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The existence of distinct species of life is generally explained by the genetic process of 

reproduction without recombination between populations and/or the ecological process of 

adaptation to different environments. Both processes affect prokaryotes, and have shaped 

existing genomes. Here, we use comparative genomic techniques to evaluate the dynamics of 

divergence among species of the Enterobacteriaceae. Bacteria such as Escherichia coli 

preferentially acquire allelic variants from closely related organisms (i.e. other E. coli) rather 

than from more diverged bacteria. Ecological differences between donor and recipient affect the 

probability of allelic variants becoming fixed across the recombining population. We examine 

the history of recombination among groups of genomes that no longer recombine with each 

other, but retain sufficient conservation of ancestral nucleotide sequences to allow recombination 

to be inferred. From these analyses, we conclude that substantial levels of recombination 

occurred between E. coli and diverging lineages even after some regions of the genomes had 

acquired many nucleotide differences. We identify two evolutionary radiations leading to E. coli 

where the disparity among loci confounds the phylogenetic relationships among species, as 

evidenced by topological incongruence among gene trees. The forces affecting recombination, 

reflected in both pairwise divergence and topologically informative sites, vary across regions of 

the genome measuring tens of kilobases. To examine the relationship between ecological 

differentiation and genetic recombination, we characterize differences that could be responsible 
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for ecological differentiation among these species. Some of the loci with the most apparent 

functional differences (i.e. the gain and loss of genes) are associated with the greatest levels of 

sequence divergence between species, consistent with the hypothesis that ecological divergence 

interferes with homologous recombination, and therefore drives sequence divergence and genetic 

isolation. To investigate the role of more subtle ecological differentiation, we develop a 

statistical framework to evaluate codon usage bias of each protein-coding gene, taking into 

account the stochastic balance between codon selection, which is driven by the need for high 

expression, and mutational biases. This tool will be useful in future studies examining codon 

selection as contribution to diversification among the ecologically diverse species of 

Enterobacteriaceae.  
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1.0  INTRODUCTION 

Humans naturally categorize life-forms, placing similar organisms into named groups and 

recognizing differences between groups. Children as young as four months of age are able to 

categorize animals such as cats and dogs in a way that distinguishes between the groups even as 

they recognize different individuals within each group (Quinn 2002), demonstrating an intuitive 

species concept. The identification of organisms is a fundamental step in deciphering that 

organism’s biology; the power of classification is the implicit understanding of what that 

organism is likely to do, or is capable of doing, based on past experiences with similar 

organisms.  

However, biological species are not simply collections of similar objects. As the theory 

of spontaneous generation lost influence (Strick 2000; Wilkins 2004), the idea of species 

acquired a genetic component – each generation of a species was the continuation of previous 

generations. Evolutionary theories proposed that changes could occur over generations, and 

species could split, creating new species. Darwin proposed that divergence would be a frequent 

result of natural selection, as competition with similar organisms (i.e. members of the same 

species) would only be relieved by the evolution of distinct traits that enabled exploitation of 

new resources (Darwin 1859). 

Darwin’s theory required that the reproductive incompatibilities observed between 

species be able to develop gradually as one species split into two. To argue for the plausibility of 
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this process, he attacked the idea that species necessarily had strict reproductive barriers between 

them. To this end, he cited several examples where reproductive isolation failed to clearly 

distinguish between species and the varieties within species (Darwin 1859). Instead, Darwin 

proposed that reproductive incompatibilities between species were fundamentally the same as 

those found within species, being different only in degree (Darwin 1859). 

1.1 SPECIES DELIMITATION 

Despite the necessary ambiguity that accompanies any attempt to discern when one species has 

split into two, several attempts have been made to conceptualize the essence of species identity 

(de Queiroz 2005). An influential line of investigation has focused on the genetic independence 

of species, most famously described in Mayr’s “biological species concept” (BSC) (Mayr 1942; 

Mayr 1963). Mayr proposed that species’ members share a common gene pool, and that frequent 

genetic exchange among groups of con-specific individuals provided genotypic (and thus 

phenotypic) cohesion within species. Therefore, the inability to exchange genetic material is the 

definition of separate species. 

