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INFERENCES ON MEDIAN FAILURE TIME FOR CENSORED SURVIVAL

DATA

Shaowu Tang, MS

University of Pittsburgh, 2010

In this thesis two approaches of inferences on median failure times are developed to compare

the difference of median failure times between two groups of censored survival data.

The first one is to generalize the Mood’s median test - which is designed to deal with

complete data - to censored survival data. To this end, two groups of censored survival

data are pooled and then the estimated pooled median failure time is obtained from the

product-limit estimator. A score is assigned for each observation to indicate the probability

whether it survives after the pooled median failure time or not and for each group the scores

are summed to summarize the number of observations whose survival time is larger than

or equal to pooled median survival time, which results in a 2 × 2 contingency table with

non-integer entries. Four 2× 2 contingency tables with integer entries are then derived and

a corrected test statistic is defined as the weighted sum of the statistics from the four 2× 2

contingency tables which is shown to be approximately distributed as χ2 with 1 degree of

freedom for large samples.

The second approach is proposed to construct a 95% confidence interval for the differ-

ence of median failure times between two groups of censored survival distributions. Since the

median failure time is approximately normally distributed for large samples, the estimated

median failure times for each group are obtained by product-limit method and their standard
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errors are computed through bootstrap samples from the original data. Theory of construc-

tion for 95% confidence interval for the difference of median failure times is investigated for

the standard normal distributions and it can be used for general normal distributions by

translation and rescaling.

Extensive numerical studies are carried out to test the appropriateness of the two ap-

proaches and the results show that the approaches developed in the paper are easy to im-

plement and the results are promising, compared to the results from published papers. The

proposed methods will facilitate more accurate analysis of survival data under censoring,

which are commonly collected from clinical studies that influence public health.
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1.0 INTRODUCTION

1.1 MOTIVATION

Since the median is less sensitive to the outliers, in survival analysis, the median failure

time is a natural and popular quantitative measure for comparing the treatment effects in

randomized clinical trials and gives rise to many researchers’ interest. In early 1980’s one-

sample confidence interval procedures for the median failure time have been studied by many

investigators ([2], [4] and [3]), and much effort has been also put on two-sample or k−sample

median test for censored data since then ([5], [8], [6] and [11]).

Two-sample inference procedures for median failure times introduced in [5] and [8] are

based on one-sample confidence intervals in which the null hypothesis of equal population

medians will be rejected when two confidence intervals are disjoint. In those papers the

asymptotic properties of the quantile intervals have been investigated and the procedures

were applied to data from a colorectal cancer clinical trial to compare four treatments. The

results showed that the procedures have the same Pitman efficiency as Mood’s median test.

However, one drawback in these procedures is that these methods involve the underlying

density function for non-shift models, and in general it is difficult to estimate the density

function well for censored data. Therefore there is difficulty in applying these methods for

real problems in practice.
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In order to avoid the estimation of density function, Su and Wei proposed a simple and

nonparametric inference procedure for comparing two median failure times in [6], where a

quantity with parameters of interest and a nuisance parameter are defined and the quantity

is minimized over the nuisance parameter to get a test statistic which is shown to be approx-

imately χ2 distributed with 1 degree of freedom, based on the theory in [7]. The method

proposed in this paper can be applied to inference on ratio or difference of median failure

times.

In order to avoid the estimation of the density function for non-shift model shown in

[2] and the minimization procedure presented in [6], in this thesis two approaches of infer-

ences on median failure times are developed. The first approach is proposed to construct a

95% confidence interval for the difference of median failure distributions between two groups

of censored survival times. Since the median failure time is approximately normally dis-

tributed for large samples, the estimated median failure times for each group are obtained

by the product-limit method and their standard errors are computed via bootstrap samples

from the original data. Theory of constructing 95% confidence interval for the difference in

median failure times is investigated for the standard normal distributions and it can be used

for general normal distributions by translation and rescaling.

The second one is to generalize the Mood’s median test - which is designed to deal with

complete data - to censored survival data. To this end, two groups of censored survival data

are pooled and then the estimated pooled median failure time is obtained from the product-

limit method. A score is assigned for each observation to indicate the probability whether it

survives after the pooled median survival failure time or not and for each group the scores

are summed to summarize the number of observations whose survival time is larger than or

equal to pooled median survival time, which results in a 2×2 table with non-integer entries.
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Four 2 × 2 contingency tables with integer entries are then derived and a test statistic is

formed as the weighted sum of the statistics from the four 2× 2 contingency tables which is

shown to be approximately distributed as χ2 with 1 degree of freedom for large samples.

Extensive numerical studies are carried out to test the validity of the two approaches

and the results show that the approaches developed in the thesis are easy to implement and

the results are promising, compared to the results from [6] and [11].

1.2 PRELIMINARIES FOR SURVIVAL ANALYSIS

In this section a brief introduction is given to the fundamentals of survival analysis which

can be found in many well-written books (for example [10]).

Let X be the time to event which is a nonnegative random variable from a homogeneous

population, and C be independent censoring variable from an arbitrary censoring distribution

H. Then the survival function - the probability of an individual surviving beyond time x -

is defined as

S(x) = Pr(X > x). (1.2.1)

From the fact that f(x) = F ′(x) = (1− S(x))′, the probability density function f(x) is

f(x) = −dS(x)

dx
. (1.2.2)

Denoting the median time of X by θ, then it holds

θ = min{x : S(x) ≤ 1

2
}. (1.2.3)

In clinical trials, time-to-event data are often censored, i.e., the failure time of an obser-

vation is only partially known. Under right censoring, the exact failure time X is observed

if and only if X is less than or equal to the censoring time C. Therefore, the right censored
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data can be represented by pairs of random variables (T, δ), where δ indicates whether X

corresponds to an event (δ = 1) or is censored (δ = 0), and T is equal to X for δ = 1 or to C

for δ = 0, i.e., T = min(X,C). In this thesis only right-censored data are under consideration.

