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THREE-DIMENSIONAL ANALYSIS OF BASE-ISOLATED STRUCTURES
David Alan Roke, M.S.

University of Pittsburgh, 2005

Base isolation has become a widely accepted method for earthquake resistant design of
structures. However, the research in the field has been generally restricted to one-dimensional
motion. Structural response is not limited to this one-dimensional motion, and the torsional
effect of multidimensional motion contributes to the horizontal displacements. A three-
dimensional structure can not be modeled with multiple one-dimensional analyses; rather, a
complete three-dimensional analysis must be undertaken, as shown in this study.

Four separate analyses for the calculation of the dynamic response of a base-isolated
structure will be presented in this study. The first two analysis procedures are for a single-story
base-isolated structure. The last two procedures are for a multi-story base-isolated structure.
The first procedure for each structure assumes a fully linear response, in which the bearings and
the superstructure remain in the linear elastic range of response. The second procedure allows
for a non-linear response from the bearings, in which each individual bearing may yield,
changing the effective stiffness value.

To expand upon the four analysis procedures, additional considerations presented in this
paper include an appendix on the effect of bearing friction and an appendix on plasticity. These

two concepts further enhance the applicability of the solution procedures.
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1.0 INTRODUCTION

1.1 INTRODUCTION TO BASE ISOLATION

Base isolation is an important concept in earthquake engineering. Initially, base isolation was a
very suspect process for design of earthquake resistant structures, and engineers were wary of its
applications; however, it has since become a widely accepted approach. The goal of base
isolation is to reduce the energy that is transferred from the ground motion to the structure by
buffering it with a bearing layer at the foundation which has relatively low stiffness. The bearing
level has a longer period than the superstructure, which reduces the force and displacement
demands on the superstructure, allowing it to remain elastic and generally undamaged.

One of the important properties of a base-isolation system is that although it is designed
to be significantly more flexible than the elements of the superstructure, it must still be stiff
enough to resist typical wind loadings and similar low-amplitude horizontal forces. Therefore,
the bearings may have a relatively high initial stiffness but will quickly reach yield, at which

point the bearings have a greatly reduced stiffness, extending the natural period of the structure.



1.2 LITERATURE REVIEW

There have been numerous papers and books published regarding base isolation of structures.
However, the three-dimensional performance of these structures has been generally overlooked
in the literature.

James M. Kelly is an influential researcher in the area of base-isolation. His book,
Earthquake Resistant Design with Rubber (1996), discusses the theory and application of base-
isolation in detail. One chapter of his work that is particularly important for this study is Chapter
6, a discussion of the rotational effects of coupled motion of a base-isolated structure. This
chapter considers three degrees of freedom — x and y horizontal motion and the torsional degree
of freedom — in structural models. The three degree of freedom system was previously presented
in an article by Pan and Kelly in the Journal of Earthquake Engineering and Structural Dynamics
in 1983. The method used to treat the three degree-of-freedom system in Kelly is quite different
from that presented in this study, as it focuses on the relationships of the three mode shapes to
one another. The formulations presented here are independent of the relationships between the
mode shapes.

Abe, et al (2004-a) performed tests on various bearing materials to determine their
properties such as stiffness and multi-directional behavior. The tests performed were the biaxial
load test, in which a constant vertical load and a variable horizontal load were applied; a triaxial
load test, in which a second variable horizontal loading was applied perpendicular to the biaxial
test load; and a small amplitude test, in which the horizontal loading is minimal to determine the

resistance behavior of the bearings under small deflections. The test results were then used to



ascertain the accuracy of mathematic models that were developed in tandem with the
experiments.

Plastic behavior was evident in the response of the bearings in the experimental phase of
the study, so Abe, et al. (2004-b), used a plasticity model based upon the work of Ozdemir
(1973) to model the nonlinear behavior of the bearings. These models are shown to accurately
portray the behavior of the bearings from the biaxial and triaxial test results. However, the
models are very specific to the vertical load conditions applied to the bearings during the testing.
The experiments were conducted at two separate vertical load levels, and exhibited different
responses for each loading.

The experiments performed by Abe, et al. (2004-a), suggest that the vertical force acting
through the bearings affects their stiffness and damping properties. This effect is particularly
visible in the response of the lead-plug rubber bearing, due to a closing of the gap between the
plug and the rubber. However, it should be noted that for large deformations the damping ratio
and stiffness values become more stable, and less dependent upon the vertical loading. Further
research must be undertaken to ascertain a relationship between changes in the vertical loading
and the response of the bearings. For the purposes of this study, it is assumed that the vertical

acceleration of the structure due to ground motion is small with respect to the gravitational

acceleration g. This implies that the total vertical acceleration, g + d,_, will be very close to the

&>
gravitational acceleration value; therefore, the vertical force acting through the bearings will not
significantly affect their properties.

As mentioned, the paper by Abe, et al. (2004-b) used a plasticity model based upon the
work of Ozdemir (1973). This study, however, will use a different plasticity formulation.

Ziegler (1959) modified Prager’s hardening rule to develop a plasticity theory to apply to



kinematic hardening. This theory will be further modified for the purposes of this work to
extend to force-displacement relationships instead of the default stress-strain relationship.
However, the concepts proposed by Ziegler can easily be seen in the work presented in Appendix
C.

Mostaghel and Khodaverdian (1988) wrote a paper on the dynamic response of base-
isolated structures which formed a skeleton for many of the derivations presented in this study.
Their paper focused on friction-based isolation systems, and therefore introduced the friction
component to the derivations which appears in Appendix B. The work presented in their paper
is, however, restricted to unidirectional motion, considering only one horizontal degree of
freedom and the vertical ground motion, which is integral to the frictional effect.

The PhD dissertation of Ahmad El-Hajj (1993), published at the University of Pittsburgh,
is the foundation upon which this thesis is built. The formulations presented in this study are
nearly identical to El-Hajj’s, though additions and corrections have been made to improve and
clarify his work. His dissertation developed a multi-dimensional approach to base isolation,
incorporating both horizontal axes and the rotational component as suggested by Pan and Kelly
in their 1983 paper. The modified Ziegler (1959) plasticity is also adapted from this dissertation,
which modified the stress-strain formulation to apply it to the more convenient force-
displacement relationship.

The treatment of nonlinearities in the bearing response is not restricted to the plasticity
theory found in Appendix C. In each of the chapters discussing nonlinear response, a method is
used to increase the accuracy of the calculation. This method is the Hilber-oo Method, which is

an extension of Newmark’s f-Method. Hilber’s (1977) method modifies the stiffness value used



in each time step to improve convergence on the actual structural response, and figures heavily in

the nonlinear structural response, as can be seen in Chapters 3 and 5.

1.3 PROPOSED STUDY

The work presented herein represents a multifaceted treatment of base-isolation. Not only do the
formulations in this study incorporate the effect of coupled motion and the torsional degree of
freedom, as shown in Kelly’s work, but these formulations also allow for the inclusion of
frictional components and plastic analysis. Each of these concepts may contribute to the
dynamic response of a base-isolated structure.

The first analysis procedure demonstrated in this study is a single-story linear base-
isolated structure. This analysis is very important; it is the basis upon which the more complex
analyses are derived. Both the bearing level and the first floor are considered to be linear in this
case.

The second analysis procedure is a single-story non-linear base-isolated structure. The
first floor is assumed to remain linear, in accordance with the concept of base isolation.
However, non-linearity is considered in the behavior of the bearings. This formulation employs
the plasticity procedure discussed in Appendix C.

These two analyses are then expanded to apply to multi-story structures. In each
procedure, however, the superstructure is assumed to remain linear at all times. Under proper
conditions for base-isolation, this is an appropriate assumption.

Individual base-isolation systems can be completely ineffective for certain types of

earthquakes, a fact which demonstrates the necessity of research into the seismic properties of an



area, such as earthquake history and soil characteristics, before applying base-isolation to a

structure.



2.0 SINGLE-STORY LINEAR ANALYSIS

The calculation of the dynamic response of a structure to a specified ground motion is a complex
process. It requires determination of the equations of motion of the structure and a time-history
analysis with a small time step to achieve accurate results. This analysis will first be developed
for a simple three-dimensional one-story isolated structure considering three degrees of freedom
at each floor: two perpendicular horizontal motions and in-plane rotation, as shown in Figure 1
and Figure 2. Accounting for these three degrees of freedom at both the isolation level and the
first floor creates a total of six degrees of freedom. For the purposes of this study, this is

absolutely the simplest structure to be considered.

F, > X

Figure 1 — First Floor Free Body Diagram



2.1 ANALYSIS PROCEDURE

The first step in the analysis is the determination of the equations of motion for each floor.
Figure 1 represents a free-body diagram drawn by cutting the structure directly below the first
floor, and considering only the first floor. The resisting elastic force and the dissipation force
due to damping are not shown in the drawing, but act opposite to the direction of the
displacement and velocity of the structure, respectively, directly below the floor level. With

respect to Figure 1, the following summation of forces can be written in the X-direction:

Fo+F]+F; =0 (2-1)

p X

Figure 2 — Superstructure Free Body Diagram



Figure 2 represents a free-body diagram of the structure drawn by cutting the structure just below
the bearing floor, and takes into account the entire structure. As was the case with Figure 1, the
resisting elastic and damping forces are not shown. There is also a frictional force at the bearing
level that is not shown. The frictional force acts opposite to the direction of velocity. With
respect to Figure 2, the following summation of forces can be written in the X-direction:

Ei+Fbi+Fb§+Fbi+be:0 (2-2)
in which

F! = the inertial force of floor i

F” = the damping force of floor i

F? = the elastic force of floor i

F," = the friction force at the bearing level

i = the floor: b for base, / for first floor (roof)
The formulations presented here allow for friction within the bearings to be considered; floor
friction is negligible. To ignore the effects of friction at the bearing level, simply set the

coefficient of friction, u, to zero, and proceed with the solution.

The force summations presented in equations (2-1) and (2-2) can be applied in any of
three directions: the two horizontal directions and a torsional summation, which represents the
summation of moments. By writing out these equations in each of the three degrees of freedom,

the following matrix equations can be written in a form similar to equations (2-1) and (2-2),

respectively:
Fo| |FRO|[Fe| [0
Fy (+1F) (+1F5 =10 (2-3)
Fo) |Fo] [Fe) [0



Fol [FY| [ Fa Fol | Fu
Fbj + be + Fbi =— Fl; - Fb§ (2-4)
Fyol |F| |Fo Fol| |F

Equation (2-3) can be expanded via the derivations shown in Appendix A:

[Ml]{&;l}+[Cl]{dl}"‘[Kl]{dl}: _[Ml]{d-b }_[Ml]{d.g} (2'5)

2.1.1 Bearing Level Equations of Motion

Similarly, equation (2-4) can be expanded using the derivations from Appendix A. However, the
frictional terms were not considered in the appendix. By definition, the friction force is equal to

the normal force times the frictional constant . The normal forces in this formulation will be
taken as the mass matrix times the total vertical acceleration of the structure, (g—i—c? gz). The

direction of the frictional force is determined from the direction of the velocity of the bearing

level, as seen in equation (2-11). Equation (2-4) becomes:

[Mt]{éjb}_'-[cb]{db}_'-[Kb]{db}:

. . .. ) (2-6)
[ (v, - wle +d, m,){senld, )
in which
[M,]=[M, ]+ (0]
m 0 ~(mfy+m ) o
= 0 m, me, +me,
_( m, f, +mbfb) me, +me, (Jl +Jb)+m1(flz +elz)+mb(sz +ezf)
m, 0 —m, f,
[Ml]: 0 m, me, (2-8)

2 2
—-m,f, me, J1+m1(f1 +el)
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Cixx Cixy CixH K ixx K ixy K ix0
[ o ] = Ciyx Ciyy Ciye [K i ] = K iyx K iy K iv0 (2-9)
Cior Cioy  Cigo Kipe Koy Kig
X, X, X p
{d,}=1, {d,} =17, d, }=17, (2-10)
0, 0, 0
sgn d +1
sgn ksgn d +1
sgn dbe t1 (2-11)
senld, )= %
) \dm\

d . = vertical acceleration of the ground due to the earthquake loading

Note that the stiffness matrices [K i] are determined via the process described in Appendix A.

The displacement vectors can be decomposed through the modal superposition method,
in which a linear combination of the mode shapes will be used to define the displacements. The

displacements can be written as a function of the mode shapes of the structure as such:

t)= Zl¢bgzbj(t) (2-12)
)=2 ¢y, (1) (2-13)

The vectors {z,} represent a set of modal, or normal, coordinates. These modal coordinates

represent the effects of each mode shape on the deformation of the structure, as seen in equations

(2-12) and (2-13).

The mode shapes {¢i }can be determined by solving the generalized eigenvalue problem
[Kl]{dl}za)lzn[Ml]{dl} (2-14)

11



[k, 1{d,}=e;,[M,d,} (2-15)

The mode shapes are actually the eigenvectors from equations (2-14) and (2-15), and the natural

frequencies are calculated from the eigenvalues. The modal matrices will be of the form

S P s i Br D3
[(Dl ] = Pn ¢123 [(DI)] = ¢b21 ¢b22 ¢b23 (2-16)
P P P st Bn Do

The modal matrix for the first floor, [qbl], is determined from equation (2-14) and the modal
matrix for the bearings, [d),, ] , 1s determined from equation (2-15).

The columns of the modal matrices represent the mode shapes, with the first column
representing the primary mode, which corresponds to the primary natural frequency. Each row
of the modal matrix represents the way in which the modal displacements are combined to
produce the three components of the actual structural response, as seen in equations (2-12) and
(2-13). Therefore, each modal displacement contributes to each of the three degrees of freedom
of the floor.

The mode shapes are mass-orthonormalized so that the following relation is obtained:
[wa]= [0, [m, ][0, ]= 1] 2-17)
Equation (2-6) can be simplified, using equation (2-17), by first substituting equation (2-12) as
follows:

[Mt][q)b]{fb}—l_ [Cb][q)b]{zb}+ [Kb][q)b]{zb}z

_[Ml][q)l]{ Z, }_ [Mt]{a'ig }_ :U(g + dgz )[Mt]{sgn(db )}

Then, by premultiplying each side of the equation by the transpose of the modal matrix for the

(2-18)

bearing level, the following equation is obtained:

12



o Lo {2 VT otz o T T o i)
_[(Db]T[Ml][(Dl]{21}_[(Db]T[Mt]{d. } (g+d )[CD ] [M ]{Sgn( )}

Next, the mass-orthonormalization shown in equation (2-17) is used to further simplify the

expression:

[1]{Zb}+dlag[2§bza)bz]{zb +dlag[a)bz]{zb}:
o, ) [ )0,z - [0, [M,]{d, | (2-20)
—ulg+d, ), 1 [M,){senld, )

This matrix equation consists of three separate equations of motion, one for each of the modal
displacements. Each of the three equations is shown below in equation (2-21), with n =1, 2, or

3, representing the modal displacement to be considered by the equation:

Ebn(t)—i_ 2§bnwbn2bn(t)+ a)bnzbn(t)

: . 3 : 3 - (2-21)
Z ﬂ”bnmzlm ( t) + Z abnm gm + z /u(g + d )abnm Sgn(dbm )
m=l1 m=1 m=1
in which the following substitutions were made:
o, 0 0
[&;]=[0,)[K,]®,]=| 0 @, o (2:22)
0 w}fz
28,0, 0 0
[C;]: [(Db]T[Cb][q)b] = 0 28,0, 0 (2-23)
0 0 28,0,

At Aon A
[ﬂ'b]: _[(I)b]T[Ml][q)l]: Apoi A Ays (2-24)
Ayt A Ay

Oy Cpia s
[ab]:_[q)b]T[Mz]: Oy Qpyy Gy (2-25)

Q3 Az Oy

13



Equation (2-22) is true because of the orthogonality property of modes. Note that equation (2-
23) is the classical damping matrix. For simplicity in calculations, classical damping will be used
throughout this paper. The &, terms represent the damping ratio of floor 7 in mode j. Equations
(2-24) and (2-25) are products of the matrix multiplications required to simplify the equation of

motion into its current state.

