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IDENTIFICATION AND ASSESSMENT OF LONGITUDINAL

BIOMARKERS USING FRAILTY MODELS IN SURVIVAL ANALYSIS

Feng-shou Ko, PhD

University of Pittsburgh, 2006

A biomarker is a measurement which can be used as a predictor or sometimes even a surro-

gate for a biological endpoint that directly measures a patient’s disease or survival status.

Biomarkers are often measured over time and so are referred to as longitudinal biomarkers.

Biomarkers are of public health interest because they can provide early detection of life

threatening or fatal diseases.

It is important in public health to be able to identify biomarkers to predict survival for

patients because it can reduce the time and cost necessary to resolve the study question or

used to identify subsets of patients who would be appropriate candidates for the administra-

tion of a targeted therapy. In this dissertation, we introduce a method employing a frailty

model to identify longitudinal biomarkers or surrogates for a time to event outcome. Our

method is an extension of earlier work by Wulfson, Tsiatis, and Song where it was assumed

that the event times have the same baseline hazard. In our method, we allow random effects

to be present in both the longitudinal biomarker and underlying survival function. The

random effect in the biomarker is introduced via an explicit term while the random effect in

the underlying survival function is introduced by the inclusion of frailty parameters into the

model. We use simulations to explore how the number of individuals, the number of time

points per individual and the functional form of the random effects from the longitudinal

biomarkers influence the power to detect the association of the longitudinal biomarker and
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the survival time. We also explore effect of missingness on how a biomarker predicts a time

to event outcome. We conclude that for a given sample size, the biomarker effectiveness for

relatively small numbers of subjects and large numbers of observed time points is better than

for relatively large numbers of subjects and small numbers of observed time points. We also

conclude that when the missing data mechanism is missing at random (MAR), our method

works reasonably well. However, when the missing data mechanism is non-ignorable, our

method doesn’t perform well in determining whether or not potential biomarkers are good

predictors of a time to event outcome. Finally, we apply our method to liver cirrhosis data

and conclude that prothrombin is a good predictor of time to liver cirrhosis and thus, can

be used as a potential surrogate for liver failure.

Key Words: surrogate; biomarker; multivariate survival; frailty model.
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1.0 INTRODUCTION

A biological characteristic that is a surrogate for an outcome of interest is referred to as

a biomarker. In a clinical trial, it is often useful to be able to identify a biomarker as a

surrogate for the outcome of interest because the use of the surrogate can reduce the time

and cost necessary to resolve the study question or used to identify subsets of patients who

would be appropriate candidates for the administration of a targeted therapy. Longitudinal

data analysis and survival analysis have been used broadly as individual methods to analyze

biological and medical studies. In recent years, some investigators have employed these two

statistical methodologies in a combined approach to analysis. Joint modeling methods are

the potential to exploit the longitudinal biomarker as a surrogate for the subsequent survival.

Individual-level surrogacy for a survival endpoint will be focused in this study. A score test

for association between survival time and biomarker values is developed.

Traditionally, a longitudinal biomarker is used for monitoring survival based on the

assumption that the baseline hazard for each observation is homogeneous. However, many

studies show that the assumption that the survival time for each observation is homogeneous

is not adequate. For example, the survival analysis of twins study, the occurrence of the

events such as the death is not based on the homogeneous baseline hazard. Other examples

include the study of the diabetic retinopathy and the recurrent event study, the occurrence

of the event is also not based on the homogeneous baseline hazard. Hence, it is necessary to

develop a more adequate method to deal with the studies about the longitudinal biomarker

as the surrogate, which is used for monitoring the survival situation for the patients when

the association of the observation times is dependent.
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In recent years, frailty models are used to deal with a heterogenous hazard in survival

analysis. Frailty models are basically random effects models for the survival data, where

the random effects are specified by means of the hazard function. Gamma, Weibull, and

lognormal distribution are usually assumed as the distribution of frailty models.

The efficacy of individual-level biomarkers is also considered. From one point of view, an

effective surrogate is one for which the conditional residual lifetime distribution accounting

for biomarkers information at an interim time is more strongly concentrated around the

actual, but as-yet unobserved, survival time than is the marginal residual lifetime distribution

ignoring the biomarker data. When a biomarker is considered to be a surrogate, a statistical

method is necessary to determine the effectiveness of the surrogate. An effective surrogate is

very useful for the investigator to predict the patients’ survival status. In survival analysis,

predictive accuracy for the individual patients should be distinguished from the accuracy of

survival function estimates. The appropriate method to determine an effective surrogate is

very important for the multivariate survival analysis.

In this dissertation, we will try to address the following problems:

1. How to determine a longitudinal biomarker as a surrogate for survival with heterogeneous

hazard

2. How to deal with measurement errors for the covariates in the Cox model

3. Finding a joint model for the combined analysis of survival with heterogeneous hazard

and longitudinal data

4. Effectiveness of biomarkers as surrogate endpoints

Accordingly, the specific goals of this dissertation are to:

1. Extend the method proposed by Henderson, Diggle, and Dobson (2002) for survival with

heterogeneous hazard data will be developed.

2. Develop the joint likelihood function which combines the likelihood functions of the

longitudinal biomarkers and survival with heterogeneous hazard distribution.

3. Develop a survival with heterogeneous hazard model based on a frailty model.

4. Incorporate frailty into the semi-parametric hazard model (Cox model); and

2



5. Develop the methodology to determine the effectiveness of potential longitudinal biomark-

ers for survival with heterogeneous hazard data.
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2.0 REVIEW OF KEY LITERATURE

2.1 LONGITUDINAL BIOMARKER AS A SURROGATE

The idea of using one endpoint as a surrogate for a later occurring endpoint has been explored

extensively over the last 25 years. Paterson, et al. (1985) [1] discussed the association

between the response to treatment and survival of patients who have metastatic breast

cancer. In their study, the response to treatment was classified into complete response,

partial response, stable disease, and progressive disease. They found that survival time

among the patients with different responses to treatment were not significantly different

even when controlling for menopausal status and treatment method except patients who

were classified into progressive disease. Patients who were classified as having progressive

disease had a shortened survival time. They suggested that the assessment of a treatments

worth should be based as much on the patients subjective feeling of well-being as on the

magnitude of the tumor response.

Gail [2] published a paper evaluating serial cancer markers in patients at risk of recurrent

disease. He showed that high levels of carcinoembryonic antigen (CEA) are associated with

increased risk of death in patients with resected colorectal cancer. He also defined time

dependent functions, Z (t), which summarize the marker history up to time t. These functions

were tested to determine whether the marker was related to risk of death (or recurrence).

A parameter, γ, denoted the value of a marker at time t and the marker history for an

individual was defined as M = {γ(t) : 0 ≤ τ ≤ t}. He specified the following definitions of Z

(t):
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Z1 (t) = γ(t);

Z2 (t) = γ(t− ω);

Z3 (t) = 1 if sup γ(t) ≥ η, 0 ≤ τ ≤ t, 0 otherwise; and

Z4 (t) = {γ(t)− γ(t− ω)}/∆.

Z1 (t) is the simplest function and may be used to study the question, “Are those with

elevated marker values at time t at higher risk at a given time than those without elevated

marker values?” Z2 (t) may be used to test whether those with elevated marker values at

time t− ω at higher risk at time t. Z3 (t) could be used to assess if any previous elevation

of the marker increases risk, and Z4 (t) could be used to see if a high rate of increase in the

marker has grave prognostic significance. Gail commented about some generic features of

the serial marker data problem:

(1) The risk of death may be influenced by other prognostic factors which could obscure

the effect of the serial marker;

(2) There is often insufficient information to justify a particular parametric model for an

analysis;

(3) The time to death data are variably censored on the right;

(4) The marker value γ(t) is only measured at a finite number of points; and

(5) Occasionally one has no idea what value to assign γ(t) or Z (t) because no proximate

values are available.

Gail provided some methods to solve these problems. The first three problems arise

whenever one attempts a covariate analysis on survival data, and the semiparametric ap-

proach of Cox is well adapted to these problems. Other prognostic factors can be adjusted

by stratification and allow a separate nuisance hazard function for each stratum. Problem

(4) requires the data analyst to define an interpolation convention to assign values γ(t) for

t intermediate times between observations. The partial likelihood ratio method of Cox is

particularly useful for problem (5), because it allows patients to contribute to “risk sets”

when, and only when, a valid marker measurement is available. “Proximate” in (5) means

we’re interested in the neighborhood area around the interest of time point t or t - ω. That
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is, the interval of (t−∆t, t+∆t) or (t−ω−∆t, t−ω+∆t). A marker measurement, γ(t), is

said to be censored if no proximate measurements are available; otherwise, γ(t) is said to be

a valid marker measurement. Likewise, the experiment yields a valid marker measurement or

censored functional measurement according as sufficient proximate observations are or are

not available to determine Z (t). For the same set of marker measurements, some functions,

such as the slope Z4(t), may be censored and others, such as Z1(t) may be valid.

Tsiatis, DeGruttola, and Wulfsohn tried to find a good surrogate marker to evaluate new

treatments in acquired immune deficiency syndrome (AIDS) clinical trials [3]. The Cox pro-

portional hazards regression model was used to study the relationship between CD4 counts

as a time-dependent covariate and survival. The authors indicated that a good surrogate

biomarker should have the following properties: 1) it should be related to prognosis; 2) the

distribution of the values for the biomarker should be different for individuals receiving an

effective treatment versus those receiving a placebo; and 3) the beneficial effects of a good

treatment should be mediated through its effect on the marker. In other words, patients

with the same value of a biomarker should have the same prognosis whether they are receiv-

ing a treatment or a placebo. In such a case, the better prognosis associated with a good

treatment could be explained by the change in the value of the marker for that treatment.

The authors also commented that the standard methods for estimating the parameters in the

Cox model by maximizing the partial likelihood are not appropriate because the CD4 counts

are measured only periodically and with substantial measurement error because of biological

variation. They proposed a two-stage method approach to estimate the parameters. In the

first stage, the longitudinal CD4 count data are modeled using a repeated measures random

components model. In the second stage, methods for estimating the parameters in a Cox

model when the data are assumed to be of this form are derived. Tsiatis, DeGruttola, and

Wulfsohn also used the new methods to deal with the questions about the missing data.

They analyzed the CD4 data from a randomized clinical trial of AIDS patients where half

of the patients were randomized to receive Zidovudine (ZDV) and the other half of them

were randomized to receive a placebo. The results of the study showed that the CD4 counts
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might not serve as a useful surrogate biomarker for assessing treatments for the population

of patients.

Weiss, Bunce, and Hokanson commented that the comparison of survival distributions be-

tween responding and non-responding patients can be difficult in interpretation and method-

ology [4]. The statistical test only shows the association between response and survival but

it does not mean that the relationship of the cause and effect exists since the assignment of

patients into groups is not random. Because this association might have no relevance to the

efficacy of treatment, it is difficult to interpret the efficacy of treatment by the comparing

the survival distributions of responding and non-responding patients. Besides, variability

in the definition of a non-responder and the handling of early deaths could cause different

conclusions concerning survival.

Wittes, Lakatos, and Probstfield discussed surrogate endpoints for cardiovascular dis-

ease in clinical trials [5]. They defined a surrogate endpoint as an endpoint measured as

an alternative to some other ”true endpoint”. A surrogate is especially useful if it is easily

measured and highly correlated with the true endpoint. Often, the true endpoint is one with

clinical importance to the patient, for example, mortality or a major clinical outcome, while

a surrogate is one biologically closer to the process of disease, for example, cardiac ejection

fraction. Use of the surrogate can often lead to dramatic reductions in sample size and

much shorter studies than use of the true endpoint. Several problems common in trials with

surrogate endpoints are discussed in the paper. Most important is the effect of missing data,

especially in the face of informative censoring. Wittes, Lakatos, and Probstfield suggested

three possible methods for dealing with missing endpoints in clinical trial. First, analyze

the data available and ignore the fact that some observations are missing. This is the most

common approach and has large potential bias. Second, use a formal statistical method to

attempt to reduce the bias caused by informative censoring. The simplest approach is to

assign a score to the missing value. More complicated methods are under investigation, but

as mentioned above, have little practical use if a large proportion of data is missing. Third,

use an informal rule to penalize a study with missing data or as part of a sensitivity analysis.
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They also commented on the heterogeneity of variance as another problem common to many

surrogate endpoints and commented that the required sample size is often too small to detect

infrequent but major adverse effects of therapy.

A major obstacle in the study of the etiology of chronic disease and the development

of effective prevention is the long latent period between the initiation of the disease and its

diagnosis. Prospective studies relating possible risk factors to disease or investigating the

effects of an intervention on disease incidence therefore require extended periods of follow-

up. Such studies are costly. Freedman, Graubard, and Schatzkin [6] defined intermediate

endpoints (IE) that are biological markers or events that may be assessed or observed prior

to the clinical appearance of the disease, and that bear some relationship to the development

of that disease. In the study of chronic disease, the use of IE can shorten the duration of

follow-up time needed to assess the efficacy of an intervention or the association of a risk

factor with outcome. They listed four points about how intermediate points may be studied

and validated. First, intermediate endpoints should usually be validated within prospective

studies, either observational cohort studies or experimental intervention trials. Second, in a

cohort study we need to examine the exposure–IE–disease relationship; in an intervention

study the intervention–IE–disease relationship should be examined. Third, intermediate end-

points for a disease can only be validated in reference to a given exposure (or intervention).

Once validated for that exposure the IE may be considered valid for other exposures that

affect the disease through the same pathway. Fourth, the criterion for validation is that the

exposure (or intervention) effect on disease, adjusted for the intermediate endpoint, is equal

to zero. Freedman, Graubard, and Schatzkin also analyzed the data from the lipid research

clinics coronary primary prevention trial to examine whether serum cholesterol level is an

intermediate endpoint for coronary heart disease (CHD) by investigating the effect of the

cholesterol lowering drug cholestyramine on CHD incidence adjusted for serum cholesterol

levels. They found serum cholesterol level is not a good intermediate endpoint for coronary

heart disease (CHD).
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In 1992, Pepe [7] discussed inference using surrogate outcome data and a validation sam-

ple. In her study, most subjects only had covariates and surrogate response data. Few sub-

jects had complete data including true outcome response. Parametric and semi-parametric

methods were used to estimate such data.