The standard estimator of the survival function, known as Kaplan-Meier or Product-

Limit estimator, is defined as

Ŝ(t) =

 1, if t < t1

Πti≤t[1− di
Yi

], if t1 ≤ t,
(1.2.4)

where one assumes that the events occur at D distinct times t1 < t2 < · · · < tD, and that

at time ti there are di events. Furthermore, Yi is the number of individuals who are at risk

at time ti, i.e., Yi is the count of the number of individuals who are alive at ti or experience

the event of interest at ti.

The variance of the product-limit estimator is estimated by Greenwood’s formula

V̂ [Ŝ(t)] = Ŝ2(t)
∑
ti≤t

di
Yi(Yi − di)

. (1.2.5)

Similarly denoting the estimated median failure time by θ̂, then θ̂ can be obtained by

θ̂ = min{t : Ŝ(t) ≤ 1

2
}. (1.2.6)

Formulae (1.2.4) and (1.2.6) will be used in the simulations in the following chapters.
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2.0 TWO-SAMPLE CONFIDENCE INTERVAL FOR THE DIFFERENCE

IN MEDIAN FAILURE TIMES

This chapter contains 4 sections. The first section reviews the method and simulation results

proposed in [6]. In the second section the theoretical results are presented for constructing

a 95% confidence interval for the difference of median failure times. Extensive numerical

simulations are carried out in the third section and the results are compared to those in [6].

In the last section the method derived in section 2 is applied to National Surgical Adjuvant

Breast and Bowl Project (NSABP) B-04 data and the result is compared to that in [11].

2.1 METHOD PRESENTED IN [SU93]

In this section the methodology and results presented in [6] will be briefly reviewed.

Let Si(·) be the survival function for group i(i = 1, 2). Let θi0 and Ŝi(·) be the corre-

sponding median and Kaplan-Meier estimates. Then the estimates θ̂i for θi0 can be obtained

by solving

θ̂i = min{t : Ŝi(t) ≤
1

2
} for i = 1, 2 (2.1.1)

respectively.

To make inference about τ0 = g(θ10, θ20) for some given function g, consider the quantity
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W (τ0, θ1) =
(Ŝ1(θ1)− 0.5)2

σ2
1(θ̂1)

+
(Ŝ2(h(τ0, θ1))− 0.5)2

σ2
2(θ̂1)

, (2.1.2)

where θ1 is a nuisance parameter, σ2
i (t) is the usual Greenwood’s formula for the variance of

Ŝi(t), and θ20 = h(τ0, θ10). Note that one can choose g(·) such that τ0 is the ratio θ20/θ10 or

the difference θ20 − θ10. By defining G(τ0) by

G(τ0) = min
θ1

W (τ0, θ1), (2.1.3)

it was shown in [6] that

G(τ0) ∼ χ2
1. (2.1.4)

Table 1: Empirical coverage probabilities of CIs for τ0 = θ20/θ10 = 1 for S1(t) = S2(t) =

exp(−t)

Censoring Proportions

ni Nominal level .0,.0 .1,.1 .25,.25 .4,.4 .1,.25 .1,.4

30 .95 .973 .970 .967 .990 .983 .984

.90 .941 .934 .929 .962 .950 .940

.85 .894 .889 .883 .928 .917 .902

.80 .839 .834 .831 .896 .879 .857

50 .95 .976 .964 .970 .977 .972 .981

.90 .940 .920 .926 .950 .934 .943

.85 .890 .870 .881 .909 .885 .915

.80 .850 .838 .824 .855 .840 .873

100 .95 .967 .959 .974 .967 .968 .957

.90 .918 .909 .936 .922 .928 .923

.85 .877 .875 .886 .879 .892 .880

.80 .822 .833 .841 .848 .849 .833
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Table 2: Empirical coverage probabilities of CIs for τ0 = θ20/θ10 = 1 for S1(t) =

exp(−t), S2(t) = 1− Φ(log(1.44t))

Censoring Proportions

ni Nominal level .0,.0 .1,.1 .25,.25 .4,.4 .1,.25 .1,.4

30 .95 .972 .979 .985 .985 .976 .973

.90 .944 .949 .953 .954 .936 .941

.85 .898 .898 .918 .919 .886 .894

.80 .858 .845 .874 .885 .838 .855

50 .95 .975 .962 .969 .978 .971 .971

.90 .930 .923 .937 .938 .926 .931

.85 .885 .878 .898 .998 .878 .886

.80 .846 .834 .858 .850 .836 .838

100 .95 .959 .964 .972 .974 .967 .970

.90 .925 .934 .926 .941 .930 .933

.85 .883 .881 .884 .900 .885 .888

.80 .834 .836 .835 .848 .845 .845

In [6] extensive simulation was carried out and the results were reported. The results

showed the empirical coverage probabilities of 100(1− α)% confidence interval I for θ20/θ10

with various survival distributions S1 and S2, censoring distributions and confidence coef-

ficients. The censoring variables are generated from U(0, ci) with various ci’s, which are

determined by some pre-specified censoring proportions for i = 1, 2. The results are summa-

rized in Tables 1 and 2. Each entry in Tables 1 and 2 is generated independently from 1000

Monte Carlo simulations. For example, the empirical coverage probability 0.97 implies that

among 1000 intervals I only 30 intervals do not cover the true τ0 = 1. The results in Table

1 and Table 2 showed that the method proposed in [6] is conservative.
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2.2 CONSTRUCTION OF THE 95% CI FOR THE DIFFERENCE IN

MEDIAN FAILURE TIMES

In this section we will show how to construct the 95% confidence interval for the difference

in median failure times from one-sample confidence intervals. It was shown in [1] that

the asymptotic distribution of θ̂i is normal. Therefore, in this section we will derive the

theoretical results based on the normality assumption. Since it holds

θ̂i − θi0
s.e.(θ̂i)

∼ AN(0, 1) for i = 1, 2. (2.2.1)

Without loss of generality, we start from standard normal distribution. For given X, Y ∼

N(0, 1) and α > 0, the problem can be formulated by writing LX , UX , LY and UY such that

