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USING TRAJECTORIES FROM A BIVARIATE GROWTH CURVE OF

COVARIATES IN A COX MODEL ANALYSIS

Qianyu Dang, PhD

University of Pittsburgh, 2004

In many maintenance treatment trials, patients are first enrolled into an open treatment

before they are randomized into treatment groups. During this period, patients are followed

over time with their responses measured longitudinally. This design is very common in

today’s public health studies of the prevention of many diseases. Using mixed model theory,

one can characterize these data using a wide array of across subject models. A state-space

representation of the mixed model and use of the Kalman filter allow more flexibility in

choosing the within error correlation structure even in the presence of missing and unequally

spaced observations. Furthermore, using the state-space approach, one can avoid inverting

large matrices resulting in efficient computations. Estimated trajectories from these models

can be used as predictors in a survival analysis in judging the efficacy of the maintenance

treatments. The statistical problem lies in accounting for the estimation error in these

predictors. We considered a bivariate growth curve where the longitudinal responses were

unequally spaced and assumed that the within subject errors followed a continuous first

order autoregressive (CAR (1)) structure. A simulation study was conducted to validate

the model. We developed a method where estimated random effects for each subject from

a bivariate growth curve were used as predictors in the Cox proportional hazards model,

using the full likelihood based on the conditional expectation of covariates to adjust for

the estimation errors in the predictor variables. Simulation studies indicated that error

corrected estimators for model parameters are mostly less biased when compared with the

nave regression without accounting for estimation errors. These results hold true in Cox
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models with one or two predictors. An illustrative example is provided with data from a

maintenance treatment trial for major depression in an elderly population. A Visual Fortran

90 and a SAS IML program are developed.
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PREFACE

This dissertation is organized in the following way. Chapter 1 contains the statement of

the dissertation problem, the description of the study [Maintenance Therapies in Latelife

Depression (MTLD)] and the motivation for using multivariate growth curves for a trajectory

analysis. In Chapter 2, we present an approach for obtaining a bivariate growth curve with

unequally spaced data. The corresponding paper submitted to Communication in Statistics

with the title “Modeling Unequally Spaced Bivariate Growth Curve with Kalman Filter

Approach” is attached as an appendix. In Chapter 3, we review the Cox model with covariate

measurement error. In Chapter 5, we formulate the details of the dissertation problem and

give an example. The simulation study results are shown in Chapter 5. The conclusion and

directions for future research are given in Chapter 6.
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provided the foundation for this dissertation. Many valuable discussions with Dr. Anderson

are indispensable for me to accomplish the algorithm of Kalman filter.

I would like to express my appreciation to the rest of my committee: Dr. Charles

Reynolds, Dr. Howard Rockette and Dr. Lisa Weissfeld, for giving me valuable suggestions

to improve this dissertation. Special thanks to Dr. Saul Shiffman for providing research

assistantship which allowed me to attend school. Finally, I dedicate this dissertation to my

wife Ying and my parents for their love and support.
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1.0 INTRODUCTION

In this dissertation, we modify and have reprogrammed the Kalman filter algorithm devel-

oped by Jones (1993) and Tan (1993) to fit an unequally spaced, bivariate growth model with

a CAR(1) error structure. We then used the estimates of each subject’s trajectories obtained

from the fitted model as predictors in a Cox proportional hazards model. Essentially, we

have extended the existing methods of joint modeling of survival and longitudinal data with

measurement error to model survival data with the predictors’ estimation errors inherited

from the first step of the model. We also attempt to find the best approximation to simplify

the computation. Several methods are suggested for estimation of covariates coefficients and

variances in the survival analysis.

1.1 STATEMENT OF THE PROBLEM

In many clinical trials, when participants are recruited, they are first enrolled into an open

treatment period. During that time, the patients are given a standard treatment. Only

those who achieve remission or improvement from the illness are subsequently eligible to be

randomized for the comparison of different maintenance treatments in a clinical trial.

Many researchers notice that patients who have quick, stable responses to standard

treatment during the open treatment period are more likely to have better results later

in their maintenance treatment. Consequently it is important to assess the effect of each

subject’s trajectory of response in the first phase on their performance later.

The basic idea is to use each patient’s response profile during the acute phase of the

treatment to predict his later outcomes. The initial responses are usually longitudinal mea-
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surements. In addition, more than one response profile may be of importance and these

profiles are likely to be correlated. In the case where more than one response is observed at

each time point, a multivariate growth curve is appropriate to model these data to obtain

required trajectories. Since in practice there are likely many missing observations, so that

ideally, the model should be able to handle unequally spaced data. Each patient’s unique

multi-dimensional profile can be summarized by the estimated parameters from the growth

curve. These estimated parameters can then be used as predictors for the next phase of the

study. Thus, we can evaluate the effect of the first phase profile on the final outcomes. The

statistical problem lies in accounting for the estimation errors in these predictors.

1.2 MTLD STUDY AS THE MOTIVATING EXAMPLE

The maintenance therapies in late life depression (MTLD; Reynolds et al. (1999)) study was

a randomized clinical trial comparing different treatments combination for older patients

aged 60 to 90 with depression. The study consisted of three phases. The first was the

acute treatment phase when 187 patients with recurrent depression were enrolled and openly

treated with a full-dose of nortriptyline (NT) and weekly interpersonal psychotherapy (IPT)

to achieve a remission of depressive symptoms. The maximum length for this phase was

26 weeks. The patients’ responses were measured by the Hamilton Depression Rating Scale

(17-item). Among them, only those who achieved “full remission” (HDRS score ≤ 10 for

3 consecutive weeks) were eligible for the next phases which were called the continuation

treatments. The continuation phase consisted of 16 weeks of therapy and drug treatment to

ensure stability of remission and full recovery. Patients who remained in stable remission at

the end of the second phase were randomized into the maintenance treatment phase.

We selected two measurements to represent the recovery pattern during the acute and

continuation treatment. The first is the HDRS-17 score, which is the direct indicator for the

treatment response. The second one is the blood test results of NT concentration, which

is considered to represent the body metabolism and compliance with treatment. These two

measurements were obtained at the time the participants came for their weekly treatment.
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They are mostly unequally spaced since patients missed their appointments due to various

reasons. In addition, these two variables are likely to be correlated.

In maintenance treatment phase, the patients were assigned to four different treatment

groups: combination of NT treatment and IPT, placebo treatment with IPT, NT with

medication clinic and placebo treatment with medication clinic. The treatment started 6

weeks after randomization to allow for gradual double-blind tapering of NT and IPT to the

placebo and medication clinic. Patients remained in maintenance therapy for three years or

until recurrence of any major depression episodes. In the end, the recurrence rates ranged

from 20% to 90%. The NT combined with IPT treatment group had the lowest recurrence

rate among the four treatment groups.