Acceleration

Ui

U;

Time
t; it

Figure 3 — Linear Acceleration Method

Equation (2-21) is not quite in a solvable form. To solve for the displacement of the structure as
a function of time, a linear interpolation approach will be taken to approximate the change in

accelerations. Figure 3 represents the linear acceleration method, in which accelerations are

14



known at the beginning and end of each time step and a straight line approximates the unknown
acceleration during the interval. This is reasonably accurate for a sufficiently small time step
At . For example, the earthquake ground acceleration records from the Imperial Valley Irrigation
District from the North-South motion of the 1940 El Centro, CA earthquake are recorded at an
interval of Atz =0.02 seconds (Chopra, 2001).

Implementing the linear acceleration method, expressions for the modal accelerations of

the first floor and the ground accelerations can be written as follows:

z,.(7)=%,(t, )+%f”l)r (2-26)
i,(7)=%,(t,)+ MgA(;”‘) (2-27)
yg(r)=yg(ti)+%f”l)r (2-28)
i (£)=i (1) 2l 229

As can be seen from Figure 3, 0 <7 < Af.
Now, substituting equations (2-26) through (2-29) into equation (2-21) yields the

following equation:
.Z.bn(‘[)—‘r 2§bn Wy, an(T)+ a)lfn an( ) A +Bnl+l At (2-30)

in whichn =1, 2, 3, and

i(abnl + At le( )+ ,u((g + d ( )) o Sgn(dbl(ti )))) (2-31)

=1

3 . )
B, Z(O‘bnz Ad lin + Apni Mu(tm )+ /Ll(Adgz (ti+1 )abnl Sgn(dbl(ti )))) (2-32)

I=1

15



Equation (2-30) is now in the form of a second-order non-homogeneous differential equation
with two forcing functions. This type of problem has a solution that is written as a combination
of the complementary solution and the particular solution. The complementary or homogeneous
solution, or the solution to equation (2-30) if the right hand side were set to zero, is

zo =e 7 (Cl1,sinQ, 7+ C2,cosQ, 1) (2-33)

in which the damped natural frequency is represented by

an = a)bn V 1- é:bzn (2-34)

The constants C/, and C2, in equation (2-33) are dependent upon initial conditions and will be
determined below.

The particular solution to equation (2-30) is of the form
T
zP =C3 +C4 — 2-35
bn n n At ( )

By substituting equation (2-35) and its derivatives into equation (2-30), the constants C3, and

C4, can be determined as

c3, =%(A,,,-— = B] (2-36)
a)hn a)bn At
BnHl

C4n = 5 (2-37)
a)bn

Combining the complementary solution from equation (2-33) and particular solution from

equation (2-35) yields the following expression for z,, :

z,,(7)=e"(C1,sinQ,, r+C2, cosQ,,7)

28 \B,., 2-38
+L2 A+ r—i e (2:38)
w,, , At

n

As can be seen in Figure 3,as 7 — 0, ¢ = ¢, and the following are true for 7 =0:
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2, (7=0)=2,() (2-39)
2, (7=0)=2,(z) (2-40)
These values can now be used to determine the constants C/, and C2,. By applying equations

(2-39) and (2-40) to equation (2-38), the following results are obtained:

2
Cln = L(z‘bn(ti)+§bll a)bn an(ti)_@Am‘ _anHIJ (2-41)

2
an a)b a)bn At

n

C2n = an(ti) m 2é:bﬂ Bni+l (2_42)
a)bn a)bn At

Now by setting 7 = A¢ and substituting equations (2-41) and (2-42) back into the solution given

by equation (2-38), the following expression for z, is given:

2 (1,)=D, +RLB,, +—| 4+ ar—28m | B (2-43)
bn t+1 n"ni+l a)z ni @ At
bn b

n

in which the following terms are defined for the purposes of simplification:

Rl = ¢ A’( 45111 Q,, At +—2 §b” cosQ), At] (2-44)
a)bn bn a)bn At
e_ghn @y, AL
D, = (E,sinQ,, At +F, cosQ, At) (2-45)
bn
Eni = an( )+ gbn a)bn an( z) §b77 A (2-46)
a)bn

A .

F;n an (an( 1)_ ;l J (2_47)
a)bn

Similarly, the modal velocity can be derived from equation (2-38) by taking the derivative with

respect to time and evaluating it at 7 = A¢. The modal velocity can then be written as:
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B .
an ( ti+1) = (Gni - gbn a)bn Dni )+ (Rzn - é:bn a)bn Rln )Bn i+l + ”H'Alt (2-48)

2
bn

in which

G, =e»(E cosQ, At—F, sinQ, At) (2-49)

3

1-2&; 2 _
Rzn = thei‘flm omA| — 2—§bncos an At - gbn Sin an At (2-50)
@, €2, At w, At

The modal acceleration can also be derived from equation (2-38) by taking the second derivative

with respect to time. The modal acceleration can be written as:

Z,,(tn)=—H, ~R3,B,,., (2-51)
in which

H,=2£,0,G,+a},(1-28,)D, (2-52)

R3,=2&, m, R2, +@},(1-2&2 )R, (2-53)
Recalling equation (2-32), equation (2-51) may be rewritten as

5 (1) = —H, ~ R3S (a Ad (1, )4 4y, A2, (1) (2-54)

I=1
Equation (2-54) is now in a form that can be solved using time-stepping methods to determine
the response of the bearings over time, given a set of earthquake ground acceleration records and
the response of the first floor. However, the first floor response is also unknown. Next, another
formulation will be undertaken to determine a second equation with the response at the bearing

level and the first floor unknown.
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2.1.2 First Floor Equations of Motion

For the first floor equations of motion, the mode shapes will be mass-orthonormalized with

respect to the mass matrix [M 1]. This assumption produces the following matrices for use in

equation (2-5):

(17 ]=[@,)" [m,][@,]=[1] (2-55)
o/, 0 0
[Kl*]z[q)l]T[Kl][q)l]: 0 a)122 0 (2-56)
0 0 Wy,
26, o, 0 0
[C:]:[q)l]T[Cl][q)1]: 0 28, m, 0 (2-57)
0 0 285w,

Again, the damping is assumed to be classical, thus only a diagonal matrix is used. Following a
procedure like that done to transform equation (2-6) into equation (2-21), equation (2-5) can be

rewritten as:

3 ..
zln + 24:1’1 a)ln 21!1 + a)lzn Zln = Z(/llnk zbk + alnk dgk) (2-58)
k=1
in which
ﬂ’lll 1’112 1’113
[&]:_[Ql]T[MJ[CDb]: Ayt A s (2-59)
2131 /1132 2’133

Gy Gy Qs
[al]:_[ch]T[MJ: Ay Gy O3 (2-60)

Az Az Qs

Now the solution to equation (2-58) can be written in the following form using the linear

acceleration method:
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zln(tiﬂ):éln(ti)+A21n(ti+l) (2-61)
This equation can be written as a function of time z. When integrated, the modal acceleration

function becomes a modal velocity function as follows:

)At

Z.ln(tHl) = Zln(ti)+ Zln(ti )At + Azln(tm 7 (2-62)

By integrating that function with respect to time a function for the modal displacement is

determined as follows:

2

. . At . A
Z1n ( ti+1) =2y ( ti)+ Z1n ( l; )At +2z, ( ; )7 +AZ, ( lin )? (2-63)

By evaluating equation (2-58) at time ¢,,, and substituting in equations (2-61), (2-62), and (2-
63), the incremental form of equation (2-58) can be written as:

R4n Azln ( Z}[+l )+ Rsn 21” ( tl)+ R6n Z'ln ( ti )+ wlznzln ( tt) =
3 _ (2-64)

Z (/’Llnk'z'bk ( lin )+ alnkdgk( lin ))

k=1

in which
, A
R4n = 1+§1na)lnAt+a)m? (2-65)
, A
RSn = 1+2§1na)lnAt+a)lnT (2-66)
R6n = 2§1na)ln + a)lznAt (2-67)

Equation (2-64) can be further expanded. By substituting equation (2-54) into equation (2-64),

the unknown bearing accelerations drop out of the equation, which becomes

20



R4nA21n(t )+R5néln(ti)+R6n21n(tz)+ a)lznzln(tl)z

3 33
_Zﬂ’lnkai_zzﬂ’lnkﬂ’bklR:S Ale 1+1) (2‘68)

k=1 k=1 I=1

303
_Zzﬂ’lnkabklR?’ A z+1 Zalnk gk 1+1

k=1 I=1

i+l

Dividing equation (2-68) through by R4, and grouping like terms creates the following
generalized expression:

: 1

A‘Z‘ln(tHl)—i_ZQnmAélm(tHl): - 4 (Pln +P2n +P3n) (2_69)
m=l1 n
in which
1 3
nm - R4 Zﬂ'lnk/’lbka?)k (2-70)
n k=1
Pln :Rsnéln( 1)+R6 Zln( 1)+a)12nzln(ti) (2-71)
3 .o
P2, Z(ﬂansz alnkdgk(tm )) (2-72)
k=1
3 3 ..
Zzﬂ’lnkabklR:%k Adgl(tiH) (2-73)

e
Il

1 /=1
As with the other equations in this chapter, » in equation (2-69) can be equal to 1, 2, or 3,
depending upon the direction to be considered. By expanding this equation into its three

components, the following equations are found:

(Qll +1) 11( z+l)+Q12 12( 1+l)+Ql3 (tH—l): _ﬁ(Pll +P21 +P31) (2_74)

1

QZI AZ ( z+l) (QZZ +1) ( i+l)+Q23 A213(2‘1'-%—1)=_]e1|. (P12 +P22 +P32) (2-75)

2

00y 2, (104 00 2, (140 + 183, (1) =~ —(PL + P2, + P3,) 270

3
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Equations (2-74), (2-75), and (2-76) can then be put into matrix form as follows:
[ofiaz (., )} ={P} (2-77)

Equation (2-77) can then be solved to determine the modal acceleration term by premultiplying

_l.

each side of the equation by [Q]

{az, (e, ) =[0] " { P} (2-78)
in which
A211 ( ti+l )
{Afl(tm )}: Aélz(tm) (2-79)
AEIS ( ti+1 )

These accelerations are then used in equations (2-61), (2-62), and (2-63) to determine the

acceleration, velocity, and displacement of the first floor, respectively, at time ¢,,. The

calculation of these values over time generates the overall structural response of the first floor,
which is accurate given a small time step. Now the only remaining unknowns are the
acceleration, velocity, and displacement of the bearing level.

To determine those three values, refer to equations (2-54), (2-48), and (2-43),
respectively. Since the first floor accelerations are now known, these three equations can be
solved for the response of the bearing level. However, these values for bearing level and first
floor response are only preliminary values for the time step. To ensure equilibrium at each time
step, iteration must be undertaken between the two equations of motion, as noted below. When
the differences between two iterations are negligible, then the next time step can be considered.
The structural response over the entire duration of the excitation is calculated in this manner, at

which point the entire response is known.
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The maximum displacement and maximum acceleration of the bearings are the most
important values in the analysis. Displacement determines the free space required around the
bearing level of the structure to avoid damage during the dynamic response. The acceleration

values are important to determine the intensity of the motion induced in the structure.

2.2 SUMMARY OF SOLUTION STEPS

The process for solution of a single-story base-isolated structure is an iterative process based
upon the equations outlined above. The steps of this process, to determine the response of the

structure at time . ., are as follows:

i+

1. Assemble the mass and stiffness matrices as described in Appendix A.

2. Determine the modal matrices shown in equation (2-16) for each floor by solving
equations (2-14) and (2-15).

3. Assemble the [Q] matrix as described in equations (2-69) and (2-70). Assemble the
{P} vector as described in equations (2-69) and (2-71) through (2-73).

4. Solve equation (2-78), calculating the incremental modal acceleration values for the
first floor. These will be taken as the initial values for these variables during the time
step.

5. Substitute the values from step 4 into equations (2-61), (2-62), and (2-63). This
substitution calculates the initial values of the modal acceleration, velocity, and

displacement of the first floor, respectively, at time ¢,,, .
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Substitution of the values from step 5 into equations (2-31) and (2-32) will determine
the parameters required to determine the bearing level response.

Substitute the parameters determined in step 6 into equations (2-43), (2-48), and (2-
51) to determine the initial values for the modal displacement, velocity, and
acceleration, respectively, of the bearing level.

Check equilibrium. Substitute the values for z,,, z,,, and {%,} into equation (2-58)
to determine a new value for Z, . Using equation (2-61), determine the second

iteration values for the first floor modal acceleration.

. Repeat steps 5-8 until the change in modal response between iterations is negligible.
To determine the actual response of the structure, equations (2-12) and (2-13), and
their time derivatives, can be solved using the modal response. The values obtained

represent the actual response of the bearing level and the first floor at time ¢,,, .
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3.0 SINGLE-STORY NON-LINEAR ANALYSIS

The method presented in the previous chapter assumes a fully linear response of the structure and
the bearings. However, this is often not the case. In general, some elements of non-linearity
enter the system via yielding and strain hardening. The isolation system is designed to minimize
the motion of the superstructure, maintaining a linear response; however, the isolators
themselves will often yield when subjected to ground motion. This yielding makes the response
more difficult to calculate, since the stress-strain curve is no longer linear upon initiation of
yielding. To compensate for this non-linear behavior, an effective stiffness will be introduced to
account for both the linear elastic deformation prior to yielding and the plastic deformation that
occurs after the yield limit has been reached. Appendix C offers a more complete discussion of
the non-linearity of the bearings and the effective stiffness.