A contrasting perspective has focused on ecological differentiation, emphasizing the role 

of selection on the organism as a whole over the reassortment of genetic diversity (van Valen 

1976). Here, each species experiences constant selection for a particular phenotype, purging any 

mal-adaptive variants that arise, whether from mutational processes or gene exchange. The 

distinguishing trait of species is their ability to sustainably coexist, since neither can outcompete 

the other across its entire range. 
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Attempts to reconcile these contrasting species concepts (among many others) have 

recast genetic isolation and ecological differentiation as contingent properties of the species, 

which is itself a fundamental unit of biological organization (de Queiroz 2005). An alternative 

reaction to the vast diversity of species concepts and the difficulty in applying any of them is to 

deny the pre-eminence of the species category, instead viewing it as part of a continuum with 

other levels of population structure created by a variety of mechanisms (Mallet 2008). 

 The above debates have focused primarily on multicellular eukaryotes, many of which 

can only reproduce by mating with another individual. Microbes were exempted from these 

debates in part due to the difficulty of characterizing their physiology, ecology, and relatedness, 

but more fundamentally because their asexual mode of reproduction appeared to make the logic 

of Mayr’s species concept inapplicable (Mayr 1963), particularly for Bacteria and Archaea, 

(henceforth collectively referred to as “prokaryotes” in reference to similarities in genetic 

transmission and ecology). 

Early prokaryotic classification schemes incorporated little information, as prokaryotes 

had few morphological traits and broad geographical distribution, making it difficult to place 

them within the evolutionary perspective of a species concept. For those prokaryotes that could 

be reliably identified (e.g. grown in pure culture), species were defined by a phenotypic 

approach, as used in the first edition of Bergey’s Manual of Systematic Bacteriology. The 

development of molecular evolutionary theory produced phylogenetic techniques that allowed 

prokaryotes to be clustered according to DNA sequence similarities, thereby placing them into an 

evolutionary context (Fox, Stackebrandt et al. 1980; Woese, Kandler et al. 1990). Within this 

framework, molecular divergence can be used to split prokaryotes into different species if they 

pass a threshold, such as < 70% reassociation by DNA-DNA hybridization, or < 97% identity at 
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16S rRNA genes (Gevers, Cohan et al. 2005). Whole-genome sequence data has introduced the 

possibility of resolving prokaryotic relationships with even greater detail based on measures such 

as the average nucleotide identity of aligned sequences, or the number of genes shared between 

two genomes (Konstantinidis, Ramette et al. 2006).  

The use of these thresholds allows prokaryotes to be classified into manageable units of 

biodiversity. However, this definition of species does not equate the species with any special 

biological properties—the species is just one step along a continuum of molecular divergence 

among organisms. To apply species concepts, this molecular sequence data must be used to infer 

the population dynamics that are the basis for genetic and ecological species concepts (reviewed 

in Gevers, Cohan et al. 2005; Doolittle and Zhaxybayeva 2009). 

1.1.1 Prokaryotic species as gene pools 

The possibility that Mayr’s BSC could be applied to prokaryotes arose with the 

recognition that some bacteria acquire DNA from closely related strains at a meaningful 

frequency. The history of allele transfer between strains was apparent in the conflicting 

phylogenies of genes scattered around the Escherichia coli chromosome (Dykhuizen and Green 

1991). While this challenged the established paradigm of prokaryotic evolution based on binary 

fission and vertical inheritance, it was consistent with genetic behaviors observed in the 

laboratory (described below), where a segment of DNA can be introduced into the chromosome 

and replace a similar native sequence. This process is often called “recombination,” alluding 

both to the role of the homologous recombination machinery in catalyzing allele replacement, 

and to the population genetic process of reducing linkage disequilibrium (Dykhuizen and Green 

1991). Recombination in E. coli permits advantageous alleles (even entire pathogenicity islands, 
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see Schubert, Darlu et al. 2009) to spread beyond their original genomic context and reassort 

with alleles at other loci, defining the limits of the species according to the BSC (Guttman and 

Dykhuizen 1994). 

Recombination in prokaryotes does not involve the fusion of haploid genomes, but rather 

the unidirectional transfer of small fragments of DNA between donor and recipient. Here, DNA 

may be moved between cells by one of three mechanisms (Ochman, Lawrence et al. 2000). 

Transduction occurs when bacteriophages mistakenly package host DNA into their capsids 

instead of virus DNA. When this particle finds a target cell, the DNA – limited in size to a 

fragment which will fit in the capsid – is injected. Transformation occurs when a prokaryotic cell 

imports fragment of naked DNA directly from the environment; this is common among bacteria 

which consume DNA as a source of food. Conjugation can transfer chromosomal genes when a 

plasmid integrates into its host chromosome and then begins its process of replication and 

transfer into another host. Plasmid DNA is transferred directly between the cytoplasm of the 

donor cell into the cytoplasm of the recipient, thus requiring prolonged cell-cell contact. 

Conjugation can move large portions of chromosomal DNA between cells.  