The maintenance phase is a survival study with an event defined as a recurrence of

depression. A censored observation is dropout or the three year remission. The first two

phases provide data to determine trajectories for patients’ responses to standard treatment.

The unique patterns from these trajectories for each patient can be used as predictors for

the event of recurrence in the third phase.
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2.0 MODELING UNEQUALLY SPACED BIVARIATE GROWTH CURVE

WITH KALMAN FILTER APPROACH

2.1 THE BIVARIATE GROWTH CURVE MODEL

In order to estimate each patient’s trajectories during the phase I and II treatment period, the

bivariate longitudinal growth curve was modeled using a mixed effect modeling approach. A

continuous time first order autocorrelation (CAR(1)) structure is assumed for within subject

errors. For any individual i, the bivariate mixed effects model is given by

Yi = Xiααα + Ziθθθi + εεεi, (2.1)

where Yi is an ni × 2 matrix of HDRS-17 score and NT levels for subject i; ααα is the 6 × 1

fixed effects coefficients and θθθi is the 4× 1 vector of random effects coefficients consisting of

intercepts and slopes for subject i. We assume θθθi ∼ N(0, B) where B is a 4× 4 matrix and

εεεi ∼ i.i.d. N(0,Wi), where Wi is the within subject covariance matrix for individual i. The

design matrices for fixed and random effects are

Xi =




1 ti1 t2i1 0 0 0

0 0 0 1 ti1 t2i1

1 ti1 t2i1 0 0 0

0 0 0 1 ti1 t2i1

. . . . . . . . . . . . . . . . . .

0 0 0 1 tini
t2ini




Zi =




1 ti1 0 0

0 0 1 ti1

1 ti2 0 0

0 0 1 ti2

. . . . . . . . . . . .

0 0 1 tini




. (2.2)

A multivariate Kalman recursive procedure was applied to find the exact likelihood of

the model. Non-linear parameters are estimated through a nonlinear optimization program
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to minimize the -2log likelihood obtained through Kalman filter procedure. However, the

computations become complicated if more than one correlated response is measured at each

time point. In these cases, the modeling strategy and numerical techniques are crucial in

the estimation process.

2.2 SUMMARY OF THE PAPER SUBMITTED

In the attached paper in the appendix of this dissertation, we demonstrated the Kalman

filter approach for a bivariate growth curve model of the MTLD data. In the paper, instead

of the HDRS-17 score, we used the closely related general life function score (Mazumdar,

Reynolds, et al. (1996)) and the NT level to form a bivariate mixed effects model, but

the model structure was assumed to be the same. We considered a bivariate situation

where the longitudinal responses were unequally spaced and assume that the within subject

errors followed a continuous first order autoregressive (CAR(1)) structure. Compared to

the traditional ML and REML solutions, the Kalman filter can handle more complicated

correlated error structures within subjects, and the inference of association between two

variables can be easily obtained. Furthermore, using the state-space approach, one can avoid

inverting large matrices resulting in efficient computation. The bivariate setting requires

large numbers of unknown parameters to be estimated simultaneously. This requires the

estimation process to be carefully controlled to achieve convergence. In order to improve

numerical stability for the multi-step procedure, the exploratory model fitting strategy was

essential. We developed both a Visual Fortran and a SAS program for modeling such data.

A simulation study was conducted to validate the model estimates.
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3.0 LITERATURE REVIEW: COX PROPORTIONAL HAZARDS MODEL

WITH COVARIATE MEASUREMENT ERROR

In this chapter, we review the recent progress in addressing covariate measurement errors in

Cox proportional hazards models. In recent years, researchers have adjusted the estimates

of the regression vector subject to measurement errors. Prentice (1982) introduced a model

based on the expected hazard function to reduce the bias caused by measurement errors. Hu

et al. (1998), De Gruttola et al. (1994) and Tsiatis et al. (2001) developed both parametric

and non-parametric method to find the optimal estimates. Liu et al. (in press) extended

Tsiatis’s methods to covariates with correlated replicates.

Cox (1972) developed a proportional hazards mode for survival data. The basic concept

of Cox model is to model the association between covariates and the “hazard”function λ(t),

which is closely related to the probability of failure at particular time t. Assuming Xi(t) to

be the observed covariate for subject i, the hazard function at time t is defined as:

λ(T |Xi, Ti) = λ0(T )exp(β′Xi),

where λ0(t) is defined as the baseline hazard at time t for all subjects. So let Ri denote the

set of individuals whose event or censored times exceed any time ti or whose censored times

are equal to ti, and Qi denote the set of all subsets of di individuals from Ri. For each q ∈ Qi

, q is a di-tuple (q1, q2, . . . , qdi
) of individuals who might have failed at ti. The log likelihood

becomes

L(β) =
k∑

i=1

λ0(ti)exp(β′Xi)∑
q∈Qi

λ0(ti)exp(β′Xq)
=

k∑
i=1

exp(β′Xi)∑
q∈Qi

exp(β′Xq)
. (3.1)

It is called the partial likelihood since all the baseline hazards λ0(.) are canceled from the

likelihood function.
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Other approaches such as pseudolikelihood (Prentice, 1986) and penalized likelihood (Li

and Luan, 2003) have also been proposed to solve the Cox proportional hazards model.

To handle the measurement errors, Prentice(1982) assumed that the “observed” covariate

X(t) had no predictive value given the “true” but unobservable covariate value Z(t). This

assumption can be written as:

λ{(t; Z(t), X(t)} = λ{t; Z(t)}.
It is also suggested that given the failure time T ≥ t and X(t), the hazard function based

on the observed covariate should be replaced by the conditional expectation of λ(t, Z(t)) as

λ{(t,X(t)} = E{T≥t,X(t)}λ{(t), Z(t)} = λ0(t)E{T≥t,X(t)}exp(β′Z(t)).

Since the failure time T is a function of baseline hazard, the presence of {T ≥ t} in the

conditioning event implies some dependence of the relative risk function λ{t,X(t)}on the

baseline hazard function λ0(.). Hence the full hazard function needed to be used instead

of the Cox partial likelihood function in the expression. We call this method the “full

likelihood” approach, comparing to the partial likelihood for estimating the Cox regression

coefficients.

