Lee, Min Jae
(2007)
ROLE OF THE N-END RULE PATHWAY IN CARDIOVASCULAR DEVELOPMENT, SIGNALING, AND HOMEOSTASIS.
Doctoral Dissertation, University of Pittsburgh.
(Unpublished)
Abstract
The N-end rule pathway relates the in vivo half-life of a protein to the identity of its N terminal residue. In this pathway, a substrate bearing N-degron is recognized and ubiquitylated by a family of E3 ubiquitin ligases named UBR proteins. The N-end rule pathway is implicated in various physiological and pathological processes including cardiac development and angiogenesis. It has been previously shown that mice lacking ATE1, which mediates N-terminal arginylation, die during embryogenesis associated with various defects in cardiovascular development. The goal of my graduate research was to understand the function of the N-end rule pathway in cardiovascular development, signaling, and homeostasis. In my first project, I employed a genome-wide functional proteomic approach to identify physiological substrates of ATE1, that potentially underlie the above cardiovascular phenotypes. I found that RGS4, RGS5, and RGS16 are in vivo substrates of the N-end rule pathway, the first to be identified in mammals. These RGS proteins, emerging regulators for cardiovascular G protein signaling, were degraded through sequential N-terminal modifications including N-terminal exposure of their Cys 2, its oxidation, and arginylation. In the second project, to understand the physiological meaning of ATE1-mediated RGS proteolysis in cardiac development and signaling, I characterized ATE1-/- mice and embryonic cardiomyocytes with an emphasis on GPCR signaling. I found that cell-autonomous function of ATE1 regulates the proliferation of cardiomyocytes and the homeostasis of Gq-dependent cardiac signaling. In the third project, I explored a model of heterovalent interaction by developing RF-C11, a small molecule inhibitor of the N-end rule pathway. Its two heterovalent ligands were designed to cooperatively target two cognate sites of N-recognins. RF-C11 showed higher inhibitory efficiency than its homovalent controls, providing molecular basis of designing multivalent inhibitors for specific intracellular pathways. Moreover, the treatment of RF-C11 reduced cardiac proliferation and hypertrophy in cardiomyocytes, unveiling a previously unknown function of the pathway in cardiac proliferation and signaling. In summary, my graduate research contributes to comprehensive understanding of the function of the N-end rule pathway in the cardiovascular system.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Item Type: |
University of Pittsburgh ETD
|
Status: |
Unpublished |
Creators/Authors: |
|
ETD Committee: |
|
Date: |
28 August 2007 |
Date Type: |
Completion |
Defense Date: |
7 August 2007 |
Approval Date: |
28 August 2007 |
Submission Date: |
2 August 2007 |
Access Restriction: |
5 year -- Restrict access to University of Pittsburgh for a period of 5 years. |
Institution: |
University of Pittsburgh |
Schools and Programs: |
School of Pharmacy > Pharmaceutical Sciences |
Degree: |
PhD - Doctor of Philosophy |
Thesis Type: |
Doctoral Dissertation |
Refereed: |
Yes |
Uncontrolled Keywords: |
cardiac; inhibitor; mammalian; N-end rule; substrate; ubiquitin |
Other ID: |
http://etd.library.pitt.edu/ETD/available/etd-08022007-141748/, etd-08022007-141748 |
Date Deposited: |
10 Nov 2011 19:56 |
Last Modified: |
15 Nov 2016 13:47 |
URI: |
http://d-scholarship.pitt.edu/id/eprint/8826 |
Metrics
Monthly Views for the past 3 years
Plum Analytics
Actions (login required)
|
View Item |