Pr(LX ≤ X ≤ UX) = 1− α, (2.2.2)

Pr(LY ≤ Y ≤ UY ) = 1− α, (2.2.3)

implies

Pr(LX − UY ≤ X − Y ≤ UX − LY ) = 1− α. (2.2.4)

Recall that X, Y ∼ N(0, 1) implies that X−Y√
2
∼ N(0, 1). Therefore equation (2.2.4) is

equivalent to

Pr(
LX − UY√

2
≤ X − Y√

2
≤ UX − LY√

2
) = 1− α. (2.2.5)

In the sequel we will consider the following two cases.
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2.2.1 Case 1: confidence intervals of X, Y are symmetric

Since in practice the confidence intervals are in general symmetric about the mean, let us

firstly consider the case

LX = −UX = Zα
2
, and LY = −UY = Zα

2
. (2.2.6)

Note that in this case, it holds

LX − UY√
2

=
√

2Zα
2

= −UX − LY√
2

, (2.2.7)

and thus it holds

Pr(
√

2Zα
2
≤ X − Y√

2
≤
√

2Z1−α
2
) > 1− α, (2.2.8)

since [Zα
2
, Z1−α

2
] ⊂ [

√
2Zα

2
,
√

2Z1−α
2
]. Therefore in this case it is too conservative. If one

chooses

LX = −UX = Zα′
2
, and LY = −UY = Zα′

2
(2.2.9)

for some α′ and still wants (2.2.4) holds, then it should satisfy

LX − UY√
2

=
√

2Zα′
2

= Zα
2

(2.2.10)

which implies that

α′ = 2Φ(

√
2

2
Zα

2
) = 2Φ(

√
2

2
Φ−1(

α

2
)), (2.2.11)

where Φ(·) is the cdf of standard normal distribution. Since
√

2
2
Zα

2
> Zα

2
, it holds α′ > α.
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2.2.2 Case 2: confidence intervals of X, Y are nonsymmetric

In section 2.2.1 we have shown that if the confidence intervals of X and Y are symmetric,

then (2.2.4) doesn’t hold. In fact, the confidence interval of X − Y is conservative, i.e., the

confidence interval of X − Y is larger than 100(1 − α)%. To get the exact 100(1 − α)%

confidence interval of X − Y , one needs to increase the significant level α of X and Y from

α to α′ = 2Φ(
√

2
2

Φ−1(α
2
)).

Now in this section we loose the assumption of symmetry of confidence intervals of X

and Y , i.e., assume LX = Zα1 and LY = Zα2 for some 0 < α1, α2 < α. Therefore (2.2.4) is

equivalent to

Pr(
Zα1 + Zα−α2√

2
≤ X − Y√

2
≤ −Zα−α1 + Zα2√

2
) = 1− α. (2.2.12)

Note that in (2.2.12) there are two unknown parameters α1 and α2 for one equation. To

solve this equation, one can assume one more condition holds:

Zα1 + Zα−α2√
2

=
Zα−α1 + Zα2√

2
= Zα

2
, (2.2.13)

i.e., we assume that the confidence interval of X − Y is symmetric about the mean. Next

lemma shows the relationship between α1 and α2:

Lemma 2.2.1. It holds

Zα1 + Zα−α2 = Zα−α1 + Zα2 iff α1 = α2. (2.2.14)

Proof. ⇐: It is trivial.

⇒: Suppose α1 and α2 are one solution of Zα1 +Zα−α2 = Zα−α1 +Zα2 . Now we want to

show that α1 = α2. Without loss of generality, we assume that α2 is fixed and define

g(α1) := Zα1 − Zα−α1 + [Zα−α2 − Zα2 ]. (2.2.15)

Then it holds
dZα1

dα1

=
dΦ−1(α1)

dα1

=
1

f(Zα1)
(2.2.16)
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and
dZα−α1

dα1

=
dΦ−1(α− α1)

dα1

= − 1

f(Zα−α1)
. (2.2.17)

Therefore it holds

dg(α1)

dα1

=
1

f(Zα1)f(Zα−α1)
[f(Zα−α1)− f(Zα1)]. (2.2.18)

Since α1 6= α
2
, then α1 satisfies either α1 ∈ (0, α

2
) or α1 ∈ (α

2
, α). In either case one finds

that dg(α1)
dα1

is strictly monotone, which implies that g(α1) = 0 has at most one solution,

given α2 constant. Since α1 = α2 is one solution of g(α1) = 0, it is also the only solution

of g(α1) = 0, which finishes the proof of the lemma.

Lemma 2.2.1 implies that we only need to check if there exists 0 < α1 < α such that

Zα−α1 + Zα1√
2

= Zα
2
. (2.2.19)

Note that since α1 and α − α1 are symmetric about α
2
, without loss of generality we

assume that α1 ∈ (α
2
, α). The following theorem shows that there doesn’t exist such α1 that

equation (2.2.4) holds.

Theorem 2.2.2. There is no α1 with α
2
< α1 < α such that (2.2.4) holds.

Proof. Note that if α1 ∈ (α
2
, α), then α− α1 ∈ (0, α

2
), and therefore it holds

α− α1 <
α

2
< α1 < α⇒ Zα−α1 < Zα1 ⇒ f(Zα−α1) < f(Zα1). (2.2.20)

Similarly let us define

h(α1) := Zα−α1 + Zα1 −
√

2Zα
2
. (2.2.21)

Thus
dh(α1)

dα1

=
1

f(Zα1)f(Zα−α1)
[f(Zα−α1)− f(Zα1)] < 0, (2.2.22)

which implies that h(α1) is strictly decreasing in (α
2
, α).
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Note that

h(
α

2
) = (2−

√
2)Zα

2
< 0⇒ h(α1) < 0 for all α1 ∈ (

α

2
, α), (2.2.23)

which ends the proof.