Hu and Tsiatis (1998) applied this theory to the Cox regression model with covariates

measurement error. Defining Vi as the time to failure or censoring and ∆i as the failure

indicator, and assuming that the censoring time is independent of the failure time and the

true covariates Zi, the full likelihood of the Cox model is a function of

L =
n∏

i=1

[

∫
{λ0(Vi)e

βz}∆iexp{−
∫ Vi

0

λ0(u)eβzdu}fZ,X(Z,X)dZ]; (3.2)

where fZ,X(Z, X) is the joint density function of the random variable Z and X. The joint

density can be written as the product of conditional density fX,Z(X|Z)and the marginal

density h(z) of Z. In an additive model, if both X and Z are normal, Xi = Zi + Ui, and Ui

is i.i.d. and distributed as N(0, σ2
u), then fX,Z(X|Zi) ∼ N(Zi, σ

2
u) while σ2

u is assumed to be

known or estimated from the data.

The next step is defining the probability function of Z. Hu and Tsiatis (1998) suggested

three methods: The first one was the fully parametric algorithm, which assumed that the

distribution of X and Z was specified in terms of a finite number of parameters. The second

was the fully nonparametric approach, which originated from Laird (1978) and Mallet(1986)’s
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nonparametric MLE of a mixing distribution. This approach restricted the estimator to the

class of discrete distributions with at most n support points. For j ≤ n, letting {si . . . . . . sj}
to be the locations of these points with probability mass mi = Pr(Z = si). The probability

function of Z was

h(z, ν) =

j∏
i=1

Pr(X = si)
I(X=si) =

j∏
i=1

m
I(X=si)
i , (3.3)

where ν was a summarization of unknown parameters{j, si . . . . . . sj,mi . . . . . . mj}.
A third way of defining h(z) is the semi-parametric method which gives the best results

in their examples. It defines

h(z, ν) =
1

c
(a0 + a1x + . . . + akxk)

2n(x; µx, σ
2
x) (3.4)

where c is a integration constant. If k is 0, it reduces to the fully parametric approach

as above. Alternatively, it approximates the nonparametric method if k is very large. By

defining h(z), the likelihood function can be maximized to find MLE’s by various types of

numerical optimizations. Hu (1998) and De Gruttola (1994) applied the EM algorithm to

estimate all the unknown parameters.

Besides the likelihood based approach, Carroll (1995) and Gleser (1990) suggested the

regression calibration approach on this problem by replacing the covariates of interest Z with

the regression of true value Z on the observed value X in the standard analysis to obtain

parameter estimates. For subject i, it is assumed that Xi = Zi +Ui where Ui is the Gaussian

error. Let σ2
z and σ2

u to be the unknown variance of Xi and Ui, the expected value of Zi

conditioned on Xi is

E(Zi|Xi) = (
σ2

z

σ2
z + σ2

u

)Xi. (3.5)

So the estimated calibration function

Ê(Zi|Xi) = (
σ̂2

z

σ̂2
z + σ̂2

u

)Xi. (3.6)

By replacing Xi with Ê(Zi|Xi) in the partial likelihood function, the regression calibration

estimators for β can be found with maximum likelihood algorithm.
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Sometimes the additive model is not appropriate to represent the association between

the observed value and true value of covariates. Wulfsohn and Tsiatis (1997) developed a

joint model of longitudinal covariates measured concurrently with the survival process. They

used a random effects model to represent the longitudinal measurements of Xi at time tij,

that is, Xij = θ0i + θ1itij + eij, where θθθi ∼ N(θθθ, B). They modeled the covariates and the

failure time process through the proportional hazards model where the hazard depended on

the covariates through its current value. The hazard function can be represented as

λ(t|θθθi, Xi, ti) = λ(t|θθθi) = λ0(t)exp{β(θ0i + θ1it)}.
Using the same notation as above, they followed Prentice’s concept of conditional expected

hazard function. The observed data likelihood becomes

L =
n∏

i=1

[

∫ +∞

−∞
{

mi∏
j=1

f(xij|θθθi, σ
2
e)}f(θθθi|θθθ,B)f(Vi, ∆i|θθθi, λ0, β)dθθθi], (3.7)

where

f(xij|θθθi, σ
2
e) = (2πσ2

e)
− 1

2 exp{−(xij − θ0i − θ1itij)
2/2σ2

e},
f(θθθi|θθθ, B) = (2π|B|)− 1

2 exp{−(θθθi − θθθ)′B−1(θθθi − θθθ)/2},
and

f(Vi, ∆i|θθθi, λ0, β) = [λ0(Vi)e
[β(θ0i+θ1iVi)]]∆iexp[−

∫ Vi

0

λ0(u)e[β(θ0i+θ1iu)]du]. (3.8)

The density function of the survival data assumes that the current value of covariates is the

proper component among all covariate history to be used in the model. The authors showed

that the parameter estimates could also be found by EM algorithm in the joint model.

Tsiatis and Davidian (2001) made another improvement later. They reported that the

normal assumption for the random effects θθθ was not even necessary when the conditional

score approach of Stefanski and Carroll (1987) was applied. This is another semi-parametric

approach in the sense that the random effects distribution can be left unspecified.

Recently Liu et al. (2001) extended the likelihood procedure by assuming multivariate

normal distribution mvn(z;µµµz,Σz) for replicated measures. Two variants of likelihood-based

approach were used to account for measurement errors. To make the optimization procedure

to be simpler, the baseline hazards were kept to be fixed while searching for the unknown

parameters. Simulation studies done by Liu et al. (in press) with one continuous covariate
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measured with error and one categorical covariate measured without error indicate that

the likelihood-based approach has improved bias reduction over the regression calibration

approach for all covariates which show any bias. These results hold true in both main

effects and interaction models used in Cox regression. Among the likelihood approaches, the

semi-parametric method turned out to be more robust than the fully parametric approach.

10



4.0 USING PREDICTIONS FROM A GROWTH CURVE AS COVARIATES

IN A COX MODEL ANALYSIS

In this chapter, we present the formulation of the problem of using the predictions from the

growth curve described above as covariates in the Cox survival model and its application. A

naive approach with Cox partial likelihood is to use the predicted values as covariates and

ignore any estimation errors. To adjust for the errors of covariates inherited form the first

step model estimation, we incorporated the probability function of the estimates and used

the full likelihood for Cox proportional hazards model. These two methods were examined

and applied to the MTLD data to analyze the relationship between recurrence of depression

and the first stage recovery pattern.

The full likelihood method can be considered as an extension of the work of Hu and

Tsiatis (1998), Liu, K. (2001, in press) reviewed in the previous chapter. First we will

derive the formula for single predictor Cox model, and then we will extend the method to a

dual-predictor mode allowing the two predictors to be correlated.