Buyse, et al. [8] discussed validating surrogate endpoints via meta-analyses of random-

ized experiments and commented on the definition of a surrogate as presented by Prentice

[9]. Prentice had defined a surrogate endpoint as response variable for which a test of the

null hypothesis of no relationship to the treatment groups under comparison is also a valid

test of the corresponding null hypothesis based on the true endpoint. If T and S are random

variables that denote the true and surrogate endpoints, respectively, and Z is an indicator

variable for treatment, then, using the notation of Buyse et al., Prentice’s definition can be

written as follows: f (S| Z) = f (S) iff f (S| T) = f (S), where f (S) denotes the probability

distribution of the surrogate endpoint, f (S| T) denotes the probability distribution of the

surrogate endpoint conditional on the value of the true endpoint, and f (S| Z) denotes the

probability distribution of S conditional on the value of Z, an indicator variable for treat-

ment. As such, the definition is of limited value since a direct verification that a triplet

(T, S, Z) fulfills the definition would require a large number of experiments to be available

with information on the triplet. Operational criteria are therefore needed to check if Pren-

tices definition is fulfilled. Buyse et al., commented that four operational criteria have been

proposed to check if the triplet (T, S, Z) fulfills the definition. The first two criteria are:

1) f (S|Z) 6= f (S) and; 2) f (T|Z) 6= f (T). Both of these criteria are consistent with Pren-

tice’s definition. In practice, due to lack of power, the validation of these criteria requires

Z to have an effect on both T and S. It has been pointed out that requiring Z to have a

statistically significant effect on T may be excessively stringent, because in that case, from

the limited perspective of significance testing, there would no longer be a need to establish

the surrogacy of S. The two other criteria are: 3) f (T|S) 6= f (T) and 4) f (T|S, Z) = f

(T|S). It can be proven that criterion #3 is sufficient for Prentices definition in all cases,

and criterion #4 is sufficient for binary endpoints but not in general. These four operational
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criteria are informative and will tend to be fulfilled for valid surrogate endpoints, but they

should not be regarded as strict criteria. Criterion #4, f (T|S, Z) = f (T|S) captures the

essential notion of surrogacy by requiring that the treatment is irrelevant for predicting the

true outcome, given the surrogate. Buyse et al. commented that f (T|S, Z) = f (T|S) raises

a conceptual difficulty in that it requires the statistical test for treatment effect on the true

endpoint to be non-significant after adjustment for the surrogate. The non-significance of

this test does not prove that the effect of treatment upon the true endpoint is fully captured

by the surrogate. However, it is proposed to calculate the proportion of the treatment effect

explained by surrogate. A good surrogate is one for which this proportion explained (PE) is

close to unity based on this concept (f (T|S, Z) = f (T|S) would require that PE = 1). Then

they argued this concept and proposed an alternative. They used two related quantities

to replace PE. One is the relative effect (RE) that is the ratio of the effects of treatment

upon the final and the surrogate endpoint. The other is the treatment-adjusted association

between the surrogate and the true endpoint, ρz.

Buyse and Molengerghs commented criteria for the validation of surrogate endpoints in

randomized experiments [10]. They focused on the cases where the surrogate and the final

endpoints were both binary and normally distributed. Letting T and S be random variables

that denote the true and surrogate endpoint, respectively, and Z be an indicator variable for

treatment, Prentice’s criteria are fulfilled if Z has a significant effect on T and on S, if S has

a significant effect on T, and if Z has no effect on T given S. Freedman relaxed the latter

criterion by estimating PE, the proportion of the effect of Z on T that is explained by S,

and by requiring that the lower confidence limit of PE be larger than some proportion, say

0.5 or 0.75. This condition can only be verified if the treatment has a massively significant

effect on the true endpoint, a rare situation. They argued that two other quantities must

be considered in the validation of a surrogate endpoint: RE, the effect of Z on T relative to

that of Z on S, and γz, the association between S and T after adjustment for Z. A surrogate

is said to be perfect at the individual level when there is perfect association between the

surrogate and the final endpoint after adjustment for treatment. A surrogate is said to be
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perfect at the population level if RE is 1. A perfect surrogate fulfills both conditions, in

which case S and T are identical up to a deterministic transformation. Fieller’s theorem was

used for the estimation of PE, RE, and their respective confidence intervals. Logistic regres-

sion models and the global odds ratio models were used for binary endpoints. Linear models

were employed for continuous endpoints. In order to be of practical values, the validation of

surrogate endpoints was shown to require large numbers of observations.

In 2000, Gail, et al., discussed the strengths and weaknesses of the meta-analytic ap-

proach to estimate the effect of a new treatment on a true clinical outcome measure, T, from

the effect of treatment on a surrogate response, S [11]. The meta-analytic approach uses

data from a series of previous studies of interventions similar to the new treatment. The

data are used to estimate relationships between summary measures of treatment effects on

T and S that can be used to infer the magnitude of the effect of the new treatment on T

from its effects on S. The class of models is extended to cover a broad range of applications

in which the parameters define features of the marginal distribution of (T, S). A bootstrap

procedure is also presented to allow for the variability in estimating the distribution that

governs the between-study variation. Gail, et al. noted that ignoring this variability can

lead to confidence intervals that are much too narrow. They also noted that, compared to

direct measurement on T , the meta-analytic approach has limitations including the likely

serious loss of precision and difficulties in defining the class of previous studies to be used to

predict the effects on T for a new intervention.

Bruzzi commented on phase II studies that used tumor response to chemotherapy as the

primary endpoint to evaluate the anti-tumor activity of new drugs [12]. He concluded that

tumor response is indeed a valid surrogate endpoint of survival in colorectal cancer, and that

there is strong indirect evidence supporting a similar role of tumor response in breast cancer.

The author commented that this biomarker may be a good candidate for use as a surrogate

in the trial of metastatic breast cancer to aid in decision for testing patients.
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2.2 MEASUREMENT ERRORS FOR THE COVARIATES IN THE COX

MODEL

Hu, Tsiatis, Davidian commented that estimating the parameters in the Cox model when

covariate variable are measured with error [13]. The Cox proportion hazards model is com-

monly used to model survival data as a function of covariates. Because of the measuring

mechanism or the nature of the environment, covariates are often measured with error and

are not directly observable. A naive approach is to use the observed values of the covari-

ates in the Cox model, which usually produces biased estimates of the true association of

interest. An alternative strategy is to take into account the error in measurement, which

may be carried out for the Cox model in a number of ways. They examined several such

approaches and compare and contrast them through several simulation studies. They intro-

duced a likelihood-based approach, which they referred to as the semiparametric method,

and showed that this method was an appealing alternative. The methods were applied to

analyze the relationship between survival and CD4 count in patients with AIDS.

Tsiatis and Davidian [14] discussed a semiparametric estimation for the proportional

hazards model with longitudinal covariates measured with error. They commented that

a common objective in longitudinal studies is to characterise the relationship between a

failure time process and time-dependent covariates are generally available as longitudinal

data collected periodically during the course of the study. They assumed that these data

follow a linear mixed effects model with normal measurement error and that the hazard of

failure depends both on the underlying random effects describing the covariate process and

other time-independent covariates through a proportional hazards relationship. A routine

assumption is that the random effects are normally distributed; however, this need not hold

in practice. Within this framework, they developed a simple method for estimating the

proportional hazards model parameters that required no assumption on the distribution of

the random effects. Large-sample properties were discussed, and finite-sample performance

is assessed and compared to competing methods via simulation.

12



Liu, Mazumdar, Stone, Dew, Houck, Reynolds [15] commented Accounting for covariate

measurement error in a Cox model analysis of recurrence of depression. When a covariate

measured with error is used as a predictor in a survival analysis using the Cox model,

the parameter estimate is usually biased. In clinical research, covariates measured without

error such as treatment procedure or sex are often used in conjunction with a covariate

measured with error. In a randomized clinical trial of two types of treatment, we account for

the measurement error in the covariate, log-transformed total rapid eye movement (REM)

activity counts, in a Cox model analysis of the time to recurrence of major depression in an

elderly population. Regression calibration and two variants of a likelihood-based approach

are used to account for measurement error. The likelihood-based approach is extended to

account for the correlation between replicate measures of the covariate. Using the replicate

date decreases the standard error of the parameter estimate for correlation between replicates

can affect results in a Cox model analysis and should be accounted for. In the depression

data, these methods render comparable results that have less bias than the results when

measurement error is ignored.

2.3 JOINT MODELS FOR SURVIVAL AND LONGITUDINAL DATA

ANALYSIS

Wulfsohn and Tsiatis discussed a joint model for survival and longitudinal data measured

with error [16]. They commented that the relationship between a longitudinal covariate

and a failure time process can be assessed using the Cox proportional hazards regression

model. They considered the problem of estimating the parameters in the Cox model when

the longitudinal covariate is measured infrequently and with measurement error. They as-

sumed a repeated measures random effects model for the covariate process. Estimates of the

parameters were obtained by maximizing the joint likelihood for the covariate process and

the failure time process. This approach used the available information optimally because
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they use both the covariate and survival data simultaneously. Parameters were estimated

using the expectation-maximization algorithm. They argued that such a method is supe-

rior to naive methods where one maximizes the partial likelihood of the Cox model using

the observed covariate values. It also improves on two-stage methods where, in the first

stage, empirical Bayes estimates of the covariate process were computed and then used as

time-dependent covariates in a second stage to find the parameters in the Cox model that

maximize the partial likelihood.

Henderson, Diggle, and Dobson discussed the joint modeling of longitudinal measure-

ments and event time data [17]. A class of models is formulated for the joint behavior of a

sequence of longitudinal measurements and an associated sequence of event times, including

single-event survival data. Special cases of the model class are discussed in detail and an es-

timation procedure which allows the two components to be linked through a latent stochastic

process is described.

Huang and Louis commented nonparametric estimation of the joint distribution of sur-

vival time and mark variables [18]. In many applications, variables of interest were marks

of the endpoint which were not observed when the survival time was censored. They fo-

cused on nonparametric estimation of the joint distribution and summaries of survival time

and mark variables. They established a representation of the joint distribution function

through the cumulative mark-specific hazard function, which was analogous to the prod-

uct integral representation of univariate survival function. They identified a basic structure

common to various applications, proposed nonparametric estimators and showed that they

examined the likelihood. They formulate the problem in the marked point process frame-

work and study both finite and large-sample properties of the estimators. We showed that

the joint distribution function estimator was nearly unbiased, uniformly strongly consistent

and asymptotically normal. They also derived asymptotic variances for the estimators and

propose sample-based variance estimates. Numerical studies demonstrated that both the es-

timators and their variance estimates performed well for practical sample sizes. They outline

an application strategy.
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Lin, Turnbull, McCulloch, and Slate commented latent class models for joint analysis of

longitudinal biomarker and event process data [19]. They commented that latent class models

that incorporated both a longitudinal biomarker process and an event process offered a way to

handle additional heterogeneity, to uncover distinct subpopulations, to incorporate correlated

nonnormally distributed outcomes, and to classify individuals into risk classes. Their latent

class joint model can aid the prediction of outcome variable probability given the longitudinal

biomarker information available on an individual up to any date. The proposed model easily

accommodated highly unbalanced longitudinal data and recurrent events. There were two

levels of structure in the latent class joint model. First, the uncertainty of latent class

membership was specified through a multinomial logistic model. Second, the class-specific

marker trajectory and event process were specified parametrically and semiparametrically,

under the assumption of conditional independence given the latent class membership. They

used a likelihood approach to obtain parameter estimates via the EM algorithm.

2.4 EFFECTIVENESS OF A BIOMARKER AS A SURROGATE

Van der Laan, Hubbard, and Robin discussed locally efficient estimation of a multivari-

ate survival function in longitudinal studies [20]. They considered estimation of the joint

distribution of multivariate survival times T = (T1, . . . , Tk), which were subject to right cen-

soring by a common censoring variables C. Two estimators were proposed: an initial inverse-

probability-of-censoring weighted (IPCW) estimator, and a 1-step estimator. Both estima-

tors incorporated information on available time-independent and time-dependent prognostic

factor (covariate) data. The IPCW estimator was consistent and asymptotically normal

(CAN) under coarsening at random (CAR) and a correct specification of a model for the

hazard of censoring given the past covariate and failure data. The 1-step estimator was a

locally efficient doubly robust estimator. That is, (i) it was CAN under the assumption of

CAR and either (but not necessarily both) correct specification of a model for the hazard
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of censoring given the past or correct specification of a model for the conditional distribu-

tion of T given past failure and covariate information, and (ii) it was efficient when both

these models are correctly specified. The proposed methodology did not required that the

time variables T1, . . . , Tk should be ordered, although their methods covered this important

special case. In particular, their estimators can be used to estimate the gap time distribu-

tions associated with an ordered series of events. The proposed methodology improved over

currently available approached in a number of ways. Specially, when censoring and failure

were dependent because the hazard of censoring depended on both past failure and covariate

history, our one-step estimator is the only estimator with the double robustness property.

When censoring can be assumed to be independent of the failure and covariate process, our

locally efficient one-step estimator did not require smoothing and so will perform well in

moderate size samples even if k is large; further unlike all previous estimators, their esti-

mator exploited the information available in past covariate as well as failure history and so

will be efficient (nearly efficient) even when the components of T were highly dependent,

whenever the specified model for the conditional distribution of T given past failure and

covariate information was correct (nearly correct).

