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ON THE USE OF NATURAL LANGUAGE PROCESSING FOR
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Siqing Du, PhD

University of Pittsburgh, 2008

This research involved the development of a natural language processing (NLP) architecture

for the extraction of entity relation diagrams (ERDs) from natural language requirements

specifications. Conceptual data modeling plays an important role in database and software

design and many approaches to automating and developing software tools for this process

have been attempted. NLP approaches to this problem appear to be plausible because

compared to general free texts, natural language requirements documents are relatively

formal and exhibit some special regularities which reduce the complexity of the problem. The

approach taken here involves a loose integration of several linguistic components. Outputs

from syntactic parsing are used by a set of hueristic rules developed for this particular domain

to produce tuples representing the underlying meanings of the propositions in the documents

and semantic resources are used to distinguish between correct and incorrect tuples. Finally

the tuples are integrated into full ERD representations. The major challenge addressed in

this research is how to bring the various resources to bear on the translation of the natural

language documents into the formal language. This system is taken to be representative

of a potential class of similar systems designed to translate documents in other restricted

domains into corresponding formalisms. The system is incorporated into a tool that presents

the final ERDs to users who can modify them in the attempt to produce an accurate ERD for

the requirements document. An experiment demonstrated that users with limited experience

in ERD specifications could produce better representations of requirements documents than

they could without the system, and could do so in less time.
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1.0 INTRODUCTION

1.1 MOTIVATIONS AND PROBLEM STATEMENTS

This research is motivated by both the importance of automated conceptual data modeling

in the design of information systems and databases (ISs/DBs) and the emerging applications

of natural language processing (NLP) in information retrieval and extraction.

Conceptual data modeling, which aims at exploring high-level data oriented structures,

is one of the most important phases in the design of ISs/DBs. It not only provides a blueprint

for the whole system, but determines most of the system functions, forms and structures.

The importance of conceptual data modeling is also indicated by the fact that most of the

database and software design textbooks have chapters on teaching people how to transfer

requirements specifications to conceptual data models.

Automating the process of transforming requirements specifications to conceptual data

models can provide significant benefits. Conceptual data modeling is a labor-intensive and

time-consuming process. What makes the situation worse is that modifications of the

user requirements are almost inevitable during the ISs/DBs development process [TF82],

so conceptual data modeling has to be performed frequently, even during the development of

a single application. Sometimes, due to the cost and time factors involved in re-construction

of the conceptual data models, designers modify the conceptual models directly, instead of

making modifications to the original requirements specifications. Hence, inconsistency can

be introduced between the formal models and user requirements documents, which not only

causes serious problems in the system maintenance phase, but also affects the reusability

and prototyping of new systems with similar requirements [Dal92].

Currently, there are many data modeling tools available to aid or automate the process

1



from conceptual data models to logical designs and to physical implementations, such as

ERWin from Computer Associates, Visio from Microsoft, Oracle Designer from Oracle, and

Dia from Gnome Office. Most of them offer not only forward engineering from conceptual

data models to logical models, and to physical models, but also reverse engineering from

physical implementations to logical models, and to conceptual data models. However, there

is still no general tool available for transforming natural language requirements specifications

to conceptual data models.

Automated conceptual data modeling is essentially a translation process – from natural

language representations to some kind of formal and structured representations. Natural

language is the most often used language to represent the initial requirements. It was found

that between 93% and 95% of all the user requirements in industrial practice were written in

natural language [NL03, MFNI04]. On the formal and structured representation side, there

are many different target formalisms for conceptual data modeling in different domains. For

instance, Entity Relationship Diagram (ERD) is often used for database design while Class

Diagram is frequently used for object oriented software design.

Many challenging problems are involved for automated conceptual data modeling. How

to recognize and extract the important concepts in a requirements document is one of

them. Conceptual data modeling is traditionally performed by information analysts and

many implicit decisions are made during the modeling process. One of the important tasks

of conceptual data modeling is to extract the important concepts from the requirements

documents; for instance, “employee” and “project” in “a number of employees work on each

project”. The recognition of important concepts is an implicit process and may be based

on the background and world knowledge of the information analyst. It is a notoriously

difficult problem to formalize the general background and world knowledge of human beings.

Heuristic rules based on syntactic, semantic or pragmatic information have been proposed

in some of the previous research. For instance, Chen [Che83] proposed “A common noun

in English corresponds to an entity type in an ER diagram”. These heuristic rules are very

useful and provide general guidelines to how to extract the important concepts. However,

they are very general and incomplete, much more fine-granulated heuristic rules are needed

for a relatively accurate and practically usable conceptual data modeling system. The past

2



two decades have seen some initiatives [Che83, TB93, BCD+95, OHM04] in this direction.

However, most of the previous heuristic rules for transforming natural language requirements

to formal representations were based on word classes and other low level information. Even

the most recent one [OHM04] utilized only shallow parsing and chunking. Increasing usage of

dependency parsing for various NLP tasks, from machine translation to question answering

[dMMM06] were reported recently because of the high level grammatical relations offered

between individual words. It seems that heuristic rules based on high level information

such as grammatical relations from full level dependency parsing are very promising for

formalism extraction in automated conceptual data modeling. So one of the specific goals of

this research is to investigate and propose a relatively complete set of heuristic rules based

on high level grammatical relations.

Handling the various ambiguities in automated conceptual data modeling is another

challenging problem. Ambiguities can happen at morphological, syntactic, semantic and

pragmatic levels. Although a large body of techniques, methodologies and tools are made

available with the research and development in computational linguistics, the intended

domains of these resources may be quite different from requirements documents. It

is of great interest to study the applicabilities of the relevant technologies, tools, and

resources to automated conceptual data modeling. Various domain and application specific

problems need to be investigated, for instance, entity attribute disambiguation, entity

relation disambiguation, attribute name extraction, specific database requirements language

structures disambiguation, etc. The increasing availability of large-scale general knowledge

resources and improvements in knowledge-based semantic analysis, which have not been used

in the previous research, are promising resources that can be explored to improve accuracy

in automated conceptual data modeling.

Automated conceptual data modeling also involves a knowledge representation problem.

The natural language input and the desired formalism are two forms of surface representation

of one common deep semantic representation – the conceptual data model of the require-

ments. Proper data structures need to be designed to hold the information and knowledge

for the transformation between different representations.

Although it is still quite difficult to transform general free texts to formal representations

3



such as first order logic, the solvability of this automated conceptual data modeling problem

is due to the regularities and sublanguage characteristics of the requirements documents.

Furthermore, many of the NLP hard problems such as speech acts, agent belief and intention,

are not involved in automated conceptual data modeling while the complexities of some other

NLP hard problems may also be reduced. Moreover, there have been some successful systems

in sublanguages similar to requirements documents.

In general, complete solutions to transforming natural language requirements documents

to conceptual data models calls for knowledge and advances in several fields: Natural

Language Processing (NLP), Knowledge Representation (KR), Machine Translation (MT),

Information Extraction (IE), and Common Sense Reasoning (CSR).

1.2 BACKGROUND AND RELATED RESEARCH FIELDS

The following sections provide background knowledge on conceptual data modeling and a

brief review of related research fields.

1.2.1 Conceptual data modeling (CDM)

The general steps to follow in the design of IS/DB systems are user requirements acquisition,

conceptual data modeling, logical data modeling and physical data modeling. Conceptual

data modeling is situated right before logical data modeling and after the requirements

acquisition phase. The central problem of conceptual data modeling is to extract a set of

entities and their relationships that represent or model a particular information aggregation

specified in the requirements descriptions.

A four-phase requirements process model is illustrated in Figure 1, adopted from

[KM95]. Users perceive the enterprise reality and provide requirements to information

analysts. Information analysts interact with users to discover their explicit and implicit

requirements and document the requirement specifications (usually in natural language).

Then, information analysts (maybe different people) build formal conceptual data models
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Figure 1: A process model of information requirements [KM95]

based on the information identified in the discovery process. These conceptual data models

are usually the first formal representations that bridge together the end-users and the system

designers. The loop of discovery-modeling-validation can iterate several times in order to get

accurate conceptual data models.

In the past several decades, researchers have made great efforts on the formalization

of requirement analysis. Various conceptual data modeling formalisms have been proposed

such as Entity-Relationship (ER) modeling, Natural/Nijssen Language Information Analysis

Method (NIAM), Object Role Modeling (ORM), Logical Data Structure (LDS), Unified

Modeling Language (UML). A comparison of some of these data modeling formalisms in

terms of quality of data model, quality of design time preference, time task performance, etc

can be found in [KM95, NL03].

Among the different modeling methods, ER modeling and Object-Oriented modeling are

extensively used in practice. In a market research study [MFNI04], 63% of the respondents

who adopt methodologies were reported using ER data modeling and 68% reported using

Object-Oriented methods. In the rest of this section, only these two categories of modeling

formalisms are reviewed.

The ER model, introduced by Chen [Che76], is based on a natural view of the real

world that consists of entities and relations. The basic elements of the ER model are

entities, relations and attributes. Entity relationship diagram (ERD), the diagrammatic
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tool proposed to assist the modeling process, is a widely used conceptual data modeling

formalism for IS/DB designing [MFNI04]. One reason for its popularity is that ERD is easy

to understand by both system analysts and end users. Many variants of ERDs were proposed

by different researchers and utilized by different organizations. The E2R (EER) model

[EL89] and REMORA [Rol88] include features like multiple complex entities and attributes,

generalization and specialization of entities, role concepts for relationship types, etc. Chen

[Che81] presented a detailed discussion of the different variants of ERDs. Figure 2 is an

example of entity relationship diagram following Chen’s style.

Figure 2: An example of entity relationship diagram [Che81]

Object-Oriented modeling involves another important family of conceptual data modeling

approaches, especially in software engineering. Unified Modeling Language (UML), which

is developed by unifying primarily Booch, OMT, and OOSE methods [BRJ96], is officially

defined by the Object Management Group (OMG) and now is becoming the de facto standard

language for formal description of software requirements [BMO01]. Unlike ER modeling,

which includes only one kind of diagram (ERD), UML 2.0 includes 13 types of diagrams: Class

Diagram, Activity Diagram, Communication Diagram, Component Diagram, Composite

Diagram, Deployment Diagram, Interaction Overview Diagram, Object Diagram, Package

Diagram, State Machine Diagram, Sequence Diagram, Timing Diagram and Use Case

Diagram. It is difficult to formulate rules to translate NL requirements specifications to

all these diagrams. In fact, only the correspondence between NL components and Class

Diagram has been investigated in previous literature.
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1.2.2 Controlled languages and sublanguages

Controlled languages place special restrictions on grammar, style and vocabulary to the

language used in special domains. Typically, a controlled language is formally defined,

and the conformity to the controlled language standard can be verified. Several controlled

languages are widely used in commercial applications. For instance, the International

Aerospace Maintenance Language, which is designed for maintenance staff who may not be

native English speakers, has been adopted by Boeing since 1990 [OM96]. The Attempto

Controlled English (ACE) is a rich subset of standard English designed to serve as a

specification and knowledge representation language [FS96]. Although ACE must be

learned to be used competently, once the requirements specifications are written in ACE

formats, there are many tools, such as Attempto Parsing Engine APE, Attempto Reasoner

RACE, Attempto Verbaliser DRACE etc. that can be used to formalize the requirements

specifications. The Caterpillar Fundamental English (CFE) and the Caterpillar Technical

English (CTE) are controlled languages developed by Caterpillar in conjunction with the

machine translation center at Carnegie Mellon University to simplify technical document

authoring and translation. CTE contains about 8,000 general terms and 70,000 technical

terms [Fie98, KAMN98].

Sublanguages are subsets of natural language used by a particular community of speakers

with a particular subject matter or those engaged in a specialized occupation [BSA72].

Examples of sublanguages include weather reports [Isa84], software comments [EDB00],

requirements specifications [Cyr95] and medical reports [SFL87].

Since the 1950s controlled languages and sublanguages have been investigated to simplify

and reduce the complexities of some natural language processing problems, such as ambiguity

and unknown words, in some specific domains. Controlled language and sublanguage

methods have achieved success in systems developed for particular domains. For example,

machine translations systems TAUM-METEO [Isa84] and ATR [Mor93] performed well in their

domains: weather forecast reports and conference registration documents. In the medical

domain, Sager & Naomi [SFL87] utilized sublanguage grammar analysis (mainly word class

co-occurrence), semantic constraints (mainly in the form of selectional restrictions), both
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during and directly after parsing to eliminate those syntactic analyses that give meanings

impossible in various medical reports. In scientific and technical domains, Harris [Har89]

argued that the initial phase of sublanguage analysis is important in establishing a direct

relationship between surface sentence forms and the semantic representation.

1.2.3 Related research fields

1.2.3.1 Machine translation Automated transformation of natural language require-

ments documents to conceptual data models is essentially a machine translation problem.

Automated conceptual data modeling and machine translation both require morphological,

syntactical and semantic knowledge of the natural language, knowledge of the target

formalisms, knowledge of the various correspondences between natural language and target

formalisms and knowledge of general context and common sense [ABM+94].

The general approaches for machine translation are dictionary-based machine translation,

interlingual machine translation, example-based machine translation and statistical machine

translation [ABM+94]. The first two approaches usually involve building a large number

of translation rules based on morphological, syntactic, and semantic processing. Some

previous research in NLP-based conceptual data modeling has adopted similar approaches

as dictionary-based and interlingual machine translation [RP92, GSD99]. The latter two

approaches are usually based on the statistical information collected from bilingual corpora.

The methods in themselves are application neutral and could be applied in conceptual

data modeling if large scale corpora relating natural language and target formalisms

existed. However, a large corpus of natural language requirements documents and their

interpretations is not available currently.

The difficulty of dealing with automated high-quality translation of arbitrary texts has

long been recognized [Kit87]. However, machine translation has been quite successful in

some sublanguages, such as TAUM-METEO [Isa84] on weather forecast reports. Exploring

automated language processing techniques in restricted formats and domains has a higher

probability of success in the near future.
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1.2.3.2 Information extraction Information extraction aims at filtering information

from large volumes of texts [Gri97]. The DARPA sponsored Message Understanding Confer-

ence (MUC) and competition have greatly promoted research on information extraction in

the past decade. A typical example is terrorist events extraction, which involves processing a

set of unclassified newswire articles and determining the type of attack (bombing, arson, etc),

the date, location, perpetrator and targets. The set of filled slots represents an entity with

its attributes, a relationship between two entities or an event with various entities playing

certain roles [Gri01]. The overall information flow is similar to that of automated conceptual

data modeling except for the final target formalisms. They both involve analyzing the

source texts by applying natural language processing and producing structured information.

From this point of view, information extraction related techniques can be applied to the first

several phases of automated conceptual data modeling, especially the syntactic and semantic

analysis. With modeling domain knowledge, the output of an information extraction system

may be transformed to a modeling formalism.

Typical information extraction applications are train or airplane travel information

retrieval, car navigation systems, information desks [Gri97], event and relation extraction

[CM00, HBR03] and terminological extraction [RDH+02]. The various techniques used,

such as pattern matching and structure building [GLS95], Finite State Automaton Text

Understanding and template filling [HAB+97], lexical and syntactic analysis [HBR03], name

recognition [BMSW97], scenario pattern matching, co-reference analysis, inference and event

merging [Gri97], are applicable to automated conceptual data modeling research.

As in the case of machine translation, the statistical and corpus-based approaches in

information extraction have not been applied to automated conceptual data modeling yet

because of the lack of generally available corpora for such research.

1.2.3.3 Text and web mining Text mining and web mining, especially web content

mining [Fur04], two subfields of data mining, also involve analyzing large volumes of un-

structured or semi-structured data and extracting interesting information. The research in

these fields draws on approaches in data mining, information retrieval, machine learning,

statistics, and computational linguistics, so some of the techniques and methodologies have
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possible application in automated conceptual data modeling, especially the efforts on entity

extraction, relationship and event detection, object identification, ontology and synonym

discovery and reference resolution [MMS+02].

1.2.4 NLP in other phases of requirements engineering

NLP techniques have been applied in other phases of requirements engineering that are

related to conceptual data modeling, such as the requirements elicitation and acquisition

phase which precedes conceptual data modeling, and the requirements validation phase which

follows conceptual data modeling.

Several benefits of using NLP in requirements engineering have been suggested, such as

facilitating the digitizing of requirements documents with speech recognition or interrogation

interfaces, detecting and revealing ambiguities and contradictions in requirements documents

[RW91, HJL96], improving requirements document writing, and helping design interview

questionnaires by detecting potential ambiguities in the questions [WRH97].

Some of the previous research tried to provide a general requirements engineering

environment covering several phases of the IS/DB design process. The RADD [BCD+95] is a

complex database design tool including a dialog tool for database requirements elicitation,

a module for conceptual data modeling, and a component for database logical design.

CIRCLE [AG97, AG06] is another general requirements engineering tool that provides both

conceptual data modeling and requirements validation functionalities in terms of syntax

and of semantics. Dalianis [Dal92] suggested a tool that utilized paraphrase, discourse

analysis and natural language generation techniques for requirements validation. Gervasi

& Nuseibeh [GN02] applied light-weight NLP methods, mainly shallow parsing, to check

properties of models. Goldin & Berry [GB97] utilized lexical analysis to identify significant

domain terms.

1.2.5 Non-NLP-based automated CDM alternatives

As stated in section 1.1, natural language is the most frequently used language for

requirements documents and NLP-based approaches are the main approaches to automated
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conceptual data modeling. However, non-NLP-based alternatives also exist. Several early

approaches [SWL83, BDDL84, CMNK88] analyzed a collection of forms, instead of natural

language requirements documents, to build schema diagrams. Dubois & Petit [DP95], Edwin

& Jaco [EJ00] and Tsai et al. [TJS91] argued for the usage of formal and structured languages

for requirements specifications because the precision of formal language is the most desirable

feature for requirements specifications. The transformation of natural language requirements

to some kinds of formal representations, such as UML and ERD, is also for the purpose of

formalization of the requirements. However, approaches that skip the natural language

requirements phase by requiring information analysts to write the requirements directly into

formal representations involve much more human effort in the process and communication

difficulty with the end users.
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2.0 NLP-BASED CONCEPTUAL DATA MODELING

The past two decades have seen many attempts to solve, from various angles, the problem

of translating informal descriptions (either controlled or sub-language texts) to formal

specifications. In this chapter, the related issues, methodologies and evaluations methods

regarding NLP-based conceptual data modeling in previous research are reviewed. See

Appendix A for a chronology of the previous systems.

2.1 ISSUES REGARDING NLP-BASED CDM

The issues are discussed serially from input treatments, syntactic parsing, heuristic rule

extraction, semantic analysis and disambiguation, domain and background knowledge, to

output formalisms.

2.1.1 Input treatments

2.1.1.1 Preprocessing Because of the open-ended characteristics of text input, prepro-

cessing is a necessary and effective way to remove noisy data and achieve normalization

for information retrieval and extraction, machine translation and text mining. And

it has been utilized in conceptual data modeling as well. The kind of preprocessing

utilized in a system depends on the later processes involved in the system as well as the

application domain. Researchers need to consider the nature of the inputs carefully and

choose the proper procedures in order to deliver the desired formats to the transformation

system. Sometimes it may be superficial. For example, if a specific parser utilized in
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an application has trouble handling parenthesized explanations embedded in the text, a

simple preprocessing that removes the parenthesized explanation will significantly improve

the performance of the parser. Other situations may require relatively deep processing, such

as canonicalization. Lee & Bryant [LB02a] preprocessed the text requirements into XML

format by inserting syntax tags such as paragraph and functional tags such as preconditions.

If the requirements documents are not well-formed, preprocessing that involves correcting,

selecting and normalizing to reduce redundancy and inconsistency is usually used [Mic96].

2.1.1.2 Controlled languages The difficulty of dealing with general free text and the

success of machine translation in controlled languages motivated some researchers to put

constraints on the input, either by restricting the vocabulary or the sentence structures

[BGM85, TB93, BvdR96, OM96, AG06]. With these restrictions, simple linguistic processing

such as tagging and chunking can achieve reasonably good results in conceptual model

building even without sophisticated semantic processing. This also enhances the tractability

of many difficult problems in natural language processing such as ambiguity and unknown

words.

An example of controlled language input for database requirements specification is shown

in Figure 3, adopted from [BGM85]. All the sentences in this application had to be in subject-

verb-complement form. Other variants were not allowed. A strict translation from such a

description to a declarative programming-like middle language representation such as the

following was performed:

EMPLOYEE : PERSON,

STUDENT : PERSON,

STAFF : EMPLOYEE, · · ·
Then this middle language representation was transformed to database schema. The

limitation is obvious: this controlled language is unnatural and awkward. However, if the

requirements documents are in such format, it is less difficult to handle them.

A similar but less restricted text, a scenario-based description, is shown in Figure 4,

adopted from [BvdR96]. In this scenario-based description, simple sentences without

subordinate clauses were used in order to simplify the processing. Most of the sentences
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Figure 3: An example of controlled language input [BGM85]

were in the format:

< subject >< verb >< direct object > [< indirect object >]

The scenario descriptions were transformed into an event model in a semi-automated way

which was supported by a lexicon. The transformation process involved defining the events

individually aided by WordNet, and defining dependencies between events.

Figure 4: An example of scenario-based NL description input [BvdR96]

The use of controlled language methods is not without limitations. It does not apply

to existing requirements documents. Conformance checking and transformation are needed.

Furthermore, it is not natural and places burdens on the requirements documents writers.
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2.1.1.3 Sublanguages General natural language requirements specifications can be

treated as a sublanguage. For instance, the following database requirements statement which

has been used as a classic example in several papers [BBLON77, TF80, Che83] 1 exhibits

some sublanguage characteristics.

The company has 50 plants located in 40 states and approximately 100,000 employees.
Each plant is divided into departments and further subdivided into work stations. There
are 100 departments and 500 work stations in the company. In each department there is
an on-line time clock at which employees report their arrival and departure. A work task
is associated with one of 20 different job types. Each of the job types can be performed
at each of the plants. During a given day an employee may perform more than one work
task, each associated with a different job type, and each can be performed at different work
station. Each work station has an on-line data entry device at which an employee reports
activity on a work task. There are five worker unions represented in the company, and every
employee belongs to exactly one union. Although the size of the company remains stable,
about 20 percent of the employees leave each year and are replaced by new personnel.

Lee & Bryant [LB02b] claim that requirements documents are easier to process than

other types of textual documents in the sense that requirements documents usually have

well defined structures with fewer ambiguities and infrequent use or narrow reference scope

of pronouns. This kind of regularity can facilitate the syntactic processing of both general

parsers [RP92, Fou99] and specifically-crafted parsers [GSD99] as discussed in section 2.1.2

on syntactic analysis.

2.1.1.4 Dialog Dialog-based tools are effective in requirements elicitation and acqui-

sition. They are also used to guide the design process by enabling posting questions to

designers [WR82]. Interactive user interfaces [BCD+95, HG03, OHM04] can bring users to

bear in addressing the complexities of natural language processing such as disambiguation.

Further processing can begin right after a sentence is input (either in controlled languages

or sublanguage), instead of waiting for all of the text to be input. The system may post

additional questions if it finds gaps in the input. For instance, the dialog tool used in

[BCD+95] could post three types of questions: content questions (e.g. “Are there any more

details about the application?”), linguistic clarification questions (e.g. “How is the act

borrow done?”) and pragmatic clarification questions (e.g. “How is book characterized?”).

1This example text is used several times in this paper for various illustration purpose.
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The major disadvantage of dialog-based systems is that more user interventions and

attention are required. Hence it is hard to adopt dialog methods for large scale batch

processing. However, a system can provide both dialog interface and batch processing as in

the CM-Builder [HG03].

2.1.2 Syntactic parsing

Syntactic structure is an intrinsic part of natural language and the syntactic corresponding

patterns between natural language and various target formalisms are important for

automated conceptual data modeling. Chen [Che83] noticed the corresponding patterns

between English sentence structures and ERD elements and proposed eleven high level

heuristic rules to formulate these patterns (see section 2.1.3). Abbott [Abb83] and Booch

[Boo86] discussed the corresponding patterns between programming language and natural

language: data types vs. common nouns, variables vs. direct references and operators vs.

verbs. Recently, Galatescu [Gal02] detailed the possible corresponding patterns among real

world concepts, natural language elements, and UML as illustrated partially in Figure 5.

Research in NLP provides many syntactic analysis tools, including both special purpose

and generalized Part-Of-Speech (POS) taggers and parsers.

The most often used parsers are constituent tree-based (phrase structures). Constituent

trees represent the hierarchical nature of sentence constituents in a tree structure. For

instance, if the input sentence is “the company has 50 plants located in 40 states”, one of

the parse trees is shown in Figure 6. Several levels of information can be derived from this

constituent parse tree. The non-terminal directly above each word in the sentence is the

POS for that word. Many of the context free grammar based parsers use the Penn Treebank

POS tag set, which includes about 40 tags [Cha96]. There are also other tag sets such as,

the Brown Corpus tag set which contains 87 simple tags, the Lancaster-Oslo/Bergen(LOB)

Corpus tag set which contains about 135 tags, the Lancaster UCREL tag set which contains

about 165 tags, and the London-Lund Spoken English Corpus tag set which contains 197

tags [MMBS93]. The sentence level information, such as sentence roles (also called grammar

relations, such as subject, object) can be derived from the hierarchical relationship between
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Figure 5: Corresponding patterns between NL and UML [Gal02]

the tags. For example, if a sentence is composed of NP and VP, the subject is usually the

head noun of the NP.

The output structures of constituent tree based parsers were utilized in heuristic

translation rules [TB93, BCD+95, OHM04]. For example, with the rule “Heuristic HE2:

A common noun may indicate an entity type” [OHM04], “company”, “plants” and “states”

could be identified as three possible entity types from the parsing result generated from a

Memory-Based Shallow Parser (MBSP) [DZBG96, ZD99] as in Figure 6. Lexical rules are

not enough in this case, because both “plants” and “states” can be verbs.
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Figure 6: An example of constituent tree

2.1.3 Heuristic rules

Heuristics-based approaches are the best-known approaches to NLP-based conceptual data

modeling because heuristics, often guided by common sense, provides good but not

necessarily optimal solutions to many difficult problems such as automated conceptual

data modeling where precise algorithmic solutions are not available. All of the previous

research made some use of heuristic rules, although some of them might be implicit. Some

of the heuristic translation rules were general, while others were very specific and language-

dependent (some of the research was in languages other than English, e.g. German, French,

Spanish).

Chen [Che83] studied the corresponding patterns between English sentence structures

and the basic elements of ERDs, and proposed eleven high level heuristic translation rules

for translating English information requirements into ERDs, as shown in Figure 7. The basic

constructs of English, such as noun, verb, adjective, adverb, gerund, and clause were found

to have their counterparts in the ER model. These high level heuristic rules are fundamental

and have been adopted and extended in some other research.

Omar et al. [OHM04] developed an extension of Chen’s heuristic rules to assist the

semi-automated generation of ERDs. The heuristic rules were classified into five categories:
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Figure 7: Eleven heuristic rules proposed by Chen [Che83]
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Figure 8: Some of the heuristic rules proposed in [OHM04]

rules that determine entities, rules that exclude non-potential entity type candidates, rules

that determine attributes, rules that determine relationships and rules that determine

cardinalities. Figure 8 contains some of the heuristic rules. These rules were associated

with weights reflecting the confidence levels based on both statistics and general common

sense. For example, HE2 (“a common noun may indicate an entity type”) was given a

weight of 0.5, which means that 50% of the time this heuristic will produce the correct result

(because not all nouns are entity types).
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Figure 9: Some of the heuristic rules used in [RP92]

In contrast to Chen and Omar’s explicit heuristic translation rules, the rules used

by Rolland & Prox [RP92] were implicitly embedded in the underlying natural language

understanding modules. Three distinct classes of rules: lexical and syntactic rules, linguistic

rules and mapping rules were used. The system used pattern matching to unify each syntactic

tree with one of the sentence patterns. The lexical rules determine the grammatical nature of

each word of any clause of a sentence and classify the verb clauses into four classes: ownership,

action, state, and emergence. The syntactic rules were used to verify that a sentence belongs

to the authorized language (grammatically correct). Pattern recognition was based on both

the class of the verb and the grammatical structure of the sentence through a set of linguistic

rules. For example RL1 and RL2 are two examples of rules necessary for implementing the

pattern rule SP1 in Figure 9. Mapping rules were used to build the semantic net. Each
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Figure 10: Binary rule cases [GSD99]

syntactic tree was mapped onto a set of nodes and arcs of the semantic net from cases and

patterns determined by the linguistic rules.

Similar to Rolland & Prox’s approach, Gomez et al. [GSD99] used two kinds of rules:

specific rules and generic rules. The specific rules were defined for a verbal concept when

its semantics indicated that an action specific to the concept must be performed by the ER

generator. It included three categories: verbal concepts defining hierarchical relations, such

as “a manager is an employee”, verbal concepts that introduce attributes, such as “the source,

the time, and the location of each document are stored”, and verbal concepts that define key

attributes, such as “Items are identified by item type”. The generic rules were not associated

with any particular verbal concept and their actions were based only on the arguments of the

NL-relation and the current state of the database design. They were subdivided into unary

rules, binary rules and n-ary rules. Unary rules were used for the definition of attributes.

When an NL-relation had a single argument, three cases were considered. (a) The argument

had already been defined as an ER entity; in this case, the program would ask the user

to determine if there was another ER entity. If so, an ER relationship would be created.

Otherwise, no action would be taken. (b) It had been defined as an attribute. In this case,

the program would ask whether the argument was an attribute of an existing entity. If so, the

argument would be defined as an attribute of the user specified entity. Otherwise, no action

would be taken. (c) It did exist in the database model under construction. Then it would
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be defined as an entity. Binary rules may define attributes, ER-entities or ER-relationships.

Under this rules, 10 cases were taken into consideration for each possibility of the arguments

as shown in Figure 10. N -ary rules were used for the definition of ER-relationships. Besides

these rules, there were also some very complex rules used for normalization, for example,

Rule 1: If the logical form of the current clause contains an actor and a theme, and the
NP of the actor or theme has a nominalization in head position, modified only by an
article, a quantifier or nothing (the NP has the form [article or quantifier or nothing +
nominalization]), and the NL-relation referred by the nominalization already exists in the
current database model as an ER-relationship, say relation ri, then make the thematic role
whose NP does not have the nominalization an argument in the ER-relationship ri.

2.1.4 Semantic analysis

Semantic analysis that deals with meaning representation and manipulation is an important

component for sophisticated and intelligent conceptual data modeling applications.

2.1.4.1 Semantic representation The most commonly used semantic representation

languages in natural language processing are First Order Predicate Calculus (FOPC),

semantic networks and frame-based representations [JM00]. This is also the case in NLP-

based conceptual data modeling applications.

FOPC provides a sound computational basis for formal meaning representation of

requirements specifications. The terms, predicates and connectives in FOPC acquire their

meanings by virtue of their correspondence to objects, properties and relations in the external

world being modeled. Gomez et al. [GSD99] represented the sentence “XWZ, a company,

sells shoes to many customers” in FOPC as

∃(x)∃(y)(Shoe(x) ∧ Customer(y) ∧ Sell(XWZ, x, y)).

If the sentence were “all companies sell shoes to customers”, then the FOPC would be

∀(x)(Company(x) ⇒ ∃(y)∃(z)(Shoe(y) ∧ Customer(z) ∧ Sell(x, y, z)).

The transformation from natural language to FOPC is a complicated process. Gomez et al.

[GSD99] used special frame-like knowledge representation structures: object-structure and

a-structure, to capture the relations and their arguments,
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(args(XWZ)(shoe)(customer)),

(vc(sell),(actor(XWZ(q(constant)))),

(them(shoe(q(?)))),

(to-poss(customer(q(many)))).

