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Base isolation has become a widely accepted method for earthquake resistant design of 

structures.  However, the research in the field has been generally restricted to one-dimensional 

motion.  Structural response is not limited to this one-dimensional motion, and the torsional 

effect of multidimensional motion contributes to the horizontal displacements.  A three-

dimensional structure can not be modeled with multiple one-dimensional analyses; rather, a 

complete three-dimensional analysis must be undertaken, as shown in this study. 

Four separate analyses for the calculation of the dynamic response of a base-isolated 

structure will be presented in this study.  The first two analysis procedures are for a single-story 

base-isolated structure.  The last two procedures are for a multi-story base-isolated structure.  

The first procedure for each structure assumes a fully linear response, in which the bearings and 

the superstructure remain in the linear elastic range of response.  The second procedure allows 

for a non-linear response from the bearings, in which each individual bearing may yield, 

changing the effective stiffness value. 

To expand upon the four analysis procedures, additional considerations presented in this 

paper include an appendix on the effect of bearing friction and an appendix on plasticity.  These 

two concepts further enhance the applicability of the solution procedures. 
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NOMENCLATURE 
 

Symbol  Description 

niA  solution parameter first defined in equation (2-31) 

1+niB  solution parameter first defined in equation (2-32) 

[ ]bC  damping matrix for bearing level 

[ ]iC  damping matrix for floor i 

[ ]uC  damping matrix of multi-story superstructure 

c  constant characteristic of the transition from elastic to plastic behavior 

{ }bd&&  acceleration vector for bearing level 

{ }bd&  velocity vector for bearing level 

{ }bd  displacement vector for bearing level 

{ }gd&&  input ground acceleration vector due to earthquake 

gzd&&  input vertical ground acceleration due to earthquake 

{ }id&&  acceleration vector for floor i relative to the bearing level 

{ }id&  velocity vector for floor i relative to the bearing level 

{ }id  displacement vector for floor i relative to the bearing level 

{ }ud&&  superstructure acceleration vector defined in equation (4-41) 

{ }dU  increment of total displacement 



 viii

{ }edU  increment of elastic displacement 

{ }pdU  increment of plastic displacement 

{ }dV  increment of total force 

{ }αd  increment of translation of yield surface 

λd  plastic flow parameter defined in equation (C-18) 

μd  hardening parameter defined in equation (C-25) 

ie     eccentricity between iiYG  and YOi  

1
be     eccentricity between bbYG  and 11YG  

I
inF  inertial force in the n-direction at floor i 

S
inF  resisting elastic force in the n-direction at floor i 

D
inF  dissipation force due to damping in the n-direction at floor i 

D
inF  frictional force in the n-direction at floor i 

if     eccentricity between ii XG  and XOi  

1
bf     eccentricity between bb XG  and 11 XG  

( )α,Vf  equation of yield surface 

iG     mass center of floor i (b for bearing floor, 1 for first floor) 

g  vertical acceleration due to gravity 

[ ]bK  stiffness matrix for bearing level 

[ ]eK  elastic bearing stiffness 

[ ]iK  stiffness matrix for floor i 



 ix

[ ]uK  stiffness matrix of multi-story superstructure 

[ ]iM  mass matrix for floor i 

[ ]tM  total mass matrix, first defined in equation (2-7) 

[ ]uM  mass matrix of multi-story superstructure 

[ ]ucM  column mass matrix of multi-story superstructure 

im  mass of floor i 

{ }N  vector normal to the yield surface 

iO     origin of arbitrary coordinate axis 

[ ]Q  matrix used to solve for incremental modal accelerations 

{ }P  vector used to solve for incremental modal accelerations 

( ){ }bd&sgn  vector of absolute values of bearing accelerations 

it  time at the beginning of a time step 

1+it  time at the end of a time step 

iu     displacement of mass center iG along ii XG  

iV  instantaneous shear force of a bearing in the i-direction 

y
iV  yield force in the i-direction 

iv     displacement of mass center iG along iiYG  

ix     displacement of floor i along XOi  

iy     displacement of floor i along YOi  

{ }iz&&  modal acceleration vector for floor i 



 x

{ }iz&  modal velocity vector for floor i 

{ }iz  modal displacement vector for floor i 

{ }uz&&  superstructure modal acceleration vector 

{ }α  translation vector of yield surface 

α  parameter used in Hilber’s non-linear analysis method (Hilber, 1977) 

ijα  orientation of stiffness element j of floor i 

[ ]uα  superstructure solution parameter 

β  parameter used in Newmark’s non-linear analysis method (Hilber, 1977) 

γ  parameter used in Newmark’s non-linear analysis method (Hilber, 1977) 

{ }RΔ  residual forces in non-linear solution 

tΔ  interval of time steps 

iθ     rotational displacement of mass center iG  about ii ZG  

μ  coefficient of friction 

inξ  damping ratio of floor i in mode n 

τ  time, measured between beginning and ending of a single time step 

[ ]iΦ  modal matrix 

{ }ijφ  mode shape j of floor i 

inΩ  damped frequency of floor i in mode n 

inω  natural frequency n of floor i 
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1.0 INTRODUCTION 

 

 

1.1 INTRODUCTION TO BASE ISOLATION 

 

Base isolation is an important concept in earthquake engineering.  Initially, base isolation was a 

very suspect process for design of earthquake resistant structures, and engineers were wary of its 

applications; however, it has since become a widely accepted approach.  The goal of base 

isolation is to reduce the energy that is transferred from the ground motion to the structure by 

buffering it with a bearing layer at the foundation which has relatively low stiffness.  The bearing 

level has a longer period than the superstructure, which reduces the force and displacement 

demands on the superstructure, allowing it to remain elastic and generally undamaged. 

One of the important properties of a base-isolation system is that although it is designed 

to be significantly more flexible than the elements of the superstructure, it must still be stiff 

enough to resist typical wind loadings and similar low-amplitude horizontal forces.  Therefore, 

the bearings may have a relatively high initial stiffness but will quickly reach yield, at which 

point the bearings have a greatly reduced stiffness, extending the natural period of the structure. 
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1.2 LITERATURE REVIEW 

 

There have been numerous papers and books published regarding base isolation of structures.  

However, the three-dimensional performance of these structures has been generally overlooked 

in the literature.  

James M. Kelly is an influential researcher in the area of base-isolation.  His book, 

Earthquake Resistant Design with Rubber (1996), discusses the theory and application of base-

isolation in detail.  One chapter of his work that is particularly important for this study is Chapter 

6, a discussion of the rotational effects of coupled motion of a base-isolated structure.  This 

chapter considers three degrees of freedom – x and y horizontal motion and the torsional degree 

of freedom – in structural models.  The three degree of freedom system was previously presented 

in an article by Pan and Kelly in the Journal of Earthquake Engineering and Structural Dynamics 

in 1983.  The method used to treat the three degree-of-freedom system in Kelly is quite different 

from that presented in this study, as it focuses on the relationships of the three mode shapes to 

one another.  The formulations presented here are independent of the relationships between the 

mode shapes. 

Abe, et al (2004-a) performed tests on various bearing materials to determine their 

properties such as stiffness and multi-directional behavior.  The tests performed were the biaxial 

load test, in which a constant vertical load and a variable horizontal load were applied; a triaxial 

load test, in which a second variable horizontal loading was applied perpendicular to the biaxial 

test load; and a small amplitude test, in which the horizontal loading is minimal to determine the 

resistance behavior of the bearings under small deflections.  The test results were then used to 
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ascertain the accuracy of mathematic models that were developed in tandem with the 

experiments. 

Plastic behavior was evident in the response of the bearings in the experimental phase of 

the study, so Abe, et al. (2004-b), used a plasticity model based upon the work of Ozdemir 

(1973) to model the nonlinear behavior of the bearings.  These models are shown to accurately 

portray the behavior of the bearings from the biaxial and triaxial test results.  However, the 

models are very specific to the vertical load conditions applied to the bearings during the testing.  

The experiments were conducted at two separate vertical load levels, and exhibited different 

responses for each loading. 

The experiments performed by Abe, et al. (2004-a), suggest that the vertical force acting 

through the bearings affects their stiffness and damping properties.  This effect is particularly 

visible in the response of the lead-plug rubber bearing, due to a closing of the gap between the 

plug and the rubber.  However, it should be noted that for large deformations the damping ratio 

and stiffness values become more stable, and less dependent upon the vertical loading.  Further 

research must be undertaken to ascertain a relationship between changes in the vertical loading 

and the response of the bearings.  For the purposes of this study, it is assumed that the vertical 

acceleration of the structure due to ground motion is small with respect to the gravitational 

acceleration g.  This implies that the total vertical acceleration, gzdg &&+ , will be very close to the 

gravitational acceleration value; therefore, the vertical force acting through the bearings will not 

significantly affect their properties. 

As mentioned, the paper by Abe, et al. (2004-b) used a plasticity model based upon the 

work of Ozdemir (1973).  This study, however, will use a different plasticity formulation.  

Ziegler (1959) modified Prager’s hardening rule to develop a plasticity theory to apply to 
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kinematic hardening.  This theory will be further modified for the purposes of this work to 

extend to force-displacement relationships instead of the default stress-strain relationship.  

However, the concepts proposed by Ziegler can easily be seen in the work presented in Appendix 

C. 

Mostaghel and Khodaverdian (1988) wrote a paper on the dynamic response of base-

isolated structures which formed a skeleton for many of the derivations presented in this study.  

Their paper focused on friction-based isolation systems, and therefore introduced the friction 

component to the derivations which appears in Appendix B.  The work presented in their paper 

is, however, restricted to unidirectional motion, considering only one horizontal degree of 

freedom and the vertical ground motion, which is integral to the frictional effect. 

The PhD dissertation of Ahmad El-Hajj (1993), published at the University of Pittsburgh, 

is the foundation upon which this thesis is built.  The formulations presented in this study are 

nearly identical to El-Hajj’s, though additions and corrections have been made to improve and 

clarify his work.  His dissertation developed a multi-dimensional approach to base isolation, 

incorporating both horizontal axes and the rotational component as suggested by Pan and Kelly 

in their 1983 paper.  The modified Ziegler (1959) plasticity is also adapted from this dissertation, 

which modified the stress-strain formulation to apply it to the more convenient force-

displacement relationship. 

The treatment of nonlinearities in the bearing response is not restricted to the plasticity 

theory found in Appendix C.  In each of the chapters discussing nonlinear response, a method is 

used to increase the accuracy of the calculation.  This method is the Hilber-α Method, which is 

an extension of Newmark’s β-Method.  Hilber’s (1977) method modifies the stiffness value used 
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in each time step to improve convergence on the actual structural response, and figures heavily in 

the nonlinear structural response, as can be seen in Chapters 3 and 5. 

1.3 PROPOSED STUDY 

 

The work presented herein represents a multifaceted treatment of base-isolation.  Not only do the 

formulations in this study incorporate the effect of coupled motion and the torsional degree of 

freedom, as shown in Kelly’s work, but these formulations also allow for the inclusion of 

frictional components and plastic analysis.  Each of these concepts may contribute to the 

dynamic response of a base-isolated structure. 

The first analysis procedure demonstrated in this study is a single-story linear base-

isolated structure.  This analysis is very important; it is the basis upon which the more complex 

analyses are derived.  Both the bearing level and the first floor are considered to be linear in this 

case. 

The second analysis procedure is a single-story non-linear base-isolated structure.  The 

first floor is assumed to remain linear, in accordance with the concept of base isolation.  

However, non-linearity is considered in the behavior of the bearings.  This formulation employs 

the plasticity procedure discussed in Appendix C. 

These two analyses are then expanded to apply to multi-story structures.  In each 

procedure, however, the superstructure is assumed to remain linear at all times.  Under proper 

conditions for base-isolation, this is an appropriate assumption. 

Individual base-isolation systems can be completely ineffective for certain types of 

earthquakes, a fact which demonstrates the necessity of research into the seismic properties of an 
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area, such as earthquake history and soil characteristics, before applying base-isolation to a 

structure. 
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2.0 SINGLE-STORY LINEAR ANALYSIS 

 

 

The calculation of the dynamic response of a structure to a specified ground motion is a complex 

process.  It requires determination of the equations of motion of the structure and a time-history 

analysis with a small time step to achieve accurate results.  This analysis will first be developed 

for a simple three-dimensional one-story isolated structure considering three degrees of freedom 

at each floor:  two perpendicular horizontal motions and in-plane rotation, as shown in Figure 1 

and Figure 2.  Accounting for these three degrees of freedom at both the isolation level and the 

first floor creates a total of six degrees of freedom.  For the purposes of this study, this is 

absolutely the simplest structure to be considered. 

 

 

Figure 1 – First Floor Free Body Diagram 
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2.1 ANALYSIS PROCEDURE 

 

The first step in the analysis is the determination of the equations of motion for each floor.  

Figure 1 represents a free-body diagram drawn by cutting the structure directly below the first 

floor, and considering only the first floor.  The resisting elastic force and the dissipation force 

due to damping are not shown in the drawing, but act opposite to the direction of the 

displacement and velocity of the structure, respectively, directly below the floor level.  With 

respect to Figure 1, the following summation of forces can be written in the X-direction: 

0111 =++ S
x

D
x

I
x FFF        (2-1) 

 

 

Figure 2 – Superstructure Free Body Diagram 



 

9 

Figure 2 represents a free-body diagram of the structure drawn by cutting the structure just below 

the bearing floor, and takes into account the entire structure.  As was the case with Figure 1, the 

resisting elastic and damping forces are not shown.  There is also a frictional force at the bearing 

level that is not shown.  The frictional force acts opposite to the direction of velocity.  With 

respect to Figure 2, the following summation of forces can be written in the X-direction: 

01 =++++ F
bx

S
bx

D
bx

I
bx

I
x FFFFF      (2-2) 

in which  

I
ixF ≡  the inertial force of floor i 

D
ixF ≡  the damping force of floor i 

S
ixF ≡  the elastic force of floor i 

F
bxF  ≡  the friction force at the bearing level 

i  ≡  the floor:  b for base, 1 for first floor (roof) 

The formulations presented here allow for friction within the bearings to be considered; floor 

friction is negligible.  To ignore the effects of friction at the bearing level, simply set the 

coefficient of friction, μ , to zero, and proceed with the solution. 

The force summations presented in equations (2-1) and (2-2) can be applied in any of 

three directions:  the two horizontal directions and a torsional summation, which represents the 

summation of moments.  By writing out these equations in each of the three degrees of freedom, 

the following matrix equations can be written in a form similar to equations (2-1) and (2-2), 

respectively: 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

0
0
0

1

1

1

1

1

1

1

1

1

S

S
y

S
x

D

D
y

D
x

I

I
y

I
x

F
F
F

F
F
F

F
F
F

θθθ

     (2-3) 
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⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

F
b

F
by

F
bx

I

I
y

I
x

S
b

S
by

S
bx

D
b

D
by

D
bx

I
b

I
by

I
bx

F
F
F

F
F
F

F
F
F

F
F
F

F
F
F

θθθθθ 1

1

1

    (2-4) 

Equation (2-3) can be expanded via the derivations shown in Appendix A: 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }gb dMdMdKdCdM &&&&&&&
11111111 −−=++   (2-5) 

 

2.1.1 Bearing Level Equations of Motion 
 

Similarly, equation (2-4) can be expanded using the derivations from Appendix A.  However, the 

frictional terms were not considered in the appendix.  By definition, the friction force is equal to 

the normal force times the frictional constant μ . The normal forces in this formulation will be 

taken as the mass matrix times the total vertical acceleration of the structure, ( )gzdg &&+ .  The 

direction of the frictional force is determined from the direction of the velocity of the bearing 

level, as seen in equation (2-11).  Equation (2-4) becomes: 

[ ]{ } [ ]{ } [ ]{ }
[ ]{ } [ ]{ } ( )[ ] ( ){ }btgzgt

bbbbbt

dMdgdMdM

dKdCdM
&&&&&&&

&&&

sgn11 +−−−

=++

μ
   (2-6) 

in which 

[ ] [ ] [ ]
( )

( ) ( ) ( ) ( )⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+++++++−
+
+−

=

+=

222
1

2
1111111

11

11

1

0
0

bbbbbbbb

bbt

bbt

bt

efmefmJJememfmfm
ememm

fmfmm
MMM

 (2-7) 

[ ]
( )⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−

−
=

2
1

2
1111111

111

111

1 0
0

efmJemfm
emm

fmm
M     (2-8) 
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[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

θθθθ

θ

θ

iyixi

iyiyyiyx

ixixyixx

i

CCC
CCC
CCC

C  [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

θθθθ

θ

θ

iyixi

iyiyyiyx

ixixyixx

i

KKK
KKK
KKK

K   (2-9) 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

b

b

b

b y
x

d
θ

  { }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

1

1

1

1

θ
y
x

d   { }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

0
g

g

g y
x

d &&

&&
&&   (2-10) 

( ){ }
( )
( )
( )

( )
⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

±
±
±

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=

bi

bi
bi

b

by

bx

b

d
d

d

d
d
d

d

&

&
&

&

&

&

&

sgn

1
1
1

sgn
sgn
sgn

sgn

θ    (2-11) 

≡gzd&&  vertical acceleration of the ground due to the earthquake loading 

Note that the stiffness matrices [ ]iK  are determined via the process described in Appendix A. 