In 2003, Dobson and Henderson commented diagnostic for joint longitudinal and dropout

time modeling [21]. There were three aims to their paper. The first was to propose an ex-

ploratory method designed to assess whether there was any association between responses

and dropout time before any sophisticated and computationally intensive joint modeling

was carried out. They argued that if no systematic differences between subjects who did

or did not drop out can be found in the observed data, then joint modeling is unlikely to

be worthwhile. This idea can be extended to investigate differences between subjects with

different reasons for dropout. Often the reason for dropout from a longitudinal trial was

not stated, but sometimes a reason was given and can be classified as either potentially

informative or otherwise. For instance, being too ill to continue was clearly informative,

whereas leaving the study region may not be. They assumed that there were two categories

of withdrawal, one which might be related to the unobserved response of interest (potentially

16



informative dropout), and one which was known or assumed to be independent of the unob-

served response (assumed noninformative dropout). With minor modifications, the methods

can be adapted either to unclassified dropout reasons or to situations where there were more

than two dropout categories of interest. The second aim was to suggest conditional residual

analysis methods for longitudinal data with dropout. They showed that residuals between

observed and expected responses after fitting a joint model can be markedly affected by

knowledge of the dropout time and type, which therefore should properly be taken into ac-

count in an assessment of model adequacy. The final aim was to advocate and illustrate ideas

of case influence for joint modeling. Full case deletion was unrealistic in practice, because

of the computing time required, and some form of approximation was essential. They pre-

sented a variety of informal graphical procedures for diagnostic assessment of joint models for

longitudinal and dropout time data. A random effects approach for Gaussian response and

proportional hazards dropout time was assumed. They considered preliminary assessment

of dropout classification categories based on residuals following a standard longitudinal data

analysis with no allowance for informative dropout. Residual properties conditional upon

dropout information were discussed and case influence was considered. The proposed meth-

ods do not require computationally intensive methods over and above those used to fit the

proposed model.
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3.0 METHODS

3.1 MODEL AND NOTATION

The method of Henderson, Diggle, and Dobson [22] was used to analyze follow-up data

dealing with the longitudinal measurement of a time-varying biomarker. They let Yi(t)

represent the underlying biomarker vector of the ith individual at time t, so that the equation

can be written

Yi(t) = x′i1(t)β1 + Wi(t) + ei(t).

where xi1(t) is a p1 × 1 vector of explanatory variables, and Wi(t) and ei(t) are zero-mean

random processes. Since the biomarkers are sampled at discrete time points and assuming

that the Yi are from a normal distribution, a discrete version of the model can be re–written

as

Yij = x′ij1β1 + Wij + eij, i = 1, 2, . . . ,m; j = 1, 2, . . . , ni (3.1)

where Wij is the value of a zero-mean Gaussian random effect for the ith individual at time

j and eij is a zero-mean Gaussian measurement error. The j’s in the discrete version of the

model refer to the last biomarkers observed at or before time t. The errors, eij, are assumed

here to be mutually independent and the within individual correlation in Yij arises through

serial correlation in the random effect, Wij.
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It is assumed that survival time is associated with the longitudinal response through the

effect of the latent process, Wij, but is otherwise conditionally independent. A semipara-

metric proportional hazards model is also assumed and the density function associated with

the hazards model is presented as follows:

f(tij) = S(tij)λ0(tij) exp{x′ij2β2 + γWij} (3.2)

where S(tij) is a predictable survival function, λ0(t) is an unspecified baseline hazard, and

xij2 is a p2 × 1 vector of explanatory variables. The generic notation T, Y and W are used

for survival time, the longitudinal response and the latent process, respectively.

3.2 A SCORE TEST FOR ASSOCIATION BETWEEN LONGITUDINAL

BIOMARKER VALUES AND SURVIVAL TIME FUNCTION

The score test used for testing the parameters of equation (3.2) and is based on separate

analyses of Y and T under the null hypothesis, H0 : γ = 0 and it is assumed that Y is

multivariate Gaussian and T follows a proportional hazards model. Let the combined vector

of unknown parameters be (θ, γ,β2, A0), where θ contains all parameters of the distribution

of Y and let the maximum follow-up time be t. A0(t) denotes the cumulative baseline hazard.

In practice, the usual maximum partial likelihood estimator β̂2 replaces the unknown β2. A0

(t) is replaced by the non-parametric maximum likelihood estimator (under H0) as follows:

Â0(t) =

∫ t

0

J(u)∑m
i=1 Si(u)e

x′
ij2β2

dN(u)

where N(u) =
∑
Ni(u) and J(u) = I(

∑
Si(u) > 0). If W is known, the conditional

likelihood of the survival data can be written as follows:

Lγ = (
∏

j

∏
i

(ex
′
ij2β2+γWij)∆Ni(t)) exp

{
−
∫ τ

0

S(0)
γ (t,W,β2)dA0(t)

}
, (3.3)

where S
(0)
γ (t,W,β2) =

∑m
i=1 Si(tij)e

x′
ij2β2+γWij
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Let

Uγ(τ) = logLγ =
m∑

i=1

{∫ τ

0

W (tij)dNi(t)−
∫ τ

0

W (tij)S(tij)e
x′

ij2β2+γWijdA0(t)

}
(3.4)

and

∂Lγ

∂γ
= Uγ(τ) Lγ

(
because Uγ(τ) =

∂logLγ

∂γ
=

∂Lγ

∂γLγ

)
. (3.5)

The marginal likelihood of the longitudinal measurements is denoted by l1(θ, Y ) and the

overall log likelihood is written as follows:

l = l1(θ, Y ) + logEW |Y [Lγ]

which the derivative with respect to γ is as follows:

∂l

∂γ
=
EW |Y [Uγ(τ)Lγ]

EW |Y [Lγ]
(3.6)

The score statistic is shown as follows:

Uγ(τ) = EW |Y [U0(τ)]

= EW |Y [
m∑

i=1

{∫ τ

0

W (tij)dNi(t)−
∫ τ

0

W (tij)S(tij)e
x′

ij2β2dA0(t)

}
]

=
m∑

i=1

EW |Y [W (tij)]dMi(t) (3.7)

where Mi(t) = Ni(t) − Λi(t) = Ni(t) −
∫ tj

0
Si(u)e

x′
ij22dA0(u) is the usual counting process

martingale. And U0(τ) is Uγ(τ) under γ = 0. If U (t) is considered a particular value of

a process {U(s) : s > 0} and W is known it is predictable, then the variance of U (s) as

follows:
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V (s) =
m∑

i=1

∫ s

0

EW |Y [W (tij)]
2dΛi(t) (3.8)

if the W (tij) between individuals are independent;

or

V (s) =
m∑

i=1

{∫ τ

0

EW |Y [W (tij)]
2dΛi(t)−

∫ τ

0

∫ τ

0

CovW |Y (W (tij),W (sij))dMi(t)dMi(s)

}
(3.9)

if the W (tij) between individuals are not independent.

According to the martingale central limit theorem under mild conditions, U(s)/[V (s)](1/2)

is asymptotically N (0, 1) under H0 as m→∞.

3.3 LONGITUDINAL BIOMARKER FOR SURVIVAL

After the longitudinal biomarker is identified and fitted to the data, the fitted model is then

considered to make inference about individuals survival at the future time t = t2 given a

previous time t = t1. If Yi01 is a set of longitudinal measurements on the ith individual over

the interval [0, t1] then the survival function is wrritten as follows:

S(t2 | t1,Yi01) = P (T > t2 | T > t1,Yi01).

Evaluation of the conditional probability of surviving to t2 involves the expectation with

respect to the unobserved latent process. Let Wi01 and Wi02 be the values of W(tij) within

the intervals [0, t1] and [0, t2], respectively. Then S(t2 | t1,Yi01) can be written as

S(t2 | t1,Yi01) =

∫
P (T > t2 | T > t1,W02)f(W02 | T > t1,Yi01)dW02

=

∫
P (T > t2 | T > t1,W02)P (T > t1 | W02)f(W02 | Yi01)dW02

P (T > t1 | Yi01)

=

∫
P (T > t2 | W02)f(Yi01 | W02)f(W02)dW02∫
P (T > t1 | W02)f(Yi01 | W02)f(W02)dW02
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=

∫
P (T > t2 | W02)f(Yi01 | W01)f(W02)dW02∫
P (T > t1 | W01)f(Yi01 | W01)f(W01)dW01

. (3.10)

If we ignore any information in Yi01, the conditional probability can be written as:

S(t2 | t1) =

∫
P (T > t2 | W02)f(W02)dW02∫
P (T > t1 | W01)f(W01)dW01

(3.11)

The term f(Yi01 | W02) is a weighting factor which reflects the relevant information in

Yi01. If it is possible to completely determine the true value W0
02 of W02 from Yi01, then

f(Yi01 | W01)f(W02) and f(Yi01 | W01)f(W01) are zero under W0
02 6= W02. Now we have

maximum information from Yi01 and S(t2 | t1,Yi01) = S(t2 | t1,W0
02) under W0

02 = W02.

3.4 MEASURING BIOMARKER EFFECTIVENESS

Two methods are considered to measure the effectiveness of a biomarker to predict survival

at a future time, t = t2, given the previous time t = t1. One is a fixed point method and the

other is an interval measures method. The key definition is described as follows: S0(tij) is

defined as the value of the observed survivor process for the ith individual at time tj. The

value is one if the individual was known to be alive at tj; the value is zero if the individual

died before tj and the value is undefined if the individual was censored before tj. If the

biomarker is effective, there is the relatively small absolute deviation between S0(tij) and

the corresponding estimates S(t2 | t1,Yi01).
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3.4.1 Fixed point method

In the fixed point method, the unbiased estimator for including the information of Yi01 is as

follows:

MY (τ1, τ2) =
1

r(τ1)

∑
i:ti≥τ1

[
I(ti ≥ τ2)(1− S(τ2 | τ1,Yi01)) + δiI(ti < τ2)

S(τ2 | τ1,Yi01) + (1− δi)I(ti < τ2)

{
(1− S(τ2 | τ1,Yi01))

× S(τ2 | τi,Yi01) + S(τ2 | τ1,Yi01)(1− S(τ2 | τi,Yi01))

}]
, (3.12)

where r(τ1) is the number of individuals at risk at t1 and δi is an indicator of censoring (δi

= 0) or observed failure (δi = 1). And the unbiased estimator without the information of

Yi01 as follows:

M(τ1, τ2) =
1

r(τ1)

∑
i:ti≥τ1

[
I(ti ≥ τ2)(1− S(τ2 | τ1)) + δiI(ti < τ2)

S(τ2 | τ1) + (1− δi)I(ti < τ2)

{
(1− S(τ2 | τ1))

× S(τ2 | τi) + S(τ2 | τ1)(1− S(τ2 | τi))
}]

, (3.13)

A relative measure can be used to interpret the effectiveness of the biomarker by com-

parison of MY (τ1, τ2) and M(τ1, τ2) as follows:

RM(τ1, τ2) = 1−MY (τ1, τ2)/M(τ1, τ2). (3.14)
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3.4.2 Interval measures method

An alternative procedure for measuring the effectiveness of a biomarker is the interval mea-

sures method. The unbiased estimator for including the information of Yi01 for this method

is:

DY (τ1, τ2) =

∑
i:τ1≤ti≤τ2

δiĜ(τ1)/Ĝ(ti)MY (τ1, ti)∑
i:τ1≤ti≤τ2

δiĜ(τ1)/Ĝ(ti)
(3.15)

where Ĝ (·) is the Kaplan-Meier estimator of the censoring time distribution, which is used to

compensate for the loss of censored cases. The unbiased estimator without the information

of Yi01 is:

D(τ1, τ2) =

∑
i:τ1≤ti≤τ2

δiĜ(τ1)/Ĝ(ti)M(τ1, ti)∑
i:τ1≤ti≤τ2

δiĜ(τ1)/Ĝ(ti)
(3.16)

A relative measure can be used to interpret the effectiveness of the biomarker by com-

parison of MY (τ1, τ2) and M(τ1, τ2) as follows:

RD(τ1, τ2) = 1−DY (τ1, τ2)/D(τ1, τ2). (3.17)
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3.5 THE COMBINATION OF SURVIVAL WITH HETEROGENEOUS

HAZARD ANALYSIS AND LONGITUDINAL DATA ANALYSIS

To formulate our model, we recognize that different individuals in a population can have

vastly different underlying risks of having an event of interest. Consequently, a frailty model

can be used to extend the proportional hazards regression model in survival analysis. Similar

to the formulation of the frailty model provided by Klein and Moeschberger (1997) [23], we

can write the hazard rate at time t in ith patient as

hi(t) = h0(t) exp(ακi + βtxij), i = 1, 2, . . . ,m, j = 1, 2, . . . , ni (3.18)

where h0(t) is an arbitrary baseline hazard rate, xij is the vector of covariates, β is the

vector of regression coefficients, and κ1, . . . , κm are the frailties. It is usually assumed that

the κ’s consist of an independent sample from some distribution with mean 0 and variance

1. If α is zero, then the above equation reduces to Cox’s proportional hazards model. A

more convenient form of model (3.18) can be written as

hi(t) = h0(t)qi exp(βtxij), i = 1, 2, . . . ,m, j = 1, 2, . . . , ni (3.19)

Turning to the longitudinal part of the model, if we let Yi(t) represent the underlying

biomarker vector of the ith individual at time t, then, following Henderson, et al., 2002, we

can write

Yi(t) = x′i1(t)β1 + Wi(t) + ei(t). (3.20)

where xi1(t) is a p1 × 1 vector of explanatory variables, and Wi(t) and ei(t) are zero-mean

random processes. Since the biomarkers are sampled at discrete time points and assuming
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that the Yi are from a normal distribution, a discrete version of the model can be re–written

as

Yij = x′ij1β1 + Wij + eij, i = 1, 2, . . . ,m, j = 1, 2, . . . , ni , (3.21)

where Wij is the value of a zero-mean Gaussian random effect for the ith individual at the

jth time point, eij is a zero-mean Gaussian measurement error and ni is the number of

observations for individual i. The j’s in the discrete version of the model refer to the last

biomarkers observed at or before time t. The errors, eij, are assumed here to be mutually

independent and the within individual correlation in Yij arises through serial correlation in

the random effect, Wij.

In a frailty model extension of the proportional hazards regression introduced by Hen-

derson, et al., 2002, the probability density function is

f(t) = S(t)λ0(t)qi exp{x′ij2β2 + γWij} (3.22)

where S(t) is a predictable survival function, λ0(t) is an unspecified baseline hazard, qi is the

unobervable frailty from independent and identically distributed sample of gamma random

variables, and xij2 is a p2×1 vector of explanatory variables. As indicated by equation (3.22),

the connection between the longitudinal process and the failure process is made through the

parameter associated with the latent process, Wij.