It states that there are three arguments (XWZ, shoe and customer); the NL-relation is sell ;

XWZ (a unique constant) is the actor ; shoe with unknown quantifier is the theme and

customer with a many quantifier is the to-poss thematic role.

Similarly, Osborne & MacNish [OM96] explored the use of logical forms to represent the

relations specified in natural language assertions. A logical form is an expression in FOPC,

augmented with event variables and generalized quantifiers. For example, for the sentence

“A brake is applied”, the corresponding logical forms are:

some(x1), entity(x1)

some(x2), sg(x2) ∧ brake(x2)

some(e1), apply(pres(e1), x1, x2)

These logical forms represent “there is some entity x1, and some singular brake x2, such

that at some present event e1, x1 applies the brake”. Osborne & MacNish [OM96] did not

explain how to derive such logical forms from natural language sentences.

Quantifiers are used in natural language, FOPC and ER modeling. Natural language

has many quantifiers such as all, some, many, few, etc. The problem of handling natural

language quantifier with standard FOPC has long been recognized. A set-based approach to

approximate some of the problematic natural language quantifiers such as many and most in

FOPC was proposed in [All95]. For ER modeling, there are three basic forms of cardinality

(1:1, 1:N, M:N). It is more like FOPC than natural language in terms of quantifiers. However,

FOPC is not ideal as an underlying meaning representation of ER formalism. As shown in

the example above [GSD99], the quantifier many for entity type “customer” was lost in the

final FOPC representation.

Semantic networks are also frequently used for meaning representation. Network

notations and FOPC are both capable of expressing almost equivalent information. The

major advantage of network representation is the ability to show direct connections, while

FOPC must rely on repeated occurrences of variables or names to show the same connections
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Figure 11: A semantic net [RP92]

[Sow91]. Variants of semantic networks exist and are used to represent word meanings,

proposition, events and spatial relationships. Rolland & Prox [RP92] used a set of rules

to map each syntactic tree onto a set of nodes and arcs in a semantic net as illustrated in

Figure 11. The system was based on the REMORA methodology [Rol88] which identifies four

basic concepts: objects, events, actions and constraints. These four concepts correspond to

four types of nodes in the semantic net. The semantic net used here also includes five types

of arcs: relationship arc, modification arc, trigger arc, constraint arc and event state change

arc (not shown in the figure).

Mich [Mic96] utilized SemNet, a type of semantic network to hold knowledge that can be

accessed, modified and expanded in the processing of object oriented software requirements.

SemNet contains more than 100,000 connected nodes, which enable the underlying natural

language understanding (NLU) subsystem to go beyond superficial linguistic structures to

deep structures close to more generic cognitive forms. Concepts are represented as two types

of nodes in SemNet: entity nodes and event nodes. The event nodes have a frame-like
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structure representing the various components of the events, such as subject, action and

object. Simple relations between concepts are represented as arcs.

2.1.4.2 Cases and thematic hierarchy Fillmore [Fil68] introduced case grammar to

analyze sentences by a set of cases such as AGENTIVE and INSTRUMENTAL. He also

formulated the basic idea that which argument of the verb will become the subject of a

sentence [JM00]. This has motivated research on the mapping between conceptual structure

and grammatical function. The following is a typical case priority ordering.2

AGENT Â INSTRUMENTS Â THEME [JM00]

It states that if case structure of a sentence includes an AGENT, then the AGENT will be

realized as the subject; if the thematic description does not include an AGENT, then the

INSTRUMENT will be realized as the subject. And if neither AGENT nor INSTRUMENT is

present then the THEME will be realized as the subject.

Rolland et al. [RP92, RBA98, RP00] extended Fillmores case theory and applied case

not only to words but also to clauses. The case approach was first applied to subordinate

clauses with regards to the main verb, and then applied to the subordinate clauses. The

system used the following cases 〈OWNER, OWNED, ACTOR, TARGET, CONSTRAINED,

CONSTRAINT, LOCALIZATION, ACTION, OBJECT〉. For example, in the sentence “A

subscriber is described by a name, an address and a number”, “subscriber” is associated to

the OWNER case and “name”, “address” and “number” are associated to the OWNED case.

A case grammar was also used by Fougeres [Fou99].

Gomez et al. [GSD99] utilized thematic roles which are also closely related to case theory.

A semantic interpreter was used to identify thematic roles. For example, in the sentence “A

company sells books to customers”, “company” is identified as the actor ; “sells” is identified

as the transfer-of-possession and “books” is identified as the theme. This thematic role

information is used to address partial prepositional phrase ambiguity. In this case, the

prepositional phrase “to customers” is attached to the verb and stands for the thematic role

to-poss. The ER generator in the system utilized these thematic roles to build ER formalisms.

The tricky point here is that if the thematic roles were identified incorrectly, then the ER

2Different case priority orderings exist in the literature.
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generator would generate the wrong ER formalism. For instance, in a similar sentence, “A

company sells books about travel”, if the semantic interpreter attaches the prepositional

phrase “about travel” to “sells”, but not “books”, then the ER generator will produce three

ER-entities: “company”, “book” and “travel”.

2.1.5 Ambiguity and disambiguation

Ambiguity is a pervasive phenomenon in natural language. According to the Oxford English

Dictionary, each of the 500 most often used words in English has an average of 23 different

meanings. The word “round”, for instance, has 70 distinct meanings [Gra]. In fact, this is

only the lexical ambiguity. There are also syntactic and semantic ambiguities. Ambiguity

poses great challenges for applications of constructing unambiguous and consistent target

formalisms.

2.1.5.1 Word sense disambiguation The approaches to word sense disambiguation

can be categorized as symbolic methods, knowledge-based methods and statistical corpus-

based methods [IV98].

The symbolic methods refer to some of the AI work from 1960’s to 1980’s. Quillian [Qui67]

built a kind of semantic network that linked words and concepts with various semantic

relations. Disambiguation was accomplished when only one concept node associated with a

given input word was activated by a path finding program. Hayes [Hay78] used a combination

of a semantic network and a version of case frame for word sense disambiguation. Senses of

nouns were presented as nodes and senses of verbs were represented as links in the semantic

network. The network also incorporated is-a relation as in semantic networks and part-of

relations as in frames. It worked fairly well on disambiguation of homonyms. Andriaens

& Small [AS88] utilized a discrimination net in the Word Expert Parser system which

included multiple word expert subsystems. Unique sense was achieved by traversal of the

discrimination net.

The symbolic methods were usually based on a particular linguistic theory with a limited

hand-crafted knowledge base. With the availability of large-scale general knowledge sources
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in the late 1980’s, word sense disambiguation work shifted towards empirical methods

utilizing these resources. Cowie et al. [CGG92] utilized the box codes (abstract, animate,

human, etc.) from the electronic version of the Longman Dictionary of Contemporary English

and reported results of 47% for sense distinction and 72% for homographs. Yarowsky [Yar92]

worked on disambiguating new occurrences of polysemous words by deriving words classes

from Roget’s International Thesaurus. Bayes’ rule was applied to determine the most likely

classes of a polysemous word. He reported fairly good results on noun disambiguation.

Sussna [Sus93] worked on noun sense disambiguation by using a semantic distance metric

computed from the relation links in WordNet. He explored not only the is-a relation but

other relation links in WordNet.

Statistical methods for word sense disambiguation revived in the 1990’s with the

availability of several large-scale linguistic corpora. Hearst [Hea91] trained his algorithm

on a manually sense-tagged corpus, and then he used statistical information obtained in the

training phase to disambiguate other occurrences. Brown et al. [BPPM91] took advantage

of the statistical information in a bilingual corpus to assign word sense by the context in

which the word appeared based on the assumption that different senses of a given word

often translate differently in another language. Yarowsky [Yar95] proposed an unsupervised

learning algorithm trained on unannotated English text for sense disambiguation. The

algorithm is based on the assumption that the sense of a target word is highly consistent

within any given document and nearby words provide strong and consistent clues to the

sense of the target word. A 96% accuracy was reported.

Gomez et al. [GSD99] used WordNet as a knowledge source for word sense disambigua-

tion in database conceptual data modeling. An interface was used to access WordNet and

display the ontological categories for a given word. When ambiguity happens, the system

asks the user to choose the proper ontological category in the current context. The authors

didn’t automated the disambiguation process by consulting some kind of knowledge base

such as Cyc [LG90] or WordNet [Chr98].

Surprisingly, word sense disambiguation in NLP-based conceptual data modeling is

arguable. On the one hand, word sense is a basic component of semantic analysis, and

it is important for constructing correct and consistent formal representations. On the other
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hand, for heuristic rules based on word classes, as long as the POS of a word is identified

correctly, the different senses may be not significant for the construction of certain target

formalisms. For example, “bank” can be either “a financial institute” or “slopping land”. In

ERD sense, as long as it is identified as a noun and treated as an entity correctly, the sense

chosen is not important since it does not affect the final conceptual data model.

2.1.5.2 PP attachment and conjunction disambiguation Pre-positional phrase

attachment ambiguities account for a good deal of the ambiguities in requirements

specification documents, as they do in English in general. When a sentence is in conjunction

form (mainly including one or more “and”), it becomes even more difficult for prepositional

phrase attachment disambiguation. Approaches from detailed knowledge-based methods

to shallow quasi-statistical approaches based on empirical evidence found in large corpora

have been tried in previous research. Corpus-based prepositional phrase attachment

disambiguation methods [BR94, RRR94, CB95, ZDJV97] were reported to achieve up to

84.5% accuracy on the Penn Tree Bank corpora. A better result was reported in [SN97] with

88% accuracy using the WSJ text in conjunction with WordNet.

Gomez et al. [GSD99] utilized special knowledge structures, which include an object-

structure (essentially a frame-like structure for nouns) and an a-structure (essentially a

frame-like structure for verbs), to resolve prepositional phrase attachment ambiguity for

conceptual data modeling. The algorithm was detailed in [GSH97]. The basic idea is that if

a verb strongly claims a preposition by certain rules, the preposition will be attached to the

verb; if a verb weakly claims a preposition, the preposition will be attached to both the verb

and the NP temporarily. The ambiguity is resolved later by other attachment evidence.

2.1.5.3 Reference resolution One often used approach for reference resolution is

searching for NPs in the current and preceding sentences, then applying a set of resolution

constraints and preferences, such as gender and number agreement, c-command constraints

[IS89], semantic consistency, syntactic parallelism, salience, proximity, etc. [Mit99].

Another approach is to take into account the effects of discourse structure. Grosz [Gro77]

studied definite reference resolution in task-oriented dialogues. Grosz’s approach was to find
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ways of determining and representing the explicit and implicit focus of attention of a discourse

as a means for constraining reference resolution. Grosz’s work relied heavily on task-oriented

discourse structure and demonstrated the role of discourse structure in reference resolution.

Sidner [Sid78] developed a similar focus of attention approach for reference resolution in

the PAL personal assistant program. Hirst [Hir81] reviewed several other discourse-oriented

anaphora resolution approaches. Knowledge-rich methods [LL94], knowledge-poor methods

[Mit98] and statistical methods [DI90] have been reported for reference resolution in the

literature.

Lee [Lee03] claimed that pronouns in requirements documents have relatively small scope,

usually referencing the words in the same sentence or the previous sentence, and it is rare

that the pronouns “it” and “that” are used to refer to a word that is not present in the

requirements documents. So he used common heuristics that incorporate the two approaches

discussed above with both recency constraints (the recent word has a higher priority than

less recent ones) and the discourse focus (the coreferred word has a higher priority than

words that are not coreferred) to dereference pronoun. Lee & Byrant [LB02b] also reported

the utilization of WordNet for anaphora reference resolution, but no detailed information

was provided.

Gomez et al. [GSD99] utilized a program called SNOWY [GSH97] to store input concepts

in its long term memory in a hierarchical fashion for reference resolution. The current

version of the database design and the SNOWY program were combined to resolve anaphoric

references in the current input sentence while incrementally developing the database design.

For instance, for the following input,

Each person keeps a record of documents of interests. The source and the time of the
documents are stored.

the concepts “document”, “documents-of-interest” and the relation “document-of-interest is-

a document” were stored in SNOWY from the first sentence. Meanwhile, the E-R generator

built a data model including the ER-entity “person” with attribute “document of interest”.

When the second sentence was read, the ER generator realized that “the document” was

not in the current data model and would access the SNOWY’s hierarchy under “document”

to resolve the reference (in this case the “document-of-interest”). The system did not use a
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generalized knowledge base such as WordNet but required users’ input for problems it could

not resolve itself.

A quite different approach was adopted by Pulman et al. [PAC+93] for reference

resolution in a natural language database interface. The reference resolution mainly focused

on compound nominals, such as “London buses” and “DTI project”. For instance, “London

buses” may mean “the buses in London” or “the buses to London” in different contexts. In

order to resolve such references, sentences were analyzed into quasi-logical forms [ACRG91]

to represent the basic linguistically determined meaning of the sentences. The quasi-logical

forms contain constructs for compound nominals, pronouns, ellipsis, etc., which enable

reference resolution rules to suggest a contextually plausible resolution of the intended

meaning. The resolution rules were in the format,

A ↔ B if C1, · · · , Cn

Stating that A is equivalent to B if the conditions C1, · · · , Cn hold. The conditions may

refer to aspects of the context, or to the domain model. However, no detailed information

and examples of these resolution rules were given except the total number of rules that were

implemented in the system. The problem for such an approach is that a large number of

resolution rules are needed even for a small application.

2.1.5.4 Scope ambiguities Scope ambiguities are usually caused by quantifier opera-

tors. For instance, a sentence like “Everybody loves someone” can mean either that for each

person there is someone that he loves or that there is someone everybody loves (although

unlikely). These two meanings corresponds two logical forms: (∀x)(∃y)Loves(x, y) and

(∃y)(∀x)Loves(x, y).

Quantifier words such as “every”, “each”, “any”, “all”, “many”, “some”, “several”, “a”,

“an”, etc., and negation words, such as “no”, “not” and “never”, are very common in

requirements specification documents. The author has done a comparison of the frequency

of common scope words in a small requirements documents corpus to the frequency in an

English news text corpus TDT2 [SM00] (see Appendix B). It shows that the percentage of

scope words is much higher in requirements documents than in news text3. However, this

3It may also be higher than in general English
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problem has not been addressed in NLP-based conceptual data modeling. The reason may be

that, on the one hand, scope ambiguities usually involve subtle semantics of the sentences,

so it is hard to resolve; and on the other hand, word morph (single/plural) and cardinal

numbers can be used to extract the necessary relationship cardinality requirements.

2.1.6 Domain and background knowledge

Requirements documents written in natural languages are intended for human readers.

Some background and common sense knowledge is usually assumed. For instance, if the

requirements state “the user inputs the 4-digit PIN number by pressing the buttons”, it

assumes the reader knows the fact that the set of buttons is a component of the ATM machine,

and therefore it is not explicitly mentioned in the requirements document [LB02c]. Most

of the time, such background and common sense knowledge that describes the relationship

between components and other constraints in requirements documents is too implicit to be

extracted from the original documents.

Lee & Bryant [LB02b, Lee03] specified the domain knowledge of a system in DAML

(DARPA Markup Language), a frame-based language with an expressive semantics to

facilitate the development of the Semantic Web. Figure 12 illustrates an example of the

domain knowledge representation in the bank domain, which states the fact that “ID, PIN,

and balance are three components of an account”.

The SemNet utilized by Mich [Mic96] is an example of exploring a large-scale general

background knowledge source for conceptual data modeling. The SemNet contains more

than 100,000 connected nodes after it was merged with WordNet [Chr98]. The SemNet was

used in the context independent phase for domain analysis and disambiguation purpose.

The requirements documents were extended by adding more SemNet nodes in the modeling

process. However, the details of their approach were not disclosed in the paper.

For automated conceptual data modeling, large scale domain knowledge bases are desired

[Sto02]. However, even for a very specific domain, to build an exhaustive, detail-oriented

knowledge base (domain ontology) is labor intensive and time-consuming. Buchholz et al.

[BCD+95] carried out a series of interviews with librarians as well as library users to obtain
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Figure 12: A domain knowledge representation [LB02b]

a lexicon of 12,000 items in the library domain. The Cyc project [LG90] has taken more

than 20 years several dozen human cyclists to build a large scale common sense knowledge

base.

2.1.7 Target formalisms

Target formalisms refer to the explicit and formal representations of conceptual data models.

They can be either diagrammatic or in other forms. ERD and UML class diagrams are two

of the often used diagrammatic formalisms in automated conceptual data modeling. ERD is

commonly used in database design applications, and UML class diagrams are widely used in

software engineering [BMO01].

Figure 13 illustrates an ERD model of the natural language database requirements

from the previous section. Chen [Che83] detailed how to transform a natural language

requirements specification to such an ERD model with 11 heuristic rules, which were refined

and extended by several other researchers [TB93, GSD99, OHM04, DM06] (see section 2.1.3

heuristic rules).

For object-oriented analysis, UML class diagrams are the preferred target formalism

for conceptual data modeling, especially in software design. Many software design tools

(section 1.1) offer functionalities to draw UML diagrams and transform UML to various source
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Figure 13: Output formalism ERD [Che83]

Figure 14: Output formalism UML [AG06]
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codes, but not the transformation from natural language requirements to UML formalisms.

The transformation from natural language to UML is similar to the translation from natural

language to ERD but is more difficult, because the scope of UML is broad, especially the UML

2.0 specification. It includes many representations that are redundant and infrequently used.

Many of the standard elements have vague semantics and are inconsistently named. UML is

specified by a combination of its own abstract syntax and English, and in some cases, they

are inconsistent with each other [Kob99]. Among the diagrams that are specified in the UML,

class diagrams, which have consistent semantics, are frequently used. Figure 14 illustrates a

UML class diagram generated from a natural language description about a fictitious missile

control system [AG06]. Mich [Mic96] and Harmain & Gaizauskas [HG03] also adopted similar

object-oriented formalisms.

Other formalisms were also utilized in conceptual data modeling. TELL [SHE89] was

a specific formal specification language for concurrent systems. Its formal semantics are

given by a temporal logic, both in textual expressions and graphic expressions. ACTL

[FGR+94] was an Action-based Computation Tree Logic (as shown in Figure 15) used for the

formalization of behavioral requirements in the design of reactive system. Conceptual graphs

[Sow84] were adopted by Fougeres & Alain [Fou99] as a formalism for the representation of

semantic knowledge.

Figure 15: An output of the NL2ACTL [FGR+94]
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2.2 EVALUATION METHODS

Both qualitative and quantitative approaches were used for evaluating the system perfor-

mance in previous research.

2.2.1 Qualitative evaluation

2.2.1.1 Case study Case study is one of the often used empirical qualitative methods

to demonstrate the usage and the performance of application systems. Case study usually

involves an in-depth examination of a single instance or example. Chen [Che83] provided

a case study to demonstrate the applicability of the eleven heuristic rules he proposed.

The analysis process was based on human reading of the text without any automation.

For instance, he said the sentence “The company has 50 plants located in 40 states and

approximately 100,000 employees” could be decomposed into three sub-sentences (clauses):

(1) the company has 50 plants; (2) the 50 plants are located in 40 states; (3) the company

has approximately 100,00 employees. Then his rules could extract the possible entities and

relationships. However, considering the coordinating conjunctions and prepositional phrase

attachment ambiguities in this sentence, many of the state of the art parsers have difficulty

parsing this complex sentence into the constituent sentences [DM06]. After analyzing each

sentence of the example text, Chen compared his ERD with Teorey’s [TF82] and pointed out

the pros and cons of applying his heuristic rules for ERD building.

Lee & Bryant [LB02b] demonstrated the capability and performance of their automated

software requirements transformation system on the Computer Assisted Resuscitation

Algorithm Infusion Pump Control System requirements [WRA01]. The outputs of each

step, from natural language requirements to XML, to hierarchical knowledge base, to Two

Level Grammar, and to the final formalism VDM++ were examined and explained. Similar

approaches were adopted in [FGR+94, NR95, Mic96, OM96, AG06].

2.2.1.2 Requirements validation As illustrated in Figure 1, requirements validation

is an important phase in requirements engineering that helps in checking the correctness
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and consistency of software systems. Customers’ participation is desirable for requirements

validation. However, the target formalisms generated are aimed at information analysts,

not at customers. Some previous systems incorporated natural language generating and

paraphrasing capabilities for the purpose of requirements validation.

Rolland & Prox [RP92] utilized three classes of rules: extraction rules, transformation

rules and linearization rules, to generate natural texts from conceptual schema for the

purpose of requirements validation. Extraction rules were used to cluster nodes and

arcs related to either entities or event types in the semantic net (see section 2.1.4) to

construct deep structures. Transformation rules were used to map deep structures into

surface structures following Chomsky’s theory. Linearization rules, including rules for

conjugating the verb and selecting correct articles, were used to rewrite a surface structure

into readable sentences. The aim of this process was to generate readable language as close

as possible to the original requirements documents. So the customers without any expertise

in conceptual data modeling can compare and verify the correctness and consistency of the

formal conceptual schema.

Burg & van de Riet [BvdR96] claimed that the transformation of formal specifications

into informal specification could also be helpful to the analysts themselves, who can see the

specification from a new perspective. He utilized a tool, CPL2NL, to automatically generate

readable paragraphs from conceptual prototyping language specifications (Figure 16).

Although the language generated was not as readable as the input text (Figure 4), it was

usable for the validation purpose.

Figure 16: A paraphrasing example from CPL2NL [BvdR96]
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2.2.2 Quantitative evaluation

Methods and measures originally developed for evaluating information retrieval systems,

i.e., recall and precision [vR79] were adopted to provide quantitative evaluation of the

performance of the systems in some of the previous research.

Gomez et al. [GSD99] were the first to provide quantitative evaluation of conceptual

data modeling systems. However they did not state the performance in terms of recall and

precision explicitly. Harmain & Gaizauskas [HG03] were the first to introduce precision and

recall as the measures for evaluation of conceptual data modeling systems. Omar et al.

[OHM04] extended Harmains definition and proposed more measures.

Recall is the percentage of the total relevant information that is actually found in a

particular situation. In conceptual data modeling, it is the number of correct items (such as

entities, objects, relations, attributes) returned by the system compared with those produced

by human analysts or answer keys. Harmain & Gaizauskas [HG03] proposed

Recall =
Ncorrect

Nkey

[HG03] (2.1)

Ncorrect refers to the number of correct responses made by the system. Nkey is the number

of items in the answer keys. Omar et al. [OHM04] redefined recall with different terms but

with same semantics,

Recall =
Ncorrect

Ncorrect + Nmissing

[OHM04] (2.2)

Ncorrect is the same as above. Nmissing is the number of correct items that are not extracted

by the system.

Precision is the percentage of all extracted information that is actually correct in a

particular situation. It reflects the accuracy of the system in obtaining the correct results.

Harmain & Gaizauskas [HG03] proposed

Precision =
Ncorrect

Ncorrect + Nincorrect

[HG03] (2.3)
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Ncorrect is the same as above. Nincorrect refers to the incorrect responses made by the system.

Omar et al. [OHM04] used a slightly different measure by taking more factors into account.

Precision =
Ncorrect

Ncorrect + Nincorrect + Nask + Nmissing + Novergenerate

[OHM04] (2.4)

Ncorrect, Nincorrect are the same as above. Nask is the number of user assistance acts in

respondence to the system requests. Novergenerate is the number of correct items that are

generated by the system but are not in the answer keys. It is questionable why Omar et al.

also put Nmissing in the denominator.

Besides recall and precision, new measures that are suitable for the evaluation of

conceptual data modeling systems have been defined. There is usually no single gold

standard model, as different people may produce different models or similar models with

synonyms for a given requirements specification. Harmain & Gaizauskas [HG03] used Over-

specification and Omar et al. [OHM04] used Overgenerated to measure how much extra

correct information is in the system response but is not found in the answer keys.

Over-specification =
Nextra

Nkey

[HG03] (2.5)

Overgenerated =
Novergenerated

Ncorrect + Nmissing

[OHM04] (2.6)

Omar et al. [OHM04] also proposed several other measures. Undergenerated is the

percentage of total relevant information that is not extracted by the system.

Undergenerated =
Nmissing

Ncorrect + Nmissing

[OHM04] (2.7)

Ask user is the ratio of user assistance requests generated by the system to the total

relevant information. This measure evaluates the importance and the frequency of user

interventions to a system.

Ask user =
Nask

Ncorrect + Nmissing

[OHM04] (2.8)
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Unattached is the ratio of ER elements that are correctly identified by the system but

are not attached to their corresponding items to total correct items.

Unattached =
Nunattached

Ncorrect + Nmissing

[OHM04] (2.9)

Similarly, wrongly attached is the ratio of ER elements that are correctly identified by

the system but are wrongly attached to other items to the total correct items.

Wrong attached =
Nwrong attached

Ncorrect + Nmissing

[OHM04] (2.10)

Table 1: A comparison of the performance of previous systems

Systems
Evaluation Results

Recall Precision

ER Generator [GSD99] 75% -

CM-Builder [HG03] 73% 66%

ER-Converter [OHM04] 95% 82%

ER-Builder [DM06] 93% 90%

Note: similar but different datasets are used for the evaluation of the above systems.

A comparison of the recall and precision of several of the previous implemented systems

is presented in Table 1. Gomez et al. [GSD99] stated that the ER Generator was able

to identify all the relevant ER relationships and entities in 75% of the cases that were

interactively input by the users. However, the program overgenerated or undergenerated ER

entities and relationships in approximately 50% of cases in a corpus of 45 problems collected

from database text books and other resources. The CM-Builder [HG03] was evaluated on a

corpus of five case studies extracted from textbooks. These case studies range from 100 to 300

words, and the average sentence length is 17 words. The overall performance of the system

was 73% recall and 66% precision, with an over-specification of 63%. The ER-Converter

[OHM04] was tested on a test dataset which consisted of 30 database problems gathered

from database books and past exam papers. The problems ranged from 50 to 100 words in
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size. It achieved a high average recall of 95% and 82% precision. The ER-Builder [DM06]

was evaluated on a corpus consisting of 113 sentences taken from 20 database specification

documents. The average sentence length is approximately 11 words. The recall was about

93% and precision was about 90%.

Harmain & Gaizauskas [HG03] claimed that some of the machine translation, information

retrieval and extraction systems with much lower precision and recall have found commercial

applications, so there should be possible practical applications of automated conceptual

data modeling. However, the requirements for precision and recall in different domains and

applications are different, and such requirements are usually high in automated conceptual

data modeling. Furthermore, all of the above evaluations were based on small sets of data. A

relatively large and publicly available corpus of requirements documents is needed for better

quantitative evaluation of automated conceptual data modeling systems.
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3.0 RESEARCH APPROACH

The general research objective of interest is exploring feasible methods to transform semi-

restricted natural language documents into a relatively formal representation. Although

a specific type of semi-restricted natural language documents, database requirements

specifications, and a specific formalism, Entity Relationship Diagram(ERD), was chosen

in this research, it is expected that the general approach can be applied into many other

similar fields such as medical records extraction and traffic accident records extraction that

require transforming semi-restricted natural language documents to formal representations.

3.1 OVERVIEW

The transformation of general free texts to unrestricted formal knowledge representations

such as FOPC is not yet feasible. However, it is increasingly feasible to translate semi-

restricted NL documents such as database requirements specifications into semi-restricted

formalisms such as ERD. Currently, parsing technologies are relatively mature and many of

the state of the art parsers are readily available, so this research focuses on analyzing the

sublanguage characteristics of a specific example of semi-restricted documents, extracting

specific information based on parsing results and exploring the problem of disambiguation

as it appears in the domain of ER modeling.

In database specifications, sentences can be treated as independent units that specify

either an entity to entity relation or an attribute attachment to an entity. It has been

found that some of the sentence patterns, especially the long attribute enumerative sentence

structures are difficult for state of the art parsers. It is possible to develop specific
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pattern matching approaches for these cases in this research, rather than working on these

problematic parsing results.

As in any natural language understanding application, an NLP parser is needed for

syntactic (grammatical) analysis of the input sentences. Theoretically, any NLP parsers will

work to some extent, but the overall performance of the automated conceptual data modeling

system depends heavily on the parsing results. Also many other practical factors such as

availability, format of parsing results, were involved when choosing NLP parsers. Parsing

results from two of them: the Link Parser [ST91] and the Stanford Parser [KM02], as reviewed

in section 2.1.2, were investigated. Both of the parsers provide high level dependency-related

grammatical relations with some trade-offs. For instance, the parsing results from the Link

Parser are more precise for well-formed sentences than those from the Stanford Parser, while

the Stanford Parser is more robust on handling ungrammatical sentences than the Link

Parser.

Based on the linkages from the Link Parser or the Typed Dependencies from the Stanford

Parser, various heuristic rules used to extract entity relationship tuples were proposed.

Because of the complexity of natural language and the imprecision of the underling parsers,

inappropriate tuples will inevitably be generated by the heuristic syntactic rules. So the

elements extracted from those heuristic rules need to be further processed, especially those

involving special structures. The original requirements text provides the most reliable

source to resolve some of the ambiguities in the extracting results, however the requirements

text itself may be informal and ambiguous too. Disambiguation based on WordNet, Web

corpus and other large scale knowledge resources were investigated to filter out inappropriate

elements.

In order to graphically represent the database requirements in ERD, the extracted entity

relationship information was translated into DOT language [GN00] which can be rendered

into various graphic formats. The open source graphic visualization tool packages Graphviz

and Grappa [EGK+04] were used to generate the ERD and provide an interactive interface.
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3.2 DATABASE REQUIREMENTS AS A SUBLANGUAGE

In terms of general requirements specifications, it seems there is no obvious vocabulary or

domain restriction without specifying a particular domain such as financing or manufactur-

ing. However, the language may still be treated as a kind of sublanguage because most of

these documents exhibit some special regularities and restrictions on sentence structures.

These include:

• A restricted set of sentential patterns. Usually only declarative sentence structures are

used in requirements specification documents. Imperative, yes-no-question and wh-

non-subject-question sentence structures seldom appear in requirements specification

documents.

• Exclamation, interjection, weird words, slang, idioms, peculiar grammatical structures

and incomplete sentences are unlikely to appear in this kind of documents.

• Relatively simple temporal expressions are used in the documents, e.g. there is a

predominant use of the simple present tense.

• Enumeration of attributes, as a form of conjunction, is common.

In order to extract entity relationship from the database requirements specifications,

correctly parsing the input is a necessary step. Some of the sublanguage characteristics

such as restricted set of sentential patterns are helpful in reducing the complexity of the

problem, while others such as the enumeration of attributes are less common in general

natural language, and hence pose more challenges to the parsing tasks. From the analysis of

a small database requirements corpus, it was found that even the most relevant and accurate

parser for this purpose has difficulty parsing the long attribute enumerative sentences such

as “lecturers have first and last name, office, telephone number, date started, qualifications

and subjects they are currently teaching” which are often used to describe the attributes of

an entity or a relation in database requirements. For instance, the Link Parser can not parse

the above sentence while the Stanford Parser provides wrong results: the word “started” is

labeled as the main verb which messes up the whole sentence, as shown in Figure 17.
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Figure 17: An example parse tree of a long attribute sentence

When the sentence structures are examined, it is not hard to find some patterns that

can be used to extract the attribute list even without parsing the sentence. So instead

of using the parsing results from these long enumerative sentences, a pattern matching

approach is more appropriate to extract the desired elements from this kind of sentence by

taking advantage of the sentence structure regularity. In addition, compared to the parsing

results, the tagging results are usually more correct. The POS of the words from the tagging

results plus the syntax of the sentences can be used in the patterns to extract the attribute

information. Moreover, a small set of typically used attributes in database requirements

specifications, such as “name, id, address, phone number” can cover a significant part of the

45



cases although there is no closed lexicon that defines the scope of the vocabulary that can be

used to express entity attributes. The regular expression-based pattern matching approach

is detailed in Section 4.1.3.