A more comprehensive analysis than that presented in Chapter 2 must be undertaken to

truly solve for the non-linear structural response. To begin, recall equations (2-5) and (2-6).
(v, J+ [ N+ [k Nt} = [, Hd [, 1, | (3-1)

[Mt]{db}+[Cb]{db}+[Kb]{db}=

SUA CAREA EARVIEST A PRI OA) 2
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3.1 HILBER’S ¢« METHOD

As mentioned in the introductory paragraph, these linear equations are inadequate when non-
linearity occurs in the response. Therefore, a modification of the bearing equations is necessary
to account for the non-linearities. One such modification is the Newmark Method, which
modifies the stiffness of the structure to approximate the response over a time step. The
Newmark Method introduces numerical damping, which is used to dampen the effects of the
higher structural modes. Hilber (1977) further modified the Newmark Method with an o term
which is used to enhance the results of the time-step solution by improving the numerical
damping. Hilber’s equation is presented here as it applies to equation (3-2), determined at time

t

i+l *

(M, (1..)}+[C,] { () }+ 1+a) K, Jd,(1,,))
_a[Kb] i =_ { 1(1 } t{ é.(ti+l)} (3-3)
—u@+dﬂ0m)U£H%4 ()» R |

The same formula can then be applied to time ¢, :

—a[K ]{dbu,l)} [ 1]{& (-

ﬂ@+d

_N
T
~
<
~
| S )
—_——
72)
(tj=}
=
Q.
o>
—
o~
i ~
N
|
~
——

A time-step formulation can be created by subtracting equation (3-4) from equation (3-3). The

time-step equation is:

[Mt]{Ad.b(tHl)}—i_ Cb]{ (1+1)} (1+0‘)[ b]{ (Hl)}_
o[ K, J(ad m Jad (e - [ ad () G-5)

—ﬂ(Ad (,+1))[M {Sgn( d, (1))}~ ar)
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in which
(AR} = {AR™ |- {AR'| (3-6)
{AR"+1 } = residual forces at iteration i

Aéigz(ti+l) = ng(tiﬂ)_dgz(ti) (3'7)

3.2 NEWMARK’S p METHOD

Now that an iterative equation has been written with respect to displacement, velocity, and
acceleration of the structure, Newmark’s £ -Method can then be used to calculate the velocity
and displacement of the structure across the time step A¢. The following equations represent

Newmark’s method (Hilber, 1977) as it is applied to the bearing level velocity and displacement

{d, (6=, (0 [0 ), ()} A (1) (3-8)
(6,0} =, (1)} + 1, (0, +
(2-s )l sl o e9)
in which

y = factor accounting for algorithmic or numerical damping
f = factor accounting for time-step variation of acceleration

These parameters allow for a number of different methodologies for achieving accurate results.

If the y factor is set less than 2, negative damping is introduced. If the y factor is set at 2, no
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additional damping is introduced and the method makes use of the trapezoidal rule. If the y
factor is set greater than 2, positive damping is introduced. Also, choosing £ to be equal to
zero utilizes the constant-acceleration method. Choosing £ equal to % utilizes the average-
acceleration method. Choosing £ equal to 1/6 utilizes the linear-acceleration method.

Considering equations (3-8) and (3-9), an incremental form is required to determine a
solution for equation (3-5), since that equation is written in terms of incremental displacement,
velocity, and acceleration. Rearranging the terms in equation (3-8), the following expression can

be obtained:

{d, (1,))~Ad, () =1, (o)} 7 ()1, (2 ),

This can then be written in incremental form by recalling that the incremental values are the

change in velocity and acceleration over the time interval A¢, similar to equation (3-7):

tad, (1.0} =[{d, (1)} » fadi, (2. ), (3-10)
Equation (3-9) must also be transformed into an incremental equation. First it is necessary to

group the displacement and acceleration terms as follows:
(a0 =L o= oo +| 4 (oG o) (1) e

Again, recall the form of equation (3-7). Applying that definition of the incremental terms gives

the following incremental equation:
o, 0, =1 (s o e sl o) e

Now by substituting equations (3-10) and (3-11) into equation (3-5), the following equation is

obtained:
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This equation still needs to be simplified. Grouping the incremental bearing acceleration terms

yields the following:

([Mt]+ 7[Cb ]Ati +ﬁ(1 + a)[Kb ](Ati )2 ){Adb(tiﬂ )}: _[Cb]{db( i)}Ati

()0, sl o) 0 L I o 4, o
This equation can be simplified by identifying the following quantities:
[R(1)]= [0} 116 v, + 1+ ) K, (o) (3-12)
(D} =1{d,()far, (3-13)
D,y =(1+a){d, (1), +1{d, (1,)Ar,F )~ (3-14)

Now the incremental form of Hilber’s equation can be written as:

[K(1,)ad, (1.} =, ¥, )~ (&, JD, - [, Kad (1.,
(M, Yad, ()} ad (2)[M, ) se ol (1)} (A}

Equation (3-15) can then be solved in terms of the incremental acceleration vector by

(3-15)

premultiplying each side by the inverse of [E( t, )] :

€, Dy j+ &, KD, §+

[M
wd, () =-[k6)"| #[v, Jad
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Equation (3-16) has two unknown vectors in it. The primary unknown, {AJ (2 )}, acts as a

dependent variable in equation (3-16). The secondary unknown, {Adl(tiﬂ )}, acts as an

independent variable here. Therefore, another set of equations must be used to determine the
incremental acceleration of the first floor.

Once again it is assumed that floor friction is negligible and that the superstructure
behavior is entirely linear. Therefore, the first floor equations of motion from Chapter 2 still
apply to the non-linear solution. To solve for the first floor accelerations, recall equation (2-58),

shown below.

3

Z.ln +2§ln a)ln 2111 +a)lzn 2, = Z(ﬂ’lnk ébk +alnk c-l-gk) (3_17)

k=1
Equation (2-58) was derived directly from equation (2-5). Note that the first term on the right

hand side of equation (3-17) originated from the matrix expression
~[o]"[m ]lo, Kz, )
Now a different form of equation (3-17) is preferable, so the above expression must be altered.

By reverting to the true displacement form instead of the modal displacement form [see equation

(2-13)], the first term on the right hand side of the equation becomes:

- [(DI]T[MI ]{db }E [al ]{db}
It can be seen from the above expression and equation (2-56) that equation (3-17) can be written

in the following form at time ¢,,,

zln( lin )+ 251;1a)lnzln(ti+l )"‘ a)lznzln(tm ) =

Zalnm bm 1+l Zalnm gm 1+1

(3-18)
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As in Chapter 2, in which a linear analysis was derived, the linear acceleration method will be
used and equation (2-60) is applicable here for a non-linear formulation, though the coefficient

of the bearing acceleration has been changed to correspond to equation (3-18):

R4nA.Z.1n(ti+l)+Rsnéln(ti)—‘rR6n21n(ti)+a)12nzln(ti)=
3 (3-19)

Z(alnka.ibk ( lin )+ alnkd‘gk ( lin ))

k=1
However, it is desirable to write the equation in a form that allows the unknown value of

{AZ,(t,,,)} to be solved:

Rsnéln(ti)+R6n21n(ti)+a)lzrlzln(ti)

1
Az, (t,,)=——— 3 . . (3-20)
R4" - Z(alnmdbm(tHl )+ alnmdgm(tiﬂ ))
m=1
in which
2
R4 =1+& o, A+l A?’ (3-21)
2
RS, =1+2&, o, A+l ATI (3-22)
R6, =2& w, +o] At (3-23)

As previously mentioned, equation (3-16) had two unknown variables: the acceleration of the
bearing level and the acceleration of the first floor. Equation (3-20) is another equation which
depends on both the bearing level accelerations and the first floor modal accelerations.
Therefore, using these two equations, both unknowns can be solved. Reexamining equation (3-

16), a further simplification is possible by defining the following vectors and matrices:

é‘bl

{51; } = [E( 2 )]_1 ([Cb ]{Dl }"' [Kb ]{Dz }+ {AR}) =105 (3-24)
O3
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()] '[m,] (3-25)
K(1)|'[m,] (3-26)
iHlkAd.gk ( ti+1 )

55
{5g}: [H]{Ad.g(tm )}: szkAéjgk(tm) = 5g2 (3-27)
k=1 S

3 ..
H, A ,
8
z 3k d ok ( tl+1 )
k=1

ZH]k Sgn(dhk(tz)) 5
. . . g . U
{5f } = ,Ll Adgz ( ti+1 )[H] {Sgn(db ( ti ))} = ILl Adgz ( ti+1 ) ZHZk Sgn(dbk ( ti )) = 5f2 (3_28)
k3:1 ' 5f3
z Hy, Sgn(dbk ( ; ))
k=1
Now a condensed form of equation (3-16) is written as
.o 3 ..
Adbm ( ti+l ) = _(5bm + 5gm + 5fm + Z GmkAdlk ( ti+l )j (3-29)
k=1

Through the use of modal superposition, {Ac'zil }= [CI)1 ]{Azl} and equation (3-29) becomes

. 3.3
Adbm ( ti+1 ) = _(é‘bm + 5gm + é‘fm + Z Z Gmk¢1klA.Z.ll ( ti+1 )j (3-30)

k=1 [=1

By definition, the following identity is true:

Ad,,(t.,)=d,,(t..)-d, (1) (3-31)

which can be rewritten as

d.bm ( ti+1 ) = d.bm ( ti )+ Ame ( ti+1 ) (3_32)

Substitution of equations (3-30) and (3-32) into equation (3-20) gives the following result:
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RS Zln( )+R6 Zln( l)+a)12nzln(t)

.. 1
AZln(ti-H): _R4 _zalnm bm l Zalnm gm 1+1 (3-33)
n m=l1

3
+ zalnm(é‘bm + 5gm + 5fm + zszkﬁkIAzll(tHl )]
m=1

k=1 I=1

Grouping the incremental acceleration terms on the left hand side of the equation:

Rsizéln(tl)+R6 Zln( l)+

Aéln(twrl)_‘_ 1 3
1 [iiial G K1 1)} - wfnzl,,(t,.)+z;alm(5bm+5gm+§fm)— (3-34)
4n el kel 11 i i+ n “—

S it 1)

Defining the following identities allows equation (3-34) to be simplified into a much more

palatable form:

Pln :Rsnéln(ti)-i-R6n21n(ti)+a)12n(ti) (3-35)
3 .. ..
P2n = _Zalnm (dbm(ti)+dgm(ti+l )) (3_36)
m=1
3
P3n = Zalnm (§b7n +5 +5 ) (3-37)

vy {ZZ ” (3-38)

k=1 m=l
Now equation (3-34) becomes

n z+l Zin z+l RZ’ [Pln +P2n +P3n] (3-39)

n

By expanding the equation for n =1, 2, and 3,

.. . . 1
(Qn +I)AZII(ti+1)+QIZAle(ti+1)+Ql3Ale(ti+l):_H(Pll +P21 +P31) (3'40)

1
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. . .. 1
Q21A212(1i+1)+(Q22 +1)AZI2(ti+l)+Q23AZIZ(ti+1)= _H(Plz +P22 +P3z) (3'41)

2

.. . . 1
Q31A213(ti+1)+Q32AZI3(ti+l)+(Q33 +1)A213(t;+1):_ﬁ(P13 +P23 +P33) (3'42)

3
Writing equations (3-40), (3-41), and (3-42) in matrix form,
[ofiaz, (z.,)j=1{ P} (3-43)

Equation (3-43) can then be rewritten as:

g (r.)f=[0]" { P} (3-44)

Equation (3-44) can then be solved, as only the left hand side is unknown. From this result it is
clear that the actual formulation for the non-linear response is very similar to that of the linear
response. A comparison of equations (3-44) and (2-74) leads to the conclusion that except for a
few minor changes in the parameters involved, from a calculation standpoint the non-linear
method is not a much greater undertaking than a linear method.

Again, as was the case with the linear analysis, it is necessary to iterate the solution to
obtain values which fully satisfy equilibrium. In the non-linear iteration process, the criterion for
proceeding with the next time step is a negligible change in the effective stiffness of the bearing

level, [K,]. A slight difference in the effective stiffness over the time interval implies that the

approximation of the behavior over that time step will be appropriate for the response
calculations.

As results are obtained from a non-linear analysis, it should be noted that the choice of
the non-linearity parameters will have an effect upon the accuracy of results. Therefore, before

using these methods, it is important to refer to Hilber (1977) for appropriate variable values. It
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should also be noted that the obtained results are still non-linear approximations, as opposed to

an exact solution for the structural response.

3.3 SUMMARY OF SOLUTION STEPS

The solution procedure, as enumerated in the above text, can be condensed into a stepwise

process as follows.

1.

Select values for the three parameters used in Hilber’s modification of Newmark’s
Method — a, f, and y. Hilber suggests using the values of -0.1, 0.3025, and 0.6,
respectively.

Assemble the mass matrices as described in Appendix A. Determine the stiffness
matrix for the first floor from Appendix A.

To determine the stiffness of the bearing level, transfer the bearing level
displacements to each individual bearing. Then the stiffness for each bearing must be
determined from Appendix C. Those individual bearing stiffness values are then
combined as shown in Appendix A.

Solve the generalized eigenvalue problem shown in equation (2-14) to determine the
mode shapes of the first floor.

Assemble the [Q] matrix as shown in equations (3-38) and (3-39). Assemble the {P}

vector as shown in equations (3-35) through (3-37) and (3-39).
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6.

10.

11.

12.

Solve equation (3-44) to determine the initial values of the incremental modal
accelerations of the first floor. Using modal superposition, determine the incremental
first floor accelerations from equation (2-13).

Substitute the values for {AZ(z,,,)} into equation (3-30) to determine the incremental

bearing level accelerations. Using these accelerations, determine the incremental
bearing level velocity and displacement from equations (3-10) and (3-11),
respectively.

Determine the displacement, velocity, and acceleration at time ¢,,, from the previous

i+1
values and the incremental values.

Substitute the values for bearing level displacement, velocity, and acceleration, along

with the first floor acceleration, into equation (3-3) to determine the unknown
residual force vector {ARi+1 }

From the bearing level displacements, determine the displacement of each individual
bearing. From the bearing displacement, determine the force in that bearing. If a

bearing has yielded, its lateral force must be reduced to the yield value and the

amount of the reduction must be added to the residual force vector {AR s }
Determine {AR} from equation (3-6), which will then be used in the next time step.

Assemble the effective bearing stiffness matrix. Compare with the previous value for
the time step. If the difference is neglible, proceed to the next time increment,
beginning with step 4 of this procedure. Otherwise, return to step 5 and perform

another iteration of calculations for the current time step.
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4.0 MULTI-STORY LINEAR ANALYSIS

The application of seismic isolation to single-story structures is very important as an introduction
to the process and as an intermediate step toward multi-story base isolation. Base isolation is an
extremely valuable tool when properly applied to a multi-story structure. The concept of base
isolation is to eliminate the effect of the higher response modes, which tend to transmit high
quantities of energy into the structure. Reducing the effect of the higher vibration modes from
the response of a multi-story structure greatly decreases the likelihood of catastrophic structural
failure in the event of an earthquake. Therefore, an analysis of a multi-story structure will be
undertaken here to assess the precise effect of base-isolation on the overall response to dynamic

loading.

Figure 4 — Multistory Isolated Structure

37



An N-story structure is shown in Figure 4. The floors are numbered from 1 to N, with the first
floor standing directly above the bearing floor and the Nth floor acting as the roof of the

structure. The relative displacements at each floor are shown in Figure 5.

dbx

A

Figure 5 — Multistory Displacements

S D F
Fbx+ Fbx+ Fbx

Figure 6 — Multistory Superstructure Free Body Diagram
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Figure 6 represents a free-body diagram of the bearing level and the superstructure above,
showing only the X-direction for simplicity. The resisting elastic and damping forces
(superscripted with an S and D, respectively), as shown in the drawing, act opposite to the
direction of the displacement and velocity of the structure, respectively, directly below the
bearing floor level. A frictional force also acts directly below the bearing level, in the direction

opposite that of the velocity.