For qi, the probabilty density function is

g(q) =
q(1/ν−1) exp(−q/ν)

Γ[1/ν]ν1/ν
. (3.23)

If W is known, the conditional likelihood of the survival data over all times and individ-

uals can be written as follows:

Lγ =

(∏
i

∏
j

(
ex

′
ij2β2+γWij q̂idA0(tij)

)∆N(tij)
)

exp

{
−
∫ τ

0

S(0)
γ (tij,W,β2)dA0(tij)

}
,(3.24)
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where S
(0)
γ (tij,W,β2) =

∑m
i=1 q̂iSi(tij)e

x′
ij2β2+γWij and A0(tij) is the cumulative baseline

intensity.

The likelihood of the survival data associated with the frailty conditional on the latent

process, W can be written as follows:

LFULL = Lν × Lγ

=
∏

i

(
q
(1/ν−1)
i exp(−qi/ν)

Γ[1/ν]ν1/ν

∏
j

(
ex′

ij2β2+γWij q̂idA0(tij)
)∆N(tij)

)
exp

{
−
∫ τ

0
S(0)

γ (tij ,W,β2)dA0(tij)
}
(3.25)

The partial conditional likelihood of the survival data associated with the frailty can then

be written as the sum of the log likehood associated with the frailty distribution plus that

associated with the Cox regresssion model, that is,

`FULL = `ν + `γ(β, γ, A0),

where

`ν = −m
[
(1/ν) ln ν + ln Γ[1/ν]

]
+

m∑
i=1

{
[1/ν − 1] ln qi − qi/ν

}
, (3.26)

and

`γ(β2, γ, A0) =
m∑

i=1

ni∑
j=1

δij[x
′
ij2β2 + γWij + ln dA0(tij)]− qiA0(tij) exp(x′ij2β2 + γWij)(3.27)

where δij is 1 if individual i has an event at the jth time point and 0, otherwise.

The EM algorithm provides a means of maximizing complex likelihoods. Here we use EM

algorithm described by Klein and Moeschberger (2003) [57]. In the E–step of the algorithm,

the expected value of `FULL is computed, given the current estimates of the parameters and

the observable data. In the M–step of the algorithm, estimates of the parameters which

maximize the expected value of `FULL from the E–step are obtained. The algorithm iterates

between these two steps until convergence.
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To apply the E–step, we’ll assume, similar to Klein and Moeschberger (2003) [24], that

the qi
′s are independent gamma random variables with shape parametersBi = 1/ν+

∑ni

j=1 δij,

and scale parameters, Ci = 1/ν +
∑m

i=1A0(tij) exp(x′ij2β2 + γWij). Thus,

E[qi | Data] =
Bi

Ci

and E[ln qi] = ψ(Bi)− lnCi, (3.28)

where ψ(·) is the digamma function. Substituting these values in (3.26) and (3.27) completes

the E–step of the algorithm.

For the M–step, E[`γ(β2, γ, A0) | Data] is expressed as

`γ(β2, γ, A0) =
m∑

i=1

ni∑
j=1

δij[(x
′
ij2β2 + γWij) + ln dA0(tij)]−

Bi

Ci

A0(tij) exp(x′ij2β2 + γWij)(3.29)

The expression in equation (3.29) is associated with the nuisance parameter dA0().

Now, let t(k) be the kth smallest event time, and b(k) be the number of events at time t(k),

k = 1, . . . , F . Also, denote the expected value of the frailty and the covariate vector for the

hth individual in the risk set R(t(k)) by q̂h and, xh and Wh, respectively. Then, the partial

likelihood to be maximized in the M–step is

`γ(β2, γ) =
F∑

k=1

S(k) − b(k) ln

[ ∑
h∈R(t(k))

q̂h exp(xh
′β2 + γWh)

] , (3.30)

where S(k) is the sum of the covariates of individuals who had an event at time t(k).

An estimate of A0(tij) from this step is given by

Â0(tij) =
∑

t(k)≤tij

dAk0 (3.31)

where

dAk0 =
b(k)∑

h∈R(t(k))
q̂h exp(xh

′β2 + γWh)

A full implementation of the EM algorithm is as follows (Klein and Moeschberger [2003]):
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Step 0 Provide initial estimates of β2, γ, ν and thus hk0 , k = 1, . . . , F.

Step 1 (E–step) Compute Bi, Ci, i = 1, . . . ,m and q̂h, h = 1, . . . , ni based on the current

values of the parameters.

Step 2 (M–step) Update the estimate of β2, γ (and the dAk0) using the partial likelihood.

Update the estimate of ν based on the likelihood `ν|Data = E[`ν | Data] given by

`ν|Data = −m
[
(1/ν) ln ν + ln Γ(1/ν)

]
+

m∑
i=1

{
[1/ν − 1][ψ(Bi)− lnCi]−

Bi

νCi

}
Step 3 Iterate between Steps 1 and 2 until convergence.

Now, let

Uγ(τ) = logLγ =
m∑

i=1

{∫ τ

0

W (tij)dN(tij)−
∫ τ

0

W (tij)q̂iS(tij)e
x′

ij2β2+γWijdA0(tij)

}
(3.32)

and

∂Lγ

∂γ
= Uγ(τ) Lγ

(
because Uγ(τ) =

∂logLγ

∂γ
=

∂Lγ

∂γLγ

)
. (3.33)

The resulting score statistic is

Uγ(τ) = EW |Y [U0(τ)]

= EW |Y

[
m∑

i=1

{∫ τ

0

W (tij)dN(tij)−
∫ τ

0

W (tij)q̂iS(tij)e
x′

ij2β2dA0(tij)

}]

=
m∑

i=1

EW |Y [W (tij)]dM(tij) , (3.34)

where M(tij) = N(tij) − Λ(tij) = N(tij) −
∫ tij

0
q̂iSi(u)e

x′
ij2β2dA0(u) is the usual counting

process martingale (see Fleming and Harrington (1991) [25]) and U0(τ) = Uγ(τ) if γ = 0.

We consider U(t) to be a particular value of a process, {U(s) : s > 0} and W to be

known and predictable so that the variance of U(s) is
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V (s) =
m∑

i=1

∫ s

0

EW |Y [W (tij)]
2dΛ(tij), (3.35)

if the W (tij) between individuals are independent; or

V (s) =
m∑

i=1

{∫ τ

0

EW |Y [W (tij)]
2dΛ(tij)−

∫ τ

0

∫ τ

0

CovW |Y (W (tij),W (sij))dM(tij)dM(sij)

}
,(3.36)

if the W (tij) between individuals are not independent.

According to the martingale central limit theorem under mild conditions, U(s)/[V (s)](1/2)

is asymptotically N (0, 1) under H0 as m→∞.

3.6 LONGITUDINAL BIOMARKER FOR SURVIVAL WITH

HETEROGENEOUS HAZARD SURVIVAL

In Section 3.3, we showed how a longitudinal biomarker is identified and fitted to data. Next,

the fitted model is used to make inference about individuals’ survival at a future time t =

t2 given an earlier time t = t1. In this section, we extend the model to accommodate frailty

in the survival data. Let Yi01 be longitudinal measurements on the ith individual over the

interval [0, t1]. Then the survival function is as follows:

S(t2 | t1,Yi01, κ) = P (T > t2 | T > t1,Yi01, κ).

This is the same survival function as in section 3.3 but with the addition of a frailty parameter

κ.

Evaluation of the conditional probability of surviving to t2 involves the expectation with

respect to the unobserved latent process. Let Wi01 and Wi02 be the values of W(tij) at

measurement within the intervals [0, t1] and [0, t2], respectively. Then S(t2 | t1,Yi01, κ) can

be written the form as follows:

S(t2 | t1,Yi01, κ) =

∫
P (T > t2 | T > t1,W02, κ)f(W02 | T > t1,Yi01)dW02
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=

∫
P (T > t2 | T > t1,W02, κ)P (T > t1 | W02, κ)f(W02 | Yi01)dW02

P (T > t1 | Yi01, κ)

=

∫
P (T > t2 | W02, κ)f(Yi01 | W02)f(W02)dW02∫
P (T > t1 | W02, κ)f(Yi01 | W02)f(W02)dW02

=

∫
P (T > t2 | W02, κ)f(Yi01 | W01)f(W02)dW02∫
P (T > t1 | W01, κ)f(Yi01 | W01)f(W01)dW01

(3.37)

If we ignore any information in Yi01, the conditional probability can be written as:

S(t2 | t1, κ) =

∫
P (T > t2 | W02, κ)f(W02)dW02∫
P (T > t1 | W01, κ)f(W01)dW01

(3.38)

The term f(Yi01 | W01) is a weighting factor which reflects the relevant information in

Yi01. If it is possible to completely determine the true value W0
02 of W02 from Yi01, then

f(Yi01 | W01)f(W02) and f(Yi01 | W01)f(W01) are zero if W0
02 6= W02. Now we have

maximum information from Yi01 and S(t2 | t1,Yi01, κ) = S(t2 | t1,W0
02, κ) if W0

02 = W02.

3.7 MEASURING BIOMARKER EFFECTIVENESS AT THE SURVIVAL

WITH HETEROGENEOUS HAZARD ANALYSIS

In Section 3.4, two methods were considered to measure the effectiveness of tumor size

to predict survival at time t = t2 given t = t1. One is a fixed point method and the

other was an interval measures method. In this section, both methods will be extended to

again accommodate the multivariate survival data. Again, a frailty model is chosen for the

multivariate data. The key definition is described as follows: S0(tij) is defined as the value

of the observed survivor process for the ith individual at time tj. The value is one if the

individual was known to be alive at tj; the value is zero if the individual died before tj and

the value is undefined if the individual was censored before tj. If the biomarker is effective,

there is a relatively small absolute deviation between S0(tij) and the corresponding estimates

S(t2 | t1,Yi01, κ).
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3.7.1 Fixed point method

In the fixed point method, the unbiased estimator for including the information of Yi01 is as

follows:

MY1(τ1, τ2) =
1

r(τ1)

∑
i:ti≥τ1

[
I(ti ≥ τ2)(1− S(τ2 | τ1,Yi01, κ)) + δiI(ti < τ2)

S(τ2 | τ1,Yi01, κ) + (1− δi)I(ti < τ2)

{
(1− S(τ2 | τ1,Yi01, κ))

× S(τ2 | τi,Yi01, κ) + S(τ2 | τ1,Yi01, κ)(1− S(τ2 | τi,Yi01, κ))

}]
, (3.39)

where r(τ1) is the number of individuals at risk at t1 and δi is an indicator of censoring (δi

= 0) or observed failure (δi = 1). And the unbiased estimator without the information of

Yi01 as follows:

M1(τ1, τ2) =
1

r(τ1)

∑
i:ti≥τ1

[
I(ti ≥ τ2)(1− S(τ2 | τ1, κ)) + δiI(ti < τ2)

S(τ2 | τ1, κ) + (1− δi)I(ti < τ2)

{
(1− S(τ2 | τ1, κ))

× S(τ2 | τi, κ) + S(τ2 | τ1, κ)(1− S(τ2 | τi, κ))
}]

. (3.40)

A relative measure can be used to interpret the effectiveness of the biomarker by com-

parison of MY1(τ1, τ2) and M1(τ1, τ2) as follows:

RM1(τ1, τ2) = 1−MY1(τ1, τ2)/M1(τ1, τ2). (3.41)
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3.7.2 Interval measures method

The alternative procedure for measuring the effectiveness of a biomarker is the interval

measures method. The unbiased estimator for including the information of Yi01 for this

method is:

DY1(τ1, τ2) =

∑
i:τ1≤ti≤τ2

δiĜ(τ1)/Ĝ(ti)MY1(τ1, ti)∑
i:τ1≤ti≤τ2

δiĜ(τ1)/Ĝ(ti)
(3.42)

where Ĝ (·) is the Kaplan-Meier estimator of the censoring time distribution, which is

used to compensate for the loss of censored cases. The unbiased estimator without the

information of Yi01 is:

D1(τ1, τ2) =

∑
i:τ1≤ti≤τ2

δiĜ(τ1)/Ĝ(ti)M1(τ1, ti)∑
i:τ1≤ti≤τ2

δiĜ(τ1)/Ĝ(ti)
(3.43)

A relative measure can be used to interpret the effectiveness of the biomarker by com-

parison of MY1(τ1, τ2) and M1(τ1, τ2) as follows:

RD1(τ1, τ2) = 1−DY1(τ1, τ2)/D1(τ1, τ2). (3.44)

Equations (3.37) through (3.44) are the same as equations (3.10) through (3.17) except the

latter set of equations includes a frailty parameter, κ.
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4.0 RESULTS

4.1 SIMULATION STUDY

4.1.1 Power of score test for association between longitudinal biomarker values

and survival time function

In order to investigate the empirical properties of the score test for association between

longitudinal biomarker values and the survival time function, we performed a simulation

study which was similar in strategy to that used by Henderson, et al. (2002). However, in

their paper, E[Y ] was a linear function of time and the survival function was exp(−0.1t2),

that is, the failure times were from a Weibull distribution. In our simulation, both E[Y ]

and the survival function are from gamma distributions. We also constructed the survival

function to reflect that every subject has his/her own frailty. We examined the empirical

type I error rates of the score tests, that is, the power under H0 : γ = 0. Other alternative

hypotheses were also explored.

Sample sizes were constructed as follows: total sample size = number of subjects ×

number of observation times or N = n× T . The total number of observations, N , within a

given set of simulations was fixed at a constant number but the number of subjects, n, and

the number of time points, T were varied accordingly. The time points, t, were chosen to be

integer values between 1 and T , inclusively. In each simulation, the frailty parameter varies

across subjects for each simulation. The EM algorithm used for the simulations is provided
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in the coxph function in S-plus 6.2. One thousand (1000) realizations were generated for

each sample size.