3.3 DEPENDENCY RELATED PARSING

Recently there has been an increasing use of dependency parsing for various NLP tasks, from

machine translation to question answering [dMMM06] because of the high level grammatical

relations offered between individual words. It seems that using heuristic rules based on high

level information such as grammatical relations from full level dependency parsing is very

promising for formalism extraction in automated conceptual data modeling. Two of the

dependency related parsers were studied.

3.3.1 Link Parser

Link Parser1 is based on Link Grammar, an original theory of English syntax [ST91]. It has a

lexicon of about 60,000 word forms and covers a wide variety of syntactic constructions. The

most attractive feature of Link Parser is the high level grammatical relations offered from

the parsing result links. For example, Figure 18 illustrates the link graph of the sentence

“the company has 50 plants located in 40 states”.

Figure 18: A Link graph generated by the Link Parser [ST91]

1There is no consensus on whether Link parser belongs to dependency parsers [Sch98].
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Figure 19: Links vs. ERD elements [DM06]

A link graph is constructed from compatible links connecting pairs of words. Each word

has a set of left and right pointing connectors in the lexicon. The link graph is built by

searching over the compatible links space. If there exists a complete linkage that covers all

the words in a sentence (except conjunctions), then a valid parse is produced. The links

are organized from left to right directly from words in a link graph which is different from

the hierarchically organized tag sets in constituent trees where constituents are composed of

sub-constituents.

Du & Metzler [DM06] argued that the reason for choosing the Link Parser over similarly

powerful parsers was that there are relatively straightforward correspondences between

the links and the components of entity relationship diagrams, as illustrated in Figure 19.

The output structure of the Link Parser offers not only POS information, but also some

deep sentence role (grammatical relation) information, such as sentence subject and object

information. This information can be difficult to obtain when using other approaches such

as constituent tree analysis and lexical rules [RP92, BvdR96]. The sentence role information

offered by the Link Parser is also consistent with the observation by Gomez et al. [GSD99]

that “the output of a parser should not be a tree, but a structure in which constituents

are related to each other not by immediate dominance relations, but by simple dominance
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relations”, which is supported by the Description theory [MHF83, Mar87]. The reason is

that syntax does not provide reliable evidence for the construction of immediate dominance

relations between two constituents.

3.3.2 Typed dependency from the Stanford parser

Recently, de Marneffe et al. [dMMM06] proposed Typed Dependency (grammatical relation)

based on the constituent tree output structure of the Stanford Parser [KM02] in order to

promote the practical usage of the Stanford parser. The Typed Dependencies extracted from

the constituent tree structured parsing results are convenient for practical natural language

applications such as NLP-based conceptual data modeling.

Figure 20 shows the Typed Dependency hierarchy. The hierarchy contains 48 grammat-

ical relations. The most general relation is dependent and can be further divided into aux

(auxiliary), arg (argument), mod (modifier), etc. The parsing results are tagged with these

tags. For instance, the Typed Dependency parse result for sentence “the company has 50

plants located in 40 states” is following,

det(company-2, the-1)

nsubj(has-3, company-2)

num(plants-5, 50-4)

dobj(has-3, plants-5)

partmod(plants-5, located-6)

num(states-9, 40-8)

prep_in(located-6, states-9)

Similar to the Link Grammar, the grammatical relations between different words such

as nominal subject (nsubj ), direct object (dobj ), participial modifier (partmod), etc. are

spelled out explicitly. Typed Dependencies also provide some semantic-oriented tags, such as

agent. These grammatical relations can be utilized to extract entity relations for automated

conceptual data modeling similar to the approach in [DM06].
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Figure 20: The Typed Dependency hierarchy [dMMM06]
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3.4 HEURISTIC RULES

Heuristic rules have been utilized in previous research with the aim of capturing the

relationships between different elements in natural languages and those in ERDs. The rules

proposed in the following sections are based on the idea that “Nouns are corresponding to

entities and attributes while verbs are likely relation candidates in ERDs”. They are different

from the rules in previous research in that these rules are based on higher level grammatical

relations of two state of the art parsers (such resources were usually not available for much

of the previous research) instead of word classes and related direct patterns.

Because in database requirements specifications sentences can be treated as independent

units that specify either an entity to entity relation or an attribute attachment to an entity,

here the entity relationships are extracted per sentence.

3.4.1 Heuristic rules based on link types

In this section, examples of heuristic rules based on link types generated from the Link Parser

are proposed. These rules can extract most of the entity relationships that are specified in

the requirements documents. The total number of rules required to cover all the sentential

patterns in requirements documents may be very large, however, a small set of rules may

cover a significant number of sentential patterns. Some more specific heuristic rules are

discussed in Section 3.5. The heuristic rules are in the following format,

Link type conditions ⇒ 〈relation entity1 entity2〉

The symbol“⇒”separates the left hand side (the conditions) and the right hand side (the

suggested candidate entity relation tuple). The entity relation tuples extracted will be further

processed in later stages.

A brief summarization of the semantic descriptions of the major link types used in the

heuristic rules proposed in this section is in Table 2. A detailed documentation of these link

types can be found at http://www.link.cs.cmu.edu/link/dict/index.html.

These link types provide rich information about the syntactic and partial semantic

information of the underlying sentences. The following are some examples of the major
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heuristic rules to cover different sentence structures. The full set of heuristics rules based on

link types is in Appendix C.

3.4.1.1 Active sentence rules Rule (3.1) is one of the most general rules that cover

the basic SVO sentence structure with a direct object. The subject (S.LW , the left word

of the S link type) and Object (O.RW , the right word of the O link type) are extracted as

the entity candidates and the verb (S.RW , the right word of the S link type) is extracted

as the relation candidate. The [sp] (single/plural) attribute is not significant in terms of

identifying entities but can be used for evidence of cardinality. The “*” means there can be

zero or more minor link types (lowercase letters) following the major link types (capitalized

letters). Link type sequence is required on the left hand side of the rules.

S[sp]∗ + O[sp]∗ ⇒ 〈S.RW S.LW O.RW 〉 (3.1)

For instance, given the following link parsing result,

+-----Op-----+
+--Dsu-+---Ss--+ +--Dmc-+
| | | | |

each company.n has.v many plants.n

The tuple 〈has company plants〉 can be extracted with rule (3.1).

This rule is based the general ideas from [Che83]. It is a combination and specification

of Chen’s rule 1 and rule 2:

Rule 1: A common noun (such as “person”, “chair”) in English corresponds to an entity
type in an ER diagram.

Rule 2: A transitive verb in English corresponds a relationship type in an ER diagram.

Rule (3.1) is designed to extract the subject and object of a simple active sentence. The

subject or the object may not be a common noun and hence not corresponding to an entity

type. Disambiguation rules will further process the elements extracted from rule 3.1. The

main verb of the sentence is proposed as a relationship type which is consistent with Chen’s

rule 2.
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Table 2: A brief summarization of some of the link types

Link types Descriptions

S connects subject nouns to finite verbs

SF is a special connector used to connect expletive subjects like “it”

and “there” to finite verbs

RS is used in subject-type relative clauses to connect the relative

pronoun to the verb

O connects transitive verbs to their objects, direct or indirect

MV connects verbs and adjectives to modifying phrases that follow

M connects nouns to various kinds of post-noun modifiers

J connects prepositions to their objects

P connects forms of the verb “be” to various words that can be its

complements

I connects infinitive verb forms to certain words such as modal verbs

and “to”

PP connects forms of “have” with past participles

TO connects verbs and adjectives which take infinitival complements to

the word “to”

OF connects certain verbs and adjectives to the word “of”

CO connects “openers” to subjects of clauses

R connects nouns to relative clauses

MX connects nouns to post-nominal noun modifiers

A connects pre-noun adjectives to following nouns

AN connects noun-modifiers to following nouns

D connects determiners to nouns

N connects the word “not” to preceding auxiliaries and modals
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Many of the following heuristic rules are also based on these basic correspondence

patterns between elements in natural language and elements of entity relationship diagrams.

Rule (3.2) covers the basic SVO sentence structure with a phrasal verb (prepositional

verb). In this case, the subject (S.LW ) and the objects of the preposition (J.RW )

are extracted as the entity candidates. The phrasal verb together with the preposition

(S.RW -MV.RW ) is extracted as the relation candidate.

S[sp]∗ + MV [sp]∗ + J [sp]∗ ⇒ 〈S.RW -MV.RW S.LW J.RW 〉 (3.2)

For instance, given the following link parsing result,

+-----Jp----+
+--Ds--+---Ss--+-MVp-+ +--Dmc--+
| | | | | |

each person.n works.v on some projects.n

The tuple 〈works-on person projects〉 can be extracted with rule (3.2).

3.4.1.2 Expletive sentence rules In contrast to the previous rules where the subjects

of the sentences are usually entity candidates, for expletive sentences, the objects of the

preposition are more likely to be the entity candidates. The relation candidates vary in

different cases.

In rule (3.3), the copular verb together with the preposition is proposed as the relation.

Alternatively, the copular verb can be replaced by “have/has” (Chen’s Rule 5 [Che83]).

SF [sp]∗ + O[spt]∗ + MV [sp]∗ + J [sp]∗ ⇒ 〈SF.RW -MV.RW O.RW J.RW 〉 (3.3)

For instance, given the following link parsing result,

+----------MVp---------+
+-----Opt-----+ +----Jp---+

+-SFp-+ +--Dmcn--+ | +--D*u-+
| | | | | | |

there are.v 100 departments.n in the company.n

The tuple 〈are-in departments company〉 can be extracted with rules (3.3).
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3.4.1.3 Passive sentence rules In database conceptual data modeling domain, rela-

tions are non-directional as shown in Figure 2. Although active voice statements can be

used to represent almost any requirements, passive voice statements are also used frequently.

The parsing structures of passive voice statements are different from the corresponding active

sentence structures. Hence, different heuristic rules are proposed. Passive sentence structures

have not been addressed explicitly in previous research perhaps because none of the previous

heuristic rules were directly based on parsing results of different sentence structures. Of the

multiple verbs in passive sentences, usually only one of them (which may not be the main

verb) is extracted as the relation candidate based on the analysis of example sentences in

the small database requirements documents corpus used.

Rule (3.4) covers basic passive sentence structures. It is the passive format of rule (3.2)

with more conditional link types on the left hand side of the rule.

S[spx]∗ + Pv + MV [sp]∗ + J [sp]∗ ⇒ 〈Pv.RW -MV.RW S.LW J.RW 〉 (3.4)

For instance, given the following link parsing result,

+--Spx-+---Pv--+--MVp--+---Jp---+
| | | | |

plants.n are.v divided.v into departments.n

The tuple 〈divided-into plants departments〉 can be extracted with rule (3.4).

3.4.1.4 Subordinate clauses and other rules Entity relationships are specified not

only by the main sentences, but also by the subordinate clauses and past participle modifiers.

This is based on Chen’s rule 10 “A clause in English is a high-level entity type abstracted from

a group of interconnected low-level entity and relationship types in ER diagrams” [Che83].

However, the heuristic rules proposed here are incapable of distinguishing the hierarchical

structure (high-level entity types vs. low-level entity types), which is more challenging to

deal with, as stated in Chen’s rule 10.

Rule (3.5) is an example rule that handles relative clauses. In this case, the reference

can be resolved by replacing the subject of the relative clause with the object of the main

clause as the entity candidate.

R + RS + O[sp]∗ ⇒ 〈RS.RW R.LW O.RW 〉 (3.5)
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For instance, given the following link parsing result,

+-----------Os----------+
+---Ost---+-------Bs------+ +---------Ds--------+

+-SFst+ +--Dsu-+----R---+--RS--+ | +-----A-----+
| | | | | | | | |

there is.v a business.n that.r owns.v a softball[?].a complex.n

The tuple 〈owns business complex〉 can be extracted with rule (3.5).

Rule (3.6) extracts entity relation information from past participle modifiers.

Mv + MV [sp]∗ + J [sp]∗ ⇒ 〈Mv.RW -MV.RW Mv.LW J.RW 〉 (3.6)

For instance, given the following link parsing result,

+----Op----+ +---Jp---+
+--D*u-+---Ss--+ +-Dmcn+---Mv---+--MVp-+ +-Dmcn+
| | | | | | | | |

the company.n has.v 50 plants.n located.v in 40 states.n

The tuple 〈located-in plants states〉 can be extracted with rule (3.6).

3.4.2 Heuristic rules based on Typed Dependencies

The heuristic rules proposed in the previous sections are based on the link types from the

parsing results of the Link Parser. Theoretically, the entity relationships can be extracted

from any parsing results or even without parsing as reported in some of the previous research.

The major differences are relative difficulty, performance and scalability. In this section, some

of the major heuristic rules based on the Typed Dependencies, which are derived from the

constituent tree parsing results from the Stanford Parser, are discussed.

The major Typed Dependency tags used in the following heuristic rules for entity

relationship extraction are {nsubj, dobj, prep, nsubjpass, xcomp, agent, expl, partmod, rcmod,

purpcl, amod, nn, neg}. The semantics of these tags can be found in Figure 20.

The heuristic rules discussed in this section are similar to the ones based on link types

and are intended to cover the same sentence structures. The same set of example sentences

is used to illustrate the application of these rules compared with the corresponding rules in

the previous sections. It is of interest to see that the heuristic rules proposed in this work
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are based on high level grammatical relations regardless which specific parser is used, as long

as the desired high level grammatical relations are present.

3.4.2.1 Active sentence rules Rule (3.7) covers the basic SVO sentence structure with

a direct object as covered by rule (3.1). The left hand side of the rule (nsubj, the nominal

subject; dobj, the direct object) are the conditional Typed Dependencies required to fire

the rule. w1, w2 and w3 are numbered English words from the Typed Dependency parsing

results. Word order sequence is required. The right hand side of the rule follows the same

tuple structure as used in previous section.

nsubj(w2, w1) + dobj(w2, w3) ⇒ 〈w2 w1 w3〉 (3.7)

For instance, given the following Typed Dependency parsing result,

each company has many plants.

det(company-2, each-1) nsubj(has-3, company-2)
amod(plants-5, many-4) dobj(has-3, plants-5)

The tuple 〈has company plants〉 can be extracted with rule (3.7).

Rule (3.8) covers a similar sentence structure as rule (3.7) but with a phrasal verb as

the predicate. The required conditional Typed Dependencies are nsubj (nominal subject) ,

prep (prepositional modifier) and pobj (object of preposition).

nsubj(w2, w1) + prep(w2, w3) + pobj(w3, w4) ⇒ 〈w2-w3 w1 w4〉 (3.8)

For instance, given the following Typed Dependency parsing result,

each person works on some projects.

det(person-2, each-1) nsubj(works-3, person-2)
prep(works-3, on-4) det(projects-6, some-5)
pobj(on-4, projects-6)

The tuple 〈works-on person projects〉 can be extracted with rule (3.8).
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3.4.2.2 Expletive sentence rules Rule (3.9) covers the basic expletive sentence

structure as rule (3.3). The required conditional Typed Dependencies are expl (expletive

“there”), nsubj (nominal subject), prep (prepositional modifier) and pobj (object of the

preposition).

expl(w2, w1) + nsubj(w2, w3) + prep(w3, w4) + pobj(w4, w5) ⇒ 〈w2-w4 w3 w5〉 (3.9)

For instance, given the following Typed Dependency parsing result,

there are 100 departments in the company.

expl(are-2, there-1) num(departments-4, 100-3)
nsubj(are-2, departments-4) prep(departments-4, in-5)
det(company-7, the-6) pobj(in-5, company-7)

The tuple 〈are-in departments company〉 can be extracted with rule (3.9).

3.4.2.3 Passive sentence rules Rule (3.10) covers one of the basic passive sentence

structures. The required conditional Typed Dependencies are nsubjpass (passive nominal

subject), prep (prepositional modifier) and pobj (object of preposition).

nsubjpass(w2, w1) + prep(w2, w3) + pobj(w3, w4) ⇒ 〈w2-w3 w1 w4〉 (3.10)

For instance, given the following Typed Dependency parsing result,

plants are divided into departments.

nsubjpass(divided-3, plants-1) auxpass(divided-3, are-2)
prep(divided-3, into-4) pobj(into-4, departments-5)

The tuple 〈divided-into plants departments〉 can be extracted with rule (3.10).
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3.4.2.4 Subordinate clauses and other rules Rule (3.11) is a rule that deals with

relative clauses as covered by rule (3.5). The required conditional Typed Dependencies are

rcmod (relative clause modifier), nsubj (nominal subject) and dobj (direct object).

rcmod(w1, w2) + nsubj(w2, w3) + dobj(w2, w4) ⇒ 〈w2 w1 w4〉 (3.11)

For instance, given the following Typed Dependency parsing result,

there is a business that owns a softball complex.

expl(is-2, there-1) det(business-4, a-3)
nsubj(is-2, business-4) nsubj(owns-6, that-5)
rcmod(business-4, owns-6) det(complex-9, a-7)
amod(complex-9, softball-8) dobj(owns-6, complex-9)

The tuple 〈owns business complex〉 can be extracted with rule (3.11).

Rule (3.12) is a rule that extracts entity relation information from past participle

modifiers as covered by rule (3.6). The required conditional Typed Dependencies are partmod

(participle modifiers), prep (prepositional modifier) and pobj (object of preposition).

partmod(w1, w2) + prep(w2, w3) + pobj + (w3, w4) ⇒ 〈w2-w3 w1 w4〉 (3.12)

For instance, given the following Typed Dependency parsing result,

the company has 50 plants located in 40 states.

det(company-2, the-1) nsubj(has-3, company-2)
num(plants-5, 50-4) dobj(has-3, plants-5)
partmod(plants-5, located-6) prep(located-6, in-7)
num(states-9, 40-8) pobj(in-7, states-9)

The tuple 〈located-in plants states〉 can be extracted with rule (3.12).

The full set of heuristic rules based on Typed Dependency is in Appendix D.
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3.4.3 Other dependency parsers

The heuristic rules proposed in previous sections are based on the dependency-related Link

Parser and the Typed Dependency from the Stanford Parser. The choice of these two

parser was made based on the correspondence between higher grammatical relations in the

parsing results and elements in the target formalisms[DM06]. Dependency parsing results are

preferred over constituency (phrase-structure) parsing results because dependency tags are

close to the semantic relationships used in conceptual data modeling. However, this is not

true for all the dependency parsers. Dependency parsing, which describe how words link to

their arguments, has a long history [Hud84]. The resurgence of interest in dependency parsing

lately is mainly on multi-lingual parsing and statistic-based training. Actually, dependency

parsers are frequently used for free word order languages such as Russian and German

[MP06]. Several other dependency parsers have been examined for their applicabilities in

conceptual data modeling.

MSTParser. MSTParser is a recently developed multilingual dependency parser. The

parsing algorithm is based on searching for maximum spanning trees (MSTs) in directed

graphs. It has been evaluated on many corpora and for English the reported accuracy is

91.5% [MP06]. The strong points of this parser lie in parsing multiple languages with one

model, especially those free word languages such as German.

MiniPar. MiniPar is a broad coverage parser for English. An evaluation on the

SUSANNE corpus shows that MiniPar achieves about 88% precision and 80% recall with

respect to dependency relationships [Lin98].

Compared with the Link Parser and the Typed Dependency from the Stanford Parser,

MSTParser [MP06], MiniPar [Lin98] as well as other dependency parsers such as MaltParser

[NN05] are not suitable for automated conceptual data modeling because the desired higher

level grammatical relations are not presented in the parsing results. As in the case of

constituency (phrase structure) parsing, significant post-parsing processing is needed to

extract entity relationship tuples from these dependency parsing results. In addition, these

recent dependency parsers are still in their early development stages and are not as mature

as the Link Parser and the Stanford Parser. The Link Parser was first implemented in 1991
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and the latest version is 2001. The Stanford Parser was first implemented in 2002 and the

latest version is 2007.

3.4.4 Discussion

The heuristic rules proposed in this work are based on some of the basic transformation ideas

from Chen’s work[Che83]. Although several earlier research projects have also extended

Chen’s work to some extent, the heuristic rules proposed here are significantly different from

them. These rules are constructed directly from the high level grammatical relations from

dependency and related parsing results with focus on different sentence structures. They

are more specific and operational. They can be easily translated into a machine executable

format.

The heuristic rules proposed here are more specific and operational than Chen’s eleven

general heuristic rules [Che83]. Chen provided some general guidelines on how to translate

English sentences to ERDs. Chen’s rule 1, 2 and 5 were covered explicitly in this work, but

based on more specific parsing results than general word class information. Chen’s rules (6

– 11) are partially covered in some of the rules proposed in this work. However, Chen’s rule

3 and 4 were not used. It is true that “an adjective in English corresponds to an attribute

of an entity in an ER diagram” (Chen’s rule 3) as in “red car”. However, adjectives are not

commonly used as attributes in database requirements. The most often used attributes such

as “name”, “phone”, “address”, “ssn”, etc. are nouns. The heuristic rules proposed in this

works are focused on attribute nouns and entity nouns.

The heuristic rules proposed here are less lexicalized than Omar’s rules [OHM04]2. Many

specific words such as “number, code, date, birth, name”, etc. were used in Omar’s rules.

The heuristic rules proposed in this work are based on links or typed dependencies which are

more general and have higher coverage than specific words in terms of input scope. However,

the utilization of domain knowledge in this work is related to Omar’s lexicalized heuristic

rules.

The heuristic rules proposed here are also quite different from the rules in [RP92] and

2Only eight example rules could be found in the paper.
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[GSD99]. Rolland & Prox [RP92] adopted a kind of integrated syntactic and semantic

approach. The thematic role information used in their grammatical rules is related to the

high level grammatical relations proposed in this work. However, the syntactic information

was tightly coupled with the semantic representations in their rules. It is well known

that such integrated approaches require greater development efforts and the resulting

grammars tend to be brittle because of the complexity involved. Similarly, Gomez’s rules

[GSD99] also integrated sematic and syntactic information in the underlying natural language

understanding module.

3.5 SOME SPECIAL ISSUES IN HEURISTIC RULES

Heuristic rules based on link types and Typed Dependencies such as those proposed in

previous section (also see Appendix C and Appendix D) are the major extraction rules.

However, there are some special sentence structures and local issues that need to be addressed

by refining or modifying the results extracted by these rules.

3.5.1 Of structures

An “Of structure” is defined as a noun phrase modified by prepositional phrases containing

the preposition “of” as illustrated in the following two sentences3,

(a). Each employee of the department works on at least one project.
(b). A number of employees belong to each department.

The parsing results of these two sentences from the Link Parser are:

(a)
+-------------Ss-------------+
| +-----Js----+ | +--------Js--------+

+---Ds--+--Mp--+ +---Ds---+ +-MVp-+ +IDB+-EN-+--Ds--+
| | | | | | | | | | |

each employee.n of the department.n works.v on at least one project.n

3The “of structure” discussed here does not include participles such as in “consist of”.
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(b)
+-----------Sp----------+ +-----Js-----+

+--Ds-+--Mp-+--Jp--+ +-MVp-+ +---Ds---+
| | | | | | | |
a number.n of employees.n belong.v to each department.n

For sentence (a), rule (3.2) applies and yields 〈works-on employee projects〉. The result

is correct. The Link Parser treats the noun before “of” as the head of the “of structure”. This

is true in general. However, for sentence (b), the same heuristic rule (3.2) applies and yields

〈belong-to number department〉, instead of 〈belong-to employees department〉. The rule

itself is not wrong, but the parser is incapable of distinguishing different “of structures” and

labels the word “number” as the subject (Sp link here). It is hard to determine which noun

in the “of structure” should be treated as an entity based solely on syntactic information.

It requires semantic analysis to solve this problem. The Link Parser is a syntactic parser

and is incapable of handling such a semantic issue. At the heuristic rule level, the following

three refining rules are used to propose an alternative tuple for each “of structure”. The

alternative entities proposed with these rules will be disambiguated at a later stage.

S[sp]∗ + M [sp]∗ + J [sp]∗ ∧M.RW = of ∧ 〈relation S.LW entity2〉
⇒ 〈relation J.RW entity2〉 (3.13)

For the above sentence (a), rule (3.13) applies and extracts 〈works-on department projects〉.
For example sentence (b), the same rule applies and extracts 〈beglong-to employee

department〉.
Rule (3.14) extracts an alternative tuple for the object of a preposition.

J1[sp]∗ + M [sp]∗ + J2[sp]∗ ∧M.RW = of ∧ 〈relation entity1 J1.RW 〉
⇒ 〈relation entity1 J2.RW 〉 (3.14)

For instance, given the following link parsing result,

+-Dmc-+--Sp--+--Ix-+---Pv--+--MVp--+-J+-Mp+ +--Dmc-+
| | | | | | | | | |

the tasks.n can.v be.v performed.v at any of the plants.n
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An alternative tuple 〈performed-at tasks plants〉 can be extracted.

Rule (3.15) extracts an alternative tuple for the direct object of a sentence.

O[sp]∗ + M [sp]∗ + J [sp]∗ ∧M.RW = of ∧ 〈relation entity1 O.LW 〉
⇒ 〈relation entity1 J2.RW 〉 (3.15)

For instance, given the following link parsing result,

+-----Os-----+
+--Spx--+---Pv--+--TO--+--I--+ +--Ds-+-Mp-+--Jp--+
| | | | | | | | |

doctors.n are.v allowed.v to perform.v any kind.n of diagnosis.n

An alternative entity tuple 〈perform doctors diagnosis〉 can be extracted with rule (3.15).

The same problem exists for Typed Dependency parsing. The Typed Dependency parsing

results of the above two example sentences are:

(a) Each employee of the department works on at least one project.

det(employee-2, Each-1) nsubj(works-6, employee-2)
prep(employee-2, of-3) det(department-5, the-4)
pobj(of-3, department-5) prep(works-6, on-7)
quantmod(one-10, at-8) dep(at-8, least-9)
num(project-11, one-10) pobj(on-7, project-11)

(b) A number of employees belong to each department.

det(number-2, A-1) nsubj(belong-5, number-2)
prep(number-2, of-3) pobj(of-3, employees-4)
prep(belong-5, to-6) det(department-8, each-7)
pobj(to-6, department-8)

For sentence (a), rule (3.8) applies and extracts 〈works-on employee project〉. For

sentence (b), the same rule applies and extracts 〈belong-to number department〉.
In order to deal with “of structures”, rules similar to (3.13, 3.14, and 3.15) are needed.

Rule (3.16) extracts alternative entities for the tuples extracted by rule (3.8).

nsubj(w4, w1) + prep(w1, of) + pobj(of, w3) ∧ 〈w4-p w1 w5〉
⇒ 〈w4-p w3 w5〉 (3.16)
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For the above example sentence (a), rule (3.16) applies and extracts 〈works-on department

project〉. For example sentence (b), the same rule applies and extracts 〈belong-to employee

department〉.
Similarly, rules (3.17, 3.18, 3.19) suggest alternative entity relation tuples for other “of

structures”.

nsubjpass(w4, w1) + prep(w1, of) + pobj(of, w3) ∧ 〈w4-p w1 w5〉
⇒ 〈w4-p w3 w5〉 (3.17)

dobj(w2, w3) + prep(w3, of) + pobj(of, w4) ∧ 〈w2-p w1 w3〉
⇒ 〈w2-p w1 w4〉 (3.18)

prep(w2, w3) + pobj(w3, w4) + prep(w4, of) + pobj(of, w5) ∧ 〈w2-w3 w1 w4〉
⇒ 〈w2-w3 w1 w5〉 (3.19)

3.5.2 Coordinating conjunctions

Coordinating conjunctions are used frequently in natural language. In database require-

ments, coordinating conjunction indicates multiple entity relationships. For instance, the

sentence “the company has 7 plants and 3,000 employees” should be translated into two

entity relation tuples 〈has company plants〉 and 〈has company employees〉. Coordinating

conjuction can happen at the subject, predicate or object position.

The Link Parser has special mechanisms for automatically transforming the majority of

coordinating conjunctions to separate sub-linkages on which the previous link types based

rules work. For instance, the Link Parser gives two sub-linkages for the sentence “the

company has 7 plants and 3,000 employees”,
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+----Op---+
+--D*u-+---Ss--+ +-Dmcn+
| | | | |

the company.n has.v 7 plants.n and 3,000 employees.n

+--------------Op-------------+
+--D*u-+---Ss--+ +--Dmcn--+
| | | | |

the company.n has.v 7 plants.n and 3,000 employees.n

Rule (3.1) can deal with both sub-linkages and extracts 〈has company plants〉 and 〈has

company employees〉. However, for Typed Dependency, the parsing result is,

the company has 7 plants and 3,000 employees.

det(company-2, the-1) nsubj(has-3, company-2)
num(plants-5, 7-4) dobj(has-3, plants-5)
cc(plants-5, and-6) num(employees-8, 3,000-7)
conj(plants-5, employees-8)

Rule (3.7) applies but can only extract 〈has company plants〉. To handle the conjunctions,

the following five rules are needed,

cc(w2, w1) + conj(w2, w3) ∧ 〈w4-p w2 w5〉
⇒ 〈w4-p w3 w5〉 (3.20)

cc(w3, w4) + conj(w3, w5) ∧ 〈w2-p w1 w3〉
⇒ 〈w2-p w1 w5〉 (3.21)

nsubj(w2, w1) + cc(w2, w4) + conj(w2, w5) + prep(w5, w6) + pobj(w6, w7)∧
〈w2-w6 w1 w3〉 ⇒ 〈w5-w6 w1 w7〉 (3.22)

nsubj(w2, w1) + cc(w2, w4) + conj(w2,w5) + dobj(w5, w6)∧
〈w2 w1 w3〉 ⇒ 〈w5 w1 w6〉 (3.23)

preconj(w4, w3) + cc(w4, w5) + dep(w4,w6)∧
〈w2-p w1 w4〉 ⇒ 〈w2-p w1 w6〉 (3.24)
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3.5.3 Compound noun phrases

Compound noun phrases are usually indicative of entity or attribute types in database

requirements. In the previous rules, only the head nouns are proposed as entity candidates.

For instance, for the sentences “Full-time students need to register for at least three courses.

Part-time students may register for only one course.”, the previous rules only extract

“student” as an entity candidate, but not the pre-noun modifiers “Full-time” and “Part-time”

which are semantically significant in this case. In other cases, the pre-noun modifiers may not

be semantically significant but make the tuples extracted more natural and understandable.

For instance, for the sentence “Each work task is associated with a job type”, a tuple

〈associated-with task type〉 will be extracted. However word “type” is not a good indicator

for an entity type. It is better to include the noun-modifiers with the nouns together as

entity candidates, which will produce 〈associated-with work-task job-type〉.
Both the Link Grammar and Typed Dependencies provide syntactic tags for pre-noun

modifiers. The “A” link type which connects pre-noun adjectives to following nouns and

“AN” link type which connects noun modifiers to following nouns are indicators of compound

noun phrase. Correspondingly, there are “amod” and “nn” tags in Typed Dependencies.

Noun modifiers should be extracted together with the entity nouns. Rules (3.25, 3.26)

can be used to add noun modifiers to the entity nouns extracted by the previous rules.

nn(w2, w1) ∧ 〈w3-p w2 w4〉 ⇒ 〈w3-p w1-w2 w4〉 (3.25)

nn(w4, w3) ∧ 〈w2-p w1 w4〉 ⇒ 〈w2-p w1 w3-w4〉 (3.26)

Adjective pre-noun modifiers can also be extracted in two similar rules. However, it is

questionable whether adjective pre-noun modifiers should be used in the entity names. For

instance, in the case of “several students”, “several” is a quantifier and should not be used

in entity names while in the case of “full-time students”, “full-time” is a restriction modifier

and is appropriate to be used in entity names especially in the context of distinguishing from

“part-time students”.
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3.5.4 Relationship cardinality rules

The cardinality of a relationship in ERD is the number of instances of one entity participating

with the other entity in the relationship. It is usually described in the following three basic

forms, 1:1, 1:N and M:N.

