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The results show complementary strength of ANOVA-based and MCC-based approaches

for different biological purposes. For detecting biomarkers with concordant inter-class pat-

terns across studies, min-MCC has better power and performance. If biomarkers with

discordant inter-class patterns across studies are expected and are of biological interests,

ANOVA-maxP better serves this purpose.
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1.0 INTRODUCTION

Microarray technology provides an opportunity for global monitoring of gene expression ac-

tivities. As the technology matures and becomes prevalent in biomedical research, many

data sets have been accumulated in the public internet domain, for example the NCBI Gene

Expression Omnibus (Edgar et al., 2002), the EBI ArrayExpress (Parkinson et al., 2005)

and the Stanford Microarray Database (Sherlock et al., 2001). The development of effective

information integration of multiple microarray studies has gained increasing attention.

In this chapter, we will provide a brief introduction of the technology of microarray and

meta-analysis. Then, we will describe the progress of microarray meta-analysis for the past

decade.

1.1 THE PRINICIPLE AND TECHNOLOGY OF MICROARRAY

A microarry is a tool used to sift through and analyze the information contained within

a genome or proteome. It consists of different nucleic acid or protein probes, called fea-

tures, that are chemically attached to a substrate, which can be a microchip, a glass slide

or a microsphere-sized bead. It is a multiplex technology used in molecular biology and in

medicine. It can be a short section of a gene or other DNA element that are used as probes to

hybridize a cDNA or cRNA sample (called target) under high-stringency conditions. Probe-

target hybridization is usually detected and quantified by detection of fluorophore-, silver-, or

chemiluminescence-labeled targets to determine relative abundance of nucleic acid sequences

in the target. To summarize, we can say a microarray is a tool for analyzing gene expression

1



that consists of a small membrane or glass slide containing samples of many genes arranged

in a regular pattern.

Why are microarrays important? Because they may contain a very large number of genes

and because of their small size. Therefore, microarrays are useful when an investigator wants

to survey a large number of genes quickly or when the sample to be studied is small. In addi-

tion, a microarray can be used to examine the expression of hundreds or thousands of genes

at once, which promises to revolutionize the way scientists examine gene expression. This

technololgy is still considered to be in its infancy; therefore, many initial studies using mi-

croarrays have represented simple surveys of gene expression profiles in a variety of cell types.

DNA microarrays can be used to measure changes in expression levels, to detect sin-

gle nucleotide polymorphisms (SNPs), in genotyping or in resequencing mutant genomes.

Microarrays also differ in fabrication, workings, accuracy, efficiency, and cost. Additional

factors for microarray experiments are the experimental design and the methods of analyzing

the data.

1.1.1 Technology of microarray

In standard microarrays, the probes are attached to a solid surface by a covalent bond to

a chemical matrix (via epoxy-silane, amino-silane, lysine, polyacrylamide or others). The

solid surface can be glass or a silicon chip, in which case they are commonly known as gene

chip or colloquially as an ”Affy chip” when an Affymetrix chip is used. Other microarray

platforms, such as Illumina, use microscopic beads, instead of the large solid support. DNA

arrays are different from other types of microarray only in that they either measure DNA or

use DNA as part of their detection system.

Microarray technology evolved from Southern blotting, where fragmented DNA is at-

tached to a substrate and then probed with a known gene or fragment. The use of a

collection of distinct DNAs in arrays for expression profiling was first described in 1987.

2



The arrayed DNAs were used to identify genes whose expression is modulated by interferon.

These early gene arrays were made by spotting cDNAs onto filter paper with a pin-spotting

device. The use of miniaturized microarrays for gene expression profiling was first reported

in 1995, and a complete eukaryotic genome (Saccharomyces cerevisiae) on a microarray was

published in 1997.

Arrays of DNA can be spatially arranged, as in the commonly known gene chip (also

called genome chip, DNA chip or gene array), or can be specific DNA sequences labelled

such that they can be independently identified in solution. The traditional solid-phase array

is a collection of microscopic DNA spots attached to a solid surface, such as glass, plastic or

silicon biochip. The affixed DNA segments are known as probes (although some sources use

different terms such as ”reporters”). Thousands of them can be placed in known locations

on a single DNA microarray.

DNA microarrays can be used to detect DNA (as in comparative genomic hybridization),

or detect RNA (most commonly as cDNA after reverse transcription) that may or may not

be translated into proteins. The process of measuring gene expression via cDNA is called

expression analysis or expression profiling.

Figure 1 shows the details of labeling and hybridization of microarrays. The left one is

for cDNA arrays and the right one is for Affymetrix Gene Chip.
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Figure 1: How the micorarray technology works.
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1.1.2 Steps of a microarray experiment

The steps of a microarray experiment are as follows: experimental design, data standard-

ization image acquisition and analysis, data pre-processing and normalization, and various

statistical and data mining techniques to study data sets.

1. RNA is first isolated from different tissues via developmental stages, disease states or

samples subjected to appropriated treatments or extracted from different experimental

conditions.

2. The RNA is then labeled with two different fluorescent dyes and co-hybridized to a mi-

croarray that allows expression to be asseyed and compared between appropriate sample

pairs.

3. The array is then scanned to acquire fluorescent images. Independent gray scale TIFF

(Tagged Information File Format) images are generated for each pair of samples to be

compared.

4. These images must then be analyzed to identify arrayed spots and to measure the relative

fluorescence intensities for each element (dye). Low quality data is filtered out and the

remaining high quality data is normalized.

5. Finally depending on the aim of the sudy, one can infer satistical significance or differ-

ential expression, perform various exploratory data analyses, classify samples according

to their disease subtypes and carry pathway analysis.

Complete information from all the steps should be collected according to certain stan-

dards, such as the Minimum Information About a Microarray Experiment (MIAME) and

archived properly. Figure 2 is a flow chart for the steps of microarray experiments. For more

details, please refer to www.ebi.ac.uk/arrayexpress/Standards/index.html.

5



Figure 2: Steps of a microarray experiment.
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1.1.3 Types of microarrays

Several competing technologies for microarray probe implementation have been developed

over the past decade. We call them platforms. The existence of multiple technologies has

raised the possiblity of cross-platform comparison and integration of data. Table 1 shows

some comparisons among four major different platforms.

1.1.4 Steps of microarray analysis

Once we get data from a microarray experiment described in the previous section, the next

step is to do data analysis. The procedure for microarray data analysis is as follows:

1. Experimental design (Implementation):

Define the biological question and hypothesis clearly. Design the microarray experimental

scheme carefully; include biological replication in experimental design.

2. Data collection and archiving:

Compliance with microarray information collection standards (e.g. MIAME).

3. Image acquisition:

Avoid photo-bleaching. Try to balance the overall intensities between the two dyes and

scan images at appropriate resolution.

4. Image analysis:

Inspect the gridding result manually and adjust the mask and flag poor-quality spots if

necessary. Choose and apply appropriate aegmentation algorithm.

5. Data pre-processing:

Remove poor-quality spots with intensity by lowering the background plus two standard

deviations. Log-transform the intensity ratios.

6. Data normalization:

Use diagnositc plots to evaluate the data and consider a proper method for normalization.

7. Identifying differentially expressed genes:

Calculate a statistic based on the replicate array data for ranking genes. Select a cut-

off value for rejecting the null-hypothesis. Do not use a fixed threshold (i.e. two-fold

increase or decrease) to infer significance.

7



Table 1: Comparison of four different major microarray platforms

Platform CodeLink Affymetrix Agilent cDNA

Array format 30-mer 25-mer 60-mer

Hybridization time 18h 16h 17h 17h

Hybridizaion temp 37oC 45oC 60oC 60oC

Colors One-color One-color One/Two color Two-color

Manufacturer GE company Affymetrix com-

pany

Agilent company Individual Labo-

ratory

Probe preparation 3-D aqueous

gel matrix

Probes are short

oligos synthesized

through a

photolighographic

approach

Probes are printed

by InKjet technol-

ogy form HP

Probes are usu-

ally amplified by

PCR and spot-

ted by root

Density ∼57000

probes

423500 probes 22000 probes Maximum of

∼15000 probes

Advantages Sensitivity; Reproducibility; Reproducibility; Inexpensive;

3D surface; Mature platform; Mature platform; Customization is

possible

Customization

is possible;

Customization; Customization

Disadvntages Non-contract

printing

Less sensitive Two-color bias Poor specificity
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8. Exploratory data analysis:

Use different analysis tools with different settings to ”explore” the data. Validate the

results by follow-up experiments.

9. Other down-stream analyses:

Do other down-stream analyses based on the differentially expressed genes, like clustering,

classfication, pathway analysis,...etc.

1.2 META-ANALYSIS

1.2.1 Basic ideas of meta-analysis

A meta-analysis is a statistical technique used to evaluate a pool of studies for systematic

reviews. Most often it is used to assess the clinical effectiveness of healthcare interventions

quantitatively and achieves this by combining data from two or more independent studies.

Glass (1976) defines meta-analysis as: The statistical analysis of a large collection of analysis

results for the purpose of integrating the findings.

The basic purpose of meta-analysis is to provide the same methodological rigor to a lit-

erature review that we require from experimental research. In other words, meta-anlyses are

generally centered on the relationship between one explanatory and one response variable.

This relationship, ”the effect of X and Y”, defines the analysis. So, meta-analysis provides

an opportunity for shared subjectivity in reviews, rather than true objectivity.

Karl Pearson performed the first meta-analysis in 1904. Pearson wanted to overcome

reduced statistical power in studies with small sample sizes. He analyzed the results from

a group of studies and concluded that a new piece of research could be created to allow for

more accuracy in analysis. Later, Tippett (1931), Fisher (1948), and Wilkinson (1951) also

proposed methods for meta-analysis. Today, meta-analysis is widely used in epidemiology

and evidence-based medicine.
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By far the most common use of meta-analysis has been in quantitative literature reviews.

These are review articles where the authors select a research finding that has been investi-

gated in a certain research project under a large number of different circumstances. They

then use meta-analysis to help them describe the overall strength of the effect, and under

what circumstances it is stronger and weaker.

Recently, as knowledge of meta-analytic techniques has become more widespread, re-

searchers have begun to use meta-analyitc summaries within research papers. In this case,

meta-analysis is used to provide information supporting a specific theoretical statement,

usually about the overall strength or consistency of a relationship within the studies being

conducted. As might be expected, calculating a meta-analytic summary is typically a much

simpler procedure than performing a full quantitative literature review.

In general, two metrics are commonly combined in the meta-analysis. The first metric

combines significance levels or their transformation scores. The famous Fisher’s method

belongs to this category that sums up the log-transformed p-values. Many other statistics

including a trimmed version of Fisher’s method (Olkin and Saner, 2001), minimum p-value

(Tippett, 1931) and Wilkinson’s (1951) rth smallest p-value have also been considered. The

second metrix is to combine effect sizes of each study to generate a conclusion of overall effect

size and its confidence interval, which is commonly seen in the research of evidence-based

medicine.

1.2.2 Traditional methods for combining significance levels

[1] Tippet’s method

Tippet et al (1931) proposed a method to deal with meta-analysis. It is a technique to take

the minimum p-value over different studies. The formula is

V minP = min
1≤i≤S

pi (1.1)

10



Null hypothesis is rejected if V minP ≤ 1 − (1 − α)1/S. Here α is the overall significance

level and V minP follow a Beta(1, S) distribution under null hypothesis. This method is sensi-

tive to outliers, so a variant uses the rth smallest p-value as an alternative (Wilkinson, 1951).

