxo complexes.  The most c
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form of metal-nitrosyl is a mononitrosyl, in which •NO reacts 1:1 with a metal ion (155).  

Although in theory •NO can bind many transition metals to form a complex, only a few  

 

Figure 9.  Interactions of •NO with biologically relevant molecules. 

In biological milieu, reactions of •NO are largely limited to reactions with transition metal complexes, 

oxygen radicals (either molecular oxygen or •O2 ), and with other radicals (largely lipid radicals, thiyl radicals).  The 

downstream products of these reactions are known as •NO-derived reactive species.  Molecules with which •NO 

acts directly are shown in red type, and direct and indirect downstream products are shown in black type.  This 

oxyhemoglobin and oxymyoglobin, results in oxidation of •NO to NO3
- and oxidation of the 

-

re

figure is a simplified schematic of •NO reactions with biological molecules.  M, metal ion.   

 

complexes are formed in significant quantity in biological systems due to metal availability and 

energetic requirements (156).  The prototypical example of this type of •NO binding is the 

binding of •NO to the heme-histidyl-pentacoordinated Fe2+ moiety in soluble guanylate cyclase 

(157).  Interaction of •NO with oxygenated metal complexes, such as the oxyheme moiety in 
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Fe(II) heme to metheme (Fe(III))(144).  Finally, high-valence metal-oxo complexes such as 

Fe(IV)=O and Fe(V)=O are reduced by •NO to ferric heme and NO2
-, thus detoxifying these 

potent 

tive proportions of •NO to •O2
- being formed in close proximity to one another 

(146, 160).   

1.5.2 Biochemical regulation of protein function by nitrogen oxides 

oxidants (158, 159).   

As reaction of •NO is largely limited to interactions with other radicals (including 

dioxygen) and transition metals, the products of these reactions are largely either the relatively 

stable species NO2
- and NO3

-, or oxidants/nitrating agents (ONOO-, ONOOCO2
-, •NO2) and 

nitrosants (N2O3 and RSNO).   The breadth of species generated by •NO reaction coupled to the 

number of potential sites of generation allows for a staggering number of potentially independent 

signaling events.  Deciphering the biochemical regulation of •NO and RNS is therefore quite 

complex, although several well-studied models exist that delineate the common themes.  •NO 

and RNS can regulate protein function through covalent and non-covalent mechanisms; non-

covalent regulatory mechanisms are relatively rare.  The activities of RNS such as N2O3, 

ONOO-, and •NO2 toward proteins can generally be divided into three areas:  nitros(yl)ation, 

nitration, or oxidation.  The relative proportions of each of these activities is dependent on many 

factors determined both by the characteristics of the individual species formed as well as the 

environment in which the substrate and reactive species is located.  It is becoming increasingly 

apparent that the bias between oxidative/nitrative events and nitrosative events may be dependent 

upon the rela

The high reactivity of •NO/RNS allots them a miniscule half-life in biological milieu, which 

suits them well for transducers of cellular signaling, as the relative levels of RNS can be rapidly 
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altered in response to changes in •NO and/or •O2
- production.  Proteins mediate many signaling 

pathways in cells and thus are targets for and transducers of •NO-dependent signaling.  

Transduction of signaling by proteins can be enacted by •NO either directly or indirectly through 

the activities of •NO-derived reactive species.  Direct regulation of proteins by •NO is typically 

mediated either by •NO-bonding with a protein-complexed transition metal, or by direct 

recombination with a protein radical center.  Direct regulation of proteins by •NO is typically 

associated with low levels of •NO production, as is the case for soluble guanylate cyclase (sGC) 

(157).   

1.5.2.1

below)

 Direct modulation of protein signaling by •NO 

One of the best-studied examples of protein regulation via direct •NO binding is that of 

sGC, which regulates smooth-muscle relaxation in response to •NO via its cyclization of 

guanosine triphosphate to cyclic guanosine monophosphate (cGMP)(157).  Binding of cGMP by 

cGMP-dependent protein kinase then occurs, resulting in its activation and subsequent 

transduction of the •NO signal (161).  sGC exists as a heterodimer of an α-subunit and a heme-

binding β-subunit.  The heme group contains a penta-coordinated heme-histidyl-Fe2+ complex, 

which acts as the •NO sensor.  Upon binding of •NO to the heme-Fe2+, a covalent bond is formed 

that disrupts interaction of the histidine with the iron atom, resulting in a conformational change 

in the protein that increases its activity ~200-fold (162).  According to kinetic modeling, the 

inactivation of sGC (due to •NO dissociation) proceeds primarily via trans-nitrosation (described 

 of thiols, and is approximately an order of magnitude slower than its activation (163) 

Another example more relevant to cell cycle is the inactivation of mammalian 

ribonucleotide reductase (RR) by •NO.  RR is responsible for reducing (via deoxygenation) the 

2’ hydroxyl of the ribose sugar in ribonucleotides to generate deoxyribonucleotides, an essential 
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and rate-limiting step in DNA synthesis (164).  Mammalian RR contains at its active site a diiron 

site which upon O2-binding generates a tyrosyl radical (this residue acts as the “storage” site for 

the radical until ribonucleotide binding) whose function is to abstract an e- from the catalytic 

cysteine.  The thiyl radical in turn abstracts an electron from carbon-3 of the ribose sugar, 

triggering double bond formation between carbon-2 and carbon-3.  The leaving group for this 

rearrangement is the 2’-hydroxyl, thus generating the deoxyribonucleotide (165).  Indeed, 

inactivation of RR by •NO gas has been reported (166) and quenching of the tyrosyl radical of 

RR in tumor cells overexpressing RR has been observed following activating macrophage co-

culture experiments (167).  The mechanism by which this occurs is not clear, and may involve 

either direct addition of •NO to the tyrosyl radical (168) or direct •NO binding to the diiron 

complex, preventing tyrosyl radical formation (169).   

1.5.2.2

ge the enzymatic activity of 

a protei

 Regulation of protein function by RNS 

In contrast to direct regulation of proteins by •NO, indirect regulation of proteins by •NO 

occurs largely through RNS, and falls into three major categories as described above:  oxidation, 

nitration, and nitros(yl)ation.  Nitros(yl)ation will be discussed in section 1.5.2.3.  In most cases, 

regulation of protein activity by RNS is induced biochemically by modifying one or more amino 

acids responsible for protein activity.  These modifications can chan

n or alter its interaction with other biomolecules (170-173).   

The best-described regulatory targets of protein nitration and oxidation are aromatic 

amino acids such as phenylalanine and tyrosine, and thiols, respectively.  Nitration of tyrosine is 

generally considered to occur via a two-step process, in which an e- is first abstracted from the 

tyrosyl side chain of tyrosine, generating a tyrosyl radical (Figure 10).  This step can be 

catalyzed by a number of RNS and oxidizing species, including •NO2, CO3
•-, and •OH (149).  
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Subsequently, •NO2 from •NO autooxidation or peroxynitrous acid decomposition will 

recombine with tyrosyl radical at near diffusion-limited rates (k = 3x109 M-1s-1) to yield 

nitrotyrosine (NT) (174).  The highly reactive nature of •NO2 implies that tyrosine nitration will 

be observed only in sites proximally localized to •NO2 formation, and this is supported by 

empirical evidence in vivo (175).  Although there is some evidence of “denitrase” activity in cells 

(176, 177), tyrosine nitration is regarded largely as irreversible; thus, if nitration of tyrosines 

essential for protein activity occurs the protein is irreversibly inhibited.  Nitration of proteins 

often stimulates their proteolytic degradation, allowing the turnover of damaged or irreversibly 

inhibited proteins (178).   Nitration and inhibition of protein activity has been well-described for 

several proteins, including human manganese-superoxide dismutase (Mn-SOD). Tyr34, which is 

located at the vertex of a molecular funnel that guides •O2
- to the active site Mn atom, is nitrated 

by ONOO-, resulting in a loss of SOD activity due to steric blockade of the active site and/or 

perturbation of the active site electronic environment (172).   

 

Figure 10.  Formation of 3-nitrotyrosine.   

Formation of 3-nitrotyrosine is thought to occur via a two-step mechanism:  1)  abstraction of an e- from the 

tyrosyl ring, followed by 2) adduction of •NO2 at the electronically-favored 3- and 5-positions on the ring.  R, amino 

acid bac ne. kbo
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Oxidation of thiols either by one-e- or two-e- processes has been reported in response to a 

number of RNS (Figure 11), including •NO2 (174), RSNOs (179), and ONOO- (180).  Oxidation 

of thiols is a common mechanism observed in biological regulation of proteins, and examples of 

protein regulation by intermolecular (S-thiolation) (181) and intramolecular disulfide formation 

(182), sulfenylamide generation (183, 184), terminally oxidized sulfinic or sulfonic acid 

generation (183, 184), and addition of glutathione to cysteines (S-glutathionylation) (185, 186) 

has been reported.  Generation of these protein products is dependent upon the individual 

location, environment, the reactive species mediating the modification, and biochemical 

properties of the thiol being modified.  Vicinal thiols as are found in thioredoxin, for example, 

often are oxidized to an intramolecular disulfide in response to ROS and RNS resulting in loss of 

enzymatic activity (187), whereas loss of activity due to modification of unprotected thiols is 

often due to generation of “terminally” oxidized to sulfinic or sulfonic acids, as was observed for 

creatine kinase in response to peroxynitrite (180).  S-thiolation has also been reported in response 

to RNS (173).  Treatment with the •NO-donating prodrug PABA/NO induced nitrosative stress 

and accumulation of PTP1B that had been S-glutathionylated, which inhibits its activity (173, 

regulate enzymatic activities and protein-protein interactions in response to •NO-dependent 

186).   

1.5.2.3 S-nitros(yl)ation as a prototypical signaling paradigm 

A mechanism of cysteine-dependent protein regulation that has garnered increased 

attention recently is S-nitros(yl)ation, or the reversible addition of NO to a thiol to generate 

RSNO.  Cysteine composes on average 4% of protein amino acid sequence, and many enzyme 

families contain catalytic cysteine residues necessary for their enzymatic activity.  Thus S-

nitros(yl)ation of cysteines by •NO and RNS provides a convenient biochemical mechanism to 
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signaling.  Regulation of protein interaction and function by S-nitros(yl)ation has been described 

for proteins from numerous families, including phosphatases, GTPases, oxygenases, proteases, 

transcription factors, and ion channels (188-193).   

 

Figure 11.  Reversible oxidation and S-nitrosation reactions of thiols.   

In response to RNS, thiolates can be oxidized, S-nitrosated, or oxidatively nitrosylated.  Upon exposure to 

nitrosating agents such as RSNOs or N2O3, thiolates can receive NO+, generating RSNO.  Alternatively, exposure to 

one-e- oxidizing agents such as •NO2, •OH, or CO3
•- can abstract an e- from thiolates, generating thiyl radicals.  

Thiyl radicals can in turn recombine with other thiyl radicals to generate disulfides, or interact with •NO to produce 

RSNO via oxidative nitrosylation.  Additionally, thiolate can reductively cleave •NO from RSNO, generating •NO 

and disu e.  Different thiolates and/or their reaction products are shown in black and red for clarity.   lfid

 

Nitros(yl)ation of protein cysteines can occur through a variety of mechanisms (Figure 

11), with the two most studied being S-nitrosation (addition of NO+ to a thiolate) and oxidative 

nitrosylation (one-e- oxidation of cysteine to RS• followed by •NO addition) as these are the 

most likely mechanisms in vivo (146, 159).  Upon coproduction of •NO and •O2
-, peroxynitrite 

 43 



decomposition products are thought to mediate e- abstraction from thiols, promoting oxidative 

nitrosylation (direct •NO addition) (146).  Disproportionate generation of •NO vs. •O2
- favors 

•NO autooxidation and S-nitrosation via production of the nitrosating species N2O3 as evidenced 

by the quenching of intracellular nitrosation by azide treatment (146). An alternative source of 

nitrosation is trans-nitrosation, the direct transfer of NO+ from RSNO to thiolate as shown in 

equation 2:   

RR

 (188) have revived debate over whether it is a significant source of RSNO in vivo (see 

below)

1S  + R-
2S-NO  R1S-NO + R2S        (2) 

The relative contribution of trans-nitrosation to biological nitros(yl)ation is unclear; speculation 

exists that given the relative concentration of GSH vs. total cellular thiols, trans-nitrosation of 

GSH will be essentially unidirectional (194).  This implies that in the absence of additional 

mechanisms of selectivity, GSH will act as a sink for NO  equivalents, essentially precluding 

intracellular trans-nitrosation.  However, recent experiments demonstrating catalytic trans-

nitrosation

-

+

.   

Given the frequency of cysteine in protein sequences, how specificity of protein S-

nitros(yl)ation is achieved has been the subject of debate.  Evidence exists that the biochemical 

and environmental characteristics of the cysteine to be modified may play an important role in 

targeting specific residues for S-nitros(yl)ation.  Cysteines targeted by S-nitros(yl)ation often 

exist in hydrophobic pockets of proteins (171).  Given that •NO autooxidation to nitrosating 

species such as N2O3 is accelerated in hydrophobic regions (143), it is reasonable to posit that 

proteins may selectively catalyze the nitrosation of hydrophobically constrained cysteines by 

proximally concentrating •NO and/or O2.  Cysteines that are selectively nitros(yl)ated often 

display a characteristic low pKa compared to that of free cysteine (free Cys pKa ≈ 8.3) as a result 
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of surrounding environmental factors.  For hepatic methionine adenosyltransferase, sterically 

adjacent basic arginines reduce the pKa of Cys121, increasing its nucleophilicity, which makes it 

a more attractive target for NO+ donation from GSNO (195).  In fact, a recent sequence analysis 

of 20 S-nitrosylated proteins identified in a proteomic screen found flanking of S-nitrosylated 

cysteines by basic groups (histidine, lysine, arginine) either in the primary protein sequence or 

the tertiary structure (within ≈ 7 Å of the cysteine) of the proteins (196).  Additionally evidence 

now exists that targeted nitros(yl)ation of proteins by proteins occurs, but it has been 

convincingly demonstrated only for cyclooxygenase-2 and caspase-3 (188, 192).  Nonetheless, 

these studies identified direct and indirect mechanisms mediating target-specific S-nitrosylation: 

iNOS binds and directly S-nitrosylates cyclooxygenase-2, resulting in its activation, while S-

nitroso

sulfide isomerase (PDI) and CuZn-SOD can 

denitrosate LMM RSNOs in vitro (205, 206).   

thioredoxin trans-nitrosates caspase-3 in vitro, although this is yet to be observed in vivo.    

For S-nitrosylation to fit the requirements of a biological signaling mechanism, it must be 

reversible (197).  The chemistry of denitrosylation is well-defined in the test tube; RSNOs are 

decomposed via photolytic homolysis (194), reduction to thiol and •NO by Cu+ (198) and by 

Hg2+-mediated release of •NO, generating disulfide likely by thiyl recombination (199).  