Each of the relationships in an ERD should have a cardinality for each of the connected

entities. Ideally, the cardinality of a relationship should be reasoned from the semantics of

the database requirements. However, the single/plural format of the noun entities and the

verb as well as the adjective and cardinal pre-noun modifiers provides syntactic indications

for relationship cardinality extraction. Especially useful are the pre-noun modifier of the

object of a sentence.

One type of pre-noun modifier is the cardinal number such as “500” in the sentence

“the plants have 500 employees”. Because the number of cardinal numbers is infinite, the

POS tag or other tags such as “num” in Typed Dependencies can be used to identify the

cardinal number pre-noun modifiers. Another type of pre-noun modifiers is quantifier, such

as “many”, “some”, “several”, etc. A small set of quantifiers can capture most of the cases

used in database requirements.

If there are no cardinal numbers or quantifiers as pre-noun modifiers or the pre-noun

modifiers don’t provide the desired cardinality information, the single/plural format of the

entity nouns can be used to infer the cardinality information as in the sentence “students

take courses”.

But there are some exceptional cases, such as in “each student takes at least one course”.

The single format of the word “course” and even the numerical modifiers “one” suggest a

“1” cardinality, but in this case, it is “many”.

The most difficult problem in extracting relation cardinality is the implicit or common

sense statements in database requirements. It is not unusual to see one-way cardinality

statements in database requirements documents. For instance, in the sentence “each student

must take at least one course”, it can be inferred that the cardinality between the relation

“take” and entity “course” should be “many”. Human readers may have no difficulty to see

that there are usually more than one student for a course, however, this is not stated in the
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requirements. A ideal database requirements document should state the relation in both

ways, such as “each student takes at least one course and each course can be taken by many

students”. A simple solution to this problem is to use default cardinality and prompt user’s

correction at a later stage.

3.5.5 Ternary relations

Each of the previous extracted entity relation tuples is a binary relation. Ternary relations

can be obtained by combining two relevant binary relations with the following rule,

〈w2-p1 w1 w3〉 ∧ 〈w2-p2 w1 w4〉 ⇒ 〈w2-p w1 w3 w4〉 (3.27)

For instance,

employees perform work tasks at work stations.

nsubj(perform-2, employees-1) nn(tasks-4, work-3)
dobj(perform-2, tasks-4) prep(perform-2, at-5)
nn(stations-7, work-6) pobj(at-5, stations-7)

Rule 3.7 and rule 3.8 as well the compound noun rules (3.25, 3.26) apply and extract

tuples 〈perform employees work-tasks〉 and 〈perform-at employees work-stations〉. Then

rule 3.27 applies and generates a ternary relation tuple 〈perform-at employees work-tasks

work-stations〉 as shown in Figure 21.

Figure 21: A ternary relation
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3.5.6 Deduplication4

In database requirements documents, the same entity relationship may be stated several

times with different word form variations. Some of the variations may only involve

single/plural or tense while others may involve synonyms, abbreviation or paraphrase. As

a consequence, multiple tuples with little variation may be extracted from a requirements

document. It is desirable to deduplicate the entity relationship tuples extracted by the

heuristic rules, especially when merging the different tuples extracted from different sentences

into the final ERD.

• Base form based deduplication. Using the base form of the entity, relation and

attribute words can deduplicate many variations that only involve single/plural and

tense, e.g. “employees” vs “employee”, “sell” vs. “sold”.

• Synonym or antonym based deduplication. From time to time, database

requirements writers may use different synonyms or antonyms to reiterate the same

requirements. For instance, “students buy books” vs. “students purchase books”, or

“students buy books” vs. “books are sold to students”. Usually, human readers don’t

have difficulty to understanding such reiteration. A synonym dictionary such as WordNet

can be used to deduplicate the entity relationship tuples in this case.

• Abbreviation or paraphrase based deduplication. Deduplication also needs to be

performed on abbreviation and paraphrase in some cases. For instance, in the sentence,

“There are five worker unions represented in the company, and every employee belongs to

exactly one union”, the last word “union” represents the same entity as “worker unions”.

It is much more difficult to deduplicate the entity relationship tuples systematically at

this level. Users intervention may be more appropriate.

3.5.7 Resolution principle

A problem in applying the previous heuristic rules is that multiple rules may apply to the

same sentence and yield conflicting entity relationship tuples. For instance, rule (3.7) applies

4Similar to the usage of this term in data storage processing, here the term refers to the process of
removing duplicate entity relationship tuples extracted by the heuristic rules.
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to any sentence to which rule (3.11) applies. Looking at the rules, it is not hard to find that

the left hand side (preconditions) of rule (3.7) is a sub-part of rule (3.11). To solve this

problem, the following resolution principle is used,

Specificity principle. If two heuristic rules are applicable to the same parsing structure,

the more specific one has higher priority.

A rule is more specific than another one if it has more preconditions on the left hand

side of the rule than the other one. According to this definition, rule (3.11) is more specific

than rule (3.7), so rule (3.11) preempts rule (3.7).

3.6 ENTITY RELATIONSHIP DISAMBIGUATION

Over-generation and incorrect attachment are the most serious problems that need to

be addressed at the semantic analysis phase. For automated conceptual data modeling,

a mechanism that disambiguates entity nouns from attribute nouns and evaluates the

likelihood of a relation between two entities is needed. For instance, if the previous heuristic

rules proposed one tuple 〈located-in plants employees〉, for a human being it is trivial

to judge that it is unlikely that relation “located-in” holds between entities “plants” and

“employees”. However, it is notoriously difficult to enable a computer program to answer such

questions. It is a common sense reasoning problem and has been investigated intensively in

artifical intelligence related research fields, but no satisfactory general solutions are available

yet. So the following proposed approaches explore the question of how much accuracy can

be obtained using state of the art semantic resources and relatively simple procedures in

semi-structured translation problems.

3.6.1 WordNet as a lexical filter

WordNet has been explored as a tool to disambiguate nouns in automated database

conceptual data modeling [DM06]. Although entities are described with nouns, the

correspondence between entities and nouns is not perfect since nouns are also used to refer

70



to many concepts that are not usually considered entities but rather are abstractions that

help describe the nature of the situation but do not refer to the sorts of “things” that are

represented as entities in ERDs. Nouns such as “number”, “set” or “type” are examples of

such abstractions. In fact, it is not easy to distinguish which nouns can identify entities

and which can not. Such distinctions can depend on the context and a human’s ability

to apply general world knowledge. In order to implement automated disambiguation, the

hypernym chains in WordNet have been utilized to disambiguate entities (in the ERD sense)

from non-entities. Two classes of hypernym chains have been identified. One is for nouns

such as “set, list, range, type, kind, unit, · · · ”, the hypernym chain of which usually leads to

{magnitude, property, attribute, abstraction}. If evidence of this class of hypernym chains is

found, the noun will not be treated as an entity. The other class of hypernym chains is for

nouns such as “student, teacher, course, company, plant, · · · ”, the hypernym chain of which

usually leads to {organization, object, physical entity, group, event, act}. If evidence of this

class of hypernym chains is found, then the noun will be treated as an entity. This method

can also be used to disambiguate entities from attributes.

Table 3 provides a top taxonomy of English nouns according to the top ontology in

WordNet. The often used nouns list includes 2,998 noun lemmas taken from Word Frequency

in Written and Spoken English – based on the British National Corpus [LRW01]. The link-

noun list includes 14,354 nouns taken from the Link Parser Lexicon. The WordNet noun

list includes 116,956 nouns taken from the WordNet dictionary. Roughly speaking, about

60% of the nouns in English can be categorized as entity nouns and 30% of the nouns can

be categorized as attribute nouns according to the WordNet top ontology.

These top noun categories can be used as a general standard to disambiguate attribute

nouns from entity nouns, and it can also be utilized to handle the “of-structure” problem

discussed in Section 3.5.1. Only one of the alternative entity relationship tuples extracted

from an “of-structure” should be presented in the final entity relationship representation.

One way to utilize the above noun categories is illustrated in the following rule which states

that if there are two entity relationship tuples extracted from one “of-structure” and one of

the conflict nouns belongs to the attribute noun category while the other belongs to the entity

noun category, then the tuple with the noun belonging to attribute noun category should be
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removed. This rule is useful to handle “of structures” such as “a number of student”.

〈r e1 e2〉 ∧ 〈r n1 e2〉 ∧ e1 ∈ attribute-nouns ∧ n1 ∈ entity-nouns

⇒ remove〈r e1 e2〉 (3.28)

Table 3: English noun category WordNet vs. ER

CDM

Category

WN

Category

Often Used Nouns LP Nouns WN Nouns

2,998 14,354 116,956

entity nouns

object

63.5% 67.8% 63.5%

substance

group

physical process

thing

event

attribute nouns

cognition

31.6% 27.8% 21.0%
attribute

measure

communication

others others 4.9% 4.4% 13.7%

3.6.2 The Web corpus and search facilities as a semantic filter

The Web corpus and search facilities was explored as a semantic filter for disambiguating

coordinating conjunctions and prepositional phrase attachment. The approach was similar to

the utilization of word cooccurrence in various NLP applications, such as speech recognition

and word sense disambiguation [DPL94]. The prepositional phrase attachment problem is

reflected as an entity attachment problem in entity relationship extraction. For instance,

72



for the sentence “The company has 50 plants located in 40 states and approximately 100,000

employees”, the following 3 tuples can be extracted with the heuristic rules proposed in

Section 3.4.1 based on the first parse of the Link parsing results.

1.1. <has.v, company.n, plants.n>

1.2. <located.v-in, plants.n, states.n>

1.3. <located.v-in, plants.n, employees.n>

Because this sentence is quite complicated, the first parse from the Link parser (or the

Stanford parser) is preferred syntactically but is semantically wrong. In fact, the third one

is correct (see Appendix E). In order to improve the coverage, multiple parses were utilized

which might lead to overgeneration. The refining rules, the WordNet lexical filter, and a

semantic filter were used to address such problems. For instance, the following tuples can

be extracted from the second and the third parse of the Link Parser results,

2.1. <has.v, company.n, plants.n>

3.1. <has.v, company.n, plants.n>

3.2. <located.v-in, plants.n, states.n>

3.3. <has.v, company.n, employees.n>

Tuple 1.3 and Tuple 3.3 are conflict tuple pairs based on the assumption that for a given

sentence only one parse is correct. The semantic implication of Tuple 1.3 is “plants located

in employees”. Obviously, it does not make sense. One way to solve this problem is to

post a question to ask the user. However, an automated disambiguation method is certainly

preferred. In an earlier paper [DM06], a shallow quasi-statistical approach based on empirical

evidence found in the Web text corpus to justify the likeliness of relationship among terms

was described. This was done by generating SOAP calls to a web search engine (Google,

Yahoo! and Live Search all offer similar services) to determine how frequently the phrases

utilizing the terms in the tuples (in that literal form with variant forms, as illustrated in

Table 4) are found in the web corpus. It is clear that the web corpus contains a large number

of expressions indicative of the meaning of Tuple 3.3, and no case reflecting the content of

Tuple 1.3, thus providing evidence that the third parse result which produced Tuples 3.1,

3.2 and 3.3 is the correct interpretation of this sentence.
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Table 4: Queries to disambiguate a relationship attachment

Tuple 1.3 queries hits Tuple 3.3 queries hits

“plant located in employee” 0 “company has employee” 405

“plant located in employees” 0 “company has employees” 954

“plants located in employee” 0 “companies have employee” 485

“plants located in employees” 0 “companies have employees” 706

sum 0 sum 2550

The above approach was extended in two dimensions. One approach was to expand the

items utilized in the exact phrase searching from the simple plurality expansion in Table 4

to a wider range of additional simple sentences. A small sentence generation module was

built to generate simple sentences such as the following from the given tuples.

a plant is located in an employee
a plant is located in employees
plants are located in an employee
plants are located in employees
a plant was located in an employee
a plant was located in employees
plants were located in an employee
plants were located in employees
a plant may be located in an employee
a plant may be located in employees
plants may be located in an employee
plants may be located in employees
a plant could be located in an employee
a plant could be located in employees
plants could be located in an employee
plants are located in an employee
......

Obviously, there are many such simple-structured sentences. The sum of the number of hits

returned by a search engine over all these simple sentences was used to disambiguate the

conflicting tuples.
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The other extension tried was to do a sentence-based search5. It was based on the

assumption that the number of sentences that contain a given tuple6 provides good evidence

to justify the likelihood of the relationship held between the two entities in the tuple.

Currently, there are no search engines or other resources that provide sentence-based search

on a large enough corpus. One preliminary solution is to issue key word queries based on

a given tuple to a search engine and extract the contents of a number of links that are

returned by the search engine and then process the extracted contents to see whether there

are sentences that contains the given tuple. However, this approach requires much longer

time to disambiguate a given tuple because it involves extracting text contents from the

Internet, although it can be expedited to some extent by extracting the cached contents

from the search engine’s database instead of going to the real web pages directly.

3.6.3 Other possible approaches

3.6.3.1 A ConceptNet approach An alternative to the previous web corpus-based

approach is to build a semantic network that stores all the likelihood values between different

concepts and relations. The immediate difficulty of such a project is the vastness and

complexity of natural language concepts and the possible relations held between them.

Nevertheless, there are already some valuable resources that can be utilized. ConceptNet is

a commonsense knowledge base that was mined from the MIT Open Mind Commonsense

corpus. The knowledge base is a semantic network consisting of over 1.6 million assertions

of common sense knowledge encompassing the spatial, physical, social, temporal, and

psychological aspects of everyday life [LS04].

The ConceptNet knowledge base is structured in a relatively simple, easy-to-use semantic

network. Although ConceptNet doesn’t provide the desired APIs for automated conceptual

data modeling applications, the knowledge base of the system can be easily accessed. A

specific module was built upon the ConceptNet knowledge base to answer questions like

“what other concepts are related to a target concept?”, “what is the most likely relation held

5that is a search to find sentences that contain all the words of a triple.
6Ideally, the relation and two entities in a tuple correspond to the predicate, the subject and the object

of a sentence.
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between two concepts?”. For instance, if the concept “student” is given, the module provides

a set of concepts that are conceptually related to “student” ordered by some likelihood as

shown following,

ConceptuallyRelatedTo : student person 109
ConceptuallyRelatedTo : student teacher 93
ConceptuallyRelatedTo : student randy 89
ConceptuallyRelatedTo : student test 74
ConceptuallyRelatedTo : student israel 60
ConceptuallyRelatedTo : student class 43
ConceptuallyRelatedTo : student school 40
ConceptuallyRelatedTo : student that change be josh 31
ConceptuallyRelatedTo : student group 28
CapableOf : student learn 26
ConceptuallyRelatedTo : student that change be randy 24
ConceptuallyRelatedTo : student homework 22
ConceptuallyRelatedTo : student library 20
CapableOfReceivingAction : student teach 19
ConceptuallyRelatedTo : student stick 15
ConceptuallyRelatedTo : student grade 13
CapableOf : student study 13
ConceptuallyRelatedTo : student shane 12
ConceptuallyRelatedTo : student difference 12
......

If two entities, for example student and book, are given, the ConceptNet can provide the

possible relations held between these two concepts, such as CapableOf: student, read book.

However, it has the sparse data problem in terms of practical usage in entity relationship

disambiguation.

3.6.3.2 Cyc as a knowledge source Cyc is a well-known large scale knowledge source

and a formalized representation of a vast quantity of fundamental human knowledge: facts,

rules of thumb and heuristics for reasoning about objects and events of everyday life [LG90].

It is potentially usable as a knowledge source for entity relationship disambiguation for

automated conceptual data modeling in several ways.

Cyc can be used to disambiguate compound noun phrases. Cyc contains more than

163,000 constants and most of them are compound noun phrases. The problem of whether

a pre-noun modifier (either an adjective or noun) of a compound noun phrase should be

included as a part of an entity type name in the final formalisms as discussed in Section
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3.5.3 can be resolved by checking whether the compound noun phrase is a Cyc constant.

If a compound noun phrase is a Cyc constant, there is a good reason to treat the whole

compound noun phrase as an entity instead of just the head of the noun phrase because

the Cyc constants are created based on some solid considerations by human cyclists. For

instance, #$AccountType, #$WorkStation, #$CreditCard and #$ShoppingCart are all Cyc

constants. On the other hand side, compound noun phrase #$CertainSkill is not a Cyc

constant, which suggests that “Skill” instead of “CertainSkill” should be used as an entity

name.

Cyc can also be used for entity relationship reasoning in a way similar to the use of Con-

ceptNet discussed in the previous section. Cyc contains relations like #$conceptuallyRelated

and can answer similar questions as the ConceptNet. For instance, Cyc can answer the query:

EL Query: (#$conceptuallyRelated #$Student ?What) in HumanSocialLifeMt

by giving #$CourseOfStudy.

However, it is a rather complicated process to use the Cyc knowledge base for entity

relationship reasoning. First, the constants in Cyc represent word senses instead of

the lexical words. For instance, the word “course” corresponds to three Cyc constants:

#$CourseOfAMeal, #$CourseOfStudy and #$Path-Generic. To facilitate the mapping

between English words and Cyc constants, Cyc introduced about 18,000 lexical constants

such as #$Course-TheWord and #$Student-TheWord. Each of these lexical constants has a

“denotation” slot which provides the corresponding Cyc constants that relate to the lexical

word. For instance, the following query shows the denotation slots of the lexical word

“course”.

Mt : (MtSpace GeneralEnglishMt AnytimePSC)
EL Query : (denotation Course-TheWord ?POS ?NUM ?SENSE)
Status : Suspended, Exhaust Total
Answer ?POS ?NUM ?SENSE
*[Explain #2] CountNoun 0 CourseOfStudy
*[Explain #1] CountNoun 1 CourseOfAMeal
*[Explain #0] CountNoun 2 Path-Generic

Most of the general Cyc constants have a “genStringAssertion” slot that maps Cyc constants

back to english words. Second, relations specified in Cyc are more specific than in
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ConceptNet. There are more than 12,000 relations defined in Cyc compared with only 20

relations defined in ConceptNet [LS04]. So it is quite challenging to select the right relations

to explore in Cyc.

Another application of Cyc for entity relationship reasoning is to explore its selectional

restrictions for entity attachment resolution. Taking the tuple 〈located-in plants employees〉
as an example, the fundamental question that needs to be answered is whether it is possible

that plants are located in employees. The selectional restriction here is that plants (either

the botany sense or the industrial plant sense) are usually not located in employees except

in some unusual contexts. Cyc has the mechanism to specify the argument types of

relations. For instance, it requires that the first argument of relation #$buys must be a

#$SocialBeing (specified by #$arg1Isa #$buys #$SocialBeing) and the second argument

must be #$SomethingExisting (specified by #$arg2Isa #$buys #$SomethingExisting). So

the entity relationship tuple 〈buys students books〉 is valid according to Cyc. On the contrary,

tuple 〈buys software books〉 is not valid according to Cyc.

Similar to the application of ConceptNet to entity relationship reasoning, Cyc also has

the sparse data problem. Much of the general common sense knowledge is not represented

in Cyc yet.

3.6.3.3 Integrated syntactic and semantic approach The above approaches utilize

external large knowledge resources for semantic disambiguation. It is also possible to use

an integrated syntactic and semantic approach as described in [All95]. In previous research

in conceptual data modeling, Rolland & Prox [RP92] and Gomze et. al. [GSD99] adopted

some kind of integrated syntactic and semantic approaches (see section 2.1.3). The most

demanding tasks for such an approach involve defining the semantics (logic forms) of each

individual word and lots of semantic augmented syntactic rules to parse the inputs. Although

the requirements documents exhibit some kinds of the regularities, the development and

computation of such meaning structures are impossible unless in a very restricted domain.

78



3.6.4 CDM Domain knowledge-based disambiguation

The approaches discussed above are characterized by exploring large scale knowledge

resources to disambiguate entities, attributes and relations. Such approaches usually have

good coverage, however, the resources used are not specific to database requirements

applications. So they may not be efficient, especially in some specific application domains.

Domain specific knowledge in conceptual data modeling was used to address some specific

problems. For instance, a small set of typical entity nouns such as {student, company,

department, manager, employee, · · · }, a typical non-entity set such as {name, size, year,

idea, time, each, some, number, · · · } and a set of typical attribute nouns such as {name, id,

salary, age, address, · · · } 7 were used first to disambiguate some of the entity or attribute

nouns before consulting the top noun categories in WordNet. The set of words was built

from a small database requirements specification corpus. If the application domain is known,

a more specific set of typical entity nouns and attributes nouns can be built.

3.7 THE TARGET FORMALISM

For automated conceptual data modeling, a module capable of translating entity relationship

tuples extracted from those heuristic rules to ERDs is needed. An open source automatic

graph drawing package Graphviz [GN00] was explored for ERD generation. The Graphviz

package provides many useful features for different diagrams drawing, such as options for

colors, fonts, tabular node layouts, line styles, hyperlinks and customizing shapes. The

Graphviz layout programs require that the input file be written in DOT language, a plain

text graph description language.8 For instance, the following desired entity relationship

tuples,

<has company plant>
<located-in plant state>
<has company employee>
<divided-into plant department>

7overlapping with the set of typical attribute nouns
8The DOT language BNF definition is at http://www.graphviz.org/doc/info/lang.html.
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<subdivided-into department work_station>
<are-in department company>
<are-in work-station company>
<associated-with work-task job-type>
<performed-at job-type plant>
<perform employee work_task>
<performed-at work-task plant>
<represented-in union company>
<belong-to employee union>

would need to be translated into a DOT language description such as the following,

graph ER{
node [shape=box]; company; plant; state; employee; department; work_station;

work_task; job_type; union;
node [shape=diamond, style=filled, color=lightgrey]; has; located_in;

divided_into; subdivided_into; are_in; associated_with; performed_at;
perform; perform_at2; belong_to;

company -- has; has -- plant;
plant -- located_in; located_in -- state;
company -- has; has -- employee;
plant -- divided_into; divided_into -- department;
department -- subdivided_into; subdivided_into -- work_station;
department -- are_in; are_in -- company;
work_station -- are_in; are_in -- company;
work_task -- associated_with; associated_with -- job_type;
job_type -- performed_at; performed_at -- plant;
employee -- perform; perform -- work_task;
work_task -- perform_at2; perform_at2 -- work_station;
union -- represented_in; represented_in -- company;
employee -- belong_to; belong_to -- union;

}

The above DOT language description is essentially a text representation of a standard

graph G = (V, E). The entities are specified in box nodes and the relations are specified

in diamond nodes. For each of the tuples, two edges are specified. For instance, the

tuple 〈has company plant〉 corresponds to “company – has; has – plant;” in DOT. This

example illustrates a simplified, relatively straightforward translation from tuples to DOT

descriptions. In the system implemented, feature-rich DOT descriptions including attributes,

cardinality, colors to show the system confidence levels, etc. are generated by a DOT-

language Generator module. With the DOT descriptions, ERD diagrams such as Figure 22

can be automatically generated with the dot layout engine. The final diagram can be
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exported to various formats such as jpg, png, eps, tiff, etc. An interactive user interface

was implemented in a java applet based on the Grappa package.

company

has

plant

located_individed_into

state

employee

performbelong_to

department

subdivided_into

are_in

work_station

work_task

associated_with

perform_at2 job_type

performed_at

union

represented_in

Figure 22: An ERD example generated by Dot

81



4.0 PROTOTYPE ARCHITECTURE

A pipe line style of web-based automated conceptual data modeling system was implemented

based on several prototype components built previously.

4.1 SYSTEM MODULES OVERVIEW

The system modules and data flow are shown in Figure 23. There are three types of modules:

core modules, system specific modules and support modules. All of the core modules and the

system specific modules were designed and implemented specifically for this ACDM system,

while the support modules were adapted from the corresponding open-source resources.

The system passes natural language database requirements specifications (DRS) as inputs

to a preprocessing module. The major functionality of the preprocessing is to canonicalize

these inputs based on domain knowledge. After preprocessing, a Sentencifier module

is used to sentencify the inputs based on the assumption that sentences are relatively

independent statement units in database requirements. Then the sentences are split into two

parts according to the sub-language characteristics of the inputs using a pattern matching

approach. The Attribute Extractor module takes the Stanford Tagger results, domain

knowledge and words base forms from WordNet as inputs, and produces a list of attributes

for some entities or relations. All other sentences that are not handled by the Attribute

Extractor module are passed to the Stanford Parser. The Facts Generator produces the

proper facts for the ER Extractor module based on the parsing results and the word base

forms from WordNet. The heuristic rules are implemented in CLIPS in the ER Extractor

module and generate a set of entity-relation or entity-attribute tuples. Also domain-based
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Figure 23: System modules and data flow

83



entity relationship disambiguation is performed in the ER Extractor module. ERD Merger

module merges the outputs from the Attribute Extractor module and the ER Extractor

module. The Entity-Attribute Disambiguator module further disambiguates all the entities

and attributes based on the top noun categories and hypernym chains from WordNet and

assigns a confidence score for each of them. The Entity-Relation Disambiguator further

disambiguates some of the relations produced by the ER Extractor based on the empirical

evidence found in the Web corpus via the Simple Sentence Generator, which produces exact

string queries based on a given entity relation tuple, and the SOAP APIs of a web search

engine. The DOT Language Generator produces the text representation of the final ERDs

in DOT language. The Java Applet draws the actual diagrams based on the DOT language

inputs, the layout info from the Graphviz package and the Graphical elements from the

Grappa package. Users can modify and manipulate the diagrams produced by the system in

various ways with the interactive interface.

Compared with other system structures in the literature [Lee03, GSD99], this system

architecture involves more third-party tools and large-scale knowledge resources and hence

the components have been loosely coupled. However, the production system style rule

extraction module is more robust and powerful in reasoning. This is the first time that some

of the general resources such as typed dependency, DOT language and Graphviz have been

used for automated conceptual data modeling. The CLIPS implementation of the heuristic

rules is also unique to this system architecture.

4.1.1 Input user interface

In order to make the use of the system as simple as possible, a web-based input user interface

as shown in Figure 24 is provided. Actually, the input interface consists of only one text

input area and a submit button. Although no specific restrictions are required on the input

texts, the desirable inputs are well-written grammatically correct database requirements

specifications.
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Figure 24: The web input interface of the ACDM system

4.1.2 Preprocessing

Preprocessing is usually very specific and application- and input-dependent. The function-

alities of the preprocessing module of this implementation are:

• Partial explanation statements removal. Explanation statements in requirements

aim at clarifying some of the concepts to the readers. They are helpful for human

readers to understand the requirements better but useless or even harmful for automated

requirements analysis. For instance, in “Each account has a unique number, a balance,

and an account type (e.g. checking, savings, etc.)”, the explanation part inside the

parenthesis is not necessary to transform the statement into an ERD representation as

shown in Figure 25. Sometimes the explanation statements pose challenges to NLP

parsers as well as post parsing analysis. Heuristic rules based on parenthesis and
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characteristic words (“e.g., such as”) are utilized to remove the explanation statements

during the preprocessing.

Figure 25: An example of NL-ER translation with preprocessing

• Concatenation and canonicalization To facilitate both parsing and post-parsing

analysis, some of the domain phrases are concatenated into single words and some of the

abbreviations are canonicalized in the preprocessing module. Table 5 illustrates some of

the domain phrases. Taking the sentence “Each instructor has his/her SSN, first name

and last name” as an example,

(a) Each/DT instructor/NN has/VBZ his\/her/NN SSN/NN ,/,

first/JJ name/NN and/CC last/JJ name/NN ./.

(b) Each/DT instructor/NN has/VBZ his/PRP$ or/CC her/PRP$

SSN/NN ,/, first/JJ name/NN and/CC last/JJ name/NN ./.

(a) without canonicalizing pronoun “his/her”, the Stanford parser tagged “his/her” as a

noun1, while (b) with the canonicalization, the pronoun “his/her” was tagged correctly.

In addition, the concatenation of some of the domain phrases supports the entity

relationship cardinality analysis. The cardinality information can be obtained from both

the single/plural format of the entity nouns and the determiners before nouns. However,

there are exceptions. For instance, in the sentence “each student takes at least one

course”, the single format of the entity noun “course” as well as the bigram “one course”

suggests a “1” cardinality for entity “course” which is wrong. N-gram2 is feasible but

1with the NN tagger, the Attribute Extractor module will treat “his/her SSN” as an attribute instead of
“SSN”.

24-gram is needed here to handle the phrase “at least one course”.
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more complicated. However, with the concatenation, the single word at-least-one is used

as a specific phrase to extract a “many” cardinality. The concatenation of domain phrase

also improves the readability of the final conceptual data models.

4.1.3 Attribute extraction

The Attribute Extractor module was implemented in a pattern matching approach. A typical

long enumerated attribute statement in database requirements documents is in this form:

entity (relation) X has attribute A, B, ..., E and F.

The Stanford NLP parser used does not perform well on the coordination conjunction and

the internal structures of the attribute elements. A pattern matching approach based on

regular expressions with POS tagged inputs was adopted to extract attributes from long

enumerative sentence structures as well as some other similar attribute sentence structures.

Table 6 shows the regular expressions used. All of the input sentences are matched against

these regular expressions. Those sentences that are not covered by any of these regular

expressions are piped to the Stanford Parser.

For each of the matched entity, relation or attribute elements (X, A, B, . . . ), a separate

functional module determines the appropriate words to be extracted based on the POS

information and the domain knowledge. Heuristic rules are used to extract the entity, relation

and attribute names because it is tricky to determine how many words should be used to

represent names without causing ambiguities in the context. For instance, in the requirement

“Each concert has a concert ID ...... Each composition has a composition ID.”, a human

database designer would probably only use “ID” as an attribute name for entity “concert”

instead of using “concert ID” which is redundant. However, in the sentence “Each check out

transaction has a check out date, an expected return date and an actual return date.”, each

of the three attribute names consists of three English words. If only the last noun is used

here, then three ambiguous “date” attributes will be generated for the relation “check out”.

Using long attribute names is not a good general solution, because it often results in ugly

esthetics, e.g. “subjects” vs. “subjects they are currently teaching”. The heuristic rules also
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Table 5: Concatenation of domain phrases

more than one more-than-one

at least one at-least-one

at least two at-least-two

one or more one-or-more

one and only one one-and-only-one

no more than no-more-than

zero or more zero-or-more

more than two more-than-two

more than three more-than-three

first name first-name

last name last-name

zip code zip-code

part time part-time

full time full-time

phone number phone-number

email address email-address

social security number social-security-number

id number id-number

year of birth year-of-birth

mailing address mailing-address

area code area-code

order number order-number

item number item-number

id number id-number

check in check-in

check out check-out

his/her his or her
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Table 6: Regular expressions for attribute extraction

(.*)(have|has|identified)/VB[DGNPZ]?(.*),/,\s*which/WDT\s*\w*/\w*

\s*?(.*)and/CC(.*)

(.*)(has|have|include|includes|contain|contains|consist|consists)

/VB[DGNPZ]?(.*),/,\s*(\w+.*)and/CC(.*)

(.*)(has|have|include|includes|contain|contains|consist|consists)

/VB[DGNPZ]?(.*),/,\s*(\w+.*),/,(.*)

([F|f]or/IN.*),/,.*(store|stores|record|records|keep|keeps|need|needs)

(.*),/,\s*(\w+.*)and/CC(.*)

([F|f]or/IN.*),/,(.*),/,\s*(\w+.*)and/CC(.*)(stored|recorded|kept)

data/NNS about/IN (.*) (are/VBP)(.*),/,\s*(\w+.*)and/CC(.*)

(store|stores|record|records|keep|keeps|need|needs)(.*/NN.*)\’s/POS

(.*),/,\s*(\w+.*)and/CC(.*)

(.*)(stored|recorded|kept|decribed|represented)(.*),/,\s*(\w+.*)

and/CC(.*)

(.*)\’s/POS (information.*following.*):/:(.*),/,\s*(\w+.*)and/CC(.*)

deal with compound noun phrases such as “phone number”, “one or more address” ,“year

of birth”, “social security number”, etc.