[2] Fisher’s Method

Fisher et al (1948) proposed a method for meta-analysis. It is a technique for combining

the results from a variety of independent tests bearing upon the same overall hypothesis as

if in a single large test. If there are S independent experimental studies, Fisher’s method

combines the p-values of these studies and transfroms them into one statistic V having an

χ2 distribution using the formula

V = −2
S∑

i=1

log(pi) (1.2)

The degree of freedom of V is 2S.

Fisher’s method was shown in the literature for its good power under a wide range of

alternative conditions and for being the most asymptotically Bahadur optimal (ABO) among

several commonly used combined tests (Little and Folks, 1971,1973).

[3] Wilkinson’s method

Wilkison et al (1951) proposed a method for meta-analysis which generalized Tippett’s pro-

cedure to a more robust rth smallest p-value.

V W = p(r) (1.3)

It is obvious that Maximum p-value is a special case of V W and the most frequently

used. It is often refered to as Wilkinson’s method. The formula is as follows:

V maxP = max
1≤i≤S

pi (1.4)

V maxP follow a Beta(S, 1) distribution under null hypothesis. One of our proposed

methods, ANOVA-maxP, applies this idea for detecting genes with interesting intra-class

patterns across multiple Microarray studies.
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1.2.3 Traditional methods for combing effect size

Effect size (ES) is a name given to a family of indices that measure the magnitude of a

treatment effect. Unlike significance tests, these indices are independent of sample size. ES

measures are the common currency of meta-analysis studies that summarize the findings

from a specific area of research. See, for example, the influential meta-analysis of psycholog-

ical, educational, and behavioral treatments by Lipsey and Wilson (1993).

There is a wide array of formulas used to measure ES. For the occasional reader of meta-

analysis studies, like myself, this diversity can be confusing. One of my objectives in putting

together this set of lecture notes was to organize and summarize the various measures of ES.

In general, ES can be measured in two ways:

a) as the standardized difference between two means,

b) as the correlation between the independent variable classification and the individual scores

on the dependent variable. This correlation is called the ”effect size correlation” (Rosnow

Rosenthal, 1996).

These notes begin with the presentation of the basic ES measures for studies with two

independent groups. The issues involved when assessing ES for two dependent groups are

then described.

For convenience sake we will assume that our contrast will be defined as (treatment group

v.s. control group). When considering the role of this difference in the design of the study

we will call the variable differentiating these groups as the ”treatment factor”.

The simplest effect size based on mean differences is Cohen’s g, defined as

g =
Ȳt − Ȳc

sp

(1.5)

where Ȳt is the mean of the treatment group, Ȳc is the mean of the control group, and

sp is the pooled sample standard deviation.

12



While intuitive, the effect size g is actually a biased estimator of the population effect

size

δ =
µt − µc

σ
(1.6)

Using g produces estimates that are too large, especially with small samples.

To correct g we multiply it by a correction term

Jm = 1 − 3

4m − 1
(1.7)

where m = nt + nc − 2. The resulting statistic

d = g · (1 − 3

4m − 1
) = g · (1 − 3

4(nt + nc) − 9
) (1.8)

is known as Hedges’s d, and is an unbiased estimator of δ. It is generally best to record

both g and d for each effect in our meta-analysis.

The variance of d, given relatively large samples, is

σ2
d =

nt + nc

ntnc

+
d2

2(nt + nc)
(1.9)

Using these statistics we can construct a level C confidence intervel for δ

d ± z∗(σd) (1.10)

Where z∗ is the critical value from the normal distribution, such that the area between

−z∗ and z∗ is equal to C.

There are many developed formulas to calculate g from a number of different test statis-

tics. One thing worthy to remember is that no matter which formula you choose to use, you

should correct g for its sample size bias using the equation presented above.
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1.2.4 Correlation of effect sizes

Correlations are widely used outside of meta-analysis as a measure of the linear relationship

between town continuous variables. The correlation between two variables x and y may be

calculated as

rxy =

∑
zxizyi

n
(1.11)

where zxi and zyi are the standardized scores of the x and y for case i, n is the sample size.

Correlations can range between -1 and 1. Correlations near -1 indicate a strong negative

relationship; correlations near 1 indicate a strong positive relationship, while correlations

near 0 indicate a nolinear relationship.

The correlation coefficient r is a slightly biased estimator of ρ, the population correla-

tion coefficient. An approximation of the population correlation may be obtained from the

formula

G(r) = r +
r(1 − r2)

2(n − 3)
(1.12)

The sampling distribution of a correlation coefficient is somewhat skewed, especially if

the population correlaion is large. It is therefore conventional in meta-analysis to convert

correlations to z scores using Fisher’s r-to-z transfromation as

zr =
1

2
ln(

1 + r

1 − r
) (1.13)

where ln(x) is the natural logarithm function. All meta-analytic calculations are then

performed using the transformed values. zr has a nearly normal distribution with variance

s2
z =

1

n − 3
(1.14)

Using these statistics we can construct a level C confidence interval for the population

value

zr ±
z∗√
n − 3

(1.15)

14



where z∗ is the critical value from the normal distribution such that the area between

−z∗ and z∗ is equal to C.

If we wish to work with unbiased estimates of ρ, you should first calculate the correlation

G(r) for each study and then transform the G(r) values to z-scores for analysis.

Once we have made the necessary computations, we can use Fisher’s z-to-r transforma-

tion

r =
e2zr − 1

e2zr + 1
(1.16)

where e is the base of the natural logarithm, to convert the results back into correlations.

1.3 MICROARRAY META-ANALYSIS

As we mentioned in the previous sections, microarray is a useful technology which provides

an opportunity for global monitoring of the expression levels of thousands of genes simultane-

ously. This technology evolved from Southern blotting, where fragmented DNA is attached

to a substrate and then probed with a known gene or fragment. The use of a collection of

distinct DNAs in arrays for expression profiling was first described in 1987, and the arrayed

DNAs were used to identify genes whose expression is modulated by interferon.

The use of miniaturized microarrays for gene expression profiling was first reported in

1995. As the technology matures and becomes prevalent in biomedical research, many data

sets have been accumulated in the public internet domain, for example, the NCBI Gene

Expression Omnibus (Edgar et al., 2002), the EBI ArrayExpress (Parkinson et al, 2005)

and the Stanford Microarray Database (Sherlock et al, 2001). The development of effective

information integration of multiple microarray studies has gained increasing attention.
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Microarrays present new statistical problems because the data is very high dimensional

with very little replication. Microarrays offer an exciting entry point for statisticians and

computational scientists into the modern areas of computational biology and bioinformatics.

Among various types of microarray statistical analysis, detection of differentially ex-

pressed (DE) genes is one of the most important goals. Samples under two different condi-

tions (e.g. normal versus diseased patients) are examined. Many statistical methods have

been proposed for detecting biomarkers differentially expressed across the two classes (Bre-

itling et al, 2004; Efron et al, 2001; Newton et al, 2004; Tusher et al, 2001).

When multiple microarray studies are available, meta-analysis is expected to increase

statistical power for DE gene detection. Rhode et al (2002) was among the first to apply

traditional Fisher’s method (Fisher, 1948) for combining multiple microarray studies. Many

other approaches have been proposed later, including a lasso-based method (Ghosh et al,

2003), random effects models (Choi et al, 2003; Stevens and Doerge, 2005), Bayesian methods

(Tseng et al, 2001; Jung et al, 2006; Conlon et al, 2007), rank-based approaches (Breitling et

al, 2004; Hong et al, 2006) and others. We will introduce two methods for combining effect

size in microarray meta-analysis below.

1.3.1 Modern methods for combining effect size in microarrary meta-analysis

When studies have a similar design and measure the outcome in a similar manner, combining

estimates is usually preferred by some researchers to the omnibus methods in the previous

section as suggested by some researchers. In this section we will introduce the two most

used methods in this area, either the fixed or the random effects model (Hedges and Vevea,

1998).
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Let T and C stand for two experimental conditions (treatment verses control), and let

there be S independent studies and (niT , niC) replicates for the ith study. Briefly, a standard-

ized mean difference was obtained as an effect size index for the measurement of differential

expression of a gene in any given study.

di =
T̄i − C̄i

Sp

Where T̄i and C̄i represent the means of treatment and control group in the ith study,

and Sp indicates the estimated variation. Then we can model the effect size index di across

studies as follows:

di = θi + εi, εi ∼ N(0, si
2)

θi = µ + δi, δi ∼ N(0, τ 2)

where µ denotes the parameter of interest (treatment effect), and s2
i and τ 2 represent

the within-study and between-study variance.

1.3.2 Fixed effects model

Fixed effects models consider only within-study variability, s2
i , and assume that all studies

use identical methods, samples and measurements. They also assume there is a constant

effect size µ for all studies. It means that θ1 = θ2 = ... = θS = µ. Thus, di ∼ N(µ, s2
i ). The

most efficient and unbiased estimator of µ is

µ̂ =

∑S
i=1(s

2
i )

−1di
∑S

i=1(s
2
i )

−1

and the variance of µ̂ is

V ar(µ̂) =
1

∑S
i=1(s

2
i )

−1

A Z-score will be derived from µ̂/
√

V ar(µ̂) to test the null hypothesis when
∑S

i=1(niT + niC) → ∞.

17



1.3.3 Random effects model

As an alternative approach, the random effects model allows the study outcomes to vary in

a normal distribution among studies. That is, the true study effect size θi is no longer a

constant effect and varies across studies. We represent the equations as follows:

di = θi + εi, εi ∼ N(0, si
2)

θi = µ + δi, δi ∼ N(0, τ 2)

The estimator of µ is

µ̂ =

∑S
i=1(s

2
i + τ 2)−1di

∑S
i=1(s

2
i + τ 2)−1

and the variance of µ̂ is

V ar(µ̂) =
1

∑S
i=1(s

2
i + τ 2)−1

A Z-score will be derived from µ̂/
√

V ar(µ̂) to test the null hypothesis.

1.4 TWO COMPLEMENTARY HYPOTHESIS SETTINGS

Li and Tseng (2009) elucidated two statistical hypothesis settings behind two separate bi-

ological goals in combining multiple array studies. We consider meta-analysis of K gene

expression profile studies: D1, D2, ..., Dk, xkgs is the gene expression intensity of gene g and

sample s, where sample s = 1, ..., nk belong to a normal group and s = nk + 1, ..., nk + mk

belong to the disease group. Normally we consider a null hypothesis for each gene g:

H0 : θg1 = · · · = θgK = 0,

where θgk represents the gene effect of gene g and study k. Following the convention of

Birnbaum (1954), two complementary alternative hypotheses can be considered depending

on the nature of the experimental situations in which the gene effects(θgks) are obtained:
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HSA : { H0 versus HA : θgk 6= 0, ∀1 ≤ k ≤ K}
HSB : { H0 versus HB : at least one θgk 6= 0, 1 ≤ k ≤ K}

Under the two major alternative hypotheses categories, different subset or variations have

been explicitly or implicitly targeted by different existing methods:

HSA1 : {H0 versus HA1 : θg = θg1 = ... = θgk 6= 0}
HSA2 : {H0 versus HA2 : θg 6= 0, θgk ∼ N(θg, τ

2)}
HSBh : {H0 versus HBh :

∑K
k=1 I(θgk 6= 0) = h (1 ≤ h ≤ K)}

HSBh′ : {H0 versus HBh′ :
∑K

k=1 I(θgk 6= 0) = h and θgk = θg if θgk 6= 0.(1 ≤ h ≤ K)}

I(·) is an indicator function that equals 1 when statement true and 0 otherwise.