Additionally, thiols can catalyze the reduction of RSNOs either by maintaining Cu+ in a reduced 

state (200) or by releasing NO- with generation of disulfide (194).  In cells, photolytic and Hg2+-

catalyzed decomposition is presumably negligible due to poor penetration of tissues by light and 

the trace amounts of unchelated Hg2+.  These characteristics, however, make this chemistry 

useful for determination of RSNO content in the laboratory (199, 201).  In cells, denitros(yl)ation 

appears to be mediated primarily by the Trx/Trx-reductase system (187, 202, 203) and by 

GSNO-reductase (204), although protein di
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1.5.3 Initiation and cellular effects of nitrosative stress 

Although RSNOs exist in unperturbed cells, the levels are normally low; the basal concentration 

of GSNO in rat cerebellum for example is estimated at 6 - 8 μM (207).  Under conditions of high 

•NO production accumulation of intracellular nitroso species can occur, and when production of 

these species exceeds the cellular requirements or buffering systems, nitrosative stress ensues 

(145).  Accumulation of RSNOs and N-nitrosamines (RNNOs) alters cell signaling via S-

nitros(yl)ation of cysteine-containing proteins and N-nitrosation of biomolecules, and the 

depletion of thiols associated with RSNO formation decreases cellular resistance to further 

oxidative and nitrosative insult.  Indeed, activation of the respiratory burst in macrophages 

increases intracellular RSNOs and RNNOs via generation of N2O3 (208, 209), and is followed 

by apoptosis (209).  Similarly, chemical induction of nitrosative stress in HL-60 cells induced 

phosphatidylserine externalization by inhibition of the aminophospholipid translocase and 

induced subsequent engulfment and clearance by macrophages (210).  These studies indicate that 

overproduction of •NO and/or •O2
- and accumulation of nitroso species occurs in cells and has 

pathophysiological consequences.  In contrast, several studies have reported prevention of 

apoptosis in response to nitrosative stimuli by reversible S-nitros(yl)ation of caspases, suggesting 

that different durations or intensities of nitrosative stress may exert differential effects on cell 

survival (211, 212).   

Numerous disease states are associated with increased nitrosative stress, including 

neurodegeneration (213, 214), migraine headaches (215), and diabetes (216).  Considering that 

many cancer cells and preneoplastic lesions derived from chronic inflammatory diseases are 

exposed to high •NO produced either endogenously due to iNOS overexpression or exogenously 

by inflammatory mediators (reviewed in (217)), it is not surprising that markers of nitrosative 
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stress have been observed in cancer patients (218) and patients with chronic inflammatory 

diseases (219).  The sustained production of potentially mutagenic RNNOs, in fact, may 

contribute to carcinogenesis (220).  

1.5.4 Nitrogen oxides and the cell cycle 

Numerous reports have correlated the generation of •NO or RNS with cytostasis or cell 

proliferation in a variety of tissues.  Most early studies examined the role of •NO in regulation of 

vascular smooth muscle proliferation, stemming from the discovery that endothelium-derived 

relaxation factor was •NO.  The mid-nineties yielded several seemingly contradictory reports that 

•NO derived from various sources could either suppress (221-223) or stimulate (224) vascular 

cell proliferation.  Although in hindsight these studies can likely be explained by the 

concentrations and kinetics of •NO administration, to the cell cycle researcher “in the moment,” 

they undoubtedly provided ample source of confusion.  What is apparent from these studies is 

that administration of sufficiently high levels of •NO during a given time course results in cell 

cycle arrest via inhibition of DNA synthesis (221-223, 225-227).  Subsequent studies examining 

the molecular mechanisms of •NO-mediated cell cycle arrest frequently identified suppression of 

Cdk2 activity and decreased cyclin A expression in •NO-treated cells (225-227).  Although these 

studies provided an explanation for the failure of vascular cells to exit S-phase upon •NO 

treatment, it did not explain the failure of these cells to synthesize DNA, as cyclin E expression 

was not affected significantly (225-227) and therefore was not responsible for suppressed Cdk2 

activity.   

The picture of •NO/RNS-mediated cell cycle regulation became cloudier when the effects 

of •NO/RNS on tumor cells were examined.  In cell culture, •NO administration to MDA-MB-
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231 breast cancer cells suppressed DNA synthesis (as implied by failure of cells to cross the G1-

S transition), and again the expression of cyclin E and Cdk2 was unchanged (228).  The authors 

attributed this to suppression of cyclin D1 in response to •NO, but the high expression of cyclin E 

would preclude this explanation as Cdk2/cyclin E drives the G1/S transition (46, 228).  More 

detailed cell cycle analysis of •NO-mediated cell cycle arrest using isogenic cell lines deficient in 

the cell cycle regulators p53 and p21 excluded a role for these proteins in prevention of S-phase 

progression by •NO, as p53-/- and p21-/- cells failed to synthesize DNA identically to wild-type 

cells (219).  Moreover, different RNS may enact S-phase arrest via different mechanisms.  

Treatment of cells with nitrating agents •NO2 and SIN-1 activated ATM, and initiated S-phase 

arrest concurrent with accrual of DNA damage (229).   

Whereas the effects of •NO/RNS in cell culture is largely consistent across cell types 

with suppression of DNA synthesis being the primarily observed phenotype, data from mouse 

studies have contradicted the in vitro observations.  Colon cancer cells engineered to 

constitutively express iNOS grew much slower than wild-type cells in culture, as would be 

expected.  However the same iNOS-expressing cells produced significantly larger tumors in 

nude mice than did the wild-type cells, suggesting that •NO production can have different effects 

on tumor cell growth in vitro and in vivo (228).  Furthermore, numerous examples of pro- and 

anti-tumor effects of iNOS expression either in the tumor cells or in the host animal exist, further 

complicating the interpretation of whether or not •NO production is beneficial or detrimental to 

tumor formation (230-235).  
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1.6 STATEMENT OF THE PROBLEM AND HYPOTHESIS 

The existing body of evidence clearly demonstrates that •NO and/or RNS suppress S-phase 

activity in normal and cancerous cells; however, the exact mechanism(s) by which this occurs 

remain unclear.  The observation that Cdk2 activity is suppressed even in the presence of its 

cognate S-phase cyclin suggests an alternative activator of Cdk2 is the target of •NO-mediated S-

phase suppression.  Cdc25A enzymatically activates Cdk2 at the G1-S transition (46-48), so 

suppression of Cdc25A either at the level of expression or enzymatic activity represents an 

attractive target for •NO-mediated cell cycle signaling.   

Structural and biochemical analysis of Cdc25A indicates that its catalytic cysteine exists 

as a highly reactive thiolate anion (43, 182, 236) and is situated in an acid-base motif within a 

hydrophobic substrate-binding pocket (42), flagging it as a potential target of regulation by S-

nitros(yl)ation.  Direct chemical regulation of Cdc25A by •NO/RNS could rectify the observed 

perturbation to cell cycle progression and Cdk2 activity in response to •NO/RNS.  In support of 

this hypothesis, the endogenous reducing agent for Cdc25 catalytic cysteine, Trx (117), has been 

recently reported catalyze S-nitrosation of target proteins (188).  Morever, in light of frequent 

Cdc25A overexpression in human cancers (91) and the apparent ability of tumors in vivo to 

bypass •NO-mediated cell cycle arrest and thrive (228), I hypothesized that Cdc25A represents 

the unidentified target of •NO-dependent cell cycle signaling, and that loss of Cdk2 activity 

in cells exposed to •NO is limiting for progression through S-phase.  Thus, the specific aims 

of this dissertation were to 1) probe the susceptibility of Cdc25A to enzymatic regulation by 

•NO/RNS, 2) interrogate the effects of •NO/RNS production on Cdc25A expression in tumor 

cells and 3) determine whether reintroduction of Cdk2 activity in •NO/RNS-challenged tumor 

cells restores DNA synthesis.   
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2.0  EXPERIMENTAL METHODS 

2.1 REAGENTS 

L-Cysteine ethyl ester hydrochloride (CEE), etoposide, OMFP, Na3VO4, β-mercaptoethanol, 

diethylene triamine pentaacetic acid (DTPA), CuSO4, (+)-sodium-L-ascorbate, NaNO2, cis-

diamineplatinum (II) dichloride (cisplatin, CDDP) and ethyl nitrite were from Sigma-Aldrich (St. 

Louis, MO).  Cycloheximide (CHX), dithiothreitol (DTT), glutathione (GSH), Hoechst 33342, 

iodoacetamide (IAC), NG-monomethyl-L-arginine monoacetate (L-NMMA), MG-132, N-

ethylmaleimide (NEM), roscovitine, and salubrinal were from Calbiochem (La Jolla, CA).  S-

Nitrosoglutathione (GSNO), Nitrate/Nitrite Colorimetric Assay Kit and nitrotyrosine BSA were 

from Cayman Chemical (Ann Arbor, MI).  ThioGlo-1 was from Covalent Associates, Inc. 

(Corvallis, OR).  Chelex-100 was purchased from Bio-Rad (Hercules, CA).  SNCEE was 

synthesized and quantified using its extinction coefficient (1019 M-1cm-1 at 343 nm in methanol) 

as previously described (237).  SNCEE was allowed to decompose for ≥ 24 hours to generate 

decomposed SNCEE, which was verified spectroscopically by loss of the S-N bond absorbance 

at 343 nm before use.  LipofectAMINE PLUS and E. coli strain DH5α Supercompetent cells, 

were obtained from Invitrogen (Carlsbad, CA).  E. coli strain BL21(DE3) and the pET28a 

bacterial expression plasmid were from Novagen (Madison, WI).  Cdc25A (sc-7389), Cdc25C 

(sc-327), and Cdk1 (sc-54) antibodies, normal mouse IgG (sc-2025), Protein A/G-PLUS agarose 
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(sc-2003) and anti-cyclin B1-agarose (sc-245 AC) were obtained from Santa Cruz Biotechnology 

(Santa Cruz, CA).  Cdc25A DCS-120 antibody was from Thermo-Fisher Scientific (Fremont, 

CA).  Antibodies against Cdc25B (610528) and iNOS/NOS Type II (610332) were from BD 

Transduction Laboratories (Lexington, KY).  Antibodies recognizing phospho-Thr180/Thr182-

p38 MAP kinase (#9211), p38 MAP kinase (#9212), phospho-Tyr15 Cdk1 (#9111), PARP 

(#9542), phospho-Ser51 eIF-2α (#9722), and eIF-2α (#9721) were from Cell Signaling 

Technology (Danvers, MA), the caspase-3 antibody (AAP-113) was from Assay Designs (Ann Arbor, 

MI), the β-tubulin antibody (CLT9003) was from Cedarlane Laboratories (Hornby, Ontario, 

Canada) and the 3-nitrotyrosine antibody (#189540) was from Cayman Chemical. HA.11 affinity 

matrix was purchased from Covance Research Products, Inc. (Princeton, NJ).  Horseradish 

peroxidase-conjugated secondary antibodies were from Jackson Immunoresearch (West Grove, 

PA).  ECL Western blotting substrate was purchased from Pierce Biotechnology (Rockford, IL).  

Dialyzed FBS was from Hyclone (Logan, UT).  EasyTag™ EXPRESS [35S] Protein Labeling 

Mix and [γ33P]-ATP were purchased from Perkin-Elmer (Waltham, MA).  Recombinant 

Cdk2/cyclin A was from New England Biolabs (Ipswich, MA). 

The pCMV-HA-Cdc25A and pCMV-HA-C431S vectors were supplied by Alexander 

Ducruet (University of Pittsburgh) and were created by ligating the Cdc25A WT or C431S 

cDNA into the Eco R1 and Xho I sites of the pCMV-HA vector.  The pcDNA3-Cdc25A vector 

was provided by Thomas Roberts (Dana-Farber Cancer Institute, Boston, MA) and has been 

described previously (238).  The pET28a-rHis-Cdc25A vector was created by ligating the human 

CDC25A cDNA into the Bam H1 and Xho I sites of the pET28a vector.  The pcDL-Cdk2AF-HA 

vector encodes a double mutant (Thr14Ala and Tyr15Phe) Cdk2 that cannot be phosphorylated 

on these residues, and thus does not require Cdc25 activity to be catalytically active (71, 105, 
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239) and was provided by David Morgan (University of California, San Francisco, CA).  The 

pcDNA3-HA-ASK-1  vector has been described previously (240) and was provided by Peter 

Houghton (St. Jude Children’s Research Hospital, Memphis, TN) Ad-LacZ and Ad-iNOS 

adenoviruses encoded the β-galactosidase and human iNOS cDNAs, respectively (241), and 

were supplied by Paul Robbins (University of Pittsburgh).   

2.2 CELL CULTURE, TREATMENTS, AND RADIOLABEL INCORPORATION 

Wild-type, Chk2-/-, p53-/-, and p21-/-, HCT116 cells were provided by Bert Vogelstein (The Johns 

Hopkins University), and HIF-1α-/- HCT116 cells were provided by Long Dang (University of 

Michigan).  HCT116 wild-type and isogenic cells were maintained in McCoy’s 5A medium plus 

L-glutamine supplemented with 10% fetal bovine serum (Cellgro, Manassas, VA), 100 U/mL 

penicillin/streptomycin (Invitrogen) in a humidified incubator at 37oC with 5% CO2.  HeLa cells 

(ATCC, Manassas, VA) were maintained in Dulbecco’s modified eagle medium supplemented 

with 10% fetal bovine serum (Cellgro), 100 U/mL penicillin/streptomycin (Invitrogen) in a 

humidified incubator at 37oC with 5% CO2.   

All compounds were either dissolved into DMSO or directly into medium for cell 

treatment.  To metabolically label newly synthesized proteins, I washed HCT116 cells twice with 

PBS and incubated them with priming medium (Dulbecco’s Modified Eagle Medium lacking L-

cysteine or L-methionine (Invitrogen), supplemented with 10% dialyzed fetal bovine serum and 

100 U/mL penicillin/streptomycin) for one hour before addition of 300 µCi/mL of EasyTag™ 

EXPRESS [35S] Protein Labeling Mix (Perkin-Elmer, Waltham, MA).   
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For exposure to UV irradiation, cells were washed once in 37oC PBS, and the PBS was 

aspirated.  The dish of cells was then placed on top of the lid to elevate it, and irradiated using a 

UVC Crosslinker, (Stratagene, La Jolla, CA), followed by addition of fresh medium before 

incubation for the indicated times and cell harvesting.   

2.3 PLASMID TRANSFECTION AND ADENOVIRAL INFECTION OF HUMAN 

TUMOR CELL LINES 

HCT116 cells were transfected at 25 to 40% confluence using Lipofectamine PLUS according to 

the manufacturer’s instructions in serum-containing medium.  Three hours after transfection, 

medium was aspirated to remove DNA-lipid complexes and fresh medium was added to cells.  

When replating of cells to attain target confluence was necessary after transfection, cells were 

trypsinized 8 hours post-transfection and replated in fresh medium at 25 – 30% density.  

Estimation of transfection efficiency was performed visually by inspection of a tandem sample 

transfected with vectors encoding green fluorescent protein and were routinely 40-50%.   

HCT116 cells were infected with 10 MOI of adenoviruses encoding either β-

galactosidase or human iNOS in 1.2 mL PBS, yielding > 99% infection.  One hour after 

infection, 4 mL of medium was added to plates, and they were incubated for 24 hours before 

harvest.  No apparent cytotoxicity was observed either in LacZ- or iNOS-infected cells up to 48 

hours post-infection.   
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2.4 PURIFICATION OF RECOMBINANT HUMAN CDC25A AND TYR15-

PHOSPHORYLATED CDK1/CYCLIN B1 

His-tagged Cdc25A was expressed from E. coli strain BL21(DE3) using 1 mM isopropyl-β-D-1-

thiogalactopyranoside from bacterial OD600 0.4 to 0.8.  Protein was purified using nickel-

nitrilotriacetic acid (His6) resin as described previously (242), except that the protein was eluted 

in the absence of reducing agents.   