It is true that the regular expressions listed in Table 6 don’t guarantee to extract all the

attributes in database requirements documents. However, one of the goals of the attribute

extraction module is to split some of the hard parsing, long enumerative attribute sentences

from others and pipe all sentences that are not covered by these regular expressions to the

Stanford parser for further processing.
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4.1.4 Typed dependency parsing

As discussed in Section 3.4, the parsing results from different parsers can be used. A

prototype system was implemented based on the Link Parser results. However, it was

found that the Stanford Parser was more robust and the format of the typed dependency

grammatical relations was compatible with the requirement of this application. So in this

implementation, the Stanford Parser was used. Although the Stanford Parser can be trained

on a customized corpus, no tagged database requirements specification corpus is currently

available. So the parser uses the standard English lexicalized PCFG trained on the Wall

Street Journal from the Penn Treebank. To reduce the time delay of loading the PCFG

grammars, a customized module was designed to run the parser as a server on a specific

port.

4.1.5 Entity relationship extraction

4.1.5.1 CLIPS CLIPS (C Language Integrated Production System) is a rule-based expert

system building language [GR98]. Although the heuristics rules proposed in section 3.4

can be implemented in other computer programming languages, CLIPS provides the most

convenient and efficient way to implement those heuristic rules.

A CLIPS program consists of a set of facts and rules. (CLIPS also includes a full object-

programming capability but that was not utilized in this project.) Facts can be simple

logic-like lists of a relation and arguments, or they can be more object-like structures with a

set of slots for each object and potential constraints on the fillers for those slots. The latter

“unordered” facts (the slots can appear in any order when defining instances) were used in

this project. Rules are typically (but not exclusively) used to represent heuristic knowledge

in production systems, and they are used for that purpose in this project.

4.1.5.2 CLIPS Facts Each of the typed dependency parsing results is represented as a

fact in CLIPS. The template definition of a typed dependency is as following,
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(deftemplate td
"elements of typed dependencies template"
(slot td_name

(type SYMBOL))
(slot word1

(type STRING))
(slot position1

(type NUMBER))
(slot word2

(type STRING))
(slot position2

(type NUMBER))
(slot sent_id

(type NUMBER)))

The “td name” slot is to store the typed dependency name; the “word1” slot is to store the

first word in the typed dependency tuple; the “position1” slot is to store the word position

in a sentence starting from 1, similarly for slot “word2” and “position2”; the “sent id” slot

is to store the sentence id.

The basic word information for each word of the input texts is also represented as a fact.

The template definition is as following,

(deftemplate unit
"word information template"
(slot word

(type STRING))
(slot root

(type STRING))
(slot pos

(type SYMBOL))
(slot position

(type NUMBER))
(slot sent_id

(type NUMBER)))

The “word” slot is to store the original word string appearing in the input; the “root” slot

is to store the base form of the word according to the morphy function from WordNet3; the

“pos” is to store the POS taggers from the Stanford tagger; the “position” slot is to store

the word position in a sentence starting from 1; the “sent id” is to store the sentence id from

3 The morphy function in WordNet produces wrong base forms for a small set of words, e.g. the base
form of word “stations” is still “stations” from WordNet.
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the input which is used to guarantee that only typed dependencies from the same sentence

can match against each others.

The extracted entity relationship tuples (both intermediate and final results) are

represented in facts according to the following template,

(deftemplate tuple
"An entity relationship tuple template"
(slot relation

(type STRING))
(slot relation_position

(type NUMBER))
(slot relation_base

(type STRING))
(slot relation_supplement

(type STRING))
(slot relation_supplement_position

(type NUMBER))
(slot entity1

(type STRING))
(slot entity1_position

(type NUMBER))
(slot entity1_base

(type STRING))
(slot entity1_cardinality

(type SYMBOL))
(slot entity1_supplement

(type STRING))
(slot entity1_supplement_position

(type NUMBER))
(slot entity2

(type STRING))
(slot entity2_position

(type NUMBER))
(slot entity2_base

(type STRING))
(slot entity2_cardinality

(type SYMBOL))
(slot entity2_supplement

(type STRING))
(slot entity2_supplement_position

(type NUMBER))
(slot relation_dup

(type STRING))
(slot rule

(type SYMBOL))
(slot sid

(type NUMBER)))
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The “relation” slot is to store the original word string appearing in the input extracted

as relation (the verb); the “relation position” slot is to store the word position in a sentence

starting from 1; the “relation base” is to store the base form of the relation word which is

used for base form based deduplication; the “relation supplement” is to store the possible

preposition following a phrasal verb that should be extracted together with the verb as the

suggested relation name; the “entity1 supplement” slot is to store the possible pre-noun

modifier that should be extracted together with the noun as the suggested entity name; the

“entity1 cardinality” slot is to store the cardinality information.

4.1.5.3 CLIPS Rules Each of the entity relationship extraction heuristic rules proposed

in Section 3.4 was implemented as a CLIPS rule. A rule in CLIPS consists of an antecedent

or left-hand side (LHS) and a consequent or right-hand side (RHS). The LHS of a rule is

a set of conditions expressed as patterns which must be satisfied based on the existence or

non-existence of the specific facts in the fact list for the rule to be fired. The inference engine

in CLIPS provides the mechanism to atomatically match patterns against the current state

of the fact list and determine which rule to fire according to the conflict resolution strategy.

The following are three example CLIPS rules corresponding to heuristic rule (3.7, 3.9,

3.10).

(defrule nsubj_dobj
"extract subject-direct object tuple, rule(3.7)"
(td (td_name nsubj) (word1 ?v1) (position1 ?p1) (word2 ?n1)

(position2 ?p0) (sent_id ?s1))
(td (td_name dobj) (word1 ?v1) (position1 ?p1) (word2 ?n2)

(position2 ?p2) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2))
=>
(assert (tuple (relation ?v1) (relation_position ?p1)

(entity1 ?n1) (entity1_position ?p0)
(entity2 ?n2) (entity2_position ?p2)
(rule a0) (sid ?s1)))

)
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(defrule expl_nsubj_prep_pobj
"extract expletive tuple, rule (3.9)"
(td (td_name expl) (word1 ?v1) (position1 ?p1) (word2 ?w1)

(position2 ?p0) (sent_id ?s1))
(td (td_name nsubj) (word1 ?v1) (position1 ?p1)

(word2 ?n1) (position2 ?p2) (sent_id ?s1))
(td (td_name prep) (word1 ?n1) (position1 ?p2)

(word2 ?w2) (position2 ?p3) (sent_id ?s1))
(td (td_name pobj) (word1 ?w2) (position1 ?p3)

(word2 ?n2) (position2 ?p4) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2 ?p3 ?p4))
=>
(assert (tuple (relation ?v1) (relation_position ?p1)

(relation_supplement ?w2) (relation_supplement_position ?p3)
(entity1 ?n1) (entity1_position ?p2)
(entity2 ?n2) (entity2_position ?p4)
(rule e0) (sid ?s1)))

)

(defrule nsubjpass_prep_pobj
"extract passive subj prep pobj tuple, rule (3.10)"
(td (td_name nsubjpass) (word1 ?v1) (position1 ?p1) (word2 ?n1)

(position2 ?p0) (sent_id ?s1))
(td (td_name prep) (word1 ?v1) (position1 ?p1) (word2 ?w1)

(position2 ?p2) (sent_id ?s1))
(td (td_name pobj) (word1 ?w1) (position1 ?p2) (word2 ?n2)

(position2 ?p3) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2 ?p3))
=>
(assert (tuple (relation ?v1) (relation_position ?p1)

(relation_supplement ?w1) (relation_supplement_position ?p2)
(entity1 ?n1) (entity1_position ?p0)
(entity2 ?n2) (entity2_position ?p3)
(rule p0) (sid ?s1)))

)

Besides the basic heuristic extraction rules, all of the rules that address the specific issues

discussed in Section 3.5 were also implemented in CLIPS rules, see Appendix F.
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4.1.6 Entity attribute disambiguation

The entity attribute disambiguation was performed according to the top noun category and

the hypernym chains from WordNet for each entity. Three top level category sets are defined

as following,

• strong-entity = (“group”, “physical object”, “physical entity”, “thing”)

• mid-entity = (“substance”,“event”, “communication”, “physical process”)

• weak-entity = (“cognition”, “attribute”, “measure”, “constituent”, “language unit”)

If the hypernym chain of an entity reaches to one of the categories in the “strong-entity” set,

the system will label the entity with a high confidence score. The cases for the “mid-entity”

set and “weak-entity” set are similar. Different colors were used to indicate the different

confidence scores in the final ERDs generated. Users are encouraged to make judgments

regarding the entities with low confidence scores.

4.1.7 Entity relation disambiguation

The entity relation disambiguation was performed by searching for the number of appear-

ances of the exact form of short sentences built from entity relationship tuples or triples

from the Google web corpus via the Google search SOAP APIs4. A small natural language

generation module was built to generate the exact search queries for each case. Exact

phrase search may lead to many false negative cases because of the sparse data problem,

so only the highly dubious relations such as the entity relationship tuples generated from

the coordinating conjunction rules were disambiguated in this approach. A lower confidence

score will be assigned to a relation if the various short sentences built from an entity relation

tuple don’t appear in the Google web corpus. Different colors were also used to indicate the

different confidence scores in the final ERDs generated. Users are encouraged to take actions

on the relations with low confidence scores.

4 Yahoo! SOAP search APIs were also tried, however, the performance was not as good as that of Google.
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4.1.8 DOT language generation

In order to use the Graphviz package to draw the final ERD diagram, the entity relationship

information extracted was translated into the DOT language representation. A DOT file

consists of two major parts: the node specifications and the edge specifications. Three types

of nodes are used in ERD: “box” for entities, “ellipse” for attributes and “diamond” for

relations. The translation from a tuple representation of ERDs to a DOT representation is

relatively straightforward. However, there are some complicated situations. For instance,

attribute names need to be annotated properly because different entities can have same

attribute names in ERDs while duplicate nodes with same names are not allowed in DOT

representations.

4.1.9 Final ERD representation

The Graphviz package provides some tools to generate various graphic representation of

ERDs. However, there are some shortcomings of the Graphviz package,

• It is hard to modify the diagrams generated.

• Users have little control of the layouts generated by the Graphviz layout rendering engine.

• The Graphviz is a general graphic package, not specific to ERDs.

In order to provide a user friendly interface, a java applet, utilizing the Grappa package

was implemented. The interface produced by the applet is shown in Figure 26. Based on

initial ERD layouts generated by the Graphviz layout rendering engine (dot or neato), the

java applet provides the following functionalities:

• Create new entities, relations, attributes and connections.

• Delete entities, relations, attributes and connections.

• Rename entities, relations, attributes and connections

• Move any ERD element.

• Zoom in, zoom out and zoom fit.

• Generate PNG graph.

• Generate new DOT files with user modifications.

• Print.
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Figure 26: The java applet interface of the ACDM system
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4.2 AN EXAMPLE

In this section, a detailed example is provided to illustrate how the system works. Taking

the following database requirements specification as the input,

(1) A concert season schedules one or more concerts. (2) A concert season is identified
by its opening date, which includes month, day, and year. (3) A concert includes one or
more compositions. (4) A concert is identified by its number. (5) A concert also has a
concert date, which consists of month, day, year, and time. (6) For each concert there is
one conductor. (7) A conductor is identified by his/her PID. (8) A conductor name also
needs to be included in the database. (9) Each composition may require zero or more
soloists. (10) A composition is identified by its CID, which consists of composer name
and composition name. (11) Compositions have multiple movements. (12) A movement
is identified by an MID, which includes movement name and movement number. (13) A
soloist is identified by his/her PID. (14) A soloist name is also kept in the database.5

First, the preprocessing module performs some substitutions and concatenations as discussed

in Section 4.1.2. Then the input text is sentencified. The Attribute Extractor module takes

the tagged sentences from the Stanford Tagger with the support of the domain knowledge

and WordNet to extract possible attributes. Sentence (2) , (5) , (10) and (12) are covered

by the regular expressions and the following attributes are extracted for the corresponding

entities or relations.

concert-season: opening-date,month,day,year
concert: concert-date,month,day,year,time
composition: cid,composer-name,composition-name
movement: mid, movement-name,movement-number

The first element of each list is the entity or relation name followed by the possible

attributes. These attribute lists will be merged with the results generated from the heuristic

rules later.

All other sentences that are not covered by the Attribute Extractor module are passed

to the Stanford Parser. Based on the typed dependency parsing results, a list of unit and td

facts are generated,

5For illustration purpose, the sentences are labeled with sentence numbers which are not used in the
actual input.
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(td (td_name det) (word1 "season") (position1 3)
(word2 "a") (position2 1) (sent_id 0))

(td (td_name nn) (word1 "season") (position1 3)
(word2 "concert") (position2 2) (sent_id 0))

(td (td_name nsubj) (word1 "schedules") (position1 4)
(word2 "season") (position2 3) (sent_id 0))

...
(unit (word "a") (root "a") (pos DT) (position 1) (sent_id 0))
(unit (word "concert") (root "concert") (pos NN) (position 2) (sent_id 0))
(unit (word "season") (root "season") (pos NN) (position 3) (sent_id 0))
...

With these facts, some of the heuristic rules are fired and the following entity relationship

tuples are generated in the format:

< relation, entity1, entitity2, cardinality1, cardinality2, rule-name, sentence-id >

schedule , concert season, concert, ONE, MANY, a0, 0
include , concert, composition, ONE, MANY, a0, 2
be for, conductor, concert, ONE, MANY, e1, 5
require , composition, soloist, MANY, MANY, a0, 7
have , composition, movement, MANY, MANY, a0, 9

In addition, the heuristic rules produce a set of entity attributes:

concert: number
conductor: pid
conductor: name
soloist: pid
soloist: name

The ERD Merger module merges these results with the attribute list generated from the

Attribute Extractor module. Then the WordNet based entity attribute disambiguation and

the Web corpus based entity relation disambiguation are performed. After that, the DOT

language generation module generates the following DOT file,

graph ER {
node[shape=box, fontname="cmr10.ttf" ];"concert";"conductor";"soloist";

"concert-season";"composition";"movement";
node[shape=ellipse, fontcolor=black, fontname="cmr10.ttf"];"pid2";

"movement-name";"name";"composition-name";"cid";"mid";"month2";"time";
"day2";"opening-date";"year2";"month";"concert-date";"name2";"year";
"number";"composer-name";"movement-number";"day";"pid";

node[shape=diamond, style=filled, fontcolor=black, color=lightgrey];"require";
"include";"schedule";"have";"be-for";
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"composition" -- "require" [label="m"]
"concert" -- "include" [label="1"]
"require" -- "soloist" [label="n"]
"be-for" -- "conductor" [label="1"]
"concert-season" -- "schedule" [label="1"]
"composition" -- "include" [label="m"]
"have" -- "movement" [label="n"]
"be-for" -- "concert" [label="m"]
"concert" -- "schedule" [label="m"]
"composition" -- "have" [label="m"]
"opening-date" -- "year"
"cid" -- "composer-name"
"conductor" -- "pid"
"mid" -- "movement-name"
"concert" -- "number"
"concert-date" -- "year2"
"concert" -- "concert-date"
"pid2" -- "soloist"
"mid" -- "movement-number"
"month" -- "opening-date"
"concert-date" -- "day2"
"day" -- "opening-date"
"cid" -- "composition-name"
"mid" -- "movement"
"concert-date" -- "time"
"concert-season" -- "opening-date"
"cid" -- "composition"
"concert-date" -- "month2"
"conductor" -- "name"
"name2" -- "soloist"

label = "\n\n Engity Relationship Diagram\n";
fontsize = 14; fontname = "cmr10.ttf" }

An ERD diagram can be generated with this DOT representation using the dot or the

neato render engine. With the Grappa based java applet interface, users can edit and

manipulate the ERD diagram in order to produce a better result, especially after taking

actions on those elements with low confidence scores. An example result is shown in

Figure 27.
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Figure 27: An example ERD generated by the ACDM system
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5.0 EVALUATION

5.1 OBJECTIVE

The automated conceptual data modeling tool implemented is not expected to be perfect in

transforming natural language database requirements to formal ERDs. This is actually the

case for any NLP application because of the inherent informal and ambiguous characteristics

of natural language. It is also hard to determine a perfect solution to many of the database

conceptual data modeling problems. So one useful benchmark is to determine whether

the automated conceptual data modeling tool can help relatively inexperienced people in

database design tasks.

The general hypothesis is that it takes less time for human subjects with limited

experiences in database conceptual data modeling to work out comparable or even better

solutions based on the ERDs produced by the ACDM tool than those without the aid of the

ACDM tool. Because both the quality of the ERDs and the time used to produce the ERD

are of interest, the above hypothesis essentially contains two sub-hypotheses:

Hypothesis a: It takes less time for human subjects with limited experiences in database

conceptual data modeling to work out solutions based on the ERDs produced by the ACDM

tool than those without the aid of the ACDM tool.

Hypothesis b: The solutions produced by human subjects with the aid of the ACDM

tool are comparable or even better than those produced by human subjects without the aid

of the ACDM tool.

It is possible that these hypotheses might hold to different degrees for different levels of

complexity of the database requirements problems. For instance, the system might produce

less accurate results for more complex problems and these results might be confusing and
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less useful for the users. Alternatively, the users might have found the system more useful for

the problems they found more difficult. So the experimental design incorporates two levels of

problem complexity to provide some sensitivity for these possible outcomes. The complexity

levels of the database design problems are assessed based on both quantitative and qualitative

criteria. The quantitative criteria refer to the number of elements such as attributes, entities

and relations that should be incorporated in the desired ER models. Increasing the number

of attributes may not increase the problem complexity levels. However, increasing the

number of entities and relations can result in a significant increase in problem complexity.

The qualitative criteria refer to the complexity levels of the sentence structures such as

coordination conjunctions, compound nouns, pronoun reference, noise input, etc. Human

subjects may be more sensitive to the quantitative criteria while the system is more sensitive

to the qualitative criteria. Hence, the complexity levels of the problems were judged by a

combination of the two criteria.

5.2 EXPERIMENTAL DESIGN

A 2x2 within-subjects (repeated-measures) design was used. The two factors (independent

variables) are system (with and without the aid of the ACDM system) and problem

complexity levels (easier and harder database design problems). The dependent variables

are the time used to produce solutions to database design problems and the quality scores

of the solutions. The design is illustrated in Figure 28.

Figure 28: A 2x2 within-subjects design
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5.3 EXPERIMENT

A Latin square style arrangement was utilized to balance the learning effects between with

and without the ACDM system aid as shown in Table 7. The learning effects between easier

and harder problems were not designed to be balanced because the human subjects were

allowed to warm up with a easy problem and then work on a relatively harder problem later.

Ten human subjects were divided into five groups. Each of the subjects worked on four

database requirements problems: one easier and one harder database design problem with

the aid of the ACDM system, one easier and one harder database design problem without

the aid of the ACDM system. (The subjects were not told whether the given database design

problem was easier or harder). The other subject in the same group worked on the same

four database requirements problems but changed the order of with/without the aid of the

ACDM system. That is if subject A worked on problem X with the aid of the system, then

Table 7: Latin Square design to balance learning effects

Subject Problem1 Problem2 Problem2 Problem4

s1 e1/wo e2/w h1/wo h2/w

s2 e1/w e2/wo h1/w h2/wo

s3 e3/wo e4/w h3/wo h4/w

s4 e3/w e4/wo h3/w h4/wo

s5 e5/wo e6/w h5/wo h6/w

s6 e5/w e6/wo h5/w h6/wo

s7 e7/wo e8/w h7/wo h8/w

s8 e7/w e8/wo h7/w h8/wo

s9 e9/wo e10/w h9/wo h10/w

s10 e9/w e10/wo h9/w h10/wo
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subject B would work on problem X without the aid of the system. Hence, a total of ten

easier and ten harder database design problems were used (see Appendix G). Each of the

database design problems was done by two subjects, one with the aid of the ACDM system

and one without the aid of the ACDM system.

The Gnome Dia program was used by subjects to construct ERDs without the aid of

the ACDM system. Compared with the user interface of the ACDM tool, the Dia program

is more powerful and easy to use. Although none of the subjects had used the Gnome

Dia program before, after a short introduction of the Dia program, all of the subjects were

comfortable using it. Thus any difference between the with and without system aid groups

due to interface differences would be conservative in that the without the system aid group

had the better interface.

Each subject could take as long as he/she wanted to construct an ERD for each of the

database design problems.

5.4 ANALYSIS OF EXPERIMENTAL RESULTS

5.4.1 Subjects

All of the subjects were students in the Department of Information Science and Telecom-

munications at the School of Information Sciences, University of Pittsburgh. Two were

undergraduates and eight were graduate students.

Four subjects did ERD exercises in database design courses some years ago while the

other six constructed some small ERDs for a class assignment or project recently.

Seven subjects had used the Microsoft Visio program and one had used Microsoft Paint

to construct ERDs while the other two only drew ERDs on paper previously.

5.4.2 Obtaining experimental data

The quality of the ERDs produced by the subjects was judged by a third party, a Ph.D

student who had been a teaching assistant for a graduate database design course for several
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terms. The judge was not told whether the ERDs were produced by subjects with or without

the aid of an automated conceptual data modeling tool. The ERD pairs were displayed to

the judge as shown in Figure 29.

Figure 29: An ERD quality judgment scenario

The following guideline was used to assess the quality of the ERDs.

• Attribute (1 point each)

– Add 1 point for each correct attribute stated in the requirements.

– No penalty for very likely attributes of an Entity but not stated in the requirements

such as “SSN” for “employee”.

– Deduct 0.5 point for each wrong attribute.

– Add 1 point for each subcomponent of a compound attribute.

– No penalty for reasonable paraphrase of the name, such as “concert number” →
“concert id”.
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• Entity (2 points each)

– Add 2 points for each correct entity stated in the requirements.

– No penalty for very likely entity but not stated in the requirements.

– Deduct 1 point for each wrong entity.

– Do not count compound attributes as entities.

• Relation (3 points each)

– Add 3 points for each relation that is correctly attached to the corresponding entities.

– A ternary relation is equal to two binary relations, hence carries 6 points.

– No penalty for very likely relations added by subjects.

– Deduct 1.5 point for each wrong relation.

• Cardinality (total 3 points)

• Overall diagram quality (total 5 points)

– Readability of the attribute, entity, relationship names.

– Alignment and arrangement of diagram elements.

Based on this assessment guideline, the ERD quality scores are shown in Table 8.

The time used by each subject to construct the ERDs is shown in Table 9
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Table 8: ERD quality scores

subject complexity system quality subject complexity system quality

s1 e w 36 s6 e w 52

s1 e wo 37 s6 e wo 39

s1 h w 42.5 s6 h w 50

s1 h wo 30 s6 h wo 47

s2 e w 51 s7 e w 46

s2 e wo 33 s7 e wo 28

s2 h w 60 s7 h w 61

s2 h wo 42 s7 h wo 28

s3 e w 35 s8 e w 43

s3 e wo 56 s8 e wo 30

s3 h w 61.5 s8 h w 85

s3 h wo 46 s8 h wo 45.5

s4 e w 52 s9 e w 31

s4 e wo 22.5 s9 e wo 23

s4 h w 56.5 s9 h w 35.5

s4 h wo 66 s9 h wo 16

s5 e w 36 s10 e w 32

s5 e wo 24 s10 e wo 32

s5 h w 42 s10 h w 78

s5 h wo 38 s10 h wo 38
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Table 9: Time used to construct ERDs

subject complexity system time subject complexity system time

s1 e w 13 s6 e w 13

s1 e wo 26 s6 e wo 22

s1 h w 9 s6 h w 14

s1 h wo 25 s6 h wo 18

s2 e w 11 s7 e w 9

s2 e wo 17 s7 e wo 16

s2 h w 31 s7 h w 12

s2 h wo 27 s7 h wo 17

s3 e w 15 s8 e w 9

s3 e wo 42 s8 e wo 21

s3 h w 15 s8 h w 26

s3 h wo 33 s8 h wo 37

s4 e w 17 s9 e w 17

s4 e wo 13 s9 e wo 30

s4 h w 13 s9 h w 13

s4 h wo 17 s9 h wo 30

s5 e w 6 s10 e w 5

s5 e wo 15 s10 e wo 12

s5 h w 9 s10 h w 15

s5 h wo 15 s10 h wo 10
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5.4.3 ANOVA analysis of the quality of the ERDs

Table 10: ANOVA analysis of ERD quality

Source F value Pr(>F)

Main effect: system 20.644 0.0014 **

Main effect: complexity 11.103 0.0088 **

Interaction: complexity ∗ system 1.300 0.2836
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Figure 30: Mean quality scores as a function of problem complexity levels and system

A 2x2 within-subjects analysis of variance was performed on ERD quality scores as a

function of ACDM system (with, without) and problem complexity levels (easier, harder), as

shown in Table 10.

The main effect of with/without system was supported (null hypothesis was rejected at

p = .0014) supporting the hypothesis that the system helped subjects produce better ERDs

than they did without it.

Tha lack of interaction suggests that the effect of the with/without main effect was not

significantly different at the two levels of problem complexity.
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The more difficult problems produced significantly higher scores than the easier ones but

that could be an artifact of the scoring method and was not central to the hypotheses of

interest.

5.4.4 ANOVA analysis of the time used to construct ERDs

Table 11: ANOVA analysis of the time used to construct ERDs

Source F value Pr(>F)

Main effect: system 13.729 0.0049 **

Main effect: complexity 1.552 0.2443

Interaction: complexity ∗ system 1.7261 0.2214
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Figure 31: Mean time as a function of problem complexity levels and system

Similar to the analysis of the ERD quality scores, a 2x2 within-subjects analysis of

variance was performed on the time used to construct ERDs as a function of ACDM system

aid (with, without) and problem complexity levels (easier, harder), as shown in Table 11.
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The main effect of with/without system was supported (null hypothesis was rejected at

p = .0049) supporting the hypothesis that the system helped the subjects produce ERDs

faster than they did without it.

The lack of interaction suggests that the effect of the with/without main effect was not

significantly different at the two levels of problem complexity.

The time used to construct ERDs for the more difficult problems was not significantly

higher than that for the easier problems.

Based on the ANOVA analysis of the quality scores and the time used to construct

ERDs, the hypothesis that it takes less time for human subjects with limited experiences in

database conceptual data modeling to work out comparable or even better solutions based

on the ERDs produced by the ACDM tool than those without the aid of the ACDM tool is

supported.

5.4.5 Post-experiment questionnaire

Table 12: Summarizing how subjects felt about the problem complexity

Easy1 (w, o) Easy2 (w, o) Hard1 (w, o) Hard2 (w, o)

a) very easy 2 (2, 0) 1 (1, 0) 1 (1, 0) 2 (1, 1)

b) somewhat easy 6 (1, 5) 7 (3, 4) 1 (0, 1) 3 (2, 1)

c) somewhat hard 2 (2, 0) 2 (1, 1) 4 (3, 1) 5 (2, 3)

d) very hard 0 (0, 0) 0 (0, 0) 4 (1, 3) 0 (0, 0)

The subjects were asked to fill out a post-experiment questionnaire (see Appendix I).

Table 12 summarizes how subject felt about the problem complexity. For instance, the

numbers in the first cell “2 (2, 0)” represent that a total of two subjects felt the first problem

was very easy. The numbers inside the parenthesis are the number of subjects from the group

using the ACDM system and that from the group without using the system respectively. In

this case, these two subjects were from the group using the system. No subject from group

without using the system felt the first problem very easy. In general, subject’s judgments
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Table 13: Summarizing subjects’ confidence to their solutions

Easy1 (w, o) Easy2 (w, o) Hard1 (w, o) Hard2 (w, o)

a) not confident 0 (0, 0) 0 (0, 0) 3 (1, 2) 0 (0, 0)

b) somewhat not confident 2 (0, 2) 0 (0, 0) 1 (1, 0) 1 (0, 1)

c) somewhat confident 3 (2, 1) 7 (3, 4) 3 (1, 2) 4 (2, 2)

d) very confident 5 (3, 2) 3 (2, 1) 3 (2, 1) 5 (3, 2)

were consistent with the pre-designed problem complexity levels. Furthermore, there is a

suggestion that subjects felt the problems were easier when they worked with the ACDM

tool aid than without the system aid1.

Table 13 summarizes how confident the subjects felt about their solutions to the database

design problems. In general, the subjects were more confident about their solutions to the

easier database design problems than those to the harder database design problems; the

subjects with the ACDM tool aid felt more confident about their solutions than those without

the system aid1.

The subjects were asked for their opinions of the advantages and disadvantages of using

the ACDM tool:

• The major advantages of using the ACDM tool are:

– The system extracts attributes and entities accurately and prevents users from

overlooking some attributes;

– The system provides users with an initial model to work on which saves some time;

– The system is very helpful and efficient to construct not very complicated ERDs.

– Users can focus more on the database design problems instead of the drawing process.

• The major disadvantages of using the ACDM tool are:

– The relations extracted were not very accurate;

– If the initial ERDs were wrong, it is not easy to fix.

– Some often used functionalities such as copy, cut, past, are missing;

1based only on slight evidence from the table, not on statistical analysis.
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Most of the subjects thought the ACDM tool was very helpful and did not prevent them

from working efficiently. Some subjects thought the ACDM was cool and would like to use

it for database design courses.

5.4.6 A Precision-Recall analysis of the experiment results

Table 14: Precision and Recall evaluation

User System User+System

Precision Recall Precision Recall Precision Recall

Attribute (A) 88.4% 1 98.4% 94.3% 93.2% 93.3% 96.0%

Entity (E) 95.1% 61.9% 82.6% 90.4% 93.8% 96.0%

Relation (R) 88.4% 66.1% 80.6% 88.2% 90.9% 94.5%

Overall 89.6 % 89.9% 87.5% 84.7% 92.8% 92.4%

Some of the previous research projects have adopted precision and recall to evaluate

their systems (see section 2.2.2). Although it is still questionable and inconsistent to utilize

precision and recall to evaluate the performance of automated conceptual data modeling

systems, especially when there is no standard evaluation requirements corpus available,

these measures do provide some comparisons to previous work and indications of overall

quantitative performance. Hence the precision and recall are reported here.

The precision and recall were calculated for each of the three ERD element categories:

Attribute, Entity and Relationship using the formulae (2.2) and (2.3) for the ERDs generated

by the human subjects, the ACDM system alone and the human subjects with ACDM system.

Recall =
Ncorrect

Ncorrect + Nmissing

[OHM04] (2.2)

Precision =
Ncorrect

Ncorrect + Nincorrect

[HG03] (2.3)

1This number was lowered significantly by one human subject who added many reasonable attributes
such as id for each entity. However, these attributes were not specified in the requirements.
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Ncorrect is the number of correct items (attributes, entities or relations) in the target

evaluation set. Nmissing is the number of desired items that are not extracted in the target

evaluation set. Nincorrect is the number of incorrect items in the target evaluation set. The

target evaluation sets are ERDs generated by the human subjects, ERDs generated by the

ACDM system alone and ERDs generated by the human subjects with the ACDM system.