Theorem 2.2.2 shows that under the assumption of symmetry of confidence interval for

X − Y , there is no solution. If we replace the α in equations (2.2.2) and (2.2.3) by some α′,

then under the assumption of symmetry of confidence interval for X − Y , one finds that

Theorem 2.2.3. If α′ satisfies that

α′ > 2Φ(

√
2

2
Zα

2
) = 2Φ(

√
2

2
Φ−1(

α

2
)), (2.2.24)

then there exists some 0 < α1 = α2 < α′ such that

Zα′−α1 + Zα1√
2

= Zα
2
. (2.2.25)

Proof. Without loss of generality we assume that α1 ∈ (α
′

2
, α′) and define

h̃(α1) := Zα′−α1 + Zα1 −
√

2Zα
2
. (2.2.26)

Then again h̃(α1) is strictly decreasing in (α
′

2
, α′).

Note that

h̃(α′ − ε) = Zε + Zα′−ε −
√

2Zα
2
< 0 (2.2.27)

holds for small enough ε > 0. Furthermore, it holds

h̃(
α′

2
) = 2Zα′

2
−
√

2Zα
2
> 0 (2.2.28)

if given

α′ > 2Φ(

√
2

2
Zα

2
) = 2Φ(

√
2

2
Φ−1(

α

2
)). (2.2.29)

Since h̃(α1) is strictly decreasing in (α
′

2
, α′) and it holds

h̃(α′−) · h̃(
α′

2
) < 0, (2.2.30)

there exist one α1 ∈ (α
′

2
, α′) such that equation (2.2.25) holds. Note that since given α′,

h̃(α1) = 0 is a nonlinear equation, which implies one can obtain the root of h̃(α1) = 0 by

bisection method.
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2.3 SIMULATION STUDIES

For simplicity in this section we will only consider Case 1 discussed in Section 2.2.1. Assume

that α′ is defined by (2.2.11), then for i = 1, 2, it holds

Pr(Zα′
2
<
θ̂i − θi0
s.e.(θ̂i)

< Z
1−α′

2
) = 1− α′, (2.3.1)

which is equivalent to

Pr[θ̂i − Z1−α′
2
· s.e.(θ̂i) < θi0 < θ̂i + Z

1−α′
2
· s.e.(θ̂i)] = 1− α′. (2.3.2)

By defining

Li = θ̂i − Z1−α′
2
· s.e.(θ̂i) and Ui = θ̂i + Z

1−α′
2
· s.e.(θ̂i) (2.3.3)

it holds

Pr(L2 − U1 < θ20 − θ10 < U2 − L1) = 1− α, (2.3.4)

i.e., the 95% confidence interval for θ20 − θ10 is

(L2−U1, U2−L1) = ((θ̂2− θ̂1)−Z1−α′
2

[s.e.(θ̂1)+s.e.(θ̂2)], (θ̂2− θ̂1)+Z
1−α′

2
[s.e.(θ̂1)+s.e.(θ̂2)]).

(2.3.5)

From (2.3.5) in order to construct the 95% confidence interval for θ20− θ10, one needs to

compute θ̂i and s.e.(θ̂i) for i = 1, 2. Recall that θ̂i are estimated median failure times and can

be obtained by (2.1.1). In this thesis we plan to approximate s.e.(θ̂i) in terms of bootstrap

techniques. Assume that (Ti, δi) are two groups of censored survival data for i = 1, 2. For

each i, one randomly generate D bootstrap samples {(T ji , δ
j
i )}Dj=1 from the original censored

survival data (Ti, δi) with replacement at the same length. Therefore for each group one can

obtain a set of estimated median survival times {θ̂ji }Dj=1 by (1.2.4) and (2.1.1). Then one can

estimate s.e.(θ̂i) by

s.e.(θ̂i) ≈ sd({θ̂ji }Dj=1) for i = 1, 2. (2.3.6)
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In general one can get a good estimate for s.e.(θ̂i) provided 50 ≤ D ≤ 200. We repeated

the simulations presented in Section 2.1 with D = 50 and the results are shown in Tables 3

and 4.

Table 3: Empirical coverage probabilities of CIs θ20 − θ10 = 0 for S1(t) = S2(t) = exp(−t)

Mean Censoring Proportions

ni α .43,.43 .28,.28 .1,.1 .01,.01 .1,.28 .1,.43

30 0.05 0.043 0.045 0.048 0.052 0.055 0.046

0.1 0.09 0.081 0.099 0.097 0.112 0.089

0.15 0.12 0.115 0.134 0.141 0.125 0.117

0.2 0.165 0.167 0.18 0.186 0.188 0.177

50 0.05 0.038 0.044 0.050 0.058 0.051 0.053

0.1 0.079 0.079 0.096 0.087 0.102 0.095

0.15 0.121 0.134 0.149 0.147 0.158 0.127

0.2 0.165 0.199 0.194 0.189 0.207 0.167

100 0.05 0.042 0.044 0.064 0.057 0.051 0.048

0.1 0.098 0.105 0.103 0.111 0.101 0.088

0.15 0.140 0.121 0.164 0.154 0.143 0.131

0.2 0.169 0.176 0.205 0.200 0.201 0.179

14



Table 4: θ20 − θ10 = 0 and S1(t) = exp(−t), S2(t) = 1− Φ(log(1.44t))

Mean Censoring Proportions

30 0.05 0.037 0.038 0.050 0.055 0.049 0.044

0.1 0.085 0.092 0.098 0.097 0.098 0.091

0.15 0.111 0.125 0.150 0.144 0.119 0.127

0.2 0.169 0.163 0.202 0.203 0.173 0.178

50 0.05 0.040 0.046 0.046 0.054 0.049 0.047

0.1 0.077 0.098 0.111 0.109 0.090 0.091

0.15 0.118 0.129 0.133 0.134 0.130 0.145

0.2 0.176 0.171 0.188 0.192 0.181 0.178

100 0.05 0.044 0.048 0.045 0.056 0.055 0.051

0.1 0.104 0.094 0.100 0.106 0.104 0.099

0.15 0.157 0.138 0.145 0.153 0.143 0.145

0.2 0.176 0.172 0.195 0.200 0.193 0.176

Compared to the results in Tables 1 and 2 in Section 2.1, one finds that the method

proposed in this section is less conservative and behaves much better for heavily censored

data. Note that in our simulations we choose such ci’s that the censoring percentages are

similar to those in [6] but we can’t produce the data with the same censoring percentages.