In the first set of simulations, we modeled the generated survival data by (correctly)

using frailty parameters to characterize the individuals’ heterogeneous baseline hazards. The

simulation results are shown in Tables 4-1A – 4-1C. Three different latent process types were

specified for assessing the power of score test. The structures for the three different latent

process types are as follows:

(1) :W (t) = U1, U1 ∼ N(0, σ2
1)

(2) :W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1),

U2 ∼ N(0, σ2
2), Corr(U1, U2) = ρ

(3) :W (t) = U1 + V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

2),

Corr(V (t), V (t+ s)) = exp(−|s|)

We also examined the power of the score test under H0 : γ = 0 while ignoring the exis-

tence of the underlying frailty. Similar situations to those described above were considered

except the frailty was now ignored in the models. Results are shown in Tables 4-2A – 4-2C.
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From the results of Tables 4–1 and 4–2, some empirical properties are as follows:

(1) For latent process types (2) and (3), a higher correlation between longitudinal

biomarker values and survival time function given the large values of σ2
1 + σ2

2 results in

higher values for the power of the score test.

(2) For latent process type (1), there are not substantial differences in the power of the

score test for different values of σ2
1 when the sample sizes are small but when the sample

sizes are large, then for all latent process types, larger values of σ2
1 result in higher powers

associated with the score test.

(3) For latent process type (2), there are not substantial differences in the power of the

score test for different values of ρ between σ2
1 and σ2

2.

By comparing Tables 4–1 and 4–2, one concludes that the power of the score test in

models which correctly specify the existence of the frailty are higher than models that ignore

the existence of the frailty when survival data with heterogeneous hazard structures were

modeled.
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4.1.2 Examination of the measure of biomarker effectiveness in a survival out-

comes with heterogeneous hazard functions

In order to investigate some empirical properties for the measure of biomarker effectiveness

in survival analyses with the presence of heterogeneous hazards among individuals, we con-

ducted more simulations. First, we varied the sample sizes from 25 to 1000 subjects and

varied the number of time points at which the longitudinal biomarkers were measured from

2 to 20. We considered four levels of censoring for the time to event outcome: no censoring,

low censoring (10%), medium censoring (25%) and high censoring (50%).

For this set of simulations, we only considered latent process type (3) as described in

section 4.1.1. Simulation results for the fixed point method (described in section 3.7.1)

are shown in Table 4–3. Simulation results for the interval measure method (described in

section 3.7.2) are shown as Table 4–4. Each entry in Tables 4–3 and 4–4 was based on 1000

realizations of modeling the particular combination of sample size, number of time points

and censoring level.
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4.1.3 Power of the score test for association between longitudinal biomarkers

and survival time when the biomarkers are missing at random

Since the modeling of missing values for longitudinal biomarkers is an important issue, we

also conducted a simulation study to examine its effect on our models. First, we compared

our method with the method of Henderson, Diggle, and Dobson under missing at random

for longitudinal biomarker values, and then we compared our method with the method

of Henderson, Diggle, and Dobson under nonignorable missing for longitudinal biomarker

values. Three different latent process types were specified for assessing the power of score

test. The structures for the three different latent process types are as section 4.1.1 described.

The percentage of missing biomarkers is 50 %. Again, the results of the simulation were based

on 1000 realizations of each scenario.

Simulation results under missing at random for longitudinal biomarker values when ac-

counting for the frailty structure are shown in Tables 4-5A – 4-5C. Results of analogous

simulations but while ignoring the frailty structure are shown in Tables 4-6A – 4-6C.

Comparisons of Tables 4–5 and 4–6 indicate that the power of the score test one specifies

the existence of the frailty structure is higher than that when one ignores the existence of

the frailty .
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4.1.4 Power of the score test for association between longitudinal biomarkers

and survival time when the missingness in the biomarkers is nonignorable

We also considered situations where the missingness in the biomarker values was nonignor-

able. We examined the same situations as for the missing at random cases; namely, 1)

correctly considering the frailty structure and 2) incorrectly ignoring the frailty structure.

Simulation results for situation 1) are shown in Tables 4-7A – 4-7C and for situation 2) are

shown in Tables 4-8A – 4-8C.

Comparisons of Tables 4–7 and 4–8 indicate that the power of the score test is not good

when the missingness of the longitudinal biomarkers is nonignorable regardless of whether

or not the frailty structure is accounted for. However, correctly considering the existence of

the frailty in these models is still better than ignoring its existence.
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4.2 APPLICATION OF EXTENSIONS TO ANALYSIS OF SURVIVAL IN

LIVER CIRRHOSIS PATIENTS

We next consider a dataset from a randomized trial in liver cirrhosis (Andersen, et al. (1993)).

This data was also analyzed by Henderson et al. (2002) and is available on the web site,

http://staff.pubhealth.ku.dk/˜pka/.

4.2.1 Description of the data and the data analysis

There were 488 patients in the trial, 251 patients of whom were assigned into the treatment

(Prednisone) group and 237 patients of whom were assigned into the placebo group. All

patients were followed until death or end of study. The dataset contained several variables:

patient id, treatment status, current prothrombin value, current measurement time, previous

prothrombin value, previous measurement time and a censoring indicator. We focus in

this dissertation on the prothrombin biomarker which is measured repeatedly and on the

treatment variable as they relate to the overall survival in these patients. In the first part of

the analysis, the latent process was considered to be a random effect and was calculated by

using a mixed model approach. Next, the score test for the W (t) model under H0 : γ = 0

was calculated using a Cox frailty model. The results are shown in Table 4–9. Then the

marker effectiveness for prothrombin was determined, the result was shown in Table 4-10.

and Table 4-11. as follows:
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4.2.2 Discussion of our extensions of survival as applied to the liver cirrhosis

dataset

From Table 4–9, it can be seen that whether considering the frailty or not, the score test

for the longitudinal biomarker, prothrombin, under all of three latent process models are

significant. Thus, some would consider this biomarker as a surrogate of survival for patients

who have liver cirrhosis. Comparisons of the results of log likelihood ratio tests from the

three different types of latent models indicate that latent process types (2) and (3) have

larger test values than latent process type (1). Hence, latent process types (2) and (3) are

more suitable than latent type (1) for these data.

From Tables 4–10 and 4–11, one can make conclusions about both the early (Year 0 to

Year 1) and late (Year 3 to Year 4) effectiveness of the prothrombin biomarker as a surrogate

for survival. At early times, the effectiveness of prothrombin is very significant when frailty

is included in the model. In the fixed point method, RM1 for latent process type (1) is 0.243

and for both latent process types (2) and (3) is 0.310. For the interval measure method, RD1

is 0.738 for latent process type (1) and for latent process types (2) and (3) is 0.768. Even

when frailty is not included in the model, the early effectiveness of prothrombin (at times

0 to year 1) is very significant in these liver cirrhosis patients. In fixed point method, RM1

for latent process type (1) is 0.038 and for latent process type (2) and type (3) is 0.294. In

interval measure method, RD1 for latent process type (1) is 0.690 and for latent process type

(2) and type (3) is 0.731.

At late times, the effectiveness of prothrombin was not significant regardless of whether

or not frailty was included in the model. Results also did not change based on whether or

not the fixed point method or the interval measure method was used and was not dependent

on the type of latent process model being used. In all cases, RM1 = 0. Thus, the effectiveness

of the biomarker appears to diminish at late times.
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5.0 DISCUSSION

5.1 DISCUSSION OF OUR EXTENSION

In the Henderson et al paper (2002), they focused only on random effects in the longitudinal

biomarker. They put random effects in the Cox model to determine if longitudinal biomarker

is associated with survival. However, in our method, we deal with random effects from

the longitudinal biomarker and survival. We extended Henderson et al method to deal

with survival with heterogeneous hazard. In our method, we can determine if longitudinal

biomarker is associated with survival while simultaneously considering the existence of frailty

in the survival.

Another aspect of our study was the fact that we estimated the influence of missing data

for power of score test for association between longitudinal biomarker values and survival

time function and biomarker effectiveness. Because the missing data is an important problem

when we analyze the biological and clinical data, we want to know if our method is better

than Henderson et al method under the existence of frailty in the survival.
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5.2 CONCLUSIONS FROM SIMULATION STUDY AND APPLICATION

OF EXTENSIONS OF SURVIVAL IN LIVER CIRRHOSIS PATIENTS

5.2.1 Conclusions from the Simulation Studies

5.2.1.1 Power of score test for association between longitudinal biomarker val-

ues and survival time function For large sample sizes, our model is better for detecting

as a longitudinal biomarker as a predictor for survival data than the method used in the

Henderson et al (2002) paper. However, for small sample sizes, our method also results in

a large overinflation of the α-level as compared to the method using in the Henderson et al

paper. An obvious conclusion is that a larger sample size for the survival data is associated

with a larger power to detect a longitudinal biomarker as a surrogate for survival data than

the small sample size for the survival data.

Also the longitudinal biomarker can be more easily identified as a surrogate for survival

when the random effects from the longitudinal biomarker are either latent process types

(2) or (3). A possible reason is that the latent process types (2) and (3) can show that

the change of random effects is associated with time so they can be adequate to describe

survival situation on an individual level. On the other hand, the latent process type (1) can

show that the change of random effects is not associated with time so it is worse to describe

survival situation in the individual level than the latent process types (2) and (3).

5.2.1.2 Measuring biomarker effectiveness for predicting survival with hetero-

geneous hazard analysis The interval measures method is a modified method for the

fixed point method. The weighting factor for the interval measures method is the numbers

of uncensoring observations between t1 and t2. If the percentage of censoring is high, the

interval measures method is better than the fixed point method if censoring is MCAR.

Given a particular sample size and considering the dependency of the survival data,

an adequate study design to determine if longitudinal biomarkers are surrogates for survival

data to have small numbers of subjects and large numbers of observed time points. Although
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relatively large numbers of subjects and small numbers of observed time points have a relative

large power, assessing biomarker effectiveness is relatively smaller than for small numbers of

subjects and large numbers of observed time points.

5.2.1.3 Power of the score test for association between longitudinal biomarkers

and survival time when the biomarkers are missing at random The power of the

score test under missing at random for the longitudinal biomarker is similar as the one for

the complete data though the power under missing at random for the longitudinal biomarker

is less than the complete data. However, our method appears to be better than the method

of Henderson, Diggle, and Dobson under missing at random for detecting a longitudinal

biomarker when frailty exists in the survival endpoint.

5.2.1.4 Power of the score test for association between longitudinal biomarkers

and survival time when the missingness in the biomarkers is nonignorable The

power of the score test under nonignorable missing shows that the results arsubstantially

worse than the complete data. There is also an even greater overinflation of the α-level.

However, our method appears to be better than the method of Henderson, Diggle, and Dob-

son if frailty exists in the hazard. However, our method cannot distinguish low association

from no association between survival time and the longitudinal biomarkers if the missing-

ness in the longitudinal biomarker is nonignorable. However, it can work on the data under

nonignorable missing for the longitudinal biomarker if there is medium or high association

between survival time and the longitudinal biomarker.

5.3 FURTHUR DIRECTIONS

Our method had several shortfalls. One was the large overinflation of the α-level, that is, the

power under H0, for the score tests when the sample sizes were small. Such an undesirable
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property requires one to consider modifications to our large sample approximations of the

score test to ensure that the α-levels would be closer to nominal values.

Another improvement to the frailty method proposed here would be to combine our

method and methods that deal with both ignorable and nonignorable missing data mecha-

nisms for the longitudinal biomarker. For both biological and clinical data, missing longi-

tudinal values are problematic. Thus, a combined method can be more useful to determine

if an association exists between longitudinal biomarker values even when some are missing

and overall survival which has heterogeneous hazards for different individuals.

Finally, as with most survival methods, informative censoring of the outcome data is

problematic regardless of whether or not the hazard functions are heterogeneous. In this

dissertation, we did not deal with this issue at all. However, it could possibly be fruitful

to model this phenomonom to decrease the bias associated with informative censoring in

time to event outcomes. Such methods could have positive implications for both clinical and

biological applications.
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APPENDIX A

TABLES 1–19

(TABLES 4–1A-4–6B)
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Table 1: Table 4-1A. Power of score test for the W (t) model under H0 : γ = 0 for

latent type (1)†

# of Subjects # of Time Points σ2
1 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

20 10 1 0.241 0.523 0.754 0.790

20 10 0.8 0.231 0.515 0.732 0.756

20 10 0.2 0.223 0.401 0.428 0.443

25 4 1 0.222 0.570 0.780 0.800

25 4 0.8 0.214 0.554 0.763 0.783

25 4 0.2 0.201 0.506 0.686 0.710

100 20 1 0.205 0.683 0.800 0.830

100 20 0.8 0.193 0.664 0.783 0.820

100 20 0.2 0.181 0.646 0.763 0.810

200 10 1 0.165 0.703 0.810 0.870

200 10 0.8 0.154 0.684 0.794 0.862

200 10 0.2 0.143 0.665 0.773 0.851

500 4 1 0.051 0.726 0.833 0.901

500 4 0.8 0.043 0.715 0.802 0.893

500 4 0.2 0.032 0.703 0.791 0.873

1000 2 1 0.044 0.873 0.901 0.932

1000 2 0.8 0.031 0.864 0.893 0.914

1000 2 0.2 0.021 0.853 0.884 0.903

†Note: W (t) = U1, U1 ∼ N(0, σ2
1)
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Table 2: Table 4-1B. Power of score test for the W (t) model under H0 : γ = 0 for

latent type (2)†

# of Subjects # of Time Points σ2
1 σ2

2 ρ σ2
1 + σ2

2ρ γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

20 10 1 1 0.5 1.5 0.227 0.562 0.776 0.856

20 10 1 1 0.05 1.05 0.225 0.543 0.760 0.803

20 10 0.8 0.2 0.5 0.9 0.218 0.531 0.752 0.784

20 10 0.8 0.2 0.05 0.81 0.216 0.514 0.734 0.691

20 10 0.2 0.8 0.5 0.6 0.203 0.453 0.487 0.503

20 10 0.2 0.8 0.05 0.24 0.201 0.433 0.455 0.472

25 4 1 1 0.5 1.5 0.204 0.614 0.801 0.823

25 4 1 1 0.05 1.05 0.202 0.594 0.784 0.806

25 4 0.8 0.2 0.5 0.9 0.194 0.574 0.773 0.788

25 4 0.8 0.2 0.05 0.81 0.192 0.553 0.752 0.769

25 4 0.2 0.8 0.5 0.6 0.183 0.521 0.697 0.718

25 4 0.2 0.8 0.05 0.24 0.181 0.503 0.672 0.695

100 20 1 1 0.5 1.5 0.179 0.704 0.818 0.855

100 20 1 1 0.05 1.05 0.177 0.688 0.794 0.836

100 20 0.8 0.2 0.5 0.9 0.173 0.686 0.793 0.834

100 20 0.8 0.2 0.05 0.81 0.171 0.665 0.772 0.819

100 20 0.2 0.8 0.5 0.6 0.167 0.647 0.771 0.823

100 20 0.2 0.8 0.05 0.24 0.165 0.630 0.751 0.815

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ
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Table 3: Table 4-1B (continued). Power of score test for the W (t) model under