Tyr15-hyperphosphorylated Cdk1 was generated by treating subconfluent (25 – 30% 

confluent) HeLa cells with 40 µM etoposide for one hour, and 23 hours later cells were harvested 

in RSNO- and phosphatase assay-compatible RIPA buffer (50 mM Tris pH 7.6, 1% Triton X-

100, 0.1% SDS, 150 mM NaCl, 1 mM DTPA, 10 mM NaF, 10 µg/mL aprotinin, 10 µg/mL 

leupeptin, 100 µg/mL 4-(2-aminoethyl)-benzenesulfonylfluoride hydrochloride, 10 µg/mL 

soybean trypsin inhibitor, and 1 mM phenylmethylsulfonyl fluoride; prepared with Chelex-100-

treated, deionized H2O).  Cdk1/cyclin B1 complexes were immunoprecipitated as described 

below, and stored as a pellet at -80oC until use.   

2.5 WESTERN BLOTTING, DOT BLOTTING, AND IMMUNOPRECIPITATION 

For Western blotting, cells were harvested by scraping into a modified RIPA buffer (50 mM Tris 

pH 7.6, 1% Triton X-100, 0.1% SDS, 150 mM NaCl, 1 mM EDTA, 2 mM Na3VO4, 12 mM β-

glycerol phosphate, 10 mM NaF, 10 µg/mL aprotinin, 10 µg/mL leupeptin, 100 µg/mL 4-(2-

aminoethyl)-benzenesulfonylfluoride hydrochloride, 10 µg/mL soybean trypsin inhibitor, and 1 

mM phenylmethylsulfonyl fluoride).  Cells were lysed either by incubation on ice for 30 minutes 
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with frequent vortexing or by sonication at 50% amplitude for 6 x 2 seconds on ice with a 2 

second pause between pulses using a GEX-130 ultrasonic processor with a VC-50 2 mm 

microtip (Gene Q, Montreal, Quebec, Canada).  Lysates were cleared by centrifugation at 13,000 

x g for 15 minutes, and protein content of the supernatant was determined by the method of 

Bradford.  Total cell lysates (30 – 50 µg protein) were resolved by SDS-PAGE and transferred to 

nitrocellulose membranes at 4oC overnight at 35 V to maximize protein transfer.  Membranes 

were then blocked in 5% non-fat milk or 5% BSA as recommended by the primary antibody 

manufacturer, and incubated with primary antibodies overnight at 4oC.  After washing 3 times 

for 5 minutes with 25 mL TBS-T, horseradish peroxidase-conjugated secondary antibodies were 

added for one hour before 3 additional TBS-T washes visualization with ECL reagent.  

Densitometric analysis was performed on films using an Amersham Biosciences SI densitometer 

and analyzed using ImageQuant software (Amersham Biosciences, Piscataway, NJ) for 

quantification.   

For dot blotting, 1 µg of total protein or 50 – 100 ng of 3-nitrotyrosine BSA was added 

directly to nitrocellulose membranes and allowed to dry completely before Western blotting as 

above with an antibody to nitrotyrosine.   

Immunoprecipitation of cyclin B1 and associated proteins was performed by lysing cells 

as described in RSNO- and phosphatase assay-compatible RIPA buffer as described above.  

Immunoprecipitation of Cdc25A and ASK-1 was performed by lysing cells in HEPES buffer 

(103).  Total protein (250 µg per sample for cyclin B1, 1000 - 1500 µg for Cdc25A and ASK-1) 

was diluted to 1 mL in the above buffer and pre-cleared with 2 µg of normal mouse IgG and 50 

µL Protein A/G PLUS-agarose for one hour at 4oC on a rotating mixer.  Agarose beads were 

pelleted by centrifugation for 5 minutes at 1500 x g, and the supernatant was transferred to a new 
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tube containing 50 µL of anti-cyclin B1-agarose antibody, Cdc25A antibody (DCS-120) plus 50 

µL of Protein A/G PLUS-agarose, or 50 µL of HA.11 affinity matrix (for cyclin B1, Cdc25A, 

and ASK-1, respectively) and incubated on the rotating mixer overnight at 4oC.  After 

centrifugation at 1500 x g for 5 minutes, the pellet was washed 3 times with 1 mL of the above 

buffer.   

2.6 QUANTIFICATION OF NITRITE, NITRATE, S-NITROSOTHIOLS, AND FREE 

THIOLS 

Nitrite and nitrate in culture medium from iNOS-infected cells was measured using a 

colorimetric nitrite/nitrate detection kit (Cayman Chemical) based on the Greiss assay.  To 

measure S-nitrosothiols, I washed cells twice with ice-cold PBS, scraped them into RSNO 

stabilization buffer (100 mM sodium phosphate, pH 7.4, 100 µM DTPA and 10 mM NEM), and 

sonicated them as described above.  Lysates were cleared by centrifugation at 13,000 x g for 10 

minutes, and supernatants were collected.  RSNOs in each lysate were analyzed immediately by 

ozonolysis-based chemiluminescence.  A 10 µL aliquot of each lysate was injected into the 

helium-purged reaction chamber of a Sievers Model 280 NO analyzer (Sievers, Inc., Boulder, 

CO), which contained 3 mL sodium phosphate buffer, pH 7.4, 40 µM CuSO4, and 50 mM 

sodium ascorbate.  A 10 µL injection of up to 100 µM NaNO2 produced no discernible signal, 

and pretreatment of an aliquot of each sample with 10 mM DTT completely ablated any signal, 

suggesting that this method was specific for RSNOs.  Area under the curve for each injection 

was normalized to a GSNO standard curve and then for protein content.  To quantify free thiols, 

cell lysates (200 µL) were prepared as described for measurement of S-nitrosothiols and mixed 
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with 100 µL of a 30 µM solution of ThioGlo-1, were incubated for 5 minutes at ambient 

temperature, and assayed for fluorescence (ex 388 nm, em 505 nm) using a SpectraMAX M5 

(Molecular Devices Corp., Sunnyvale, CA) in a 96-well black polystyrene assay plate (Corning, 

Lowell, Massachusetts).  Fluorescence values were normalized for protein content and to a GSH 

standard curve.   

2.7 PHOSPHATASE AND KINASE ASSAYS 

Dephosphorylation of Cdk1Tyr15/cyclin B1 was measured by incubating 500 ng of rHis-Cdc25A 

that had been pretreated for 15 minutes with the indicated compounds with 250 µg of cyclin B1 

immunoprecipitate in a 50 µL final volume for 60 minutes at 37oC in assay buffer (30 mM Tris 

pH 7.4, 75 mM NaCl, 100 µM DTPA in Chelex-100-treated deionized H2O).  Laemmli buffer 

was then added and samples were boiled to halt the reaction.  Levels of Cdk1Tyr15 

phosphorylation were determined by Western blotting as above using a phospho-Cdk1Tyr15 

antibody.  

  Phosphatase activity toward the artificial substrate O-methylfluorescein phosphate 

(OMFP) was measured at the Km (40 µM) and pH 7.4 at ambient temperature in a 96-well 

microtiter plate assay based on previously described methods (242).  rHis-Cdc25A (500 ng) was 

pretreated for 15 minutes to 1 hour with the indicated compounds in assay buffer, after which 

OMFP was added.  Fluorescence emission was measured after a 60 minute incubation period 

with a Molecular Devices M5 Spectrophotometer (ex 485 nm, em 525 nm).   

Cdk2/cyclin A kinase activity toward recombinant human Histone H1.2 (Calbiochem) 

was measured by radiolabel incorporation from [γ33P]-ATP (Perkin-Elmer).  Cdk2/cyclin A (1 U, 
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New England Biolabs) was incubated in 1X kinase buffer (500 mM Tris pH 7.5, 100 mM 

MgCl2, 10 mM EGTA, 0.10% Brij-35 in Chelex-100-treated deionized H2O) with 20 µg Histone 

H1.2, and the indicated compounds for 15 minutes before addition of 0.62 µCi [γ33P]-ATP in a 

total concentration of 200 µM ATP to bring the total reaction volume to 60 µL and initiate the 

kinase reaction.  After 20 minutes, 25 µL of each sample was transferred to a P81 

phosphocellulose square, air dried for 5 minutes, and washed 3 times for 5 minutes with 0.75% 

phosphoric acid.  Squares were then rinsed in acetone, air dried, transferred to scintillation vials 

containing 4 mL scintillant, and 33P signal was counted using a Beckman-Coulter LS6500 Multi-

purpose Scintillation Counter (Beckman-Coulter, Fullerton, CA).  Total phosphate incorporation 

was kept below 5% of theoretical maximum to maintain linear kinase reaction kinetics.   

2.8 FLOW CYTOMETRY AND MICROSCOPY 

DNA synthesis and DNA content were measured by bromodeoxyuridine (BrdU) and 7-

aminoactinomycin D (7-AAD) staining, respectively, using the FITC-BrdU flow cytometry kit 

from BD Pharmingen (San Diego, CA) according to the manufacturer’s instructions.  Cells were 

incubated with 10 µM BrdU in medium for 30 minutes before harvesting and preparation 

according to the manufacturuer’s instructions.  Cell fluorescence was measured in the FITC and 

PI channels with appropriate compensation using a BD FACScalibur flow cytometer (BD, San 

Diego, CA) or a Guava EasyCyte flow cytometer (Guava Technologies, Inc., Hayward, CA).  

Data analysis was performed using Cytosoft 5.0.2 (Guava Technologies, Inc.) for data aquired on 

the EasyCyte, and WinMDI 2.8 (acquired from http://facs.scripps.edu/software.html as freeware) 

for data acquired on the FACScalibur to determine BrdU-positive cells.   
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To measure apoptosis, cells were washed once with PBS and fixed for 10 minutes at 

room-temperature in 4% formaldehyde in PBS.  One mL of PBS containing 10 µg/mL Hoechst 

33342 was added to each sample, and nuclei were visualized by standard fluorescence 

microscopy.  Nuclei that were fragmented or condensed but not mitotic were considered 

apoptotic.   

2.9 CYSTEINE REDOX-MODIFICATION PROFILING BY MASS 

SPECTROMETRY 

Profiling of the post-translational and/or redox state of protein cysteines was performed using a 

modified version of the biotin-switch method (243) based on the selectivity of RSNO reduction 

by ascorbate (overview in Figure 12) coupled with MS.  Recombinant Cdc25A (50 µg) or 

recombinant human Trx (50 µg) was treated with 50 µM SNCEE (or 50 µM CEE) in assay 

buffer at 37oC for 30 minutes before removal of excess SNCEE (or CEE) by centrifugation using 

a 6 kDa cutoff filter equilibrated in assay buffer (Bio-Rad).  A 1:100 volume of 25% sodium 

dodecyl sulfate in chelex-treated dH2O was added to each sample, followed by 1 µL of 2 M IAC 

to alkylate free thiols.  Samples were incubated at 50oC for 1 hour to promote denaturation and 

alkylation.  Samples were then cooled on wet ice, and 4 volumes of -80oC acetone were added to 

each sample to precipitate protein overnight at -80oC.  The following day, proteins were 

subjected to centrifugation at 10,000 x g at 4oC for 10 minutes, and washed twice in 500 µL of -

80oC acetone.  Pellets were redissolved in 100 µL assay buffer, and 1µL of 1 M sodium 

ascorbate and 1 µL of 2 M NEM were added to each sample to promote reduction and NEM 

alkylation of RSNOs.  Samples were incubated at 50oC for 2 hours, after which 33.3 µL of 4X  
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Figure 12.  Redox-profiling of protein cysteines by selective reduction and alkylation.   

I used redox state-selective reducing agents with the alkylating agents NEM and IAC to distinguish 

potential S-nitrosothiols (-SNO) from stable, terminally oxidized cysteines (-SOx, sulfinic or sulfonic acids) and 

thiols/disulfides.  TCEP, tris-carboxyethylphosphine. 

 

Laemmli buffer was added.   The mix (50 μL) was separated by SDS-PAGE.  Samples were 

excised and in-gel digested using 200 ng Trypsin Gold (Promega, Madison, WI) in 20 µL 

NH4HCO3 overnight at 37oC.  Digested peptides were extracted in 1% trifluoroacetic acid / 50% 

acetonitrile at room temperature, dried, and resuspended in 0.1% trifluoroacetic acid.  Peptides 

were purified by reverse-phase Ziptip (Millipore, Danvers, MA) chromatography and eluted into 

0.3% trifluoroacetic acid/50% acetonitrile.  Peptide solution (2 µL) was mixed with 2 µL of a 

supersaturated α-cyano-4-hydroxycinnamic acid solution, and 0.75 µL was spotted onto a 
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Matrix-assisted laser desorption/ionization (MALDI) plate.  Mass spectra were acquired over a 

m/z = 800 - 4000 acquisition range (focus m/z = 1570) using an Applied Biosystems 4700 

Proteomics Analyzer (Applied Biosystems, Foster City, CA) in positive ion MS mode with 

reflectron engaged.  Mass spectra were calibrated using the mass standards kit for the 4700 

proteomics analyzer (Applied Biosystems).  Predicted m/z ratios were calculated using 

predominant isotope elemental masses with Protein Prospector’s MS-Digest software (accessed 

from http://prospector.ucsf.edu/cgi-bin/msform.cgi?form=msdigest).    

 

 61 

http://prospector.ucsf.edu/cgi-bin/msform.cgi?form=msdigest


3.0  ENZYMATIC REGULATION OF CDC25A BY NITROSATIVE INSULT 

3.1 INTRODUCTION 

•NO and •NO-derived reactive species (RNS) suppress DNA synthesis and Cdk2 activity, yet the 

mechanisms that enforce these observations remain poorly defined.  Regulation of phosphatase 

activity by redox stimuli has recently emerged as a mechanism regulating cell signaling.  

Oxidative inactivation of the Cdc25 phosphatases has been reported by our group and others, but 

the effects of •NO and RNS on Cdc25A activity have not been examined.  Other tyrosine 

phosphatases including PTP1B and CD45 are regulated by RSNOs (244), and the structural 

Cdc25 homolog rhodanese is regulated by S-nitrosothiols in vitro (245).  The phosphatase 

activity of Cdc25A is dependent upon the integrity of the catalytic thiolate. Structural analysis 

indicates the Cdc25A catalytic cysteine (Cys431) is in a relatively shallow hydrophobic cleft, 

leaving it exposed to its environment.  Cys431 is predicted to be much more reactive with 

electrophiles than that of typical cysteines, as the catalytic cysteine pKa is estimated at 5.6 – 6.3, 

compared to 8.33 for free cysteine.  These features likely render it susceptible to nitrosative 

attack, inhibiting its activity and providing a potential linkage between •NO and cell cycle arrest.   

 In this study, the effects of •NO-derived species in the form of S-nitrosothiols on Cdc25A 

phosphatase activity were examined.  I found that S-nitrosothiols directly inhibited Cdc25A 

phosphatase activity, and that Cdc25A activity could be restored upon treatment with reductants.  
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Cdc25A was S-nitrosated with two molar equivalents of cysteine per mole protein upon 

treatment with SNCEE, providing a plausible explanation for the observed loss of phosphatase 

activity.  I used selective chemical modification of Cdc25A cysteines based on their redox 

modifications (S-nitrosated vs. terminally oxidized vs. thiol/disulfide, see Figure 12) coupled 

with mass spectrometric analysis to profile the redox state of Cdc25A cysteines after SNCEE 

treatment.  Mass spectrometric analysis identified peptides containing 9 of 12 Cdc25A cysteines, 

all as either thiols or disulfides, and failed to detect any terminally oxidized or S-nitrosated 

cysteines.  The three cysteine-containing peptides that were not detected resided in the catalytic 

domain (Cys442) and the regulatory domain (Cys85 and Cys115).  Collectively, these 

experiments indicate that Cdc25A is S-nitrosated and inactivated by low molecular mass (LMM) 

RSNOs, and identify a novel mechanism regulating Cdc25A activity in response to •NO-derived 

reactive species.  These studies implicate the cellular balance of RSNOs as a potential mediator 

of Cdc25A activity.   