Without danger of confusion, we will use the notation of alternative hypothesis (e.g.

HA) to denote the paremeter space of the corresponding alternative hypothesis. It is clear

that HA ⊂ HB. In HA, gene g is identified only when it is differentially expressed in all

studies. In HB, it is selected if it is differentially expressed in one or more studies. We can

easily note that HA1 ⊂ HA represents an equal fixed effect model. HA2 represents a random

effect model for a similar purpose of HA while HA2 6⊆ HA in general. We also can find that

HB =
⋃

1≤h≤K HBh, HBh′ ⊆ HBh (1 ≤ h ≤ K) and HBK′ = HA1.

An optimally-weighted statistic was modified from the Fisher’s score and was proposed

for the former hypothesis setting (HA1). The optimal weights provided natural categorization

of the detected biomarkers for further biological investigation.

1.5 MOTIVATION

The current methods in Microarray meta-analysis, including those described previously, just

focus on the detection of differentially expressed (DE) genes between two-class ‘disease-

versus-normal’ or ‘treatment-versus-control’ setting. Methods for combining studies with
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more than two classes are rarely discussed. This is the reason why we would like to propose

a new method to deal with the issue of multiple-class studies in this dissertation. When

more than two classes are considered, no single effect size can be computed, and instead,

the inter-class patterns1 become the concern. The former category is, however, extensible to

data sets with more than two classes. The F-statistics (or equivalent ANOVA model) and

its variants can be applied and p-values can be assessed and combined across studies.

In this dissertation, we explore the method of ANOVA-maxP, which detects biomarkers

with a significant pattern (large between-class variance versus small within-class variation)

in all studies. We also note that small p-values (equivalently large F-statistics) in all studies

do not guarantee consistent inter-class patterns across studies. We can use real data as an

illustration. Table 2 shows mouse metabolism data which has four tissues (brown fat, liver,

heart and skeletal) and within each tissue there are three genotypes (Wilde Type, VLCAD,

LCAD)2. The replicates of each tissue within each genotype are slightly different and the

total number of arrays are 44.

Table 2: Mouse metabolism data

tissue type brown fat liver heart skeletal Total

genotype WT V- L- WT V- L- WT V- L- WT V- L-

n of arrays 4 4 4 4 4 4 3 4 4 3 3 3 44

WT: wilde type; V-:VLCAD; L-:LCAD

We can treat each tissue as a study and each genotype as a class, so now we have a

Microarray meta-analysis data set with four studies and within each study has three classes.

Then we applied ANOVA-maxP to do the biomarker detection. Figure 3 shows two genes

in mouse metabolism data detected by ANOVA-maxP and the inter-calss patterns across

1In a loose definition, the ”inter-class pattern” is defined as the vector of mean indensities in the classes
within a study when the within-class variation is very small

2More details are described in section 1 of chapter 3
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studies are concordant (the upper one) and discordant (the lower one). In Figure 3, we can

see that Gene Amacr has a concordant inter-class pattern across these four tissues. It has

high expression levels in two genotypes (WT, LCAD) and a low expression level in VLCAD,

regardless of the kind of tissue. Gene Scd1 is also detected by ANOVA-maxP, however, it

does not have a concordant inter-class pattern across these four tissues.

To overcome this issue, we develop a pairwise multi-class correlation (MCC) measure.

The correlation measure is defined through an equal-weight bivariate mixture model from the

multi-class observations. A min-MCC algorithm is extended for combining multiple studies

and the method guarantees the detection of only concordant inter-class pattern biomarkers.

The methodologies and procedures of these two methods are described in Chapter 3. We also

included the performance of ANOVA-maxP and min-MCC assessed through simulation and

applications to a multi-tissue mouse energy metabolism data set and a multi-platform mouse

trauma data set. The result shows that ANOVA-maxP detects genes with both concordant

and discordant inter-class patterns and min-MCC only detects genes with concordant inter-

class genes. The two methods are complementary and serve different biological purposes.

In addition to the biomarker detection, we also develop a R depository package for con-

taining the experimental information of these cancer microarray studies and some functions

for data quality control, data operation and retrieval. The details are decribe in Chapter 2.

In Chapter 4, we will make some conclusions and talk about the further works.
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Figure 3: Two examples for inter-class patterns.

Two examples for showing gene expression indensities with and without concordant inter-

class patterns across these four tissues. Box-plots of each genotype in each tissue are plotted

and the mean expression levels are connected. Upper: Gene Amacr, involved in metabolic

process, has a concordant inter-class pattern across these four tissues. Lower: Gene Scd1,

involved in fatty acid synthesis pathway, does not have a concordant inter-class pattern

across these four tissues.
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with that package’s software. Others provide a more thorough overview of the package

or might even discuss general issues related to the package. In the future, we are looking

towards providing vignettes that are not specifically tied to a package, but rather are

demonstrating more complex concepts. As with all aspects of the Bioconductor project,

users are encouraged to participate in this effort.

• Statistical and graphical methods. The Bioconductor project aims to provide access

to a wide range of powerful statistical and graphical methods for the analysis of genomic

data. Analysis packages are available for: pre-processing Affymetrix and cDNA array

data, identifying differentially expressed genes, graph theoretical analyses, and plotting

genomic data. In addition, the R package system itself provides implementations for

a broad range of state-of-the-art statistical and graphical techniques, including linear

and non-linear modeling, cluster analysis, prediction, resampling, survival analysis, and

time-series analysis.

• Annotation. The Bioconductor project provides software for associating microarray

and other genomic data in real time to biological metadata from web databases such as

GenBank, LocusLink and PubMed (annotate package). Functions are also provided for

incorporating the results of statistical analysis in HTML reports with links to annota-

tion WWW resources. Software tools are available for assembling and processing genomic

annotation data, from databases such as GenBank, the Gene Ontology Consortium, Lo-

cusLink, UniGene, the UCSC Human Genome Project (AnnotationDbi package). Data

packages are distributed to provide mappings between different probe identifiers (e.g.

Affy IDs, LocusLink, PubMed). Customized annotation libraries can also be assembled.

• Bioconductor short courses. The Bioconductor project has developed a program

of short courses on software and statistical methods for the analysis of genomic data.

Courses have been given for audiences with backgrounds in either biology or statistics.

All course materials (lectures and computer labs) are available on the WWW. Customized

short courses may also be designed for interested parties.
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• Open source. The Bioconductor project has a commitment to full open source disci-

pline, with distribution via a SourceForge-like platform. All contributions are expected

to exist under an open source license such as Artistic 2.0, GPL2, or BSD. There are many

different reasons why open–source software is beneficial to the analysis of microarray data

and to computational biology in general. The reasons include:

– To provide full access to algorithms and their implementation

– To facilitate software improvements through bug fixing and software extension

– To encourage good scientific computing and statistical practice by providing appro-

priate tools and instruction

– To provide a workbench of tools that allow researchers to explore and expand the

methods used to analyze biological data

– To ensure that the international scientific community is the owner of the software

tools needed to carry out research

– To lead and encourage commercial support and development of those tools that are

successful

– To promote reproducible research by providing open and accessible tools with which

to carry out that research (reproducible research is distinct from independent veri-

fication)

2.2.4 A simple example: AnnotationDbi

AnnotationDbi is used primarily to create maps that allow easy access from R to underlying

annotation databases. AnnotationDbi introduces a new future for the Bioconductor anno-

tation data packages by changing the paradigm that is used for exchanging annotations.

We will use a database called hgu95av2.db to be an illustration. This database is for a

Affymetrix array whose name is HgU95AV2.

First of all, we need to call this database into R

R> library("hgu95av2.db")

30



The same basic set of objects is provided with this databse package:

R> ls("package:hgu95av2.db")
[1] ”hgu95av2” ”hgu95av2 dbconn”
[3] ”hgu95av2 dbfile” ”hgu95av2 dbInfo”
[5] ”hgu95av2 dbschema” ”hgu95av2ACCNUM”
[7] ”hgu95av2ALIAS2PROBE” ”hgu95av2CHR”
[9] ”hgu95av2CHRLENGTHS” ”hgu95av2CHRLOC”

[11] ”hgu95av2CHRLOCEND” ”hgu95av2ENSEMBL”
[13] ”hgu95av2ENSEMBL2PROBE” ”hgu95av2ENTREZID”
[15] ”hgu95av2ENZYME” ”hgu95av2ENZYME2PROBE”
[17] ”hgu95av2GENENAME” ”hgu95av2GO”
[19] ”hgu95av2GO2ALLPROBES” ”hgu95av2GO2PROBE”
[21] ”hgu95av2MAP” ”hgu95av2MAPCOUNTS”
[23] ”hgu95av2OMIM” ”hgu95av2ORGANISM”
[25] ”hgu95av2PATH” ”hgu95av2PATH2PROBE”
[27] ”hgu95av2PFAM” ”hgu95av2PMID”
[29] ”hgu95av2PMID2PROBE” ”hgu95av2PROSITE”
[31] ”hgu95av2REFSEQ” ”hgu95av2SYMBOL”
[33] ”hgu95av2UNIGENE” ”hgu95av2UNIPROT”

To demonstrate the steps for converting probe set IDs of HgU95AV2 to EntrezID, we’ll start

with a random sample of probe set IDs.

R> all probes < − ls(hgu95av2ENTREZID)

R> length(all probes)

[1] 12625

There are 12625 probe set IDs in HgU95AV2.

R> set.seed(0xa1beef)

R> probes < − sample(all probes, 5)

R> probes

[1] ”31882 at” ”38780 at” ”37033 s at” ”1702 at” ”31610 at”

These are the probe set IDs which are randomly selected from HgU95AV2. The usual

ways of accessing annotation data are by using the package: hgu95av2ENTREZID. Suppose

we would like to know the EntrezID of ”31882 at”, there two ways to do it: using the order

number of ”31882 at” in the set of probes or the probe set ID directly. Below are the

demostrations.

R> hgu95av2ENTREZID[[probes[1]]]

[1] ”9136”
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R> hgu95av2ENTREZID$"31882 at"

[1] ”9136”

The EntrezID of ”31882 at” is 9136.

If we would like to know the symbols (gene names) of probes, we can use the function: mget.

R> syms < − unlist(mget(probes, hgu95av2SYMBOL))

R> syms

31882 at 38780 at 37033 s at 1702 at 31610 at

”RRP9” ”AKR1A1” ”GPX1” ”IL2RA” ”PDZK1IP1”

The symbols of these five probe set IDs are annotated successfully. For more details about

Bioconductor, please refer to www.bioconductor.org.

2.3 R PACKAGES FOR CANCER STUDY DEPOSITORY

Before we do any kind of microarray meta-analysis, the first step is collecting enough data

sets and containing the information of the experiment as much as possible. Thus, creating

a convenient and useful structure of depository for the data sets is a very important work.