4.1 ANALYSIS PROCEDURE

4.1.1 Bearing Level Equations of Motion

The free-body diagram shown in Figure 6 allows for a summation of forces to be written in the
X-direction, which can be applied in each of the three degrees of freedom and written in matrix

form as:
L A L R U S G R ER i e (I CR)
{F v }E frictional forces as defined in Chapter 2

The force vectors {Fi[ } are determined from equation (A-9), which can be written in a more

general form for floor i as:

(R =[N+ [m Y f+ [ m Y (4-2)
in which
m, 0 -m,f,
[Mi] = 0 m; m;e, (4-3)
-m,f, m;e, Ji+ml.(f[2+e[2)
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{d.z‘}: y, {db}: Vs {d.g}: Vg (4-4)

The mass matrix [M i] is derived directly from equation (A-10) and generalized for floor i. The

parameters e; and f; used in the mass matrix are defined in Appendix A. The inertial force
presented in equation (4-2) can then be substituted for each floor in equation (4-1). By also

substituting the stiffness, damping, and frictional vectors, equation (4-1) can now be written as:

(I, 34, Yo Do, 2, Y Do 2, )
(e, 0 D, ) o e, ) D

([ {d, b [ d, f+ [0, ) (4-5)
+([ag, N, J+ [, 1N, f+[c, d, 1+ [, )4, )
+y(g+éigz)([MN]+...+[M,.]+...+[M ]){sgn(db)}=0

Equation (4-5) is not in a manageable form; therefore, it is desirable to rewrite it in a more

compact notation. By rearranging the terms, the following equation can be written:

([p,]+. MT+€%D{}ﬁ%}[]%3
—[MN]d + +[M d1
(M) s i

—y(g+agz)<[MN1+...+[M]+ +[M {sgn(mf

Then equation (4-6) can be further simplified by defining a “total mass” matrix

—mhﬁWJ (4-7)

i=1

Equation (4-6) now becomes:

St (4-8)

40



Equation (4-8) represents the equations of motion for the three degrees of freedom of the bearing
level. Notice that the right hand side of the equation shows a dependency upon the relative
accelerations at each floor of the superstructure. Therefore, another set of equations with both
the bearing displacements and the superstructure displacements unknown will be required to
determine the overall response of the structure.

First, equation (4-8) will be solved for the bearing level relative accelerations as a
function of the superstructure relative accelerations. Using modal superposition for the bearing
level, equation (4-8) can be rewritten as follows:

M Jlo, J{z, 1+ [ llw, {2, 1+ Kl 2, } =
-3 (e i -0, - sl o sl )

i=1

(4-9)

in which
{d,}=[o,)iz,} (4-10)
Now if each side of equation (4-9) is premultiplied by [dbb]r, mass-orthonormalization (as

presented in equation (2-17)) allows for further simplification. The process is similar to that
undertaken in equations (2-18) through (2-21). After applying the linear acceleration technique
demonstrated in equations (2-27) through (2-29), the following equation, which is similar to
equation (2-30), is obtained:

¢ T

zbn (T)+ 2§bna)bnz'bn (T)+ a)lfn an (T) = Alil + Bni+l E (4_1 1)

Equation (4-11) represents one of the three modal responses of equation (4-9) after applying

mass-orthonormalization. This equation requires the following definitions:

t _ 4N N-1 2 1 g I

Ani - Ani + Ani +...+ Ani + Ani + Ani + Ani (4-12)
¢t _ pN N-1 2 1 g f

Bni+1 - Bni+l + Bni+1 +...F Bni+l + Bni+1 + Bni+l + Bni+1 (4-13)
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Equations (4-12) and (4-13) represent “forcing functions” which act upon the bearings. The
forces represented in equation (4-12) are from the superstructure accelerations, the ground

acceleration, and the frictional forces at the bearing level, and are defined as such:

M-

Arlti = %nk 6'1‘14(31—3#{) ( ti ) (4-14)

=

=1

a}mk"jgk(ti) (4-15)

Il
M-

Af

ni

b
LR

wlg+d, (1)) @y, senld, (1)) 4-16)

'
-
Mw

ni

-~
I

in which
[ ]= o, ] [m,] [y =@, ]"[Mm,] 417)
Equation (4-14) is shown in terms of the acceleration vector {éiu }, as opposed to the individual

floor acceleration vectors {éi ” }, to allow for calculation with a single superstructure acceleration

vector. The global acceleration vector, in which the accelerations are relative to the bearing
level, is defined in equation (4-41) as a 3N x1 vector with 3N degrees of freedom for the N-
story structure. The forces represented by equation (4-13) represent the same effective forces as
those in equation (4-12) but are dependent upon the incremental acceleration values. Those

quantities are defined as follows:

n1+l Z ﬂ’bnk u(3l- 3+k) 1+1 ) (4_ 1 8)
Za,,nkAd (4.1) (4-19)
m+l Z ,u(Ad z+1 ) Ak Sgn(dbk ( ; )) (4-20)
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By substituting equations (4-14), (4-15), and (4-16) into equation (4-12), the following equation

can be written:

zzﬂ‘bnk “u(3l 3+k) Zabnk g,k
=1 k=1
+ Zﬂ(g + d )O‘bnk sgn(d (¢, ))

3
k=1

(4-21)

Similarly, by substituting equations (4-18), (4-19), and (4-20) into equation (4-13), the following

equation can be written:

m+1

M=

3 3
z }‘bnk Adu(:il 3+k) l+l + z abnk Ad H—l
k=1 k=1 (4_22)

+ Z #(Ad.gz ( lin )) Ak Sgn(dbk ( ; ))

3
k=1

.
T

Equations (4-21) and (4-22) are now representative of the values used in equation (4-11). A
solution to equation (4-11) is now the next step. As in Chapter 2, the unknowns in this equation
are the bearing modal response quantities and, through equations (4-21) and (4-22), the
superstructure modal accelerations. Therefore, it is necessary to solve equation (4-11) for the
bearing modal response in terms of the superstructure modal response. The superstructure
response will be determined below. The process outlined here is identical to that of Chapter 2.
By inspection, equation (4-11) is functionally identical to equation (2-30). Therefore, the
method used to determine the bearing modal response in Chapter 2 will be applicable here. The

solution to equation (4-11) can be written in a form similar to equation (2-43), as follows:

2
Z/m(tH—I) D + R1 B;Hl wlz |:Af (At gbn]ﬂj| (4-23)
bn

w,, ) At

n

in which

—Eon Oy AL

D, = 5 (E,sinQ,, At + F,cosQ,, At) (4-24)
bn
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2
Rl =g mom™ (— ﬂsin Q, At+ % cosQ),, Atj (4-25)

! w,, Q, At w,, At
Eni = an(ti)+ ébnwbnzbn(ti)_éiA;i (4-26)
a)bn
t
Fni = an [an(ti)_A_’;i:| (4_27)
a)bn

Again, as in the formulation from Chapter 2, the modal velocity of the bearings is derived from a
time derivative of the modal displacement. Evaluating the velocity at time ¢,,, gives an equation

similar to equation (2-48):

t

Z.hn ( ti+1 ) = (Gm’ - gbna)anm' )+ (Rzn - é:bna)bann )Bt + B”HAI (4_28)

ni+l 2
bn

in which

G, =e (Em cosQ, At—F sinQ, At) (4-29)

ni

[ 1-2&] 2 .
R2, =Q, e | —— 2 b cosQ), At +#sm Q,, At (4-30)
w,, Q, At w,, At

The modal accelerations are then calculated from the time derivative of the modal velocities.
Evaluating the acceleration at time ¢,,, presents a solution for the modal accelerations similar to

that presented in equation (2-54):

2, (t,n)=—H, —R3,B,, (4-31)
in which
Hni = 2 fbn a)bn Gni + a):n (1 - 2 §bzn )Dni (4_32)

R3,=2¢&, w, R2, + o}, (1-2£2 )RI (4-33)

n
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Equation (4-31) can be expanded by substituting in equation (4-22):

3 .o
Z /Illv\;kAdu(sN—yk) ( lin )+ st
Ebn ( ti+1 ) = _Hm‘ - R3 = (4_34)

3
Zﬂ’})nkAduG 3+k) z+1 ZabnkAd ( 1+1)
Equation (4-34) shows a solution for equation (4-8), solving for the modal accelerations of the

bearing level with respect to the superstructure incremental relative accelerations.

4.1.2 Superstructure Equations of Motion

Now the superstructure equations of motion will be derived by first summing the forces as

suggested in the free-body diagram of Figure 7.

e, Yd, t+ (e, Md, -{d,. )-[c,.. M{d,.. )-1d. )
+[&, X, -1 nl}) [Km]({ vy 1d,})

d (4-35)
wm,Hd, {-[m,d, }

Cutl (dn+l - dn )"’ ki (dn+l -d, )

»
»

A

c,(d,—d, )vk,(d, -d,,)

Figure 7 — Multistory Individual Floor Free Body Diagram
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As shown in Figure 7 and equation (4-35), the equation of motion for each floor is dependent
upon the displacement at that floor and the floors immediately above and below that floor. Also,
the stiffness and damping matrices are required from the levels immediately above and below the
considered floor. Note that the individual floor equations disregard the friction that was
considered in the bearing level. The frictional component at each floor is considered negligible

and therefore will be ignored in these formulations. By writing the matrix equations for the N

floors of the superstructure, equation (4-35) can be written in the following matrix form:

v, Rd, f+[c, R, + (&, ), = -Im, N, }-[m, d, | (4-36)
in which
[ [m,] [o] o] [o] ]
o] ] o]
o= D bl ] @-37)
v, ] [o]
| [0] o] [am,]]
lc+a] [Fal o o] [o] ]
[_ Cz] [Cz + C3] [_ C3]
[Cu ] _ [0] [_ C3 ] [C3 + C4] [_. C4] (4-38)
[ Cy 1] [CN—I + CN] [_ CN]
L [o] ol le]
K+&] ] o] [o] ]
[_Kz] [Kz +K3] [_K3]
[Ku]: [O] [_ Ks] [K3 +K4] [_.K4] (4-39)
| [_ KI.\/—I] [KN—I +KN] [_KN]
| [o] Fx] K]
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[M, ]=1 i }=3Nx3 matrix (4-40)

{d }=1 =3N x1 vector (4-41)

{d =1yt {d,}=13,t {d }=15, (4-42)
0, 6, 0

The method of modal superposition, as used in Chapter 2, can be used here to help simplify the
format of equation (4-36). Expressing the accelerations of the superstructure floors and the

bearing level in terms of their modal accelerations, the following relationships are evident:

{du}:[q)u]{éu} {3b}:[®b]{5b} (4-43)
Then these values can be substituted into equation (4-36) to form the following equation:

[, ]lo [{z,}+[c ]lo,){z+[K,]l@ ]{z}=
_[ uc [(Db]{éb}_[Muc]{dg}

(4-44)

Each side of the equation can then be premultiplied by [(Du]r. Recalling equations (2-55)

through (2-57), which represent the mass-orthonormalization of the mode shapes as presented in

Chapter 2, equation (4-44) can be rewritten as:
(2,}+ diaglé, 0, )2, b+ diaglor [z, )= (2,12, ) + [0, 4} @49)

in which n=1,2,...,3N and
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Zl=-e "M, o] |o]=-{®,]"[M,] (4-46)

By writing one of the 3N equations from equation (4-45) and evaluating it at time ¢, , the

i+l

following expression is obtained:

Eun ( ti+l )+ 2§un a)un Zun ( Z‘i+l )+ a)uzn Zun ( ti+l ) =

3 ) . (4-47)
(Z’unk Zpk ( lin )+ aunkdgk ( lin ))

k=1
As in the previous chapters, the linear acceleration approach will be used to approximate the
behavior through the time interval. The equations for the linear acceleration method are repeated

here for convenience:

Eun ( ti+1 ) = Eun ( ti )+ Azun ( tHl ) (4-48)

. . .. .. At

Zun ( ti+l ) = Zun ( Z‘i )+ Zun ( Zti )At + AZun ( ti+1 )7 (4-49)
2 2

Zun ( ti+l ) = Zun ( ti )+ Zun ( ti )At + zun ( ti )ATt + AZun ( ti+l )ATI (4-50)

Then by substituting equations (4-48), (4-49), and (4-50) into equation (4-47), the following

result is obtained:

R4, Az, (t,)+R5,%,(t)+R6,z,(t)+wz,(t)=

n un n un un—un

3 3 ..
- z z /IunkR?’k j’ZdAdu(SN—SH) ( lin )_ e

k=1 I=1
3
1=

- zziunkR%%klAdu(a—w)(tm) (4'51)

3
k=1 I=1

in which
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2
R4, =14, 0,00+ 02, S (4-52)
2
RS, =142£ o A+’ % (4-53)
R6, =2¢ o, + a)uznAt (4-54)

Since the left hand side of equation (4-51) is in terms of modal accelerations of the
superstructure and the right hand side is in terms of the actual accelerations, it is desired to
convert equation (4-51) into a consistent format. To that end, the modal superposition method
will be used here. Modal superposition, by definition, allows the following relationships to be

written:

3N

Aél.u(3k—3+l) ( ti+l ) = Z O u(3k:3+l)mA2um ( ti+1 ) (4_55)

m=1

Equation (4-55) can be written for each of the 3N components of the {Aéiu(ti+1 )} vector.

Substituting these results into equation (4-51) and grouping like terms yields the following

expression:

=
~
[N
=
i
-~
I
3
i

1

ﬂ’unkR3k ﬂ”ikl(bu(3j73+l)mA21¢m ( ti+1 ):| =

[R5, %, (1,)+ RS, 2, (1,)+ @z, (1)]+ S A, | (456)

k=1

3.3 . 3 .
! +Zz/lunkR3kabk1Adgz(ti+1)_;aunkdgk(tm)

k=1 =1
in which n=1,2,...,3N . By writing these 3N equations in a simplified matrix form, equation
(4-56) becomes:
[oliaz, }= (P} (4-57)

in which
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[0]=3N x3N matrix
{Az,}=3N x1 vector
{P} =3N x1 vector

The individual terms in the [Q] matrix are defined as follows:

1 N 3 3 )
Qnm = ﬁ[zzzﬂ’unkR:;k//’“Z)qu)u(3j—3+l)m:| (4-58)
n | j=1 k=1 I=1
1 N 3 3 ]
an = 1 + ﬁ z zziunkR3k ﬂ’équ)u(3j—3+1)m (4_59)
n | j=1 k=1 I=1

Equation (4-58) applies to the non-diagonal terms (i.e. n # m ) and equation (4-59) defines the
diagonal terms of the [Q] matrix.
The individual terms of the {P} vector must also be defined. Each of the 3N terms can

be written as such:

P = —R%n[mn +P2, +P3,] (4-60)
in which
Pln = RSnZun(tt) + R6n Zztn(ti)+ a)jnzun(ti) (4-61)
3
P2n = Z iunkai (4-62)
k=1
3 . 3 .
P3n = Z z (ﬂ’unkR:Sk abklAdgl ( ti+1 ))_ zaunkdgk ( ti+1 ) (4_63)
k=1 1=1 k=1

Equation (4-57) can then be solved for the unknown {AZ, } vector:

2, (1., =[o] " {P} (4-64)
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Equation (4-64) now represents a solution for the incremental accelerations of the superstructure
floors. Recall that equation (4-34), the solution for the bearing accelerations, was in terms of the
incremental modal accelerations of the superstructure. Now that these accelerations are known,
the bearing level responses can be solved from equations (4-23), (4-28), and (4-34). However, as
in Chapter 2, it is important to ensure that equilibrium is maintained throughout the solution
procedure. Therefore, the bearing level response will be substituted into (4-47) to determine new
superstructure modal accelerations, which are used to determine the next values for the bearing

level response. This iterative process is described in detail below.