The displacement vectors can be decomposed through the modal superposition method, 

in which a linear combination of the mode shapes will be used to define the displacements.  The 

displacements can be written as a function of the mode shapes of the structure as such: 

( ) ( )∑
=

=
3

1j
bjbijbi tztd φ        (2-12) 

( ) ( )∑
=

=
3

1
111

j
jiji tztd φ        (2-13) 

The vectors { }iz  represent a set of modal, or normal, coordinates.  These modal coordinates 

represent the effects of each mode shape on the deformation of the structure, as seen in equations 

(2-12) and (2-13). 

The mode shapes { }iφ can be determined by solving the generalized eigenvalue problem 

[ ]{ } [ ]{ }11
2
111 dMdK nω=       (2-14) 
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[ ]{ } [ ]{ }btbnbb dMdK 2ω=       (2-15) 

The mode shapes are actually the eigenvectors from equations (2-14) and (2-15), and the natural 

frequencies are calculated from the eigenvalues.  The modal matrices will be of the form 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Φ

133132131

123122121

113112111

1

φφφ
φφφ
φφφ

 [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Φ

333231

232221

131211

bbb

bbb

bbb

b

φφφ
φφφ
φφφ

  (2-16) 

The modal matrix for the first floor, [ ]1Φ , is determined from equation (2-14) and the modal 

matrix for the bearings, [ ]bΦ , is determined from equation (2-15). 

The columns of the modal matrices represent the mode shapes, with the first column 

representing the primary mode, which corresponds to the primary natural frequency.  Each row 

of the modal matrix represents the way in which the modal displacements are combined to 

produce the three components of the actual structural response, as seen in equations (2-12) and 

(2-13).  Therefore, each modal displacement contributes to each of the three degrees of freedom 

of the floor. 

The mode shapes are mass-orthonormalized so that the following relation is obtained: 

[ ] [ ] [ ] [ ] [ ]IMM bt
T

bt =ΦΦ=*       (2-17) 

Equation (2-6) can be simplified, using equation (2-17), by first substituting equation (2-12) as 

follows: 

[ ][ ]{ } [ ][ ]{ } [ ][ ]{ }
[ ][ ]{ } [ ]{ } ( )[ ] ( ){ }btgzgt

bbbbbbbbt

dMdgdMzM

zKzCzM
&&&&&&&

&&&

sgn111 +−−Φ−

=Φ+Φ+Φ

μ
 (2-18) 

Then, by premultiplying each side of the equation by the transpose of the modal matrix for the 

bearing level, the following equation is obtained: 
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[ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] [ ][ ]{ }
[ ] [ ][ ]{ } [ ] [ ]{ } ( )[ ] [ ] ( ){ }bt

T
bgzgt

T
b

T
b

bbb
T

bbbb
T

bbbt
T

b

dMdgdMzM

zKzCzM
&&&&&&&

&&&

sgn111 Φ+−Φ−ΦΦ−

=ΦΦ+ΦΦ+ΦΦ

μ
 (2-19) 

Next, the mass-orthonormalization shown in equation (2-17) is used to further simplify the 

expression: 

[ ]{ } [ ]{ } [ ]{ }
[ ] [ ][ ]{ } [ ] [ ]{ }

( )[ ] [ ] ( ){ }bt
T

bgz

gt
T

b
T

b

bbibbibib

dMdg

dMzM

zdiagzdiagzI

&&&

&&&&

&&&

sgn

2

111

2

Φ+−

Φ−ΦΦ−

=++

μ

ωωξ

  (2-20) 

This matrix equation consists of three separate equations of motion, one for each of the modal 

displacements.  Each of the three equations is shown below in equation (2-21), with n = 1, 2, or 

3, representing the modal displacement to be considered by the equation:  

( ) ( ) ( )

( ) ( ) ( )( ) ( )∑∑ ∑
== =

+++

=++
3

1

3

1

3

1
1

2

sgn

2

m
bmbnmgz

m m
gmbnmmbnm

bnbnbnbnbnbn

dtdgtdtz

tztztz

&&&&&&&

&&&

αμαλ

ωωξ
 (2-21) 

in which the following substitutions were made: 

[ ] [ ] [ ][ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=ΦΦ=
2
3

2
2

2
1

*

00
00
00

b

b

b

bb
T

bb KK
ω

ω
ω

    (2-22) 

[ ] [ ] [ ][ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=ΦΦ=

33

22

11
*

200
020
002

bb

bb

bb

bb
T

bb CC
ωξ

ωξ
ωξ

  (2-23) 

[ ] [ ] [ ][ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=ΦΦ−=

333231

232221

131211

11

bbb

bbb

bbb
T

bb M
λλλ
λλλ
λλλ

λ    (2-24) 

[ ] [ ] [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Φ−=

333231

232221

131211

bbb

bbb

bbb

t
T

bb M
ααα
ααα
ααα

α     (2-25) 
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Equation (2-22) is true because of the orthogonality property of modes.  Note that equation (2-

23) is the classical damping matrix. For simplicity in calculations, classical damping will be used 

throughout this paper.  The ijξ  terms represent the damping ratio of floor i in mode j. Equations 

(2-24) and (2-25) are products of the matrix multiplications required to simplify the equation of 

motion into its current state.   

 

 

Figure 3 – Linear Acceleration Method 

 
 
 
Equation (2-21) is not quite in a solvable form.  To solve for the displacement of the structure as 

a function of time, a linear interpolation approach will be taken to approximate the change in 

accelerations.  Figure 3 represents the linear acceleration method, in which accelerations are 
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known at the beginning and end of each time step and a straight line approximates the unknown 

acceleration during the interval.  This is reasonably accurate for a sufficiently small time step 

tΔ .  For example, the earthquake ground acceleration records from the Imperial Valley Irrigation 

District from the North-South motion of the 1940 El Centro, CA earthquake are recorded at an 

interval of 02.0=Δt  seconds (Chopra, 2001). 

Implementing the linear acceleration method, expressions for the modal accelerations of 

the first floor and the ground accelerations can be written as follows: 

( ) ( ) ( )
ττ

t
tz

tzz ik
ikk Δ

Δ
+= +11

11
&&

&&&&       (2-26) 

( ) ( ) ( )
ττ

t
tx

txx ig
igg Δ

Δ
+= +1&&

&&&&       (2-27) 

( ) ( ) ( )
ττ

t
ty

tyy ig
igg Δ

Δ
+= +1&&

&&&&       (2-28) 

( ) ( ) ( )
ττ

t
td

tdd igz
igzgz Δ

Δ
+= +1

&&
&&&&      (2-29) 

As can be seen from Figure 3, tΔ≤≤ τ0 . 

Now, substituting equations (2-26) through (2-29) into equation (2-21) yields the 

following equation: 

( ) ( ) ( )
t

BAzzz innibnbnbnbnbnbn Δ
+=++ +

ττωτωξτ 1
22 &&&   (2-30) 

in which n = 1, 2, 3, and  

( ) ( ) ( )( ) ( )( )( )( )∑
=

+++=
3

1
1 sgn

l
iblbnligzilbnliglbnlni tdtdgtztdA &&&&&&& αμλα  (2-31) 

( ) ( ) ( ) ( )( )( )( )∑
=

++++ Δ+Δ+Δ=
3

1
11111 sgn

l
iblbnligzilbnliglbnlin tdtdtztdB &&&&&&& αμλα  (2-32) 
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Equation (2-30) is now in the form of a second-order non-homogeneous differential equation 

with two forcing functions.  This type of problem has a solution that is written as a combination 

of the complementary solution and the particular solution.  The complementary or homogeneous 

solution, or the solution to equation (2-30) if the right hand side were set to zero, is 

( )τττωξ
bnnbnn

c
bn CCez bnbn Ω+Ω= − cos2sin1     (2-33) 

in which the damped natural frequency is represented by 

21 bnbnbn ξω −=Ω        (2-34) 

The constants C1n and C2n in equation (2-33) are dependent upon initial conditions and will be 

determined below. 

The particular solution to equation (2-30) is of the form 

t
CCz nn

p
bn Δ

+=
τ43        (2-35) 

By substituting equation (2-35) and its derivatives into equation (2-30), the constants C3n and 

C4n can be determined as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

−= +12
213 in

bn

bn
ni

bn
n B

t
AC

ω
ξ

ω
     (2-36) 

2
14

bn

in
n

B
C

ω
+=         (2-37) 

Combining the complementary solution from equation (2-33) and particular solution from 

equation (2-35) yields the following expression for bnz : 

( ) ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

Ω+Ω=

+

−

t
B

A

CCez

in

bn

bn
ni

bn

bnnbnnbn
bnbn

1
2

21

cos2sin1

ω
ξ

τ
ω

τττ τωξ

   (2-38) 

As can be seen in Figure 3, as 0→τ , itt →  and the following are true for 0=τ : 
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( ) ( )ibnbn tzz == 0τ        (2-39) 

( ) ( )ibnbn tzz && == 0τ        (2-40) 

These values can now be used to determine the constants C1n and C2n.  By applying equations 

(2-39) and (2-40) to equation (2-38), the following results are obtained: 

( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

−
−−+

Ω
= +12

22111 in
bn

bn
ni

bn

bn
ibnbnbnibn

bn
n B

t
AtztzC

ω
ξ

ω
ξωξ&  (2-41) 

( ) 132
22 +Δ

+−= in
bn

bn

bn

ni
ibnn B

t
AtzC

ω
ξ

ω
     (2-42) 

Now by setting tΔ=τ  and substituting equations (2-41) and (2-42) back into the solution given 

by equation (2-38), the following expression for zbn is given: 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Δ+++= +

++ t
B

tABRDtz in

bn

bn
ni

bn
innniibn

1
211

211
ω
ξ

ω
  (2-43) 

in which the following terms are defined for the purposes of simplification: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΔΩ

Δ
+ΔΩ

ΔΩ
−

−= Δ− t
t

t
t

eR bn
bn

bn
bn

bnbn

bnt
n

bnbn cos2sin211 32

2

ω
ξ

ω
ξωξ   (2-44) 

( )tFtEeD bnnibnni
bn

t

ni

bnbn

ΔΩ+ΔΩ
Ω

=
Δ−

cossin
ωξ

   (2-45) 

( ) ( ) ni
bn

bn
ibnbnbnibnni AtztzE

ω
ξωξ −+= &      (2-46) 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Ω= 2

bn

ni
ibnbnni

AtzF
ω

      (2-47) 

Similarly, the modal velocity can be derived from equation (2-38) by taking the derivative with 

respect to time and evaluating it at tΔ=τ .  The modal velocity can then be written as: 
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( ) ( ) ( )
t

B
BRRDGtz

bn

in
innbnbnnnibnbnniibn Δ
+−+−= +

++ 2
1

11 12
ω

ωξωξ&  (2-48) 

in which 

( )tFtEeG bnnibnni
t

ni
bnbn ΔΩ−ΔΩ= Δ− sincosωξ     (2-49) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΔΩ

Δ
−ΔΩ

ΔΩ
−

−Ω= Δ− t
t

t
t

eR bn
bn

bn
bn

bnbn

bnt
bnn

bnbn sin
2

cos
21

2 32

2

ω
ξ

ω
ξωξ  (2-50) 

The modal acceleration can also be derived from equation (2-38) by taking the second derivative 

with respect to time.  The modal acceleration can be written as: 

( ) 11 3 ++ −−= innniibn BRHtz&&       (2-51) 

in which 

( ) nibnbnnibnbnni DGH 22 212 ξωωξ −+=      (2-52) 

( ) nbnbnnbnbnn RRR 121223 22 ξωωξ −+=     (2-53) 

Recalling equation (2-32), equation (2-51) may be rewritten as 

( ) ( ) ( )( )∑
=

+++ Δ+Δ−−=
3

1
1111 3

l
ilbnliglbnlnniibn tztdRHtz &&&&&& λα   (2-54) 

Equation (2-54) is now in a form that can be solved using time-stepping methods to determine 

the response of the bearings over time, given a set of earthquake ground acceleration records and 

the response of the first floor.  However, the first floor response is also unknown.  Next, another 

formulation will be undertaken to determine a second equation with the response at the bearing 

level and the first floor unknown. 
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2.1.2 First Floor Equations of Motion 
 

For the first floor equations of motion, the mode shapes will be mass-orthonormalized with 

respect to the mass matrix [ ]1M .  This assumption produces the following matrices for use in 

equation (2-5): 

[ ] [ ] [ ][ ] [ ]IMM T =ΦΦ= 111
*
1      (2-55) 

[ ] [ ] [ ][ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=ΦΦ=
2
13

2
12

2
11

111
*
1

00
00
00

ω
ω

ω
KK T   (2-56) 

[ ] [ ] [ ][ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=ΦΦ=

1313

1212

1111

111
*
1

200
020
002

ωξ
ωξ

ωξ
CC T  (2-57) 

Again, the damping is assumed to be classical, thus only a diagonal matrix is used.  Following a 

procedure like that done to transform equation (2-6) into equation (2-21), equation (2-5) can be 

rewritten as: 

( )∑
=

+=++
3

1
111

2
11111 2

k
gknkbknknnnnnn dzzzz &&&&&&& αλωωξ    (2-58) 

in which 

[ ] [ ] [ ][ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=ΦΦ−=

133132131

123122121

113112111

111

λλλ
λλλ
λλλ

λ b
T M     (2-59) 

[ ] [ ] [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Φ−=

133132131

123122121

113112111

111

ααα
ααα
ααα

α MT     (2-60) 

Now the solution to equation (2-58) can be written in the following form using the linear 

acceleration method: 
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( ) ( ) ( )11111 ++ Δ+= ininin tztztz &&&&&&       (2-61) 

This equation can be written as a function of time τ.  When integrated, the modal acceleration 

function becomes a modal velocity function as follows: 

( ) ( ) ( ) ( )
2111111
ttzttztztz inininin

Δ
Δ+Δ+= ++ &&&&&&     (2-62) 

By integrating that function with respect to time a function for the modal displacement is 

determined as follows: 

( ) ( ) ( ) ( ) ( )
62

2

11

2

11111
ttzttzttztztz ininininin

Δ
Δ+

Δ
+Δ+= ++ &&&&&   (2-63) 

By evaluating equation (2-58) at time 1+it  and substituting in equations (2-61), (2-62), and (2-

63), the incremental form of equation (2-58) can be written as: 

( ) ( ) ( ) ( )

( ) ( )( )∑
=

++

+

+

=+++Δ
3

1
1111

1
2
11111 654

k
igknkibknk

inninninninn

tdtz

tztzRtzRtzR

&&&&

&&&&&

αλ

ω
  (2-64) 

in which 

6
14

2
2
111

ttR nnnn
Δ

+Δ+= ωωξ       (2-65) 

2
215

2
2
111

ttR nnnn
Δ

+Δ+= ωωξ       (2-66) 

tR nnnn Δ+= 2
11126 ωωξ        (2-67) 