3.2 RESULTS 

3.2.1 Low molecular mass RSNOs decreased Cdc25A phosphatase activity toward OMFP 

and phospho-Cdk1Tyr15/cyclin B 

I determined whether the phosphatase activity of Cdc25A was sensitive to S-nitrosothiols in 

vitro.  Treatment with the LMM RSNOs S-nitrosoglutathione (GSNO) or S-nitrosocysteine ethyl 

ester (SNCEE) inhibited Cdc25A phosphatase activity toward OMFP in a concentration-

dependent manner (Figure 13).  The IC50 values for GSNO and SNCEE were 969 ± 126 and 22.5  
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Figure 13.  LMM RSNOs inhibited Cdc25A phosphatase activity toward OMFP.   

Cdc25A (500 ng) was incubated with the indicated concentrations of SNCEE (A) or GSNO (B) and 

phosphatase activity toward OMFP was measured as described in Experimental Methods section 2.7.  Results were 

normalized to untreated Cdc25A phosphatase activity and were expressed as percent control.  Error bars indicate 

SEM, N=4.   

 

± 6.2 µM, respectively, indicating that SNCEE was more potent toward inhibition of Cdc25A 

phosphatase activity.   

 I next probed the effects of SNCEE on dephosphorylation of an endogenous Cdc25A 

substrate, phospho-Cdk1Tyr15/cyclin B (Figure 14).  DTT maintains a reduced Cdc25A catalytic 

thiol, so DTT-treated Cdc25A added to phospho-Cdk1Tyr15/cyclin B served as a positive control 

for maximal dephosphorylation.  Cdc25A dephosphorylated Cdk1/cyclin B on tyrosine 15, and 

treatment of Cdc25A with SNCEE attenuated Cdc25A-mediated dephosphorylation of 

Cdk1/cyclin B similarly to the nonspecific tyrosine phosphatase inhibitor Na3VO4.  Together, 

these results indicated that LMM RSNOs inhibited Cdc25A phosphatase activity toward artificial 

and endogenous substrates.    
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Figure 14.  SNCEE inhibited dephosphorylation of Cdk1Tyr15/cyclin B by Cdc25A. 

A, Cdc25A (500 ng) was incubated with the indicated compounds before addition of 250 µg of Cdk1/cyclin 

B immunoprecipitate from etoposide-treated cells as described in Experimental Methods section 2.7.  The 

phosphorylation status of Cdk1Tyr15 (top panel), total Cdk1 levels (middle), and Cdc25A levels (bottom) were 

measured by Western blotting.  N=4.  B, Quanitification of A.  N.S., not significant.   

3.2.2 SNCEE was stable during the Cdc25A phosphatase activity assay 

S-nitrosothiols are typically unstable in aqueous solutions, as trace Cu+ ions and exposure to light 

catalyze the release of •NO and thiol in the case of transition metal ions and •NO and thiyl 

radical (RS•)  upon photolysis.  RS• reacts rapidly with LMM RS• and protein RS• to generate 

mixed disulfides.  •NO can autooxidize upon exposure to aqueous O2, generating the nitrosating 

species N2O3, which can S-nitrosate protein cysteines.  Thus, decomposition of SNCEE may 

generate several chemical agents capable of regulating Cdc25A activity, and it was important to 

determine whether significant decomposition of SNCEE occurred under our assay conditions.  

100 μM SNCEE, a concentration that readily inhibited Cdc25A activity, was incubated in assay 

buffer and SNCEE absorbance at 343 nm was measured at various timepoints to quantify 
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remaining SNCEE (Figure 15A).  No significant breakdown of SNCEE was detected over the 

time course of our assay, indicating that loss of Cdc25A activity was elicited by intact SNCEE.  

Consistent with this conclusion, treatment of Cdc25A with decomposed SNCEE did not decrease 

Cdc25A activity as fresh SNCEE did (Figure 15B).  Together, these results indicate intact 

SNCEE, and not SNCEE decomposition products, mediates Cdc25A inhibition.   

3.2.3 SNCEE treatment induced a reductant-sensitive change in Cdc25A migration by 

SDS-PAGE 

S-Nitrosation and S-thiolation are redox-reversible post-translational modifications (PTMs), and 

PTMs often change the migration of their targets as assessed by SDS-PAGE.  I thus investigated 

whether SNCEE treatment altered the migration of Cdc25A by SDS-PAGE under reducing and 

non-reducing conditions.  Cdc25A was treated either with decomposed SNCEE or fresh SNCEE, 

and subjected to SDS-PAGE in the prescence or absence of β-mercaptoethanol (β-ME).  

SNCEE-treated Cdc25A migrated faster in SDS-PAGE compared to decomposed SNCEE-

treated Cdc25A (Figure 16, lanes 1 and 2), and addition of β-ME to samples before 

electrophoresis ablated this accelerated migration in response to SNCEE treatment (Figure 16, 

lanes 3 and 4).  Interestingly, the β-ME-treated Cdc25A appeared more finely resolved than that 

of even decomposed SNCEE-treated Cdc25A electrophoresed under non-reducing conditions 

(Figure 16, lane 1 vs. lane 3), suggesting that multiple oxidation states or conformations of 

Cdc25A may exist under basal conditions.  This observation is consistent with reports of 

Cdc25A oxidation to a disulfide under non-reducing conditions (42).  Two additional Cdc25A 

antibody-reactive bands with molecular masses > Cdc25A were apparent in lane 1 (Figure 16) 

but not under the reducing conditions in lane 3.  The identity of the proteins constituting these  
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Figure 15.  Intact SNCEE mediated Cdc25A inhibition.   

A, SNCEE was diluted in assay buffer and the stability of SNCEE was monitored via its absorbance at 343 

nm.  SNCEE did not degrade significantly by one hour, the length of a typical phosphatase assay.  Error bars 

indicate SEM, N=3.   B, Cdc25A was treated with the indicated compounds before the phosphatase activity was 

assayed.  Phosphatase activity is expressed as percent of untreated control.  Error bars indicate SEM, N=4.  N.D., 

not detectable. 

 

bands was not known, but the molecular masses of these bands were not multiples of the 

Cdc25A molecular mass, indicating they were not multimers.  Together, these results suggest 

that SNCEE induces a reductant-sensitive change in Cdc25A under conditions that inhibit its 

activity.   

3.2.4 DTT treatment restored the activity of SNCEE-treated Cdc25A 

Vicinal dithiols such as α-lipoic acid, thioredoxin, and DTT can denitrosate protein RSNOs (187, 

202).  Disulfide bonds as are found in protein-disulfides and mixed protein disulfides are also  
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Figure 16.  SNCEE reversibly changed Cdc25A migration by SDS-PAGE. 

Cdc25A was treated with either decomposed or fresh SNCEE, and then electrophoresed in the presence or 

absence of the thiol reducing agent β-ME.  Cdc25A was then detected by Western blotting.   

 

sensitive to reduction with DTT.  To determine a potential linkage between the β-ME-sensitive 

change in Cdc25A migration following SNCEE treatment and SNCEE-induced loss of Cdc25A 

activity, I exposed SNCEE-treated Cdc25A to 20 mM DTT (which has been shown previously to 

efficiently cleave RSNOs (211)) or vehicle, and immediately measured its phosphatase activity 

after DTT.  Figure 17 shows that addition of 20 mM DTT restored > 60% of Cdc25A activity 

after SNCEE treatment.  Although Cdc25A activity was not totally restored, the complete 

ablation of Cdc25A migration change following SNCEE suggested that irreversible PTM of 

Cdc25A did not occur and therefore was not responsible for failure to restore complete activity.  

It was possible that reduction of Cdc25A PTMs was time-dependent, and the incomplete 

restoration of activity reflected such.  Regardless, Cdc25A inhibition by SNCEE was at least  
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Figure 17.  DTT restored Cdc25A phosphatase activity after SNCEE treatment. 

Cdc25A was treated with SNCEE, and then exposed or not to 20 mM DTT immediately before assay of 

phosphatase activity.  Cdc25A activity was expressed as percent untreated control.  Error bars indicate SEM, N=4.  

*, p < 0.001.   

 

partially redox-reversible, consistent with a model where SNCEE S-nitrosated the active site 

cysteine of Cdc25A.   

3.2.5 SNCEE induced S-nitrosation of Cdc25A 

To determine whether S-nitrosation of Cdc25A by SNCEE may induce the observed loss of 

activity, I measured Cdc25A-associated RSNOs after treatment with SNCEE.  The divalent 

cation Hg2+ selectively releases •NO from RSNOs, which can be captured using a number of 

•NO-reactive “traps.”  I treated Cdc25A with SNCEE, removed unreacted SNCEE, and treated 

Cdc25A with or without HgCl2 in buffer containing diaminofluorescein-2 (DAF-2), a •NO trap 
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that fluoresces upon reaction with •NO.  Addition of HgCl2 to SNCEE-treated Cdc25A increased 

DAF-2 fluorescence correlating to 2 mol of •NO release per mol Cdc25A, indicating that two 

Cys equivalents per Cdc25A molecule were S-nitrosated.  In agreement with the literature (188, 

246), trans-nitrosation of recombinant human thioredoxin at pH 7.2 resulted in only one 

modified cysteine using this method, suggesting that our detection of 2 mol RSNOs per mol 

Cdc25A was authentic.   

3.2.6 Mass spectrometric analysis of SNCEE-treated Cdc25A did not detect S-

nitrosothiols 

I next wanted to identify the cysteines that were S-nitrosated following SNCEE exposure to 

understand how LMM RSNOs were regulating Cdc25A enzymatic activity.  I used a 

modification of the biotin switch assay (243) to analyze the status of Cdc25A cysteines (Figure 

12).  First, free thiols are blocked with an alkylating agent (namely, IAC) after which RSNOs are 

selectively reduced with ascorbate and labeled with a thiol-alkylating agent (namely, NEM).  

Disulfides then were reduced and alkylated with IAC, allowing differentiation between RSNOs 

and other thiol modifications by MS.   

Using this approach, peptides by MALDI-TOF MS containing 9 of 12 Cdc25A cysteines 

from SNCEE-treated Cdc25A were identified (Table 1), all of which were IAC-alkylated, 

indicating they existed either as thiols or disulfides following SNCEE treatment.  I also did not 

detect any cysteine-containing peptides with cysteine sulfinic or sulfonic acids (Table 1), which 

indicates that SNCEE did not induce terminal oxidation of cysteines.  This is congruent with my 

enzymatic and migration data in which I observed that the migration change of SNCEE-treated 

Cdc25A (Figure 16) and inhibition of Cdc25A activity by SNCEE (Figure 17) were reversible.   
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Figure 18.  SNCEE S-nitrosated Trx Cys73.   

Recombinant human Trx was incubated with 50 μM SNCEE (B) or vehicle (A) and analyzed by MALDI-

TOF MS after preparation for cysteine redox-modification profiling as described in Experimental Methods section 

2.9.  The predicted m/z of the tryptic peptide containing iodoacetylated Cys73 (indicative of a thiol or disulfide), 

which was observed as 1205.6532 (A) and 1205.6361 (B), is 1205.5482.   The red arrow indicates the appearance of 

an ion with observed m/z of 1273.6687, corresponding to NEM-modified Cys73-containing peptide (predicted m/z = 

1273.5744) indicating SNCEE S-nitrosated Cys73. 
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Surprisingly, I did not detect any NEM-alkylated (S-nitrosated) Cdc25A peptides (Table 

1).  I was able to successfully detect an ion with an observed m/z correlating to the tryptic NEM-

alkylated peptide containing Trx Cys73 from SNCEE-treated Trx (Figure 18B) but not vehicle-

treated Trx (Figure 18A), suggesting that my failure to detect NEM-alkylated Cdc25A peptides 

did not stem from detection error.  The three cysteine-containing peptides that were not 

identified by MS analysis contained cysteines 85, 115, and 442, which lie in the regulatory 

domain (Cys85 and Cys115) and catalytic domain, respectively (Cys442).   

In summary, I have determined that LMM RSNOs inhibit Cdc25A activity towards 

artificial and endogenous substrates, and that inhibition of Cdc25A activity was associated with a 

change in its post-translational modification state and/or protein conformation.  Moreover, 

Cdc25A was S-nitrosated on two moles cysteine equivalents per mole protein following SNCEE 

treatment, providing a potential explanation for SNCEE-induced loss of Cdc25A activity.  

Together, these results identify a novel redox-sensitive mechanism controlling Cdc25A activity 

following nitrosative challenge.   

 72 



 

 IAC-labeled peptide 
(Thiol or disulfide) 

NEM-labeled peptide 
(S-nitrosothiol) 

Irreversibly oxidized peptide 
(sulfinic or sulfonic acid) 

Cysteine Pred. m/z Obs. m/z Pred. m/z Obs. m/z Pred. m/z Obs. m/z 
17 1710.9247 1711.0325 1778.9510 N/A 1685.8931 / 1701.8880 N/A 
85 2273.9537 N/A 2341.9799 N/A 2248.9220 / 2264.9169 N/A 

115 958.539 N/A 1026.5652 N/A 933.5074 / 949.5023 N/A 
159 1322.627 1322.7094 1390.6532 N/A 1297.5953 / 1313.5902 N/A 
236 2322.0563 2322.2019 2390.0825 N/A 2297.0246 / 2313.0195 N/A 
256 2150.1209 2150.1746 2218.1471 N/A 2125.0892 / 2141.0841 N/A 
265 1456.6737 1456.7809 1524.6999 N/A 1431.6420 / 1447.6369 N/A 
385 1051.5241 1051.6046 1119.5503 N/A 1026.4924 / 1042.4873 N/A 
431 1608.7839 1608.8966 1676.8101 N/A 1583.7522 / 1599.7471 N/A 
442 1398.6365 N/A 1466.6627 N/A 1373.6048 / 1389.5997 N/A 
477 2468.0216 2468.1997 2604.0741 N/A 2417.9584 / 2449.9482 N/A 
481 2468.0216 2468.1997 2604.0741 N/A 2417.9584 / 2449.9482 N/A 

 

Table 1.  Predicted and observed m/z of Cdc25A peptides by MALDI-TOF-MS. 

Recombinant human Cdc25A was incubated with 50 µM SNCEE before redox-profiling by MALDI-TOF 

MS as described in Experimental Methods section 2.9.  Data for the Cdc25A regulatory domain cysteines, catalytic 

domain cysteines, and catalytic cysteine are displayed in black, green, and red, respectively.  N/A, not observed.   

3.3 DISCUSSION 

Because Cdc25A depends upon a highly reactive thiolate for its activity and because this 

thiolate exists as part of an acid-base motif in a readily accessible hydrophobic pocket, we 

hypothesized Cdc25A activity would be inhibited by S-nitrosation in response to LMM RSNOs.    

Our studies indicated that Cdc25A is S-nitrosated and reversibly inhibited by LMM RSNOs in 

vitro, partially confirming our hypothesis.  The implications of these studies are that Cdc25A 

may be an intracellular target for nitrosative regulation in addition to the previously described 

oxidative regulation.  LMM RSNOs are generated in cells producing •NO from iNOS and in 
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experimental models of nitrosative stress; under these circumstances it could be anticipated that 

inhibition of Cdc25A phosphatase activity would halt the cell cycle, providing the logical link 

between the observed cell cycle inhibition and •NO signaling.   