As shown in table 14, human subjects (Users) preformed relatively well on entity and

relation extraction in terms of precision but poor in terms of recall while the system

performed relatively well on attribute extraction in terms of recall. Because of this

complementary effects, the human subjects with the ACDM system group (User+System)

has the highest overall scores in both precision and recall.

5.5 LIMITATIONS OF SYSTEM COMPONENTS

The overall system performance has been evaluated in previous section. In this section, the

limitations of some of the system components will be discussed.

One character of the ACDM system is integrating multiple modules and resources for the

purpose automated conceptual data modeling. Some of the modules are specifically designed

for this application while others are adopted from open source third party packages. Each

component has some limitations.

The system lacks reasoning capabilities to handle complicated cases. The regular

expressions that are used to handle long enumerative attribute sentences work well on most

of the cases and can extract the attributes correctly with proper names. However, there

are some exceptions and difficulties. For instance, in the requirements statement “discount

type, purchase quantity and actual price should be stored in database.”, the system could

not extract the attributes “discount type”, “purchase quantity” and “actual price”. Even

if the system could extract these three attributes with some additional regular expressions,

it is very challenging to attach them to the correct entity or relation. The requirements

specification does not explicitly state which entity these three attributes should attach to.

It may be obvious to human beings that these three attribute should attach to a “purchase”
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relation. However, the system do not possess this kind of reasoning capabilities. The heuristic

rule based ER Extractor can only extract most of the desired entities and relations that are

explicitly stated in the requirements documents but not those that need further reasoning.

For instance, in the statement “each employee has a manager”, if the statement “a manager is

also an employee” is not specified in the requirements documents, the system doesn’t reason

about it. However, this problem can be addressed to some extent by utilizing WordNet or

other ontology resources.

The heuristic rules proposed are not complete. There are certain sentence structures that

are not covered. Some of the sentence structures are too general to enable the extraction

of some specific entities and relations such as in the statement “computer manufacturing

community provides sophisticated and complete computer configurations by outsourcing

services from several trading partners”. Some of the sentence structures involve advanced

reference resolution which the system does not possess. However, the system relies on two

mechanisms to reduce the impact of this problem. One is over-generation. The heuristic rules

proposed in section 3.4 will over-generate many entity relationship tuples while the heuristic

rules proposed in section 3.5 refine and filter out the inappropriate entity relationship tuples.

For instance, without the refining rules, the system over-generated 28.8% of the tuples for

the example problems used in the evaluation experiment. The other mechanism is to take

advantages of the redundant information in the requirements. For instance, in statements “A

work task is associated with one of 20 different job types. During a given day an employee

may perform more than one work task, each associated with a different job type.”, the system

can extract 〈associate-with work-task job-type〉 from the first sentence even if the system

fails to resolve the reference of “each” in the second sentence.

Some of the special issues on utilizing the heuristic rules discussed in section 3.5

were not yet addressed well in the ACDM system. Although some kind of remedies

have been proposed to address the specific issues, problems exist. For instance, the

system only implemented base form based deduplication. The more advanced deduplication

mechanisms based on synonym, antonym, abbreviation and paraphrase, which are much

more challenging, are not implemented. Therefore some semantically duplicated entities or

relations such as “worker union” vs. “union” are produced in the final conceptual data
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models by the system. Furthermore, the ternary relation rule (3.27) fails in some cases

such as coordination conjunctions sentences. For instance, in the sentence “a bookstore

sells books and software to students”, three binary relation tuples will be extracted:

〈sell bookstore book〉, 〈sell bookstore software〉, 〈sell-to bookstore student 〉. Currently,

the system only combines 〈sell bookstore book〉 and 〈sell-to bookstore student 〉 with rule

(3.27) and generates 〈sell-to bookstore book student〉 and leaves 〈sell bookstore software〉
as a binary relation. Moreover, those coordinating conjunctions rules are also problematic

in some cases. Rules (3.20 – 3.24) aim at addressing conjunction in the subject or object

position. Conjunction of verbs and verbs with objects are not addressed. For instance, in the

sentence “each student has only a single major and associated with a single department”,

the tuple 〈associte-with student department〉 can not be extracted with rule (3.20 – 3.24).

The lexical filter used by the system is not effective in some cases. The use of a general

lexical knowledge resource, WordNet, for automated disambiguation tasks in conceptual

data modeling is novel and it is quite effective in some of the tasks such as handing “of-

structures”. However, WordNet does not work well in some cases to distinguish attribute

nouns from entity nouns. For instance, in the statement “programming language has

name and platform”, “platform” is treated as an entity noun according to WordNet. It

is problematic to use WordNet in this case because WordNet is a general knowledge resource

and is not specific to conceptual data modeling applications. Moreover, the distinction

between entity nouns and attribute nouns is fuzzy in some cases.

The utilization of the Web corpus and search facilities as a semantic filter for automated

conceptual data modeling is also problematic in some cases. Even with the huge data size

of the Web corpus, sparse data is still a problem and causes false negative alarms to filter

appropriate entity relationships. In order to reduce the problem, the system does not remove

the dubious relations automatically but only flags them with different colors and prompts

users to take actions on those cases.
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6.0 CONCLUSIONS AND FUTURE WORK

6.1 CONTRIBUTIONS AND CONCLUSIONS

This research aimed at investigating various formalism translation and extraction problems

and proposing novel solutions employing the most recent NLP-related technologies and

large scale knowledge resources for their specific applications in automated conceptual data

modeling. A working system ACDM was developed to demonstrate the feasibility of the

suggested solutions to automated ERD construction. To be specific, the contributions of this

research are:

• Proposed a relatively complete set of heuristic-rules for automated conceptual data

modeling based on high level grammatical relations extracted from the parsing results of

state of the art NLP parsers. Compared with the heuristic rules used in previous research

in the literature, these rules are based on high level grammatical relations which are more

accurate and fine-grained than word classes or other direct patterns. These rules are also

more systematically structured and operational.

• Developed an automated database conceptual data modeling tool. The tool incorporated

many core modules built specifically for this application and supporting modules adopted

from open source packages.

• Demonstrated the utility of the automated database conceptual data modeling system

by a human subjects experiment. It was shown that it took less time for human subjects

with limited experiences in database conceptual data modeling to work out comparable

or even better solutions based on the ERDs produced by the ACDM tool than they did

without using the ACDM tool.
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• Demonstrated that it is feasible to develop a NL translation tool for specialized NL

documents using currently available semantic resources, a NLP parser, heuristic rules

and domain specific knowledge.

Various issues regarding the use of semantic and linguistic resources were explored and

the reasons for the decisions taken were discussed.

6.2 FUTURE WORK

There are some NLP-related issues that need to be further investigated in the future. The

heuristic rules proposed in this research are based on high level grammatical relations from

two of the state of the art parsers. The rules are tightly coupled with the taggers used by the

specific parsers. In the future, how to decouple the heuristic rules from the taggers used by

the NLP parsers will be investigated. Furthermore, the several large scale knowledge resource

based semantic filtering mechanisms for entity relationship disambiguation only work to some

extent. None of them is perfect for the application of automated conceptual data modeling.

More systematic analysis and evaluation of the large scale knowledge resources for semantic

analysis needs to be done in the future. Other problems including that of unstated common

sense requirements may also need to be addressed in the future.

Although the experimental results are encouraging, more experiments are needed to

further assess the performance of the system on more complex requirements documents.

Furthermore, requirements validation via reverse natural language generation based on

the target formalisms can serve as another way to evaluate the system. Some of the

previous systems [RP92, BvdR96] have explored similar approaches. Although it is still

quite challenging to generate natural language requirements as natural as the original

input requirements, some kind of human readable texts can be generated from underlying

formalisms using state of the art natural language generation technologies and resources.

Moreover, the approaches explored in this research may be extended in many other

areas with similar requirements such as information extraction in financial reports [Cos97],

medical reports [SFL87] and accident insurance records [NDE03] because the central problem

for automated conceptual data modeling is formalism extraction.
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APPENDIX A

A CHRONOLOGY OF NLP-CDM SYSTEMS

Authors
Brief

& Year

[Che83] Pioneering study the corresponding patterns between English sentence

structures and the elements of ERDs for heuristic rule based approaches. 11

heuristic translation rules between English sentence structures and ERDs

are proposed with detailed examples. However, no system implementation.

[Abb83] A technique is presented to derive programming data type from common

nouns, variables from direct references, operators from verbs and attributes,

and control structures from their English equivalents.

[BGM85] SECSI expert system, 3 input forms: controlled languages, formal language,

graph; The NL interface uses very restricted, only subject-verb-complement

structured sentences. The system is extensible in the sense that it also offers

an interactive interface which allows the database design expert to modify

or add design rules to the system dynamically.

[EL85] Aims at extract the terminological knowledge from database design

specifications. The terminological knowledge is put into an S-diagram data

structure, which can be used to specify classes (entities) and attributes.

The S-diagram is only suitable for small systems.
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[Bla87] Reports an approach with a simple syntactic parser and a semantic analyzer

using McCords Slot Grammar. It claims that a simple ERD could be

built by examining the attributes of the relational database predicates in

the parse tree. However, the main purpose of this paper is to outline

an application area and discuss the syntactic, semantic and real-world

knowledge needed in conceptual data modeling.

[SHT+87,

SHE89]

Verb-oriented process to derive incrementally a formal specification using

rule-based methods. Nouns correspond to objects or classes, and verbs

correspond to messages. The subject of a sentence corresponds to a sender

of the message denoted by its verb. One of its objective words is considered

as the receiver of the message. The categorization of nouns and verbs are

performed by human interactively.

[RP92,

RBA98,

RP00]

Linguistic based CASE tool for requirement engineering; A set of patterns

that combine cases and classes of verbs are defined. The conceptual

schema generation is grounded upon rules that map cases onto concepts.

One of the characteristics of this paper is that linguistic approaches have

been extensively used to analyze the NL documents. Mainly techniques,

syntactic parsing + semantic net representation, pattern match. French.

[TB93] Reports DMG, a rule-based design tool to translate natural language

descriptions to EER structures from parsing results. A large number of

heuristic rules (most of them are dealing with the syntactic structure

of natural language input) are proposed, however, this tool has not yet

developed into practical system. German.

[PAC+93] Presents a combined language and reasoning engine – CLEAR. CLEAR

expresses sentences in Quasi-Logical Form representation, handling

reference resolution, compound nominals, and ellipses. This system

collects contextual information for the reference resolution and dialog-based

interaction. Reasoning is the main focus of the post-processing of NLP.
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[FGR+94] NL2ACTL is designed for the formalization of behavioral requirements

in the design of reactive systems. The translation process is specifically

designed to work between restricted natural language and ACTL, and it

is not based on a general semantic theory of natural language. Direct

correspondences between natural language structures (extended forms) and

ACTL syntax is identified, without intermediate steps such as building

semantic interpretation.

[BD94,

BCD+95,

BDT97]

A dialog tool, part of a larger database design system (RADD) that includes

a syntax analyzer, a semantic role definer and a pragmatic interpreter, is

reported. The aim of this tool is to elicit the structure, semantics and

behavior of a database from a user, then build conceptual EER models

from the requirements. They distinguish three types of questions, content

questions, linguistic clarification questions, and pragmatic clarification

questions. German.

[NR95] Focuses on the requirements validation problems in Object Oriented

Analysis (OOA) by applying the Link Parser to a requirements document,

extracting candidate objects, methods and associations, composing them

into an object model diagram, and then comparing the results to those

determined by manual OOA. No sophisticated analysis of any of the

NLP hard problems, such as parser inadequacy, ambiguity, and domain

knowledge representation.

[Mic96] A CASE tool Natural Language Object Oriented Production System (NL-

OOPS) that supports requirements analysis by building object oriented

models from natural language requirements. An NLU subsystem, Large-

scale Object-based Linguistic Interactor Translator Analyzer (LOLITA) is

used for full natural language analysis. An algorithm that extracts objects

and their associations for model building is discussed.
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[BvdR96] A natural language and scenario-based approach to requirement engineer-

ing. Formal event models (CEMs) are used to specify dynamic information

of a scenario in a natural way. CEMs are created during a particular human-

computer interaction assisted with WordNet. The event models are also

translated into analysis and design models on object level, which bridges the

gap between informal requirement engineering and object-oriented analysis

and design. German.

[OM96] A system (Newspeak) is presented for a controlled language. Logical forms

are used for semantic representation. The system focuses on ambiguity

detection and resolution. The system can not resolve anaphoric references,

and does not address missing words problem.

[FKM+96,

FKM+98]

Focuses on determining the cardinalities of relationships and disambiguat-

ing part-of relationships by examining cardinality designators. A specific

linguistic approach called NTS and a particular conceptual modeling

approach, the Klagenfurt Conceptual Predesign Model (KCPM) is used

in this approach.

[Mor97] Aims at formalizing the Object-Oriented analysis by the linguistic pattern

in the requirements. A comprehensive method that includes nine stages

such as identifying synonyms, static requirements structuring, dynamic

requirements structuring and object model construction. Spanish.

[AG97,

AG06]

Circle, a web-based comprehensive environment for aiding in natural

language requirements gathering, elicitation, selection, and validation.

Human generated glossary and minimal domain description are added

to the original requirements. The actual recognition is performed by a

number of MAS (Model, Action, Substitution) rules. A detailed case

study of a fictitious missile control system is provided and various stages

of requirements analysis are covered.
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[Fou99] The processing of the language breaks down into two stages: acquisition of

domain knowledge, and linguistic analysis. Linguistic analysis sub-divided

into five stages of analysis: morphological, lexical, syntactic, semantic, and

pragmatic. After language processing, each proposition is represented by a

concept graph. Rules offer the possibility to join or disassociate different

concepts. The final specifications are represented in Z language, a formal

language used for software specifications.

[GSD99] Rule-based ER generator that consists of two major components: a natural

language understanding (NLU) system and an ER-generator. Different

from other approaches, the ER-generator takes a specific final knowledge

representation structure as input, which is essentially a frame-like structure

with values filled by the semantic interpreter. The ER-generator is a rule-

based system that utilizes two kinds of rules: specific rules that link to the

semantics of some words in the sentences, and generic rules that identify

ER-entities and ER-relationships on the basis of the logical form of the

sentence

[LB02a,

LB02b,

LB02c,

Lee03]

An automated conversion from NL to an executable formal specification

using two-level grammar (TLG) and contextual natural language

processing. A knowledge-base is built from the NL documents via a middle

representation (XML), which stores the syntactic, semantic and pragmatic

information of the requirements. The meta-attribute information from

XML is also stored in the knowledge base. The final formal representation

is VDM++.

[Gal02] The corresponding patterns between the basic elements of NL and basic

constituents of different models, like objects, process, dataflow and

workflow, have been analyzed. The first goal of this paper is to summarize

the main features of natural language and their counterparts in conceptual

data modeling. The second goal of this paper is to sketch a possible solution

to the integration of the conceptual models.
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[HG03] An NL-based CASE tool called Class Model Builder (CM-Builder) aimed

at supporting the conceptual analysis stage in software development for an

object-oriented framework. CM-Builder can work either automatically or

interactively with an analyst. UML class model is produced as the target

formalism. It also used discourse interpretation and frequency analysis in

producing the conceptual models.

[SC04] A requirements assessment architecture that combines natural language

parsing and artificial intelligence. A prototype system (REWARD) is

partially implemented. An interesting observation is that there is definite

correlation between the ability of REWARD to parse a requirement and

the ability of humans to understand the writers intention.

[OHM04] Heuristic-based ER-converter. The heuristic rules are associated with

weights according to the confidence level that the event is true. The

weights assigned to each rule are mainly based on intuition. It does provide

secondary flexibility to control the rule to be fired or not in the processing.

User interventions are required when the calculated weights are low in the

processing.

[DM06] An automated multi-component approach. The system is a fully integrated

composite of existing, public available components including a parser (Link

Parser), a lexical filter (WordNet) and a semantic filter (Google web corpus

search facilities). Good performance on precision and recall compared with

the state-of-the-art.
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APPENDIX B

FREQUENCY OF SCOPE WORDS

Scope words
Requirements TDT2

Counts Percent Counts Percent

a 826 4.82% 489,964 2.41%

an 173 1.01% 77,490 0.38%

one 161 0.94% 50,436 0.25%

two 21 0.12% 35,032 0.17%

each 341 1.99% 8,138 0.04%

every 37 0.22% 8,079 0.04%

some 38 0.22% 35,034 0.17%

several 60 0.35% 9,486 0.05%

multiple 18 0.10% 425 0.002%

any 44 0.26% 17,547 0.09%

many 35 0.20% 22,359 0.11%

all 39 0.23% 37,417 0.18%

no 115 0.67% 32,621 0.16%

not 61 0.36% 79,931 0.39%

never 2 0.01% 8,841 0.04%

Total 1971 11.50% 912,530 4.50%

Note: The TDT2 English Corpus includes 6 news sources from January 4 to June 30, 1998.
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APPENDIX C

LINK TYPE BASED HEURISTIC RULES

S[sp]∗ + O[sp]∗ ⇒ 〈S.RW S.LW O.RW 〉 (C.1)

For instance,

+-----Op-----+
+--Dsu-+---Ss--+ +--Dmc-+
| | | | |

each company.n has.v many plants.n

S[sp]∗ + MV [sp]∗ + J [sp]∗ ⇒ 〈S.RW -MV.RW S.LW J.RW 〉 (C.2)

For instance,

+-----Jp----+
+--Ds--+---Ss--+-MVp-+ +--Dmc--+
| | | | | |

each person.n works.v on some projects.n

S[sp]∗ + P [sp]∗ + J [sp]∗ ⇒ 〈S.RW -P.RW S.LW J.RW 〉 (C.3)

For instance,

+--Js--+
+--Ds--+--Ss--+-Pp+ +-Ds-+
| | | | | |

each branch.n is.v at a city.n
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S[spx]∗ + Pa + MV [sp]∗ + J [sp]∗ ⇒ 〈Pa.RW S.LW J.RW 〉 (C.4)

For instance,

+--Spx--+---Pa---+--MVp--+---Jp---+
| | | | |

patients.n are.v eligible.a for.p benefits.n

S[sp]∗ + PP + O[sp]∗ ⇒ 〈PP.RW S.LW O.RW 〉 (C.5)

For instance,

+--CO*s--+ +-------Os-------+
| +--Ds-+--Ss--+---PP--+ +---D*u---+
| | | | | | |

once a league.n has.v entered.v the organization.n

S[sp]∗ + PP + MV [sp]∗ + J [sp]∗ ⇒ 〈PP.RW -MV.RW S.LW J.RW 〉 (C.6)

For instance,

+-----Jp----+
+---Ds--+---Ss--+---PP--+-MVp-+ +--Dmc--+
| | | | | | |

each employee.n has.v worked.v on some projects.n

S[sp]∗ + I + O[sp]∗ ⇒ 〈I.RW S.LW O.RW 〉 (C.7)

For instance,

+-------Op-------+
+--Ds--+---Ss--+---I---+ +--Dmc--+
| | | | | |

an employee.n may.v perform.v several jobs.n

S[sp]∗ + I + MV [sp]∗ + J [sp]∗ ⇒ 〈I.RW -MV.RW S.LW J.RW 〉 (C.8)

For instance,

+------Jp------+
+--Ds--+---Ss--+---I--+-MVp+ +---Dmc---+
| | | | | | |

an employee.n may.v work.v on several projects.n
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S[sp]∗ + I[x]∗ + P [p]∗ + J [sp]∗ ⇒ 〈I.RW -P.RW S.LW J.RW 〉 (C.9)

For instance,

+--Js--+
+--Ds--+---Ss--+--Ix-+-Pp+ +-Ds-+
| | | | | | |

each branch.n must.v be.v at a city.n

S[sp]∗ + I[x]∗ + Pa + MV [sp]∗ + J [sp]∗ ⇒ 〈Pa.RW S.LW J.RW 〉 (C.10)

For instance,

+---Sp--+--Ix-+---Pa--+--MVp--+---Jp---+
| | | | | |

patients.n may.v be.v eligible.a for.p benefits.n

S[sp]∗ + I[f ]∗ + PP + O[sp]∗ ⇒ 〈PP.RW S.LW O.RW 〉 (C.11)

For instance,

+------Op-----+
+-Ds-+---Ss--+--If--+---PP--+ +-Dmc-+
| | | | | | |
a donor.n must.v have.v donated.v some items.n

S[sp]∗ + I[f ]∗ + PP + MV [sp]∗ + J [sp]∗ ⇒ 〈PP.RW -MV.RW S.LW J.RW 〉 (C.12)

For instance,

+-----Jp----+
+---Ds--+---Ss---+--If--+---PP--+-MVp-+ +--Dmc--+
| | | | | | | |

each employee.n must.v have.v worked.v on some projects.n

S[sp]∗ + TO + I + O[sp]∗ ⇒ 〈I.RW S.LW O.RW 〉 (C.13)

For instance,

+---------Os---------+
+--Ds--+---Ss--+-TO-+-If-+ +IDB+-EN-+--Ds--+
| | | | | | | | |

each student.n has.v to take.v at least one course.n

129



S[sp]∗ + OF + J [sp]∗ ⇒ 〈S.RW -OF.RW S.LW J.RW 〉 (C.14)

For instance,

+------Jp-----+
+--Ds--+----Ss---+--OF--+ +---Dmc--+
| | | | | |

each season.n consists.v of several leagues.n

S[sp]∗ + TO + I[x]∗ + Pv + MV [sp]∗ + J [sp]∗ ⇒ 〈Pv.RW S.LW J.RW 〉 (C.15)

For instance,

+----A----+---Sp---+-TO-+-Ix+--Pv--+-MVp-+---Jp--+
| | | | | | | |

advanced.v courses.n need.v to be.v taught.v by professors.n

SF [sp]∗ + O[spt]∗ + MV [sp]∗ + J [sp]∗ ⇒ 〈SF.RW -MV.RW O.RW J.RW 〉 (C.16)

For instance,

+----------MVp---------+
+-----Opt-----+ +----Jp---+

+-SFp-+ +--Dmcn--+ | +--D*u-+
| | | | | | |

there are.v 100 departments.n in the company.n

J [sp]∗ + CO + SF [sp]∗ + O[spt]∗ ⇒ 〈SF.RW -CO.LW O.RW J.RW 〉 (C.17)

For instance,

+---------CO--------+
+-------Xc------+ |
+----Jp---+ | | +-----Opt-----+
| +--D*u-+ | +-SFp-+ +--Dmcn--+
| | | | | | | |

in the company.n , there are.v 100 departments.n
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SF [sp]∗+I[x]∗+O[spt]∗+MV [sp]∗+J [sp]∗ ⇒ 〈I.RW -MV.RW O.RW J.RW 〉 (C.18)

For instance,

+-----------MVp-----------+
+--------Opt-------+ +------Js-----+

+-SFp-+--Ix-+ +----AN----+ | +IDBB+-Ds*y+
| | | | | | | | |

there can.v be.v multiple.n branches.n in the same city.n

J [sp]∗ + CO + SF [sp]∗ + I[x]∗ + O[spt]∗ ⇒ 〈I.RW -CO.LW O.RW J.RW 〉 (C.19)

For instance,

+---------CO--------+
+------Js-----+ | +--------Opt-------+
| +IDBB+-Ds*y+ +-SFp-+--Ix-+ +-----A----+
| | | | | | | | |

in the same city.n there can.v be.v multiple.a branches.n

SF [sp]∗ + O[spt]∗ + M [v] + MV [sp]∗+J [sp]∗ ⇒
〈M.RW -MV.RW O.RW J.RW 〉 (C.20)

For instance,

+---------Opt---------+
| +------Dmc------+ +----Jp---+

+-SFp-+ | +---AN---+----Mv----+---MVp--+ +--D*u-+
| | | | | | | | |

there are.v five worker.n unions.n represented.v in the company.n

S[spx]∗ + Pv + MV [sp]∗ + J [sp]∗ ⇒ 〈Pv.RW -MV.RW S.LW J.RW 〉 (C.21)

For instance,

+--Spx-+---Pv--+--MVp--+---Jp---+
| | | | |

plants.n are.v divided.v into departments.n
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S[sp]∗ + I[x]∗ + Pv + MV [sp]∗ + J [sp]∗ ⇒ 〈Pv.RW -MV.RW S.LW J.RW 〉 (C.22)

For instance,

+----Js----+
+-Ds-+--Ss-+--Ix-+---Pv--+--MVp--+ +--Ds--+
| | | | | | | |

each job.n can.v be.v performed.v at each station.n

S[spx]∗ + Pv + TO + I + O[sp]∗ ⇒ 〈I.RW S.LW O.RW 〉 (C.23)

For instance,

+--Spx--+---Pv--+--TO--+--I-+----Op---+
| | | | | |

doctors.n are.v allowed.v to give.v treatments.n

S[sp]∗+I[x]∗+Pv+TO+I+MV [sp]∗+J [sp]∗ ⇒ 〈I.RW -MV.RW S.LW J.RW 〉 (C.24)

For instance,

+----Js----+
+--Ds-+--Ss--+--Ix-+--Pv--+--TO--+---I---+---MVp--+ +--Ds--+
| | | | | | | | | |

the team.n will.v be.v invited.v to participate.v in each season.n

R + RS + O[sp]∗ ⇒ 〈RS.RW R.LW O.RW 〉 (C.25)

For instance,

+-----------Os----------+
+---Ost---+-------Bs------+ +---------Ds--------+

+-SFst+ +--Dsu-+----R---+--RS--+ | +-----A-----+
| | | | | | | | |

there is.v a business.n that.r owns.v a softball[?].a complex.n
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R+RS+I[x]∗+Pv[f ]∗+MV [sp]∗+J [sp]∗ ⇒ 〈Pv.RW -MV.RW R.LW J.RW 〉 (C.26)

For instance,

+------Bp------+
+---Sp---+---Op--+---R---+--RS--+--Ix-+--Pvf--+--MVp--+----Jp---+
| | | | | | | | |

workers.n have.v skills.n that.r must.v be.v recorded.v for.p assignments.n

MX[spr]∗ + S[spxw]∗ + Pv + MV [sp]∗ + J [sp]∗ ⇒ 〈Pv.RW MX.LW J.RW 〉 (C.27)

For instance,

+----------------------
+------Jp------+---MXpr--+

+--Ds--+---Ss--+---I--+-MVp+ +---Dmc---+ +-Xd+-Spxw+----Pv---+--MVp-
| | | | | | | | | | |

an employee.n may.v work.v on several projects.n , which are.v controlled.v

---Xc-------------------------+
+-------Js-------+ |

-+ +IDBB+--Ds*y--+ |
| | | | |

by the same department.n RIGHT-WALL

Mv + MV [sp]∗ + J [sp]∗ ⇒ 〈Mv.RW -MV.RW Mv.LW J.RW 〉 (C.28)

For instance,

+----Op----+ +---Jp---+
+--D*u-+---Ss--+ +-Dmcn+---Mv---+--MVp-+ +-Dmcn+
| | | | | | | | |

the company.n has.v 50 plants.n located.v in 40 states.n
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APPENDIX D

TYPED DEPENDENCY-BASED HEURISTIC RULES

nsubj(w2, w1) + dobj(w2, w3) ⇒ 〈w2 w1 w3〉 (D.1)

For instance,

each company has many plants.

det(company-2, each-1) nsubj(has-3, company-2)
amod(plants-5, many-4) dobj(has-3, plants-5)

nsubj(w2, w1) + prep(w2, w3) + pobj(w3, w4) ⇒ 〈w2-w3 w1 w4〉 (D.2)

For instance,

each person works on some projects.

det(person-2, each-1) nsubj(works-3, person-2)
prep(works-3, on-4) det(projects-6, some-5)
pobj(on-4, projects-6)

nsubj(w2, w1) + xcomp(w2, w3) + dobj(w3, w4) ⇒ 〈w3 w1 w4〉 (D.3)

For instance,

each student has to take at least one course.

det(student-2, each-1) nsubj(has-3, student-2)
aux(take-5, to-4) xcomp(has-3, take-5)
dep(one-8, at-6) dep(one-8, least-7)
num(course-9, one-8) dobj(take-5, course-9)
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nsubj(w2, w1)+xcomp(w2, w3)+prep(w3, w4)+pobj(w4, w5) ⇒ 〈w3-w4 w1 w5〉 (D.4)

For instance,

advanced courses need to be taught by professors.

amod(courses-2, advanced-1) nsubj(need-3, courses-2)
aux(taught-6, to-4) auxpass(taught-6, be-5)
xcomp(need-3, taught-6) prep(taught-6, by-7)
pobj(by-7, professors-8)

nsubj(w4, w1) + aux(w4, w2) + cop(w4, w3) ⇒ 〈w3 w1 w4〉 (D.5)

For instance,

An employee may also be a player.

det(employee-2, An-1) nsubj(player-7, employee-2)
aux(player-7, may-3) advmod(player-7, also-4)
cop(player-7, be-5) det(player-7, a-6)

expl(w2, w1)+nsubj(w2, w3)+ prep(w3, w4)+ pobj(w4, w5) ⇒ 〈w2-w4 w3 w5〉 (D.6)

For instance,

there are 100 departments in the company.

expl(are-2, there-1) num(departments-4, 100-3)
nsubj(are-2, departments-4) prep(departments-4, in-5)
det(company-7, the-6) pobj(in-5, company-7)

prep(w4, w1)+ pobj(w1, w2)+ expl(w4, w3)+nsubj(w4, w5) ⇒ 〈w4-w1 w5 w2〉 (D.7)

For instance,

in the company, there are 100 departments.

prep(are-6, in-1) det(company-3, the-2)
pobj(in-1, company-3) expl(are-6, there-5)
num(departments-8, 100-7) nsubj(are-6, departments-8)
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expl(w3, w1) + cop(w3, w2) + prep(w3, w4) + pobj(w4, w5) ⇒ 〈w2-w4 w3 w5〉 (D.8)

For instance,

there can be multiple branches in the same city.

expl(branches-5, there-1) aux(branches-5, can-2)
cop(branches-5, be-3) amod(branches-5, multiple-4)
prep(branches-5, in-6) det(city-9, the-7)
amod(city-9, same-8) pobj(in-6, city-9)

prep(w5, w1) + pobj(w1, w2) + expl(w5, w3) + cop(w5, w4) ⇒ 〈w4-w2 w5 w2〉 (D.9)

For instance,

in the same city, there can be multiple branches.

prep(branches-10, in-1) det(city-4, the-2)
amod(city-4, same-3) pobj(in-1, city-4)
expl(branches-10, there-6) aux(branches-10, can-7)
cop(branches-10, be-8) amod(branches-10, multiple-9)

expl(w2, w1) + nsubj(w2, w3) + partmod(w3, w4)+prep(w4, w5) + pobj(w5, w6)

⇒ 〈w4-w5 w3 w6〉 (D.10)

For instance,

there are five worker unions represented in the company.

expl(are-2, there-1) num(unions-5, five-3)
nn(unions-5, worker-4) nsubj(are-2, unions-5)
partmod(unions-5, represented-6) prep(represented-6, in-7)
det(company-9, the-8) pobj(in-7, company-9)
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nsubjpass(w2, w1) + prep(w2, w3) + pobj(w3, w4) ⇒ 〈w2-w3 w1 w4〉 (D.11)

For instance,

plants are divided into departments.

nsubjpass(divided-3, plants-1) auxpass(divided-3, are-2)
prep(divided-3, into-4) pobj(into-4, departments-5)

nsubjpass(w2, w1) + agent(w2, w3) ⇒ 〈w2 w3 w1〉 (D.12)

For instance,

each project is controlled by a department.

det(project-2, each-1) nsubjpass(controlled-4, project-2)
auxpass(controlled-4, is-3) det(department-7, a-6)
agent(controlled-4, department-7

nsubjpass(w2, w1) + xcomp(w2, w3) + dobj(w3, w4) ⇒ 〈w3 w1 w4〉 (D.13)

For instance,

doctors are allowed to give treatments.

nsubjpass(allowed-3, doctors-1) auxpass(allowed-3, are-2)
aux(give-5, to-4) xcomp(allowed-3, give-5)
dobj(give-5, treatments-6)

nsubjpass(w2, w1) + purpcl(w2, w3) + prep(w3,w4) + pobj(w4, w5)

⇒ 〈w3-w4 w1 w5〉 (D.14)

For instance,

the team will be invited to participate in each season.

det(team-2, the-1) nsubjpass(invited-5, team-2)
aux(invited-5, will-3) auxpass(invited-5, be-4)
aux(participate-7, to-6) purpcl(invited-5, participate-7)
prep(participate-7, in-8) det(season-10, each-9)
pobj(in-8, season-10)
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nsubjpass(w2, w1) + xcomp(w2, w3) + prep(w3,w4) + pobj(w4, w5)

⇒ 〈w3-w4 w1 w5〉 (D.15)

For instance,

employees are allowed to work on serveral projects.

nsubjpass(allowed-3, employees-1) auxpass(allowed-3, are-2)
aux(work-5, to-4) xcomp(allowed-3, work-5)
prep(work-5, on-6) amod(projects-8, serveral-7)
pobj(on-6, projects-8)

rcmod(w1, w2) + nsubj(w2, w3) + dobj(w2, w4) ⇒ 〈w2 w1 w4〉 (D.16)

For instance,

there is a business that owns a softball complex.

expl(is-2, there-1) det(business-4, a-3)
nsubj(is-2, business-4) nsubj(owns-6, that-5)
rcmod(business-4, owns-6) det(complex-9, a-7)
amod(complex-9, softball-8) dobj(owns-6, complex-9)

rcmod(w1, w3) + nsubjpass(w3, w2) + prep(w3,w4) + pobj(w4, w5)

⇒ 〈w3-w4 w1 w5〉 (D.17)

For instance,

an employee may work on several projects, which are controlled by the
same department.

det(employee-2, an-1) nsubj(work-4, employee-2)
aux(work-4, may-3) prep(work-4, on-5)
amod(projects-7, several-6) pobj(on-5, projects-7)
nsubjpass(controlled-11, which-9) auxpass(controlled-11, are-10)
rcmod(projects-7, controlled-11) prep(controlled-11, by-12)
det(department-15, the-13) amod(department-15, same-14)
pobj(by-12, department-15)
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partmod(w1, w2) + prep(w2, w3) + pobj(w3, w4) ⇒ 〈w2-w3 w1 w4〉 (D.18)

For instance,

the company has 50 plants located in 40 states.

det(company-2, the-1) nsubj(has-3, company-2)
num(plants-5, 50-4) dobj(has-3, plants-5)
partmod(plants-5, located-6) prep(located-6, in-7)
num(states-9, 40-8) pobj(in-7, states-9)

partmod(w1, w2) + dobj(w2, w3) ⇒ 〈w2 w1 w3〉 (D.19)

For instance,

Each season consists of several leagues and teams, with each team
playing several games.

det(season-2, Each-1) nsubj(consists-3, season-2)
prep(consists-3, of-4) amod(leagues-6, several-5)
pobj(of-4, leagues-6) cc(leagues-6, and-7)
conj(leagues-6, teams-8) prep(consists-3, with-10)
det(team-12, each-11) pobj(with-10, team-12)
partmod(team-12, playing-13) amod(games-15, several-14)
dobj(playing-13, games-15)
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APPENDIX E

AN ENTITY ATTACHMENT EXAMPLE

The following are the top three parses from the Link Parser for the sentence “the company

has 50 plants located in 40 states and approximately 100,000 employees.”