For fulfilling this purpose, we developed a data depository based on the idea of eSet in

Bioconductor and can be executed in R. This kind of structure has the following features:

• Simplified data content.

• Structured class hierarchy.

• Alternative storage modes.

• More validity checking.

This depository package is constituted of four components, assayData, phenoData,

featureData, experimentData. The details of these four components are as follows:

• assayData:

This is a matrix containing the gene expression values of the cancer study. Rows are

features, e.g., gene IDs. And columns are samples represented on each study.
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• phenoData:

(1)pData: Rows are sample identifiers and columns are measured covariates, like age,

sex, tumor type, survival status, or other experimental information of samples.

(2)pheno varDescrptn: Rows are measured covariate labels and columns are covariate

descriptors.

• featureData:

(1)fData: Rows are feature identifiers. These match row names of assayData. Columns

are measured covariates.

(2)feature varDescrptn: Rows are measured covariate labels. Columns are covariate

descriptors.

• experimentData:

This is an information structure based on MIAME (Minimum Information About a

Microarray Experiment) protocol, and includes

– name: the last name of the first author on the paper

– lab: the last name of the last author on the paper

– contact: the contact information of responding author

– title: the title of the paper

– abstract: the abstract of the paper

– url: the link of the paper

– pubMedIds: the pubMed ID

– citation: the citation of this paper

– organism: the organism which the paper used

– data url: the data link of this study

– GEO: GEO number of this data set

– journal: the journal in which this paper was published

– year: the year in which this paper was published

– geneIDType: what kind of gene ID in this data set

– annotation: what kind of array type did this study use

We are going to illustrate the functions of this package by the Magee study, a prostate cancer

study published in ”Cancer Research”, 2001. Its array type is Affymetrix HG6800. We have
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already prepared the four components and saved them in a depository package which is

named ”Magee”. So, if we type Magee in R, like

R> Magee

You will see the following information:

ExpressionSet (storageMode: lockedEnvironment)

assayData: 7129 features, 15 samples

element names: exprs

phenoData

sampleNames: Benign.1, Benign.2, ..., Met3 (15 total)

varLabels and varMetadata description:

Cell type: Benign: Benign, Primary: Tumor, Met: Metastasis

Tumor type: Normal: Benign, Tumor:Primary, Other: Metastasis

featureData

featureNames: AFFX-BioB-5 at, AFFX-BioB-M at, ..., Z78285 f at (7129 total)

fvarLabels and fvarMetadata description:

geneID: AFFY.HU6800

experimentData: use ’experimentData(object)’

pubMedIds: 11479199

Annotation: HG6800

From the messages above, we can see that there are 15 samples in this study and that

within each sample there are 7129 probe set IDs. The array type for this study is HG6800. If

you would like to know more details about this experiment, type in experimentData(Magee),

then you will get all the experimental information.

We have collected about 66 cancer studies in our database and the total number is

growing continually. Table 3 shows a brief summary of the cancer types and array types in

the database.
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Table 3: Summary of the studies in the database

Cancer Type

Cancer type Breast Colon Leukemia Lung Prostate Total

Number of studies 16 11 13 10 16 66

Array Type

Array type cDNA Affymetrix Aligent Total

Number of studies 15 50 1 66

More details of these studies about the lab, year, and array types, are in Appendix A.

2.4 FUNCTIONS TO OPERATE THE PACKAGES

2.4.1 Function for data quality evaluation

For microarray meta-analysis, data collection is the first step. Once we get enough numbers

of data sets, the next step is evaluating the quality of these data sets, because if we include

the samples with bad quality in our down-stream analysis, it could give us wrong information

and cause bias of the biomarker detection. For this purpose, we developed a package which

is named dataQE to do some qualtiy checking of microarray studies before doing the data

analysis.

2.4.1.1 Principles and steps The principles of dataQE is based on Pearson correlation

and the idea of mean and standard deviation. There are two parts in this package. The

first one is for evaluating sample quality and the second one is for evaluating the sample

normalization. The steps are as follows:

Sample Quality Evaluation

Suppose we have a study S and there are K samples in this study.
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[1] Firstly, dataQE calculates pair-wise correlations of these K samples. We will get a sym-

metric matrix, C , containing these pair-wise correlations.

[2] Secondly, taking the mean of each row of C, we will get a set of numbers, M, with K

values of mean of the pair-wise correlations.

[3] Thirdly, calculating the mean and standard deviation of M separately, denoted by corMean

and corSD. If Mi ≤ corMEAN− 3 ∗ corSD, then sample i will be considered as a sample with

bad quality, because the average correlation with other samples is much lower than others.

Sample Normalization Evaluation

The second part of dataQE is for evaluating the sample normalization. The steps are as

follows:

[1] Firstly, dataQE calculates the mean of sample i , denoted by meani, where (1 ≤ i ≤ K).

[2] Secondly, taking the mean and standard deviation of these meanis , denoted by Sample mean

and Sample meanSD. If |meani| ≥ Sample mean + 3 ∗ Sample meanSD, then sample i will be

considered as a sample with bad normalization in mean values, because the mean is much

lower than others.

Similarly, dataQE will calculate the standard deviation of each sample, denoted by sdi,

and calculate the mean and standard deviation of sdis, denoted by Sample SDmean and

Sample sdSD separately.

If |sdi| ≥ Sample SDmean + 3 ∗ Samle SDsd, then sample i will be considered as a sample

with bad normalization via standard deviation, because the standard devation is much lower

than others.

2.4.1.2 An example of real data Now we will use real data to demonstrate how dataQE

works. It is prostate caner data with 148 samples, and tje data name in R is pnew. If we

type dataQE(pnew) in R, it will show the following warning messages,

Warning:These samples may not have good quality: 7 87 88 89

Warning:These samplee may not have good normalization: 7 87 88 94 95
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It means that sample 7, 87, 88, 89 have lower average correlation than other samples, and

sample 7, 87, 88, 94, 95 have worse normalization than others. Users can refer to these

warning messages and consider if it is necessary to remove these samples before doing any

microarray data analysis. Figure 4 shows the heatmaps without and with removing these

samples. It looks like we can get better and robust data after removing these samples.

There is another option in dataQE: plot=TRUE. If you type dataQE(data,plot=TRUE),

it will give you four plots: (1) histogram of sample correlations, (2) histogram of

sample means, (3) histogram of sample standard deviations, (4) a list of questionable

samples. For example, if we type dataQE(pnew,plot=TRUE) in R, then we will get a figure

with four plots as shown in Figure 5.

2.4.2 Functions for data operation and retrieval

What we have discussed above just focused on a single study. We collected data sets one by

one and saved them in a depository package in R. Now we can do some quality evaluation

before doing the down-stream analysis. However, our purpose is not only talking about the

matters in a single microarray study. What we would like to do is microarray meta-analysis.

So, it is necessary for us to merge these data sets before doing analysis. Therefore, we

developed two functions for this purpose.

2.4.2.1 Function for gene ID convertion As we mentioned in 1.1.3, there are many

different microarray types and all of their gene identifiers (gene IDs) are also different. When

we want to merge these different studies, we will encounter the problem of gene ID matching

among these studies. For solving this problem, we developed a function which is named

gene.match. In gene.match, we choose EntrezID as our medium to merge data sets. It

means any kind of gene IDs of microarray platforms will be converted to EntrezID first and

then thees EntrezIDs will be used to merge studies.
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A C

B D

Figure 4: Heatmaps of dataQE results.

Heatmaps without and with removing the questionable samples which were detected by

dataQE. A: All samples are included. B: Remove 3 lowest correlation samples (7,87,88). C:

Remove 4 lowest correlation samples (7,87,88,89). D: Remove 4 lowest correlation samples

(7,87,88,89),and 2 lowest column mean samples (94,95).
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Figure 5: dataQE outputs if plot=TRUE.

dataQE outputs if plot=TRUE. Upper left: Histogram of average pair-wise correlations.

Lower left: Histogram of Sample standard deviations. Upper right: Histogram of sample

means. Lower right: Questionable samples.
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There is another problem when we do gene-matching by EntrezID. It could happen

that some gene IDs may convert to the same EntrezID, therefore we will have duplicated

EntrezIDs after conversion. There are two options in gene.match to solve this problem. One

is "average" and another one is "IQR"1.

For Affymetrix array, we have prepared the functions for HU6800, HGU133, HGU133A,

HGU133A2, HGU133B, HGU133PLUS2, HGU95A, HGU95Av2. For cDNA array, we have UniGene

ID, GenBank Accession Number, RefSeq Identifiers, Official Gene Symbol, Gene Symbol.

2.4.2.2 Function for correlation of correlations In addition to retrieving the single

gene information among multiple studies, someone could be interested in the genomic cor-

relations of these cancer studies. For this purpose, we developed another function, CorCor,

to calculate the genomic meta-correlations. We call it ”Correlations of Correlations”. The

steps issue are as follows. Suppose we have S studies.

[1] Calculate the pair-wise correlations of whole genes in each study.

[2] Applying the concepts in 1.2.4 to do a modification and transformation to get unbiased

estimators and r − to − z score for meta-analysis correlations.

[3] Calculate the pair-wise correlations between any two of the S studies and show the results

as a symmetric correlation matrix.

For example, if we type the following code in R,

da <- list(brown,liver,heart,ske)

na <- c("brown","liver","heart","ske")

CorCor(da,names=na)

CorCor will give you the following correlation matrix,

1IQR is the abbreviation of Interquartile range. More details are described in Appendix B

40



brown liver heart ske

brown 1.00000000 0.0948003492 0.0976056777 0.0006159800

liver 0.09480035 1.0000000000 0.0510178781 0.0008724284

heart 0.09760568 0.0510178781 1.0000000000 0.0007053562

ske 0.00061598 0.0008724284 0.0007053562 1.0000000000

2.4.2.3 Function for gene retrieving of clinical features Before any biomarker de-

tection, based on some knowledge, the biologists could be roughly interested in the expression

behavior of a certain gene among different data sets or cancer studies. For this purpose, we

developed a function, meta.gene.retrieve. There are five parts in this function.

1. data: a list of data sets which the user would like to investigate.

2. gene: the name of the gene that the user is interested in. It should be included in double

quotes, ””.

3. ID.Type: the ID type of gene. For Affymetrix array, the options are HU6800, HGU133,

HGU133A, HGU133A2, HGU133B, HGU133PLUS2, HGU95A, HGU95Av2. For cDNA array,

the options are UniGene ID, GenBank Accession Number, RefSeq Identifiers, Official

Gene Symbol, Gene Symbol.

4. plot.type: plot types of the results. There are two types, ”boxplot” and ”CI” (95%con-

fidence interval), which users can choose.

5. study.names: a list of the names of data sets in data.

6. pool.replicate: the pool methods for duplicated genes in gene convertion. There are

two options, ”average” and ”IQR”, which users can choose.

For example, MT1H is an important gene in metabolism processes and we would like

to know the expression behavior among some interesting cancer data sets, prostate cancer:

Magee, Welsh, Luo, Dhanasekaran, Singh, Varambally, and lung cancer: Bhattacharjee,

Garber, Beer, Wachi, Gordon. This function is only for the comparison of ” Normal vs.