Equation (2-64) can be further expanded.  By substituting equation (2-54) into equation (2-64), 

the unknown bearing accelerations drop out of the equation, which becomes 
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( ) ( ) ( ) ( )

( )

( ) ( )∑∑∑

∑∑∑

=
+

= =
+

= =
+

=

+

+Δ−

Δ−−

=+++Δ

3

1
11

3

1

3

1
11

3

1

3

1
111

3

1
1

1
2
11111

3

3

654

k
igknk

k l
iglkbklnk

k l
ilkbklnk

k
kink

inninninninn

tdtdR

tzRH

tztzRtzRtzR

&&&&

&&

&&&&&

ααλ

λλλ

ω

  (2-68) 

Dividing equation (2-68) through by R4n and grouping like terms creates the following 

generalized expression: 

( ) ( ) ( )nnn
nm

imnmin PPP
R

tzQtz 321
4
13

1
1111 ++−=Δ+Δ ∑

=
++ &&&&   (2-69) 

in which 

∑
=

=
3

1
1 3

4
1

k
kbkmnk

n
nm R

R
Q λλ       (2-70) 

( ) ( ) ( )inninninnn tztzRtzRP 1
2
111 651 ω++= &&&     (2-71) 

( )( )∑
=

+−=
3

1
1112

k
igknkkinkn tdHP &&αλ      (2-72) 

( )∑∑
= =

+Δ=
3

1

3

1
11 33

k l
iglkbklnkn tdRP &&αλ      (2-73) 

As with the other equations in this chapter, n in equation (2-69) can be equal to 1, 2, or 3, 

depending upon the direction to be considered.  By expanding this equation into its three 

components, the following equations are found: 

( ) ( ) ( ) ( ) ( )111
1

113131121211111 321
4
11 PPP

R
tzQtzQtzQ iii ++−=Δ+Δ+Δ+ +++ &&&&&&   (2-74) 

( ) ( ) ( ) ( ) ( )222
2

113231122211121 321
4
11 PPP

R
tzQtzQtzQ iii ++−=Δ+Δ++Δ +++ &&&&&&  (2-75) 

( ) ( ) ( ) ( ) ( )333
3

113331123211131 321
4
11 PPP

R
tzQtzQtzQ iii ++−=Δ++Δ+Δ +++ &&&&&&  (2-76) 
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Equations (2-74), (2-75), and (2-76) can then be put into matrix form as follows: 

[ ] ( ){ } { }PtzQ i =Δ +11&&        (2-77) 

Equation (2-77) can then be solved to determine the modal acceleration term by premultiplying 

each side of the equation by [ ] 1−Q : 

( ){ } [ ] { }PQtz i
1

11
−

+ =Δ &&       (2-78) 

in which 

( ){ }
( )
( )
( )⎪⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

Δ
Δ
Δ

=Δ

+

+

+

+

113

112

111

11

i

i

i

i

tz
tz
tz

tz
&&

&&

&&

&&       (2-79) 

These accelerations are then used in equations (2-61), (2-62), and (2-63) to determine the 

acceleration, velocity, and displacement of the first floor, respectively, at time 1+it .  The 

calculation of these values over time generates the overall structural response of the first floor, 

which is accurate given a small time step.  Now the only remaining unknowns are the 

acceleration, velocity, and displacement of the bearing level. 

To determine those three values, refer to equations (2-54), (2-48), and (2-43), 

respectively.  Since the first floor accelerations are now known, these three equations can be 

solved for the response of the bearing level.  However, these values for bearing level and first 

floor response are only preliminary values for the time step.  To ensure equilibrium at each time 

step, iteration must be undertaken between the two equations of motion, as noted below.  When 

the differences between two iterations are negligible, then the next time step can be considered.  

The structural response over the entire duration of the excitation is calculated in this manner, at 

which point the entire response is known. 
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The maximum displacement and maximum acceleration of the bearings are the most 

important values in the analysis.  Displacement determines the free space required around the 

bearing level of the structure to avoid damage during the dynamic response.  The acceleration 

values are important to determine the intensity of the motion induced in the structure. 

 

 

2.2  SUMMARY OF SOLUTION STEPS 

 

The process for solution of a single-story base-isolated structure is an iterative process based 

upon the equations outlined above.  The steps of this process, to determine the response of the 

structure at time 1+it , are as follows: 

1. Assemble the mass and stiffness matrices as described in Appendix A. 

2. Determine the modal matrices shown in equation (2-16) for each floor by solving 

equations (2-14) and (2-15). 

3. Assemble the [ ]Q  matrix as described in equations (2-69) and (2-70).  Assemble the 

{ }P  vector as described in equations (2-69) and (2-71) through (2-73). 

4. Solve equation (2-78), calculating the incremental modal acceleration values for the 

first floor.  These will be taken as the initial values for these variables during the time 

step. 

5. Substitute the values from step 4 into equations (2-61), (2-62), and (2-63).  This 

substitution calculates the initial values of the modal acceleration, velocity, and 

displacement of the first floor, respectively, at time 1+it . 
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6. Substitution of the values from step 5 into equations (2-31) and (2-32) will determine 

the parameters required to determine the bearing level response. 

7. Substitute the parameters determined in step 6 into equations (2-43), (2-48), and (2-

51) to determine the initial values for the modal displacement, velocity, and 

acceleration, respectively, of the bearing level. 

8. Check equilibrium.  Substitute the values for nz1& , nz1 , and { }bz&&  into equation (2-58) 

to determine a new value for nz1&& .  Using equation (2-61), determine the second 

iteration values for the first floor modal acceleration.   

9. Repeat steps 5-8 until the change in modal response between iterations is negligible.  

To determine the actual response of the structure, equations (2-12) and (2-13), and 

their time derivatives, can be solved using the modal response.  The values obtained 

represent the actual response of the bearing level and the first floor at time 1+it . 
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3.0 SINGLE-STORY NON-LINEAR ANALYSIS 

 

 

The method presented in the previous chapter assumes a fully linear response of the structure and 

the bearings.  However, this is often not the case.  In general, some elements of non-linearity 

enter the system via yielding and strain hardening.  The isolation system is designed to minimize 

the motion of the superstructure, maintaining a linear response; however, the isolators 

themselves will often yield when subjected to ground motion.  This yielding makes the response 

more difficult to calculate, since the stress-strain curve is no longer linear upon initiation of 

yielding.  To compensate for this non-linear behavior, an effective stiffness will be introduced to 

account for both the linear elastic deformation prior to yielding and the plastic deformation that 

occurs after the yield limit has been reached.  Appendix C offers a more complete discussion of 

the non-linearity of the bearings and the effective stiffness. 

A more comprehensive analysis than that presented in Chapter 2 must be undertaken to 

truly solve for the non-linear structural response.  To begin, recall equations (2-5) and (2-6).   

[ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }gb dMdMdKdCdM &&&&&&&
11111111 −−=++   (3-1) 

[ ]{ } [ ]{ } [ ]{ }
[ ]{ } [ ]{ } ( )[ ] ( ){ }btgzgt

bbbbbt

dMdgdMdM

dKdCdM

sgn11
&&&&&&

&&&

+−−−

=++

μ
  (3-2) 
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3.1 HILBER’S α METHOD 

 

As mentioned in the introductory paragraph, these linear equations are inadequate when non-

linearity occurs in the response.  Therefore, a modification of the bearing equations is necessary 

to account for the non-linearities.  One such modification is the Newmark Method, which 

modifies the stiffness of the structure to approximate the response over a time step.  The 

Newmark Method introduces numerical damping, which is used to dampen the effects of the 

higher structural modes.  Hilber (1977) further modified the Newmark Method with an α  term 

which is used to enhance the results of the time-step solution by improving the numerical 

damping.  Hilber’s equation is presented here as it applies to equation (3-2), determined at time 

1+it : 

[ ] ( ){ } [ ] ( ){ } ( )[ ] ( ){ }
[ ] ( ){ } [ ] ( ){ } [ ] ( ){ }

( )( )[ ] ( )( ){ } { }1
1

1111

111

sgn

1

+
+

++

+++

Δ−+−

−−=−

+++

i
ibtigz

igtiibb

ibbibbibt

RtdMtdg

tdMtdMtdK

tdKtdCtdM

&&&

&&&&

&&&

μ

α

α

 (3-3) 

The same formula can then be applied to time it : 

[ ] ( ){ } [ ] ( ){ } ( )[ ] ( ){ }
[ ] ( ){ } [ ] ( ){ } [ ] ( ){ }
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A time-step formulation can be created by subtracting equation (3-4) from equation (3-3).  The 

time-step equation is: 
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in which 

{ } { } { }ii RRR Δ−Δ=Δ +1        (3-6) 

{ }≡Δ +1iR  residual forces at iteration i 

( ) ( ) ( )igzigzigz tdtdtd &&&&&& −=Δ ++ 11       (3-7) 

 

 

3.2   NEWMARK’S β METHOD 

 

Now that an iterative equation has been written with respect to displacement, velocity, and 

acceleration of the structure, Newmark’s β -Method can then be used to calculate the velocity 

and displacement of the structure across the time step tΔ .  The following equations represent 

Newmark’s method (Hilber, 1977) as it is applied to the bearing level velocity and displacement 

vectors: 

( ){ } ( ){ } ( ) ( ){ } ( ){ }[ ] iibibibib ttdtdtdtd Δ+−+= ++ 11 1 &&&&&& γγ   (3-8) 

( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( )21

1

2
1

iibib

iibibib

ttdtd

ttdtdtd

Δ⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −

+Δ+=

+

+

&&&&

&

ββ
   (3-9) 

in which 

≡γ  factor accounting for algorithmic or numerical damping 

≡β  factor accounting for time-step variation of acceleration 

These parameters allow for a number of different methodologies for achieving accurate results.  

If the γ  factor is set less than ½, negative damping is introduced.  If the γ  factor is set at ½, no 
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additional damping is introduced and the method makes use of the trapezoidal rule.  If the γ  

factor is set greater than ½, positive damping is introduced.  Also, choosing β  to be equal to 

zero utilizes the constant-acceleration method.  Choosing β  equal to ¼ utilizes the average-

acceleration method.  Choosing β  equal to 1/6 utilizes the linear-acceleration method.   

Considering equations (3-8) and (3-9), an incremental form is required to determine a 

solution for equation (3-5), since that equation is written in terms of incremental displacement, 

velocity, and acceleration.  Rearranging the terms in equation (3-8), the following expression can 

be obtained: 

( ){ } ( ){ } ( ){ } ( ){ } ( ){ }( )[ ] iibibibibib ttdtdtdtdtd Δ−+=− ++
&&&&&&&&

11 γ  

This can then be written in incremental form by recalling that the incremental values are the 

change in velocity and acceleration over the time interval tΔ , similar to equation (3-7): 

( ){ } ( ){ } ( ){ }[ ] iibibib ttdtdtd ΔΔ+=Δ ++ 11
&&&&& γ     (3-10) 

Equation (3-9) must also be transformed into an incremental equation.  First it is necessary to 

group the displacement and acceleration terms as follows: 

( ){ } ( ){ } ( ){ } ( ){ } ( ){ } ( ){ }( ) ( )2
11 2

1
iibibibiibibib ttdtdtdttdtdtd Δ⎥⎦

⎤
⎢⎣
⎡ −++Δ=− ++

&&&&&&& β  

Again, recall the form of equation (3-7).  Applying that definition of the incremental terms gives 

the following incremental equation: 

( ){ } ( ){ } ( ){ } ( ){ } ( )2
11 2

1
iibibiibib ttdtdttdtd Δ⎥⎦

⎤
⎢⎣
⎡ Δ++Δ=Δ ++

&&&&& β   (3-11) 

Now by substituting equations (3-10) and (3-11) into equation (3-5), the following equation is 

obtained: 
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This equation still needs to be simplified.  Grouping the incremental bearing acceleration terms 

yields the following: 
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This equation can be simplified by identifying the following quantities: 

( )[ ] [ ] [ ] ( )[ ]( ) 21 ibibti tKtCMtK Δ++Δ+= αβγ    (3-12) 

{ } ( ){ } iib ttdD Δ= &&
1        (3-13) 

{ } ( ) ( ){ } ( ){ }( )( ) ( ){ }ibiibiib tdttdttdD Δ−Δ+Δ+= αα 2
2
1

2 1 &&&   (3-14) 

Now the incremental form of Hilber’s equation can be written as: 
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  (3-15) 

Equation (3-15) can then be solved in terms of the incremental acceleration vector by 

premultiplying each side by the inverse of ( )[ ]itK : 
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Equation (3-16) has two unknown vectors in it.  The primary unknown, ( ){ }1+Δ ib td&& , acts as a 

dependent variable in equation (3-16).  The secondary unknown, ( ){ }11 +Δ itd&& , acts as an 

independent variable here.  Therefore, another set of equations must be used to determine the 

incremental acceleration of the first floor. 

Once again it is assumed that floor friction is negligible and that the superstructure 

behavior is entirely linear.  Therefore, the first floor equations of motion from Chapter 2 still 

apply to the non-linear solution.  To solve for the first floor accelerations, recall equation (2-58), 

shown below. 

( )∑
=

+=++
3

1
111

2
11111 2

k
gknkbknknnnnnn dzzzz &&&&&&& αλωωξ    (3-17) 

Equation (2-58) was derived directly from equation (2-5).  Note that the first term on the right 

hand side of equation (3-17) originated from the matrix expression 

[ ] [ ][ ]{ }bb
T zM &&ΦΦ− 11  

Now a different form of equation (3-17) is preferable, so the above expression must be altered.  

By reverting to the true displacement form instead of the modal displacement form [see equation 

(2-13)], the first term on the right hand side of the equation becomes: 

    [ ] [ ]{ } [ ]{ }bb
T ddM &&&&

111 α≡Φ−  

It can be seen from the above expression and equation (2-56) that equation (3-17) can be written 

in the following form at time 1+it : 
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= =
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As in Chapter 2, in which a linear analysis was derived, the linear acceleration method will be 

used and equation (2-60) is applicable here for a non-linear formulation, though the coefficient 

of the bearing acceleration has been changed to correspond to equation (3-18): 

( ) ( ) ( ) ( )
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11111 654

k
igknkibknk

inninninninn

tdtd

tztzRtzRtzR

&&&&

&&&&&

αα

ω
 (3-19) 

However, it is desirable to write the equation in a form that allows the unknown value of 

( ){ }11 +Δ itz&&  to be solved: 
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in which  

6
14

2
2
111

ttR nnnn
Δ

+Δ+= ωωξ       (3-21) 

2
215

2
2
111

ttR nnnn
Δ

+Δ+= ωωξ       (3-22) 

tR nnnn Δ+= 2
11126 ωωξ        (3-23) 

As previously mentioned, equation (3-16) had two unknown variables:  the acceleration of the 

bearing level and the acceleration of the first floor.  Equation (3-20) is another equation which 

depends on both the bearing level accelerations and the first floor modal accelerations.  

Therefore, using these two equations, both unknowns can be solved.  Reexamining equation (3-

16), a further simplification is possible by defining the following vectors and matrices: 
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Now a condensed form of equation (3-16) is written as 
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Through the use of modal superposition, { } [ ]{ }111 zd &&&& ΔΦ=Δ  and equation (3-29) becomes 
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By definition, the following identity is true: 

( ) ( ) ( )ibmibmibm tdtdtd &&&&&& −=Δ ++ 11      (3-31) 

which can be rewritten as 

( ) ( ) ( )11 ++ Δ+= ibmibmibm tdtdtd &&&&&&      (3-32) 

Substitution of equations (3-30) and (3-32) into equation (3-20) gives the following result: 
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Grouping the incremental acceleration terms on the left hand side of the equation: 
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Defining the following identities allows equation (3-34) to be simplified into a much more 

palatable form: 
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Now equation (3-34) becomes  
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By expanding the equation for n = 1, 2, and 3, 
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( ) ( ) ( ) ( ) ( )222
2

112231122211221 321
4
11 PPP

R
tzQtzQtzQ iii ++−=Δ+Δ++Δ +++ &&&&&&  (3-41) 

( ) ( ) ( ) ( ) ( )333
3

113331133211331 321
4
11 PPP

R
tzQtzQtzQ iii ++−=Δ++Δ+Δ +++ &&&&&&  (3-42) 

Writing equations (3-40), (3-41), and (3-42) in matrix form, 

[ ] ( ){ } { }PtzQ i =Δ +11&&        (3-43) 

Equation (3-43) can then be rewritten as: 

( ){ } [ ] { }PQtz i
1

11
−

+ =Δ &&        (3-44) 

Equation (3-44) can then be solved, as only the left hand side is unknown.  From this result it is 

clear that the actual formulation for the non-linear response is very similar to that of the linear 

response.  A comparison of equations (3-44) and (2-74) leads to the conclusion that except for a 

few minor changes in the parameters involved, from a calculation standpoint the non-linear 

method is not a much greater undertaking than a linear method.   