4.2 SUMMARY OF SOLUTION STEPS

As in Chapter 2, the solution procedure for the linear response of the base-isolated structure
involves a number of steps. The steps listed here are extremely similar to those listed for the
single-story structure; however, the multistory structure’s response will be more mathematically
demanding, as there are multiple levels for which to calculate the response quantities.
1. Assemble the mass and stiffness matrices, for the bearing level and for each level of
the superstructure, as described in Appendix A.
2. Determine the modal matrices shown in equation (2-16) for the bearing level and the
first floor by solving equations (2-14) and (2-15). The remaining superstructure

modal matrices can be determined by solving the following equation:
2 .
&, Jld,}= oM, ]{d,} j=23...N (4-65)
3. Assemble the [Q] matrix as described in equations (4-58) and (4-59). Assemble the

{P} vector as described in equations (4-60) through (4-63).
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Solve equation (4-64) to determine the incremental modal acceleration values for the
superstructure degrees of freedom. These values will act as the initial values for the
time step.

To determine the initial values for the superstructure modal acceleration, velocity,

and displacement at time ¢, , substitute the values for superstructure incremental

i+
modal acceleration into equations (4-48), (4-49), and (4-50), respectively.

Substitute the values determined in steps 4 and 5 into equations (4-21) and (4-22) to
determine the parameters required to calculate the bearing level modal response.
Substitute the parameters determined in step 6 into equations (4-23), (4-28), and (4-
31) to determine initial values of the bearing level modal displacement, velocity, and

acceleration, respectively.

Check equilibrium. Substitute the values for z,,(7,,,), z,,(z,,), and {Z,(z,,)} into
equation (4-48) to determine a second iteration value for #,,(¢,,,). Use equation (4-

48) to determine a second iteration value for the superstructure incremental modal
accelerations.

Repeat steps 5-8 until the change in modal response between iterations is negligible.
To determine the actual response of the structure, equations (4-43) and similar
expressions involving velocity and displacement can be solved using the modal
response. The values obtained from this calculation represent the actual response of

the bearing level and the superstructure levels at time ¢,,, .
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5.0 MULTI-STORY NON-LINEAR ANALYSIS

As was the case with the single-story structure, nonlinearities often occur in the response of a
structure to ground excitation. Since base-isolation seeks to restrict the superstructure to an
elastic response, the only nonlinearity to be considered here is yielding and hardening of the
bearings. For a more detailed explanation of the non-linearity, see Appendix C. The equation of

motion of the bearings, taken from equation (4-8), is repeated here for convenience:

2, b+ (e, )d, Y&, D, = =3 (1, )

P (5-1)
~[md, |- ulg+d,. M, {senld, )

in which

ba,1= 0,1+ [0, (52

5.1 HILBER’S ¢« METHOD

Equation (5-1) can be modified by the Hilber-o Method as seen in Chapter 3. This modification

is as follows, evaluated at time ¢,,, :
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[, Y, (1, )+ [C, T <,+1>}+<1+a>[ K, Y, (1.}
~alk, Y, (e ==X M Jd (1.,)- [, d (1,.)) (5-3)

1

-u<g+dz<’ o Ysenld, (1) o)

The same expression, evaluated at time ¢,, can be written as follows:

[Mt]{él'b(t,-)HCb]{ ( )+ (1+a)k, K, (1))
—alk, Yd, (1)} = 1[M W, (e)p-m, 3, (1)) (5-4)

(g+déz(r,))[M]{sgn( A ENY

An incremental expression for the equation of motion can be written by subtracting equation (5-

4) from equation (5-3). This new equation is written as follows:
o, Y 1, )+ 1€, T, 1. ) 0+ 0, Jad (o,
ok, (1) =30 Yo (0, )= e Jod 1)) 5-)
-, (o Vsl (1)} - a8
in which
(AR} = {ar |- {ar'| (5-6)

{ARi+1 } = residual forces at iteration i

{Adgz(ti-%—l )}: {dgz(ti-#l )}_ {ng(ti )} (5-7)

5.2 NEWMARK’S g METHOD

To simplify the incremental equations of motion derived in Chapter 3, Newmark’s f Method was
implemented. This same method will be utilized here, but equations (3-8) and (3-9) must be

rewritten in vector form as follows:

54



{db(tiﬂ )}: {db(ti )}"‘ [(1 - 7){db(ti )}"’ y{db(tiﬂ )}]Ati (5-8)
(o =L (e | (- el () o 59

These equations must then be converted into incremental form:

tad, (1)} =[0- ) (1)} Ad (1)

= {a"'b(ti )}Ati + 7{Adb(ti+1 )}Ati (5-10)

ad,(1.,))

b (3= ool ) o
{dy (1o, + L, (1 e+ plad, (1),

(5-11)

Equations (5-10) and (5-11) can then be substituted into equation (5-5), eliminating the unknown
incremental velocity and displacement values from the equation. The simplified expression is
now:
(v, Jiad, (1, )+ [0, Wid, (1)1 riad, (2,0 )lfae, +
. 1 (- .
(vl G, 3 oo+ ol (o Y f =

el Yo, 1)} = 2 o1 o, ()} e Yo o, )

- IUAC.jgz ( lin )[Mz ]{Sgn(db ( L ))}_ {AR}

(5-12)

During each time step, the only true unknowns in this equation are the incremental accelerations
of the bearing and superstructure levels. It is desirable to express this equation as a function of
the superstructure accelerations, which will then be used to solve for the bearing accelerations.

By rearranging the terms accordingly, the following expression can be obtained:
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([Mt ]+ 7/[Cb ]Ati + :B(l + a)[Kb ](Ati )2 ){chb(zm )}: _[Cb ]{Cjb(zi )}Ati
—[&, 0+ )i, (), + 24, (1) ar, ) - edad, (1))

S0l Y (-l Yo ()
- s (1,,)M {senld, (1)} (AR}
Equation (5-13) can be further simplified as
(AEYRIN TR A AOH)
(&2, ), (1.} =- v Jad, ()l 619
+aand, (1M, Hsenld, (1,))}+ AR}
in which
[ (2)]=[m,]+ 7, I, + s+ @)K, Jar, (5-15)
D} =1d, (1)}, (5-16)

(0.} = 1+ a)ld, (1)), +44d, ()Naw, )~ afad, (1) (5-17)

Solving equation (5-14) for the unknown incremental accelerations at the bearing level:

(AEYRIA TN Ni%

{ad, (1)=& ()] +[m H (5-18)
+und (1, )M, ){senld, (1, )|+ (AR}

»
=L
>
: Qe
e
—~ —~
~N
T
=

As mentioned previously, this equation is still a function of the superstructure accelerations,
which are still unknown. Therefore, equation (5-18) must be solved simultaneously with another
equation. The equation of motion of the superstructure is a second equation that depends upon
both of the unknowns. Since the superstructure is assumed to maintain an elastic response,

equation (4-45) applies here:
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(¢, 1+ diagl2¢,,0, Y2, 1+ diaglw?, Jz = (A0 + [ ) (5-19)
in which

(2 ]=-o,]" M, ],] (5-20)

e, ]=-®,]"[M,.] (5-21)
Given equations (5-20) and (5-21), the following expression can be obtained:

2z =0, [, Jl@, )z, = [, Jd, | (5-22)
Substituting equation (5-22) into equation (5-19) allows the following equation to be written:

(¢, )+ diagé, 0, Y2, ) + diagle Yo, } = o, Jd, + [ Jd, | (5-23)

A single equation can then be written from the matrix expression of equation (5-23). Writing

equation n from the matrix formulation evaluated at time ¢,,, :

un ( l+1 )+ 2§una)un Zun ( tH—l )+ a)unzun ( tz+l ) =

zaunkdbk z+l Zaunkdék i+l )

(5-24)

Again the linear acceleration method will be used to interpolate the incremental acceleration

values. For reference, equations (4-48), (4-49), and (4-50) are repeated here:

'Z'un(tiﬂ)_ un( z)+AZun( l+l) (5-25)

. . .. .. At

Zun ( ti+1 ) = Zun ( ti )+ Zun ( ti )At + AZun ( ti+l )? (5-26)
: Lo \A Ar?

Zun(ti-H ) = Zun(ti)+ Zun(ti )At + Zun(ti )T—'_ AZun(tHl )T (5_27)

Substituting equations (5-25), (5-26), and (5-27) into equation (5-24) yields the following:

R4 Az, (t.,)+R5,%,(t,)+R6,z, (1)l z,(t,)=

n un n un un—un

iaunk ({dbk(tl } {Adbk ,+1 }) Zaunkdgk ,+1

k=1

(5-28)
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This expression is an equation with two sets of unknowns. The incremental modal accelerations
of both the superstructure and the bearings are unknown. Therefore, it is necessary to solve
equations (5-28) and (5-18) simultaneously. However, first equation (5-18) must be written in a

scalar form. The following definitions will be used for that purpose:

{Aéib ( lin )} = Aéjbz ( i ) = Ad.by ( lin ) (5-29)

e
6.} =[K ()] (e 3+ &, .+ (aR) =1 6, (5-30)
O3
{5f}:IUAd.gz(tHl)[K(ti):l_ [Mt]{sgn(db(ti»}: 5]‘2 (5-31)
5./'3
G Gy G
[Gk]z[E(ti):l_l[Mk]z G G Gy k=12,...,N (5-32)
G Gy Gy

H H H
[H]:[K(ti)]il[Mz]: H, H, H, (5-33)
H H H

Using these definitions, it is now possible to rewrite equation (5-18) as:

AT B LA RS 3 o8 LY XU s N[ Y CER

k=1

However, equation (5-28) includes the superstructure accelerations as they are found in the

overall superstructure acceleration vector {éiu(ti+1 )}, as opposed to the individual vectors
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{éi A, )} To write equation (5-34) in those same terms, it is necessary to realize that {d A, )}

is a subset of {du (1., )} and that relationship can be written as follows:

a'ikn ( lin ) = d'u(3k—3+n)( lin ) n=123 (5'35)
It will also be necessary to use the modal acceleration forms, so the following equalities will be

necessary:

i ()=, Jz, () (5-36)

dkn 1+1 zq)knmzkm( i+l ) (5_37)

m=1

From equations (5-35) and (5-37), the following expression can be obtained:
3N

d'u(3k—3+n)( ti+1 ) = Z (Du(3k—3+n)m éum ( ti+l ) (5_3 8)

m=1
Equation (5-37) is in a form which allows equation (5-18) to be broken down into a single scalar

equation from its vector form. The resulting equation is shown below:

Adbn ( ti+1 ) = _|:5bn + + Z z GknlAdkn l+1 z an Ad ( l+1 )j| (5-39)

k=1 [=1

By using equations (5-35) and (5-38), equation (5-39) can be rewritten as follows:

N 3N
k

3
5bn + 5fn + zl ; ‘ Gknlq) (3k=3+1)m AEum ( ti+1 )
S (5-40)

+ Z anAd‘gk ( ti+1 )
k=1

Ac‘jbn ( lin ) ==

Substituting this result into equation (5-28) yields the following result:
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R4 AZun( l+1)+R5nZun( z)+

z Ak d bk

3N

izi

N
3

3
Z Z Czunk Hkl Ad l+1

j=1 k
=

1

1 [=] m=

R6 Z

n un

—_

Grouping like terms in equation (5-41) yields:

RSHZMI’I( l)

- z A \d ( hk

Equation (5-42) can then be expressed in a simplified into a matrix format:

[ofiaz, (1,.,)} = {P}

in which

M-

=7 [iﬁ

n k=

T
N

Mz

bl
I

1 3
i 252

n | J=

%[Pln +P2, +P3, ]

n

P =-

n

Pl =R5%, (t)+R6,z2, (1)

n-—un n-—un

+R6 Z

+d ( z+1)_5bk

auank/lq) 3k=3+1)m }

3
Zamka/lq) 3k=3+1)n }

+z (t,)

un—un

P2, :_Zau;7k(gbk(ti)+Jgk(ti+1)_5b" _5“)
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n=-un ( )+ wunzun

”gl ( ti+l )

(1,)+@p2,(t)=
zaunk(ébk +5 )

aun] ijl(Du 3k 3+1)m Azum ( ti+1 )_

Z cxunk gk t+l )

aunj ijlCDu(3k—3+l)m AZum ( ti+l ) =

t,)-

(
§ﬂ)+

n#+m

(5-41)

(5-42)

(5-43)

(5-44)

(5-45)

(5-46)

(5-47)

(5-48)



3

= z unkalAd 1+1) (5-49)

k=1 I=1

w

Equation (5-43) can then be solved for the unknown incremental modal displacements as

follows:

iz, (1., =[o] " {P} (5-50)

Equation (5-50) gives values for the superstructure incremental modal accelerations. From those
values, the actual accelerations, velocities, and displacements of the superstructure can be
derived from equation (5-36), shown only for acceleration.

Since the superstructure modal accelerations are now known, the bearing incremental
accelerations can be determined from equation (5-40). These can then be used to determine the

acceleration, velocity, and displacement of the bearing level at time ¢,,, by using equation (5-7),

(5-8), and (5-9) respectively. Again the most important values are the bearing acceleration and

displacement, as discussed in Chapter 2.

5.3 SUMMARY OF SOLUTION STEPS

The solution procedure, as enumerated in the above text, can be condensed into a stepwise
process as follows.

1. Select values for the three parameters used in Hilber’s modification of Newmark’s
Method — a, S, and y. Hilber suggests using the values of -0.1, 0.3025, and 0.6,
respectively.

2. Assemble the mass matrices as described in Appendix A. Determine the stiffness

matrix for the first floor from Appendix A.
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10.

To determine the stiffness of the bearing level, transfer the bearing level
displacements to each individual bearing. Then the stiffness for each bearing must be
determined from Appendix C. Those individual bearing stiffness values are then
combined as shown in Appendix A.

Solve the generalized eigenvalue problem shown in equation (4-65) to determine the
mode shapes of each floor of the superstructure.

Assemble the [Q] matrix as shown in equations (5-54) and (5-55). Assemble the {P}

vector as shown in equations (5-46) through (5-49).

Solve equation (5-50) to determine the initial values of the incremental modal
accelerations of the first floor. Using modal superposition, determine the incremental
superstructure accelerations in the form of equation (5-36).