Cdc25A was more sensitive to inhibition by SNCEE than GSNO (IC50 = 969 µM 

compared to 22.5 µM).  This difference in sensitivity may reflect molecular size or 

hydrophobicity and thus access of the molecule to the Cdc25A active site.  It is possible that 

release of •NO into solution and subsequent autooxidation to the nitrosant N2O3 is required for 

Cdc25A inhibition; GSNO is a remarkably stable RSNO and its high IC50 compared to that of 

SNCEE may reflect this.  Although these RSNOs are less potent than many Cdc25 inhibitors, the 

concentrations necessary for inhibition may not be outside the physiological (or pathological) 

concentrations in cells.  The basal concentration of GSNO in the rat cerebellum was estimated at 

6-8 µM, or 0.3 to 0.7% of total GSH (207).  The authors did not measure the levels of protein-

associated RSNOs or other LMM RSNOs such as CysNO, and did not examine the levels in cells 

expressing iNOS or under inflammatory stress, where RSNO levels are much higher (209).  

Thus, the total basal level of intracellular RSNOs is low, allowing retention of Cdc25A 

phosphatase activity for normal cellular functions.  Under inflammatory conditions stimulated by 

iNOS activity, however, total RSNO levels can climb as high as 220 nmol / g protein, of which 

greater than 75% is protein-SNO (209).  The concentration of GSNO in unperturbed rat 

cerebellum is estimated at 15.4 to 21.8 nmol / g protein (207), indicating that intracellular RSNO 

levels may climb at least 10-fold during inflammation.  These conditions would be consistent 

with our observed enzymatic inhibition of Cdc25A by RSNOs, as a 10-fold increase in 

intracellular RSNOs would be predicted to result in 60 - 80 μM intracellular RSNO (207).  

Dependent upon the specific RSNO(s) formed, enzymatic inhibition of Cdc25A is feasible.   
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Our studies used a model of trans-nitrosation to inhibit Cdc25A activity.  N2O3 and 

peroxynitrite (in the absence of excess •O2
-) are also potent nitrosating agents (146), and it has 

been hypothesized that N2O3 is the major nitrosating agent in cells when •O2
- production is low 

(145).  N2O3 forms and partitions selectively in the hydrophobic cores of membranes (143), and 

Cdc25A has been observed to localize to the plasma membrane (247), indicating Cdc25A, or at 

least a specifically-localized subpopulation of Cdc25A, could be exposed to very high local 

concentrations of nitrosating agents in vivo under conditions of nitrosative stress that would be 

sufficient to inhibit its enzymatic activity.   

How do LMM RSNOs inhibit Cdc25A phosphatase activity?  SNCEE did not degrade 

significantly in our assay, and decomposed SNCEE did not inhibit Cdc25A very potently.  

Together these results argue against a role of RSNO decomposition in Cdc25A inhibition by 

RSNOs.  To our knowledge, no binding of intact nitrosothiols by proteins has been reported in 

the literature, making direct binding and steric interference with Cdc25A phosphatase activity 

another unlikely cause of inhibition.  Regulation of tyrosine phosphatase activity by S-nitrosation 

in response to RSNOs has been described for PTP1B, SHP-1, and SHP-2 (189, 248), and 

inhibition of tyrosine superfamily phosphatase activity by RSNOs has been described for PTP1B 

and the lipid phosphatase PTEN in vivo, and Yersinia protein tyrosine phosphatase in vitro (244, 

249, 250).  It should be noted that S-nitros(yl)ation of the active site cysteine was confirmed only 

for SHP-1 (189), and oxidation appears to be the mechanism by which inactivation occurs for 

PTP1B and PTEN in vivo, as inhibition is reversible with DTT, but not with ascorbate (244, 

250).  Our results are consistent with a redox-reversible modification to Cdc25A that inhibits its 

activity.  Inhibition of Cdc25A toward two structurally and biochemically distinct substrates as 

measured using separate analytical methods indicated that RSNOs exerted their effects through 
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Cdc25A and not the substrate.  As I found Cdc25A was S-nitrosated on two molar equivalents of 

cysteine, the simplest explanation is that one or more cysteines whose integrity is critical for 

Cdc25A activity is S-nitrosated by RSNOs.   

Cleavage of RSNOs in the prescence of ascorbate is dependent upon Cu+ ions, which are 

kept in the reduced state by ascorbate (198, 200).  This chemistry, which forms the basis of the 

biotin-switch assay, thus depends upon the prescence of copper ions in the RSNO cleavage 

solution.  Evidence for this copper dependence is supported by recent work indicating that 

variance in the biotin switch assay reported by groups may be due to trace contamination of 

laboratory water supplies with copper ions (251).  I used chelex-treated, deionized H2O and the 

ion chelator DTPA in my redox-profiling experiments, which may have prevented successful 

reduction and thus alkylation and detection of S-nitrosated cysteines on Cdc25A.  Thioredoxin 

binds two cupric ions in its crystal structure (252), which may have provided a source of 

reducing equivalents in the prescence of ascorbate that were not available in experiments with 

Cdc25A.  This would potentially explain the facile detection of Trx-Cys73-NO as well as 

detection of Cdc25A-associated RSNOs using Hg2+-catalyzed •NO realease and trapping, but 

failure to identify Cdc25A-associated RSNOs using the modified biotin switch assay herein.   

My failure to detect S-nitroso-Cys431-containing (or other S-nitrosated) peptides by mass 

spectrometry and my facile detection of reduced and IAC-thioalkylated Cys431-containing 

peptides under conditions where Cdc25A phosphatase activity was totally inhibited suggested 

that Cys431 was not S-nitrosated in response to LMM RSNOs.  I failed to detect peptides 

containing 3 of 12 Cdc25A cysteines; these could be the cysteines that were S-nitrosated by 

SNCEE.  Modification of cysteines in the N-terminus of Cdc25A would not be expected to 

impact its phosphatase activity, as the N-terminus is not necessary for its activity (30).  Only one 
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catalytic domain cysteine remained unaccounted for by MS, Cys442.  In the crystal structure of 

Cdc25A, Cys442 is buried and not readily accessible (42); this does not preclude the possibility 

of Cys442 trans-nitrosation by SNCEE, as a crystal structure of human thioredoxin in which a 

buried cysteine (Cys62) is S-nitrosated has been reported (246).   

Finally, an additional explanation for the loss of Cdc25A activity consistent with our MS 

data would be that Cys431 existed as a disulfide after RSNO exposure.  As mentioned above, 

other tyrosine superfamily phosphatases are oxidatively inhibited by RSNOs (244, 249, 250).  

Generation of an intra- or intermolecular disulfide bond with another Cdc25A cysteine, or a 

mixed disulfide with the CEE moiety of SNCEE could inhibit Cdc25A activity.  Western 

blotting on SNCEE-treated Cdc25A did not reveal any antibody-reactive proteins or protein 

complexes with molecular masses greater than Cdc25A even under non-reducing conditions in 

SNCEE-treated samples (Figure 16); this evidence discourages intermolecular disulfide 

formation as the effecting mechanism.  Generation of an intramolecular disulfide bond between 

the catalytic cysteine (Cys431) and a 3-dimensionally adjacent cysteine (Cys385) was observed 

in the crystal structure of Cdc25A (42), and treatment H2O2 inactivates the enzyme quite rapidly 

(kinact = 69 ± 9 M-1s-1) (117).  These observations suggest that intramolecular disulfide formation 

may be the most likely mechanism of inactivation, and that the S-nitrosation of Cdc25A 

cysteines observed may simply be auxiliary, or provide some additional regulatory role.   

Consistent with this hypothesis, a Cdc25A Cys431 disulfide would be detected by MALDI-TOF 

MS as a reduced, IAC alkylated peptide with predicted m/z 1608.7839, which we readily 

detected (obs. m/z 1608.8966).  Further studies will be centered on identifying the type and 

location of the PTM regulating Cdc25A activity in response to LMM RSNOs.   
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4.0  CELLULAR REGULATION OF CDC25A BY NITROSATIVE STRESS 

4.1 INTRODUCTION 

In light of my studies on Cdc25A activity in response to RSNOs in vitro, I aimed to determine 

the effects of nitrosative stress on Cdc25A in cells.  I hypothesized that induction of cellular 

nitrosative stress would suppress the activity of Cdc25A, resulting in hyperphosphorylation of 

Cdc25A targets such as Cdk2Tyr15 and would subsequently induce cell cycle checkpoint.  

Importantly, I observed suppression of Cdc25A expression using two different models of 

nitrosative stress, treatment with the cell-permeable S-nitrosating agent SNCEE, and adenoviral 

expression of iNOS in cancer cells.  I used SNCEE to control the molar and temporal release of 

•NO-equivalents to characterize Cdc25A suppression and probe the molecular mechanism 

governing Cdc25A loss following nitrosative stress.  Cdc25A loss was time- and concentration-

dependent, and occurred in cell lines derived from tumors of different tissue types.  Ectopically 

expressed Cdc25A was also suppressed following SNCEE, suggesting a post-transcriptional 

mechanism of suppression.  Cdc25A protein half-life was not decreased following SNCEE, and 

pre-treatment of cells with the proteasomal inhibitor MG-132 failed to prevent Cdc25A loss 

following SNCEE, indicating that increased protein degradation was not the mechanism by 

which Cdc25A loss occurred.  Global protein synthesis was inhibited following SNCEE 

exposure, and I observed hyperphosphorylation and inhibition of the translational regulator 
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eIF2α with kinetics consistent with protein synthesis inhibition and Cdc25A loss.  Indeed, the 

eIF2α inhibitor salubrinal was sufficient to suppress Cdc25A protein levels, indicating that eIF2α 

was responsible for SNCEE-induced Cdc25A loss. Collectively, these studies identified and 

delineated the first known translational mechanism governing Cdc25A protein levels, and 

indicated that Cdc25A was a target of •NO and RNS signaling in cells.  In light of the oncogenic 

and anti-apoptotic role of Cdc25A in tumor cells, these studies provide evidence that loss of 

Cdc25A may mediate the pro-apoptotic and/or cytostatic effects of •NO signaling.   

4.2 RESULTS 

4.2.1 SNCEE induced nitrosative stress 

We next investigated the effects of nitrosative insult to cellular Cdc25A.  As nitrosative stress 

elicits multiple effects on endogenous thiol buffering systems including thiol depletion and S-

nitrosation (209, 210), we first characterized the effects of nitrosative insult on cells.  We used 

SNCEE to induce nitrosative stress in HCT116 cells.  The monovalent cation Cu+ rapidly 

releases •NO from S-nitrosothiols at catalytic concentrations in the presence of a reducing agent 

such as ascorbic acid, which maintains the ion in its reduced form (198, 200).  Thus, we utilized 

CuSO4 in excess ascorbate to selectively reduce S-nitrosothiols to •NO for detection by ozone-

mediated chemiluminescence.  The basal level of RSNOs in vehicle-treated HCT116 cells was 

estimated at 32.3 ± 57.2 pmol/mg protein (Figure 19A, column 1), similar to that reported for 

other cell lines (210).  SNCEE treatment induced intracellular RSNO accumulation within 30 

minutes with maximal RSNO formation occurring in cells treated with 100 μM SNCEE, yielding 
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3.8 ± 0.9 nmol RSNOs per mg protein.  Pretreatment with the denitrosating agent DTT reduced 

the level of intracellular RSNOs nearly to that of vehicle-treated cells (202.6 ± 6.9 pmol/mg 

protein), suggesting that DTT could protect against or reverse intracellular nitrosative stress.   

An increase in intracellular RSNOs would be anticipated to decrease intracellular thiols, 

as nitrosation converts free thiols to –SNO.  The fluorogenic maleimide thiol-alkylating agent 

ThioGlo-1 reacts selectively and quantitatively with free thiols at physiological pH generating an 

increase in its quantum fluorescence yield.  I used ThioGlo-1 to quantify intracellular thiols in 

cell lysates following SNCEE treatment (Figure 19B).  As a control, cells were treated with 100 

μM decomposed SNCEE, and I detected 43.6 ± 0.8 nmol free thiols per mg protein (Figure 19B).  

This was in agreement with free thiol concentrations published for other cell lines (210). SNCEE 

decreased intracellular thiols in a concentration-dependent manner (Figure 19B). These results 

were consistent with S-nitrosation of intracellular proteins resulting in a decrease in intracellular 

thiols. As reported previously the loss of thiols exceeded the generation of RSNOs, which 

implies that thiol oxidation may be occurring in response to SNCEE treatment (210).  

Regulation of •NO and RNS is complex in cells and generation of numerous RNS is 

possible, including the oxidizing and nitrating agents ONOO- and •NO2 (253). Because I 

observed thiol depletion in excess of the observed RSNO generation, I queried whether 

significant amounts of •NO2 and ONOO- were being formed. A convenient biomarker of •NO2 

and ONOO- formation is 3-nitrotyrosine (3-NT) because it is a relatively stable post-translational 

protein modification, is specifically generated by nitrating reactions, and because reagents 

against 3-NT are readily available (253). Therefore, I utilized a 3-NT-specific antibody to 

determine whether SNCEE increased the intracellular levels of 3-NT. In control cells (Figure 20,  
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Figure 19.  SNCEE induced intracellular RSNO accumulation and thiol depletion. 

A, HCT116 cells were treated with the indicated compounds for 30 minutes, at which time lysates were 

prepared and analyzed for RSNO content as described in Experimental Methods section 2.6.  B, HCT116 cells were 

treated with the indicated compounds for 30 minutes, at which time lysates were prepared and analyzed for thiol 

content as described in Experimental Methods section 2.6.  *, p < 0.05. 
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Figure 20.  SNCEE did not induce significant biomolecule nitration.   

HCT116 cells were treated with 100 µM SNCEE for the indicated time periods and 1µg of protein per 

sample was subjected to dot blotting for nitrotyrosine.  Nitrotyrosine-BSA is shown as a control for antibody 

activity.  

 

0 minutes) 3-NT levels were low compared to the positive control lane (Figure 20, NT-BSA), 

although there was a 20-fold higher amount of protein present. Notably, no change in the levels 

of 3-NT were detected following treatment of HCT116 cells with 100 μM SNCEE up to 4 hours 

following treatment.  Collectively, these results suggest SNCEE selectively induced intracellular 

biomolecule nitrosation.  

4.2.2 SNCEE decreased Cdc25A protein levels in HCT116 cells 

I next determined the effects of SNCEE-induced nitrosative stress on Cdc25A activity in cells.  I 

treated HCT116 cells with 100 µM SNCEE or the control compounds L-cysteine ethyl ester 

(CEE) or decomposed SNCEE, as 100 µM SNCEE induced significant accumulation of 

intracellular RSNOs but did not generate any detectable 3-nitrotyrosine (Figures 19 and 20).  

Surprisingly, treatment for two hours with SNCEE but not decomposed SNCEE or CEE 

decreased Cdc25A protein levels, whereas the protein levels of β-tubulin were unaffected (Figure  
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Figure 21.  Characterization of Cdc25A suppression following SNCEE treatment. 

A, HCT116 cells were treated with 100 µM of the indicated compounds and harvested two hours later for 

Western blotting.  B, HCT116 cells were treated with 100 µM SNCEE and samples were harvested at the indicated 

time points for Western blotting.  C and D, HCT116 cells (C) and HeLa cells (D) were treated with the indicated 

concentrations of SNCEE and harvested two hours post-treatment for Western blotting.   