Linkage 1, cost vector = (UNUSED=0 DIS=0 AND=1 LEN=19)
Sublinkage 1 (because of the coordinating conjunction):

+----Op----+ +---Jp---+
+--D*u-+---Ss--+ +-Dmcn+---Mv---+--MVp-+ +-Dmcn+
| | | | | | | | |

the company.n has.v 50 plants.n located.v in 40 states.n and approximately

100,000 employees.n

Sublinkage 2 (because of the coordinating conjunction):

+----Op----+ +---------------------Jp--------
+--D*u-+---Ss--+ +-Dmcn+---Mv---+--MVp-+ +----EN-
| | | | | | | |

the company.n has.v 50 plants.n located.v in 40 states.n and approximately

-------------+
---+---Dmcn--+

| |
100,000 employees.n
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Linkage 2, cost vector = (UNUSED=0 DIS=0 AND=1 LEN=22)
Sublinkage 1 (because of the coordinating conjunction):

+------------MVp-----------+
+----Op----+ +---Jp---+

+--D*u-+---Ss--+ +-Dmcn+---Mv---+ | +-Dmcn+
| | | | | | | | |

the company.n has.v 50 plants.n located.v in 40 states.n and approximately

100,000 employees.n

Sublinkage 2 (because of the coordinating conjunction):

+------------MVp-----------+
+----Op----+ +---------------------Jp--------

+--D*u-+---Ss--+ +-Dmcn+---Mv---+ | +----EN-
| | | | | | | |

the company.n has.v 50 plants.n located.v in 40 states.n and approximately

-------------+
---+---Dmcn--+

| |
100,000 employees.n

Linkage 3, cost vector = (UNUSED=0 DIS=0 AND=3 LEN=27)
Sublinkage 1 (because of the coordinating conjunction):

+----Op----+ +---Jp---+
+--D*u-+---Ss--+ +-Dmcn+---Mv---+--MVp-+ +-Dmcn+
| | | | | | | | |

the company.n has.v 50 plants.n located.v in 40 states.n and approximately

100,000 employees.n

Sublinkage 2 (because of the coordinating conjunction):
+-----------------------------------Op---------------------

+--D*u-+---Ss--+ +----EN-
| | | |

the company.n has.v 50 plants.n located.v in 40 states.n and approximately

-------------+
---+---Dmcn--+

| |
100,000 employees.n
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APPENDIX F

CLIPS RULES

(defrule nsubj_dobj
"extract subject-direct object tuple"
(td (td_name nsubj) (word1 ?v1) (position1 ?p1) (word2 ?n1)

(position2 ?p0) (sent_id ?s1))
(td (td_name dobj) (word1 ?v1) (position1 ?p1) (word2 ?n2)

(position2 ?p2) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2))
=>
(assert (tuple (relation ?v1) (relation_position ?p1)

(entity1 ?n1) (entity1_position ?p0)
(entity2 ?n2) (entity2_position ?p2)
(rule a0) (sid ?s1))))

(defrule nsubj_prep
"extract subject-direct object tuple"
(td (td_name nsubj) (word1 ?v1) (position1 ?p1) (word2 ?n1)

(position2 ?p0) (sent_id ?s1))
(td (td_name prep) (word1 ?v1) (position1 ?p1) (word2 ?w1)

(position2 ?p2) (sent_id ?s1))
(td (td_name pobj) (word1 ?w1) (position1 ?p2) (word2 ?n2)

(position2 ?p3) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2 ?p3))
=>
(assert (tuple (relation ?v1) (relation_position ?p1)

(relation_supplement ?w1)
(relation_supplement_position ?p2)
(entity1 ?n1) (entity1_position ?p0)
(entity2 ?n2) (entity2_position ?p3)
(rule a1) (sid ?s1))))
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(defrule nsubj_xcomp_dobj
"extract subject xcomp direct object tuple"
(td (td_name nsubj) (word1 ?v1) (position1 ?p1) (word2 ?n1)

(position2 ?p0) (sent_id ?s1))
(td (td_name xcomp) (word1 ?v1) (position1 ?p1) (word2 ?v2)

(position2 ?p2) (sent_id ?s1))
(td (td_name dobj) (word1 ?v2) (position1 ?p2) (word2 ?n3)

(position2 ?p3) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2 ?p3))
=>
(assert (tuple (relation ?v2) (relation_position ?p2)

(entity1 ?n1) (entity1_position ?p0)
(entity2 ?n3) (entity2_position ?p3)
(rule a2) (sid ?s1))))

(defrule nsubj_xcomp_prep_pobj
"extract subject xcomp prep pobj tuple"
(td (td_name nsubj) (word1 ?v1) (position1 ?p1) (word2 ?n1)

(position2 ?p0) (sent_id ?s1))
(td (td_name xcomp) (word1 ?v1) (position1 ?p1) (word2 ?v2)

(position2 ?p2) (sent_id ?s1))
(td (td_name prep) (word1 ?v2) (position1 ?p2) (word2 ?w1)

(position2 ?p3) (sent_id ?s1))
(td (td_name pobj) (word1 ?w1) (position1 ?p3) (word2 ?n2)

(position2 ?p4) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2 ?p3 ?p4))
=>
(assert (tuple (relation ?v2) (relation_position ?p2)

(relation_supplement ?w1)
(relation_supplement_position ?p3)
(entity1 ?n1) (entity1_position ?p0)
(entity2 ?n2) (entity2_position ?p4)
(rule a3) (sid ?s1))))

(defrule nsubj_aux_cop
"extract subject aux cop hierarchical structure, IS-A"
(td (td_name nsubj) (word1 ?n2) (position1 ?p4) (word2 ?n1)

(position2 ?p1) (sent_id ?s1))
(td (td_name aux) (word1 ?n2) (position1 ?p4) (word2 ?v1)

(position2 ?p2) (sent_id ?s1))
(td (td_name cop) (word1 ?n2) (position1 ?p4) (word2 ?v2)

(position2 ?p3) (sent_id ?s1))
(test (< ?p1 ?p2 ?p3 ?p4))

=>
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(assert (tuple (relation ?v2) (relation_position ?p3)
(entity1 ?n1) (entity1_position ?p1)
(entity2 ?n2) (entity2_position ?p4)
(rule a4) (sid ?s1))))

;;------------------------------------------------------------
;; Expletive sentence rules

(defrule expl_nsubj_prep_pobj
"extract expletive tuple"
(td (td_name expl) (word1 ?v1) (position1 ?p1) (word2 ?w1)

(position2 ?p0) (sent_id ?s1))
(td (td_name nsubj) (word1 ?v1) (position1 ?p1) (word2 ?n1)

(position2 ?p2) (sent_id ?s1))
(td (td_name prep) (word1 ?n1) (position1 ?p2) (word2 ?w2)

(position2 ?p3) (sent_id ?s1))
(td (td_name pobj) (word1 ?w2) (position1 ?p3) (word2 ?n2)

(position2 ?p4) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2 ?p3 ?p4))
=>
(assert (tuple (relation ?v1) (relation_position ?p1)

(relation_supplement ?w2)
(relation_supplement_position ?p3)
(entity1 ?n1) (entity1_position ?p2)
(entity2 ?n2) (entity2_position ?p4)
(rule e0) (sid ?s1))))

(defrule prep_pobj_expl_nsubj
"extract expletive tuple"
(td (td_name prep) (word1 ?v1) (position1 ?p3) (word2 ?w1)

(position2 ?p0) (sent_id ?s1))
(td (td_name pobj) (word1 ?w1) (position1 ?p0) (word2 ?n1)

(position2 ?p1) (sent_id ?s1))
(td (td_name expl) (word1 ?v1) (position1 ?p3) (word2 ?w2)

(position2 ?p2) (sent_id ?s1))
(td (td_name nsubj) (word1 ?v1) (position1 ?p3) (word2 ?n2)

(position2 ?p4) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2 ?p3 ?p4))
=>
(assert (tuple (relation ?v1) (relation_position ?p3)

(relation_supplement ?w1)
(relation_supplement_position ?p0)
(entity1 ?n2) (entity1_position ?p4)
(entity2 ?n1) (entity2_position ?p1)
(rule e1) (sid ?s1))))
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(defrule expl_cop_prep_pobj
"extract expletive tuple"
(td (td_name expl) (word1 ?n1) (position1 ?p2) (word2 ?w1)

(position2 ?p0) (sent_id ?s1))
(td (td_name cop) (word1 ?n1) (position1 ?p2) (word2 ?v1)

(position2 ?p1) (sent_id ?s1))
(td (td_name prep) (word1 ?n1) (position1 ?p2) (word2 ?w2)

(position2 ?p3) (sent_id ?s1))
(td (td_name pobj) (word1 ?w2) (position1 ?p3) (word2 ?n2)

(position2 ?p4) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2 ?p3 ?p4))
=>
(assert (tuple (relation ?v1) (relation_position ?p1)

(relation_supplement ?w2)
(relation_supplement_position ?p3)
(entity1 ?n1) (entity1_position ?p2)
(entity2 ?n2) (entity2_position ?p4)
(rule e2) (sid ?s1))))

(defrule prep_pobj_exp1_cop
"extract expletive tuple"
(td (td_name prep) (word1 ?n1) (position1 ?p4) (word2 ?w1)

(position2 ?p0) (sent_id ?s1))
(td (td_name pobj) (word1 ?w1) (position1 ?p0) (word2 ?n2)

(position2 ?p1) (sent_id ?s1))
(td (td_name expl) (word1 ?n1) (position1 ?p4) (word2 ?w2)

(position2 ?p2) (sent_id ?s1))
(td (td_name cop) (word1 ?n1) (position1 ?p4) (word2 ?v1)

(position2 ?p3) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2 ?p3 ?p4))
=>
(assert (tuple (relation ?v1) (relation_position ?p3)

(relation_supplement ?w1)
(relation_supplement_position ?p0)
(entity1 ?n1) (entity1_position ?p4)
(entity2 ?n2) (entity2_position ?p1)
(rule e3) (sid ?s1))))

(defrule expl_nsubj_partmod_prep_pobj
"extract expletive tuple"
(td (td_name expl) (word1 ?v1) (position1 ?p1) (word2 ?w1)

(position2 ?p0) (sent_id ?s1))
(td (td_name nsubj) (word1 ?v1) (position1 ?p1) (word2 ?n1)

(position2 ?p2) (sent_id ?s1))
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(td (td_name partmod) (word1 ?n1) (position1 ?p2) (word2 ?v2)
(position2 ?p3) (sent_id ?s1))

(td (td_name prep) (word1 ?v2) (position1 ?p3) (word2 ?w2)
(position2 ?p4) (sent_id ?s1))

(td (td_name pobj) (word1 ?w2) (position1 ?p4) (word2 ?n2)
(position2 ?p5) (sent_id ?s1))

(test (< ?p0 ?p1 ?p2 ?p3 ?p4 ?p5))
=>
(assert (tuple (relation ?v2) (relation_position ?p3)

(relation_supplement ?w2)
(relation_supplement_position ?p4)
(entity1 ?n1) (entity1_position ?p2)
(entity2 ?n2) (entity2_position ?p5)
(rule e4) (sid ?s1))))

;; expletive with coordinating conjuction (specific)
(defrule expl_nsubj_partmod_prep_pobj
"extract expletive tuple there be x and y in z"
(td (td_name expl) (word1 ?v1) (position1 ?p1) (word2 ?w1)

(position2 ?p0) (sent_id ?s1))
(td (td_name nsubj) (word1 ?v1) (position1 ?p1) (word2 ?n1)

(position2 ?p2) (sent_id ?s1))
(td (td_name cc) (word1 ?n1) (position1 ?p2) (word2 ?w0)

(position2 ?p3) (sent_id ?s1))
(td (td_name conj) (word1 ?n1) (position1 ?p2) (word2 ?n2)

(position2 ?p4) (sent_id ?s1))
(td (td_name prep) (word1 ?n2) (position1 ?p4) (word2 ?w2)

(position2 ?p5) (sent_id ?s1))
(td (td_name pobj) (word1 ?w2) (position1 ?p5) (word2 ?n3)

(position2 ?p6) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2 ?p3 ?p4 ?p5 ?p6))
=>
(assert (tuple (relation ?v1) (relation_position ?p1)

(relation_supplement ?w2)
(relation_supplement_position ?p5)
(entity1 ?n1) (entity1_position ?p2)
(entity2 ?n3) (entity2_position ?p6)
(rule e5) (sid ?s1))))
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;;------------------------------------------------------------
;; Passive sentence rules

(defrule nsubjpass_prep_pobj
"extract passive subj prep pobj tuple"
(td (td_name nsubjpass) (word1 ?v1) (position1 ?p1)

(word2 ?n1) (position2 ?p0) (sent_id ?s1))
(td (td_name prep) (word1 ?v1) (position1 ?p1) (word2 ?w1)

(position2 ?p2) (sent_id ?s1))
(td (td_name pobj) (word1 ?w1) (position1 ?p2) (word2 ?n2)

(position2 ?p3) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2 ?p3))
=>
(assert (tuple (relation ?v1) (relation_position ?p1)

(relation_supplement ?w1)
(relation_supplement_position ?p2)
(entity1 ?n1) (entity1_position ?p0)
(entity2 ?n2) (entity2_position ?p3)
(rule p0) (sid ?s1))))

(defrule nsubjpass_agent
"extract passive subjpass agent tuple"
(td (td_name nsubjpass) (word1 ?v1) (position1 ?p1) (word2 ?n1)

(position2 ?p0) (sent_id ?s1))
(td (td_name agent) (word1 ?v1) (position1 ?p1) (word2 ?n2)

(position2 ?p2) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2))
=>
(assert (tuple (relation ?v1) (relation_position ?p1)

(entity1 ?n2) (entity1_position ?p2)
(entity2 ?n1) (entity2_position ?p0)
(rule p1) (sid ?s1))))

(defrule nsubjpass_xcomp_dobj
"extract passive subjpass xcomp dobj tuple"
(td (td_name nsubjpass) (word1 ?v1) (position1 ?p1) (word2 ?n1)

(position2 ?p0) (sent_id ?s1))
(td (td_name xcomp) (word1 ?v1) (position1 ?p1) (word2 ?v2)

(position2 ?p2) (sent_id ?s1))
(td (td_name dobj) (word1 ?v2) (position1 ?p2) (word2 ?n2)

(position2 ?p3) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2 ?p3))
=>
(assert (tuple (relation ?v2) (relation_position ?p2)

(entity1 ?n1) (entity1_position ?p0)
(entity2 ?n2) (entity2_position ?p3)
(rule p2) (sid ?s1))))
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(defrule nsubjpass_purpcl_prep_pobj
"extract passive subjpass purpcl tuple"
(td (td_name nsubjpass) (word1 ?v1) (position1 ?p1) (word2 ?n1)

(position2 ?p0) (sent_id ?s1))
(td (td_name purpcl) (word1 ?v1) (position1 ?p1) (word2 ?v2)

(position2 ?p2) (sent_id ?s1))
(td (td_name prep) (word1 ?v2) (position1 ?p2) (word2 ?w1)

(position2 ?p3) (sent_id ?s1))
(td (td_name pobj) (word1 ?w1) (position1 ?p3) (word2 ?n2)

(position2 ?p4) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2 ?p3 ?p4))
=>
(assert (tuple (relation ?v2) (relation_position ?p2)

(relation_supplement ?w1)
(relation_supplement_position ?p3)
(entity1 ?n1) (entity1_position ?p0)
(entity2 ?n2) (entity2_position ?p4)
(rule p3) (sid ?s1))))

(defrule nsubjpass_xcomp_prep_pobj
"extract passive subjpass xcomp pobj tuple"
(td (td_name nsubjpass) (word1 ?v1) (position1 ?p1) (word2 ?n1)

(position2 ?p0) (sent_id ?s1))
(td (td_name xcomp) (word1 ?v1) (position1 ?p1) (word2 ?v2)

(position2 ?p2) (sent_id ?s1))
(td (td_name prep) (word1 ?v2) (position1 ?p2) (word2 ?w1)

(position2 ?p3) (sent_id ?s1))
(td (td_name pobj) (word1 ?w1) (position1 ?p3) (word2 ?n2)

(position2 ?p4) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2 ?p3 ?p4))
=>
(assert (tuple (relation ?v2) (relation_position ?p2)

(relation_supplement ?w1)
(relation_supplement_position ?p3)
(entity1 ?n1) (entity1_position ?p0)
(entity2 ?n2) (entity2_position ?p4)
(rule p4) (sid ?s1))))
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;;------------------------------------------------------------
;; Subordinate clause and other rules

(defrule rcmod_nsubj_dobj
"relative clasue tuple"
(td (td_name rcmod) (word1 ?n0) (position1 ?p0) (word2 ?v1)

(position2 ?p2) (sent_id ?s1))
(td (td_name nsubj) (word1 ?v1) (position1 ?p2)

(word2 ?n1&:(member$ ?n1 ?*dclause*))
(position2 ?p1) (sent_id ?s1))

(td (td_name dobj) (word1 ?v1) (position1 ?p2) (word2 ?n2)
(position2 ?p3) (sent_id ?s1))

(test (< ?p0 ?p1 ?p2 ?p3))
=>
(assert (tuple (relation ?v1) (relation_position ?p2)

(entity1 ?n0) (entity1_position ?p0)
(entity2 ?n2) (entity2_position ?p3)
(rule s0) (sid ?s1))))

(defrule rcmod_nsubjpass_prep_pobj
"relative clasue tuple"
(td (td_name rcmod) (word1 ?n0) (position1 ?p0) (word2 ?v1)

(position2 ?p2) (sent_id ?s1))
(td (td_name nsubjpass) (word1 ?v1) (position1 ?p2)

(word2 ?n1&:(member$ ?n1 ?*dclause*))
(position2 ?p1) (sent_id ?s1))

(td (td_name prep) (word1 ?v1) (position1 ?p2) (word2 ?w1)
(position2 ?p3) (sent_id ?s1))

(td (td_name pobj) (word1 ?w1) (position1 ?p3) (word2 ?n2)
(position2 ?p4) (sent_id ?s1))

(test (< ?p0 ?p1 ?p2 ?p3 ?p4))
=>
(assert (tuple (relation ?v1) (relation_position ?p2)

(relation_supplement ?w1)
(relation_supplement_position ?p3)
(entity1 ?n0) (entity1_position ?p0)
(entity2 ?n2) (entity2_position ?p4)
(rule s1) (sid ?s1))))

(defrule partmod_prep_pobj
"past particle modification"
(td (td_name partmod) (word1 ?n0) (position1 ?p0) (word2 ?v1)

(position2 ?p1) (sent_id ?s1))
(td (td_name prep) (word1 ?v1) (position1 ?p1) (word2 ?w1)

(position2 ?p2) (sent_id ?s1))
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(td (td_name pobj) (word1 ?w1) (position1 ?p2) (word2 ?n1)
(position2 ?p3) (sent_id ?s1))

(test (< ?p0 ?p1 ?p2 ?p3))
=>
(assert (tuple (relation ?v1) (relation_position ?p1)

(relation_supplement ?w1)
(relation_supplement_position ?p2)
(entity1 ?n0) (entity1_position ?p0)
(entity2 ?n1) (entity2_position ?p3)
(rule s2) (sid ?s1))))

(defrule partmod_dobj
"verb + ing"
(td (td_name partmod) (word1 ?n0) (position1 ?p0) (word2 ?v1)

(position2 ?p1) (sent_id ?s1))
(td (td_name dobj) (word1 ?v1) (position1 ?p1) (word2 ?n1)

(position2 ?p2) (sent_id ?s1))
(test (< ?p0 ?p1 ?p2))
=>
(assert (tuple (relation ?v1) (relation_position ?p1)

(entity1 ?n0) (entity1_position ?p0)
(entity2 ?n1) (entity2_position ?p2)
(rule s3) (sid ?s1))))

;;-----------------------------------------------------------------
;; of structure

(defrule of_nsubj
"of structure rule of subject"
(td (td_name nsubj) (word1 ?v1) (position1 ?p4) (word2 ?n1)

(position2 ?p1) (sent_id ?s1))
(td (td_name prep) (word1 ?n1) (position1 ?p1) (word2 "of")

(position2 ?p2) (sent_id ?s1))
(td (td_name pobj) (word1 "of") (position1 ?p2) (word2 ?n2)

(position2 ?p3) (sent_id ?s1))
(tuple (relation ?v1) (relation_position ?p4)

(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?n1) (entity1_position ?p1)
(entity2 ?e2) (entity2_position ?e2p)
(rule ?ru) (sid ?s1))

(test (< ?p1 ?p2 ?p3 ?p4))
=>
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(assert (tuple (relation ?v1) (relation_position ?p4)
(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?n2) (entity1_position ?p3)
(entity2 ?e2) (entity2_position ?e2p)
(rule (sym-cat "of1-" ?ru)) (sid ?s1))))

(defrule of_nsubjpass
"of structure rule of subject passive"
(td (td_name nsubjpass) (word1 ?v1) (position1 ?p4) (word2 ?n1)

(position2 ?p1) (sent_id ?s1))
(td (td_name prep) (word1 ?n1) (position1 ?p1) (word2 "of")

(position2 ?p2) (sent_id ?s1))
(td (td_name pobj) (word1 "of") (position1 ?p2) (word2 ?n2)

(position2 ?p3) (sent_id ?s1))
(tuple (relation ?v1) (relation_position ?p4)

(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?n1) (entity1_position ?p1)
(entity2 ?e2) (entity2_position ?e2p)
(rule ?ru) (sid ?s1))

(test (< ?p1 ?p2 ?p3 ?p4))
=>
(assert (tuple (relation ?v1) (relation_position ?p4)

(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?n2) (entity1_position ?p3)
(entity2 ?e2) (entity2_position ?e2p)
(rule (sym-cat "of2-" ?ru)) (sid ?s1))))

(defrule of_dobj
"of structure rule of direct object"
(td (td_name dobj) (word1 ?v1) (position1 ?p1) (word2 ?e2)

(position2 ?e2p) (sent_id ?s1))
(td (td_name prep) (word1 ?e2) (position1 ?e2p) (word2 "of")

(position2 ?p2) (sent_id ?s1))
(td (td_name pobj) (word1 "of") (position1 ?p2) (word2 ?n2)

(position2 ?p3) (sent_id ?s1))
(tuple (relation ?v1) (relation_position ?p1)

(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?e1) (entity1_position ?e1p)
(entity2 ?e2) (entity2_position ?e2p)
(rule ?ru) (sid ?s1))

(test (< ?p1 ?e2p ?p2 ?p3))
=>
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(assert (tuple (relation ?v1) (relation_position ?p1)
(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?e1) (entity1_position ?e1p)
(entity2 ?n2) (entity2_position ?p3)
(rule (sym-cat "of3-" ?ru)) (sid ?s1))))

(defrule of_pobj
"of structure rule of prepostional object"
(td (td_name prep) (word1 ?v1) (position1 ?p1) (word2 ?rs)

(position2 ?rsp) (sent_id ?s1))
(td (td_name pobj) (word1 ?rs) (position1 ?rsp) (word2 ?e2)

(position2 ?e2p) (sent_id ?s1))
(td (td_name prep) (word1 ?e2) (position1 ?e2p) (word2 "of")

(position2 ?p3) (sent_id ?s1))
(td (td_name pobj) (word1 "of") (position1 ?p3) (word2 ?n2)

(position2 ?p4) (sent_id ?s1))
(tuple (relation ?v1) (relation_position ?p1)

(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?e1) (entity1_position ?e1p)
(entity2 ?e2) (entity2_position ?e2p)
(rule ?ru) (sid ?s1))

(test (< ?p1 ?rsp ?e2p ?p3 ?p4))
=>
(assert (tuple (relation ?v1) (relation_position ?p1)

(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?e1) (entity1_position ?e1p)
(entity2 ?n2) (entity2_position ?p4)
(rule (sym-cat "of4-" ?ru)) (sid ?s1))))

;;------------------------------------------------------------------
;;Coordinating conjunctions
(defrule cc_subject
"coordinating conjunction on subject (entity1)"
(td (td_name cc) (word1 ?e1) (position1 ?e1p) (word2 ?w0)

(position2 ?p1) (sent_id ?s1))
(td (td_name conj) (word1 ?e1) (position1 ?e1p) (word2 ?n2)

(position2 ?p2) (sent_id ?s1))
(tuple (relation ?r) (relation_position ?rp)

(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?e1) (entity1_position ?e1p)
(entity2 ?e2) (entity2_position ?e2p)
(sid ?s1))

(test (< ?e1p ?p1 ?p2))
=>
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(assert (tuple (relation ?r) (relation_position ?rp)
(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?n2) (entity1_position ?p2)
(entity2 ?e2) (entity2_position ?e2p)
(rule cc1) (sid ?s1))))

(defrule cc_object
"coordinating conjunction on object (entity2)"
(td (td_name cc) (word1 ?e2) (position1 ?e2p) (word2 ?w0)

(position2 ?p1) (sent_id ?s1))
(td (td_name conj) (word1 ?e2) (position1 ?e2p) (word2 ?n2)

(position2 ?p2) (sent_id ?s1))
(tuple (relation ?r) (relation_position ?rp)

(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?e1) (entity1_position ?e1p)
(entity2 ?e2) (entity2_position ?e2p)
(sid ?s1))

(test (< ?e1p ?e2p ?p1 ?p2))
=>
(assert (tuple (relation ?r) (relation_position ?rp)

(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?e1) (entity1_position ?e1p)
(entity2 ?n2) (entity2_position ?p2)
(rule cc2) (sid ?s1))))

(defrule cc_verb_and_pobj
"coordinating conjunction on verb (relation) and obj"
(td (td_name nsubj) (word1 ?r) (position1 ?rp) (word2 ?e1)

(position2 ?e1p) (sent_id ?s1))
(td (td_name cc) (word1 ?r) (position1 ?rp) (word2 ?w0)

(position2 ?p1) (sent_id ?s1))
(td (td_name conj) (word1 ?r) (position1 ?rp) (word2 ?v2)

(position2 ?p2) (sent_id ?s1))
(td (td_name prep) (word1 ?v2) (position1 ?p2) (word2 ?w1)

(position2 ?p3) (sent_id ?s1))
(td (td_name pobj) (word1 ?w1) (position1 ?p3) (word2 ?n2)

(position2 ?p4) (sent_id ?s1))
(tuple (relation ?r) (relation_position ?rp)

(entity1 ?e1) (entity1_position ?e1p)
(entity2 ?e2) (entity2_position ?e2p)
(sid ?s1))

(test (< ?e1p ?rp ?e2p ?p1 ?p2 ?p3 ?p4))
=>
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(assert (tuple (relation ?v2) (relation_position ?p2)
(relation_supplement ?w1)
(relation_supplement_position ?p3)
(entity1 ?e1) (entity1_position ?e1p)
(entity2 ?n2) (entity2_position ?p4)
(rule cc31) (sid ?s1))))

(defrule cc_verb_and_dobj
"coordinating conjunction on verb (relation) and obj"
(td (td_name nsubj) (word1 ?r) (position1 ?rp) (word2 ?e1)

(position2 ?e1p) (sent_id ?s1))
(td (td_name cc) (word1 ?r) (position1 ?rp) (word2 ?w0)

(position2 ?p1) (sent_id ?s1))
(td (td_name conj) (word1 ?r) (position1 ?rp) (word2 ?v2)

(position2 ?p2) (sent_id ?s1))
(td (td_name dobj) (word1 ?v2) (position1 ?p2) (word2 ?n2)

(position2 ?p3) (sent_id ?s1))
(tuple (relation ?r) (relation_position ?rp)

(entity1 ?e1) (entity1_position ?e1p)
(entity2 ?e2) (entity2_position ?e2p)
(sid ?s1))

(test (< ?e1p ?rp ?e2p ?p1 ?p2 ?p3))
=>
(assert (tuple (relation ?v2) (relation_position ?p2)

(entity1 ?e1) (entity1_position ?e1p)
(entity2 ?n2) (entity2_position ?p3)
(rule cc32) (sid ?s1))))

;; this one preempt cc3
(defrule cc_verb_and_obj_further
"coordinating conjunction on verb (relation) and obj further"
(td (td_name cc) (word1 ?r) (position1 ?rp) (word2 ?w0)