2.4 SIMULATION FOR NSABP B-04 DATA

In this section we will apply the method proposed in Section 2.2 and Section 2.3 and

compare the result to [11].
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As mentioned in [11], the NSABP B-04 study was designed to compare radical mastec-

tomy with a less extensive surgery (total mastectomy) with or without radiation therapy.

A total of 1079 women with clinically negative axillary nodes went through radical mas-

tectomy, total mastectomy without axillary dissection but with post-operative irradiation,

or total mastectomy plus axillary dissection if their nodes became positive. A total of 586

women with clinically positive axillary nodes experienced either radical mastectomy or total

mastectomy without axillary dissection but with post-operative irradiation. About 90% of

all patients were either followed for at least 25 years or were known to have died. The propor-

tion of patients still alive is less than 30% among node-negative patients and less than 20%

among node-positive patients. At time t = t0 = 0, the censoring proportion in node-negative

patients is about 27%, while the censoring proportion in node-positive patients is about 16%.

The report presented in [11] showed that at time t = 0 it holds

θ̂1 = 12.46, θ̂2 = 6.87, τ0 =
θ̂2

θ̂1

= 0.55 with 95% CI = (0.49, 0.63), (2.4.1)

which implies that the median lifetimes are significantly different between node-negative and

node-positive breast cancer patients at the 5% significant level at t = t0 = 0.

The R-output is

Call:

survdiff(formula = Surv(time, event) ~ group, data = data)

N Observed Expected (O-E)^2/E (O-E)^2/V

group=0 1079 792 912 15.8 54.8

group=1 586 491 371 38.7 54.8

Chisq= 54.8 on 1 degrees of freedom, p= 1.34e-13
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which show the overall lifetime distributions are significantly different between node-negative

and node-positive breast cancer patients at the 5% significant level.

We have already shown that in 95% CI of θ20 − θ10 it holds

L2 − U1 < θ20 − θ10 < U2 − L1 and Li < θi0 < Ui. (2.4.2)

Therefore it is easy to get the corresponding interval of the ratio θ10/θ20 as

L2

U1

<
θ20

θ10

<
U2

L1

. (2.4.3)

We repeated the simulation for D = 50, 100, 200, 500, 1000, 5000, 10000. The results are

summarized in the following table:

Table 5: Simulation of 95% CI for NSABP B-04

D s.e.(θ̂1) s.e.(θ̂2) 95% CI for θ10 − θ20 CI for θ20/θ10

50 0.6326 0.2956 (4.3054, 6.8780) (0.4842, 0.6283)

100 0.6770 0.3082 (4.2263, 6.9570) (0.4807, 0.6331)

200 0.5913 0.2937 (4.3651, 6.8182) (0.4865, 0.6250)

500 0.6810 0.3040 (4.2254, 6.9568) (0.4809, 0.6329)

1000 0.6611 0.3173 (4.2356, 6.9477) (0.4805, 0.6330)

5000 0.6460 0.3080 (4.2695, 6.9138) (0.4823, 0.6308)

10000 0.6556 0.3098 (4.2536, 6.9296) (0.4812, 0.6317)

The results show that the method is quite robust for bootstrap sample size D and the

confidence interval of θ20/θ10 derived from the 95% CI for θ10 − θ20 by (2.4.3) is consistent

to that reported in [11], which is (0.49, 0.63).
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3.0 GENERALIZED MOOD’S MEDIAN TEST FOR CENSORED

SURVIVAL DATA

This chapter contains 4 sections too. The first section reviews the Mood’s median tests for

complete data while in the second section the generalized Mood’s median tests for censored

survival data is presened. Extensive numerical simulations are carried out in the third section

and the results are compared to those in [6] and the method derived in section 2 is applied

to National Surgical Adjuvant Breast and Bowl Project (NSABP) data B-04 again and

the result is compared to that in [11]. In the last section we draw a conclusion for our

investigation.

3.1 MOOD’S MEDIAN TEST FOR COMPLETE DATA

The Mood’s median test is a useful and general nonparametric test for comparing two or

more independent samples which assumes that observations are independent both within

and between samples and the distributions of the populations the samples were drawn from

all have the same shape. Similar to the sign test, the median test is very robust against

outliers, and fairly robust against differences in the shapes of the distributions. Since the

Mood’s median doesn’t take into account the difference between each observation and the

pooled median, it has poor power for normally distributed data, even worse power for short-

tailed distributions, but good relative power for heavy-tailed (outlier-rich) distributions.
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Assume that {X1, X2, · · · , Xm} and {Y1, Y2, · · · , Yn} are two independent samples and

assume that θpool is the median for pooled data. Then for each sample one can count the

number of elements which are greater than θpool. The results can be summarized into the

following 2× 2 contingency table:

Sample X Sample Y Total

> θpool n11 n21 n1

≤ θpool n12 n22 n2

Total m1 m2 N

where N = n + m,m1 = m and m2 = n. For each nij one can define the expected number

µij which are defined as

µij =
minj
N

, where i = 1, 2; j = 1, 2.

Then the test statistic X2 satisfies

X2 =
2∑
i=1

2∑
j=1

(nij − µij)2

µij
∼ χ2

(i−1)×(j−1) = χ2
1. (3.1.1)

The Chi-squared approximation improves as {µij} increase, and {µij ≥ 5} is usually

sufficient for a good approximation, otherwise Fisher’s exact test can be used to test the null

hypothesis.

3.2 GENERALIZED MOOD’S MEDIAN TEST FOR CENSORED

SURVIVAL DATA

In last section we recall the two-sample Mood’s median test for complete data. In this sec-

tion we plan to generalize it to incomplete data, i.e., survival data which are observed or

right-censored.