H0 : γ = 0 for latent type (2)†

# of Subjects # of Time Points σ2
1 σ2

2 ρ σ2
1 + σ2

2ρ γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

200 10 1 1 0.5 1.5 0.151 0.724 0.828 0.910

200 10 1 1 0.05 1.05 0.149 0.708 0.806 0.892

200 10 0.8 0.2 0.5 0.9 0.147 0.706 0.804 0.893

200 10 0.8 0.2 0.05 0.81 0.145 0.685 0.786 0.876

200 10 0.2 0.8 0.5 0.6 0.143 0.683 0.784 0.874

200 10 0.2 0.8 0.05 0.24 0.141 0.667 0.768 0.856

500 4 1 1 0.5 1.5 0.074 0.766 0.873 0.944

500 4 1 1 0.05 1.05 0.045 0.735 0.831 0.906

500 4 0.8 0.2 0.5 0.9 0.064 0.744 0.853 0.925

500 4 0.8 0.2 0.05 0.81 0.054 0.723 0.814 0.893

500 4 0.2 0.8 0.5 0.6 0.051 0.724 0.834 0.903

500 4 0.2 0.8 0.05 0.24 0.034 0.715 0.805 0.871

1000 2 1 1 0.5 1.5 0.053 0.920 0.944 0.964

1000 2 1 1 0.05 1.05 0.041 0.900 0.925 0.934

1000 2 0.8 0.2 0.5 0.9 0.043 0.913 0.936 0.955

1000 2 0.8 0.2 0.05 0.81 0.034 0.896 0.919 0.926

1000 2 0.2 0.8 0.5 0.6 0.035 0.903 0.925 0.944

1000 2 0.2 0.8 0.05 0.24 0.029 0.883 0.892 0.914

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ
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Table 4: Table 4-1C. Power of score test for the W (t) model under H0 : γ = 0 for

latent type (3)†

# of Subjects # of Time Points σ2
1 σ2

2 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

20 10 1 1 0.181 0.593 0.791 0.903

20 10 0.8 0.2 0.171 0.565 0.774 0.792

20 10 0.2 0.8 0.162 0.483 0.504 0.525

25 4 1 1 0.173 0.641 0.812 0.842

25 4 0.8 0.2 0.164 0.623 0.781 0.814

25 4 0.2 0.8 0.155 0.568 0.713 0.730

100 20 1 1 0.131 0.727 0.852 0.872

100 20 0.8 0.2 0.123 0.703 0.834 0.866

100 20 0.2 0.8 0.115 0.686 0.816 0.856

200 10 1 1 0.101 0.747 0.852 0.930

200 10 0.8 0.2 0.093 0.723 0.834 0.920

200 10 0.2 0.8 0.086 0.706 0.816 0.911

500 4 1 1 0.051 0.807 0.895 0.975

500 4 0.8 0.2 0.043 0.788 0.876 0.966

500 4 0.2 0.8 0.034 0.765 0.857 0.958

1000 2 1 1 0.042 0.944 0.961 0.990

1000 2 0.8 0.2 0.031 0.935 0.954 0.980

1000 2 0.2 0.8 0.022 0.924 0.943 0.971

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr (V (t), V (t+s)) = exp(−|s|)

50



Table 5: Table 4-2A. Power of score test for the W (t) model under H0 : γ = 0 for

latent type (1)†

# of Subjects # of Time Points σ2
1 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

20 10 1 0.127 0.080 0.121 0.143

20 10 0.8 0.114 0.062 0.093 0.102

20 10 0.2 0.109 0.033 0.062 0.081

25 4 1 0.123 0.086 0.123 0.151

25 4 0.8 0.110 0.065 0.097 0.113

25 4 0.2 0.105 0.037 0.065 0.092

100 20 1 0.104 0.093 0.141 0.183

100 20 0.8 0.098 0.092 0.127 0.162

100 20 0.2 0.092 0.084 0.106 0.141

200 10 1 0.099 0.121 0.161 0.201

200 10 0.8 0.094 0.114 0.144 0.182

200 10 0.2 0.088 0.106 0.122 0.161

500 4 1 0.079 0.132 0.182 0.252

500 4 0.8 0.075 0.123 0.162 0.231

500 4 0.2 0.071 0.111 0.143 0.211

1000 2 1 0.069 0.153 0.213 0.274

1000 2 0.8 0.067 0.142 0.184 0.253

1000 2 0.2 0.063 0.131 0.168 0.231

†Note: W (t) = U1, U1 ∼ N(0, σ2
1),
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Table 6: Table 4-2B. Power of score test for the W (t) model under H0 : γ = 0 for

latent type (2)†

# of Subjects # of Time Points σ2
1 σ2

2 ρ σ2
1 + σ2

2ρ γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

20 10 1 1 0.5 1.5 0.103 0.132 0.201 0.254

20 10 1 1 0.05 1.05 0.100 0.113 0.182 0.206

20 10 0.8 0.2 0.5 0.9 0.098 0.104 0.144 0.184

20 10 0.8 0.2 0.05 0.81 0.096 0.082 0.123 0.132

20 10 0.2 0.8 0.5 0.6 0.092 0.061 0.084 0.104

20 10 0.2 0.8 0.05 0.24 0.090 0.051 0.062 0.081

25 4 1 1 0.5 1.5 0.097 0.137 0.204 0.258

25 4 1 1 0.05 1.05 0.095 0.118 0.185 0.208

25 4 0.8 0.2 0.5 0.9 0.093 0.109 0.148 0.187

25 4 0.8 0.2 0.05 0.81 0.091 0.088 0.129 0.136

25 4 0.2 0.8 0.5 0.6 0.088 0.069 0.090 0.107

25 4 0.2 0.8 0.05 0.24 0.086 0.056 0.068 0.089

100 20 1 1 0.5 1.5 0.072 0.145 0.222 0.273

100 20 1 1 0.05 1.05 0.070 0.126 0.182 0.256

100 20 0.8 0.2 0.5 0.9 0.067 0.121 0.204 0.251

100 20 0.8 0.2 0.05 0.81 0.065 0.107 0.186 0.232

100 20 0.2 0.8 0.5 0.6 0.062 0.104 0.182 0.237

100 20 0.2 0.8 0.05 0.24 0.060 0.085 0.163 0.211

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ
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Table 7: Table 4-2B (continued). Power of score test for the W (t) model under

H0 : γ = 0 for latent type (2)†

# of Subjects # of Time Points σ2
1 σ2

2 ρ σ2
1 + σ2

2ρ γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

200 10 1 1 0.5 1.5 0.070 0.162 0.241 0.294

200 10 1 1 0.05 1.05 0.068 0.143 0.226 0.275

200 10 0.8 0.2 0.5 0.9 0.066 0.142 0.225 0.274

200 10 0.8 0.2 0.05 0.81 0.064 0.123 0.203 0.252

200 10 0.2 0.8 0.5 0.6 0.062 0.121 0.201 0.251

200 10 0.2 0.8 0.05 0.24 0.060 0.103 0.182 0.234

500 4 1 1 0.5 1.5 0.060 0.194 0.275 0.332

500 4 1 1 0.05 1.05 0.058 0.175 0.255 0.304

500 4 0.8 0.2 0.5 0.9 0.057 0.186 0.243 0.303

500 4 0.8 0.2 0.05 0.81 0.055 0.156 0.236 0.286

500 4 0.2 0.8 0.5 0.6 0.054 0.165 0.227 0.284

500 4 0.2 0.8 0.05 0.24 0.052 0.135 0.206 0.263

1000 2 1 1 0.5 1.5 0.056 0.213 0.293 0.351

1000 2 1 1 0.05 1.05 0.054 0.195 0.274 0.324

1000 2 0.8 0.2 0.5 0.9 0.053 0.204 0.264 0.332

1000 2 0.8 0.2 0.05 0.81 0.051 0.176 0.249 0.302

1000 2 0.2 0.8 0.5 0.6 0.050 0.185 0.246 0.303

1000 2 0.2 0.8 0.05 0.24 0.048 0.153 0.221 0.285

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ
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Table 8: Table 4-2C. Power of score test for the W (t) model under H0 : γ = 0 for

latent type (3)†

# of Subjects # of Time Points σ2
1 σ2

2 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

20 10 1 1 0.088 0.162 0.226 0.278

20 10 0.8 0.2 0.084 0.136 0.164 0.199

20 10 0.2 0.8 0.080 0.117 0.127 0.136

25 4 1 1 0.079 0.167 0.230 0.282

25 4 0.8 0.2 0.075 0.140 0.169 0.203

25 4 0.2 0.8 0.071 0.131 0.131 0.141

100 20 1 1 0.066 0.193 0.255 0.297

100 20 0.8 0.2 0.063 0.176 0.237 0.279

100 20 0.2 0.8 0.060 0.153 0.216 0.254

200 10 1 1 0.058 0.214 0.276 0.318

200 10 0.8 0.2 0.055 0.197 0.255 0.299

200 10 0.2 0.8 0.052 0.177 0.237 0.276

500 4 1 1 0.052 0.238 0.297 0.354

500 4 0.8 0.2 0.049 0.227 0.278 0.335

500 4 0.2 0.8 0.046 0.209 0.257 0.316

1000 2 1 1 0.048 0.253 0.312 0.383

1000 2 0.8 0.2 0.045 0.242 0.297 0.352

1000 2 0.2 0.8 0.042 0.220 0.275 0.336

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)
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Table 9: Table 4-3. Measure of marker effectiveness RM1(τ1, τ2) for W (t) model

for latent type (3)† under the different correlation between survival time and

biomarker {Fixed Point Method}

# of # of Time Percentage σ2
1 σ2

2 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

Subjects Points of Censor

20 10 0 1 1 0.01± 0.047 0.03± 0.049 0.10± 0.050 0.30± 0.052

25 4 0 1 1 0.01± 0.049 0.02± 0.050 0.08± 0.049 0.25± 0.052

100 20 0 1 1 0.10± 0.049 0.15± 0.049 0.30± 0.049 0.65± 0.050

200 10 0 1 1 0.08± 0.050 0.13± 0.050 0.27± 0.049 0.60± 0.051

500 4 0 1 1 0.06± 0.051 0.11± 0.048 0.24± 0.050 0.55± 0.051

1000 2 0 1 1 0.04± 0.049 0.09± 0.048 0.21± 0.049 0.50± 0.051

20 10 10 1 1 0.009± 0.047 0.015± 0.049 0.08± 0.050 0.25± 0.052

25 4 10 1 1 0.009± 0.049 0.01± 0.050 0.06± 0.049 0.20± 0.052

100 20 10 1 1 0.08± 0.049 0.13± 0.049 0.25± 0.049 0.55± 0.050

200 10 10 1 1 0.06± 0.050 0.11± 0.050 0.22± 0.049 0.50± 0.051

500 4 10 1 1 0.04± 0.051 0.09± 0.048 0.19± 0.050 0.45± 0.051

1000 2 10 1 1 0.02± 0.049 0.07± 0.048 0.16± 0.049 0.40± 0.051

20 10 25 1 1 0.007± 0.047 0.01± 0.049 0.06± 0.050 0.20± 0.052

25 4 25 1 1 0.007± 0.049 0.008± 0.050 0.04± 0.049 0.15± 0.052

100 20 25 1 1 0.06± 0.049 0.11± 0.049 0.21± 0.049 0.45± 0.050

200 10 25 1 1 0.04± 0.050 0.09± 0.050 0.19± 0.049 0.40± 0.051

500 4 25 1 1 0.02± 0.051 0.07± 0.048 0.17± 0.050 0.35± 0.051

1000 2 25 1 1 0.01± 0.049 0.05± 0.048 0.15± 0.049 0.30± 0.051

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)
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Table 10: Table 4-3 (continued). Measure of marker effectiveness RM1(τ1, τ2) for