Substitute the values for {AZ (z,,,)} into equation (5-40) to determine the incremental

bearing level accelerations. Using these accelerations, determine the incremental
bearing level velocity and displacement from equations (5-10) and (5-11),
respectively.

Determine the displacement, velocity, and acceleration at time ¢, , from the previous

i+l
values and the incremental values.

Substitute the values for bearing level displacement, velocity, and acceleration, along
with the first floor acceleration, into equation (5-6) to determine the unknown

residual force vector {AR o }

From the bearing level displacements, determine the displacement of each individual

bearing. From the bearing displacement, determine the force in that bearing. If a
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bearing has yielded, its lateral force must be reduced to the yield value and the
amount of the reduction must be added to the residual force vector {AR"+1 }
11. Determine {AR} from equation (3-6), which will then be used in the next time step.

12. Assemble the effective bearing stiffness matrix. Compare with the previous value for
the time step. If the difference is neglible, proceed to the next time increment,
beginning with step 4 of this procedure. Otherwise, return to step 5 and perform

another iteration of calculations for the current time step.
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6.0 CONCLUSION

A linear single story structure is the simplest possible base-isolated structure. Therefore, the
derivation of an analysis procedure for this structure was presented first. The analysis method is
more complex than the one-degree-of-freedom analysis, which disregards the effect of torsion.
The more complex three-degree-of-freedom derivation shown in Chapter 2 will account for the
torsion inherent in a non-symmetric structure. This torsion may increase or decrease the
displacement and force maxima; therefore, the multi-dimensional analysis is more accurate than
the one-degree-of-freedom method.

The bearings will not necessarily remain linear. Therefore, it is important to consider the
effects of non-linear behavior on the dynamic response. A non-linear solution can be derived
from the linear solution. In Chapter 3, the derivation of a non-linear single-story response
incorporates inelastic bearing behavior through the use of Hilber’s a method and the plasticity
theory presented in Appendix C. It is important to note that due to the concept of base isolation,
the superstructure is assumed to remain linear throughout the formulation.

Multi-story structures can also benefit greatly from base isolation. The linear solution
presented in Chapter 2 is modified to apply to a multi-story structure in Chapter 4. In this
derivation, both the bearings and the superstructure are assumed to remain linear throughout the
dynamic response. The solution presented can then be applied to any multi-story base-isolated

structure; however, it is counterproductive to apply base isolation to a structure with a very long
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period. Therefore, multi-story base isolation should be restricted to mid-height or shorter
structures — for instance, up to eight or ten stories.

Bearing non-linearity is likely to occur in the dynamic response of a multi-story structure.
Therefore, it is necessary to derive a solution for a multi-story structure that includes the methods
presented in Chapter 3. The formulation for the multi-story structure presented in Chapter 4 was
modified in a manner similar to that for the single story structure, incorporating Hilber’s method
and the plasticity theory into a comprehensive non-linear multi-story solution, presented in
Chapter 5. As was the case in Chapter 3, the superstructure is assumed to remain linear
throughout the response.

The four procedures presented in this thesis account for a wide range of structural
response. Each formulation incorporates a torsional degree of freedom for each floor, which
affects the one-dimensional response quantities. Additionally, each formulation allows for the
use of friction-based bearings, which enhances the applicability of the solution. These methods
will provide an accurate dynamic response for a wide variety of base-isolated structures, though
further research is required to further enhance the analysis methods.

To evaluate the effectiveness of the analyses presented in this study, computer programs
should be developed to perform the three-dimensional calculations. These results should be
compared to one-dimensional results to determine the overall effect of the torsional degree-of-
freedom. The contention of this study is that the effects are significant enough to require the use
of the three-degree-of-freedom systems presented in the analyses in this thesis.

Another aspect of these analyses that can be improved through future work is seen in the
work of Abe, et al (2004-a). It is apparent from the experimental results that the variation of an

applied vertical load affects the response of the bearings; however, the model they present (2004-
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b) does not incorporate the effects of vertical loading. Therefore, further research should be
conducted to accurately model the effect of varying vertical loading on bearing properties, to

account for the effects of vertical ground acceleration.
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APPENDIX A

DERIVATION OF MASS AND STIFFNESS MATRICES

A.1 DETERMINATION OF MASS MATRIX

Given an arbitrary set of coordinates OXYZ and floor centers of gravity G, as shown in Figure 8,

relationships can be developed between displacements along the arbitrary coordinate axis and a

parallel axis through the center of gravity of each floor. The following definitions will be used in
the derivation.

G, = mass center of floor i (b for bearing floor, / for first floor)
O, = origin of arbitrary coordinate axis

u, = displacement of mass center G, along G, X,

v, = displacement of mass center G, along G,Y,

0. = rotational displacement of mass center G, about G,Z,

x, = displacement of floor i along O,.X

v, = displacement of floor i along O.Y

e, = eccentricity between G,Y, and O,Y
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f, = eccentricity between G, X, and O,X
e, = eccentricity between G,Y, and G Y,
f,} = eccentricity between G, X, and G, X,

mass of floor i

3
1l

J, = mass moment of inertia of floor i with respect to its mass center

To derive a general formula for the mass matrix of a structure, a coordinate system is chosen
arbitrarily at O. Therefore, transformations are required to express displacements with respect to
this arbitrary axis as opposed to the floor mass center. The following equations represent a

translation from the O, XY coordinate system to the G,.X,Y, coordinate system, assuming small

rotations and slab rigidity:

u, =x,— f6
v =y +eb (A-1)
6, =6,
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Figure 8 — Coordinate System
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Similarly, the formulation for translating displacements from the O, XY coordinate system to the

G, X,Y, coordinate system is as follows:

u, =x, = f,0,
v, =Y, tel, (A-2)
6,=0,

Also, a relationship between the bearing floor and the first floor is desirable, since in this general
formulation an allowance should be made for the floors to be non-concentric. The relationship

between the G,X,Y, coordinate system and the G, XY, system is as shown in the following
equations:

u, =u, — 1,0,

v, =V, +e,0, (A-3)

6 =0,
By substituting (A-2) into (A-3), the following relationship is developed, which represents a
transformation from the O, XY system to the projection of the first floor axis on the bearing
floor, the G, XY, system:

uy=x,~(/,+1,)0,

v}, =y, + (eb + e,l))ﬁ,, (A-4)

This expression for the relative first floor displacements will be used in the next step of the mass

matrix derivation, in which the inertial forces are determined.
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The inertial forces on any floor will act through the mass center of that floor. The first
floor motions will be considered first. The motion of the first floor with respect to the fixed OXY
coordinate system consists of three components: the motion of the ground, the motion of the
bearings with respect to the ground, and the motion of the first floor with respect to the bearing
floor. Writing these acceleration components into a series of equations, with ground rotation set

to zero, yields the following expressions for the inertial forces acting upon the first floor:

Fxly = my (i, +ii + %, )

Fyly = m (3 +3) +7,) (A-5)

Fo.. =J,(6,+6))
The next step is to substitute the derivatives of equations (A-1) and (A-4) into equation (A-5) to
express all of the acceleration components in the OXY coordinate system. The constants e, f,,
e,,and f, are unchanged in the derivatives. The inertial forces can now be written as

Fig =m (%, - 6 )+ (5, - (4, + )6, )+ 5,)

FyllG =m1((j}l+elél)+(j}b+(eb+e;)éb)+j}g) (A-6)

Fo.. =J,(6,+6,)
By inspection of Figure 8, it can be seen that f, = f, + f, and e, =e, +e,. Substituting these

two relationships into equation (A-6) simplifies the formulations to

Fxly = m((% - £6)+(%, - 16, )+ %,)

Fy{c :ml((j}l+elgl)+(j}b+eléb)+j}g) (A-T)

Fo. =J,(6,+6,)
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These forces, though calculated using the OXY coordinates, act through the mass center of the
floor. The superscripted / labels these forces as inertia. To formulate a mass matrix for any
given structure, these forces must be transferred to the arbitrary OXY axes. Transferring these
forces yields the following equations for the forces acting through the global origin O:

Fx! = Fx|,

Fy| = Fyg (A-8)

FO! = FO; — fiFxic +eFy,
Since there are three equations of motion for each floor, it is convenient to express the system of
equations in matrix form. This allows for more compact notation and greatly simplifies
multistory calculations. Equation (A-8) for the first floor can be expressed as the following

matrix equation:

UFH=[m){a [ v ), + [ M), (A-9)
in which
Fx{ i m 0 -m,f,
VE = Byl [(M]=] 0 m me, (A-10)

FHll _—mlfl me, J,+m, f12+ef)
X, X, xé

{dj=13t {df=1p} {d |=13, (A-11)
6, 6, 0,

The derivation of the inertial forces on the bearing floor is similar to that of the first floor.
However, now the displacement is composed of only two elements, the motion of the ground and
the motion of the bearing floor with respect to the ground. The equations for the inertial forces

acting through the center of mass are:
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Fxtg = m,(ii, +%,)
Fyl = m, (¥, +%,) (A-12)
F6,.=J,0,

Then, as was the case for the first floor derivation, these forces must be translated to the global

OXY axis. The force transformation is as follows:
Fx, = Fx,,.
Fy, = Fyjg (A-13)
FO, =F0,, - f,Fx,; +e,Fy,,

Expressing equation (A-13) in matrix form:

(R = [m,{d, }+ [0, d, | (A-14)
in which
Fx, m, 0 -m, f,
{F;I}: Fy; [Mb]= 0 m, mye, (A-15)
F@,f -m,f, me, Jb+mb(f,,2+e,f)

Now inertial forces have been defined for both the first floor and the bearing floor of a single-
story base-isolated structure. A multi-story structure would have a series of equations like those
of the first floor, which would then require additional floor-to-floor relative displacements as in
equation (A-3).

The mass matrices to be used in the calculation of structural response are given in

equations (A-10) and (A-15), representing the first floor and the bearing floor, respectively.
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A.2 DETERMINATION OF STIFFNESS MATRIX

Yi

Figure 9 — Stiffness Element Coordinate System

Derivation of the stiffness matrix for a structure is typically more complex than that of the mass
matrix. Whereas in the formulation of the mass matrix there was only one coordinate
transformation required for each floor, the stiffness matrix demands a calculation for each
element contributing to the stiffness of each floor. Figure 9 shows an individual element j on
floor i of the structure. A general formulation is shown here, allowing any orientation of the

stiffening elements.
First, displacements of an element in the local coordinates of that element, the SU;V/

axis, must be determined. These displacements can be related to the displacements of the

element in the SU . V.. axis as follows:

y
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a _ .
I/ll-j = I/tij COoS al.j +Vij S aij

a

Vi

=—u, sinq, +v, cosq; (A-16)
6 =6

i i

In matrix form, this set of equations becomes
{5@7}:[%]{5@/} (A-17)

Expanding the matrix equation:

. )
u cosa; sing; 0 u

ol )

vir=|-sina, cosa,; 0, (A-18)
a

0 0 o 1]lg,

The force-displacement relationship for the element in the SU/V,' coordinate system can be

written as follows:
{rrh=k; lor ) (A-19)

Expanding this matrix equation yields:

a a a a a

Eju K ijxx K ijxy K ijx0 u[j
a | _ a a a a

Fy =1 Ko Ky Kio V5 (A-20)
a a a a a

Fi Koo Ko, Kijoo ]| 9;

However, the local displacements have already been determined in equations (A-17) and (A-18)

as a function of the global displacements. Therefore, equation (A-19) can be rewritten as
{EJ'G}Z[K;] [Tl/]{&l/} (A-21)
The forces then must be transferred to the SU,V; coordinate system. The relationships are very

similar to those of the displacements. The transformation matrix used for the forces is the

transpose of that used for the displacements; hence,
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(A-22)
or, in expanded notation,
F;, cose; -—sina; 0|l F
F, t=|sinq, cosa; OfF; (A-23)
E, Lo o 1E,

Now, by substituting equation (A-21) into equation (A-22), the global force-displacement

relationship is determined in the SU,V; coordinate system:

(A-24)

As mentioned previously, this formulation is done for each member j on each floor i. Therefore,

the contributions of each member must be summed to determine the total stiffness of each floor,

as follows:

(A-25)

F:'HZZ(_ﬁjF;jx_'_eijF' +F )

ijy ijo

Putting these equations into matrix form yields the following:

TiE (A-26)
j=1
in which
F, 1o -
(Fi=1F,t [4]=]0 1 ¢ (A-27)
F, 00 1

76



The forces {E} now act through the origin O of the arbitrary OXY axis. However, the

displacements were last written in terms of the SU,V; coordinate system. These displacements

can be transferred to the OXY axis as follows:

uy; = x; = f;0;
v, =Y, +e[/9[ (A-28)
0.=0

i = Ui
Putting these equations into matrix form yields the following:

{dy} = [Ay]{ dz'} (A-29)
Now both the forces and the displacements are formulated in the OXY coordinate system.
Therefore, the force-displacement relationship can be written in that system as follows:

tFi=K ]} (A-30)

in which

[Ki]zZn:,[Azf]T[zj]T[K;][Tt:i][Aif] (A-31)

Kixx ixy KixH
[ Ki ] = Kiyx Kiyy Kiy& (A-32)
Ki@x Kiﬁy KiBG

Performing the matrix multiplication shown in equation (A-31) and simplifying the format of the
equations with the following abbreviations

C=cosq, S =sina, (A-33)

yields the following values for the individual elements of the stiffness matrix [ K]

K, =3 (c*kz, + 52K, ~2CSK:

xx fjuu [7A%Y% ijuy )
J=1

(A-34)
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K, =Y (s°kz, + K2, +205Ke,) (A-35)
J=1

Ky = " (CS (Kguu - K;W)+ (Cz = ) K;uv) (A-36)
Jj=1

o3 £k, + 7KL )+ e, CS(K G, — KL o
S\ +rf,c5+e,(c?-5%) K8, +CK Ly~ SKE,

KW _ 2| € (SZK:‘?W + CZK;w)_ fijCS(K;uu - Kijvv) (A-38)

" S +(2e,05- 1, (C* - 52)) K, + SKE, + CKE
) (_ JiC+ eijS)zK;W + (f,.jS + ey.C)zK;W

K= 2| +2f;S+e,C) - £,C+e,8) K5, (A-39)
"2t 8) K, +2(1,S +e,C) KL, + KLy

K, =K, (A-40)

K = K (A-41)

KiHy = Kin (A_42)

These formulae represent the contribution of member j to the overall stiffness of floor i. The
results of equations (A-34) through (A-42), when combined into a single matrix, form the

stiffness matrix for floor i.

A.3 DETERMINATION OF THE SHEAR CENTER LOCATION

The restoring force at floor 7, equal to the stiffness matrix multiplied by the displacement vector,

acts through the shear center of the floor. Therefore, the location of the shear center must be
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determined to properly translate the forces to the OXY axis to formulate the equation of motion
for the structure. Figure 10 shows the shear center S. of floor i. Note that the angle a is now

considered clockwise positive, unlike the angle a;; in the previous section.