19



Suppose mi independent observations are drawn from the ith population, i = 1, 2. Let

Tij be the jth observed survival data from the ith population with 1 ≤ j ≤ mi, i = 1, 2. For

each Tij one also observes δij which indicates whether Tij is censored or not.

For each sample one can compute the Kaplan-Meier estimate Ŝi(t) = 1− F̂i(t). Further-

more, one can obtain the pooled median θ̂pool from the pooled data, i.e.,

θ̂pool = min{t : Ŝpool(t) ≤
1

2
}, (3.2.1)

where Ŝpool(t) is the Kaplan-Meier estimate of survival time S(t) for the pooled data.

Now for each sample one can estimate ni1 by

n̂i1 =

mi∑
k=1

Pr(Xik > θ̂pool), (3.2.2)

where Xik is the true event time of kth observation in ith population, and Pr(Xik > θ̂pool)

estimates the probability that the true failure time of the kth observation is beyond θ̂pool.

Therefore, it holds

Pr(Xik > θ̂pool) =



1, if Tik > θ̂pool and δik = 1;

1, if Tik ≥ θ̂pool and δik = 0;

0, if Tik ≤ θ̂pool and δik = 1;

q̂ik, if Tik < θ̂pool and δik = 0.

(3.2.3)

Obviously it holds

q̂ik = Pr(Xik > θ̂pool|Tik < θ̂pool, δik = 0) = Pr(Xik > θ̂pool|Xik > Tik) =
Pr(Xik > θ̂pool)

Pr(Xik > Tik)
=
Ŝi(θ̂pool)

Ŝi(Tik)
(3.2.4)

for i = 1, 2 and k = 1, · · · ,mi. Now one can define

n̂i2 =

mi∑
k=1

Pr(Xik ≤ θ̂pool) = mi − n̂i1. (3.2.5)
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Table 6: 2× 2 table generated from generalized Mood’s median test

Sample one Sample two Total

> θ̂pool n̂11 n̂21 n̂1

≤ θ̂pool n̂12 n̂22 n̂2

Total m1 m2 N

Therefore one gets a 2× 2 table as in Table 7.

Note that although n̂i1 + n̂i2 = mi holds for i = 1, 2, in general n̂i1, n̂i2 and n̂i are not

integers. To generate a 2× 2 contingency table similar to which in Section 3.1, let us define

ñi1 = bn̂i1c := inf{m ∈ N : m ≤ n̂i1} and ñi2 = mi − ñi1, (3.2.6)

where N is the set of positive integers. Obviously if ñi1 happens to be an integer, then it

holds ñi1 = n̂i1 and ñi2 = n̂i2. Otherwise it holds

ñi1 < n̂i1 < ñi1 + 1 and ñi2 − 1 < n̂i2 < ñi2. (3.2.7)

Now we can define four 2× 2 contingency tables:

1.

Sample one Sample two Total

> θ̂pool ñ11 ñ21 n1
1

≤ θ̂pool ñ12 ñ22 n1
2

Total m1 m2 N

2.

Sample one Sample two Total

> θ̂pool ñ11 + 1 ñ21 n2
1

≤ θ̂pool ñ12 − 1 ñ22 n2
2

Total m1 m2 N

21



3.

Sample one Sample two Total

> θ̂pool ñ11 ñ21 + 1 n3
1

≤ θ̂pool ñ12 ñ22 − 1 n3
2

Total m1 m2 N

4.

Sample one Sample two Total

> θ̂pool ñ11 + 1 ñ21 + 1 n4
1

≤ θ̂pool ñ12 − 1 ñ22 − 1 n4
2

Total m1 m2 N

Therefore one can obtain 4 statistics of X2
i for 4 tables respectively. Next we will define

the test statistic for censored data by choosing some weights to the 4 statistics X2
i . To this

end, let us define

n̂11 = ñ11 + λ and n̂21 = ñ21 + η. (3.2.8)

Note that in each table since the column margins are fixed, so there are 2 degree of

freedom to choose the entries off four in each table. Therefore, we will compare the first

two entries in the first row of each table to n̂11 and n̂21 and weight X2
i according to their

differences, i.e., we can define the weights as

$1 = (1− λ)(1− η),

$2 = λ(1− η),

$3 = λη,

$4 = η(1− λ). (3.2.9)

Then the corrected test statistic can be defined as

X2 :=
4∑
i=1

$iX
2
i . (3.2.10)

Since X2 is a correction for {X2
i }4i=1 and X2

i ∼ χ2
1, we still approximate X2 by χ2

1 distri-

bution.
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Another correction can be done for p-values, i.e., assuming already having the p-values

pi corresponding to 4 cases (X2
i ) respectively, one can define the corrected p-value p as

p :=
4∑
i=1

$ipi. (3.2.11)

Equ. (3.2.11) is very useful especially for small samples. When the assumption of

X2
i ∼ χ2

1 may not hold, one still can compute pi by Fisher’s exact test and define p by Equ.

(3.2.11). In this paper we use Equ. (3.2.10), given ni ≥ 30.

3.3 SIMULATION STUDIES

Firstly we simulate the method for the data taken from Weibull distribution with κ = 2 and

ρ = 0.05 with sample size n = 100, 200, 500 . To this end we generate 2 sets of random num-

bers from uniform distribution U(0, 1) and transform one into Weibull distributed random

numbers and then divide them randomly into 2 groups by utilizing the other set of random

numbers, for example, one can recode the second set into set with entries 0/1 according to

the fact that if each entry is larger than or equal to 0.5 or not. Therefore we have a set of

pairs {(Xi, gi)} where Xi are Weibull distributed random random numbers and gi = 0/1 is

the group indication. Now for some carefully selected c one generates another set of random

numbers {Ci} from U(0, c). Now define

T = min{X,C} and δ =

 1, if X <= C,

0, otherwise.
(3.3.1)