Again, as was the case with the linear analysis, it is necessary to iterate the solution to 

obtain values which fully satisfy equilibrium.  In the non-linear iteration process, the criterion for 

proceeding with the next time step is a negligible change in the effective stiffness of the bearing 

level, [ ]bK .  A slight difference in the effective stiffness over the time interval implies that the 

approximation of the behavior over that time step will be appropriate for the response 

calculations. 

As results are obtained from a non-linear analysis, it should be noted that the choice of 

the non-linearity parameters will have an effect upon the accuracy of results.  Therefore, before 

using these methods, it is important to refer to Hilber (1977) for appropriate variable values.  It 
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should also be noted that the obtained results are still non-linear approximations, as opposed to 

an exact solution for the structural response. 

 

 

3.3 SUMMARY OF SOLUTION STEPS 

 

The solution procedure, as enumerated in the above text, can be condensed into a stepwise 

process as follows. 

1. Select values for the three parameters used in Hilber’s modification of Newmark’s 

Method – α, β, and γ.  Hilber suggests using the values of -0.1, 0.3025, and 0.6, 

respectively. 

2. Assemble the mass matrices as described in Appendix A.  Determine the stiffness 

matrix for the first floor from Appendix A. 

3. To determine the stiffness of the bearing level, transfer the bearing level 

displacements to each individual bearing.  Then the stiffness for each bearing must be 

determined from Appendix C.  Those individual bearing stiffness values are then 

combined as shown in Appendix A. 

4. Solve the generalized eigenvalue problem shown in equation (2-14) to determine the 

mode shapes of the first floor. 

5. Assemble the [ ]Q  matrix as shown in equations (3-38) and (3-39).  Assemble the { }P  

vector as shown in equations (3-35) through (3-37) and (3-39). 
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6. Solve equation (3-44) to determine the initial values of the incremental modal 

accelerations of the first floor.  Using modal superposition, determine the incremental 

first floor accelerations from equation (2-13). 

7. Substitute the values for ( ){ }11 +Δ itz&&  into equation (3-30) to determine the incremental 

bearing level accelerations.  Using these accelerations, determine the incremental 

bearing level velocity and displacement from equations (3-10) and (3-11), 

respectively. 

8. Determine the displacement, velocity, and acceleration at time 1+it  from the previous 

values and the incremental values. 

9. Substitute the values for bearing level displacement, velocity, and acceleration, along 

with the first floor acceleration, into equation (3-3) to determine the unknown 

residual force vector { }1+Δ iR . 

10. From the bearing level displacements, determine the displacement of each individual 

bearing.  From the bearing displacement, determine the force in that bearing.  If a 

bearing has yielded, its lateral force must be reduced to the yield value and the 

amount of the reduction must be added to the residual force vector { }1+Δ iR .   

11. Determine { }RΔ  from equation (3-6), which will then be used in the next time step. 

12. Assemble the effective bearing stiffness matrix.  Compare with the previous value for 

the time step.  If the difference is neglible, proceed to the next time increment, 

beginning with step 4 of this procedure.  Otherwise, return to step 5 and perform 

another iteration of calculations for the current time step.  
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4.0 MULTI-STORY LINEAR ANALYSIS 

 

 

The application of seismic isolation to single-story structures is very important as an introduction 

to the process and as an intermediate step toward multi-story base isolation.  Base isolation is an 

extremely valuable tool when properly applied to a multi-story structure.  The concept of base 

isolation is to eliminate the effect of the higher response modes, which tend to transmit high 

quantities of energy into the structure.   Reducing the effect of the higher vibration modes from 

the response of a multi-story structure greatly decreases the likelihood of catastrophic structural 

failure in the event of an earthquake.  Therefore, an analysis of a multi-story structure will be 

undertaken here to assess the precise effect of base-isolation on the overall response to dynamic 

loading. 

 

 

Figure 4 – Multistory Isolated Structure 
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An N-story structure is shown in Figure 4.  The floors are numbered from 1 to N, with the first 

floor standing directly above the bearing floor and the Nth floor acting as the roof of the 

structure.  The relative displacements at each floor are shown in Figure 5.   

 

 

Figure 5 – Multistory Displacements 

 

Figure 6 – Multistory Superstructure Free Body Diagram 
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Figure 6 represents a free-body diagram of the bearing level and the superstructure above, 

showing only the X-direction for simplicity.  The resisting elastic and damping forces 

(superscripted with an S and D, respectively), as shown in the drawing, act opposite to the 

direction of the displacement and velocity of the structure, respectively, directly below the 

bearing floor level.  A frictional force also acts directly below the bearing level, in the direction 

opposite that of the velocity.   

4.1   ANALYSIS PROCEDURE 

 

4.1.1 Bearing Level Equations of Motion 
 

The free-body diagram shown in Figure 6 allows for a summation of forces to be written in the 

X-direction, which can be applied in each of the three degrees of freedom and written in matrix 

form as: 

{ } { } { } { } { } { } { } { }01 =++++++++ F
b

S
b

D
b

I
b

II
i

I
N FFFFFFF KK  (4-1) 

{ }≡F
bF frictional forces as defined in Chapter 2 

The force vectors { }I
iF  are determined from equation (A-9), which can be written in a more 

general form for floor i as: 
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The mass matrix [ ]iM  is derived directly from equation (A-10) and generalized for floor i.  The 

parameters ei and fi used in the mass matrix are defined in Appendix A.  The inertial force 

presented in equation (4-2) can then be substituted for each floor in equation (4-1).  By also 

substituting the stiffness, damping, and frictional vectors, equation (4-1) can now be written as: 

[ ]{ } [ ]{ } [ ]{ }( )
[ ]{ } [ ]{ } [ ]{ }( )

[ ]{ } [ ]{ } [ ]{ }( )
[ ]{ } [ ]{ } [ ]{ } [ ]{ }( )

( ) [ ] [ ] [ ]( ) ( ){ } 0sgn
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K&&&&&&

μ

  (4-5) 

Equation (4-5) is not in a manageable form; therefore, it is desirable to rewrite it in a more 

compact notation.  By rearranging the terms, the following equation can be written: 

[ ] [ ] [ ]( ){ } [ ]{ } [ ]{ }
[ ]{ } [ ]{ } [ ]{ }( )

[ ] [ ] [ ]( ){ }
( ) [ ] [ ] [ ]( ) ( ){ }bbiNgz
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&&&KK

sgn
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+++++−
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++++−

=++++++

μ

 (4-6) 

Then equation (4-6) can be further simplified by defining a “total mass” matrix 

[ ] [ ] [ ]∑
=

+=
N

i
ibt MMM

1
      (4-7) 

Equation (4-6) now becomes: 

[ ]{ } [ ]{ } [ ]{ } [ ]{ }( )
[ ]{ } ( )[ ] ( ){ }btgzgt
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i
iibbbbbt

dMdgdM

dMdKdCdM

&&&&&

&&&&&

sgn
1

+−−

−=++ ∑
=

μ
   (4-8) 
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Equation (4-8) represents the equations of motion for the three degrees of freedom of the bearing 

level.  Notice that the right hand side of the equation shows a dependency upon the relative 

accelerations at each floor of the superstructure.  Therefore, another set of equations with both 

the bearing displacements and the superstructure displacements unknown will be required to 

determine the overall response of the structure.   

First, equation (4-8) will be solved for the bearing level relative accelerations as a 

function of the superstructure relative accelerations.  Using modal superposition for the bearing 

level, equation (4-8) can be rewritten as follows: 

[ ][ ]{ } [ ][ ]{ } [ ][ ]{ }

[ ]{ }( ) [ ]{ } ( )[ ] ( ){ }btgzgt

N

i
ii

bbbbbbbbt

dMdgdMdM

zKzCzM

&&&&&&&

&&&

sgn
1

+−−−

=Φ+Φ+Φ

∑
=

μ
  (4-9) 

in which 

{ } [ ]{ }bbb zd &&&& Φ=        (4-10) 

Now if each side of equation (4-9) is premultiplied by [ ]T
bΦ , mass-orthonormalization (as 

presented in equation (2-17)) allows for further simplification.  The process is similar to that 

undertaken in equations (2-18) through (2-21).  After applying the linear acceleration technique 

demonstrated in equations (2-27) through (2-29), the following equation, which is similar to 

equation (2-30), is obtained: 

( ) ( ) ( )
t

BAzzz t
ni

t
nibnbnbnbnbnbn Δ
+=++ +

ττωτωξτ 1
22 &&&    (4-11) 

Equation (4-11) represents one of the three modal responses of equation (4-9) after applying 

mass-orthonormalization.  This equation requires the following definitions: 

f
ni

g
ninini

N
ni

N
ni

t
ni AAAAAAA ++++++= − 121 K     (4-12) 

f
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g
ninini

N
ni

N
ni

t
ni BBBBBBB 11

1
1

2
1

1
111 ++++
−
+++ ++++++= K    (4-13) 
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Equations (4-12) and (4-13) represent “forcing functions” which act upon the bearings.  The 

forces represented in equation (4-12) are from the superstructure accelerations, the ground 

acceleration, and the frictional forces at the bearing level, and are defined as such: 

( )∑
=

+−=
3

1
)33(

k
iklu

l
bnk

l
ni tdA &&λ       (4-14) 

( )∑
=

=
3

1k
igkbnk

g
ni tdA &&α        (4-15) 

( )( ) ( )( )∑
=

+=
3

1

sgn
k

ibkbnkigz
f

ni tdtdgA &&& αμ     (4-16) 

in which 

[ ] [ ] [ ]l
T

b
l
b MΦ−=λ   [ ] [ ] [ ]t

T
bb MΦ−=α    (4-17) 

Equation (4-14) is shown in terms of the acceleration vector { }ud&& , as opposed to the individual 

floor acceleration vectors { }md&& , to allow for calculation with a single superstructure acceleration 

vector.  The global acceleration vector, in which the accelerations are relative to the bearing 

level, is defined in equation (4-41) as a 13 ×N  vector with N3  degrees of freedom for the N-

story structure.  The forces represented by equation (4-13) represent the same effective forces as 

those in equation (4-12) but are dependent upon the incremental acceleration values.  Those 

quantities are defined as follows: 

( )∑
=

++−+ Δ=
3

1
1)33(1

k
iklu

l
bnk

l
ni tdB &&λ       (4-18) 

( )∑
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++ Δ=
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1
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k
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g
ni tdB &&α       (4-19) 
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1
11 sgn

k
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f
ni tdtdB &&& αμ     (4-20) 
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By substituting equations (4-14), (4-15), and (4-16) into equation (4-12), the following equation 

can be written: 

( ) ( )

( )( ) ( )( )∑
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Similarly, by substituting equations (4-18), (4-19), and (4-20) into equation (4-13), the following 

equation can be written: 
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  (4-22) 

Equations (4-21) and (4-22) are now representative of the values used in equation (4-11).  A 

solution to equation (4-11) is now the next step.    As in Chapter 2, the unknowns in this equation 

are the bearing modal response quantities and, through equations (4-21) and (4-22), the 

superstructure modal accelerations.  Therefore, it is necessary to solve equation (4-11) for the 

bearing modal response in terms of the superstructure modal response.  The superstructure 

response will be determined below.  The process outlined here is identical to that of Chapter 2.  

By inspection, equation (4-11) is functionally identical to equation (2-30).  Therefore, the 

method used to determine the bearing modal response in Chapter 2 will be applicable here.  The 

solution to equation (4-11) can be written in a form similar to equation (2-43), as follows: 
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  (4-23) 

in which  
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tzF
ω

      (4-27) 

Again, as in the formulation from Chapter 2, the modal velocity of the bearings is derived from a 

time derivative of the modal displacement.  Evaluating the velocity at time 1+it  gives an equation 

similar to equation (2-48): 
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B
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in which 
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The modal accelerations are then calculated from the time derivative of the modal velocities.  

Evaluating the acceleration at time 1+it  presents a solution for the modal accelerations similar to 

that presented in equation (2-54): 

( ) t
ninniibn BRHtz 11 3 ++ −−=&&       (4-31) 

in which 

( ) nibnbnnibnbnni DGH 22 212 ξωωξ −+=      (4-32) 

( ) nbnbnnbnbnn RRR 121223 22 ξωωξ −+=     (4-33) 
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Equation (4-31) can be expanded by substituting in equation (4-22): 
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Equation (4-34) shows a solution for equation (4-8), solving for the modal accelerations of the 

bearing level with respect to the superstructure incremental relative accelerations.   

 

4.1.2 Superstructure Equations of Motion 
 

 

Now the superstructure equations of motion will be derived by first summing the forces as 

suggested in the free-body diagram of Figure 7. 

[ ]{ } [ ] { } { }( ) [ ] { } { }( )
[ ] { } { }( ) [ ] { } { }( )

[ ]{ } [ ]{ }gnbn
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   (4-35) 

 

( ) ( )nnnnnn ddkddc −+− ++++ 1111
&&

( ) ( )11 −− −+− nnnnnn ddkddc &&
 

Figure 7 – Multistory Individual Floor Free Body Diagram 
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As shown in Figure 7 and equation (4-35), the equation of motion for each floor is dependent 

upon the displacement at that floor and the floors immediately above and below that floor.  Also, 

the stiffness and damping matrices are required from the levels immediately above and below the 

considered floor.  Note that the individual floor equations disregard the friction that was 

considered in the bearing level.  The frictional component at each floor is considered negligible 

and therefore will be ignored in these formulations.  By writing the matrix equations for the N 

floors of the superstructure, equation (4-35) can be written in the following matrix form: 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }gucbucuuuuuu dMdMdKdCdM &&&&&&& −−=++   (4-36) 

in which 

[ ]

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ]
[ ] [ ] [ ] ⎥⎥

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

N

N

u

M
M

M
M

M

M

00
0

00
00

000

1

3

2

1

L

OM

M

L

 (4-37) 

[ ]

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ] [ ] ⎥⎥

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−+−

−+−
−+−

−+

=

−−

NN

NNNN

u

CC
CCCC

CCCC
CCCC

CCC

C

L

OM

M

L

0

0

00

11

4433

3322

221

 (4-38) 

[ ]

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ] [ ] ⎥⎥

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−+−

−+−
−+−

−+

=

−−

NN

NNNN

u

KK
KKKK

KKKK
KKKK

KKK

K

L

OM

M

L

0

0

00

11

4433

3322

221

 (4-39) 



 

47 
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The method of modal superposition, as used in Chapter 2, can be used here to help simplify the 

format of equation (4-36).  Expressing the accelerations of the superstructure floors and the 

bearing level in terms of their modal accelerations, the following relationships are evident: 

{ } [ ]{ }uuu zd &&&& Φ=   { } [ ]{ }bbb zd &&&& Φ=    (4-43) 

Then these values can be substituted into equation (4-36) to form the following equation: 
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uuuuuuuuu

dMzM

zKzCzM
&&&&

&&&

−Φ−

=Φ+Φ+Φ
   (4-44) 

Each side of the equation can then be premultiplied by [ ]T
uΦ .  Recalling equations (2-55) 

through (2-57), which represent the mass-orthonormalization of the mode shapes as presented in 

Chapter 2, equation (4-44) can be rewritten as: 

{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }gubuuunuununu dzzdiagzdiagz &&&&&&& αλωωξ +=++ 22  (4-45) 

in which Nn 3,,2,1 K=  and  
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[ ] [ ] [ ][ ]uuc
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T

uu MΦ−=α    (4-46) 

By writing one of the 3N equations from equation (4-45) and evaluating it at time 1+it , the 

following expression is obtained: 
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As in the previous chapters, the linear acceleration approach will be used to approximate the 

behavior through the time interval.  The equations for the linear acceleration method are repeated 

here for convenience: 
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Then by substituting equations (4-48), (4-49), and (4-50) into equation (4-47), the following 

result is obtained: 
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in which 
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6
14

2
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2
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2
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tR unununn Δ+= 226 ωωξ       (4-54) 

Since the left hand side of equation (4-51) is in terms of modal accelerations of the 

superstructure and the right hand side is in terms of the actual accelerations, it is desired to 

convert equation (4-51) into a consistent format.  To that end, the modal superposition method 

will be used here.  Modal superposition, by definition, allows the following relationships to be 

written: 
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Equation (4-55) can be written for each of the 3N components of the ( ){ }1+Δ iu td&&  vector.  