Tumor”. If we would like to use box-plot as the plot type and ”IQR” as the pool.replicated

method, the following commands are used,
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data <- list(Magee,Welsh,Luo,Singh,Varambally,Bhattacharjee,Beer,Wachi,Gordon)

sname <- c("Magee","Welsh","Luo","Singh","Varambally","Bhattacharjee","Beer",

"Wachi","Gordon")

meta.gene.retrieve(data=data, gene="MT1H", ID.Type="SYMBOL", plot.type=c("boxplot"),

study.names=sname, pool.replicate="IQR")

We will get the results as shown in Figure 6. On the bottom of each box-plot, meta.gene.retrieve

will show the sample size and provide the p-value of a simple t-test.

If there is not such a comparison type in this dataset, meta.gene.retrieve will show "NO

SUCH TYPE" in the middle of the plot. If there is not a gene in this dataset, meta.gene.retrieve

will show "NO SUCH GENE".
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Figure 6: MT1H Retrieve Plots.

Box plots of the expression levels of MT1H among different cancer data sets. On the bottom

of each plot, meta.gene.retrieve provides the p-values of simple t-test
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3.0 BIOMAKER DETECTION METHODS FOR MULTIPLE

MULTI-CLASS STUDIES

As the microarray technology becomes mature and prevalent in biomedical research, an

increasing number of data sets have been accumulated in the public domain. Systematic

information integration of multiple related studies should improve biomarker detection. So

far, published meta-analysis methods for this purpose mostly consider two-class compari-

son. Methods for combining multi-class studies and pattern concordance have been rarely

explored.

We first consider a natural extension of combining p-values from the traditional ANOVA

model. Since p-values from ANOVA do not guarantee to reflect the concordant expression

pattern information across studies, we propose a multi-class correlation measure (MCC) to

specifically look for biomarkers of concordant inter-class patterns across a pair of studies. For

both approaches, we focus on identifying biomarkers differentially expressed in all studies

(i.e. ANOVA-maxP and min-MCC). The min-MCC method is further extended to identify

biomarkers differentially expressed in partial studies using an optimally-weighted technique

(OW-min-MCC). All methods are evaluated by simulation studies and by three meta-analysis

applications to multi-tissue mouse metabolism data sets, multi-condition mouse trauma data

sets and multi-malignant-condition human prostate cancer data sets.

In general, we consider S studies to be combined (S = 4 in mouse metabolism data and

S = 2 in mouse trauma data). Among each study, K classes of samples are measured with

nsk replicates for study s and class k. Denote by xsgki the expression intensity of gene g (1
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≤ g ≤ G), study s (1 ≤ s ≤ S), class k (1 ≤ k ≤ K) and replicated sample i (1 ≤ i ≤ nsk).

In this proposal, we particularly consider the situation when K > 2.

3.1 ANOVA-MAXP FOR MULTIPLE STUDIES

ANOVA-maxP is a natural extension of the traditional p-value based meta-analysis method.

The method is to take, for each gene, the maximum p- value observed over the S studies

as the test statistic. As a result, a biomarker is conservatively detected only if the p-values

for all studies are small. In the multi-class data structure considered, ANOVA model is first

used to test the significance of variation in gene expressions across phenotype classes in each

study. Corresponding p-values from F-test are then combined by taking the maximum.

3.1.1 Procedure for ANOVA-maxP

1. Compute F-statistics, Fgs, for gene g in the sth study.

2. Permute group labels in each study for B times, and similarly calculate the permuted

statistics,F
(b)
gs where 1 ≤ g ≤ G, 1 ≤ s ≤ S and 1 ≤ b ≤ B.

3. Estimate p-value of Fgs as

pgs =

∑B
b=1

∑G
g′=1 I(F

(b)
gs ≥ Fgs)

(B · G)
(3.1)

where I(·) is the indicator function that takes values one when the statement is true and

zero otherwise.

Similarly given F
(b)
gs , compute p-value of F

(b)
gs as

pb
gs =

∑B
b′=1

∑G
g′=1 I(F

(b′)
gs ≥ Fgs)

(B · G)
(3.2)
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4. The maximum P-value statistic is defined as

Vg = max
1≤s≤S

pgs

. Similarly define

V (b)
g = max

1≤s≤S
p(b)

gs

.

5. Estimate p-value of Vg by

p(Vg) =

∑B
b=1

∑G
g′=1 I(V

(b)
g′ ≤ Vg)

(B · G)
(3.3)

6. Estimate q-value for each gene as

q(Vg) = π̂0

∑B
b=1

∑G
g′=1 I(V

(b)
g′ ≤ Vg)

(B
∑G

g′=1 I(V ′
g ≤ Vg))

(3.4)

where π̂0 is the estimate of proportion of null genes. A conservative suggestion is to set

π̂0 as 1. Genes with q-values smaller than 0.05 are detected as biomarkers.

3.2 MULTI-CLASS CORRELATION(MCC) FOR A PAIR OF STUDEIS

Below we describe our proposed pairwise multi-class correlation measure (MCC), given a

gene, in two studies. For simplicity, we drop the subscript of gene g and studies s. Con-

sider xkj(1 ≤ k ≤ K, 1 ≤ j ≤ nk) to represent expression intensity of class k, sample j

for the first study and ykj(1 ≤ k ≤ K, 1 ≤ j ≤ mk) for the second study. A naive mea-

sure to quantify the correlation of the expression patterns across two studies may be the

direct sample correlation of (x11, ..., x1n1
, ..., xk1, ..., xknk

) and (y11, ..., y1m1
, ..., yk1, ..., ykmk

)

if nk = mk,∀k. However, since nk 6= mk in general and this naive definition ignores the

exchangeability within (x11, ..., x1nk
) and (y11, ..., y1nk

) for a given 1 ≤ k ≤ K, we need to

develop a better-defined correlation measure.
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Assume we know the underlying distribution Xk and Yk, where xkj are i.i.d. from Xk,

ykj are i.i.d. from Yk. E(Xk) = µXk
, E(Yk) = µYk

, V ar(Xk) = σ2
Xk

, V ar(Yk) = σ2
Yk

. Aslo

assume Xk’s and Yk’s are independent. Define a bivariate distribution(X,Y) to be the equal

mixture of bivariate distributions(Xk, Yk), such that

F(X,Y )(s, t) =
1

K

K∑

k=1

F(Xk,Yk)(s, t) =
1

K

K∑

k=1

F(Xk)(s)F(Yk)(t) (3.5)

where FX(·) represents the cumulative distribution function of X. We define the multi-

class correlation (MCC) measure of (X1, ..., Xk) and (Y1, ..., YK) to be cor(X,Y ) as the

Pearson correlation of X and Y . It can be easily shown that

MCC = cor((X1, ..., XK), (Y1, ..., YK)) =
E(XY ) − EX · EY
√

V ar(X) · V ar(Y )
(3.6)

( 1
K

∑K
k=1 µXk

µYk
) − ( 1

K

∑K
k=1 µXk

)( 1
K

∑K
k=1 µYk

)
√

[ 1
K

∑K
k=1 σ2

Xk
+ 1

K

∑K
k=1(µXk

− µX)2][ 1
K

∑K
k=1 σ2

Yk
+ 1

K

∑K
k=1(µYk

− µY )2]
(3.7)

where

µX =
1

K

K∑

k=1

µXk
(3.8)

and

µY =
1

K

K∑

k=1

µYk
(3.9)

This correlation measure takes values between -1 and 1. A large positive correlation

indicates similar patterns between two studies for a given gene.

When n1 = n2 = ... = nK = n and m1 = m2 = ... = mK = m, MCC can be rewritten as

below:

MCC =
rX̄Ȳ

√
1

FX
+ 1

√
1

FY
+ 1

(3.10)

Where

rX̄Ȳ =
( 1

K

∑
µXk

µXk
) − ( 1

K

∑
µXk

)( 1
K

∑
µYk

)
√

1
K

∑
(µXk

− µX)2

√
1
K

∑
(µYk

− µY )2
(3.11)
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and

FX =

∑
(µXk

− µX)2/K
∑ ∑

(xkj − µXk
)2/(n · K)

,

FY =

∑
(µYk

− µY )2/K
∑∑

(ykj − µYk
)2/(m · K)

(3.12)

From the equation (3.3), FX and FY are related to F-statistic in ANOVA. rX̄Ȳ is the sample

correlation of (µX1
, ..., µXK

) and (µY1
, ..., µYK

). When the within-class variation is much

smaller than the between-class variation, FX and FY become large. MCC converges to rX̄Ȳ

as expected.

In practice, distributions of (Xk, Yk) are unknown. The means (µXk
and µYk

) and the vari-

ances (σXk
and σYk

) are not available. Instead we are given a set of observations (x̃, ỹ),where

x̃ = xkj, 1 ≤ k ≤ K, 1 ≤ j ≤ nk, ỹ = ykj, 1 ≤ k ≤ K, 1 ≤ j ≤ mk. Denote by X ′
k the em-

pirical distribution of xkj, 1 ≤ j ≤ nk such that FX′

k
(t) =

∑nk

j=1 I(xkj ≤ t) and similarly

FY ′

k
(t) =

∑nk

j=1 I(ykj ≤ t). Define (X ′, Y ′) to be equal mixture of bivariate distribution

(X ′
k, Y

′
k) such that

F(X′,Y ′)(s, t) =
1

K

K∑

k=1

F(X′

k
,Y ′

k
)(s, t) =

1

K

K∑

k=1

F(X′

k
)(s)F(Y ′

k
)(t) (3.13)

The multi-class correlation(MCC) based on observed (x̃, ỹ) becomes

MCC = cor(x̃, ỹ)) =
E(X ′Y ′) − EX ′ · EY ′

√

V ar(X ′) · V ar(Y ′)
(3.14)

=
( 1

K

∑K
k=1 µX′

k
µY ′

k
) − ( 1

K

∑K
k=1 µX′

k
)( 1

K

∑K
k=1 µY ′

k
)

√

[ 1
K

∑K
k=1 σ2

X′

k
+ 1

K

∑K
k=1(µX′

k
− µX′)2][ 1

K

∑K
k=1 σ2

Y ′

k
+ 1

K

∑K
k=1(µY ′

k
− µY ′)2]

(3.15)

where

µX′ =
1

K

K∑

k=1

µX′

k
, µY ′ =

1

K

K∑

k=1

µY ′

k
(3.16)

,

µX′

k
=

∑nk

j=1 xkj

nk

, µY ′

k
=

∑mk

j=1 ykj

mk

(3.17)
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and

σ2
X′

k
=

∑nk

j=1(xkj − µX′

k
)2

nk

, σ2
Y ′

k
=

∑mk

j=1(ykj − µY ′

k
)2

mk

(3.18)

When n1 = n2 = ... = nK = n and m1 = m2 = ... = mK = m, MCC will have another

form as below which is related to F statistic from ANOVA.

MCC =
rX̄′Ȳ ′

√
1

FX′

· K−1
K

+ 1
√

1
FY ′

· K−1
K

+ 1
(3.19)

where

rX̄′Ȳ ′ =

∑
(x̄k − x̄..)(ȳk − ȳ..)

√∑
(x̄k − x̄..)2

√∑
(ȳk − ȳ..)2

(3.20)

and

FX′ =

∑
(x̄k − x̄..)

2/(K − 1)
∑ ∑

(xki − x̄k)2/(n − 1)K
(3.21)

,

FY ′ =

∑
(ȳk − ȳ..)