4.1 COX SURVIVAL MODEL WITH TRAJECTORIES FROM THE

LONGITUDINAL MEASUREMENTS AS PREDICTORS

In Chapter 2, we applied the Kalman filter approach on bivariate growth curve model. The

unique pattern of each individual’s growth was summarized by the predicted random effects

including intercepts and slopes for both variables. We also obtained the variance-covariance

matrix for the random predictions and the estimated joint distribution of the random effects.

Let θ̂i denote the estimated random effects for subject i, which could be a scalar or

11



an m-dimensional vector. Since the true value of θi is unknown, we will use θ̂i instead as

predictors in the subsequent survival analysis, but the associated estimation error has to be

accounted for. Assuming θi ∼ N(0, B), the mixed effects model in the first step will provide

the maximum likelihood estimator of θ̂i. Harville(1976) showed that the is also the unbiased

estimator of θi given the observation and fixed effects. Hence θ̂i is normally distributed

and centered at θi. This method is very similar to the covariate measurement error models

described in the previous chapter where the observed covariates are also functions of their

true values and observation errors. Assuming for subject i, the true predictor θi is a function

of the estimated θ̂i and error, we can model the covariates θi and failure process jointly in

one model combining the proportional hazards and expression of θ̂i through θi.

Letting ∆i be the censoring indicator and Ti be the event time, for n individuals, the full

likelihood is given by

L =
n∏

i=1

[

∫ +∞

−∞
f(Ti, ∆i|θi, λ0, β)f(θ̂i|θi)f(θi)dθi], (4.1)

where

f(Ti, ∆i|θi, λ0, β) = [λ0(Ti)e
(βT θi)]∆iexp[−

∫ Ti

0

λ0(u)e(βT θi)du] (4.2)

and β is the unknown coefficients for θi . If we also let V ar(θ̂i) = Σθ̂i
, then it follows that

f(θ̂i|θi) = ((2π)m|Σθ̂i
|)− 1

2 exp{−1

2
(θ̂i − θi)

′Σ−1

θ̂i
(θ̂i − θi)} (4.3)

and

f(θi) = ((2π)m|B|)− 1
2 exp(−θ′iB

−1θi

2
). (4.4)

Here B is the variance matrix of θi and we will use the estimated variance B̂ to approximate

B. The accuracy of estimation can be improved by including the information of f(B̂|B) and

V ar(B̂); If B is univariate, B̂ follows a Pearson type III distribution centered at B. But if

θi is an m-dimensional vector, then B becomes an m ×m matrix, the computation can be

very complicated and time consuming for any m ≥ 2.
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It is reasonable to assume that the underlying hazard function, λ0(t) has mass only at

the failure times. Let Ci denote the times of censoring; Also let Vi = min(Ti, Ci). For m

distinct failure times t1 . . . . . . tm, the total likelihood is

L =
n∏

i=1

[

∫ +∞

−∞

m∏
j=1

λ
I(Vi=tj)

0(tj)
e(βT θi)∆ie−e(βT θi)

∑m
j=1 λ0(tj)

I(Vi≥tj)

f(θ̂i|θi)f(θi)dθi]. (4.5)

The initial values of baseline hazards λ0(t) can be computed from the survival function

S0 estimated from the naive approach without considering estimation errors. In SAS PROC

PHREG, S0 is estimated through product-limit method. Any ties in the event time are

handled by Breslow’s approximation to the partial likelihood function. Let Ci denote the

set of individuals censored in the half-open interval [ti, ti+1), where t0 = 0 and tk+1 = ∞. So

if γl is the censoring times in [ti, ti+1) where l ranges over Ci, the likelihood function for all

individuals is given by

L =
k∏

i=0

{
∏

l∈Di

([S0(ti)]
exp(β̂T θl) − [S0(ti+0)]

exp(β̂T θl))
∏

l∈Ci

[S0(γl + 0)]exp(β̂T θl)} (4.6)

where Di is the set of individuals fail at time ti and D0 is an empty set. The likelihood L is

maximized by taking S0(t) = S0(ti + 0) for ti < t < ti+1 and assuming that the probability

mass to fall only on the observed event times t1, . . . , tk. By considering a discrete model

with hazard contribution 1−αi at ti, we take S0(ti) = S0(ti−1 +0) =
∏i−1

j=0 αj, where α0 = 1.

Substituting all these into the likelihood, we have

L =
k∏

i=0

{
∏
j∈Di

(1− α
exp(β̂T θj)
i )

∏

l∈Ri−Di

α
exp(β̂T θl)
i } (4.7)

where Ri denote the risk set just before event time ti and β̂ is estimated from the Cox partial

likelihood, the maximum likelihood estimates of α̂i(i = 1 . . . k) is the solution of

∑
j∈Di

exp(β̂T θj)

1− α̂i
exp(β̂T θj)

=
∑

l∈Ri

exp(β̂T θl). (4.8)

If only a single event occurs at ti, αi can be found explicitly. Otherwise, an iterative

solution is obtained by Newton algorithm. The survival function S0(t) can be estimated by
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Ŝ0(t) =
∏i−1

j=0 α̂j, where tj−1 < t < tj. The estimated baseline cumulative hazard function,

Λ̂0 at any event time t is Λ̂0 = −log(Ŝ0(t)), from which λ̂0(t) can be obtained through Λ̂0(t).

The variance of β̂ is estimated by inverting the observed information matrix. The un-

known parameters are β and the λ0(ti) as its dimension could be very large. To avoid invert-

ing a large-dimensional matrix, Hu (1998) suggested using the profile likelihood to simplify

the procedure. Let Lp(β) denote the profile likelihood, which is computed by maximizing the

full likelihood given β = β̂. The variance of β̂ evaluated at β = β̂ can be estimated by the

negative inverse of the second derivative of the profile log likelihood LLp(β) = log(Lp(β))

and be written as

V ar(β̂) = − 1

∂2/∂β2LLp(β)|β=β̂

. (4.9)

As the analytic differentiation of LLp(β) could be complicated, a numerical approximation

are used to simplify ∂2/∂β2LLp(β) by

LLp(β̂ − ν)− 2LLp(β̂) + LLp(β̂ + ν)

ν2
+ O(ν2), (4.10)

where ν is some arbitrary small number. Thus the variance can be estimated by

V ar(β̂) = −{LLp(β̂ − ν)− 2LLp(β̂) + LLp(β̂ + ν)

ν2
}−1. (4.11)

The method can be applied to both univariate and multivariate models. In the multivariate

model where βββ is an m-dimensional vector, we fix βi = β̂i for i = 1 . . .m and compute

V ar(β̂i) individually.