Substituting these results into equation (4-51) and grouping like terms yields the following 

expression: 
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in which Nn 3,,2,1 K= .  By writing these 3N equations in a simplified matrix form, equation 

(4-56) becomes: 

[ ]{ } { }PzQ u =Δ &&        (4-57) 

in which 
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[ ] NNQ 33 ×≡  matrix       

{ } 13 ×≡Δ Nzu&&  vector       

{ } 13 ×≡ NP  vector 

The individual terms in the [ ]Q  matrix are defined as follows: 
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Equation (4-58) applies to the non-diagonal terms (i.e. mn ≠ ) and equation (4-59) defines the 

diagonal terms of the [ ]Q  matrix. 

 The individual terms of the { }P  vector must also be defined.  Each of the 3N terms can 

be written as such: 
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in which 
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Equation (4-57) can then be solved for the unknown { }uz&&Δ  vector: 

( ){ } [ ] { }PQtz iu
1

1
−

+ =Δ &&       (4-64) 
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Equation (4-64) now represents a solution for the incremental accelerations of the superstructure 

floors.  Recall that equation (4-34), the solution for the bearing accelerations, was in terms of the 

incremental modal accelerations of the superstructure.  Now that these accelerations are known, 

the bearing level responses can be solved from equations (4-23), (4-28), and (4-34).  However, as 

in Chapter 2, it is important to ensure that equilibrium is maintained throughout the solution 

procedure.  Therefore, the bearing level response will be substituted into (4-47) to determine new 

superstructure modal accelerations, which are used to determine the next values for the bearing 

level response.  This iterative process is described in detail below. 

 

4.2   SUMMARY OF SOLUTION STEPS 

 

As in Chapter 2, the solution procedure for the linear response of the base-isolated structure 

involves a number of steps.  The steps listed here are extremely similar to those listed for the 

single-story structure; however, the multistory structure’s response will be more mathematically 

demanding, as there are multiple levels for which to calculate the response quantities. 

1. Assemble the mass and stiffness matrices, for the bearing level and for each level of 

the superstructure, as described in Appendix A. 

2. Determine the modal matrices shown in equation (2-16) for the bearing level and the 

first floor by solving equations (2-14) and (2-15).  The remaining superstructure 

modal matrices can be determined by solving the following equation: 

[ ]{ } [ ]{ }jjjnjj dMdK 2ω=   Nj K,3,2=   (4-65) 

3. Assemble the [ ]Q  matrix as described in equations (4-58) and (4-59).  Assemble the 

{ }P  vector as described in equations (4-60) through (4-63). 
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4. Solve equation (4-64) to determine the incremental modal acceleration values for the 

superstructure degrees of freedom.  These values will act as the initial values for the 

time step. 

5. To determine the initial values for the superstructure modal acceleration, velocity, 

and displacement at time 1+it , substitute the values for superstructure incremental 

modal acceleration into equations (4-48), (4-49), and (4-50), respectively. 

6. Substitute the values determined in steps 4 and 5 into equations (4-21) and (4-22) to 

determine the parameters required to calculate the bearing level modal response. 

7. Substitute the parameters determined in step 6 into equations (4-23), (4-28), and (4-

31) to determine initial values of the bearing level modal displacement, velocity, and 

acceleration, respectively. 

8. Check equilibrium.  Substitute the values for ( )1+iun tz& , ( )1+iun tz , and ( ){ }1+ib tz&&  into 

equation (4-48) to determine a second iteration value for ( )1+iun tz&& .  Use equation (4-

48) to determine a second iteration value for the superstructure incremental modal 

accelerations. 

9. Repeat steps 5-8 until the change in modal response between iterations is negligible.  

To determine the actual response of the structure, equations (4-43) and similar 

expressions involving velocity and displacement can be solved using the modal 

response.  The values obtained from this calculation represent the actual response of 

the bearing level and the superstructure levels at time 1+it . 
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5.0 MULTI-STORY NON-LINEAR ANALYSIS 

 

 

As was the case with the single-story structure, nonlinearities often occur in the response of a 

structure to ground excitation.  Since base-isolation seeks to restrict the superstructure to an 

elastic response, the only nonlinearity to be considered here is yielding and hardening of the 

bearings.  For a more detailed explanation of the non-linearity, see Appendix C.  The equation of 

motion of the bearings, taken from equation (4-8), is repeated here for convenience: 

[ ]{ } [ ]{ } [ ]{ } [ ]{ }( )
[ ]{ } ( )[ ] ( ){ }btgzgt

N

i
iibbbbbt

dMdgdM

dMdKdCdM

&&&&&

&&&&&

sgn
1

+−−

−=++ ∑
=

μ
   (5-1) 

in which 

[ ] [ ] [ ]∑
=

+=
N

i
ibt MMM

1
      (5-2) 

 

5.1   HILBER’S α METHOD 

 

Equation (5-1) can be modified by the Hilber-α Method as seen in Chapter 3.  This modification 

is as follows, evaluated at time 1+it : 
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  (5-3) 

The same expression, evaluated at time it , can be written as follows: 
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  (5-4) 

An incremental expression for the equation of motion can be written by subtracting equation (5-

4) from equation (5-3).  This new equation is written as follows: 
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 (5-5) 

in which 

{ } { } { }ii RRR Δ−Δ=Δ +1       (5-6) 

{ }≡Δ +1iR  residual forces at iteration i 

( ){ } ( ){ } ( ){ }igzigzigz tdtdtd &&&&&& −=Δ ++ 11      (5-7) 

 

5.2 NEWMARK’S β METHOD 

 

To simplify the incremental equations of motion derived in Chapter 3, Newmark’s β Method was 

implemented.  This same method will be utilized here, but equations (3-8) and (3-9) must be 

rewritten in vector form as follows: 
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( ){ } ( ){ } ( ) ( ){ } ( ){ }[ ] iibibibib ttdtdtdtd Δ+−+= ++ 11 1 &&&&&& γγ   (5-8) 

( ){ } ( ){ } ( ){ } ( ){ } ( ){ } ( )2
11 2

1
iibibiibibib ttdtdttdtdtd Δ⎥

⎦

⎤
⎢
⎣

⎡
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⎞
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⎛ −+Δ+= ++

&&&&& ββ  (5-9) 

These equations must then be converted into incremental form: 
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 (5-11) 

Equations (5-10) and (5-11) can then be substituted into equation (5-5), eliminating the unknown 

incremental velocity and displacement values from the equation.  The simplified expression is 

now: 
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 (5-12) 

During each time step, the only true unknowns in this equation are the incremental accelerations 

of the bearing and superstructure levels.  It is desirable to express this equation as a function of 

the superstructure accelerations, which will then be used to solve for the bearing accelerations.  

By rearranging the terms accordingly, the following expression can be obtained: 
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Equation (5-13) can be further simplified as 
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in which 

( )[ ] [ ] [ ] ( )[ ]( )21 ibibti tKtCMtK Δ++Δ+= αβγ    (5-15) 

{ } ( ){ } iib ttdD Δ= &&
1        (5-16) 

{ } ( ) ( ){ } ( ){ }( )( ) ( ){ }ibiibiib tdttdttdD Δ−Δ+Δ+= αα 2
2
1

2 1 &&&   (5-17) 

Solving equation (5-14) for the unknown incremental accelerations at the bearing level: 
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 (5-18) 

As mentioned previously, this equation is still a function of the superstructure accelerations, 

which are still unknown.  Therefore, equation (5-18) must be solved simultaneously with another 

equation.  The equation of motion of the superstructure is a second equation that depends upon 

both of the unknowns.  Since the superstructure is assumed to maintain an elastic response, 

equation (4-45) applies here: 



 

57 

{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }gubuuunuununu dzzdiagzdiagz &&&&&&& αλωωξ +=++ 22  (5-19) 

in which 

[ ] [ ] [ ][ ]buc
T

uu M ΦΦ−=λ       (5-20) 

[ ] [ ] [ ]uc
T

uu MΦ−=α        (5-21) 

Given equations (5-20) and (5-21), the following expression can be obtained: 

[ ]{ } [ ] [ ][ ]{ } [ ]{ }bubbuc
T

ubu dzMz &&&&&& αλ =ΦΦ−=     (5-22) 

Substituting equation (5-22) into equation (5-19) allows the following equation to be written: 

{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }gubuuunuununu ddzdiagzdiagz &&&&&&& ααωωξ +=++ 22  (5-23) 

A single equation can then be written from the matrix expression of equation (5-23).  Writing 

equation n from the matrix formulation evaluated at time 1+it : 
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Again the linear acceleration method will be used to interpolate the incremental acceleration 

values.  For reference, equations (4-48), (4-49), and (4-50) are repeated here: 
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Substituting equations (5-25), (5-26), and (5-27) into equation (5-24) yields the following:  
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This expression is an equation with two sets of unknowns.  The incremental modal accelerations 

of both the superstructure and the bearings are unknown.  Therefore, it is necessary to solve 

equations (5-28) and (5-18) simultaneously.  However, first equation (5-18) must be written in a 

scalar form.  The following definitions will be used for that purpose: 
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Using these definitions, it is now possible to rewrite equation (5-18) as: 
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However, equation (5-28) includes the superstructure accelerations as they are found in the 

overall superstructure acceleration vector ( ){ }1+iu td&& , as opposed to the individual vectors 
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( ){ }1+ik td&& .  To write equation (5-34) in those same terms, it is necessary to realize that ( ){ }1+ik td&&  

is a subset of ( ){ }1+iu td&&  and that relationship can be written as follows: 

( ) ( ) ( )1331 ++−+ = inkuikn tdtd &&&&     3,2,1=n  (5-35) 

It will also be necessary to use the modal acceleration forms, so the following equalities will be 

necessary: 
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From equations (5-35) and (5-37), the following expression can be obtained: 
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Equation (5-37) is in a form which allows equation (5-18) to be broken down into a single scalar 

equation from its vector form.  The resulting equation is shown below: 
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By using equations (5-35) and (5-38), equation (5-39) can be rewritten as follows: 
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Substituting this result into equation (5-28) yields the following result: 
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Grouping like terms in equation (5-41) yields: 
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Equation (5-42) can then be expressed in a simplified into a matrix format: 
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k l
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Equation (5-43) can then be solved for the unknown incremental modal displacements as 

follows: 

( ){ } [ ] { }PQtz iu
1

1
−

+ =Δ &&        (5-50) 

Equation (5-50) gives values for the superstructure incremental modal accelerations.  From those 

values, the actual accelerations, velocities, and displacements of the superstructure can be 

derived from equation (5-36), shown only for acceleration. 

 Since the superstructure modal accelerations are now known, the bearing incremental 

accelerations can be determined from equation (5-40).  These can then be used to determine the 

acceleration, velocity, and displacement of the bearing level at time 1+it  by using equation (5-7), 

(5-8), and (5-9) respectively.  Again the most important values are the bearing acceleration and 

displacement, as discussed in Chapter 2.   

 

5.3   SUMMARY OF SOLUTION STEPS 

 

The solution procedure, as enumerated in the above text, can be condensed into a stepwise 

process as follows. 

1. Select values for the three parameters used in Hilber’s modification of Newmark’s 

Method – α, β, and γ.  Hilber suggests using the values of -0.1, 0.3025, and 0.6, 

respectively. 

2. Assemble the mass matrices as described in Appendix A.  Determine the stiffness 

matrix for the first floor from Appendix A. 
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3. To determine the stiffness of the bearing level, transfer the bearing level 

displacements to each individual bearing.  Then the stiffness for each bearing must be 

determined from Appendix C.  Those individual bearing stiffness values are then 

combined as shown in Appendix A. 

4. Solve the generalized eigenvalue problem shown in equation (4-65) to determine the 

mode shapes of each floor of the superstructure. 

5. Assemble the [ ]Q  matrix as shown in equations (5-54) and (5-55).  Assemble the { }P  

vector as shown in equations (5-46) through (5-49). 

6. Solve equation (5-50) to determine the initial values of the incremental modal 

accelerations of the first floor.  Using modal superposition, determine the incremental 

superstructure accelerations in the form of equation (5-36). 

7. Substitute the values for ( ){ }11 +Δ itz&&  into equation (5-40) to determine the incremental 

bearing level accelerations.  Using these accelerations, determine the incremental 

bearing level velocity and displacement from equations (5-10) and (5-11), 

respectively. 

8. Determine the displacement, velocity, and acceleration at time 1+it  from the previous 

values and the incremental values. 

9. Substitute the values for bearing level displacement, velocity, and acceleration, along 

with the first floor acceleration, into equation (5-6) to determine the unknown 

residual force vector { }1+Δ iR . 

10. From the bearing level displacements, determine the displacement of each individual 

bearing.  From the bearing displacement, determine the force in that bearing.  If a 
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bearing has yielded, its lateral force must be reduced to the yield value and the 

amount of the reduction must be added to the residual force vector { }1+Δ iR .   

11. Determine { }RΔ  from equation (3-6), which will then be used in the next time step. 

12. Assemble the effective bearing stiffness matrix.  Compare with the previous value for 

the time step.  If the difference is neglible, proceed to the next time increment, 

beginning with step 4 of this procedure.  Otherwise, return to step 5 and perform 

another iteration of calculations for the current time step. 
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6.0 CONCLUSION 

 

 

A linear single story structure is the simplest possible base-isolated structure.  Therefore, the 

derivation of an analysis procedure for this structure was presented first.  The analysis method is 

more complex than the one-degree-of-freedom analysis, which disregards the effect of torsion.  

The more complex three-degree-of-freedom derivation shown in Chapter 2 will account for the 

torsion inherent in a non-symmetric structure.  This torsion may increase or decrease the 

displacement and force maxima; therefore, the multi-dimensional analysis is more accurate than 

the one-degree-of-freedom method. 

The bearings will not necessarily remain linear.  Therefore, it is important to consider the 

effects of non-linear behavior on the dynamic response.  A non-linear solution can be derived 

from the linear solution.  In Chapter 3, the derivation of a non-linear single-story response 

incorporates inelastic bearing behavior through the use of Hilber’s α method and the plasticity 

theory presented in Appendix C.  It is important to note that due to the concept of base isolation, 

the superstructure is assumed to remain linear throughout the formulation. 

Multi-story structures can also benefit greatly from base isolation.  The linear solution 

presented in Chapter 2 is modified to apply to a multi-story structure in Chapter 4.  In this 

derivation, both the bearings and the superstructure are assumed to remain linear throughout the 

dynamic response.  The solution presented can then be applied to any multi-story base-isolated 

structure; however, it is counterproductive to apply base isolation to a structure with a very long 
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period.  Therefore, multi-story base isolation should be restricted to mid-height or shorter 

structures – for instance, up to eight or ten stories. 

Bearing non-linearity is likely to occur in the dynamic response of a multi-story structure.  