2/(K − 1)
∑ ∑

(yki − ȳk)2/(n − 1)K
(3.22)

From the equation (3.6), FX′ and FY ′ are exactly the F-statistics in ANOVA for x̃ and Ỹ .

rX̄Ȳ is the sample correlation of (µX′

1
, ..., µX′

K
) and (µY ′

1
, ..., µY ′

K
). When the within-class

variation is much smaller than the between-class variation, FX′ and FY ′ become large. MCC

converges to rX̄′Ȳ ′ as expected.

3.2.1 Procedure of MCC for combining two studies

1. Compute MCC statistic, MCCg, for each gene g.

2. Permute group labels in each study for B times, and similarly calculated the permuted

statistics, MCC
(b)
g where 1 ≤ g ≤ G, 1 ≤ s ≤ S and 1 ≤ b ≤ B.
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3. Estimate p-value of MCCg as

p(MCCg) =

∑B
b=1

∑G
g′=1 I(MCC

(b)
g′ ≥ MCCg)

(B · G)
(3.23)

where I(·) is the indicator function that takes values one when the statement is true and

zero otherwise.

4. Estimate q-value for each gene of MCCg as

q(MCCg) = π̂0

∑B
b=1

∑G
g′=1 I(MCC

(b)
g′ ≥ MCCg)

(B
∑G

g′=1 I(MCC ′
g ≥ MCCg))

(3.24)

where π̂0 is the estimate of proportion of null genes. A conservative suggestion is to set

π̂0 as 1. Genes with q-values smaller than 0.05 are detected as biomarkers.

3.2.2 Minimum MCC (min-MCC) for more than two studies

The MCC measure described above measures the correlation between two given studies. It

can be extended for identifying genes with a consistent pattern across more than two studies.

The minimum MCC is defined as

min − MCCg = min
1≤u≤v≤S

MCCg(u)(v)

,where MCCg(u)(v) is the MCC measure for gene g and between study u and study v. The

procedures are described as follows:

1. Compute MCC statistic, MCCg(u)(v), for each gene g and for a pair of studies u and v.

2. Permute group labels in each study for B times, and similarly calculate the permuted

statistics, MCC
(b)
g(u)(v) where 1 ≤ g ≤ G, 1 ≤ s ≤ S and 1 ≤ b ≤ B.
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3. Calculate

min − MCCg = min
1≤u≤v≤S

MCCg(u)(v) (3.25)

and

min − MCC(b)
g = min

1≤u≤v≤S
MCC

(b)
g(u)(v) (3.26)

4. Estimate p-value of min − MCCg as

p(min − MCCg) =

∑B
b=1

∑G
g′=1 I(min − MCC

(b)
g′ ≥ min − MCCg)

(B · G)
(3.27)

where I(·) is the indicator function that takes values one when the statement is true and

zero otherwise.

5. Estimate q-value for each gene of min − MCCg as

q(min − MCCg) = π̂0

∑B
b=1

∑G
g′=1 I(min − MCC

(b)
g′ ≥ min − MCCg)

(B · sumG
g′=1I(min − MCCg′ ≥ min − MCCg))

(3.28)

where π̂0 is the estimate of proportion of null genes. A conservative suggestion is to set

π̂0 as 1. Genes with q-values smaller than 0.05 are detected as biomarkers.

3.3 OPTIMALLY-WEIGHTED STATISTICS FOR MINIMUM MCC

(MIN-MCC)

Li and Tseng (2009) proposed an optimally weighted (OW) statistic was modified from the

Fisher’s score and was proposed for the former hypothesis setting HSB. The optimal weights

provided natural categorization of the detected biomarkers for further biological investiga-

tion. They compared this method to the classical Fisher’s equally weighted statistic (EW),

Tippett’s minimum p-value statistic (minP) and Pearson’s statistic (PR).

In general, there exists no uniformly most powerful test. All of the four methods com-

pared are admissible under a simplified Gaussian scenario. Nevertheless, the proposed OW

statistic consistently has the best or near ot the best power in a wide variety of alternative
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hypotheses, especially when EW and minP perform poorly in two extreme alternative hy-

potheses respectively.

3.3.1 An introduction to Optimally-Weighted statistic

When integrating multiple genomic studies, expression of some important biomarkers may

be altered in a study-specific manner (consider HB). To uncover the pattern of altered gene

expression across studies, we consider the following weighted statistic:

Ug(wg) = −
S∑

s=1

wgslog(pgs) (3.29)

where pgs is the p-value of gene g in study s, ws is the weight assigned to the sth study

and wg = (wg1, . . . , wgs). Under the null hypothesis that θgs = 0 ∀ s, the p-value of the

observed weighted statistic, p(ug(wg)), can be obtained for a given gene g and weight wg (see

below for detailed permutation algorithm to calculate the p-value). The optimally-weighted

statistic is defined as the minimal p-value among all possible weights:

V OW
g = min

wg∈W
p(ug(wg)) (3.30)

where ug(w) is the observed statistic for Ug(w) and W is a pre-specified searching space. The

choice of searching space in this paper is W = {w|wi ∈ {0, 1}}, which results in an affordabl

computation of O(2K − 1) based on the norm of K ≤ 10 in a microarray meta-analysis. The

resulting optimal weight reflects a natural biological interpretation of whether or not a study

contributes to the statistical significance of a gene.

We note that the OW statistic is not adequate for the traditional meta-analysis in epi-

demiological or evidence-based medicine research. The selection procedure in OW will intro-

duce selection bias towards studies with concordant significant effects. The meta-analysis of

genomic studies, however, is quite a different situation. The major goal is usually to screen

and identify the most probable gene markers given data to facilitate future investigation.
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The vector of optimal-weight, w∗
g = arg minwg∈W p(ug(wg)) actually serves as a convenient

basis fogene categorization in the follow-up of biological interpretation and exploration. The

optimal weights obtained from OW have the additional advantages of filtering discordant

biomarkers and providing natural categorization of the detected genes for further biological

investigation.

3.3.2 Procedure for OW-min-MCC

We also applied OW concept in min-MCC for multiple multi-class studies to detected

biomarkers with conditional inter-class patterns across these studies. An algorithm applying

the idea of OW statistics was developed as follows:

Suppose there are S studies, W = {w = (w1, . . . , ws|wi ∈ {0, 1}, 2 ≤ ∑S
i=1 wi ≤ S})

1. Given a weight w = (wi, . . . , ws), then min-MCC based on w is defined as

Mg(w) = minwu=1,wv=1,1≤u 6=v≤S(MCCg(u)(v)) (3.31)

for study u and v , 1 ≤ g ≤ G.

2. Randomly permute class labels in each study for B times, and similarly calculate the

permuted min-MCC which is defined as

M (b)
g (w) = minwu=1,wv=1,1≤u 6=v≤S(MCC

(b)
g(u)(v)) (3.32)

1 ≤ g ≤ G, 1 ≤ b ≤ B.

3. Estimate the p-value of Mg(w) and M (b)g(w) as

p(Mg(w)) =

∑B
b=1

∑G
g=1 I(M

(b)
g ≥ Mg(w))

B · G (3.33)

p(M (b)
g (w)) =

∑B
b′=1

∑G
g′=1 I(M

(b′)
g′ ≥ M

(b)
g (w))

B · G (3.34)

4. Define Hg as the optimally weighted(OW) statistic of p(Mg(w)), such that

Hg = minw∈W p(Mg(w))
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Similarly,

H(b)
g = minw∈W p(M (b)

g (w))

5. Assess p-value of Hg as

p(Hg) =

∑B
b=1

∑G
g′=1 I(H

(b)
g′ ≤ Hg)

B · G (3.35)

6. Assess q-value of Hg as

q(Hg) =

∑B
b=1

∑G
g′=1 I(H

(b)
g′ ≤ Hg)

B ·
∑G

g′=1 I(Hg′ ≤ Hg)
(3.36)

7. Calculate optimal weight as

w∗
g = argminw∈W p(Mg(w)) (3.37)

3.4 RESULTS

3.4.1 Simulation study

We conducted a simulation scenario for combining three genomic studies to assess the per-

formance of our proposed ANOVA-maxP, min-MCC method, and OW-min-MCC. Denote

by xsgki the expression intensity of study s (1 ≤ s), gene g (1 ≤ g ≤ G), sample class k

(1 ≤ k ≤ K) and replicated sample i (1 ≤ i ≤ nsk). In the simulation scenario, we simulated

three studies (S = 3). Each study had three classes (K = 3). The numbers of replicates,

nsk(1 ≤ s ≤ S, 1 ≤ k ≤ K), were different among each class of each study.

A total of G = 2000 genes in each study were simulated. Among these 2000 genes, 300

genes showed concordant inter-class patterns across all studies (category I), 100 genes were

with discordant inter-class pattern (category II), and 100 genes with concordant pattern in

study 1 and study 2 but no pattern in study 3 (category III). The expression intensities were

simulated from xsgki ∼ N(µsk, σ
2
s). For genes with concordant inter-class pattern, study

1: µ1 = (1, 3, 5), study 2: µ2 = (2, 4, 6), and study 3: µ3 = (1, 4, 7). So, mean vectors
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µs = (µs1, ..., µsk) across studies had pair-wise correlation one. For genes with discordant

inter-class patterns, that study 1 is µ1 = (1, 3, 5), study 2 is µ2 = (6, 4, 2), and study 3:

µ3 = (1, 7, 4) , pair-wise correlations of mean vectors were low or negative. For the genes in

category III, mean vector for study 1 is (1, 3, 5), for study 2 is (2, 4, 6), and (0, 0, 0) for study

3. For the rest of the 1500 genes are null genes form (µs1, ..., µsk) = (0, ..., 0).

The effect size was defined as the ratio of the standard deviation of the mean vectors

to the within class standard deviation, σs. We chose effect sizes to be 0.5, 0.6, and 0.7.

False discovery rate (FDR) was controlled at 0.05 for each method, and each simulation was

repeated 200 times. The details of simulation settings are described in Table 4.
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Table 4: Settings of simulation scenario

Study1 Study 2 Study 3

Effect size N (n11, n12, n13) = (10, 5, 8) (n21, n22, n23) = (5, 8, 10) (n31, n32, n33) = (8, 10, 5)

(µ11, µ12, µ13), σ1 (µ21, µ22, µ23), σ2 (µ31, µ32, µ33), σ3

0.5 I (1,3,5),3.5 (2,4,6),3.1 (1,4,7),4.4

II (1,3,5),3.5 (6,4,2),3.1 (1,7,1),5.9

III (1,3,5),3.5 (6,4,2),3.1 (0,0,0),5.3

Null (0,0,0),3.5 (0,0,0),3.1 (0,0,0),4.4

0.6 I (1,3,5),2.9 (2,4,6),2.6 (1,4,7),3.7

II (1,3,5),2.9 (6,4,2),2.6 (1,7,1),4.8

III (1,3,5),2.9 (6,4,2),2.6 (0,0,0),4.4

Null (0,0,0),2.9 (0,0,0),2.6 (0,0,0),3.7

0.7 I (1,3,5),2.5 (2,4,6),2.2 (1,4,7),3.2

II (1,3,5),2.5 (6,4,2),2.2 (1,7,1),4.3

III (1,3,5),2.5 (6,4,2),2.2 (0,0,0),3.8

Null (0,0,0),2.5 (0,0,0),2.2 (0,0,0),3.2

I: Genes with concordant patterns across studies. The mean vector in Study 1 is (1,3,5)

which has the same pattern (trend) as the mean vector, (2,4,6), in Study 2 and (1,4,7)

in Study 3.