4.2 THE COMPUTATION AND NUMERICAL METHODS

We have developed a Visual FORTRAN 90 program for the computation. Numerical in-

tegration is performed by calling IMSL library functions attached to the software package.

The IMSL Library function, DQDAG, is used in computing one-dimensional integrations. It

integrates a function using a globally adaptive scheme based on Gauss-Kronrod rules. The

two-dimensional integration is carried out by calling the function DQAND, which integrates
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a function on a hyper-rectangle. A direct search complex algorithm of DBCPOL is used to

find the minimum of -2 log likelihood. It is an algorithm designed for non-smooth functions

by minimizing a function of a number of variables subject to bounds on the variables with a

direct search complex algorithm. We found that it was more stable than other functions using

the finite-difference gradients or Hessians in multi-dimensional searching. All the functions

and variables are used in double precision.

Since there are exponential and double exponential parts in the integration as in (4.5),

the computation could easily overflow or underflow if the value of β is too large. Thus, it

is ideal to keep the search range for unknown β̂ as small as possible. We found that the

naive approach ignoring estimation errors usually gave very good initial values for and λ′0s,

and often the search range could be safely controlled within ±3β̂naive. Even after narrowing

down the search range, rescaling may still be necessary to avoid the overflow problems. Most

of the times, however, the problem was caused by the double exponential part of formula

(4.5). It happens more frequently in the multi-dimensional integrations.

Another purpose of data rescaling is to improve the stability of the numerical integration

and non-smoothing optimization procedure. Since the optimization is designed to minimize

the -2log likelihood, it is sensitive to the precision of the numerical integration. If β is large,

the result of integration could be a very small number close to the machine precision limit;

thus, a small change of β would have a large impact on the results. Under this situation, most

of the numerical integration functions do not perform well, neither does the optimization

process as the -2log likelihood alters dramatically for small changes of β. The detail of data

rescaling and transformation will be illustrated in the examples of next section.

Unfortunately, if the dimension of the integration is more than two, the numerical pro-

cedure becomes very slow and makes impossible for the optimization procedure to find the

MLE. Even in a dual predictor model, the computing time for searching for the MLE’s of all

the baseline hazards and β’s is about 20 to 60 hours. The computing time also depends on

the searching ranges and accuracy of the initial values. Approximation methods to shorten

the computing time will be demonstrated in the next chapter of the simulation studies.
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4.3 EXAMPLE: TIME TO RECURRENCE OF DEPRESSION IN MTLD

STUDY

Data from the study of maintenance therapies in late life depression (MTLD) (Reynolds

et al., 1999) are used to illustrate the statistical approach. In Chapter 2, each patient’s

unique pattern of HDRS score and NT level measurement during the acute and continua-

tion treatment period was summarized by the estimated random effects through a bivariate

mixed effects model. The random effects include the intercept and slope for both variables,

indicating each individual’s starting level and recovery rate. So here θθθ is a 4-dimensional

vector distributed as mvn(0, B). The estimate of variance-covariance matrix for the random

effects is

B̂ =




3.056 3.325 −0.004604 0

3.325 10.334 0 −0.03828

−0.004604 0 0.009605 0

0 −0.03828 0 −0.03279




.

The estimates of θ̂θθi were used as predictors in the Cox survival model for maintenance

treatment period to predict the recurrence of depression during the trial. For simplicity, we

did not include other covariates in the model.

As seen in the data, θθθi is a 4×1 vector whose components are not independent with each

other, which makes the numerical computation of model parameter estimation to be very

difficult. An alternative way is to model each predictor individually first, and using only

those who are significant in the final model. We followed this strategy by using intercepts

and slopes of HDRS score and NT level as individual predictors in four different models, then

choosing those significant to fit a multi-predictor model based on the individual p-values.

First we used the naive approach by plugging in the four predictors in the Cox survival

model and ignoring all the estimation errors. The models were fitted using SAS PROC

PHREG. Only the slope of HDRS was significant with p = 0.0215. The intercept of HDRS

had a marginal p value of 0.1112. The two variables from NT level were both insignifi-

cant. Then we fit both the intercept and slope of HDRS in the survival model, the results

showed only the slope was significant with p = 0.0916. It indicates that there could be some
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correlation between the two covariates. Starting from the naive model estimates, we can

conveniently obtain the baseline hazards λ0’s at all event times from the predicted survival

function.

Using λ̂0(t) and β̂ as the initial value of the unknown parameters, we first fitted random

intercept and slope of HDRS score and NT level individually as single predictor in the model

using likelihood function of (4.5). The standard deviations of parameter estimates were

obtained from the profile likelihood.

From the results in table 1 we can see that the coefficient estimates are different form the

naive approach where all predictors are used “as is” without considering the estimation error

associated with them. We selected the two most significant variables and fit a Cox survival

model. The bivariate algorithm was demonstrated using the random slopes of HDRS-17 and

NT-level as the only two covariates. To avoid the overflow problem during two-dimensional

numerical integration, the data was first transformed by multiplying the predictors by an

appropriate constant. It is also necessary to transform the variance covariance matrix ac-

cordingly. For instance, if we multiply the estimates of β̂ββ by 10, we also need to multiply

the corresponding variance covariance matrix of the random effects B̂ and V ar(B̂) by 100.

The final estimates of β̂ββ should be rescaled back by multiplying 10. We found it is usually

safe to keep the searching range of β̂ββ between -0.5 and 0.5.

Now the predictor is two-dimensional where θθθ = (θ1, θ2), which has a bivariate normal

distribution. The computation could be simplified by writing the formula as

f(θ1, θ2) =
1

2πσ1σ2

√
1− ρ2

exp[−σ2
2θ

2
1 − 2ρσ1σ2θ1θ2 + σ2

1θ
2
2

2σ2
1σ

2
2(1− ρ2)

]. (4.12)

The variance-covariance matrix of (θ1, θ2) is


σ2

1 σ12

σ21 σ2
2


 and correlation ρ = corr(θ1, θ2) =

σ12

σ1σ2
The formula of f(θ̂1, θ̂2|θ1, θ2) can also be rewritten with regard to σ1, σ2 and ρ as fol-

lowing:

f(θ̂1, θ̂2|θ1, θ2) =

1

2πσ3σ4

√
1− ρ2

2

exp[−σ2
4(θ̂1 − θ1)

2 − 2ρ2σ3σ4(θ̂1 − θ1)(θ̂2 − θ2) + σ2
3(θ̂2 − θ2)

2

2σ2
3σ

2
4(1− ρ2

2)
],

(4.13)
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where variance-covariance matrix of (θ̂1, θ̂2|θ1, θ2) is


σ2

3 σ34

σ43 σ2
4


 and ρ = corr(θ̂1, θ̂2|θ1, θ2) =

σ34

σ3σ4
.