(position2 ?p1) (sent_id ?s1))
(td (td_name advmod) (word1 ?v2) (position1 ?p3) (word2 "further")

(position2 ?p2) (sent_id ?s1))
(td (td_name conj) (word1 ?r) (position1 ?rp) (word2 ?v2)

(position2 ?p3) (sent_id ?s1))
(td (td_name prep) (word1 ?v2) (position1 ?p3) (word2 ?w1)

(position2 ?p4) (sent_id ?s1))
(td (td_name pobj) (word1 ?w1) (position1 ?p4) (word2 ?n2)

(position2 ?p5) (sent_id ?s1))
(tuple (relation ?r) (relation_position ?rp)

(entity1 ?e1) (entity1_position ?e1p)
(entity2 ?e2) (entity2_position ?e2p)
(sid ?s1))

(test (< ?e1p ?rp ?e2p ?p1 ?p2 ?p3 ?p4 ?p5))
=>

154



(assert (tuple (relation ?v2) (relation_position ?p3)
(relation_supplement ?w1)
(relation_supplement_position ?p4)
(entity1 ?e2) (entity1_position ?e2p)
(entity2 ?n2) (entity2_position ?p5)
(rule cc3f) (sid ?s1))) )

(defrule cc_preconj_dep
"coordinating conjunction ... either ... or"
(td (td_name preconj) (word1 ?e2) (position1 ?e2p) (word2 ?w1)

(position2 ?p1) (sent_id ?s1))
(td (td_name cc) (word1 ?e2) (position1 ?e2p) (word2 ?w2)

(position2 ?p2) (sent_id ?s1))
(td (td_name dep) (word1 ?e2) (position1 ?e2p) (word2 ?n2)

(position2 ?p3) (sent_id ?s1))
(tuple (relation ?r) (relation_position ?rp)

(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?e1) (entity1_position ?e1p)
(entity2 ?e2) (entity2_position ?e2p)
(sid ?s1))

(test (< ?e1p ?rp ?p1 ?e2p ?p2 ?p3))
=>
(assert (tuple (relation ?r) (relation_position ?rp)

(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?e1) (entity1_position ?e1p)
(entity2 ?n2) (entity2_position ?p3)
(rule cc4) (sid ?s1))))

;;-------------------------------------------------------------------
;;Compound noun rules

(defrule compound_noun_nn1
"compound noun nn rule for entity1"
?t1 <- (tuple (entity1 ?e1) (entity1_position ?p1)

(entity1_supplement "") (sid ?s1))
(td (td_name nn) (word1 ?e1) (position1 ?p1) (word2 ?w0)

(position2 ?p0) (sent_id ?s1))
=>
(modify ?t1 (entity1_supplement ?w0) (entity1_supplement_position ?p0)))
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(defrule compound_noun_nn2
"compound noun nn rule for entity2"
?t1 <- (tuple (entity2 ?e1) (entity2_position ?p1)

(entity2_supplement "") (sid ?s1))
(td (td_name nn) (word1 ?e1) (position1 ?p1) (word2 ?w0)

(position2 ?p0) (sent_id ?s1))
=>
(modify ?t1 (entity2_supplement ?w0) (entity2_supplement_position ?p0)))

;;Cardinality according to POS
(defrule cardinality_one_NN1
"determing entity1 cardinality according NN"
?t1 <- (tuple (entity1 ?e1) (entity1_position ?p)

(entity1_cardinality nil) (sid ?s1))
(unit (word ?e1) (position ?p) (pos NN) (sent_id ?s1))
=>
(modify ?t1 (entity1_cardinality ONE)))

(defrule cardinality_one_NN2
"determing entity2 cardinality according NN"
?t1 <- (tuple (entity2 ?e2) (entity2_position ?p)

(entity2_cardinality nil) (sid ?s1))
(unit (word ?e2) (position ?p) (pos NN) (sent_id ?s1))
=>
(modify ?t1 (entity2_cardinality ONE)))

(defrule cardinality_many_NNS1
"determing entity1 cardinality according NNS"
?t1 <- (tuple (entity1 ?e1) (entity1_position ?p)

(entity1_cardinality nil) (sid ?s1))
(unit (word ?e1) (position ?p) (pos NNS) (sent_id ?s1))
=>
(modify ?t1 (entity1_cardinality MANY)))

(defrule cardinality_one_NNS2
"determing entity2 cardinality according NNS"
?t1 <- (tuple (entity2 ?e2) (entity2_position ?p)

(entity2_cardinality nil) (sid ?s1))
(unit (word ?e2) (position ?p) (pos NNS) (sent_id ?s1))
=>
(modify ?t1 (entity2_cardinality MANY)))
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;; cardinality adjustments
;; "each student, every student"
(defrule cardinality_one_NN1_adjust1
"adjust cardinality for exceptions"
?t1 <- (tuple (entity1_position ?p) (entity1_cardinality ONE) (sid ?s1))
(unit (word "each") (position ?p1&:(eq ?p1 (- ?p 1))) (sent_id ?s1))
=>
(printout t "test" crlf)
(modify ?t1 (entity1_cardinality MANY)))

(defrule cardinality_one_NN2_adjust1
"adjust cardinality for exceptions"
?t1 <- (tuple (entity2_position ?p) (entity2_cardinality ONE) (sid ?s1))
(unit (word "each") (position ?p1&:(= ?p1 (- ?p 1))) (sent_id ?s1))
=>
(modify ?t1 (entity2_cardinality MANY)))

(defrule cardinality_one_NN1_adjust2
"adjust cardinality for exptions more_than_one, at_least_one"
?t1 <- (tuple (entity1_position ?p) (entity1_cardinality ONE) (sid ?s1))
(unit (word ?w&:(member$ ?w ?*many*))

(position ?p1&:(= ?p1 (- ?p 1))) (sent_id ?s1))
=>
(modify ?t1 (entity1_cardinality MANY)))

(defrule cardinality_one_NN2_adjust2
"adjust cardinality for exceptions"
?t1 <- (tuple (entity2_position ?p) (entity2_cardinality ONE) (sid ?s1))
(unit (word ?w&:(member$ ?w ?*many*))

(position ?p1&:(= ?p1 (- ?p 1))) (sent_id ?s1))
=>
(modify ?t1 (entity2_cardinality MANY)))

;;----------------------------------------------------------------------
;;get tuple base form
(defrule relation_base_form
"get the base form of the relation"
?t1 <- (tuple (relation ?r) (relation_position ?rp)

(sid ?s) (relation_base ""))
(unit (word ?r) (position ?rp) (sent_id ?s) (root ?root))
=>
(modify ?t1 (relation_base ?root)))
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(defrule entity1_base_form
"get the base form of the entity1"
?t1 <- (tuple (entity1 ?e1) (entity1_position ?e1p)

(sid ?s) (entity1_base ""))
(unit (word ?e1) (position ?e1p) (sent_id ?s) (root ?root))
=>
(modify ?t1 (entity1_base ?root)))

(defrule entity2_base_form
"get the base form of the entity2"
?t1 <- (tuple (entity2 ?e2) (entity2_position ?e2p)

(sid ?s) (entity2_base ""))
(unit (word ?e2) (position ?e2p) (sent_id ?s) (root ?root))
=>
(modify ?t1 (entity2_base ?root)))

;;--------------------------------------------------------------------
;; transform some of the entity to attributes
(defrule name_attribute1
"if entity1 is in typical attributes, then transform the entity
tuple to an attribute pair"

?t1 <- (tuple (entity1 ?e1) (entity1_position ?ep1)
(entity1_base ?eb1) (entity1_supplement ?es1)
(entity1_supplement_position ?esp1)
(entity2 ?e2) (entity2_position ?ep2)
(entity2_base ?eb2)
(entity2_supplement ?es2)
(entity2_supplement_position ?esp2))

(test(member$ ?eb2 ?*typical_attribute*))
=>
(assert(entity_attribute (entity ?e1) (entity_position ?ep1)

(entity_base ?eb1) (entity_supplement ?es1)
(entity_supplement_position ?esp1)
(attribute ?e2) (attribute_position ?ep2)
(attribute_base ?eb2) (attribute_supplement ?es2)
(attribute_supplement_position ?esp2)))

(retract ?t1))

(defrule name_attribute2
"if entity2 is in typical attributes, then transform the entity
tuple to an attribute pair"

?t1 <- (tuple (entity1 ?e1) (entity1_position ?ep1)
(entity1_base ?eb1&:(member$ ?eb1 ?*typical_attribute*))
(entity1_supplement ?es1)
(entity1_supplement_position ?esp1)
(entity2 ?e2) (entity2_position ?ep2)
(entity2_base ?eb2)

158



(entity2_supplement ?es2)
(entity2_supplement_position ?esp2))

=>
(assert (entity_attribute (entity ?e2) (entity_position ?ep2)

(entity_base ?eb2) (entity_supplement ?es2)
(entity_supplement_position ?esp2)
(attribute ?e1) (attribute_position ?ep1)
(attribute_base ?eb1) (attribute_supplement ?es1)
(attribute_supplement_position ?esp1)))

(retract ?t1))

(defrule verb_attribute_passive
"if the relation is in typical attribute verbs, then transform the
tuple to attribute"

?t1 <- (tuple (relation ?r) (relation_position ?rp)
(relation_base ?rb&:(member$ ?rb ?*typical_attribute_verb*))
(relation_supplement "by")
(relation_supplement_position ?rsp)
(entity1 ?e1) (entity1_position ?ep1)
(entity1_base ?eb1) (entity1_supplement ?es1)
(entity1_supplement_position ?esp1)
(entity2 ?e2) (entity2_position ?ep2)
(entity2_base ?eb2) (entity2_supplement ?es2)
(entity2_supplement_position ?esp2))

=>
(assert (entity_attribute (entity ?e1) (entity_position ?ep1)

(entity_base ?eb1) (entity_supplement ?es1)
(entity_supplement_position ?esp1)
(attribute ?e2) (attribute_position ?ep2)
(attribute_base ?eb2) (attribute_supplement ?es2)
(attribute_supplement_position ?esp2)))

(retract ?t1))

(defrule verb_attribute_active
"if the relation is in typical attribute verbs, then transfrom the
tuple to attribute"

?t1 <- (tuple (relation ?r) (relation_position ?rp)
(relation_base ?rb&:(member$ ?rb ?*typical_attribute_verb*))
(relation_supplement "")
(relation_supplement_position ?rsp)
(entity1 ?e1) (entity1_position ?ep1)
(entity1_base ?eb1) (entity1_supplement ?es1)
(entity1_supplement_position ?esp1)
(entity2 ?e2) (entity2_position ?ep2)
(entity2_base ?eb2) (entity2_supplement ?es2)
(entity2_supplement_position ?esp2))

=>
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(assert (entity_attribute (entity ?e2) (entity_position ?ep2)
(entity_base ?eb2) (entity_supplement ?es2)
(entity_supplement_position ?esp2)
(attribute ?e1) (attribute_position ?ep1)
(attribute_base ?eb1) (attribute_supplement ?es1)
(attribute_supplement_position ?esp1)))

(retract ?t1))

(defrule database_attribute
"if the entity is word database"
?t1 <- (entity_attribute (entity ?e) (entity_position ?ep)

(entity_base "database") (entity_supplement ?es)
(entity_supplement_position ?esp)
(attribute ?a) (attribute_position ?ap)
(attribute_base ?ab) (attribute_supplement ?as)
(attribute_supplement_position ?asp))

=>
(modify ?t1 (entity ?as) (entity_position ?asp) (entity_base ?as)

(entity_supplement "") (entity_supplement_position -1)
(attribute_supplement "") (attribute_supplement_position -1)))

;;-------------------------------------------------------------------------
;;combining tuples to triple
(defrule tuples_to_triple1
"combining tuples to triples"
(declare (salience -700))
?t1 <- (tuple (relation ?r) (relation_position ?rp)

(relation_base ?rb)
(relation_supplement "")
(entity1 ?e1) (entity1_position ?ep1)
(entity1_base ?eb1) (entity1_supplement ?es1)
(entity1_supplement_position ?esp1)
(entity1_cardinality ?ec1)
(entity2 ?e2) (entity2_position ?ep2)
(entity2_base ?eb2) (entity2_supplement ?es2)
(entity2_supplement_position ?esp2)
(entity2_cardinality ?ec2))

?t2 <- (tuple (relation ?r) (relation_position ?rp)
(relation_base ?rb)
(relation_supplement ?rs&:(neq ?rs ""))
(relation_supplement_position ?rsp)
(entity1 ?e1) (entity1_position ?ep1)
(entity1_base ?eb1) (entity1_supplement ?es1)
(entity1_supplement_position ?esp1)
(entity1_cardinality ?ec1)
(entity2 ?e3) (entity2_position ?ep3)
(entity2_base ?eb3) (entity2_supplement ?es3)
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(entity2_supplement_position ?esp3)
(entity2_cardinality ?ec3))

=>
(assert (triple (relation ?r) (relation_position ?rp)

(relation_base ?rb)
(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?e1) (entity1_position ?ep1)
(entity1_base ?eb1) (entity1_supplement ?es1)
(entity1_supplement_position ?esp1)
(entity1_cardinality ?ec1)
(entity2 ?e2) (entity2_position ?ep2)
(entity2_base ?eb2) (entity2_supplement ?es2)
(entity2_supplement_position ?esp2)
(entity2_cardinality ?ec2)
(entity3 ?e3) (entity3_position ?ep3)
(entity3_base ?eb3) (entity3_supplement ?es3)
(entity3_supplement_position ?esp3)
(entity3_cardinality ?ec3)))

(retract ?t1)
(retract ?t2))

(defrule tuples_to_triple12
"combining tuples to triples"
(declare (salience -700))
?t1 <- (tuple (relation ?r) (relation_position ?rp)

(relation_base ?rb)
(relation_supplement "")
(entity1 ?e1) (entity1_position ?ep1)
(entity1_base ?eb1) (entity1_supplement ?es1)
(entity1_supplement_position ?esp1)
(entity1_cardinality ?ec1)
(entity2 ?e2) (entity2_position ?ep2)
(entity2_base ?eb2) (entity2_supplement ?es2)
(entity2_supplement_position ?esp2)
(entity2_cardinality ?ec2))

?t2 <- (tuple (relation ?r) (relation_position ?rp)
(relation_base ?rb)
(relation_supplement ?rs&:(neq ?rs ""))
(relation_supplement_position ?rsp)
(entity1 ?e3) (entity1_position ?ep3)
(entity1_base ?eb3) (entity1_supplement ?es3)
(entity1_supplement_position ?esp3)
(entity1_cardinality ?ec3)
(entity2 ?e1) (entity2_position ?ep1)
(entity2_base ?eb1) (entity2_supplement ?es1)
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(entity2_supplement_position ?esp1)
(entity2_cardinality ?ec1))

=>
(assert (triple (relation ?r) (relation_position ?rp)

(relation_base ?rb)
(relation_supplement ?rs)
(relation_supplement_position ?rsp)
(entity1 ?e1) (entity1_position ?ep1)
(entity1_base ?eb1) (entity1_supplement ?es1)
(entity1_supplement_position ?esp1)
(entity1_cardinality ?ec1)
(entity2 ?e2) (entity2_position ?ep2)
(entity2_base ?eb2) (entity2_supplement ?es2)
(entity2_supplement_position ?esp2)
(entity2_cardinality ?ec2)
(entity3 ?e3) (entity3_position ?ep3)
(entity3_base ?eb3) (entity3_supplement ?es3)
(entity3_supplement_position ?esp3)
(entity3_cardinality ?ec3)))

(retract ?t1)
(retract ?t2))

;; filtering typical none entity tuples
(defrule of1_filtering
"a tuple is replaced by of1 if entity1 is a none-entity "
(declare (salience -800))
?t1 <- (tuple (relation ?r)

(entity1 ?e1&:(member$ ?e1 ?*typical_none_entity*))
(entity2 ?e2) (rule ?ru) (sid ?s))

(tuple (relation ?r) (entity1 ?ex) (entity2 ?e2)
(rule of1) (sid ?s))

=>
(retract ?t1))

(defrule of2_fitering
"a tuple is replaced by of2 if entity1 is a none-entity "
(declare (salience -800))
?t1 <- (tuple (relation ?r)

(entity1 ?e1&:(member$ ?e1 ?*typical_none_entity*))
(entity2 ?e2) (rule ?ru) (sid ?s))

(tuple (relation ?r) (entity1 ?ex) (entity2 ?e2)
(rule of2) (sid ?s))

=>
(retract ?t1))
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(defrule of3_filtering
"a tuple is replaced by of3 if entity2 is a none-entity "
(declare (salience -800))
?t1 <- (tuple (relation ?r) (entity1 ?e1)

(entity2 ?e2&:(member$ ?e2 ?*typical_none_entity*))
(rule ?ru) (sid ?s))

(tuple (relation ?r) (entity1 ?e1) (entity2 ?ex)
(rule of3) (sid ?s))

=>
(retract ?t1))

(defrule of4_filtering
"a tuple is replace by of4 if entity2 is a none-entity "
(declare (salience -800))
?t1 <- (tuple (relation ?r) (entity1 ?e1)

(entity2 ?e2&:(member$ ?e2 ?*typical_none_entity*))
(rule ?ru) (sid ?s))

(tuple (relation ?r) (entity1 ?e1) (entity2 ?ex)
(rule of4) (sid ?s))

=>
(retract ?t1))

;;strong filters

(defrule typical_none_entity1_filter
"a tuple is retracted if entity1 is a none-entity "
(declare (salience -800))
?t1 <- (tuple (relation ?r)

(entity1 ?e1&:(member$ ?e1 ?*typical_none_entity*))
(entity2 ?e2) (rule ?ru) (sid ?s))

=>
(retract ?t1))

(defrule typical_none_entity2_filter
"a tuple is retracted if entity 2 is a none-entity "
(declare (salience -800))
?t1 <- (tuple (relation ?r) (entity1 ?e1)

(entity2 ?e2&:(member$ ?e2 ?*typical_none_entity*))
(rule ?ru) (sid ?s))

=>
(retract ?t1))
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;; specfic coordinating conjuction rules cc3f preempt cc3
(defrule cc3f_cc3
"cc3f preempts cc2 "
(declare (salience -800))
?t1 <- (tuple (relation ?r) (entity1 ?e1) (entity2 ?e2)

(rule cc3) (sid ?s))
(tuple (relation ?r) (entity1 ?ex) (entity2 ?e2)
(rule cc3f) (sid ?s))

=>
(retract ?t1))

;; deduplication by base form

(defrule deduplication1
"deduping same tuples "
(declare (salience -800))
?t1 <- (tuple (relation_base ?r) (relation_supplement ?rs)

(entity1_base ?e1) (entity1_supplement ?e1s)
(entity2_base ?e2) (entity2_supplement ?e2s))

?t2 <- (tuple (relation_base ?r) (relation_supplement ?rs)
(entity1_base ?e1) (entity1_supplement ?e1s)
(entity2_base ?e2) (entity2_supplement ?e2s))

(test (neq ?t1 ?t2))
=>
(retract ?t1))

(defrule deduplication2
"deduping same tuples "
(declare (salience -800))
?t1 <- (tuple (relation_base ?r) (relation_supplement ?rs)

(entity1_base ?e1) (entity1_supplement ?e1s)
(entity2_base ?e2) (entity2_supplement ?e2s))

?t2 <- (tuple (relation_base ?r) (relation_supplement ?rs)
(entity1_base ?e2) (entity1_supplement ?e2s)
(entity2_base ?e1) (entity2_supplement ?e1s))

(test (neq ?t1 ?t2))
=>
(retract ?t1))
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(defrule deduplication3
"deduping same tuples "
(declare (salience -800))
?t1 <- (tuple (relation_base ?r) (relation_supplement "")

(entity1_base ?e1) (entity1_supplement ?e1s)
(entity1_cardinality ?ec11)
(entity2_base ?e2) (entity2_supplement ?e2s)
(entity2_cardinality ?ec12)
)

?t2 <- (tuple (relation_base ?r) (relation_supplement "by")
(entity1_base ?e2) (entity1_supplement ?e2s)
(entity1_cardinality ?ec21)
(entity2_base ?e1) (entity2_supplement ?e1s)
(entity2_cardinality ?ec22)
)

(test (neq ?t1 ?t2))
=>
(modify ?t1 (entity1_cardinality ?ec22))
(retract ?t2))
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APPENDIX G

EXPERIMENTAL DATABASE DESIGN PROBLEMS

G.1 EASIER

PROBLEM 1

A bookstore sells books and software to students. Each student has a student id, first

name, last name, address, and phone number. A book has title, ISBN, author, publisher,

number of copies in stock and price. Software has name, price, and required-platform. The

bookstore hires employees. An employee has his employee id, name, address, and phone

number. Students may also be employees.

PROBLEM 2

A library owns one or more copies of some books. Each customer can check out one or more

books from libraries. A library has name, working hours, types, maximum limit of books

that can be checked out and a address which contains street number, street name, city, zip

code. A customer has a name, year of birth, ssn, phone number and address. A book has a

name, year of publication, publisher, ISBN, price. Each check out transaction has a check

out date, an expected return date and an actual return date.

PROBLEM 3

A bookstore sells books and software to students. Each student has a student id, first name,

last name, address, and phone number. A book has title, ISBN, author, publisher, number
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of copies in stock and price. Software has name, price, and required-platform. When a

student buys books, he or she may get a discount. Discount type, purchase quantity and

actual price should be stored in database. The bookstore hires employees. An employee has

his employee id, name, address, and phone number. Students may also be employees.

PROBLEM 4

A concert season schedules one or more concerts. A concert season is identified by its opening

date, which includes month, day, and year. A concert includes one or more compositions.

A concert is identified by its number. A concert also has a concert date, which consists

of month, day, year, and time. For each concert there is one conductor. A conductor is

identified by his/her PID. A conductor name also needs to be included in the database.

PROBLEM 5

The company has 50 plants located in 40 states and approximately 100,000 employees. Each

plant is divided into departments and further subdivided into work stations. There are 100

departments and 500 work stations in the company. A work task is associated with one of

20 different job types. There are five worker unions represented in the company, and every

employee belongs to exactly one union.

PROBLEM 6

A database to maintain information about hospital staff and patients. Doctors and nurses

are staff. Staff has name, address and social-security number. Patients have their names,

addresses, and insurance company name. Patients are assigned to a ward (room). Nurses

are assigned to zero or more wards. Each ward has at least one nurse assigned. Doctors

are assigned to zero or more patients. Patients may or may not have a doctor assigned, and

they may have more than one doctor. Patients in the same ward may have different doctors

but will always have the same nurse(s).
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PROBLEM 7

Students purchase books from a bookstore. Each student has a student id, first name, last

name, address, and phone number. A book has title, ISBN, author, publisher, number of

copies in stock and price. Each purchase transaction has a discount type, purchase quantity

and actual price. The bookstore hires employees. An employee has his employee id, name,

address, and phone number. Students may also be employees.

PROBLEM 8

Cell phone service plans are provided by different wireless service providers. A customer has

a name and an address. Each customer can be an individual OR a business customer. Every

individual has a year of birth, social security number and an age. Each business customer

has a contact person name and a web address. A wireless service provider has a name and a

web address. A service plan has a plan name and a start date. Any phone, associated with

a service plan, is assigned to one customer. Any phone has an area code, a number, current

balance.

PROBLEM 9

An online movie rental shop rents movies to customers. Each customer has a unique id,

name, address, telephone number and a credit. Each movie has a unique id, and title, movie

type, media type and duration. Every customer has an account in the system. Each account

has a unique account id, account type and the balance on the account.

PROBLEM 10

Design a database for a bus company. Each bus route has a starting place, an ending place

and several intermediate stops. The company is distributed over several branches. Each

branch must be located along the bus routes. Each branch has a address, working hours and

phone number. At least one bus is assigned to one bus route. Each bus has a plate number

and a driver. The driver’s name, address and phone number are also need to be kept in the

database.
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G.2 HARDER

PROBLEM 1

The company has 50 plants located in 40 states and approximately 100,000 employees. Each

plant is divided into departments and further subdivided into work stations. There are

100 departments and 500 work stations in the company. A work task is associated with

one of 20 different job types. Each of the job types can be performed at each of the plants.

During a given day an employee may perform more than one work task, each associated with

a different job type, and each can be performed at different work station. There are five

worker unions represented in the company, and every employee belongs to exactly one union.

PROBLEM 2

Database for a software company. Each employee has name, date of birth and address.

Consultant is an Employee. Programmer is an Employee. Each project has name, budget,

starting date and ending date. Programming Language has name and platform. An

Consultant may supervise many Projects. A Project can be supervised by only one

Consultant. A Programmer works on at most two Projects. At least one Programmer works

on a Project. A Programmer uses at least one Programming Language. A Programming

Language is used by some number of Programmers. In a Project exactly one Programming

Language is used. A Programming Language can be used by any number of Projects.

PROBLEM 3

A person is either a patient or a medical worker. A medical worker is either a doctor or a

nurse. Medical workers work in a medical facility. A facility has a name, address, possibly

a specialty area, and the name of an administrator. A patient visits a medical facility for a

diagnosis of a health problem. A patient has name, id number (ssn), address (street, city,

state, and zip), phone (day and evening), employer (company) name, employer address, type

of benefits eligible for, and method for payment. Doctors are allowed to perform any kind

of diagnosis and treatment based on their specialty. Nurses participate in treatment. Each

medial worker must have at least one and possibly more assignments at a facility. Medical

workers have certain skills that must be recorded and accessed for a new assignment.

169



PROBLEM 4

A company is organized into departments. Each department has a unique number, name

and a manager. Each manager has a start date. A department may have several locations. A

department controls a number of projects. Each project has a unique name, a unique number

and a single location. We store each employee’s name, social security number, address, salary,

gender and birth date. An employee is assigned to one department. However each employee

may work on several projects, which are not necessarily controlled by the same department.

Each project needs some parts supplied by some suppliers. Each supplier has a unique name,

a contact person’s first and last name and an address. A part has a unique part number, a

description and a cost.

PROBLEM 5

A concert season schedules one or more concerts. A concert season is identified by its opening

date, which includes month, day, and year. A concert includes one or more compositions.

A concert is identified by its number. A concert also has a concert date, which consists

of month, day, year, and time. For each concert there is one conductor. A conductor is

identified by his/her PID. A conductor name also needs to be included in the database.

Each composition may require zero or more soloists. A composition is identified by its

CID, which consists of composer name and composition name. Compositions have multiple

movements. A movement is identified by an MID, which includes movement name and

movement number. A soloist is identified by his/her PID. A soloist name is also kept in the

database.

PROBLEM 6

A library owns one or more copies of some books. Each customer can check out one or more

books from libraries that he is a member of. A library has name, working hours, types (free

or member only), maximum limit of books that can be checked out and a address which

contains street number, street name, city, zip code. A customer has a name, year of birth,

ssn, phone number and address. A book has a name, year of publication, publisher, ISBN,
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price, one or more subjects (e.g., comic, science fiction, literature) and a target audience age

range (e.g., 1-3 years, 2-10 years, 18 and over). Each check out transaction has a check out

date, an expected return date and an actual return date.

PROBLEM 7

The company has 50 plants located in 40 states and approximately 100,000 employees. Each

plant is divided into departments and further subdivided into work stations. There are

100 departments and 500 work stations in the company. In each department there is an

on-line time clock at which employees report their arrival and departure. A work task is

associated with one of 20 different job types. Each of the job types can be performed at each

of the plants. During a given day an employee may perform more than one work task, each

associated with a different job type, and each can be performed at different work station.

Each work station has an on-line data entry device at which an employee reports activity on

a work task. There are five worker unions represented in the company, and every employee

belongs to exactly one union. Although the size of the company remains stable, about 20

percent of the employees leave each year and are replaced by new personnel.

PROBLEM 8

Cell phone service plans are provided by different wireless service providers. A customer has

a name, one or more email addresses and an address. The address contains street number,

street name, city, zip code and state. Each customer can be an individual OR a business

customer. Every individual has a year of birth, social security number and an age. Each

business customer has a contact person name and a web address. A wireless service provider

has a name, a web address, a customer service toll free number, an email address and a

mailing address. Any service plan has a title, monthly fee, anytime minutes, the price of

each minute which exceeds specified minutes in the service plan, flags identifying that the

plan includes caller id, call forwarding or call waiting. Any phone, associated with a service

plan, is assigned to one customer. Any phone has an area code, a number, current balance,

service start date and a flag identifying whether the amount is past due.
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PROBLEM 9

A College is divided into several schools. Each school is administered by a dean. Each dean is

a member of administrators (ADMINISTRATOR). Deans may teach a class (PROFESSOR).

Administrators and professors are also Employees. Each school is composed of several

departments. Each department belongs to only a single school. Each department offers

several courses. Each department has many professors. One of those professors chairs the

department. Only one of the professors can chair the department. Each professor may

teach at most four classes. A professor may also be on a research contract. A student may

enroll in several classes. Each student may enroll in up to six classes and each class may

have up to 35 students. Each student has only a single major and associated with a single

department. Each student has an advisor in his or her department. Each advisor counsels

several students. An advisor is also a professor.

PROBLEM 10

Each person is identified by his/her SSN. Each person also has a name, address, driver’s

license number and birth date. A person can own one or more cars (the ownership is

declared in the title deed for the car). In addition, the same car can be owned by more than

one person. Cars are identified by their VIN (Vehicle Identification Number). Each car also

has a registered plate number which consists of the state that issued it, the actual number

(which might contain letters), and what type of plate (is it a vanity plate, if so what kind,

etc.). Each car, to be driven, must possess a valid insurance policy. An insurance policy

consists of the car VIN, the car registration number, an expiration date, and also lists the

acceptable drivers (for the moment assume that only those people who are listed on the

policy are eligible to drive it).
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APPENDIX H

PRE-EXPERIMENT QUESTIONNAIRE

Please answer the following questions about your education and experience.

Your answers will be kept confidential. Please circle the options fit you best.

1. What education level are you attained?

a) some college (what year?)

b) bachelors

c) masters level

d) above masters level

2. What is your major?

a) computer Sciences

b) information Sciences

c) others but taken database and other computer related courses

d) others

3. In order to participate in this study, you stated that you have had some experience with

or exposure to entity relationship diagrams for database design. Please indicate the type

of experience you have with this type of diagram.

a) did ERD exercises in database design classes some years ago

b) constructed some small entity relationship diagrams for a class assignment or project

recently
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c) extensive experience of using ERD for database design

d) Expert knowledge of using ERD for database design

4. What software do you use when you draw ERD?

a) Microsoft Visio

b) Microsoft Paint

c) Gnome Dia

d) Others (Please name: )
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APPENDIX I

POST-EXPERIMENT QUESTIONNAIRE

Please answer the questions about the experiment you just completed. We

are interested in your opinions about the system. Your answers will be kept

confidential. Please circle the answer that best corresponds with your opinions.

1. How hard is the problems?

Problem 1 problem 2 problem 3 problem 4

a) very easy

b) somewhat easy

c) somewhat hard

d) very hard

2. How confident do you feel that your ERD solutions to problems are correct?

Problem 1 problem 2 problem 3 problem 4

a) not confident

b) somewhat not confident

c) somewhat confident

d) very confident
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3. Do you think the automated conceptual data modeling system helpful?

a) not helpful at all

b) not very helpful

c) somewhat helpful

d) very helpful

4. Do you think the automated conceptual data modeling system easy to use and user

friendly?

a) not at all

b) not very easy to use

c) somewhat easy to use and user friendly

d) very easy to use and user friendly

5. What are the major advantages of using the automated conceptual data modeling tool?

6. What are the major disadvantages of using the automated conceptual data modeling

tool?

7. Did the tool used prevent you from working efficiently?

8. Do you have any further comments or suggestions that you want to make? Please write

them here.
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