- X P

Se X’
0. i >
! a
Vs
l )
>

Figure 10 — Shear Center Coordinate System

X

To translate the shear forces from the shear center to the origin, first the forces will be

transformed to the S X' coordinates, which are parallel to the global coordinates with an

origin at the shear center. Then the forces will be translated to the origin of the global axes. The

same procedure will be done with the displacements.
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As shown in Figure 10, the following definitions for force vectors will be used to transfer

the forces to the global axes:

F; F, F,
(P l=1F; (F}=1{F (F)=1F, (A-43)
F, F) F,

To transform the forces from the primary shear axis, S, X°Y", to the S, XY coordinate system,
the following equations may be written:
F, =F, cosa+F,sina

F, =-F;sina+F, cosa (A-44)

v
Fy=F,
The same equations can be written for the displacements, since the forces and displacements are
assumed to be in the same directions. Equations (A-44) can then be rewritten in matrix form for
both forces and displacements, recalling equations (A-43). These matrix equations are
(r)=[r1{F} {a)=[r{a} (A-45)
in which

cosaa  sina 0
[T]=|-sina cosa 0 (A-46)
0 0 1

Then these forces must be translated from the shear center to the global origin. The equations to
be used for this are similar to those presented in equations (A-25), though the notation is

different. The translation is:

F,=F,
F;'y = F;; (A_47)
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F,=-y.F +xF +F,

s7ix sy

Equations (A-47), again for both forces and displacements, can be put into matrix form as

{Fy=[4]{F} {d}=[4]"{d}} (A-48)
in which
1 0 —y,
[4]=]0 1 «x (A-49)
00 1

Now that the various force and displacement transformations have been derived, the force-
displacement relationship must be developed. The starting point will be the simple force-

displacement relationship for floor i, repeated from equation (A-30)...

{Fi=[k]{d} (A-50)
Now equations (A-48) are substituted into each side of the equation...

(4T {F ) =k][4]{a]} (A-51)
Premultiplying each side of the equation by [4'] and noting that, by definition, [4'][4']" =[1],
the following result is obtained. ..

{F =[]k ][] {a} (A-52)
Substituting equations (A-45) into each side of the equation. ..

[T F}=[4][k][4T [T} (A-51)
Premultiplying by [I']" to eliminate the [I'] term from the left side leaves only the force-

displacement relationship for the shear center of floor i...

=1k s ) (A-52)

in which

81



] =[r) [ k] (4] (7] (A-53)

In a more expanded form, the matrix equation shown in equation (A-52) can be written as

E . k ljcx ktjjry ktjc& x;
Eo) ko ki Ko |6
in which
k. =C%k_+S 2k[yy —2CSk,, (A-55)
kS, = CSlky, —ky, )+(C* =Sk, (A-56)
kifcg = Cyskixx + stkiyy - (st + Syb ) kixy + Cikixé7 - Skiyﬁ (A-57)
s 2 2
kS, = Sk, +Ck,, +2CSk,, (A-58)
k;@ = Syvkmx - stkiyy + (qu - st ) kixy + Skixg + Ckiy@ (A_59)
kl\t9n9 = yszki.\'x + xszkiyy - 2xsyskixy + zyskixg - zxskin + klt99 (A_6O)
kij/x = kticy (A-61)
kiae = Kivo (A-62)
C=cosa S =sina (A-63)

Because the force-displacement relationship in equation (A-54) is centered about the shear center

of floor i, the stiffness matrix must be decoupled by definition. In other words, the off-diagonal

terms (i.e. the terms other than k. , k; , or k,,,) must equal zero. A series of mathematical

xx 2 iyy ?

N

operations are required to set the &,

term to zero. First, define an angle /8 such that

: 2kix Zkix
sin2f8 = = =— (A-64)

e, ~k, ) +ak2 D
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in which

D=k, ~k,) +(k,)’ (A-65)

From trigonometry, (cos 2/ )2 =1- (sin 2/ )2 . Given this identity, equation (A-64) can be

written as

k., —k k. —k
COS 2ﬂ — ny XX — ny XX (A_66)

\/(kiyy - kixx )2 + 4k iiy D

Multiplying equation (A-56) by D, 5 gives the following equation:

2k

=2cosasina + (cos2 a —sin’ a)% (A-67)

2k1;cy (kixx - k iyy)
D D

Substituting equations (A-64) and (A-66) into equation (A-67)...

2% =2cosasina(-cos23)+ (C052 o —sin’ “)(Sin 28)  (A-68)

Recalling the trigonometric identities sin26 = 2sinfcos@ and cos26 = cos’ € —sin” @, equation
(A-68) can be rewritten as

2k;
szy =—sin2acos2f +cos2asin2 (A-69)

However, since sin(6’—¢):sianos¢—cosﬁsin¢, equation (A-69) can be simplified to the

following:
ky, = %sin(Z B —2a) (A-70)

By inspection, k,, will only equal zero when S =«.
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In addition to setting the &, term to zero, k., and k;, must also equal zero. By solving

equations (A-57) and (A-59) simultaneously in terms of x  and y,_, the following expressions

can be obtained:

k. k., —k k.

X, = M]X{ zyli M]chz ix6 (A-71)
ixx "Viyy - ixy
k_ k. ,—k k.

y, = zx;fc ly]: _l}}:z ixt (A-72)

xx "Viyy ixy
Now the location of the shear center of floor i can be determined with respect to the global
coordinate axes via equations (A-71) and (A-72). Also, the orientation a of the shear center can

be determined via equations (A-64), (A-65), and (A-66).
Using equations (A-71) and (A-72), a simplified expression for k;,, can be written. The

torsional stiffness equation, (A-60), becomes

kigo = Kigp + VKivo — XK (A-73)

Now, by using the general stiffness matrix from equation (A-32), the stiffness matrix for the

shear center of floor i can be populated using equations (A-55), (A-58), and (A-73). The final

matrix is
F;'x K xx 0 xl
F'iy = 0 Kiyy 0 yi (A-74)
F;B 0 0 Ki 06 9
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APPENDIX B

FRICTION

B.1 ADDITIONAL CONSIDERATIONS

The solution methods presented in Chapters 2-5 of this thesis allow for the inclusion of bearing
friction in the structural response. If friction is to be considered in the solution, it will create
non-linearities in the behavior which is not fully described in the previously presented solutions.
Therefore, a detailed investigation of the frictional effects is undertaken here.

The frictional force is represented here by multiplying the total vertical acceleration
(which is equal to the vertical ground acceleration plus gravitational acceleration g) times the
mass matrix times the frictional constant u. However, elementary physics introduces two
separate values for u, one for static friction and one for kinetic friction. The static coefficient y;
represents the resistance to the onset of motion. The kinetic coefficient w4 represents the
resistance to continuing motion. Both of these coefficients will be required in the dynamic
response of a structure. By definition, due to the reversal of direction of the motion, there are
times when the velocity of the structure is reduced to zero. These conditions are defined as
“non-sliding” phases in which the structure must overcome the static frictional force to return to

motion.
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To properly account for the non-linearities in the response due to friction, it is necessary
to determine when the non-sliding phases occur. The method presented here uses the equations
of motion to determine whether the frictional resistance to motion will overcome the dynamic
forces on the structure. This formulation stems from the one-dimensional work of Mostaghel &

Khodaverdian (1988).

B.2 APPLICATION TO A SINGLE-STORY STRUCTURE

By definition, a non-sliding phase is one in which the velocity of the bearing level is zero. Also,
since the maximum static frictional force is assumed to be greater than the impelling forces, the
acceleration of the bearings is also zero in non-sliding phases. Mathematically, a non-sliding

phase can then be defined using equation (2-6), repeated here for convenience:

[m,1d, {+[c,){d, j+[ &, ), } = (B-1)
- [ N, f-[m Nd, - plg +d, ), {senld, )

As mentioned, however, the accelerations and velocities of the bearing level, for each degree of
freedom that is in a non-sliding phase, must be zero by definition. Therefore, equation (B-1)

becomes:

[Kb]{db}: [Ml]{dl }_ [Mt]{dg }—,u(g + c.i.gz )[Mt]{sgn(db )} (B-2)

Rearranging the terms to isolate the frictional term:

,u(g +ng )[Mt {sgn(a"b )}: _[Ml]{dl}_[Mt]{éjg }_ [Kb]{db} (B'3)
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The { sgn(d b )} vector, as defined in Chapter 2, is composed of entirely positive and negative unit

values. Therefore, by taking the absolute value of equation (B-3), the following result is

obtained:

‘,u(g +c.i.gz)[Mt]{1 H = ‘[Ml]{dl}—'— [Mt]{‘?g }+ [Kb]{db}( (B-4)
1
in which {1}=1{1{, representing the absolute value of the {sgn(d b )} vector.
1

By definition, if the friction force is greater than the impelling forces for a degree of
freedom, the structure is in a non-sliding phase for that degree of freedom. Also, the structure

will generally start in a non-sliding phase. The condition for a non-sliding phase is as follows:

e S Yol [ a el Ja o [k ) @)

Note that equation (B-5) is a matrix expression, representing three equations, one for each degree
of freedom. Each equation must be evaluated to determine whether that particular degree of
freedom will be in a sliding phase or a non-sliding phase. The three degrees of freedom, in
order, are the x-direction, y-direction, and rotation.

Equation (B-5) can be used with the kinetic frictional coefficient following a sliding
phase or with the static coefficient following a non-sliding phase. The structure will remain in a
non-sliding phase until the impelling forces overcome the static frictional force. The condition

to enter a sliding phase is as follows:

ulgvd, v ) <[[m D, i+ 1K, ), (B-6)

Again, this equation must be evaluated separately for each degree of freedom. If equation (B-6)

is satisfied for one of those equations, that degree of freedom will enter a sliding phase.
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The structure will then remain in a sliding phase until equation (B-5) is satisfied, using
the coefficient of kinetic friction. If time period # has been established as a sliding phase, then
the solutions presented in Chapter 2 and Chapter 3 can be applied to that time step. If time
period #; has been established as a non-sliding phase, a different solution method, presented
below, is required to determine the superstructure response. The bearing response for a non-
sliding phase is trivial, as the displacement is unchanged and both the velocity and acceleration
vectors are zero vectors.

The solution procedure for the first floor in a non-sliding phase begins by evaluating

equation (3-18) at time 1. Recall that equation (3-18) was derived from equation (2-58).

Zln( z+l)+ 2§lna)lnzlil(ti+l )+ a)lznzln(tiﬂ):

zalnk bk l+1 zalnk g,k l+1

(B-7)

By the definition of a non-sliding phase, the acceleration and velocity of the bearing level is zero.

Therefore, equation (B-7) can be written as:
zln (T)+2§lna)lnz.ln( +a)lnzln Zalnk gk (B_S)

By the definition presented in equation (2-29), the following expression can be obtained:

zln (T)+ 2§1na)lnz'ln (T)+ a)lznzln (T) =

(B-9)
zalnk gk (z alnkAd l+1 jAt
This can be written in simpler terms as follows:
Eln (T)+ 2glr1a)lnz.ln (T)+ a)lznzln( ) Al + BlnHl . (B-IO)

in which

88



3 ..
Alni = Zalnkdgk(ti) (B_ll)
k=1

3 ..
Bl, = ZalnkAdgk(tHl) (B-12)
k=1

The solution to equation (B-10) can be written as a combination of a complementary solution
and a particular solution, as follows:

z,, (r) =2z (r)+ 4 (T) (B-13)
The complementary solution is of the same form as equation (2-33), though the solution is now
for the first floor instead of the bearing level:

z8 =e 7 (Cl,sinQ, 7 +C2, cosQ,,7) (B-14)

in which

Q, :wln\ll_églzn (B-15)

The particular solution is similar to that found in equation (2-35):

2 =C3, +C4, Ait (B-16)

The constants in the particular solution can be determined as they were in Chapter 2. Those

constant values are as follows:

2
C3, = %[Alm. —ﬁBlnmJ (B-16)
w;, w,, At
Bl .
Cc4, = —”2’“ (B-17)
a)ln

Substituting equations (B-14) and (B-16) into equation (B-13) yields the following expression:
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z,(c)=e "7 (Cl,sinQ,,7+C2, cosQ,,7)

2 Bl . B-18
+L2 Alm- +|r— gln ni+l ( )
; o) At

n n

As in Chapter 2, the constants C/, and C2, will be solved by using the following identities:
Zln(T:O):Zln(ti) (B-19)
Z'ln(z-zo)zz.ln(ti) (B—20)

Then the constant values can be determined as:

2
w,, w; At

2
Cln = QL[Z.IH(ZLI‘)_'_ fln a)ln Zln(ti)_é:lAlni _wBlni+l] (B-zl)

(B-22)

Now that the constants in the displacement function are known, it is a simple matter of derivation
to determine the expressions for velocity and acceleration. By substituting equations (B-21) and
(B-22) back into equation (B-18), the following expressions for displacement, velocity, and

acceleration, respectively, can be written at time 7 = A¢ :

a)l n

1n

2 Blni+
Zln(ti+1 ) = Dm’ + RlnBlni-H +L2{A1ni +(At _iJA—tl] (B-23)

Bl .
Z.ln(ti-#l ) = (Gni - fln wln Dni)+ (Rzn - fln a)ln Rln )Bl + "th (B_24)

ni+l 2
1n

2ln(ti+l)= _Hni _R3n Blni+1 (B-25)
in which

e*fln @, At
D, = —(Em. sin 2
Q

1n

At+F, cosQ, At) (B-26)

1n
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G,=e " (E cosQ, At—F, sinQ, At)

H,=2¢,0,G,+ a)lzn (l_zflzn )Dni

1-2¢&; 2
Rl =e o —2—§l”sinQM At+#cos§21n At
w,, Q, At w; At

1n

1n 3

1-2&;
R2, =Q, e ™ ——gl”cosQ
At w;, At

2
a)ln Q

In

R3n = 25111 a)ln Rzn + a)lzn (1 _251211 )Rln

This completes the solution for the non-sliding phase. Note that this method only applies to the
case in which all three degrees of freedom are in non-sliding phases. If one or two degrees of
freedom are in non-sliding phases, then the method presented in Chapter 2 or Chapter 3 must be
implemented, setting the appropriate velocity and acceleration values to zero.

As mentioned previously, the structure will remain in a non-sliding phase until the

criterion shown in equation (B-6) is met, at which point the solution procedure presented in

Chapter 2 or Chapter 3 can be used again.
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(B-28)

(B-29)

(B-30)

(B-31)

2
At —isin Q,, Atj (B-32)
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B.3 APPLICATION TO A MULTI-STORY STRUCTURE

The process for applying the non-sliding condition to a multi-story structure is very similar to the
process for the single-story structure presented above. A non-sliding phase can be defined

beginning with equation (4-8), repeated here for convenience:

2, b+ (0, )d, Y&, D, = =3 (1, )

P (B-34)
~[md, |- ulg+d,. M, {senld, )

By definition of the non-sliding phase, however, the bearing level acceleration and velocity terms
will be equal to zero for any degree of freedom which is in a non-sliding phase. Applying this

definition to equation (B-34) yields the following:

[Kb ]{ d, } = _ﬁ: ([M: ]{dz })_ [Mt ]{éjg }_ /“(g + d'gz )[Mz ]{sgn(db )} (B-35)

i=1
Note that, as was the case for the single-story formulation, each equation from the matrix expression
must be evaluated separately. For simplicity, however, the matrix expression will be used throughout
this appendix.