The limits of the integration were determined by the value range of the parameters,

usually it is not necessary to set them to be infinite. In our example after rescaling, both

slopes of HDRS score and NT-level are centered at 0 and have standard deviation less than

1. Also because in the double integration, the inner part should has less impact on the

results, thus the limits for the inner part was set to be [-20, +20] and [-140, +140] for

outer integration. It showed little difference if larger interval range of inner integration and

infinite range for outer integration were used. The variance estimates were obtained by

profile likelihood described in previous section.

Table 2 showed the results for the example with two covariates; the differences between

ignoring and adjusting estimation errors are bigger than the single predictor models. Notice

that the coefficient for NT-level slope becomes negative after adjusting for estimation errors.

This could be the indication that the adjustment makes it less biased. As we learned from

chapter 2, the HDRS score and NT level showed reverse trend during the acute and continu-

ation treatment period; the HDRS scores were decreasing while NT-levels were increasing for

most patients when they were achieving remission. Thus a negative coefficient of NT-level

will make more sense since it implies higher positive slope will reduce the risk of recurrence

of depression.

Nevertheless, due to the increase of estimation variance, adjusting for the estimation

error did not change much for the significance for the predictors. Since it is very difficult for

us to verify the estimates from the real data, the model validation will be completed in the

next chapter through several simulation studies.
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5.0 SIMULATION STUDIES

In this chapter, we will use data simulation to investigate potential biases caused by co-

variates estimation errors in a Cox proportional hazards model, and the effectiveness of our

approach to correct these biases. These simulations are implemented to mimic real applica-

tions in the set of both single and multi-predictor models. The computation program was

executed on a PC with Pentium IV processor. The simulations were performed in SAS IML

environment while the analysis was programmed with FORTRAN 90 language.

There are two objectives for the simulation studies:

1. to validate approximations to handle the nuisance parameters with the intention of re-

ducing computing time;

2. to evaluate the effectiveness of our full likelihood approach on bias reduction in both

single and dual predictor Cox model.

5.1 APPROXIMATIONS WITH FIXED BASELINE HAZARDS

In my simulation, every set of data has 100 subjects and about 50 different event times.

Therefore the algorithm needed to find out the MLE for 50 unknown parameters to maximize

the total likelihood. The procedure is very unstable and time consuming, and the variance

of final estimates has to be obtained through profile likelihood to avoid inverting a large

dimension matrix.

From the discussion in last chapter, we know that the numerical problem in our full

likelihood approach is that it requires intensive numerical computation. Part of it is caused

by estimating large numbers of baseline hazard λ0 at all event times. But since λ̂0’s are
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usually not of interest, we can consider them as nuisance parameters in the full likelihood

function. One way to handle nuisance parameter is replacing it by an estimator thereof

(Burguette,1982). The estimator of λ0 can be easily obtained through the survival function

estimates of naive approach described in chapter 4. Thus only the regression coefficient is

left to be estimated. In order to validate this approximation approach, a simulation study

of 500 datasets with single predictor was carried out to find out the difference of estimates

with and without λ0 to be fixed at λ̂naive.

To estimate the standard deviation of β̂, the full likelihood approach uses profile likeli-

hood by fixing β at β̂ as described above. But if all the λ0’s are replaced by their estimators,

the only unknown parameters are the β’s, then the variance of β̂ may be estimated by in-

verting the observed information matrix. Let L(β) to be the log likelihood of β, the variance

can be estimated by the negative inverse of the second derivative of L(β), which is:

V ar(β̂) = − 1

∂2/∂β2L(β)|β=β̂

. (5.1)

There is a simple approach to approximate the analytic differentiation of L(β) by define an

arbitrarily small number ν, then

∂2/∂β2L(β) ≈ L(β̂ − ν)− 2L(β̂) + L(β̂ + ν)

ν2
+ O(ν2). (5.2)

Thus the variance becomes

V ar(β̂) ≈ −{L(β̂ − ν)− 2L(β̂) + L(β̂ + ν)

ν2
}−1. (5.3)

There were 500 Monte Carlo datasets generated with each has sample size of n = 100.

The first step was generating a linear growth curve for each sample in the baseline. The

number of observations was uniformly distributed between 2 and 12. The time interval

between observations had an exponential distribution with scale parameter a = 0.1. The

random effect was standard Gaussian multiplied by the time interval between observations.

For simplicity, there were no fixed effects in the model, and the errors within each subject

were standard normal and had an AR(1) correlation structure with coefficient Φ = 0.3.

The growth curve was fitted using univariate random effects model. The estimated random

coefficients and their variance were outputted to be used in the next step. Subsequently,
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the survival dataset was simulated based on the true values of random effects from the

growth curve. The failure time T, given the true random effect X, was generated from the

exponential distribution with hazard e0.1×X . The censoring time C, was created from the

exponential distribution with mean of 1. The true parameter value for predictor X in the

Cox survival model is βX = 0.1. No replicate measurements were generated.

The standard deviation of β̂ were estimated from observed information matrix if λ0 was

fixed, and by profile likelihood if otherwise.

The simulation results in table 3 shows that very little differences (less than 3%) in

parameter estimation were observed if the baseline hazards were fixed, so that this approx-

imation is valid under above situation. The computation time was reduced from 5 days

to about 15 minutes for these 500 sets of single predictor models. In the dual-predictor

simulation studies, it took about 20 hours searching for the MLE’s using the full likelihood

algorithm for a single dataset, while the computing time was only about 15 to 20 minutes

after applying fixed baseline hazards approximations. The results were also not very close

5.2 SIMULATION WITH SINGLE PREDICTOR

Three sets of simulation studies were conducted to investigate the performance of the full

likelihood approach on correcting biases caused by estimation errors from predictors. Each

set of simulation has 500 datasets and each dataset has 100 subjects. The rest of the

procedure followed the same steps illustrated in section 5.1 except for the time δt between

consecutive observations within each subjects in the step of growth curve simulation. We

found that as δt becoming smaller, the parameters of the growth curve estimates became

less accurate, as a consequence the resulted estimates in the Cox model became more biased.

We set δt distributed as one parameter exponential with scale parameter to be 0.1, 0.5 and

1 in three simulated datasets. In all the simulations, the true values of β were set to be 0.1.