Therefore, it is necessary to derive a solution for a multi-story structure that includes the methods 

presented in Chapter 3.  The formulation for the multi-story structure presented in Chapter 4 was 

modified in a manner similar to that for the single story structure, incorporating Hilber’s method 

and the plasticity theory into a comprehensive non-linear multi-story solution, presented in 

Chapter 5.  As was the case in Chapter 3, the superstructure is assumed to remain linear 

throughout the response. 

The four procedures presented in this thesis account for a wide range of structural 

response.  Each formulation incorporates a torsional degree of freedom for each floor, which 

affects the one-dimensional response quantities.  Additionally, each formulation allows for the 

use of friction-based bearings, which enhances the applicability of the solution.  These methods 

will provide an accurate dynamic response for a wide variety of base-isolated structures, though 

further research is required to further enhance the analysis methods. 

To evaluate the effectiveness of the analyses presented in this study, computer programs 

should be developed to perform the three-dimensional calculations.  These results should be 

compared to one-dimensional results to determine the overall effect of the torsional degree-of-

freedom.  The contention of this study is that the effects are significant enough to require the use 

of the three-degree-of-freedom systems presented in the analyses in this thesis. 

Another aspect of these analyses that can be improved through future work is seen in the 

work of Abe, et al (2004-a).  It is apparent from the experimental results that the variation of an 

applied vertical load affects the response of the bearings; however, the model they present (2004-
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b) does not incorporate the effects of vertical loading.  Therefore, further research should be 

conducted to accurately model the effect of varying vertical loading on bearing properties, to 

account for the effects of vertical ground acceleration.  
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APPENDIX A 
 
 
 

DERIVATION OF MASS AND STIFFNESS MATRICES 
 

 

A.1  DETERMINATION OF MASS MATRIX 

 

Given an arbitrary set of coordinates OXYZ and floor centers of gravity iG as shown in Figure 8, 

relationships can be developed between displacements along the arbitrary coordinate axis and a 

parallel axis through the center of gravity of each floor.  The following definitions will be used in 

the derivation.  

 ≡iG  mass center of floor i (b for bearing floor, 1 for first floor) 

 ≡iO  origin of arbitrary coordinate axis 

 ≡iu  displacement of mass center iG along ii XG  

 ≡iv  displacement of mass center iG along iiYG  

 ≡iθ  rotational displacement of mass center iG  about ii ZG  

 ≡ix  displacement of floor i along XOi  

 ≡iy  displacement of floor i along YOi  

 ≡ie  eccentricity between iiYG  and YOi  
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 ≡if  eccentricity between ii XG  and XOi  

 ≡1
be  eccentricity between bbYG  and 11YG  

 ≡1
bf  eccentricity between bb XG  and 11 XG  

 ≡im  mass of floor i 

 ≡iJ  mass moment of inertia of floor i with respect to its mass center 

To derive a general formula for the mass matrix of a structure, a coordinate system is chosen 

arbitrarily at O.  Therefore, transformations are required to express displacements with respect to 

this arbitrary axis as opposed to the floor mass center.  The following equations represent a 

translation from the XYO1 coordinate system to the 111 YXG  coordinate system, assuming small 

rotations and slab rigidity: 

1111 θfxu −=  

1111 θeyv +=        (A-1) 

11 θθ =   
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Figure 8 – Coordinate System 



 

70 

Similarly, the formulation for translating displacements from the XYOb  coordinate system to the 

bbb YXG  coordinate system is as follows: 

bbbb fxu θ−=  

bbbb eyv θ+=        (A-2) 

bb θθ =   

Also, a relationship between the bearing floor and the first floor is desirable, since in this general 

formulation an allowance should be made for the floors to be non-concentric.  The relationship 

between the bbb YXG  coordinate system and the 111 YXGb  system is as shown in the following 

equations: 

bbbb fuu θ11 −=  

bbbb evv θ11 +=        (A-3) 

bb θθ =1   

By substituting (A-2) into (A-3), the following relationship is developed, which represents a 

transformation from the XYOb  system to the projection of the first floor axis on the bearing 

floor, the 111 YXGb  system: 

   ( ) bbbbb ffxu θ11 +−=  

( ) bbbbb eeyv θ11 ++=       (A-4) 

bb θθ =1  

This expression for the relative first floor displacements will be used in the next step of the mass 

matrix derivation, in which the inertial forces are determined. 



 

71 

The inertial forces on any floor will act through the mass center of that floor.  The first 

floor motions will be considered first.  The motion of the first floor with respect to the fixed OXY 

coordinate system consists of three components:  the motion of the ground, the motion of the 

bearings with respect to the ground, and the motion of the first floor with respect to the bearing 

floor.  Writing these acceleration components into a series of equations, with ground rotation set 

to zero, yields the following expressions for the inertial forces acting upon the first floor: 

( )gb
I
G xuumFx &&&&&& ++= 1

111  

( )gb
I
G yvvmFy &&&&&& ++= 1

111      (A-5) 

( )1
111 b

I
G JF θθθ &&&& +=  

The next step is to substitute the derivatives of equations (A-1) and (A-4) into equation (A-5) to 

express all of the acceleration components in the OXY coordinate system.   The constants 1e , 1f , 

1
be , and 1

bf  are unchanged in the derivatives.  The inertial forces can now be written as 

( ) ( )( )( )gbbbb
I
G xffxfxmFx &&&&&&&&&& ++−+−= θθ 1

11111  

( ) ( )( )( )gbbbb
I
G yeeyeymFy &&&&&&&&&& +++++= θθ 1

11111   (A-6) 

( )b
I
G JF θθθ &&&& += 111  

By inspection of Figure 8, it can be seen that 1
1 bb fff +=  and 1

1 bb eee += .  Substituting these 

two relationships into equation (A-6) simplifies the formulations to 

( ) ( )( )gbb
I
G xfxfxmFx &&&&&&&&&& +−+−= θθ 111111  

( ) ( )( )gbb
I
G yeyeymFy &&&&&&&&&& ++++= θθ 111111    (A-7) 

( )b
I
G JF θθθ &&&& += 111  
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These forces, though calculated using the OXY coordinates, act through the mass center of the 

floor. The superscripted I labels these forces as inertia.  To formulate a mass matrix for any 

given structure, these forces must be transferred to the arbitrary OXY axes.  Transferring these 

forces yields the following equations for the forces acting through the global origin O: 

I
G

I FxFx 11 =  

I
G

I FyFy 11 =        (A-8) 

I
G

I
G

I
G

I FyeFxfFF 111111 +−= θθ  

Since there are three equations of motion for each floor, it is convenient to express the system of 

equations in matrix form.  This allows for more compact notation and greatly simplifies 

multistory calculations.  Equation (A-8) for the first floor can be expressed as the following 

matrix equation: 

{ } [ ]{ } [ ]{ } [ ]{ }gb
I dMdMdMF 11111 ++=    (A-9) 

in which 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
I

I

I

I

F
Fy
Fx

F

1

1

1

1

θ
 [ ]

( )⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−

−
=

2
1

2
1111111

111

111

1 0
0

efmJemfm
emm

fmm
M   (A-10) 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

1

1

1

1

θ&&
&&

&&
&& y

x
d  { }

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

b

b

b

b y
x

d
θ&&
&&

&&
&&  { }

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=

g

g

g

g y
x

d
θ&&
&&

&&
&&     (A-11) 

The derivation of the inertial forces on the bearing floor is similar to that of the first floor.  

However, now the displacement is composed of only two elements, the motion of the ground and 

the motion of the bearing floor with respect to the ground.  The equations for the inertial forces 

acting through the center of mass are: 
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( )gbbbG xumFx &&&& +=1  

( )gbbbG xvmFy &&&& +=1       (A-12) 

bbbG JF θθ &&=1  

Then, as was the case for the first floor derivation, these forces must be translated to the global 

OXY axis.  The force transformation is as follows: 

I
bG

I
b FxFx =  

I
bG

I
b FyFy =        (A-13) 

I
bGb

I
bGb

I
bG

I
b FyeFxfFF +−= θθ  

Expressing equation (A-13) in matrix form: 

{ } [ ]{ } [ ]{ }gbbb
I

b dMdMF &&&& +=      (A-14) 

in which 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
I

b

I
b

I
b

I
b

F
Fy
Fx

F
θ

 [ ]
( )⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−

−
=

22

0
0

bbbbbbbb

bbb

bbb

b

efmJemfm
emm

fmm
M   (A-15) 

Now inertial forces have been defined for both the first floor and the bearing floor of a single-

story base-isolated structure.  A multi-story structure would have a series of equations like those 

of the first floor, which would then require additional floor-to-floor relative displacements as in 

equation (A-3). 

The mass matrices to be used in the calculation of structural response are given in 

equations (A-10) and (A-15), representing the first floor and the bearing floor, respectively. 
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A.2  DETERMINATION OF STIFFNESS MATRIX 

 

Figure 9 – Stiffness Element Coordinate System 

 
 
 
Derivation of the stiffness matrix for a structure is typically more complex than that of the mass 

matrix.  Whereas in the formulation of the mass matrix there was only one coordinate 

transformation required for each floor, the stiffness matrix demands a calculation for each 

element contributing to the stiffness of each floor.  Figure 9 shows an individual element j on 

floor i of the structure.  A general formulation is shown here, allowing any orientation of the 

stiffening elements.   

First, displacements of an element in the local coordinates of that element, the a
ij

a
ijVSU  

axis, must be determined.  These displacements can be related to the displacements of the 

element in the ijijVSU  axis as follows: 
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ijijijij
a
ij vuu αα sincos +=  

ijijijij
a
ij vuv αα cossin +−=      (A-16) 

ij
a
ij θθ =  

In matrix form, this set of equations becomes 

{ } [ ]{ }ijij
a
ij T δδ =       (A-17) 

Expanding the matrix equation: 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
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⎥

⎦
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⎢
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⎨
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ij

ijij

ijij

a
ij

a
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a
ij

v
u

v
u

θ
αα
αα

θ 100
0cossin
0sincos

    (A-18) 

The force-displacement relationship for the element in the a
ij

a
ijVSU  coordinate system can be 

written as follows: 

{ } [ ]{ }a
ij

a
ij

a
ij KF δ=       (A-19) 

Expanding this matrix equation yields: 
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⎭
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F
F
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θθθθθ

θ
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θ

    (A-20) 

However, the local displacements have already been determined in equations (A-17) and (A-18) 

as a function of the global displacements.  Therefore, equation (A-19) can be rewritten as 

{ } [ ] [ ]{ }ijij
a
ij

a
ij TKF δ=      (A-21) 

The forces then must be transferred to the ijijVSU  coordinate system.  The relationships are very 

similar to those of the displacements.  The transformation matrix used for the forces is the 

transpose of that used for the displacements; hence, 
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{ } [ ] { }a
ij

T
ijij FTF =       (A-22) 

or, in expanded notation, 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥
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⎧

a
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a
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a
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ijij

ijij

ij

ijy

ijx

F
F
F

F
F
F

θθ

αα
αα

100
0cossin
0sincos

   (A-23) 

Now, by substituting equation (A-21) into equation (A-22), the global force-displacement 

relationship is determined in the ijijVSU  coordinate system: 

{ } [ ] [ ][ ]{ }ijij
a
ij

T
ijij TKTF δ=      (A-24) 

As mentioned previously, this formulation is done for each member j on each floor i.  Therefore, 

the contributions of each member must be summed to determine the total stiffness of each floor, 

as follows: 

∑
=

=
n

j
ijxix FF

1

 

∑
=

=
n

j
ijyiy FF

1

       (A-25) 

( )∑ ++−= θθ ijijyijijxiji FFeFfF  

Putting these equations into matrix form yields the following: 

{ } [ ] { }∑
=

=
n

j
ij

T
iji FAF

1

      (A-26) 

in which 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

θi

iy

ix

i

F
F
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⎥
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=

100
10
01
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ij e
f

A     (A-27) 
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The forces { }iF  now act through the origin O of the arbitrary OXY axis.  However, the 

displacements were last written in terms of the ijijVSU  coordinate system.  These displacements 

can be transferred to the OXY axis as follows: 

iijijij fxu θ−=  

iijijij eyv θ+=        (A-28) 

iij θθ =  

Putting these equations into matrix form yields the following: 

{ } [ ]{ }iijij dA=δ       (A-29) 

Now both the forces and the displacements are formulated in the OXY coordinate system.  

Therefore, the force-displacement relationship can be written in that system as follows: 

{ } [ ]{ }iii dKF =       (A-30) 

in which 

[ ] [ ] [ ] [ ][ ][ ]∑
=

=
n

j
ijij

a
ij

T
ij

T
iji ATKTAK

1

    (A-31) 
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iyiyyiyx
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i

KKK
KKK
KKK

K      (A-32) 

Performing the matrix multiplication shown in equation (A-31) and simplifying the format of the 

equations with the following abbreviations 

ijC αcos=   ijS αsin=     (A-33) 

yields the following values for the individual elements of the stiffness matrix [ ]iK : 

( )∑
=

−+=
n

j

a
ijuv

a
ijvv

a
ijuuixx CSKKSKCK

1

22 2     (A-34) 
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( )∑
=

++=
n

j

a
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22 2     (A-35) 

( ) ( )( )∑
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n
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22     (A-36) 

( ) ( )
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θθθϑ

θθ  (A-39) 

ixyiyx KK =         (A-40) 

θθ ixxi KK =         (A-41) 

θθ iyyi KK =         (A-42) 

These formulae represent the contribution of member j to the overall stiffness of floor i.  The 

results of equations (A-34) through (A-42), when combined into a single matrix, form the 

stiffness matrix for floor i. 

 

 

A.3  DETERMINATION OF THE SHEAR CENTER LOCATION 

 

The restoring force at floor i, equal to the stiffness matrix multiplied by the displacement vector, 

acts through the shear center of the floor.  Therefore, the location of the shear center must be 
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determined to properly translate the forces to the OXY axis to formulate the equation of motion 

for the structure.  Figure 10 shows the shear center Sc of floor i.  Note that the angle α is now 

considered clockwise positive, unlike the angle αij in the previous section. 