 

21).  I observed no significant change in the protein levels of Cdk2 or GAPDH (Figure 22), 

indicating some specificity for Cdc25A.  Cdc25A loss was time-dependent with the lowest 

Cdc25A levels occurring approximately 2 hours after treatment and rebounding by 4 hours post-

treatment (Figure 21B).  Cdc25A suppression following SNCEE was concentration-dependent; 

treatment of HCT116 cells with 50 µM SNCEE resulted in loss of greater than 60% of Cdc25A 

by 2 hours after treatment (Figure 21C).  A similar concentration-dependent loss of Cdc25A 

protein levels in response to SNCEE was observed in HeLa cervical carcinoma cells (Figure 

21D) indicating that SNCEE decreased Cdc25A levels in cells derived from multiple tumor 

types.  As HeLa cells are functionally deficient in p53- and Rb-pathway signaling due to the 

presence of human papilloma virus-associated oncogenes (122, 123), this also indicated these 

pathways were not required for loss of Cdc25A following SNCEE.  Recognition of Cdc25A by 

the antibody used for Western blotting was unaffected by RSNOs directly by SNCEE (Figure 

17), suggesting a bona fide decrease in Cdc25A protein levels.   
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Figure 22.  GAPDH and Cdk2 were not affected by SNCEE treatment.   

HCT116 cell lysates from Figure 21B were subjected to Western blotting for the indicated proteins.   

 

4.2.3 SNCEE did not decrease Cdc25A protein stability 

I next aimed to determine the mechanism by which nitrosative stress suppressed Cdc25A protein 

levels.  Cdc25A is a labile protein with a short half-life (57, 110, 111).  The basal half-life of 

Cdc25A is controlled by ATR/Chk1-mediated ubitquitination and proteasomeal degradation (74, 

112).  In response to various stresses, Cdc25A becomes hyperphosphorylated by several stress-

dependent kinases including p38, Chk1, and Chk2, subsequently targeting Cdc25A for 

degradation via ubiquitin-mediated proteolysis (114).  The resultant decreased protein levels and 

thus Cdc25 phosphatase activity promotes accumulation of hyperphosphorylated, inactive Cdk 

complexes (72). Loss of Cdk activity slows or stops cell cycle progression, allowing time for 

repair of cellular damage.  To determine whether nitrosative stress suppresses Cdc25A by 

decreasing its protein half-life, I treated HCT116 cells with UV irradiation, which decreases 

Cdc25A half-life (72), or either decomposed SNCEE or SNCEE, and monitored its half-life after 

blockade of new protein synthesis with cycloheximide (Figure 23A and B).  Logarithmic 

regression analysis of the data indicated half-lives of 25.1 and 15.5 minutes for Cdc25A in 
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decomposed SNCEE- and UV-treated cells, respectively, consistent with UV irradiation-

accelerated Cdc25A turnover.  Whereas Cdc25A levels decreased by 120 minutes in SNCEE-

treated cells to a level similar to that in response to decomposed SNCEE, the half-life was not 

shortened; rather, no significant decrease in protein levels was detected until 120 minutes after 

SNCEE treatment.  These results suggested that Cdc25A stability was not decreased in response 

to SNCEE treatment.  Similarly, pretreatment of HCT116 cells with the proteasomal inhibitor 

MG-132 (Figure 22C) or the ATR/ATM inhibitor caffeine (Figure 24) failed to prevent Cdc25A 

loss following SNCEE treatment, although the absolute levels of Cdc25A were increased (Figure 

22C, Figure 24).  Collectively, these results argued against a proteasomal mechanism of Cdc25A 

loss. 

4.2.4 Post-transcriptional Cdc25A suppression by SNCEE 

Transcription from the Cdc25A promoter is negatively regulated by several stress-responsive 

proteins, including p53, p21, and HIF-1α (84, 85, 109).  •NO or nitrosative stress have been 

reported to activate and/or stabilize the expression of several of these proteins (219, 254, 255); 

thus, I investigated whether the Cdc25A promoter region was essential for SNCEE-mediated 

Cdc25A suppression.  I generated mammalian expression vectors containing the CDC25A cDNA 

but not the CDC25A promoter or 3’-untranslated region.  These vectors drive expression of 

Cdc25A from the cytomegalovirus promoter, and express a influenza hemaglutinin (HA) 

epitope-Cdc25A fusion protein, allowing differentiation between endogenous and ectopically 

expressed Cdc25A.  I transfected these vectors into HCT116 cells, and measured the effects of 

SNCEE on HA-Cdc25A.  As observed in Figure 25, SNCEE but not decomposed SNCEE or 

CEE decreased HA-Cdc25A levels as was observed with protein transcribed from the 
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endogenous gene.  This implied that suppression of Cdc25A following SNCEE was a promoter-

independent, post-transcriptional effect. 

4.2.5 Protein translation was inhibited following SNCEE treatment 

Attenuation of protein translation provides a functional mechanism to decrease the protein levels 

of a rapidly synthesized protein.  The short half-life of Cdc25A indicated a rapid synthetic rate 

for Cdc25A, so we investigated whether SNCEE affected protein synthesis.  I treated HCT116 

cells with radiolabeled [35S]-L-cysteine and [35S]-L-methionine for different time periods 

following decomposed SNCEE or SNCEE treatment, and monitored total radioisotope 

incorporation into proteins via SDS-PAGE and autoradiography (Figure 26).  Total protein 

loading was equal as assessed by β-tubulin levels; radiolabeled amino acid incorporation into 

protein from SNCEE-treated cell lysates, however, was reduced during both the first and second 

hour, consistent with the time course of Cdc25A decrease (Figure 21B).  In addition, the 

magnitude of protein synthesis repression was consistent with the expression levels of Cdc25A 

in SNCEE-treated cells.  Together, these results suggested that SNCEE treatment decreased 

Cdc25A protein translation.  

4.2.6 Suppressed eIF2α activity was responsible for loss of Cdc25A following SNCEE 

treatment 

SNCEE decreased global protein synthesis.  Stress-dependent global translational inhibition is 

mediated primarily through phosphorylation and inhibition of the translational regulator eIF2α  

 87 



 

 

 

 

 88 



 

Figure 23.  Cdc25A half-life was not decreased following SNCEE treatment.   

A, HCT116 cells were co-treated with 25 µg/mL cycloheximide and either 100 µM decomposed SNCEE, 

100 µM SNCEE, or 60 J/m2 UV.  Cells were harvested at the indicated timepoints for Western blotting.  N=5.  B, 

Western blots from A were densitometrically scanned, and remaining Cdc25A levels were expressed as fraction 

Cdc25A at time = 0 after normalization to β-tubulin.  Black, gray, and white bars represent Cdc25A levels from 

decomposed SNCEE-, SNCEE-, and UV-treated cells, respectively. *, p < 0.05.  C, HCT116 cells were pretreated 

with 5 µM MG-132 for 8 hours before treatment with 100 µM of the indicated compounds.  Two hours later, cells 

were harvested for Western blotting.  N=4.   

 

(256).  In response to various stresses, eIF2α is phosphorylated on Ser51 by stress-sensitive 

kinases (257).  Phosphorylation of eIF2α at Ser51 increases its affinity for the eIF2B subunit, 

whose release from the eIF2 complex is necessary for GTP-GDP recycling, and subsequent 

tRNA recruitment and binding (256).  Thus, eIF2αSer51 hyperphosphorylation results in a general  

decrease in protein translation.  To investigate whether SNCEE altered the activity of eIF2α, I 

treated cells with 100 µM SNCEE and monitored phosphorylation of eIF2αSer51 using phospho-

specific antibodies (Figure 27A).  Although the total levels of eIF2α were not changed in 

response to SNCEE, the pool of phosphorylated eIF2αSer51 increased in a time-dependent manner 

with phospho-eIF2αSer51 appearing as soon as 30 minutes after SNCEE treatment and persisting 

for at least two hours after treatment.  The onset of eIF2α hyperphosphorylation was consistent 
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Figure 24.  Caffeine did not block Cdc25A loss following SNCEE treatment.   

HCT116 cells were incubated for 30 minutes in medium containing 5 mM caffeine before treatment with 

100 µM of the indicated compounds or with 60 J/m2 UV irradiation as described in Experimental Methods.  Cells 

were harvested two hours later for Western blotting.   

 

 

Figure 25.  Cdc25A promoter-independent suppression of Cdc25A by SNCEE. 

HCT116 cells were transfected with plasmids encoding HA-tagged Cdc25A as described in Experimental 

Methods.  After 24 hours, cells were treated with 100 µM of the indicated compounds.  Two hours later, cells were 

harvested for Western blotting.   
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both with the loss of Cdc25A protein, as well as attenuation of protein synthesis in response to 

SNCEE.   

 To determine whether inhibition of eIF2α was sufficient to suppress Cdc25A protein 

levels, I treated HCT116 cells with the eIF2α inhibitor salubrinal (258) or vehicle, and 

determined the effects on Cdc25A expression by Western blotting (Figure 27B).  In response to 

eIF2α inhibition, Cdc25A levels decreased to levels similar to those observed in SNCEE-treated 

cells.  This implied that eIF2α was a regulator of basal Cdc25A protein levels and suggested that 

eIF2α inhibition in response to SNCEE was a mechanism by which Cdc25A was decreased 

following nitrosative stress.   

 

Figure 26.   SNCEE inhibited global protein translation.   

HCT116 cells were incubated for 1 hour in medium lacking L-Cys and L-Met, and then treated with 100 

µM decomposed SNCEE, or 100 µM SNCEE for 2 hours.  I added 300 µCi/mL [35S]-L-Cys and [35S]-L-Met to the 

medium at the start of the indicated hour post-SNCEE treatment and cells were harvested for autoradiography and 

Western blotting 60 minutes later.  Non-adjacent lanes are shown from the same gel.   
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Figure 27.  eIF2α controlled Cdc25A protein levels. 

A, HCT116 cells were treated for the indicated times with 100 µM SNCEE and harvested for Western 

blotting.  B, HCT116 cells were treated for 24 hours with DMSO or with 75 µM salubrinal (Sal) and were then 

harvested for Western blotting.   

4.2.7 •NO derived from iNOS decreased Cdc25A protein levels 

Induction of nitrosative stress decreased Cdc25A protein levels.  In cells iNOS catalyzes RSNO 

production and initiates nitrosative stress (209).  To investigate whether intracellular production 

of •NO from an endogenous source affected Cdc25A expression, I infected HCT116 cells with 

adenoviruses encoding the human iNOS cDNA.  Measurement of NO2
- and NO3

- formation 

indicated that iNOS induced •NO formation similar to the concentrations of SNCEE utilized 

above (Figure 28B).  Expression of iNOS decreased Cdc25A protein levels but did not affect 

Cdc25B or Cdc25C (Figure 28A).  Blockade of •NO production by the NOS inhibitor L-NMMA 

prevented •NO generation, and restored Cdc25A levels (Figure 28A and B).   
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Figure 28.  iNOS-derived •NO suppressed Cdc25A expression.   

A, HCT116 cells were infected with 10 MOI of adenoviruses encoding the β-galactosidase gene (LacZ) or 

human the iNOS cDNA in the prescence or absence of 1 mM L-NMMA.  24 hours later, cells were harvested for 

Western blotting.  B, The concentration of NO2
- and NO3

- in the medium (from A) was determined using a 

colorimetric detection kit from Cayman Chemical according to the manufacturer’s instructions.   
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Figure 29.  Genetic profiling of Cdc25A suppression by iNOS-derived •NO. 

Wild-type or isogenic HCT116 cells deficient in the indicated gene products were infected with 10 MOI of 

adenoviruses encoding the β-galactosidase gene (LacZ) or human the iNOS cDNA in the prescence or absence of 1 

mM L-NMMA.  Cells were harvested 24 hours later for Western blotting.   
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  It is difficult to perform mechanistic studies in iNOS-expressing cells because the 

temporal and quantal production of •NO by iNOS are not easily regulated.  Also, viral infection 

induces eIF2αSer51 phosphorylation via protein kinase R activation (257), confounding 

interpretation of eIF2αSer51 phosphorylation state in adenovirally-infected cells.  Thus, we used a 

panel of isogenic HCT116 cells with homozygous deletions in a number of previously reported 

Cdc25A regulators to confirm or refute the roles of several reported Cdc25A regulators.  As 

shown in Figure 29, HCT116 cells deficient in Chk2, p53, p21, and HIF-1α suppressed Cdc25A 

in response to iNOS activity as was observed for the wild-type cells, consistent with a 

translational mechanism of Cdc25A loss following induction of nitrosative stress.   Collectively, 

these results corroborate the observed loss of Cdc25A in response to SNCEE treatment, and 

demonstrate that endogenously generated •NO decreased Cdc25A protein levels similar to that 

observed in cells subjected to chemically-induced nitrosative stress.   

4.3 DISCUSSION 

Stringent Cdc25A regulation is critical for cell growth without unwarranted proliferation.  High 

Cdc25A activity and expression are hallmarks of human cancers, likely conveying resistance to 

apoptosis and to anti-growth signals.  Thus, mechanisms have evolved to rapidly suppress 

Cdc25A following normal and stress-mediated cellular signaling.  Previous research uncovered 

transcriptional and proteasomal control of Cdc25A following stress; herein I described a distinct 

and novel mechanism regulating Cdc25A following exposure to •NO and RNS:  translational 

suppression of Cdc25A activity by nitrosative stress triggered by low molecular mass RSNOs 

and by iNOS-derived •NO.  This mechanism may be most prevalent in tumor tissues expressing 
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iNOS or in tissues derived from chronic inflammatory diseases, as •NO generated from iNOS 

was sufficient to suppress Cdc25A levels (Figure 28).   

 Translational Cdc25A suppression following nitrosative stress can be distinguished from 

previous reports examining Cdc25A regulation by RNS (229).  In response to nitrating agents, 

Cdc25A loss was paralleled by activation of the upstream kinase ATM and was sensitive to 

okadaic acid.  Protein phosphatase 5 (PP5) activity is required for ATM activity (259), and PP5 

is inhibited by okadaic acid (260).  These data imply the traditional DNA damage pathway 

mediates Cdc25A loss following •NO2 or SIN-1 treatment.  In contrast, SNCEE did not decrease 

Cdc25A half-life, nor was Cdc25A loss blocked by proteasome inhibition.  Also, pre-treatment 

with the ATM/ATR inhibitor caffeine did not block Cdc25A loss following SNCEE treatment, 

though UV-induced Cdc25A loss was inhibited (Figure 24).  This further distinguished SNCEE-

mediated Cdc25A downregulation from the traditional DNA damage pathway.  Collectively, this 

work and previous studies (229) reinforce the concept that distinct RNS mediate discrete 

intracellular signaling (Figure 30).    

  eIF2αSer51 is phosphorylated by the stress-responsive eIF2 kinases PKR-like endoplasmic 

reticulum kinase (PERK), heme-regulated inhibitor (HRI), GCN2, and RNA-dependent protein 

kinase (257), and is dephosphorylated by protein phosphatase 1 (PP1) (258, 261).  How eIF2α 

becomes hyperphosphorylated in response RNS is unknown, although several candidate 

mediators exist.  PP1 is inhibited by H2O2 in PC12 cells and suppression of PP1 activity in 

H2O2-treated cells correlated with phosphorylation of eIF2αSer51 (262).  H2O2 can deplete thiols 

by oxidation to inter- and intra-molecular disulfides or higher order cysteine oxides.  SNCEE 

depleted thiols (Figure 19B), indicating that this could be responsible for eIF2αSer51 

hyperphosphorylation in response to RSNOs.   
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 Perturbations to the ER redox status either in response to reductants (263) or RNS (264) 

are reported to initiate ER stress, and thus generate phospho-eIF2αSer51, presumably through 

activation of PERK.  Whereas •NO-derived species have not been reported to directly activate 

PERK, S-nitrosation of the ER-localized protein disulfide isomerase results in protein 

misfolding, which is a well-characterized ER stress (213).  This could initiate eIF2α 

hyperphosphorylation and subsequent translational inhibition.  Although PERK-mediated 

translational inhibition can occur rapidly in response to several stimuli (263), it remains 

undetermined whether PERK is activated in response to RNS, or whether S-nitrosation of protein 

disulfide isomerase and subsequent ER stress is mediated rapidly enough to elicit •NO- and 

SNCEE-induced loss of Cdc25A.   