II: Genes with discordant patterns across studies. The mean vector in Study 1 is (1,3,5)

which has the different pattern (trend) from the mean vector, (6,4,2), in Study 2 and

(1,7,1) in Study 3.

III: Genes with concordant patterns in study 1 and study 2 but no pattern in study 3. The

mean vector for Study 1 is (1,3,5), (6,4,2) for Study 2 and (0,0,0) for Study 3.

Null: Null genes.Do not have any pattern in the studies.
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The average numbers of genes identified in each category by the three methods (ANOVA-

maxP, min-MCC and OW-min-MCC) under each simulation scenario is presented in Table

2. We note that each of the three methods has specific target of biomarkers: ANOVA-maxP

detects concordant and discordant biomarkers across all three studies (i.e. category I and

II); min-MCC identifies concordant biomarkers across all three studies (i.e. category I); OW-

min-MCC finds concordant biomarkers across two or more studies (i.e. category I and III).

Thus, we define three types of false discov-ery rates for the corresponding biological purposes:

FDR1=(III+null)/(I+II+III+null) for ANOVA-maxP, FDR2=(II+III+null)/(I+II+III+null)

for min-MCC and FDR3=(II+null)/(I+II+III+null) for OW-min-MCC.

As expected, ANOVA-maxP detects both category I and cate-gory II genes because the

p-values in ANOVA do not reflect the inter-class pattern information for each individual

study. On the other hand, min-MCC method detects almost only concordant inter-class

genes (category I). For example, when effect size equals 0.6, min-MCC detects an average of

260.52 (out of 300) genes of true concordant inter-class pattern genes, while ANOVA-maxP

only identifies 193.11 concordant genes together with 73.5 discordant biomarkers. Both of

ANOVA-maxP and min-MCC detect few bio-markers of category III because genes in cate-

gory III are differen-tially expressed only in study 1 and 2 but not in study 3. OW-min-MCC

detects biomarkers mostly in category I and III but not in II since it is designed to detect

concordant biomarkers in two or more studies. The simulation result clearly confirms that

selection among the three methods depend on the ultimate biological purpose.

Result of the FDR calculation reveals an interesting issue of our proposed algorithm.

FDR3 for OW-min-MCC is controlled near the nominal FDR=5%. FDR1 and FDR2 are,

however, anti-conservative. This is an issue of HSA that the null hypothesis is essentially

a composite null hypothesis, instead of a simple null hypothesis. We will discuss further in

the ”Conclusion Section”.
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Table 5: Results of simulation scenario

Effect size Methods I II III Null FDR1(%) FDR2(%) FDR(%)

0.5 ANOVA-maxP 107.08 44.23 7.56 5.22 7.8a 34.7 30.1

min-MCC 197.42 0.22 10.05 7.95 8.3 8.4b 3.8

OW-min-MCC 163.67 3.76 29.74 5.23 17.3 19.1 4.4c

0.6 ANOVA-maxP 193.11 73.50 13.47 9.45 7.9a 33.3 28.6

min-MCC 260.52 0.05 15.56 10.85 9.2 9.2b 3.8

OW-min-MCC 253.19 7.10 57.98 8.73 20.4 22.6 4.8c

0.7 ANOVA-maxP 250.77 88.98 16.26 11.63 7.6a 31.8 27.4

min-MCC 287.97 0.03 19.24 11.96 9.8 9.8b 3.8

OW-min-MCC 288.54 9.74 80.41 10.15 23.3 25.8 5.1c

I: genes with concordant patterns across studies.

II: genes with discordant patterns across studies.

III: genes with concordant patterns in study 1 and study 2 but no pattern in study 3.

Null: Null genes.

a: ANOVA-maxP detects both concordant and discordant genes (category I and II). FDR1

(= III+Null
I+II+III+Null

) is a better measure for false discoveries.

b: Min-MCC detects only concordant genes (category I). FDR2 (= II+III+Null
I+II+III+Null

) is a better

measure for false discoveries.

c: OW-min-MCC detects category I and III genes only. FDR3 (= II+Null
I+II+III+Null

) is a better

measure for false discoveries.
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3.4.2 Data description

Mouse Metabolism Data

Three real data sets are used to evaluate proposed methods. The first data set involves

samples from three genotype mice: wild-type (WT), LCAD knock-out (LCAD -/-) and

VLCAD knock-out (VLCAD -/-). Deficiency of very long chain acyl-CoA dehydrogenase

(VLCAD) is known to be related to a common energy metabolism disorder in children.

On the other hand, LCAD (long-chain acyl-CoA dehydrogenase) deficient mice are known

to have impaired fatty acid oxidation and develop a disease similar to other disorders of

mitochondrial fatty acid oxidation. For each of the 12 mice (four mice in each genotype),

four types of tissues (brown fat, skeletal, liver and heart) were applied to the microarray

experiment separately to study the expression changes across genotypes. For duplicate spots,

mean of them were used. Data from the four tissues were combined and log2 transformed.

Genes with little information content (average log2-scaled means < 7 or average log2-scaled

standard deviations < 0.4) are filtered out. A total of 4,288 genes are left for meta-analysis.

Among the 48 arrays performed, four arrays were identified with quality defect and were

deleted from further analysis. The detailed sample information is described in Table 6.

Table 6: Mouse metabolism data

tissue type brown fat liver heart skeletal Total

genotype WT V- L- WT V- L- WT V- L- WT V- L-

n of arrays 4 4 4 4 4 4 3 4 4 3 3 3 44

WT: wilde type; V-:VLCAD -/-; L-:LCAD -/-

Mouse Trauma Data

The second data set applied is about mouse trauma experiments. Victims of trauma-

hemorrhagic shock (T-HS) (for example those due to car accident etc) often die due to severe,

complex and uncontrollable physiological disturbances that occur in many organs, especially

the liver. The progress of T-HS and resuscitation (R) is examined by well-controlled murine

systems to identify gene expression profiles that are characteristic of this stress. Specifically

five groups of mice experiments were performed: (I) non-manipulated mice to serve as the
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negative control group; (II) 1.5h of Hemorrhagic Shock without resuscitation (1.5hHS) served

as the positive control group; (III) 1.5h of hemorrhagic shock + bone fracture, followed by

one hour of fluid resuscitation (1.5hHS+BF+1hR); (IV) Similar to group III except for 4.5h

of fluid resuscitation (1.5hHS+BF+4.5hR); (V) Similar to group III except for 6h of fluid

resuscitation (1.5hHS+BF+6hR). Four mice are performed in each group with the liver sam-

ples applied to microarray experiments (a total of 20 mice). The array experiments are done

twice by both Codelink and Affymetrix platforms. One array of group II in Codelink and

one array of group II in Affymetrix had problematic quality and were removed from further

analysis. Table 7 describes the experimental details of the multi-platform data. After some

standard preprocessing procedures, 19,132 genes from Affymetrix platform and 26,063 genes

from Codelink platform were matched by GeneCruiser, resulting in 6,338 common genes for

the meta-analysis.

Table 7: Mouse trauma data

array platform Codlink Affymetrix Total

experimental conditions I II III IV V I II III IV V

number of arrays 4 3 4 4 4 4 3 4 4 4 38

I: No manipulation; II: 1.5h HS; III: 1.5h HS+BF+1h R; IV: 1.5h HS+BF+4.5h R;
V: 1.5h HS+BF+6h R.

Prostate Cancer Data

The third data is prostate cancer data from three different data sets, Dha-nasekaran et

al (2001), Lapointe et al ( 2004), and Varambally et al (2005). These three data sets

all have three tumor types, normal, tumor, and meta-static. Data from the three studies

were log2 transformed and converted to Entrez ID for combining with other studies. Genes

with large missing percentage (means > 40 %) or little information content (average log2-

scaled means < 7 or average log2-scaled standard deviations < 0.4) are filtered out. KNN

imputation method was used for the missing values before applying proposed methods. The

basic experimental information is in Table 8.
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Table 8: Sample description of three prostate cancer studies

Dhanasekaran Lapointe Varambally

Array type cDNA cDNA Affy HU133Plus2

Tissue type N T M N T M N T M

N of arrays 14 13 20 41 62 9 6 7 6

N: Normal; T: Tumor; M: Metastasis

The first data set contains a multi-tissue design. The application of HSA helps to detect

tissue-specific biomarkers and HSB identifies consistent tissue-invariant biomarkers. Both

hypothesis settings are of biological interest. On the other hand, the second data set con-

tains a multi-platform design. HSB is of interest to generate highly confident biomarkers

confirmed by both platforms while HSA becomes of less biological interests. The detected

platform-specific biomarkers from HSA may help to identify technical issues across the two

platforms.
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3.4.3 Application to mouse metabolism data

We first applied ANOVA-maxP and min-MCC methods to the mouse metabolism data. For

the first biological goal, we were interested in genes with clear inter-class patterns but may

be discordant across tissues. These tissue-dependent biomarkers reflected tissue-specific bi-

ological changes under VLCAD and LCAD mutations.

ANOVA-maxP identified 637 genes and the heatmap of detected biomarkers is shown in

the left plot of Figure 7A. Figure 7B shows a histogram of min-MCC (minimum of pair-wise

multi-class correlation measures across four tissues) of the 637 detected biomarkers. 408 of

the 637 genes (64.05%) had negative min-MCC (i.e. with discordant inter-class patterns in

at least a pair of tissues). The right panel of Figure 7A shows the heatmap of these 408

discordant genes and the heatmap of 229 genes with positive min-MCC. The genes with dis-

cordant patterns are potential targets to identify tissue-specific regulators in the mutations.

The second biological goal was to identify biomarkers that have consistent inter-class

pattern across all four tissues (i.e. reliable tissue-invariant biomarkers). To achieve this

goal, min-MCC served better for this purpose. A total of 387 genes were identified and are

displayed in Figure 7C. It is clearly seen that these genes have clear concordant inter-class

pat-terns across all four tissues. A simple cluster analysis can further group them into six

major patterns for further biological investigation. A manuscript of this on-going project

containing detailed bio-logical discoveries is under preparation.

Finally, we applied OW-min-MCC method to allow detection of concordant biomarkers

in partial (two or more) studies. Table 8 shows all 11 possible categories of the weights and

the number and percentage of detected biomarkers. Among the 1,209 biomarkers detected

by OW-min-MCC, we found that the number of significant biomarkers is relatively small

(398) when the optimal weights included skeletal while heart involved the highest number

of bio-markers (960). Heatmap of the 1,209 biomarkers is shown in Figure 8.
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Figure 7: Heatmap of significant genes detected in mouse metabolism data.