Therefore one obtains a triple {T, δ, g} where T is the observed failure time, δ is the

censoring indicator and g is the group indicator. Now method proposed in Section 3.2 can

be used on T, δ, g.
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Table 7: Test for Weibull distribution with κ = 2 and ρ = 0.05 for α = 0.05

c n=100 100 200 200 500 500

Censoring Significant Censoring Significant Censoring Significant

30 0.53 0.01 0.55 0.014 0.582 0.012

40 0.36 0.018 0.445 0.018 0.46 0.017

80 0.26 0.021 0.225 0.037 0.216 0.033

100 0.16 0.033 0.18 0.037 0.164 0.027

500 0.01 0.04 0.02 0.056 0.03 0.05

1000 0.04 0.05 0.01 0.055 0.028 0.052

10000 0 0.058 0 0.055 0.002 0.065

Table 8: Generalized Mood’s median test for S1(t) = S2(t) = exp(−t)

Mean Censoring Proportions

ni α .43,.43 .28,.28 .1,.1 .01,.01 .1,.28 .1,.43

30 0.05 0.02 0.043 0.05 0.072 0.05 0.04

0.1 0.066 0.064 0.083 0.086 0.091 0.084

0.15 0.105 0.12 0.156 0.21 0.159 0.124

0.2 0.15 0.184 0.203 0.188 0.192 0.187

50 0.05 0.025 0.035 0.048 0.042 0.055 0.049

0.1 0.066 0.092 0.085 0.095 0.082 0.078

0.15 0.103 0.134 0.136 0.125 0.154 0.129

0.2 0.159 0.173 0.181 0.206 0.178 0.184

100 0.05 0.027 0.034 0.037 0.05 0.04 0.045

0.1 0.077 0.082 0.097 0.108 0.107 0.081

0.15 0.11 0.111 0.156 0.132 0.126 0.126

0.2 0.155 0.177 0.192 0.214 0.184 0.193
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Table 9: Generalized Mood’s median test for S1(t) = exp(−t), S2(t) = 1− Φ(log(1.44t))

Mean Censoring Proportions

ni α .43,.43 .28,.28 .1,.1 .01,.01 .1,.28 .1,.43

30 0.05 0.032 0.044 0.047 0.070 0.043 0.038

0.10 0.085 0.093 0.094 0.076 0.093 0.096

0.15 0.109 0.143 0.161 0.185 0.122 0.138

0.20 0.163 0.191 0.187 0.187 0.212 0.165

50 0.05 0.030 0.034 0.050 0.046 0.038 0.037

0.10 0.077 0.076 0.091 0.100 0.091 0.079

0.15 0.108 0.119 0.151 0.125 0.135 0.126

0.20 0.157 0.172 0.207 0.197 0.197 0.175

100 0.05 0.035 0.040 0.044 0.051 0.035 0.052

0.10 0.063 0.074 0.096 0.113 0.098 0.076

0.15 0.108 0.130 0.140 0.135 0.138 0.114

0.20 0.168 0.188 0.189 0.180 0.175 0.177

The results in Table 7 show that the method is conservative for heavily censored data

and converges to Mood’s median test as censoring proportion tends to 0. While comparing

the results in Tables 8 and 9 to those in Table 1 and 2, it shows that the generalized Mood’s

median test is less conservative than the method proposed in [6].

Now let us apply the generalized Mood’s median test to NSABP B-04 data. The 2 × 2

table is given in Table 10.
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Table 10: 2× 2 table generated by generalized Mood’s method for NSABP B-04 data

Group 0 Group 1 Total

> θpool 605.3622 222.4423 827.8045

≤ θpool 473.6378 363.5577 837.1955

Total 1079 586 1665

Obviously λ and η satisfy λ = 0.3622 and η = 0.4423. From (3.2.9) the weights are

$1 = 0.3557, $2 = 0.2020, $3 = 0.1602 and $4 = 0.2821. (3.3.2)

Similarly, the four 2× 2 contingency tables are

1.

Sample one Sample two Total

> θ̂pool 605 222 827

≤ θ̂pool 474 364 838

Total 1079 586 1665

2.

Sample one Sample two Total

> θ̂pool 606 222 828

≤ θ̂pool 473 364 837

Total 1079 586 1665

3.

Sample one Sample two Total

> θ̂pool 605 223 828

≤ θ̂pool 474 363 837

Total 1079 586 1665

4.

Sample one Sample two Total

> θ̂pool 606 223 829

≤ θ̂pool 473 363 836

Total 1079 586 1665
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Therefore the 4 corresponding test statistics are

X2
1 = 50.24362, x2

2 = 50.75627 X2
3 = 49.30443 and X2

4 = 49.81243 (3.3.3)

and from (3.2.10) one has the test statistic X2 = 50.01316 with χ2
1 p-value 7.835433× 10−13,

which implies the difference of mean failure times is highly significant, obviously consistent

to the result in [11]. Similarly, from Equ. (3.2.11), the corrected p-value is 1.522602×10−12,

which is less conservative than 7.835433× 10−13, but it is still highly significant.

Note that the value of the test statistic X2 for NSABP B-04 data is similar to those of

X2
i , i = 1, 2, 3, 4, since NSABP B-04 data is a large sample case. Therefore, one can replace

X2 by any X2
i and still get the same conclusion. In general this is not true for small sample

cases, thus X2 defined in (3.2.10) is important in this situation. Another important issue is

that, although one can define a test statistic X2 for Table 6 via (3.1.1), no proof has been

shown that X2 ∼ χ2
1 holds for non-integer entries. Furthermore, when one of the expected

number µij is less than 5, Fisher’s exact test should be applied to get the p-value from the

hypergeometric distribution, which can’t be used for non-integer entries and we recommend

to use Equ. (3.2.11) instead of Equ. (3.2.10).

3.4 CONCLUSION

The simulation results presented in Chapters 2 and 3 indicate that the methods we proposed

in this thesis are both satisfactory and easy to implement, compared to the results in [6].