 In addition to PERK activation, HRI kinase activity has previously been reported to be 

activated in response to •NO.  HRI may not be the major target of SNCEE-induced eIF2α 

hyperphosphorylation in HCT116 cells, as HRI protein is expressed primarily in erythroid 

precursor cells, and HRI is essentially undetectable in many other cell types (265).  Nonetheless, 

it remains possible that HRI mediated eIF2α activation.   

 Cdc25A inhibits apoptosis by binding to and inhibiting the pro-apoptotic MAP kinase 

family member ASK-1 (103).  Overexpression of Cdc25A attenuates ASK-1 activation and 

subsequent apoptosis in response to H2O2, suggesting that dissociation of Cdc25A from ASK-1 

is a required step for stimulation of ASK-1 kinase activity (103).  I have not excluded the 

possibility that loss of Cdc25A following nitrosative or oxidative stress is an essential step for 

activation of ASK-1 and subsequent downstream signaling via p38 and/or JNK kinases.  I have 

observed activation of p38 after SNCEE treatment with kinetics that slightly trail loss of Cdc25A 

(unpublished observations) and found that Cdc25A and ASK-1 coimmunoprecipitate as reported  
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Figure 30.  Regulation of Cdc25A protein levels by •NO and RNS. 

In response to nitrating species such as ONOO- and •NO2, activation of ATM is observed coincident with 

loss of Cdc25A protein levels.  This loss of Cdc25A is sensitive to okadaic acid, which inhibits the essential ATM 

cofactor PP5.  Thus, nitrating agents appear to activating the traditional checkpoint signaling machinery to suppress 

Cdc25A.  In contrast, RSNOs and •NO derived from iNOS (which may ultimately generate RSNOs) trigger 

suppression of eIF2α activity and subsequent translational inhibition of Cdc25A.  The mechanism by which eIF2α is 

inhibited remains to be determined (see text for detailed discussion).    

  

previously ((103) and Figure 37), consistent with a model where translational suppression of 

Cdc25A following stress generated by high •NO primes the cell for ASK-1 activation and 

signaling through the p38 pathway.  Alternatively, in response to shorter or less severe 

nitrosative stress, Cdc25A enzymatic activity may be inhibited, allowing for cellular regulation 

of Cdc25A phosphatase-dependent vs. independent activities in response to nitrosative insult 

(Figure 31).  Future studies are centered on this hypothesis.   
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 In summary I have described novel regulation of Cdc25A in response to •NO and •NO-

derived species, RSNOs reversibly inhibit Cdc25A phosphatase activity while inhibition of 

eIF2α suppresses translation of Cdc25A protein.  These results highlight the importance of 

stringent control of Cdc25A expression to regulate cellular activities.  I speculate that this 

bipartite control of Cdc25A allows a cellular “stopwatch” function, where rapid inhibition of 

Cdc25A phosphatase activity protects against cell cycle progression, while prolonged or severe 

•NO-mediated cell stress suppresses Cdc25A levels and attenuates non-enzymatic Cdc25A 

functions such as apoptosis suppression. 

 

Figure 31.  Bipartite control of Cdc25A by nitrosative stress. 

Nitrosative stimuli are capable of both inhibiting Cdc25A enzymatic activity and inhibiting the translation 

of the protein.  Enzymatic inhibition of Cdc25A by LMM RSNOs occurred rapidly in vitro, whereas suppression of 

Cdc25A protein levels following nitrosative stress required several hours.  Thus, both the duration and intensity of 

nitrosative insult may dictate the Cdc25A-dependent biological outcome of the stress.   
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5.0  EXAMINATION OF THE PHYSIOLOGICAL SIGNIFICANCE OF CDC25A 

SUPRESSION IN RESPONSE TO NITROSATIVE INSULT 

5.1 INTRODUCTION 

Cdc25A dephosphorylates and activates Cdk2 complexes and thus drives the G1-S transition and 

progression through S-phase (46, 48).  Overexpression of Cdc25A accelerates dephosphorylation 

of Cdk2 complexes and accelerates the G1-S transition (46).  Conversely, suppression of 

Cdc25A attenuates DNA synthesis in a manner dependent upon Cdk2 dephosphorylation (266), 

and suppression of Cdc25A is required for S-phase checkpoint in response to DNA damage (71, 

74, 105).  Similarly, overexpression of Cdc25A bypasses checkpoint initiation and results in 

radioresistant DNA synthesis (RDS)(71, 74, 78) .  This requirement for Cdc25A suppression for 

checkpoint initiation is supported by studies in which expression Cdk2AF (a Cdk2 double 

mutant in which the inhibitory Thr14 and Tyr15 residues are mutated to alanine and 

phenylalanine, respectively, and thus is not dependent upon Cdc25 activity) bypassed the S-

phase checkpoint and resulted in RDS (71, 105).  Thus, dephosphorylation of Cdk2 by Cdc25A 

is rate-limiting for DNA synthesis in normal and DNA-damaged cells.   

Our observation that nitrosative stress in the form of iNOS-mediated •NO production or 

SNCEE treatment decreased Cdc25A activity and levels in conjunction with previous studies 

reporting •NO/RNS-mediated S-phase arrest concurrent with suppressed Cdk2 activity (226, 
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227) suggests that Cdc25A could be the causal link between •NO production and cellular 

inhibition of DNA synthesis.  Overexpression of Cdc25A by tumor cells provides a logical 

explanation for the paradoxical high •NO production in many tumors and the apparent 

insensitivity to •NO/RNS-mediated S-phase inhibition.   

I tested the role of Cdc25A expression and activity in the regulation of S-phase 

checkpoint in response to •NO/RNS.  I found that iNOS-derived •NO or SNCEE treatment 

potently and rapidly inhibited DNA synthesis as measured by BrdU incorporation into DNA.  

Expression of Cdc25A was not sufficient to restore DNA synthesis in response either to iNOS-

derived •NO or SNCEE.  Morever, expression of Cdk2AF failed to restore DNA synthesis in 

SNCEE-treated cells, and did not alter the kinetics of S-phase inhibition or recovery.  SNCEE 

did not significantly inhibit Cdk2 activity in vitro, suggesting that Cdk2 is not a direct target for 

nitrosative signaling.  Thus, I conclude that Cdc25A and Cdk2 activity are not sufficient to 

restore DNA synthesis in response to nitrosative stimuli; thus, nitrosative stress-induced S-phase 

inhibition is distinct from the DNA damage-induced intra-S-phase checkpoint, as ectopic Cdk2 

activity cannot bypass it.   

Because Cdc25A did not appear limiting for DNA synthesis following nitrosative insult, I 

examined whether other known Cdc25A activities were altered in nitrosatively-challenged cells.  

I found that Cdc25A interacted with ASK-1, and that the downstream target of ASK-1, p38 MAP 

kinase, was activated in SNCEE-treated cells with kinetics that roughly coincided with Cdc25A 

suppression.  Moreover, whereas SNCEE did not cause apoptosis alone, cotreatment of cells with 

SNCEE and the cytotoxic agent cisplatin caused an approximately two-fold increase in apoptosis 

compared to decomposed SNCEE and cisplatin-treated cells.  Together, these results indicate 
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that Cdc25A suppression in nitrosatively-challenged cells may decrease the apoptotic threshold 

in response to genotoxic stimuli.   

5.2 RESULTS 

5.2.1 SNCEE and iNOS-derived •NO inhibited DNA synthesis 

I first determined the intensity and kinetics of DNA synthesis inhibition of HCT116 cells 

expressing iNOS or treated with SNCEE.  Expression of iNOS in HCT116 cells simultaneously 

decreased Cdc25A (Figure 32B) and incorporation of BrdU into DNA compared to cells 

expressing LacZ (Figure 32A, top-right panel vs. top-left panel).  Notably, cells still incorporated 

some BrdU (Figure 32A, bottom-left panel), although to a lesser level than LacZ-expressing 

cells.  Although L-NMMA had no effect on Cdc25A expression or DNA synthesis in LacZ- 

expressing cells, treatment of iNOS-expressing cells with L-NMMA restored both Cdc25A 

expression (as observed previously) and DNA synthesis (Figure 32A, bottom-right panel vs. 

bottom-left panel), indicating that production of •NO was required for suppression of Cdc25A 

and DNA synthesis.  Together, these results indicate that iNOS-derived •NO triggered S-phase 

arrest, and that Cdc25A suppression and DNA synthesis inhibition were temporally correlated.  

I next examined the effects of SNCEE on DNA synthesis in HCT116 cells.  I exposed 

cells to 100 µM SNCEE, and monitored DNA synthesis at various timepoints post-treatment by 

BrdU incorporation.  As shown in Figure 33, treatment with SNCEE suppressed DNA synthesis 

within two hours of treatment, and rebounded by six hours post-treatment.  Comparison of the 

kinetics of DNA synthesis inhibition to Figure 21B suggested that inhibition of DNA synthesis  
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Figure 32.  iNOS-derived •NO simultaneously suppressed Cdc25A and DNA synthesis. 

A, HCT116 cells were infected with adenoviruses encoding LacZ or iNOS and incubated in medium with 

or without 1 mM L-NMMA for 24 hours.  Cells were labeled with BrdU for 30 minutes, and harvested for flow 

cytometry.  The y-axis depicts log-BrdU fluorescence, while the x-axis depicts 7-AAD fluorescence as a measure of 

DNA content.  B, Duplicate plates of cells were infected as above and harvested 24 hours post-infection for Western 

blotting.   
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Figure 33.  SNCEE time-dependently inhibited DNA synthesis. 

HCT116 cells were treated with 100 µM SNCEE, and cells were labled with 10 µM BrdU 30 minutes 

before harvesting at the indicated time periods for flow cytometric analysis.    

 

correlated with loss of Cdc25A, and recovery of DNA synthesis trailed recovery of Cdc25A 

expression, consistent with a role for Cdc25A in stimulating S-phase activity.   

5.2.2 DNA synthesis was not restored by Cdc25A expression in iNOS-expressing cells.   

If Cdc25A activity is limiting for S-phase, restoration of Cdc25A activity in iNOS-expressing 

cells would be anticipated to restore DNA synthesis.  I ectopically expressed Cdc25A in cells 

expressing iNOS or LacZ as a control and measured the effect on iNOS-induced DNA synthesis 
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inhibition by BrdU incorporation (Figure 34).  Again, iNOS expression reduced Cdc25A protein 

levels (Figure 34B) and suppressed DNA synthesis (Figure 34A, upper-right panel).  Despite the 

high Cdc25A levels in Cdc25A-transfected cells expressing iNOS (Figure 34B), DNA synthesis 

was not increased compared to vector-transfected cells (Figure 34A, bottom-right panel vs. top-

right panel).  Although I do not know if the ectopic Cdc25A phosphatase activity remained after 

iNOS expression and I cannot rule out the possibility that high expression of Cdc25A in 

nitrosatively-challenged cells may negatively impact DNA synthesis, the results in Figure 34B 

suggest that restoration of Cdc25A expression alone is not sufficient to restore S-phase 

progression in iNOS-expressing cells.   

5.2.3 Neither Cdc25A, C431S-Cdc25A, nor Cdk2AF altered the induction, duration, or 

recovery from S-phase arrest in response to SNCEE 

It is possible that Cdc25A expression accelerates recovery from S-phase checkpoint rather than 

restores DNA synthesis.  Also, Cdc25A activity is attenuated by RSNOs in vitro, and RSNOs are 

generated by iNOS-derived •NO in cells (209).  Therefore it is possible that Cdc25A expression 

alone is not able to activate Cdk2 because RNS inactivate Cdc25A phosphatase activity.  To test 

these hypotheses, I expressed Cdc25A, catalytically inactive Cdc25A (C431S), or a Cdk2 

Thr14Ala/Tyr15Phe mutant that cannot be phosphorylated at Thr14/Tyr15 and is thus active 

independent of Cdc25A (Cdk2AF) and monitored the kinetics of S-phase checkpoint initiation, 

duration, and recovery following SNCEE treatment.   As shown in Figure 35, expression of 

Cdc25A, C431S, or Cdk2AF had no significant effect on induction of S-phase arrest, duration of 

arrest, or recovery from arrest.  These results indicate that while Cdk2 activity (and thus Cdc25A 
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Figure 34.  Cdc25A expression did not restore DNA synthesis in iNOS-expressing cells. 

A, HCT116 cells were transfected with vectors encoding HA-Cdc25A and replated at low density.  The 

following day, cells were infected with adenoviruses encoding LacZ or iNOS, incubated for 24 hours, and labeled 

with 10 µM BrdU for 30 minutes before harvesting for flow cytometry.  B, HCT116 cells were transfected and 

infected as above, and incubated for 24 hours before harvesting for Western blotting.   
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Figure 35.  Expression of Cdc25A, C431S-Cdc25A, or Cdk2AF failed to alter the kinetics of SNCEE-

mediated inhibition of DNA synthesis.   

A, HCT116 cells were transfected with vectors encoding the indicated proteins (or empty vector).  After 24 

hours, cells were treated with 100 µM SNCEE, and labeled with 10 µM BrdU for 30 minutes before harvesting at 

the indicated times post-SNCEE treatment.  Error bars = SEM, N=3.  B, Duplicate plates were transfected and 

treated with SNCEE as in A, and harvested for Western blotting at the indicated times.  Vector, Cdc25A, and C431S 

display blots for Cdc25A protein, whereas Cdk2AF displays a blot for Cdk2 protein.   
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activity) may be required for recovery from S-phase checkpoint, they are not sufficient to restore 

DNA synthesis in nitrosatively-stressed cells.   

 

5.2.4 Cdk2 was not directly inhibited by SNCEE 

An alternative explanation for the inability of Cdk2AF to restore DNA synthesis would be that 

SNCEE may directly inhibit Cdk2 activity.  I determined whether SNCEE inhibited Cdk2/cyclin 

A kinase activity in vitro.  I treated Cdk2 with the Cdk inhibitor roscovitine or with increasing 

concentrations of SNCEE, and measured the ability of Cdk2 to incorporate 33P from ATP into 

recombinant human Histone H1.2 (Figure 36).  In the absence of Cdk2, no significant 

incorporation of 33P into Histone H1.2 was observed.  Cdk2 in the presence of CEE resulted in 

rapid incorporation of 33P into Histone H1.2, which could be inhibited nearly completely with 

100 µM roscovitine.  However, increasing concentrations of SNCEE had no significant effect on 

Cdk2 kinase activity (p > 0.10).  This indicated that SNCEE did not interfere with Cdk2 kinase 

activity.   

 Collectively, these data indicate that iNOS-derived •NO or nitrosative stress induced by 

SNCEE inhibited DNA synthesis in a transient fashion.  Although Cdc25A levels were decreased 

with kinetics consistent with a role for Cdc25A in S-phase inhibition and recovery, increasing 

Cdc25A levels/activity via Cdc25A overexpression or Cdk2AF expression was not sufficient to 

bypass DNA synthesis inhibition nor to change the kinetics or recovery from DNA synthesis 

inhibition in response to •NO/RNS.   
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5.2.5 SNCEE decoupled Cdc25A from ASK-1 and activated the downstream target of 

ASK-1 signaling p38 

Because Cdc25A did not appear limiting for cell cycle progression following nitrosative 

insult, I investigated other potential effects of Cdc25A suppression following nitrosative stress.  I 

and others have found that Cdc25A interacts with ASK-1 (Figure 37) (103).  Cdc25A inhibits 

 

Figure 36.  SNCEE did not significantly inhibit Cdk2 activity in vitro.   