A(Left): heatmap of 637 ANOVA-maxP genes, A(Right): heatmap of discordant ANOVA-

maxP genes and concordant ANOVA-maxP genes. B: histogram of min-MCC of the 637

ANOVA-maxP genes, C: heatmap of 387 min-MCC genes (B: Brown fat; L: Liver; H: Heart;

S: Skeletal muscle. 1: Wild type; 2: VLCAD -/-; 3: LCAD -/-.)
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Table 9: OW-min-MCC results for mouse metabolism data

Category Weight Tissue number of sig. genes %

1 (1,1,0,0) Brown, Liver 126 10.42

2 (1,0,1,0) Brown, Heart 258 21.34

3 (1,0,0,1) Brown, Skeletal 31 2.56

4 (0,1,1,0) Liver, Heart 240 19.85

5 (0,1,0,1) Liver, Skeletal 54 4.47

6 (0,0,1,1) Heart, Skeletal 98 8.11

7 (1,1,1,0) Brown, Liver, Heart 187 15.47

8 (1,1,0,1) Brown, Liver, Skeletal 38 3.41

9 (1,0,1,1) Brown, Heart, Skeletal 75 6.20

10 (0,1,1,1) Liver, Heart, Skeletal 53 4.38

11 (1,1,1,1) Brown, Heart, Live, Skeletal 49 4.05

Total 1209 100

Brown: Categories including: 1, 2, 3, 7, 8, 9, 11; Total number of biomarkers: 764.

Liver: Categories including: 1, 4, 5, 7, 10, 11; Total number of biomarkers: 747.

Heart: Categories including: 2, 4, 6, 7, 9, 10, 11; Total number of biomarkers: 960.

Skeletal: Categories including: 3, 5, 6, 8, 9, 10, 11; Total number of biomarkers: 398.

The number of significant biomarkers is relatively small when the weight included Skele-

tal. It could give us some information that genes could have different expression levels in

Skeletal.
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Figure 8: Heatmap for OW-min-MCC.

Heatmap of significant biomarkers for these 11 categories of weights. (wt: Wild Type, V-:

VLCAD-/-, L-: LCAD-/-)
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3.4.4 Application to mouse trauma data

We similarly applied ANOVA-maxP and min-MCC to the mouse trauma data. We did not

apply OW-min-MCC since there were only two studies (platforms). We note that the two

studies to be combined were from two commercial platforms, Affymetrix and Codelink. Ide-

ally both array platforms measure identical samples and there should exist no discordant

biomarkers. Combining the two data sets should increase statistical power and detect more

concordant inter-class pattern genes.

Indeed, by controlling FDR at 0.05, ANOVA-maxP detected 3388 genes (heatmap shown

in the left plot of Figure 9A) and 179 (5.28%) genes showed discordant inter-class patterns

of negative MCC across the two platforms (right plot of Figure 9A). Figure 9B shows the

histogram of min-MCC of the 3388 ANOVA-maxP genes. On the other hand, 3633 genes

were identified using min-MCC (figure 9C). These highlyreliable biomarkers confirmed by

both platforms were used for further cluster analysis and pathway analysis to understand

the biological changes under different severity of trauma (manuscript in preparation).

The higher proportion of genes with concordant inter-class patterns confirmed that the

two array platforms are highly reproducible. The 179 discordant inter-class pattern genes

are, however, technical errors and need further investigation. The discordances are possibly

due to mistaken gene annotation, differential hybridization efficiencies caused by different

probe selection criteria or non-specific cross-hybridization.
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Figure 9: Heatmap of significant genes in mouse trauma data.

A(Left): heatmap of 3388 ANOVA-maxP genes, A(Right): heatmap of 3209 concordant

ANOVA-maxP genes and 179 discordant ANOVA-maxP genes. B: histogram of min-MCC

of the 3388 ANOVA-maxP genes, C: heatmap of 3633 min-MCC genes.
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3.4.5 Application to prostate cancer data

We applied ANOVA-maxP and min-MCC to three prostate cancer studies (Dhanasekaran,

Lapointe, and Varambally) that investigated three classes of normal, localized tumor and

metastatic tumor tissues. After filtering and merging these three data sets, we obtained

1,004 genes for downstream analysis.

Among these 1,004 genes, ANOVA-maxP detected 206 biomarkers, and min-MCC iden-

tified 120 biomarkers. We performed pathway analysis using Ingenuity Pathway Analy-

sis (IPA) software to investigate which biological functions are related (enriched) in the

biomarker lists. The top p-values of enrichment analysis without multiple comparison cor-

rection are presented in Table 10. In these 56 cancer-related biological functions, p-values of

min-MCC are always much more significant than those from ANOVA-maxP.

In this application, ANOVA-maxP clearly adds in biomarkers of discordant patterns that

are likely to be false positives. The result of min-MCC provides a better biomarker list to

investigate the biological process from normal to localized tumors and to further malignant

metastatic tumors.
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Table 10: IPA biological functions results for prostate cancers.

Category min-MCC∗ ANOVA-maxP∗ N1 N2 N3

Cardiovascular Disease 0.000885 0.029 5 9 1

Cell Death 0.000885 0.0419 4 2 0

Dermatological Diseases 0.000885 0.0419 10 2 0

Cellular Development 0.00167 0.0419 6 2 1

Skeletal and Muscular System 0.00167 0.0419 3 2 0

Tissue Development 0.00167 0.0419 17 6 0

Nervous System Development 0.00167 >0.05 12 0 0

Respiratory Disease 0.00167 >0.05 5 0 0

Cellular Movement 0.00266 >0.05 10 0 0

∗: enrichment p-value.

N1: number of biomarkers for min-MCC;

N2: number of biomarkers for ANOVA-maxP;

N3: number of intersection.
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4.2 FUTURE WORK

There are some works we can put effort on in the future.

1. Missing values pose another issue in merging multiple studies. For instance, if we just

select the genes which exist among all the studies, a small set of genes could be gained

and a lot of information lost which in turn has an adverse impact on ensuing analyses. On

the other hand, if we target a certain percentage of existence of the genes, say 80% which

means 20% of the values are allowed to be missing, this can give us more information for

the meta-analysis. We are searching for a reasonable percentage of missing values and are

investigating the influence on the analysis.

2. In addition to the issue of combining multiple studies, there are a few possible exten-

sions and future directions. Currently we consider all studies to have identical K classes. Both

ANOVA-maxP and min-MCC can be extended to studies containing mismatched classes of

different sizes. For example, for min-MCC, the pairwise MCC can be defined using only the

overlapping classes across a pair of studies. If we have three studies as following:

Study 1 2 3

class A B C D A B C D E B C D

Let MCC1 be the pairwise MCC of Study 1 and Study 2 for the overlapping classes (A, B,

C, D), MCC2 be the pairwise MCC of Study 1 and Study 3 for the overlapping classes (B,

C, D) and MCC3 be the pairwise MCC of Study 2 and Study 3 for the overlapping classes

(B, C, D). Then, the min-MCC for these three studies is min1≤i≤3MCCi.

3. These three proposed methods utilize the most conservative and extreme statistic

(maximum of ANOVA p-values and minimum of pairwise MCC). This may be too stringent

and sensitive to outliers, especially when the class, K, is large. A quick modification may be

to use the rth ranked statistic instead.
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4. The biological meanings and functions of these detected biomarkers are of interest.

Gene Ontology (GO) enrichment analyses can be conducted to investigate the biological

pathways and knowledge of these detected biomarkers. Gene cluster analysis is another po-

tentially effective strategy to further investigate the deteced biomarkers.

5. Developing a hierarchical meta-analysis method, as 4.1 shows, to investigate the genes’

behavior not only across different studies, but also across different types of cancers is also of

interest.
Cancer Types

︷ ︸︸ ︷
Breast

︷ ︸︸ ︷

S1 . . . Sn1

Leukemia
︷ ︸︸ ︷

S1 . . . Sn2

Lung
︷ ︸︸ ︷

S1 . . . Sn3

Prostate
︷ ︸︸ ︷

S1 . . . Sn4
(4.1)
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APPENDIX 
 

A.1  CANCER STUDIES 
 

 
 
 
 
 
 

Cancer Type Author Year Array Type 

Prostate cancer Dhanasekaran 2001 cDNA 

 Luo 2001 cDNA 

 Magee 2001 Affy HG6800 

 Welsh 2001 Affy HU95A 

 Ernst 2002 Affy HU95A 

 Luo 2002 Affy HU95A 

 Singh 2002 Affy HU95Av2 

 Henshall 2003 Affy Eos Hu03 

 Chen 2004 Affy HU95Av2 

 Lapointe 2004 cDNA 

 Stuart 2004 Affy HU95Av2 

 Yu 2004 Affy HU95A 

 Best 2005 Affy HU133A 

 Varambally 2005 Affy HU133 

 Nanni 2006 Affy Hu133A 

 Tomlins 2007 cDNA 

Lung cancer Bhattacharjee 2001 (Harvard) Affy HU95A 

 Garber 2001 (Stanford) cDNA 

 Beer 2002 (Michigan) Affy HG6800 

 Gordon 2002 Affy HU95A 

 Wigle 2002 cDNA 

 Michael 2004 cDNA 

 Magda 2005 Affy HU133A 

 Washi 2005 Affy HU133A 

 Gemma 2006 Affy HU133A 
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Cancer Type Author Year Array Type

Breast cancer Perou 1999 cDNA

Perou 2000 cDNA

Sorlie 2001 cDNA

vant Veer 2002 cDNA

Chang 2003 Affy HU95Av2

Sorlie 2003 cDNA

Sotiriou 2003 cDNA

Acevedo 2004 Affy HU133A

Frasor 2004 Affy HU95A

Ma 2004 Agilent

Troester 2004 cDNA

Farmer 2005 Affy HU133A

Moggs 2005 Affy HU133A

Rouzie 2005 Affy HU133A

Yang 2005 Affy HU133A

Bild 2006 Affy HU95A

Colon cancer Alon 1999 Affy HU6800

Agrawal 2002 Affy HU95A

Fleet 2003 Affy HU95A

Anderle 2004 Affy HU133A

Bertucci 2004 Affy

Bertucci 2004 Affy

Bandres 2005 Affy

Barrier 2005 Affy HU133A

Dommels 2005 Affy

West 2005 Affy HU133Plus2

Koinuma 2006 Affy HU133A

Whitney 2006 Affy HU133
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Cancer Type Author Year Array Type

Leukemia cancer Cheok 2003 Affy HU95A

Yagi 2003 Affy HU95A

Addya 2004 Affy HU133A

Haslinger 2004 Affy HU95A

Scandura 2004 Affy HU133A

Stegmaier 2004 Affy HU133A

Crossman 2005 Affy HU95A

Depitta 2005 cDNA

Dik 2005 Affy HU133A

Falt 2005 Affy HU95

Gutierrez 2005 Affy HU133A

Neumann 2005 Affy HU-Focus

Raetz 2006 Affy HU133A

A.2 INTERQUARTILE RANGE, IQR

In descriptive statistics, the interquartile range (IQR), also called the midspread, middle

fifty and middle of the number of observations, is a measure of statistical dispersion, being

equal to the difference between the third and first quartiles.

Unlike the (total) range, the interquartile range is a robust statistic, having a breakdown

point of 25%, and is thus often preferred to the total range. The IQR is used to build box

plots, simple graphical representations of a probability distribution.

For a symmetric distribution (so the median equals the midhinge, the average of the first

and third quartiles), half the IQR equals the median absolute deviation (MAD). The median

is the corresponding measure of central tendency.
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Figure 10: Interquartile range (IQR).

Boxplot (with an interquartile range) and a probability density function (pdf) of a Normal

N(0,σ2) Population
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