When applied to the NSABP B-04 data, the results are consistent to those in [11]. The

generalized Mood’s median test will converge to the Mood’s median test when censoring

proportion tends to 0, but it is more conservative than the method we proposed in Chapter

2, while the latter is quite robust to the choice of bootstrap sample size D. Already having

studied the type I error of the methods, the power analysis will be studied in the future to

get an idea how the new methods are.
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APPENDIX A

R CODE FOR GENERALIZED MOOD’S MEDIAN TEST FOR NSABP B-04

# Load package Survival

rm(list=ls())

library(survival)

# Load the data

data<-read.table("J:\\MS thesis\\simulation\\data.for.tang", head=T,as.is=T)

#Define the number of observations in group 1

n1<- length(data$time[data$group==0])

n2<- length(data$time[data$group==1])

# Estimate of survival time

fit<-survfit(Surv(time,event)~1,data=data)
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# Find the estimated median time

test_median<-min(fit$time[fit$surv<=0.5])

surv_median<-min(fit$surv[fit$surv<=0.5])

# Define variable count which counts the number of entries

# which is larger than the estimate sample median

count<-rep(0,length(data$time))

# if (time1>test_median)&(event1=1) then count=1

count[which(data$time>test_median & data$event==1)]<-1

# if (failure>=test_median)&(censor=0) then count=1

count[which(data$time>=test_median & data$event==0)]<-1

# if (failure<=test_median)&(censor=1) then count=0

# Since the default value of count is 0, one can omit the following command

count[which(data$time<=test_median & data$event==1)]<-0

# if (failure<test_median)&(censor=0) then count=surv_median/survival

aa<- which(data$time<test_median & data$event==0)

nn<-length(aa)

for (i in 1:nn){

count[aa[i]]<-surv_median/summary(fit,time=c(data$time[aa[i]]))[1]
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# Combine count into dataset

data2<-data.frame(cbind(data,count))

# Compute the sum of count in group 1

sum_1<-sum(data2$count[data2$group==1])

# Compute the sum of count in group 0

sum_0<-sum(data2$count[data2$group==0])

# Define the interger part of two sums

a<- floor(sum_0)

b<- floor(sum_1)

# Define the digit part of two sums

lambda<-sum_0-a

eta<- sum_1-b

# Define 4 weights

w1<- (1-lambda)*(1-eta)

w2<- lambda*(1-eta)

w3<- (1-lambda)*eta

w4<- lambda*eta

# Define a function to derive chi-square test for 2X2 table

test_chisq<- function(a,b,c,d){

m1<-a+b

m2<-c+d
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n1<-a+c

n2<-b+d

N<-a+b+c+d

o1<-m1*n1/N

o2<-m1*n2/N

o3<-m2*n1/N

o4<-m2*n2/N

test<-(a-o1)^2/(o1)+(b-o2)^2/(o2)+(c-o3)^2/(o3)+(d-o4)^2/(o4)

}

# Compute 4 test statistics for 4 2X2 table

chi1<-test_chisq(a,b,n1-a,n2-b)

chi2<-test_chisq(a+1,b,n1-a-1,n2-b)

chi3<-test_chisq(a,b+1,n1-a,n2-b-1)

chi4<-test_chisq(a+1,b+1,n1-a-1,n2-b-1)

# Define the test statistic by weighted sum of chi1 to chi4

chi<-w1*chi1+w2*chi2+w3*chi3+w4*chi4

# Compute the p-value

p-value<- dchisq(chi,df=1)
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APPENDIX B

R CODE FOR THE CONSTRUCTION OF 95% CI FOR NSABP B-04

# Load package Survival

rm(list=ls())

library(survival)

# Load the data

data<-read.table("J:\\MS thesis\\simulation\\data.for.tang", head=T,as.is=T)

# Log-rank test

survdiff(Surv(time,event)~group,data=data)

# Plot of survival time for each group

plot(survfit(Surv(time,event)~ group, data=data), lty=1:2,mark.time=F, ylab="Survival Rate", xlab=" Survival Time")

# Subset two subsets
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data1<- data[data$group==0,c(1,2)]

data2<- data[data$group==1,c(1,2)]

# Define significant level

alpha <- 0.05

# Define significant level for each geoup

alpha1<- 2*pnorm(sqrt(2)/2*qnorm(alpha/2))

# Estimate of survival time for two groups

fit1<-survfit(Surv(time,event)~1,data=data1)

fit2<-survfit(Surv(time,event)~1,data=data2)

# Find the estimated median survival time for two groups

test_median1<-ifelse(min(fit1$surv)<0.5,min(fit1$time[fit1$surv<=0.5]),min(fit1$time))

test_median2<-ifelse(min(fit2$surv)<0.5,min(fit2$time[fit2$surv<=0.5]),min(fit2$time))

# Define number of bootstrap repitition

k <- 50

# Define two vectors containing medians of bootstrap sample for two groups

med1<-rep(0,k)

med2<-rep(0,k)

# Bootstrap iteration

for (j in 1:k){

sim1<-data1[sample(length(data1$time),replace=T),]

sim2<-data2[sample(length(data2$time),replace=T),]
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fit11<-survfit(Surv(time,event)~1,data=sim1)

fit12<-survfit(Surv(time,event)~1,data=sim2)

med1[j]<-ifelse(min(fit11$surv)<0.5,min(fit11$time[fit11$surv<=0.5]),min(fit11$time))

med2[j]<-ifelse(min(fit12$surv)<0.5,min(fit12$time[fit12$surv<=0.5]),min(fit12$time))

}

# Generating lower and upper limit for 95% CI for median1-median2

low1<-test_median1-qnorm(1-alpha1/2)*sd(med1)

low2<-test_median2-qnorm(1-alpha1/2)*sd(med2)

upper1<-test_median1+qnorm(1-alpha1/2)*sd(med1)

upper2<-test_median2+qnorm(1-alpha1/2)*sd(med2)

low<-low1-upper2

upper<- upper1-low2

show(c(low1,upper1))

show(c(low2,upper2))

show(c(sd(med1),sd(med2)))

show(c(low,upper))
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