 

O

α

xs

ys

θi

Xi

Xs

X’

Y’
Ys

Yi

Sc

 

Figure 10 – Shear Center Coordinate System 

 
 
 
To translate the shear forces from the shear center to the origin, first the forces will be 

transformed to the YXSc ′′  coordinates, which are parallel to the global coordinates with an 

origin at the shear center.  Then the forces will be translated to the origin of the global axes.  The 

same procedure will be done with the displacements.   
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As shown in Figure 10, the following definitions for force vectors will be used to transfer 

the forces to the global axes: 

{ }
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To transform the forces from the primary shear axis, ss
c YXS , to the YXSc ′′  coordinate system, 

the following equations may be written: 

αα sincos s
iy

s
ixix FFF +=′  

αα cossin s
iy

s
ixiy FFF +−=′      (A-44) 

s
ii FF θθ =′  

The same equations can be written for the displacements, since the forces and displacements are 

assumed to be in the same directions.  Equations (A-44) can then be rewritten in matrix form for 

both forces and displacements, recalling equations (A-43).  These matrix equations are 

{ } [ ]{ }sii FTF =′    { } [ ]{ }s
ii dTd =′   (A-45) 

in which 
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100
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αα
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T      (A-46) 

Then these forces must be translated from the shear center to the global origin.  The equations to 

be used for this are similar to those presented in equations (A-25), though the notation is 

different.  The translation is: 

ixix FF ′=  

iyiy FF ′=        (A-47) 
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θθ iiysixsi FFxFyF ′+′+′−=  

Equations (A-47), again for both forces and displacements, can be put into matrix form as 

 { } [ ] { }i
T

i FAF ′′=    { } [ ] { }iT
i dAd ′′=   (A-48) 

in which 
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A       (A-49) 

Now that the various force and displacement transformations have been derived, the force-

displacement relationship must be developed.  The starting point will be the simple force-

displacement relationship for floor i, repeated from equation (A-30)… 

{ } [ ]{ }iii dkF =       (A-50) 

Now equations (A-48) are substituted into each side of the equation… 

[ ] { } [ ] [ ] { }iT
ii

T dAkFA ′′=′′      (A-51) 

Premultiplying each side of the equation by [ ]A′  and noting that, by definition, [ ][ ] [ ]IAA T =′′ , 

the following result is obtained… 

{ } [ ] [ ] [ ] { }iT
ii dAkAF ′′′=′      (A-52) 

Substituting equations (A-45) into each side of the equation… 

[ ]{ } [ ] [ ] [ ] [ ]{ }siT
i

s
i dTAkAFT ′′=     (A-51) 

Premultiplying by [ ]TT to eliminate the [ ]T  term from the left side leaves only the force-

displacement relationship for the shear center of floor i… 

{ } [ ]{ }sis
i

s
i dkF =       (A-52) 

in which 
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[ ] [ ] [ ] [ ] [ ] [ ]TAkATk T
i

Ts
i ′′=     (A-53) 

In a more expanded form, the matrix equation shown in equation (A-52) can be written as 
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    (A-54) 

in which 

ixyiyyixx
s
ixx CSkkSkCk 222 −+=      (A-55) 

( ) ( ) ixyiyyixx
s
ixy kSCkkCSk 22 −+−=     (A-56) 

( ) θθθ iyixixyssiyysixxs
s
ix SkCkkSyCxkSxkCyk −++−+=  (A-57) 

ixyiyyixx
s
iyy CSkkCkSk 222 ++=      (A-58) 

( ) θθθ iyixixyssiyysixxs
s
iy CkSkkSxCykCxkSyk ++−+−=  (A-59) 

θθθθθθ iiysixsixyssiyysixxs
s
i kkxkykyxkxkyk +−+−+= 22222  (A-60) 

s
ixy

s
iyx kk =        (A-61) 

s
ix

s
xi kk θθ =        (A-62) 

αcos=C   αsin=S    (A-63) 

Because the force-displacement relationship in equation (A-54) is centered about the shear center 

of floor i, the stiffness matrix must be decoupled by definition.  In other words, the off-diagonal 

terms (i.e. the terms other than s
ixxk , s

iyyk , or s
ik θθ ) must equal zero.  A series of mathematical 

operations are required to set the s
ixyk  term to zero.  First, define an angle β such that 

( ) D
k

kkk

k ixy

ixyixxiyy

ixy 2

4

2
2sin

22
=

+−
=β    (A-64) 
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in which 

( ) ( )22 2 ixyixxiyy kkkD +−=      (A-65) 

From trigonometry, ( ) ( )22 2sin12cos ββ −= .  Given this identity, equation (A-64) can be 

written as 

( ) D
kk

kkk

kk ixxiyy

ixyixxiyy

ixxiyy −
=

+−

−
=

22 4
2cos β    (A-66) 

Multiplying equation (A-56) by 2
D  gives the following equation: 

( ) ( )
D
k

D
kk

D
k ixyiyyixx

s
ixy 2

sincossincos2
2 22 αααα −+

−
=  (A-67) 

Substituting equations (A-64) and (A-66) into equation (A-67)… 

( ) ( ) ( )βααβαα 2sinsincos2cossincos2
2 22 −+−=

D
k s

ixy  (A-68) 

Recalling the trigonometric identities θθθ cossin22sin =  and θθθ 22 sincos2cos −= , equation 

(A-68) can be rewritten as 

βαβα 2sin2cos2cos2sin
2

+−=
D
k s

ixy    (A-69) 

However, since ( ) φθφθφθ sincoscossinsin −=− , equation (A-69) can be simplified to the 

following: 

( )αβ 22sin
2

−=
Dk s

ixy       (A-70) 

By inspection, s
ixyk  will only equal zero when αβ = . 
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In addition to setting the s
ixyk  term to zero, s

ixk θ  and s
iyk θ  must also equal zero.  By solving 

equations (A-57) and (A-59) simultaneously in terms of sx  and sy , the following expressions 

can be obtained: 

2
ixyiyyixx

ixixyiyixx
s kkk

kkkk
x

−
−

= θθ       (A-71) 

2
ixyiyyixx

ixiyyiyixy
s kkk

kkkk
y

−
−

= θθ       (A-72) 

Now the location of the shear center of floor i can be determined with respect to the global 

coordinate axes via equations (A-71) and (A-72).  Also, the orientation α of the shear center can 

be determined via equations (A-64), (A-65), and (A-66). 

Using equations (A-71) and (A-72), a simplified expression for s
ik θθ  can be written.  The 

torsional stiffness equation, (A-60), becomes 

θθθθθθ iysixsi
s
i kxkykk −+=      (A-73) 

Now, by using the general stiffness matrix from equation (A-32), the stiffness matrix for the 

shear center of floor i can be populated using equations (A-55), (A-58), and (A-73).  The final 

matrix is 
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⎭
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APPENDIX B 
 
 
 

FRICTION 

 

 

B.1  ADDITIONAL CONSIDERATIONS 

 

The solution methods presented in Chapters 2-5 of this thesis allow for the inclusion of bearing 

friction in the structural response.  If friction is to be considered in the solution, it will create 

non-linearities in the behavior which is not fully described in the previously presented solutions.  

Therefore, a detailed investigation of the frictional effects is undertaken here. 

The frictional force is represented here by multiplying the total vertical acceleration 

(which is equal to the vertical ground acceleration plus gravitational acceleration g) times the 

mass matrix times the frictional constant μ.  However, elementary physics introduces two 

separate values for μ, one for static friction and one for kinetic friction.  The static coefficient μs 

represents the resistance to the onset of motion.  The kinetic coefficient μk represents the 

resistance to continuing motion.  Both of these coefficients will be required in the dynamic 

response of a structure.  By definition, due to the reversal of direction of the motion, there are 

times when the velocity of the structure is reduced to zero.  These conditions are defined as 

“non-sliding” phases in which the structure must overcome the static frictional force to return to 

motion.   
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To properly account for the non-linearities in the response due to friction, it is necessary 

to determine when the non-sliding phases occur.  The method presented here uses the equations 

of motion to determine whether the frictional resistance to motion will overcome the dynamic 

forces on the structure.  This formulation stems from the one-dimensional work of Mostaghel & 

Khodaverdian (1988). 

 

 

B.2  APPLICATION TO A SINGLE-STORY STRUCTURE 

 

By definition, a non-sliding phase is one in which the velocity of the bearing level is zero.  Also, 

since the maximum static frictional force is assumed to be greater than the impelling forces, the 

acceleration of the bearings is also zero in non-sliding phases.  Mathematically, a non-sliding 

phase can then be defined using equation (2-6), repeated here for convenience: 

[ ]{ } [ ]{ } [ ]{ }
[ ]{ } [ ]{ } ( )[ ] ( ){ }btgzgt

bbbbbt

dMdgdMdM

dKdCdM
&&&&&&&

&&&

sgn11 +−−−

=++

μ
  (B-1) 

As mentioned, however, the accelerations and velocities of the bearing level, for each degree of 

freedom that is in a non-sliding phase, must be zero by definition.  Therefore, equation (B-1) 

becomes: 

[ ]{ } [ ]{ } [ ]{ } ( )[ ] ( ){ }btgzgtbb dMdgdMdMdK &&&&&&& sgn11 +−−= μ  (B-2) 

Rearranging the terms to isolate the frictional term: 

( )[ ] ( ){ } [ ]{ } [ ]{ } [ ]{ }bbgtbtgz dKdMdMdMdg −−−=+ &&&&&&&
11sgnμ  (B-3) 
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The ( ){ }bd&sgn  vector, as defined in Chapter 2, is composed of entirely positive and negative unit 

values.  Therefore, by taking the absolute value of equation (B-3), the following result is 

obtained: 

( )[ ]{ } [ ]{ } [ ]{ } [ ]{ }bbgttgz dKdMdMMdg ++=+ &&&&&&
111μ   (B-4) 

in which { }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
≡

1
1
1

1 , representing the absolute value of the ( ){ }bd&sgn  vector. 

By definition, if the friction force is greater than the impelling forces for a degree of 

freedom, the structure is in a non-sliding phase for that degree of freedom.  Also, the structure 

will generally start in a non-sliding phase.  The condition for a non-sliding phase is as follows: 

( )[ ]{ } [ ]{ } [ ]{ } [ ]{ }bbgttgz dKdMdMMdg ++>+ &&&&&&
111μ   (B-5) 

Note that equation (B-5) is a matrix expression, representing three equations, one for each degree 

of freedom.  Each equation must be evaluated to determine whether that particular degree of 

freedom will be in a sliding phase or a non-sliding phase.  The three degrees of freedom, in 

order, are the x-direction, y-direction, and rotation. 

Equation (B-5) can be used with the kinetic frictional coefficient following a sliding 

phase or with the static coefficient following a non-sliding phase.  The structure will remain in a 

non-sliding phase until the impelling forces overcome the static frictional force.  The condition 

to enter a sliding phase is as follows: 

( )[ ]{ } [ ]{ } [ ]{ } [ ]{ }bbgttgzs dKdMdMMdg ++<+ &&&&&&
111μ   (B-6) 

Again, this equation must be evaluated separately for each degree of freedom.  If equation (B-6) 

is satisfied for one of those equations, that degree of freedom will enter a sliding phase. 
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The structure will then remain in a sliding phase until equation (B-5) is satisfied, using 

the coefficient of kinetic friction.  If time period ti has been established as a sliding phase, then 

the solutions presented in Chapter 2 and Chapter 3 can be applied to that time step.  If time 

period ti has been established as a non-sliding phase, a different solution method, presented 

below, is required to determine the superstructure response.  The bearing response for a non-

sliding phase is trivial, as the displacement is unchanged and both the velocity and acceleration 

vectors are zero vectors. 

 The solution procedure for the first floor in a non-sliding phase begins by evaluating 

equation (3-18) at time τ.  Recall that equation (3-18) was derived from equation (2-58). 

( ) ( ) ( )

( ) ( )∑ ∑
= =

++

+++

+

=++
3

1

3

1
1111

11
2
1111111 2

k k
igknkibknk

inninnnin

tdtd

tztztz

&&&&

&&&

αα

ωωξ
   (B-7) 

By the definition of a non-sliding phase, the acceleration and velocity of the bearing level is zero.  

Therefore, equation (B-7) can be written as: 

( ) ( ) ( ) ( )∑
=

=++
3

1
11

2
11111 2

k
gknknnnnnn dzzz τατωτωξτ &&&&&    (B-8) 

By the definition presented in equation (2-29), the following expression can be obtained: 

( ) ( ) ( )

( ) ( )
t

tdtd

zzz

k
igknk

k
igknk

nnnnnn

Δ
⎟
⎠

⎞
⎜
⎝

⎛
Δ+

=++

∑∑
=

+
=

ταα

τωτωξτ
3

1
11

3

1
1

1
2
11111 2

&&&&

&&&

   (B-9) 

This can be written in simpler terms as follows: 

( ) ( ) ( )
t

BAzzz nininnnnnn Δ
+=++ +

ττωτωξτ 11
2
11111 112 &&&    (B-10) 

in which 
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( )∑
=

=
3

1
11

k
igknkni tdA &&α        (B-11) 

( )∑
=

+Δ=
3

1
111

k
igknkni tdB &&α       (B-12) 

The solution to equation (B-10) can be written as a combination of a complementary solution 

and a particular solution, as follows: 

( ) ( ) ( )τττ p
n

c
nn zzz 111 +=       (B-13) 

The complementary solution is of the same form as equation (2-33), though the solution is now 

for the first floor instead of the bearing level: 

( )τττωξ
nnnn

c
n CCez nn

111 cos2sin111 Ω+Ω= −     (B-14) 

in which 

2
111 1 nnn ξω −=Ω        (B-15) 

The particular solution is similar to that found in equation (2-35): 

t
CCz nn

p
n Δ

+=
τ431        (B-16) 

The constants in the particular solution can be determined as they were in Chapter 2.  Those 

constant values are as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

−= +1
1

1
2
1

1
2

113 ni
n

n
ni

n
n B

t
AC

ω
ξ

ω
     (B-16) 

2
1

11
4

n

ni
n

B
C

ω
+=         (B-17) 

Substituting equations (B-14) and (B-16) into equation (B-13) yields the following expression: 
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( ) ( )
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⎞
⎜
⎜
⎝

⎛

Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++

Ω+Ω=

+

−

t
B

A

CCez

ni

n

n
ni

n

nnnnn
nn

1

1

1
2
1

111

12
11

cos2sin111

ω
ξ

τ
ω

τττ τωξ

   (B-18) 

As in Chapter 2, the constants C1n and C2n will be solved by using the following identities: 

( ) ( )inn tzz 11 0 ==τ        (B-19) 

( ) ( )inn tzz 11 0 && ==τ        (B-20) 

Then the constant values can be determined as: 

( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Δ
−

−−+
Ω

= +12
1

2
1

1

1
1111

1

1
21

111 in
n

n
ni

n

n
innnin

n
n B

t
AtztzC

ω
ξ

ω
ξ

ωξ&  (B-21) 

( ) 13
1

1
2
1

1 1
21

2 +Δ
+−= in

n

n

n

ni
inn B

t
A

tzC
ω
ξ

ω
     (B-22) 

Now that the constants in the displacement function are known, it is a simple matter of derivation 

to determine the expressions for velocity and acceleration.   By substituting equations (B-21) and 

(B-22) back into equation (B-18), the following expressions for displacement, velocity, and 

acceleration, respectively, can be written at time tΔ=τ : 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Δ+++= +

++ t
B

tABRDtz in

n

n
ni

n
innniin

1

1

1
2
1

111

12
1111

ω
ξ

ω
 (B-23) 

( ) ( ) ( )
t

B
BRRDGtz

n

in
innnnnninnniin Δ

+−+−= +
++ 2

1

1
1111111

1
112

ω
ωξωξ&  (B-24) 

( ) 111 13 ++ −−= innniin BRHtz&&       (B-25) 

in which 

( )tFtEeD nninni
n

t

ni

nn

ΔΩ+ΔΩ
Ω

=
Δ−

11
1

cossin
11 ωξ

   (B-26) 
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( ) ( ) ni
n

n
innninni AtztzE 1

1

1
1111 ω

ξ
ωξ −+= &     (B-27) 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Ω= 2

1
11

1

n

ni
innni

A
tzF

ω
      (B-28) 

( )tFtEeG nninni
t

ni
nn ΔΩ−ΔΩ= Δ−

11 sincos11 ωξ    (B-29) 

( ) ninnninnni DGH 2
1

2
111 212 ξωωξ −+=      (B-30) 

⎟⎟
⎠
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Δ
+ΔΩ
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−= Δ− t
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ξωξ   (B-31) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΔΩ

Δ
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−Ω= Δ− t
t
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nn

nt
nn

nn
13

1

1
1

1
2
1

2
1

1 sin
2

cos
21

2 11

ω
ξ

ω
ξωξ  (B-32) 

( ) nnnnnnn RRR 121223 2
1

2
111 ξωωξ −+=     (B-33) 

This completes the solution for the non-sliding phase.  Note that this method only applies to the 

case in which all three degrees of freedom are in non-sliding phases.  If one or two degrees of 

freedom are in non-sliding phases, then the method presented in Chapter 2 or Chapter 3 must be 

implemented, setting the appropriate velocity and acceleration values to zero. 

As mentioned previously, the structure will remain in a non-sliding phase until the 

criterion shown in equation (B-6) is met, at which point the solution procedure presented in 

Chapter 2 or Chapter 3 can be used again. 
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B.3  APPLICATION TO A MULTI-STORY STRUCTURE 

 

The process for applying the non-sliding condition to a multi-story structure is very similar to the 

process for the single-story structure presented above.  A non-sliding phase can be defined 

beginning with equation (4-8), repeated here for convenience: 

[ ]{ } [ ]{ } [ ]{ } [ ]{ }( )
[ ]{ } ( )[ ] ( ){ }btgzgt

N

i
iibbbbbt

dMdgdM

dMdKdCdM

&&&&&

&&&&&

sgn
1

+−−

−=++ ∑
=

μ
   (B-34) 

By definition of the non-sliding phase, however, the bearing level acceleration and velocity terms 

will be equal to zero for any degree of freedom which is in a non-sliding phase.  Applying this 

definition to equation (B-34) yields the following: 

[ ]{ } [ ]{ }( ) [ ]{ } ( )[ ] ( ){ }btgzgt

N

i
iibb dMdgdMdMdK &&&&&&& sgn

1

+−−−= ∑
=

μ  (B-35) 

Note that, as was the case for the single-story formulation, each equation from the matrix expression 

must be evaluated separately.  For simplicity, however, the matrix expression will be used throughout 

this appendix. 