As in the MTLD data analysis, we used the Cox model to model the association between

time to event and predicted single random effect from the growth curve. The naive approach

ignored all the estimation errors and considered the predicted random effect as true value

while the full likelihood approach would account for such errors. The analysis was done with
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approximations of fixed baseline hazards, and the standard deviations of estimates were

obtained from the approximation method showed in section 5.1.

From the results in table 4 we can see that by ignoring the estimation errors carried

from the model in the first step, the estimates of β were biased towards 0. This nature is

a typical bias of attenuation to the null for additive covariates errors. Let the true value

of predictor to be Z, and the error from model estimation be U, then the estimates from

the first step model X = Z + U. The extent of bias depends on the accuracy of first step

model estimation, in other words, the magnitude of estimation errors. If we use X instead

of Z as the predictor, the attenuation effect is unavoidable. This is a very similar situation

as ignoring the measurement error of covariates described by Hu, Tsiatis and Liu et al.

For all three simulations above, the full likelihood approach provided less biased estimates

for β. In different settings, was about 39.5%, 27% and 25% less biased than the naive

approach estimates. The estimated standard deviations of β were also higher than the naive

approach. This could the result of additional variance induced by the variability of θ̂. Again,

similar results were also shown in the measurement error simulations described by Liu and

Mazumdar (in press).

5.3 SIMULATION WITH DUAL-PREDICTOR

The simulation used to assess the dual-predictor model is very similar to those of the single

predictor models. 500 datasets were generated with 100 subjects in each set. In the first step

of the bivariate growth curve, each subject has between 2 and 12 observations. The time

intervals between observations followed an exponential distribution with mean of 0.1. The

two random effects were distributed as bivariate normal with a variance-covariance matrix
 1 0.3

0.3 1


 and mean


0

0


. The curve was fitted by the bivariate growth curve procedure

with random effects. The predictions of each subject’s random effects were used as predictors

in the survival model of the second step. Similar to the univariate model, the survival

data was generated by randomly taking failure time T from a exponential distribution with

hazard eβ1X1+β2X2 . The true values were set as β1 = β2 = 0.1. The censoring time C was
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also distributed as a standard exponential with mean 1. About half of the subjects were

censored.

From the results in Table 5, we can see that compared to the single predictor models,

the bias caused by ignoring estimation errors in dual predictor model tend to be larger and

not biased towards the null. The results agree with the bivariate analysis results from the

MTLD data. A possible explanation is that in the naive approach for dual predictor ex-

amples, we ignored both the error from model estimation and the correlation between two

covariates. Generally, the Cox model assumes that all the predictors are fixed and are mea-

sured without error. Violation of such assumptions could alter the estimates of coefficients

to be either higher or lower determined by the joint effects of the two factors. Nevertheless,

the full likelihood approach we developed provides better estimates of coefficients, which are

closer to their true values. The variance of β̂̂β̂β measures the variability of the estimates from

500β̂̂β̂β ’s. The result indicates that by accounting for the errors and correlations, the full

likelihood estimates are generally more accurate with lower variability. Thus, correction for

the estimation error can improve both the accuracy and precision of model estimation.

The standard error estimates of the coefficient from the full likelihood are also lower. This

is different from the univariate examples where the standard errors were slightly higher. This

could be the results of including correlation information between two predictors as well as

larger bias correction than the single predictor models. Liu and Mazumdar (2001, in press)

also reported that correction of the measurement error can also improve the precision of

parameter estimates, and this could offset the variance caused by the additional parameters in

the full likelihood function. Further investigation should be done by changing the covariance

structure between the two variables and see how that would affect the precision and accuracy

of estimators.

Generally in the Cox proportional hazards models where the predictors are actually

parameters estimated from other models, ignoring the estimation errors from the first step

model can create bias in the coefficient estimation. The bias is usually larger in multi-

predictor models, where the naive approach ignores the estimation errors and the possible

correlation between covariates. Under both situations, our simulation studies show that the

full likelihood based approach can reduce the bias effectively in coefficients estimates for
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covariates of the Cox regression model by accounting for the estimation errors. In the dual

predictor models, since we include both errors and the correlation between two predictors,

the improvements are even larger than the single predictor models.

24



6.0 DISCUSSION AND DIRECTIONS FOR FURTHER RESEARCH

Multi-step models are used often in data analysis of clinical studies when the studies are

divided into several different stages. It is a simple way to find out causal relationship

between outcomes of different stage. De Gruttola and Tu (1994) pointed out that the bias

of survival estimates in the second step model was mainly caused by estimation errors of the

first step outcomes. Hence we developed a full likelihood methodology to account for these

errors and correct the bias. The simulation studies and the application on MTLD data show

that our methodology effectively reduced the bias of parameter estimation. If we can obtain

the variance estimates of the random variance, V ar(B̂), and replace the distribution of B

by f(B̂|B)just like what we have done to the parameter θ, we could further reduce the bias.

However, the computation is difficult and need further investigation.

One disadvantage of a two-step model is its low efficiency. In recent years, there are

discussions about improving the statistical efficiency and reducing bias by using a joint

model instead of a two-step model. Most of the studies have been done on the joint model of

longitudinal data and survival analysis. The joint model usually relies on the joint likelihood

or conditional likelihood to estimate all the parameters, so both models has to be likelihood

based and easy to combine. For instance, it is very challenging to combine the Cox regression

and growth curve model with a Kalman filter approach due to the iterative nature of the

Kalman recursion. In addition, the joint model usually has more unknown parameters to be

estimated simultaneously through the optimization algorithm. Sometimes such approach is

not practical in the multivariate models due to the instability in the numerical procedure. So

far the EM algorithm is best way for parameter estimation, but if there is no close-form MLE

for some parameters, a Newton-Raphson algorithm has to be called at each iteration step. On

the other hand, the full likelihood approach actually does not require any specific modeling
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in the first step as long as the solution can provide parameter estimators and their errors.

Thus, the two step approach could be easily extended to handle various parametric models

in the first step such as non-linear mixed models. The only requirements are parameters and

variances estimators and their exact distributions. This flexibility is a major advantage a

two step method over a joint modeling approach.

Alternatively, it is obvious that the joint model is more appropriate if the outcomes are

collected concurrently. De Gruttola and Tu (1994) indicated that under that situation part of

the bias was also caused by possible in-time underlying association between two outcomes. So

the joint model would be more capable to handle such problems using conditional likelihood

function. For example, if the longitudinal measurements of disease progression and survival

are taken concurrently, and the survival is depended on the progression, then the two-

step model is not appropriate since it could not account for the “informative early failure

bias” (patients who have severe progression are likely to fail early, but they are not properly

weighted in the first step model) in the growth curve estimation. Otherwise if the longitudinal

measurements and survival are not taken concurrently, such bias does not exist and the two

step model could be better with all the advantages listed above.