W (t) model for latent type (3)† under the different correlation between survival

time and biomarker {Fixed Point Method}

# of # of Time Percentage σ2
1 σ2

2 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

Subjects Points of Censor

20 10 50 1 1 0.005± 0.047 0.008± 0.049 0.04± 0.050 0.15± 0.052

25 4 50 1 1 0.005± 0.049 0.006± 0.050 0.02± 0.049 0.10± 0.052

100 20 50 1 1 0.04± 0.049 0.09± 0.049 0.17± 0.049 0.35± 0.050

200 10 50 1 1 0.02± 0.050 0.07± 0.050 0.15± 0.049 0.30± 0.051

500 4 50 1 1 0.01± 0.051 0.05± 0.048 0.13± 0.050 0.25± 0.051

1000 2 50 1 1 0.008± 0.049 0.03± 0.048 0.11± 0.049 0.20± 0.051

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)
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Table 11: Table 4-4. Measure of marker effectiveness RD1(τ1, τ2) for W (t) model

for latent type (3)† under the different correlation between survival time and

biomarker {Interval Measure Method}

# of # of Time Percentage σ2
1 σ2

2 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

Subjects Points of Censor

20 10 0 1 1 0.01± 0.047 0.03± 0.049 0.10± 0.050 0.30± 0.052

25 4 0 1 1 0.01± 0.049 0.02± 0.050 0.08± 0.049 0.25± 0.052

100 20 0 1 1 0.10± 0.049 0.15± 0.049 0.30± 0.049 0.65± 0.050

200 10 0 1 1 0.08± 0.050 0.13± 0.050 0.27± 0.049 0.60± 0.051

500 4 0 1 1 0.06± 0.051 0.11± 0.048 0.24± 0.050 0.55± 0.051

1000 2 0 1 1 0.04± 0.049 0.09± 0.048 0.21± 0.049 0.50± 0.051

20 10 10 1 1 0.0095± 0.047 0.02± 0.049 0.09± 0.050 0.28± 0.052

25 4 10 1 1 0.0095± 0.049 0.015± 0.050 0.07± 0.049 0.23± 0.052

100 20 10 1 1 0.09± 0.049 0.14± 0.049 0.27± 0.049 0.60± 0.050

200 10 10 1 1 0.07± 0.050 0.12± 0.050 0.24± 0.049 0.55± 0.051

500 4 10 1 1 0.05± 0.051 0.10± 0.048 0.21± 0.050 0.50± 0.051

1000 2 10 1 1 0.03± 0.049 0.08± 0.048 0.18± 0.049 0.45± 0.051

20 10 25 1 1 0.008± 0.047 0.015± 0.049 0.08± 0.050 0.26± 0.052

25 4 25 1 1 0.008± 0.049 0.01± 0.050 0.06± 0.049 0.21± 0.052

100 20 25 1 1 0.07± 0.049 0.13± 0.049 0.24± 0.049 0.55± 0.050

200 10 25 1 1 0.05± 0.050 0.11± 0.050 0.22± 0.049 0.50± 0.051

500 4 25 1 1 0.03± 0.051 0.09± 0.048 0.20± 0.050 0.45± 0.051

1000 2 25 1 1 0.02± 0.049 0.07± 0.048 0.18± 0.049 0.40± 0.051

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)
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Table 12: Table 4-4 (continued). Measure of marker effectiveness RD1(τ1, τ2) for

W (t) model for latent type (3)† under the different correlation between survival

time and biomarker {Interval Measure Method}

# of # of Time Percentage σ2
1 σ2

2 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

Subjects Points of Censor

20 10 50 1 1 0.007± 0.047 0.01± 0.049 0.05± 0.050 0.24± 0.052

25 4 50 1 1 0.007± 0.049 0.008± 0.050 0.05± 0.049 0.19± 0.052

100 20 50 1 1 0.05± 0.049 0.12± 0.049 0.21± 0.049 0.50± 0.050

200 10 50 1 1 0.03± 0.050 0.10± 0.050 0.19± 0.049 0.45± 0.051

500 4 50 1 1 0.02± 0.051 0.08± 0.048 0.17± 0.050 0.40± 0.051

1000 2 50 1 1 0.01± 0.049 0.06± 0.048 0.15± 0.049 0.35± 0.051

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)
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Table 13: Table 4-5A. Power of score test for the W (t) model under H0 : γ = 0

given 50 % longitudinal biomarkers missing for latent type (1)†

# of Subjects # of Time Points σ2
1 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

100 20 1 0.216 0.674 0.791 0.822

100 20 0.8 0.202 0.653 0.772 0.813

100 20 0.2 0.193 0.635 0.754 0.801

200 10 1 0.174 0.692 0.803 0.864

200 10 0.8 0.162 0.677 0.782 0.851

200 10 0.2 0.154 0.654 0.761 0.843

500 4 1 0.060 0.718 0.824 0.892

500 4 0.8 0.052 0.703 0.793 0.881

500 4 0.2 0.044 0.691 0.782 0.865

1000 2 1 0.052 0.865 0.890 0.924

1000 2 0.8 0.042 0.852 0.884 0.892

1000 2 0.2 0.030 0.845 0.872 0.881

†Note: W (t) = U1, U1 ∼ N(0, σ2
1)
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Table 14: Table 4-5B. Power of score test for the W (t) model under H0 : γ = 0

given 50 % longitudinal biomarkers missing for latent type (2)†

# of Subjects # of Time Points σ2
1 σ2

2 ρ σ2
1 + σ2

2ρ γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

100 20 1 1 0.5 1.5 0.187 0.695 0.806 0.846

100 20 1 1 0.05 1.05 0.186 0.676 0.782 0.823

100 20 0.8 0.2 0.5 0.9 0.184 0.674 0.781 0.825

100 20 0.8 0.2 0.05 0.81 0.183 0.657 0.764 0.807

100 20 0.2 0.8 0.5 0.6 0.175 0.665 0.762 0.811

100 20 0.2 0.8 0.05 0.24 0.172 0.622 0.743 0.803

200 10 1 1 0.5 1.5 0.163 0.712 0.817 0.901

200 10 1 1 0.05 1.05 0.158 0.695 0.795 0.881

200 10 0.8 0.2 0.5 0.9 0.155 0.694 0.792 0.880

200 10 0.8 0.2 0.05 0.81 0.153 0.673 0.775 0.864

200 10 0.2 0.8 0.5 0.6 0.151 0.671 0.772 0.862

200 10 0.2 0.8 0.05 0.24 0.150 0.655 0.755 0.843

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ
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Table 15: Table 4-5B (continued). Power of score test for the W (t) model under

H0 : γ = 0 given 50 % longitudinal biomarkers missing for latent type (2)†

# of Subjects # of Time Points σ2
1 σ2

2 ρ σ2
1 + σ2

2ρ γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

500 4 1 1 0.5 1.5 0.082 0.754 0.865 0.932

500 4 1 1 0.05 1.05 0.053 0.722 0.822 0.894

500 4 0.8 0.2 0.5 0.9 0.072 0.736 0.841 0.913

500 4 0.8 0.2 0.05 0.81 0.062 0.711 0.802 0.881

500 4 0.2 0.8 0.5 0.6 0.060 0.712 0.822 0.892

500 4 0.2 0.8 0.05 0.24 0.042 0.702 0.793 0.863

1000 2 1 1 0.5 1.5 0.061 0.911 0.931 0.952

1000 2 1 1 0.05 1.05 0.050 0.892 0.913 0.923

1000 2 0.8 0.2 0.5 0.9 0.051 0.901 0.922 0.942

1000 2 0.8 0.2 0.05 0.81 0.042 0.887 0.907 0.917

1000 2 0.2 0.8 0.5 0.6 0.046 0.892 0.913 0.932

1000 2 0.2 0.8 0.05 0.24 0.037 0.871 0.881 0.903

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ
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Table 16: Table 4-5C. Power of score test for the W (t) model under H0 : γ = 0

given 50 % longitudinal biomarkers missing for latent type (3)†

# of Subjects # of Time Points σ2
1 σ2

2 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

100 20 1 1 0.140 0.715 0.844 0.864

100 20 0.8 0.2 0.131 0.691 0.822 0.854

100 20 0.2 0.8 0.123 0.673 0.804 0.843

200 10 1 1 0.110 0.735 0.843 0.922

200 10 0.8 0.2 0.102 0.711 0.822 0.911

200 10 0.2 0.8 0.093 0.693 0.804 0.903

500 4 1 1 0.063 0.795 0.883 0.963

500 4 0.8 0.2 0.051 0.775 0.863 0.954

500 4 0.2 0.8 0.042 0.753 0.844 0.946

1000 2 1 1 0.055 0.932 0.952 0.982

1000 2 0.8 0.2 0.040 0.923 0.942 0.973

1000 2 0.2 0.8 0.031 0.912 0.931 0.960

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr (V (t), V (t+s)) = exp(−|s|)
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Table 17: Table 4-6A. Power of score test for the W (t) model under H0 : γ = 0

given 50 % longitudinal biomarkers missing for latent type (1)†

# of Subjects # of Time Points σ2
1 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

100 20 1 0.115 0.081 0.123 0.161

100 20 0.8 0.105 0.080 0.104 0.141

100 20 0.2 0.101 0.072 0.083 0.120

200 10 1 0.107 0.113 0.153 0.193

200 10 0.8 0.103 0.102 0.131 0.170

200 10 0.2 0.096 0.093 0.114 0.153

500 4 1 0.087 0.124 0.170 0.241

500 4 0.8 0.083 0.111 0.151 0.223

500 4 0.2 0.080 0.104 0.134 0.204

1000 2 1 0.077 0.141 0.201 0.262

1000 2 0.8 0.075 0.130 0.172 0.241

1000 2 0.2 0.071 0.123 0.155 0.223

†Note: W (t) = U1, U1 ∼ N(0, σ2
1),
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Table 18: Table 4-6B. Power of score test for the W (t) model under H0 : γ = 0

given 50 % longitudinal biomarkers missing for latent type (2)†

# of Subjects # of Time Points σ2
1 σ2

2 ρ σ2
1 + σ2

2ρ γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

100 20 1 1 0.5 1.5 0.084 0.135 0.213 0.265

100 20 1 1 0.05 1.05 0.082 0.116 0.170 0.243

100 20 0.8 0.2 0.5 0.9 0.075 0.111 0.192 0.243

100 20 0.8 0.2 0.05 0.81 0.073 0.097 0.173 0.223

100 20 0.2 0.8 0.5 0.6 0.071 0.094 0.171 0.223

100 20 0.2 0.8 0.05 0.24 0.069 0.075 0.152 0.203

200 10 1 1 0.5 1.5 0.080 0.153 0.232 0.282

200 10 1 1 0.05 1.05 0.078 0.131 0.214 0.266

200 10 0.8 0.2 0.5 0.9 0.076 0.130 0.212 0.262

200 10 0.8 0.2 0.05 0.81 0.074 0.111 0.194 0.243

200 10 0.2 0.8 0.5 0.6 0.072 0.110 0.192 0.242

200 10 0.2 0.8 0.05 0.24 0.070 0.092 0.170 0.223

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ
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Table 19: Table 4-6B (continued). Power of score test for the W (t) model under

H0 : γ = 0 given 50 % longitudinal biomarkers missing for latent type (2)†

# of Subjects # of Time Points σ2
1 σ2

2 ρ σ2
1 + σ2

2ρ γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

500 4 1 1 0.5 1.5 0.072 0.186 0.267 0.324

500 4 1 1 0.05 1.05 0.066 0.167 0.243 0.293

500 4 0.8 0.2 0.5 0.9 0.064 0.178 0.235 0.292

500 4 0.8 0.2 0.05 0.81 0.063 0.143 0.224 0.273

500 4 0.2 0.8 0.5 0.6 0.062 0.154 0.215 0.272

500 4 0.2 0.8 0.05 0.24 0.060 0.123 0.194 0.251

1000 2 1 1 0.5 1.5 0.063 0.201 0.281 0.342

1000 2 1 1 0.05 1.05 0.062 0.183 0.262 0.312

1000 2 0.8 0.2 0.5 0.9 0.062 0.192 0.257 0.320

1000 2 0.8 0.2 0.05 0.81 0.060 0.164 0.236 0.291

1000 2 0.2 0.8 0.5 0.6 0.059 0.173 0.234 0.291

1000 2 0.2 0.8 0.05 0.24 0.057 0.142 0.210 0.273

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ
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APPENDIX B

TABLES 20–38

(TABLES 4–6C-4–9(C2))
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Table 20: Table 4-6C. Power of score test for the W (t) model under H0 : γ = 0

given 50 % longitudinal biomarkers missing for latent type (3)†

# of Subjects # of Time Points σ2
1 σ2

2 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

100 20 1 1 0.073 0.181 0.243 0.285

100 20 0.8 0.2 0.072 0.164 0.225 0.266

100 20 0.2 0.8 0.071 0.142 0.204 0.242

200 10 1 1 0.066 0.203 0.263 0.305

200 10 0.8 0.2 0.063 0.185 0.243 0.286

200 10 0.2 0.8 0.061 0.164 0.225 0.264

500 4 1 1 0.060 0.226 0.285 0.342

500 4 0.8 0.2 0.057 0.215 0.266 0.323

500 4 0.2 0.8 0.054 0.198 0.245 0.304

1000 2 1 1 0.056 0.242 0.300 0.371

1000 2 0.8 0.2 0.054 0.231 0.285 0.343

1000 2 0.2 0.8 0.050 0.211 0.264 0.324

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)
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Table 21: Table 4-7A. Power of score test for the W (t) model under H0 : γ = 0

given 50 % longitudinal biomarkers missing for latent type (1)†

# of Subjects # of Time Points σ2
1 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

100 20 1 0.317 0.374 0.396 0.423

100 20 0.8 0.304 0.356 0.371 0.414

100 20 0.2 0.292 0.337 0.352 0.402

200 10 1 0.276 0.395 0.403 0.464

200 10 0.8 0.262 0.373 0.382 0.451

200 10 0.2 0.251 0.353 0.361 0.444

500 4 1 0.163 0.417 0.424 0.493

500 4 0.8 0.152 0.402 0.393 0.480

500 4 0.2 0.145 0.394 0.380 0.464

1000 2 1 0.152 0.564 0.593 0.625

1000 2 0.8 0.145 0.552 0.584 0.591

1000 2 0.2 0.133 0.545 0.575 0.585

†Note: W (t) = U1, U1 ∼ N(0, σ2
1)
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Table 22: Table 4-7B. Power of score test for the W (t) model under H0 : γ = 0

given 50 % longitudinal biomarkers missing for latent type (2)†

# of Subjects # of Time Points σ2
1 σ2

2 ρ σ2
1 + σ2

2ρ γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

100 20 1 1 0.5 1.5 0.288 0.497 0.607 0.647

100 20 1 1 0.05 1.05 0.285 0.474 0.582 0.624

100 20 0.8 0.2 0.5 0.9 0.284 0.471 0.581 0.622

100 20 0.8 0.2 0.05 0.81 0.280 0.456 0.564 0.607

100 20 0.2 0.8 0.5 0.6 0.278 0.463 0.562 0.611

100 20 0.2 0.8 0.05 0.24 0.272 0.422 0.540 0.603

200 10 1 1 0.5 1.5 0.263 0.514 0.612 0.705

200 10 1 1 0.05 1.05 0.257 0.496 0.594 0.681

200 10 0.8 0.2 0.5 0.9 0.256 0.493 0.596 0.680

200 10 0.8 0.2 0.05 0.81 0.254 0.472 0.573 0.663

200 10 0.2 0.8 0.5 0.6 0.252 0.471 0.572 0.662

200 10 0.2 0.8 0.05 0.24 0.250 0.453 0.556 0.644

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ
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Table 23: Table 4-7B (continued). Power of score test for the W (t) model under