Isolating the frictional component of equation (B-35) yields the following result:

sl +d, o Hsenld, )= -3 (0, i )- e, }-[&,)a, ) B30

i=1
As in the single-story formulation, each component of the {sgn(d 5 )} vector is either a positive or

negative one. Therefore, taking the absolute value of each side of equation (B-36),

ulg +d,.)m,](1) =

12([%]{3[ })+[Mt]{d'g}+[1<b]{db>{ (B37)
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A non-sliding phase is defined by the frictional forces outweighing the impelling forces.
Therefore, for a degree of freedom to enter a non-sliding phase, it must satisfy the following

criterion:

lulg +d,. ), 11>

N([Mi]{cfi}>+[Mt1{ag}+[Kb]{q B-38)

i=1
The coefficient of friction, p, that is used in equation (B-38) depends upon the condition of motion.
If the degree of freedom to be considered had been in a non-sliding phase, the coefficient of static
friction should be used. If, however, the degree of freedom had been in a sliding phase, the

coefficient of kinetic friction should be used. The criterion to enter a sliding phase is as follows:

ulg +d,.)Im,J{1) <

3 (v, 1 )+ v, 1{d, 4 [, )i ){ (B-39)

i=1

A degree of freedom that is in a sliding phase will remain that way until equation (B-38) is again
satisfied. If a particular degree of freedom is in a sliding phase, the solution presented in Chapters 4
and 5 can be used. However, during the non-sliding phases, the alternative solution method
presented below must be used. Since the bearing level is the only location for non-linearity, the
solution for a non-sliding phase is by definition linear. The first step of the solution is to take the

superstructure equation of motion presented in equation (5-24), repeated here for convenience:

.un ( i+l )+ zé:un un un ( ti+1 )+ a)unzun ( ti+1 ) =

z aunk dbk l+1 z aunk dgk i+1 )

(B-40)

Note that this equation is another form of equation (4-47), from which the linear solution was
derived.

Setting the bearing accelerations to zero yields the following result:
3

, un ( l+1 )+ 2§un un un ( ti+l )+ a)un Zun ( ZLiJrl ) = Z aunk d.gk ( ti+l ) (B_41)

k=1
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Using the definition presented in equation (2-29), equation (B-41) can be expanded as follows:

( +1)+2éjun un un(ti+1)+a)unzun(ti+l):

3 (B-42)
Z unk 1+1 (Z aunkAdgk ( i+l )J ATt
k=1
This expression can then be simplified as follows:
un ( l+1 )+ 2§un un un ( ti+1 )+ a)un Zun ( i+l ) Al + Blm+1 A_t (B-43)
in which
3 .o
Alm = Z Ak dgk ( ti+1 ) (B_44)
k=1
3 ..
BlnHl = z aunk Adgk ( ti+1 ) (B-45)

k=1
Now the solution to equation (B-43) can be written as a combination of a complementary solution

and a particular solution, as shown here:

2, (7)=z5,(2)+ 22, (7) (B-46)

As in the single story non-sliding formulation, the complementary solution is of the following form:

N

=e %" (Cl,sinQ,,7+C2, cosQ,,7) (B-47)
in which
Q, =0,1-¢, (B-48)

un

The particular solution can be written as:
22 =C3 +C4 — (B-49)
At
in which

n

2
C3 = Lz(/um - —glzt Blnmj (B-50)
" w

Uu un
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Bl .
C4 = n+l (B-51)

n 2
a

un

Combining the complementary and particular solutions, as shown in equation (B-46), yields the

following equation:

z,(r)=e 7 (Cl, sinQ, 7+C2, cosQ,7)

2 Bl . B-52
+L2(Alm _,’_[T_ é:unj nHIJ ( )
1)) 10) At

As in the single story formulation, the constants C/, and C2, will be solved by using the

following identities:
Zun(T = 0): Zun(ti) (B-53)
Z.un(TZO):Z.un(ti) (B_54)

The values for the constants in equation (B-52) can now be defined as:

_ 2
Cln:QL(Z.un(ti)-i_ una) z (ti)_giAlni_wBlnHlJ (B-SS)

un v v un a)jn At
Al 2¢&
C2 =z |t )———+ “—B1, .. B-56
n un( 1) a)z a)3 At ni+l ( )

Equation (B-52) now represents the modal displacement of the superstructure at time t. Taking the
time derivatives of equation (B-52) yields the modal velocity and acceleration at time t. Evaluating

these quantities at time 7 = Ar grants the following expressions for modal displacement, velocity,

and acceleration at time ¢, :

2 BlnH
Zun ( ti+1 ) = Dni + Rln Blni+1 + L2["41)11' + (At - i] —lj (B_57)
o, w At

un un

ni+l 2
un

Bl .
Zull ( ti+1 ) = (Gni - gun a)un Dni )+ (R2n - gun a)un Rln )Bl + nzlt (B_SS)
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zun(ti-#l): _Hm' _R3n Bl

ni+l
in which
_fun Dy At

= —(Em. sinQQ At+F, cosQ At)

un

ni

Em’:Z.un(t[)-i_f a,, 2z (tt)_é:liAlm

un un un

a)un
Fni = Qun(zun(ti)_isz
a)un
G, =e"(E cosQ, At—F,sinQ, At)

H, = 2‘§un @, G, + wuzn (1 - 2‘§uzn )Dni

1-2¢&2 2
Rln — e‘ém @,y At —z—éunsln Qun At +#COS Qun At
a)un Qun At a) At

un

1-2¢,,

) Q, At o) At

un un

_ —Cun O AL
R2n - Qune (

R3, =28, 0, R2, + 0}, (1-2&] )R1,

un

This completes the solution for a multi-story structure which is in a non-sliding phase. Note that
the solution presented in this appendix only applies to the case in which all three degrees of
freedom are in non-sliding phases. If only one or two degrees of freedom are in non-sliding

phases, the method presented in Chapter 4 or Chapter 5 must be implemented with the

appropriate velocities and accelerations set to zero.

If the structure is in a non-sliding phase, it will continue to act as a fixed-base structure

until the condition shown in equation (B-39) is met. At that time step, the procedures presented

in Chapter 4 and Chapter 5 apply once more.
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(B-60)
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(B-62)

(B-63)

(B-64)

(B-65)

2
cosQ, At— isin Q,, At] (B-66)

(B-67)



APPENDIX C

PLASTICITY

As mentioned in Chapters 3 and 5, non-linearity arises in the response of the bearings to ground
excitation. This non-linearity can be attributed to yielding and strain hardening. Yielding occurs
when the shear forces on a bearing exceed its maximum resisting force. The bearing can no
longer resist the forces applied to it; it deforms further without an increased load. Therefore, the
behavior on the force-deformation plot is no longer linear. Strain hardening is a phenomenon in
which a material achieves reserve strength after yielding. The material may attain a secondary
force-deformation curve, which will not allow for linear analysis. It is necessary to
accommodate any reserve strength in the response of the bearings, or the calculate response will

be inaccurate.

C.1 HARDENING CRITERIA

Ziegler established a method of analysis of a hardening material, which will be used here

to model the behavior of the bearings upon yielding. His model was a modification of Prager’s
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model based upon kinematic hardening. Ziegler suggests that a hardening material can be
described by the following three criteria:
a. An initial yielding condition, specifying the states of stress for which plastic
flow first sets in
b. A flow rule, connecting the plastic strain increment with the stress and the
stress increment
C. A hardening rule, specifying the modification of the yield condition in the
course of plastic flow (Ziegler, 1959)
Ziegler’s formulation for plasticity implements a stress-strain model to describe the behavior of
the bearing and to determine yielding. This would be impractical for the analysis of the bearings,
as stresses and strains are not necessary for other calculations in this study. Therefore, the
formulation presented here is in terms of forces and displacements, which are analogous to the
stresses and strains. Additionally, since plasticity depends greatly upon the load-displacement
path, for the purposes of this study incremental forces and displacements will be considered.
As mentioned above, the hardening rule used for Ziegler’s method is kinematic
hardening. As demonstrated in Figure 11, this implies that plastic behavior changes the location,
but not the orientation or size, of the yield function. Mathematically, this can be expressed as:

{daj={V -a}du (C-1)
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F(V,a)

E(V)
vy {o]

A

\4
<
>

Vi

Figure 11 — Kinematic Hardening Schematic

Figure 11 shows the initial yield condition, assumed to be in the shape of an ellipse. This is
similar to the von Mises yield function. The actual yield function shown here can be expressed

mathematically as:

f(V,a){V"_a"J {V“”_.ay} -1 (C-2)

in which
V" = yield force in the x-direction
vV, = yield force in the y-direction

In the derivation of the hardening rule, it will become necessary to define a vector normal to the

yield function. This vector is defined and calculated as follows:
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VX - ax
2
(8
{i} ={N}=2 (C-3)
oV V —«a
y y
2
)
in which
V= instantaneous shear force in the x-direction

V = instantaneous shear force in the y-direction

a
{a}= { x} = translation vector of the yield surface, see Figure 11
a
y

The final criterion for modeling hardening behavior is a flow rule. The flow rule is a relationship

between plastic deformation and force increments, and is written as:

{au, }= {%}dﬂ = (N)dA di>0 (C-4)

The goal of the formulation presented here is to express incremental force in terms of
incremental displacement, to determine an effective stiffness which incorporates both elastic and
inelastic displacements. A force-displacement relationship for elastic materials can be written,
but plastic displacements can not be used in that formulation. To begin this plasticity
formulation, a simple definition will be written. The total displacement at time ¢,,, is equal to
the displacement at the previous time step plus the incremental displacement:
{Ui+1 } = {Ui }+ {dUm } (C-5)

However, the incremental displacement is the sum of elastic and plastic incremental

displacements, as shown in equation (C-6).

{au}={av,}+1{advU, (C-6)
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Rearranging terms, the following expression can be written:
tav,}={av}-{av | (C-7)
By definition, the following incremental force-displacement relationship can be written for an

elastic material:

{dV}:[Ke]{dUe} (C-8)

Now, by substituting equation (C-7) into the force-displacement relationship and rearranging

terms, the following equation is obtained:
[Ke]{dU}_[Ke]{dUp}_{dV}: {0} (C_9)
The flow rule, equation (C-4), can be substituted here to replace the plastic displacements.

Making that substitution leaves the following equation:

K. JlaUj-[K JiNjaz—{av}={0] (C-10)

Equation (C-10), derived from the elastic force-displacement relationship, is still well short of
defining an elasto-plastic force-displacement function. To fully develop the model, it is
necessary to write dA in terms of either the displacements or the forces. The following
procedure can be used to solve for dA, as suggested by Ziegler (1959).

First, it is necessary to make an assumption. The simplest assumption is that the vector

c {d U p} is the projection of the translation vector {a} on the exterior normal of the yield
surface. Therefore, the following must be true:

{av —cau,|"{N}=0 (C-11)
From equation (C-11), the following is evident:

{av}'{N}=clau,} (N} (C-12)

Transposing both sides of this equation leaves the following equality:
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Ny {av)=ciny {aU, | (C-13)
Returning to equation (C-10), the next step to solve for dA is to premultiply each side of the
equation by {N}", as follows:

WK Ui NV K, Jivjda - N} {av}=1{o] (C-14)
Now equation (C-13) can be substituted into equation (C-14), yielding the following:

NV [k J{aut- IV K )N da - e V) {au, = {o) (C-15)
Again recalling the flow rule, the plastic deformations can be replaced:

WK {au}- NV K, J{N}da - c N} {N}d2 = {0} (C-16)
Equation (C-16) can now be used to determine dA as a function of the total displacement.

Rearranging the terms of equation (C-16) gives the following:
WY IK){au )= (VY TR DN+ e VY (V) (C-17)

Solving for the parameter dA in terms of the total displacement vector:

Wk _
= T e (19

This definition can then be substituted back into equation (C-10). After rearranging the terms,

the resulting equation is as follows:

{dV}{[Ke]— [Ke]{N}{NT[KT] J{du} (C-19)

This is now an expression for force as a function of total increment of displacement, which was
the goal of the plasticity formulation. Therefore, the term in the parentheses is the effective
stiffness of the material given the combination of elastic and plastic displacements. The

effective elasto-plastic stiffness is defined as:
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K VN K

Ko = e T et

(C-20)

Now that the effective stiffness has been determined, the plasticity theory itself can be examined
to determine the quantities required for further plastic analysis. By definition of yielding, the
forces must be such that the force function remains on the yield surface. Therefore, the change

in forces must be tangential to the yield surface. This can be expressed mathematically as
NH{ari=o0 (C-21)
The same condition can be applied to the yield surface after it has been displaced due to plastic

deformation. Graphically speaking, the change in forces must be tangential to the new yield

surface. Therefore, the following expression can be written:
Ny {aV —da}=0 (C-22)
Transposing this equation and substituting equation (C-1) for the da term grants the following

equation:
{aV} (N} ={V —a} {N}du=0 (C-23)
Equation (C-23) can then be used to solve for the unknown du, from Ziegler’s hardening rule,

in two steps:

{av {N}={V -a} {N}du (C-24)
_ {ar}' vy
du = Vel V] (C-25)

Therefore, the incremental change in location of the yield surface can now be solved using

equation (C-1), since the unknown quantity du was determined in equation (C-25):

v

{da}:{V_a}d/‘:{ {V a}T{N}

(C-26)



C2. SOLUTION PROCEDURE

Now that the equations involved in the plastic analysis of the bearings have been derived, a
solution will be calculated for use in this study by assuming an elastic stiffness matrix of the

following form:

[]—kx0 C-27
KE—Oky (C-27)

Note that the stiffness matrix is assumed to be de-coupled. This is for simplicity in the
calculations. A more complex analysis including coupled stiffness matrices is beyond the scope
of this study.

The following terms will be defined to allow for a more specific formulation of the

effective stiffness:

N 4(VXV—(VaXJ vl 4[Vy —yayj (k. +c) (C-28)
2(VX _ax)
R
Vy
=1 = ) (C-29)
2(, -a,)
S

Multiplying out the terms to calculate dA, as shown in equation (C-18), and substituting the

appropriate values from equations (C-27), (C-28), and (C-29) yields the following:

ii=Yk p. kp] v, (C-30)
- P xpx ypy de

Similarly, equation (C-25) can be used to determine du in terms of the identity shown in

equation (C-29):
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du— LA PV, ©31)
px(Vx _ax)+py(Vy _ay)

The final step in the plastic analysis is to determine the change in the location of the yield
surface. The relocation vector, as shown in equation (C-26), can be solved by substituting the
result shown in equation (C-31) as follows:

p.dV. +pdV,
px(Vx _ax)+py(Vy _ay)

{da}={V -a}du={V -a} (C-32)

This shows the increment of the relocation vector. This increment is added to the current value
of the vector to determine the value of {cr} for the next time step.

Similarly, the incremental force can be written as follows:
1
(ar}=( e -3 e, 0] a0} )

This incremental force is then added to the current force to determine the force value for the next

time step, and the process begins for the next time step.
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