Isolating the frictional component of equation (B-35) yields the following result: 

( )[ ] ( ){ } [ ]{ }( ) [ ]{ } [ ]{ }bbgt

N

i
iibtgz dKdMdMdMdg −−−=+ ∑

=

&&&&&&&
1

sgnμ  (B-36) 

As in the single-story formulation, each component of the ( ){ }bd&sgn  vector is either a positive or 

negative one.  Therefore, taking the absolute value of each side of equation (B-36), 

( )[ ]{ } [ ]{ }( ) [ ]{ } [ ]{ }bbgt

N

i
iitgz dKdMdMMdg ++=+ ∑

=

&&&&&&
1

1μ   (B-37) 
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A non-sliding phase is defined by the frictional forces outweighing the impelling forces.  

Therefore, for a degree of freedom to enter a non-sliding phase, it must satisfy the following 

criterion: 

( )[ ]{ } [ ]{ }( ) [ ]{ } [ ]{ }bbgt

N

i
iitgz dKdMdMMdg ++>+ ∑

=

&&&&&&
1

1μ   (B-38) 

The coefficient of friction, μ, that is used in equation (B-38) depends upon the condition of motion.  

If the degree of freedom to be considered had been in a non-sliding phase, the coefficient of static 

friction should be used.  If, however, the degree of freedom had been in a sliding phase, the 

coefficient of kinetic friction should be used.  The criterion to enter a sliding phase is as follows: 

( )[ ]{ } [ ]{ }( ) [ ]{ } [ ]{ }bbgt

N

i
iitgz dKdMdMMdg ++<+ ∑

=

&&&&&&
1

1μ   (B-39) 

A degree of freedom that is in a sliding phase will remain that way until equation (B-38) is again 

satisfied.  If a particular degree of freedom is in a sliding phase, the solution presented in Chapters 4 

and 5 can be used.  However, during the non-sliding phases, the alternative solution method 

presented below must be used.  Since the bearing level is the only location for non-linearity, the 

solution for a non-sliding phase is by definition linear.  The first step of the solution is to take the 

superstructure equation of motion presented in equation (5-24), repeated here for convenience: 

( ) ( ) ( )

( ) ( )∑∑
=

+
=

+

+++

+

=++
3

1
1

3

1
1

1
2

11 2

k
igkunk

k
ibkunk

iununiunununiun

tdtd

tztztz

&&&&

&&&

αα

ωωξ
   (B-40) 

Note that this equation is another form of equation (4-47), from which the linear solution was 

derived. 

 Setting the bearing accelerations to zero yields the following result: 

( ) ( ) ( ) ( )∑
=

++++ =++
3

1
11

2
11 2

k
igkunkiununiunununiun tdtztztz &&&&& αωωξ   (B-41) 
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Using the definition presented in equation (2-29), equation (B-41) can be expanded as follows: 

( ) ( ) ( )

( ) ( )
t

tdtd

tztztz

k
igkunk

k
igkunk

iununiunununiun

Δ
⎟
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11 2

&&&&

&&&

   (B-42) 

This expression can then be simplified as follows: 

( ) ( ) ( )
t

BAtztztz niniiununiunununiun Δ
+=++ ++++

τωωξ 11
2

11 112 &&&   (B-43) 

in which 

( )∑
=

+=
3

1
11

k
igkunkni tdA &&α       (B-44) 

( )∑
=

++ Δ=
3

1
111

k
igkunkni tdB &&α       (B-45) 

Now the solution to equation (B-43) can be written as a combination of a complementary solution 

and a particular solution, as shown here: 

( ) ( ) ( )τττ p
un

c
unun zzz +=       (B-46) 

As in the single story non-sliding formulation, the complementary solution is of the following form: 

( )τττωξ
unnunn

c
un CCez unn Ω+Ω= − cos2sin11     (B-47) 

in which  

21 ununun ξω −=Ω        (B-48) 

The particular solution can be written as: 

t
CCz nn

p
un Δ

+=
τ43        (B-49) 

in which  
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     (B-50) 
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2
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4
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ni
n

B
C

ω
+=         (B-51) 

Combining the complementary and particular solutions, as shown in equation (B-46), yields the 

following equation: 
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   (B-52) 

As in the single story formulation, the constants C1n and C2n will be solved by using the 

following identities: 

( ) ( )iunun tzz == 0τ        (B-53) 

( ) ( )iunun tzz && == 0τ        (B-54) 

The values for the constants in equation (B-52) can now be defined as: 
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     (B-56) 

Equation (B-52) now represents the modal displacement of the superstructure at time τ.  Taking the 

time derivatives of equation (B-52) yields the modal velocity and acceleration at time τ.  Evaluating 

these quantities at time tΔ=τ  grants the following expressions for modal displacement, velocity, 

and acceleration at time 1+it : 
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( ) 11 13 ++ −−= innniiun BRHtz&&       (B-59) 
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( ) nununnununn RRR 121223 22 ξωωξ −+=     (B-67) 

This completes the solution for a multi-story structure which is in a non-sliding phase.  Note that 

the solution presented in this appendix only applies to the case in which all three degrees of 

freedom are in non-sliding phases.  If only one or two degrees of freedom are in non-sliding 

phases, the method presented in Chapter 4 or Chapter 5 must be implemented with the 

appropriate velocities and accelerations set to zero. 

 If the structure is in a non-sliding phase, it will continue to act as a fixed-base structure 

until the condition shown in equation (B-39) is met.  At that time step, the procedures presented 

in Chapter 4 and Chapter 5 apply once more. 
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APPENDIX C 
 
 
 

PLASTICITY 
 

 

As mentioned in Chapters 3 and 5, non-linearity arises in the response of the bearings to ground 

excitation.  This non-linearity can be attributed to yielding and strain hardening.  Yielding occurs 

when the shear forces on a bearing exceed its maximum resisting force.  The bearing can no 

longer resist the forces applied to it; it deforms further without an increased load.  Therefore, the 

behavior on the force-deformation plot is no longer linear.  Strain hardening is a phenomenon in 

which a material achieves reserve strength after yielding.  The material may attain a secondary 

force-deformation curve, which will not allow for linear analysis.  It is necessary to 

accommodate any reserve strength in the response of the bearings, or the calculate response will 

be inaccurate.   

 

 

C.1  HARDENING CRITERIA 

 

 Ziegler established a method of analysis of a hardening material, which will be used here 

to model the behavior of the bearings upon yielding.  His model was a modification of Prager’s 
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model based upon kinematic hardening.  Ziegler suggests that a hardening material can be 

described by the following three criteria: 

a. An initial yielding condition, specifying the states of stress for which plastic 

flow first sets in 

b. A flow rule, connecting the plastic strain increment with the stress and the 

stress increment 

c. A hardening rule, specifying the modification of the yield condition in the 

course of plastic flow    (Ziegler, 1959) 

Ziegler’s formulation for plasticity implements a stress-strain model to describe the behavior of 

the bearing and to determine yielding.  This would be impractical for the analysis of the bearings, 

as stresses and strains are not necessary for other calculations in this study.  Therefore, the 

formulation presented here is in terms of forces and displacements, which are analogous to the 

stresses and strains.  Additionally, since plasticity depends greatly upon the load-displacement 

path, for the purposes of this study incremental forces and displacements will be considered. 

As mentioned above, the hardening rule used for Ziegler’s method is kinematic 

hardening.  As demonstrated in Figure 11, this implies that plastic behavior changes the location, 

but not the orientation or size, of the yield function.  Mathematically, this can be expressed as: 

{ } { } μαα dVd −=        (C-1) 
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Figure 11 – Kinematic Hardening Schematic 

 
 
 
Figure 11 shows the initial yield condition, assumed to be in the shape of an ellipse.  This is 

similar to the von Mises yield function.  The actual yield function shown here can be expressed 

mathematically as: 
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in which 

≡y
xV  yield force in the x-direction 

≡y
yV  yield force in the y-direction 

In the derivation of the hardening rule, it will become necessary to define a vector normal to the 

yield function.  This vector is defined and calculated as follows: 
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in which  

  ≡xV  instantaneous shear force in the x-direction 

  ≡yV  instantaneous shear force in the y-direction 

  { } ≡
⎭
⎬
⎫

⎩
⎨
⎧

=
y

x

α
α

α  translation vector of the yield surface, see Figure 11 

The final criterion for modeling hardening behavior is a flow rule.  The flow rule is a relationship 

between plastic deformation and force increments, and is written as: 

{ } { } λλ dNd
dV

fdU p =
⎭
⎬
⎫

⎩
⎨
⎧ ∂=    0>λd   (C-4) 

The goal of the formulation presented here is to express incremental force in terms of 

incremental displacement, to determine an effective stiffness which incorporates both elastic and 

inelastic displacements.  A force-displacement relationship for elastic materials can be written, 

but plastic displacements can not be used in that formulation.  To begin this plasticity 

formulation, a simple definition will be written.  The total displacement at time 1+it  is equal to 

the displacement at the previous time step plus the incremental displacement: 

{ } { } { }11 ++ += iii dUUU       (C-5) 

However, the incremental displacement is the sum of elastic and plastic incremental 

displacements, as shown in equation (C-6). 

  { } { } { }pe dUdUdU +=       (C-6) 
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Rearranging terms, the following expression can be written: 

{ } { } { }pe dUdUdU −=       (C-7) 

By definition, the following incremental force-displacement relationship can be written for an 

elastic material: 

{ } [ ]{ }ee dUKdV =        (C-8) 

Now, by substituting equation (C-7) into the force-displacement relationship and rearranging 

terms, the following equation is obtained: 

[ ]{ } [ ]{ } { } { }0=−− dVdUKdUK pee      (C-9) 

The flow rule, equation (C-4), can be substituted here to replace the plastic displacements.  

Making that substitution leaves the following equation: 

[ ]{ } [ ]{ } { } { }0=−− dVdNKdUK ee λ      (C-10) 

Equation (C-10), derived from the elastic force-displacement relationship, is still well short of 

defining an elasto-plastic force-displacement function.  To fully develop the model, it is 

necessary to write λd  in terms of either the displacements or the forces.  The following 

procedure can be used to solve for λd , as suggested by Ziegler (1959). 

 First, it is necessary to make an assumption.  The simplest assumption is that the vector 

{ }pdUc  is the projection of the translation vector { }α  on the exterior normal of the yield 

surface.  Therefore, the following must be true: 

{ } { } 0=− NcdUdV T
p       (C-11) 

From equation (C-11), the following is evident: 

  { } { } { } { }NdUcNdV T
p

T =       (C-12) 

Transposing both sides of this equation leaves the following equality: 
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{ } { } { } { }p
TT dUNcdVN =       (C-13) 

Returning to equation (C-10), the next step to solve for λd  is to premultiply each side of the 

equation by { }TN , as follows: 

{ } [ ]{ } { } [ ]{ } { } { } { }0=−− dVNdNKNdUKN T
e

T
e

T λ    (C-14) 

Now equation (C-13) can be substituted into equation (C-14), yielding the following: 

{ } [ ]{ } { } [ ]{ } { } { } { }0=−− p
T

e
T

e
T dUNcdNKNdUKN λ   (C-15) 

Again recalling the flow rule, the plastic deformations can be replaced: 

{ } [ ]{ } { } [ ]{ } { } { } { }0=−− λλ dNNcdNKNdUKN T
e

T
e

T   (C-16) 

Equation (C-16) can now be used to determine λd  as a function of the total displacement.  

Rearranging the terms of equation (C-16) gives the following: 

{ } [ ]{ } { } [ ]{ } { } { }( ) λdNNcNKNdUKN T
e

T
e

T +=    (C-17) 

Solving for the parameter λd  in terms of the total displacement vector: 

{ } [ ]
{ } [ ]{ } { } { }

{ }dU
NNcNKN

KN
d T

e
T

e
T

+
=λ     (C-18) 

This definition can then be substituted back into equation (C-10).  After rearranging the terms, 

the resulting equation is as follows: 

{ } [ ] [ ]{ }{ } [ ]
{ } [ ]{ } { } { }

{ }dU
NNcNKN

KNNK
KdV T

e
T

e
T

e
e ⎟

⎟
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⎝

⎛

+
−=    (C-19) 

This is now an expression for force as a function of total increment of displacement, which was 

the goal of the plasticity formulation.  Therefore, the term in the parentheses is the effective 

stiffness of the material given the combination of elastic and plastic displacements.  The 

effective elasto-plastic stiffness is defined as: 
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[ ] [ ] [ ]{ }{ } [ ]
{ } [ ]{ } { } { }NNcNKN

KNNK
KK T

e
T

e
T

e
eep

+
−=     (C-20) 

Now that the effective stiffness has been determined, the plasticity theory itself can be examined 

to determine the quantities required for further plastic analysis.  By definition of yielding, the 

forces must be such that the force function remains on the yield surface.  Therefore, the change 

in forces must be tangential to the yield surface.  This can be expressed mathematically as 

{ } { } 0=dVN T         (C-21) 

The same condition can be applied to the yield surface after it has been displaced due to plastic 

deformation.  Graphically speaking, the change in forces must be tangential to the new yield 

surface.  Therefore, the following expression can be written: 

{ } { } 0=− αddVN T        (C-22) 

Transposing this equation and substituting equation (C-1) for the αd  term grants the following 

equation: 

{ } { } { } { } 0=−− μα dNVNdV TT      (C-23) 

Equation (C-23) can then be used to solve for the unknown μd , from Ziegler’s hardening rule, 

in two steps: 

{ } { } { } { } μα dNVNdV TT −=       (C-24) 

{ } { }
{ } { }NV

NdVd T

T

α
μ

−
=        (C-25) 

Therefore, the incremental change in location of the yield surface can now be solved using 

equation (C-1), since the unknown quantity μd  was determined in equation (C-25): 

{ } { } { } { } { }
{ } { }NV

NdVVdVd T

T

α
αμαα

−
−=−=     (C-26) 
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C2.  SOLUTION PROCEDURE 

 

Now that the equations involved in the plastic analysis of the bearings have been derived, a 

solution will be calculated for use in this study by assuming an elastic stiffness matrix of the 

following form: 

[ ] ⎥
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=

y

x
e k

k
K

0
0

       (C-27) 

Note that the stiffness matrix is assumed to be de-coupled.  This is for simplicity in the 

calculations.  A more complex analysis including coupled stiffness matrices is beyond the scope 

of this study. 

The following terms will be defined to allow for a more specific formulation of the 

effective stiffness: 
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Multiplying out the terms to calculate λd , as shown in equation (C-18), and substituting the 

appropriate values from equations (C-27), (C-28), and (C-29) yields the following: 

[ ]
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yyxx dU
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d ρρλ 1       (C-30) 

Similarly, equation (C-25) can be used to determine μd  in terms of the identity shown in 

equation (C-29): 
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( ) ( )yyyxxx
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The final step in the plastic analysis is to determine the change in the location of the yield 

surface.  The relocation vector, as shown in equation (C-26), can be solved by substituting the 

result shown in equation (C-31) as follows: 

{ } { } { } ( ) ( )yyyxxx

yyxx

VV
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αραρ

ρρ
αμαα

−+−

+
−=−=   (C-32) 

This shows the increment of the relocation vector.  This increment is added to the current value 

of the vector to determine the value of { }α  for the next time step. 

 Similarly, the incremental force can be written as follows: 

{ } [ ] [ ]{ } [ ] { }dUkk
s

NKKdV yyxxee ⎟⎟
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⎞
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⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−= ρρ1    (C-33) 

This incremental force is then added to the current force to determine the force value for the next 

time step, and the process begins for the next time step. 
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