H0 : γ = 0 given 50 % longitudinal biomarkers missing for latent type (2)†

# of Subjects # of Time Points σ2
1 σ2

2 ρ σ2
1 + σ2

2ρ γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

500 4 1 1 0.5 1.5 0.182 0.558 0.662 0.731

500 4 1 1 0.05 1.05 0.154 0.526 0.623 0.697

500 4 0.8 0.2 0.5 0.9 0.175 0.533 0.642 0.712

500 4 0.8 0.2 0.05 0.81 0.163 0.512 0.602 0.681

500 4 0.2 0.8 0.5 0.6 0.160 0.510 0.623 0.696

500 4 0.2 0.8 0.05 0.24 0.147 0.502 0.592 0.660

1000 2 1 1 0.5 1.5 0.164 0.712 0.731 0.752

1000 2 1 1 0.05 1.05 0.152 0.693 0.716 0.727

1000 2 0.8 0.2 0.5 0.9 0.151 0.701 0.723 0.743

1000 2 0.8 0.2 0.05 0.81 0.142 0.687 0.705 0.712

1000 2 0.2 0.8 0.5 0.6 0.143 0.692 0.717 0.731

1000 2 0.2 0.8 0.05 0.24 0.137 0.671 0.683 0.702

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ
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Table 24: Table 4-7C. Power of score test for the W (t) model under H0 : γ = 0

given 50 % longitudinal biomarkers missing for latent type (3)†

# of Subjects # of Time Points σ2
1 σ2

2 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

100 20 1 1 0.242 0.515 0.645 0.665

100 20 0.8 0.2 0.232 0.494 0.622 0.653

100 20 0.2 0.8 0.227 0.473 0.603 0.647

200 10 1 1 0.213 0.535 0.644 0.722

200 10 0.8 0.2 0.201 0.514 0.621 0.713

200 10 0.2 0.8 0.197 0.493 0.602 0.700

500 4 1 1 0.164 0.594 0.687 0.962

500 4 0.8 0.2 0.152 0.575 0.663 0.757

500 4 0.2 0.8 0.141 0.552 0.644 0.744

1000 2 1 1 0.154 0.737 0.753 0.982

1000 2 0.8 0.2 0.142 0.723 0.742 0.774

1000 2 0.2 0.8 0.135 0.716 0.735 0.760

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr (V (t), V (t+s)) = exp(−|s|)
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Table 25: Table 4-8A. Power of score test for the W (t) model under H0 : γ = 0

given 50 % longitudinal biomarkers missing for latent type (1)†

# of Subjects # of Time Points σ2
1 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

100 20 1 0.216 0.086 0.125 0.167

100 20 0.8 0.209 0.083 0.103 0.144

100 20 0.2 0.204 0.071 0.089 0.122

200 10 1 0.207 0.114 0.154 0.194

200 10 0.8 0.202 0.102 0.138 0.171

200 10 0.2 0.196 0.097 0.110 0.150

500 4 1 0.187 0.124 0.173 0.244

500 4 0.8 0.183 0.111 0.151 0.226

500 4 0.2 0.180 0.103 0.135 0.203

1000 2 1 0.177 0.146 0.202 0.262

1000 2 0.8 0.174 0.133 0.176 0.244

1000 2 0.2 0.171 0.122 0.154 0.222

†Note: W (t) = U1, U1 ∼ N(0, σ2
1),
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Table 26: Table 4-8B. Power of score test for the W (t) model under H0 : γ = 0

given 50 % longitudinal biomarkers missing for latent type (2)†

# of Subjects # of Time Points σ2
1 σ2

2 ρ σ2
1 + σ2

2ρ γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

100 20 1 1 0.5 1.5 0.184 0.137 0.155 0.165

100 20 1 1 0.05 1.05 0.182 0.114 0.123 0.144

100 20 0.8 0.2 0.5 0.9 0.173 0.112 0.147 0.140

100 20 0.8 0.2 0.05 0.81 0.172 0.095 0.123 0.125

100 20 0.2 0.8 0.5 0.6 0.171 0.092 0.125 0.121

100 20 0.2 0.8 0.05 0.24 0.169 0.077 0.107 0.105

200 10 1 1 0.5 1.5 0.183 0.152 0.145 0.187

200 10 1 1 0.05 1.05 0.179 0.134 0.152 0.163

200 10 0.8 0.2 0.5 0.9 0.175 0.132 0.153 0.165

200 10 0.8 0.2 0.05 0.81 0.171 0.112 0.144 0.143

200 10 0.2 0.8 0.5 0.6 0.170 0.111 0.143 0.140

200 10 0.2 0.8 0.05 0.24 0.169 0.093 0.131 0.127

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ
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Table 27: Table 4-8B (continued). Power of score test for the W (t) model under

H0 : γ = 0 given 50 % longitudinal biomarkers missing for latent type (2)†

# of Subjects # of Time Points σ2
1 σ2

2 ρ σ2
1 + σ2

2ρ γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

500 4 1 1 0.5 1.5 0.171 0.186 0.216 0.227

500 4 1 1 0.05 1.05 0.167 0.167 0.183 0.193

500 4 0.8 0.2 0.5 0.9 0.166 0.173 0.164 0.192

500 4 0.8 0.2 0.05 0.81 0.164 0.144 0.153 0.173

500 4 0.2 0.8 0.5 0.6 0.165 0.157 0.158 0.171

500 4 0.2 0.8 0.05 0.24 0.162 0.122 0.144 0.157

1000 2 1 1 0.5 1.5 0.166 0.205 0.206 0.246

1000 2 1 1 0.05 1.05 0.164 0.187 0.192 0.223

1000 2 0.8 0.2 0.5 0.9 0.163 0.192 0.188 0.220

1000 2 0.8 0.2 0.05 0.81 0.161 0.167 0.167 0.197

1000 2 0.2 0.8 0.5 0.6 0.160 0.173 0.178 0.191

1000 2 0.2 0.8 0.05 0.24 0.158 0.141 0.154 0.170

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ
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Table 28: Table 4-8C. Power of score test for the W (t) model under H0 : γ = 0

given 50 % longitudinal biomarkers missing for latent type (3)†

# of Subjects # of Time Points σ2
1 σ2

2 γ = 0.00 γ = 0.10 γ = 0.25 γ = 0.85

100 20 1 1 0.174 0.187 0.206 0.229

100 20 0.8 0.2 0.173 0.166 0.184 0.206

100 20 0.2 0.8 0.169 0.143 0.162 0.181

200 10 1 1 0.165 0.207 0.228 0.244

200 10 0.8 0.2 0.163 0.187 0.204 0.226

200 10 0.2 0.8 0.160 0.167 0.182 0.204

500 4 1 1 0.158 0.229 0.245 0.261

500 4 0.8 0.2 0.157 0.214 0.234 0.254

500 4 0.2 0.8 0.154 0.195 0.216 0.239

1000 2 1 1 0.151 0.247 0.264 0.287

1000 2 0.8 0.2 0.148 0.230 0.253 0.270

1000 2 0.2 0.8 0.145 0.214 0.237 0.252

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)
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Table 29: Table 4-9(A1). Liver cirrhosis trial results for the W (t) model for latent

type (1)† under H0 : γ = 0

Est SE

Treatment 0.586 0.7125

Random effect from prothrombin -0.162 0.0182

frailty effect: Chisq = 17633.87, DF = 427

†Note: W (t) = U1, U1 ∼ N(0, σ2
1)

Table 30: Table 4-9(A2). Score test for the W (t) model for latent type (1)† under

H0 : γ = 0

Chisq DF p

181 29 < 0.001

†Note: W (t) = U1, U1 ∼ N(0, σ2
1)
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Table 31: Table 4-9(A3). Liver cirrhosis trial results for the W (t) model for latent

type (1)† under H0 : γ = 0 without frailty

Est SE

Treatment 0.0767 0.11742

Random effect from prothrombin -0.0438 0.00346

†Note: W (t) = U1, U1 ∼ N(0, σ2
1)

Table 32: Table 4-9(A4). Score test for the W (t) model for latent type (1)† under

H0 : γ = 0 without frailty

Chisq DF p

166.49 1 < 0.001

†Note: W (t) = U1, U1 ∼ N(0, σ2
1)
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Table 33: Table 4-9(B1). Score test for the W (t) for latent type (2)† model under

H0 : γ = 0

Est SE

Treatment -0.319 0.5504

Random effect from prothrombin -0.423 0.0827

frailty effect: Chisq = 14652.33, DF = 436

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ

Table 34: Table 4-9(B2). Score test for the W (t) model for latent type (2)† under

H0 : γ = 0

Chisq DF p

272 19 < 0.001

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ
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Table 35: Table 4-9(B3). Liver cirrhosis trial results for the W (t) model for latent

type (2)† under H0 : γ = 0 without frailty

Est SE

Treatment 0.0832 0.1179

Random effect from prothrombin -0.5350 0.0311

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ

Table 36: Table 4-9(B4). Score test for the W (t) model for latent type (2)† under

H0 : γ = 0 without frailty

Chisq DF p

374.49 1 < 0.001

†Note: W (t) = U1, U1 ∼ N(0, σ2
1)
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Table 37: Table 4-9(C1). Score test for the W (t) model for latent type (3)† under

H0 : γ = 0

Est SE

Treatment -0.319 0.5504

Random effect from prothrombin -0.268 0.0523

frailty effect: Chisq = 14652.18, DF = 436

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)

Table 38: Table 4-9(C2). Score test for the W (t) model for latent type (3)† under

H0 : γ = 0

Chisq DF p

272 19 < 0.001

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)
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TABLES 39–52

(TABLES 4–9(C3)-4–11(C2))
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Table 39: Table 4-9(C3). Liver cirrhosis trial results for the W (t) model for latent

type (3)† under H0 : γ = 0 without frailty

Est SE

Treatment 0.0832 0.1179

Random effect from prothrombin -0.3388 0.0197

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)

Table 40: Table 4-9(C4). Score test for the W (t) model for latent type (3)† under

H0 : γ = 0 without frailty

Chisq DF p

374.49 1 < 0.001

†Note: W (t) = U1, U1 ∼ N(0, σ2
1)
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Table 41: Table 4-10(A1). Measure of marker effectiveness for W (t) model

for latent type (1)† under the different correlation between survival time and

biomarker {Fixed Point Method}

Time MY1 M1 RM1

[0, 1) 0.559 0.738 0.243

[3, 4) 0.817 0.817 0.000

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)

Table 42: Table 4-10(A2). Measure of marker effectiveness for W (t) model

for latent type (1)† under the different correlation between survival time and

biomarker without frailty{Fixed Point Method}

Time MY1 M1 RM1

[0, 1) 0.242 0.252 0.038

[3, 4) 0.583 0.583 0.000

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)
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Table 43: Table 4-10(B1). Measure of marker effectiveness for W (t) model

for latent type (2)† under the different correlation between survival time and

biomarker {Fixed Point Method}

Time MY1 M1 RM1

[0, 1) 0.510 0.738 0.310

[3, 4) 0.817 0.817 0.000

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ

Table 44: Table 4-10(B2). Measure of marker effectiveness for W (t) model

for latent type (2)† under the different correlation between survival time and

biomarker {Fixed Point Method}

Time MY1 M1 RM1

[0, 1) 0.203 0.252 0.294

[3, 4) 0.583 0.583 0.000

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ
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Table 45: Table 4-10(C1). Measure of marker effectiveness for W (t) model

for latent type (3)† under the different correlation between survival time and

biomarker {Fixed Point Method}

Time MY1 M1 RM1

[0, 1) 0.510 0.738 0.310

[3, 4) 0.817 0.817 0.000

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)

Table 46: Table 4-10(C2). Measure of marker effectiveness for W (t) model

for latent type (3)† under the different correlation between survival time and

biomarker {Fixed Point Method}

Time MY1 M1 RM1

[0, 1) 0.203 0.252 0.294

[3, 4) 0.583 0.583 0.000

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)

85



Table 47: Table 4-11(A1). Measure of marker effectiveness for W (t) model

for latent type (1)† under the different correlation between survival time and

biomarker {Interval Measure Method}

Time DY1 D1 RD1

[0, 1) 0.134 0.511 0.738

[3, 4) 0.817 0.817 0.000

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)

Table 48: Table 4-11(A2). Measure of marker effectiveness for W (t) model

for latent type (1)† under the different correlation between survival time and

biomarker {Interval Measure Method}

Time DY1 D1 RD1

[0, 1) 0.016 0.052 0.690

[3, 4) 0.583 0.583 0.000

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)
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Table 49: Table 4-11(B1). Measure of marker effectiveness for W (t) model

for latent type (2)† under the different correlation between survival time and

biomarker {Interval Measure Method}

Time DY1 D1 RD1

[0, 1) 0.119 0.511 0.768

[3, 4) 0.817 0.817 0.000

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ

Table 50: Table 4-11(B2). Measure of marker effectiveness for W (t) model

for latent type (2)† under the different correlation between survival time and

biomarker {Interval Measure Method}

Time DY1 D1 RD1

[0, 1) 0.014 0.052 0.731

[3, 4) 0.583 0.583 0.000

†Note: W (t) = U1 + U2 × t, U1 ∼ N(0, σ2
1), U2 ∼ N(0, σ2

2), Corr(U1, U2) = ρ
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Table 51: Table 4-11(C1). Measure of marker effectiveness for W (t) model

for latent type (3)† under the different correlation between survival time and

biomarker {Interval Measure Method}

Time DY1 D1 RD1

[0, 1) 0.119 0.511 0.768

[3, 4) 0.817 0.817 0.000

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)

Table 52: Table 4-11(C2). Measure of marker effectiveness for W (t) model

for latent type (3)† under the different correlation between survival time and

biomarker {Interval Measure Method}

Time DY1 D1 RD1

[0, 1) 0.014 0.052 0.731

[3, 4) 0.583 0.583 0.000

†Note: W (t) = U1 +V (t), U1 ∼ N(0, σ2
1), V (t) ∼ N(0, σ2

1), Corr(V (t), V (t+s)) = exp(−|s|)
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