If other methods such as ML or REML are used to solve the growth curve model in the

first step model, one has to make sure the model estimates are in correct form. For instance,

in SAS PROC MIXED, the standard error estimates of random predictions θ̂ are actually in

the form of V ar(θ̂ − θ). The expression of V ar(θ̂ − θ) is

V ar(θ̂ − θ) = B −BZ ′
iV

−1
i ZiB + BZ ′

iV
−1
i Xi(

m∑
1

X ′
iV

−1
i Xi)

−1X ′
iV

−1
i XiB = B − V ar(θ̂i),

(6.1)

where Vi is the variance of the outcome yi and Zi is the design matrix for the random effects.

It is obvious that

V ar(θ̂i) = B − V ar(θ̂ − θ). (6.2)

If B is unknown then B̂ can be used instead.

One problem in the current setting of full likelihood approach in multi-predictor Cox

model is the numerical multiple integration. The FORTRAN subroutine was not very ef-

ficient on multi-dimensional numerical integration. In the simulated examples, even with
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fixed baseline hazard approximation, it took about 15 minutes for the program to find out

the MLE for β̂̂β̂β. So it is practically almost impossible to computing models with three or

more correlated predictors. Also in the high-dimension integration, it is very difficult to find

the appropriate transformation for all the variables and the variance-covariance matrix to

avoid the numerical overflow problem. One possible solution for this problem is using Monte

Carlo (MC) or Markov chain Monte Carlo (MCMC) algorithm to speed up the process with

some technical details need to be completed.

There are also several directions for future research on this topic. The survival outcome is

currently modeled by the popular Cox proportional hazards model, but many other survival

models can be used likewise. In some occasions, the parametric survival model is more suit-

able than the proportional hazards model. These models are less widely used than Cox model

in clinical data analysis but still conceptually attractive. One advantage is its flexibility on

defining the transformed failure time as exponential, Weibull, lognormal, loglogistic, and

gamma distributions. The model can also be solved using maximum likelihood estimates,

so it should not be very difficult to follow a similar procedure to adjust for the estimation

error carried by the predictors. In addition, since the likelihoods of these parametric models

do not contain the baseline hazards, the procedure could become much easier. The formula

of (4.1) is still valid but we need to replace (4.2) the proportional hazard function with the

parametric survival likelihood function without the baseline hazards λ0. A simulation study

can be used to compare the performance of the full likelihood approach on different types of

parametric models in the second step.
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Table 1: REGRESSION COEFFICIENTS AND STANDARD ERRORS FROM A SINGLE

PREDICTOR COX MODEL

Regression coefficients and standard errors from single predictor Cox model for MTLD data;

the predictors are random predictions of intercept and slope of HDRS score and NT level

from univariate growth curve; each was modeled individually as single predictor for time to

recurrence of depression.

Predicted trajectories from Predicted trajectories from

HDRS growth model NT-level growth model

Method Intercept Slope Intercept Slope

(SE) (SE) (SE) (SE)

(p-value) (p-value) (p-value) (p-value)

Estimated β̂ from 0.07448 0.04380 -24.7310 -4.5154

naive approach ignoring (0.04604) (0.01904) (16.5187) (6.1319)

estimation errors (0.1112) (0.0215) (0.4615) (0.1346)

Estimated β̂ from 0.08811 0.07004 -39.5818 -3.7444

full likelihood (0.08445) (0.03172) (26.3467) (4.7875)

approach (0.1712) (0.02083) (0.5128) (0.1425)
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Table 2: REGRESSION COEFFICIENTS AND STANDARD ERRORS FROM THE

DUAL-PREDICTOR COX MODEL

Regression coefficients and standard errors from the dual-predictor Cox model for MTLD

data: the predictors are random predictions of slope of HDRS score and NT level from

bivariate growth curve; both were modeled together for time to recurrence of depression

Predicted random slope Predicted random slope

Method of HDRS of NT-level

(SE) (SE)

Estimated β̂ from 0.04729 2.6565

naive approach ignoring (0.02078) (6.4471)

estimation errors

Estimated β̂ from 0.1647 -14.0847

full likelihood adjusted (0.06054) (11.1203)

for estimation errors

Table 3: SIMULATION RESULTS FOR ASSESS EFFECT OF FIXED BASELINE HAZ-

ARDS IN SINGLE PREDICTOR COX MODEL ESTIMATES

Simulation results for assess effect of fixed baseline hazards in single predictor Cox model

estimates, the true value for β is 0.1.

Method Mean of the estimates for β̂ Variance of 500 estimates of

(SE) β̂

Estimates includes baseline 0.07641 0.03279

hazards (0.02805)

Fixed baseline hazards 0.07434 0.03384

(0.02754)

Difference 0.002068 -0.00105

(0.0051)
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Table 4: SIMULATION RESULTS FOR SINGLE PREDICTOR COX MODELS

Simulation results for assessing effectiveness of correcting biases caused by estimation errors

from single predictor in Cox regression model, the true values for all coefficients are 0.1.

Scale parameter of Mean of β̂ from naive Mean of β̂ from full

exponential distribution approach ignoring likelihood approach

of δt estimation errors adjusted for

estimation errors

(SE) (SE)

Simulation1 0.1 0.04484 0.07434

(0.1529) (0.2754)

Simulation2 0.5 0.06384 0.08774

(0.1904) (0.3261)

Simulation3 1 0.07539 0.1005

(0.1778) (0.2639)
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Table 5: SIMULATION RESULTS FOR DUAL PREDICTOR COX MODELS

Simulation results for assessing effectiveness of correcting biases caused by estimation errors

from dual predictor in Cox regression model, the true values for both coefficients are 0.1.

Mean of β̂ from naive approach Mean of β̂ from full

ignoring estimation errors likelihood approach adjusted

(SE) for estimation errors

(SE)

β̂1 -0.02231 0.1352

(0.6813) (0.5848)

β̂2 0.2598 0.09321

(1.0732) (0.9073)

S.E. of 500 β̂1 0.3518 0.009886

S.E. of 500 β̂2 0.5524 0.01731
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APPENDIX

MODELING UNEQUALLY SPACED BIVARIATE GROWTH CURVE WITH

KALMAN FILTER APPROACH

qianyu dang 2004 appendix.pdf
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