Cdk2/cyclin A was treated with the indicated compounds before its ability to incorporate 33P from [33P]-

ATP into Histone H1.2 was evaluated.  Error bars = SEM, N = 4.   

 

ASK-1, and overexpression of Cdc25A protects cells from oxidiative stress-induced apoptosis by 

preventing the activation of kinases downstream from ASK-1, such as p38 (103).  Thus, I 

hypothesized that Cdc25A protein modification (Figure 16) or suppression (Figure 21) by 
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nitrosative stress would sensitize cells to apoptotic stimuli by decreasing its association with 

ASK-1.  I expressed Cdc25A and HA-tagged ASK-1 (HA-ASK-1) in HCT116 cells and 

measured the effect of SNCEE-induced nitrosative stress on Cdc25A-ASK-1 interaction by co-

immunoprecipitation (Figure 37).  SNCEE decreased the amount of Cdc25A associated with 

ASK-1 at two hours, consistent with Cdc25A loss following SNCEE (Figure 21B).  As 

dissociation of Cdc25A would be anticipated to promote ASK-1 activation, I asked whether the 

ASK-1 pathway was activated in response to SNCEE.  I treated HCT116 cells with 100 µM 

SNCEE, and measured the activation of the ASK-1-downstream kinase p38 using 

phosphospecific antibodies (Figure 38).  SNCEE induced a time-dependent activation of p38 that 

trailed accumulation of RSNOs (Figure 19A) and roughly coincided with loss of Cdc25A protein 

(Figure 21B).   

 

 

Figure 37.  SNCEE decreased the Cdc25A-associated fraction of ASK-1.   

HCT116 cells were transfected with vectors encoding untagged Cdc25A and HA-tagged ASK-1.  Twenty-

four hours later, cells were treated with 100 μM SNCEE.  At the indicated times, ASK-1-associated proteins were 

coimmunoprecipitated as described in Experimental Methods section 2.5 and subjected to Western blotting with the 

for Cdc25A and HA-ASK-1.  N=3.   
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5.2.6 SNCEE sensitized cells to ASK-1-dependent apoptosis 

cis-Diaminedichloroplatinum(II) (CDDP) induces apoptosis through the ASK-1 pathway (104).  

We treated cells with 10 µM CDDP after pretreatment with 100 µM of either decomposed 

SNCEE or fresh SNCEE and measured apoptosis after 48 hours (Figure 39A).  SNCEE alone did 

not affect basal nuclear fragmentation frequency compared to decomposed SNCEE (2.08% ± 

0.51 vs. 1.58% ± 0.31, Figure 39A), and pretreatment of cells with SNCEE increased apoptosis 

two-fold (13.83% ± 1.37) following CDDP compared to decomposed SNCEE-pretreated cells 

(7.00% ± 0.87).  Similarly, SNCEE pretreatment before 10 μM CDDP induced cleavage of 

PARP and procaspase-3 as evidenced by accumulation of cleaved PARP and p17/p20 caspase-3 

subunits (Figure 39B) whereas decomposed SNCEE and CDDP cotreatment did not.  Together, 

these results indicate that nitrosative stress sensitized cells to ASK-1-dependent apoptotic cell 

death, consistent with an inhibitory role for Cdc25A in ASK-1-mediated apoptosis.   

5.3 DISCUSSION 

A recurrent paradigm in Cdc25A biology has been that in response to cellular stress Cdc25A is 

rapidly targeted for proteasomal degradation, resulting in the inhibitory hyperphosphorylation of 

Cdk2, thus initiating cell cycle arrest.  Although in response to •NO Cdk2 is inhibited and DNA 

synthesis is halted (226, 227), our findings herein draw into question the ubiquity of the 

established model of intra-S-phase checkpoint.  Activation of origins of DNA replication is 

dependent upon the activity of Cdk2 and Cdc7 kinases, which are the targets of the ATM- and  
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Figure 38.  SNCEE activated p38 kinase.   

HCT116 cells were treated with 100 µM SNCEE or with 200 ng/mL anisomycin (Anis) for the indicated 

times before harvesting and Western blotting for the indicated proteins.   

 

ATR-dependent DNA replication checkpoints, respectively (105, 267).  Numerous studies have 

reported that aberrant Cdk2 activation either by Cdc25A overexpression or Cdk2AF expression 

is sufficient to bypass the ATM-mediated intra-S-phase checkpoint in response to damaged DNA 

(71, 74, 105).  Conversely, in the ATR-dependent replication checkpoint, Cdk2AF has no effect 

on DNA synthesis (267).  The unaltered half-life of Cdc25A in response to SNCEE (Figure 23) 

and failure of caffeine (which inhibits both ATM and ATR kinases) to suppress Cdc25A loss 

(Figure 24) suggests that the canonical ATR/ATM-mediated intra-S-phase checkpoint pathway is 

not activated in response to •NO/nitrosative stress, and the failure of Cdc25A overexpression or 

Cdk2AF expression to reinitiate DNA synthesis (the so-called “RDS” phenotype) supports the 

hypothesis that •NO/nitrosative stress inhibits DNA synthesis via novel mechanism(s).  

Overexpression of Cdc25A did not accelerate recovery from DNA synthesis inhibition.  This 

does not, however, mean that Cdc25A expression or activity is not required for recovery from 

 112 



DNA synthesis inhibition.  It is possible that a threshold concentration of Cdc25A is necessary 

for the reinitiation of DNA synthesis, and suprathreshold Cdc25A levels do not contribute 

additionally.  This would be in contrast to that reported for Cdc25B, in which overexpression 

was able to accelerate recovery from the G2 checkpoint after DNA damage (87).   

 

Figure 39.  SNCEE sensitized cells to cisplatin. 

A, HCT116 cells were treated with 100 µM of decomposed or fresh SNCEE.  One hour later, cells were 

treated with DMSO or with 10 µM cisplatin (CDDP).  Cells were fixed 48 hours later, and nuclei were stained with 

1 µg/mL Hoechst 33342, and fragmented nuclei were counted by fluorescence microscopy at 20X magnification.  

Results are expressed as means ± SEM of four experiments in which three fields of view per sample were counted.  

N.S., not significant; *, p < 0.001.  B, HCT116 cells were untreated or treated as described in A, and harvested for 

Western blotting with the indicated antibodies 24 hours later.  N=2.   
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Whereas Cdc25A bypasses the intra-S-phase checkpoint in response to IR (71),  it has previously 

been reported that Cdc25A+/- MEFs (which produce about half as much Cdc25A protein as wild-

type MEFs) display difficulty recovering from IR-induced G2 checkpoint, implying that Cdc25A 

protein levels are limiting (89).   

It should be recognized that DNA replication was not totally inhibited in response to 

•NO/RNS, as evidenced by some BrdU incorporation in iNOS-expressing and SNCEE-treated S-

phase cells compared to hydroxyurea-treated cells, which incorporated no BrdU (data not 

shown).  This implies either that DNA is being synthesized from a reduced number of origins of 

replication within a cell (268), or that synthesis from existing origins is slowed.  Further studies 

will be necessary to distinguish between these two possibilities.  In support of the former 

hypothesis is precedent from viral replication systems of redox-sensitive replication factors 

(269).  The bovine papillomavirus type 1 E2 protein contains a reactive cysteine that is sensitive 

to oxidation or chemical modification-induced inhibition of origin binding and is flanked by a 

basic lysine residue, reminiscent of the acid-base motif which is predictive of S-nitros(yl)ation 

sites (270).  If a similar redox-sensitivity of the human replication complex exists, nitrosative 

stress could be expected to disrupt replication complex function.  Whether mammalian 

replication complex proteins are sensitive to redox stimuli is not currently known.  

In support of the “slowed synthesis” hypothesis are reports that •NO/RNS can inhibit RR 

(166, 167, 169).  Depletion of intracellular ribonucleotide stores would slow DNA synthesis by 

depleting the raw materials.  Although this is an attractive justification for decreased DNA 

synthesis in nitrosatively-challenged cells, multiple reports have demonstrated that repletion of 

cellular deoxyribonucleotides to bypass the requirement for RR activity results in a mediocre 
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restoration of DNA synthesis at best (166, 167, 221).  Additionally, nucleotide depletion would 

be expected to activate ATR and accelerate Cdc25A degradation as is observed upon treatment 

of cells with hydroxyurea (79), which was not observed in response to SNCEE.  Thus, RR 

inhibition may contribute to •NO/nitrosative inhibition of DNA synthesis, but is probably not the 

only culprit.   

How does •NO/nitrosative stress inhibit DNA synthesis without activating ATM/ATR?    

Activation of ATM has been reported in response to RNS that act as nitrating agents (229), 

implying that the checkpoint pathway can respond to at least some types of RNS.  Failure of 

•NO/nitrosative stress to activate the ATM/ATR pathways suggests either that aberrant 

replication structures are not being formed, are not being recognized, or are not transmitting 

these signals to the cell cycle machinery (ie, Cdc25A).  The single-stranded DNA-binding 

protein replication protein A (RPA) is regulated by oxidation/reduction of a key cysteine residue 

that upon oxidation prevents RPA binding to ssDNA (271).  Binding of ssDNA-associated RPA 

by the ATR/ATRIP complex (see Figure 6) appears to be required at least under some 

circumstances for ATR activation (272).  Thus, post-translational modification of RPA may 

result in failed sensing of stalled or malformed replication forks generated by nitrosative stress, 

and result in subsequent failure to activate ATR.  Our characterization of SNCEE-treated cells 

indicated that thiols were depleted, which means that intracellular oxidative stress was occurring 

to some degree.  Intriguingly, it has been reported that pretreatment of cells with the LMM thiols 

N-acetylcysteine or GSH before exposure to •NO prevents DNA synthesis inhibition, suggesting 

a potential redox sensitive component of the DNA replication machinery (273).   

In some cases, high levels of •NO confer a growth advantage to tumors (231, 233).  

However, in vitro studies consistently suggest that •NO inhibits progression through the cell 
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cycle.  The growth advantage conveyed to some tumors by •NO may not necessarily be mediated 

by enhanced cell division; •NO has been reported to increase the vascularity (and thus 

presumably the blood supply and nutrient delivery) of tumors (228, 231).  This may result in a 

greater average cell division rate in the •NO-exposed tumor because it is “well-fed” when 

compared to the undervascularized tumor.  Also, the size of a tumor is determined by the 

equilibrium struck between cell division and cell death.  As •NO inhibits apoptosis in some 

models (211, 212) the spontaneous death rate may be decreased in •NO-exposed tumors 

sufficiently to result in larger net tumors.  Regardless, Cdc25A overexpression did not appear to 

convey a selective growth advantage to nitrosatively-challenged tumor cells, indicating that other 

mechanisms are involved.  

We found that pretreatment of cells with SNCEE decreased Cdc25A protein levels 

(Figure 21) and sensitized cells to cisplatin (Figure 39), which causes apoptosis via ASK-1 

activation (104).  We also observed activation of the ASK-1 target kinase p38 following SNCEE 

coincident with Cdc25A loss, and found that SNCEE decreased Cdc25A association with 

cellular ASK-1.  Together, these data implicate nitrosative stress-induced loss of Cdc25A as a 

potential chemosensitizer by promoting activation of ASK-1.  Previous studies have shown that 

Cdc25A overexpression can protect against insults to the redox status of the cell via inhibition of 

ASK-1 (103); therefore it is logical to consider that loss of Cdc25A expression due to nitrosative 

insult may sensitize cells to stimuli that perturb either the cellular redox state or to agents that 

induce apoptosis through ASK-1 activation.  Further studies will address this hypothesis.   

In summary, iNOS-derived •NO or SNCEE decreased DNA synthesis in HCT116 cells, 

but did not abrogate it entirely.  Although Cdc25A expression was reduced in nitrosatively-

challenged cells, neither Cdc25A protein levels nor Cdk2 activity was limiting for DNA 
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synthesis following nitrosative stress.  Additionally, we found that Cdc25A is decreased in 

nitrosatively-stressed cells, and that activation of the p38 kinase coincides with Cdc25A loss.  

Also, Cdc25A interacted with ASK-1, and SNCEE treatment decoupled Cdc25A from ASK-1 

sensitized cells to apoptosis in response to cisplatin.  Thus loss of Cdc25A in response to 

nitrosative stimuli may lower the apoptotic threshold for cells.  Together, these data distinguish 

DNA synthesis inhibition in response to nitrosative insult with that triggered by the intra-S-phase 

checkpoint, and indicate that nitrosative stress-induced suppression of Cdc25A may alter the 

cellular survival balance in response to genotoxic stimuli.   
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6.0  CONCLUSION 

Nitrosative insult rapidly inhibited Cdc25A enzymatic activity in a fashion that was reversible by 

reductants.  In cells, induction of nitrosative stress either by iNOS-mediated •NO overproduction 

or by the chemical nitrosant SNCEE decreased Cdc25A protein levels in multiple human tumor 

cell lines.  Suppression of Cdc25A following nitrosative stress was mediated by hyper-

phosphorylation and inhibition of eIF2α, resulting in translational suppression of Cdc25A.  

Suppression of Cdc25A was accompanied by inhibition of DNA synthesis in nitrosatively-

challenged cells.  Although Cdc25A is required for progression through S-phase, reintroduction 

of Cdc25A expression or activity (via Cdk2AF) was not sufficient to restore DNA synthesis or 

change the kinetics of the onset or recovery of inhibition, thus distinguishing inhibition of DNA 

synthesis by nitrosative stress from the intra-S-phase checkpoint.  Activation of ASK-1 target 

kinase p38 was observed in response to SNCEE with kinetics consistent with loss of Cdc25A, 

and ASK-1 interacted with Cdc25A under basal conditions.  SNCEE decoupled ASK-1 from 

Cdc25A, and pretreatment of cells with SNCEE doubled apoptosis in response to CDDP, 

providing evidence that suppression of Cdc25A in response to nitrosative stress lowers the 

apoptotic threshold of cells for genotoxic stimuli.  Nitrosative insult of differing intensities or 

durations therefore may provide the cell with the opportunity to selectively regulate phosphatase-

dependent vs. independent Cdc25A activities, and thus the Cdc25A-dependent cellular 

consequences.    
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APPENDIX A 

ANTIBODIES FOR WESTERN BLOTTING 

Antigen Antibody species Dilution Vendor 
Caspase-3 rabbit 1:1000 Assay Designs 

Cdc25A (F-6) mouse 1:100 Santa Cruz Biotechnology 
Cdc25B mouse 1:2500 BD Pharmingen 
Cdc25C rabbit 1:1000 Santa Cruz Biotechnology 

Cdk1 mouse 1:500 Santa Cruz Biotechnology 
Phospho-Cdk1Tyr15

 rabbit 1:1000 Cell Signaling Technology 
Cdk2 rabbit 1:5000 Santa Cruz Biotechnology 
Chk2 mouse 1:200 Santa Cruz Biotechnology 

Cyclin D1 mouse 1:500 BD Pharmingen 
eIF2α rabbit 1:1000 Cell Signaling Technology 

Phospho-eIF2αSer51
 rabbit 1:1000 Cell Signaling Technology 

GAPDH rabbit 1:1000 Cell Signaling Technology 
HA mouse 1:1000 Covance Research Products, Inc.

iNOS mouse 1:2500 BD Pharmingen 
c-Myc mouse 1:100 Santa Cruz Biotechnology 

Nitrotyrosine rabbit 1:100 Cayman Chemical 
p21 rabbit 1:500 Calbiochem 
p53 rabbit 1:1000 Cell Signaling Technology 

PARP rabbit 1:1000 Cell Signaling Technology 
β-Tubulin mouse 1:20,000 Cedarlane Laboratories 
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