After the DNA has been injected into the cytoplasm of the recipient cell, it is subjected to 

four important processes. First, restriction endonucleases will cleave almost all incoming DNA 

fragments, with the exception of DNA arriving from a cell expressing the same hsd-encoded 

restriction/modification system, whose cleavage sites have thus been protected. Given the 

variability in hsd genes within and among bacterial species (Barcus, Titheradge et al. 1995; 

O'Neill, Chen et al. 1997; Murray 2000), this exception is rare, even within named species. 

Second, exonucleases will degrade the dsDNA ends of the resulting fragments. These two 

processes act in concert to reduce the size of incoming DNA fragments and, most often, prevent 
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the DNA from integrating into the recipient chromosome. Third, RecA-mediated homologous 

recombination may occur, whereby the incoming DNA fragment – reduced in size through the 

action of nucleases (Milkman, Raleigh et al. 1999) – is integrated in to the chromosome, 

replacing the resident allele at its cognate position. This requires nucleotide sequence identity 

between regions of incoming and resident DNA, so the presence of mismatches reduces the 

probability of successful recombination (Shen and Huang 1986). Fourth, if no region of 

similarity exists between the incoming and resident DNA, illegitimate recombination may occur, 

placing the arriving DNA anywhere in the chromosome or, alternatively, site-specific 

recombinases (e.g., phage integrases) may catalyze recombination into specific locations.  

The Dykhuizen and Green operational interpretation of Mayr’s biological species concept 

was retrospective, using the patterns of genetic diversity among individuals to delineate species 

boundaries (Dykhuizen and Green 1991). They proposed that within species, the relationships 

among individuals as inferred from different genes would not be congruent, but between species 

the phylogenies would be congruent.  This model works well when applied to some groups of 

bacteria. For example, different genes among different strains of the enteric bacteria Escherichia 

coli or Salmonella enterica show different relationships, reflecting homologous recombination 

within these groups (Dykhuizen and Green 1991; Milkman 1997). Yet phylogenies are congruent 

among more-diverged bacteria, implying that homologous recombination does not readily 

exchange genes across the boundaries of these named species (Daubin, Moran et al. 2003; Wertz, 

Goldstone et al. 2003). The population structures of many prokaryotes have been examined by 

Multi-Locus Sequence Typing (MLST) – wherein alleles at a handful of shared loci are 

sequenced (Maiden, Bygraves et al. 1998) – clearly indicating that many named prokaryotic 

species have appreciable rates of homologous recombination among constituent strains (Feil, 
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Maiden et al. 1999; Feil, Smith et al. 2000; Feil, Holmes et al. 2001; Feil and Spratt 2001; 

Whitaker, Grogan et al. 2005; Hanage, Fraser et al. 2006; Papke, Zhaxybayeva et al. 2007).  

However, the applicability of this recombination-based species concept depends on 

whether individuals from recombining populations can generally be classified into one 

recombining group or another. Among the highly recombinogenic Neisseria, MLST analyses 

have identified “fuzzy species”, where the named species (classified phenotypically) broadly 

correspond to the identified genotypic clusters, but some individual genomes occupy 

intermediate genotypic space and some loci seem to have recombined across the species 

boundaries (Hanage, Fraser et al. 2005). Other reports have suggested that diverging lineages 

have experienced a sudden increase in recombination following an ecological shift, and may be 

losing their distinct character (Didelot, Achtman et al. 2007; Sheppard, McCarthy et al. 2008). 

These ambiguities in delimiting species at the population level are not surprising given 

that the mechanisms of gene transfer do not suggest any clear criteria for distinguishing species, 

such as reproductive incompatibilities among eukaryotes. For example, bacteriophage do not 

seem to respect bacterial species boundaries – showing specificity for some strains within 

species even as they infect across species also (Sullivan, Waterbury et al. 2003). More 

importantly, bacterial species may be infected by numerous bacteriophages, each with a different 

host range. For example, E. coli is infected both by bacteriophage lambda, which has difficulty 

infecting other enteric bacteria due to differences in the LamB receptor protein, and 

bacteriophage P1, which infects many enteric bacteria. Indeed, genes encoding the P1 tail-fiber 

proteins have been used to create vectors for mutagenesis across numerous enteric bacterial 

species (Roncero, Sanderson et al. 1991). Even geographic barriers – while clearly slowing down 

migration and/or recombination in prokaryotes (Whitaker, Grogan et al. 2003; Whitaker, Grogan 
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et al. 2005; Papke, Zhaxybayeva et al. 2007) – is not an absolute isolating mechanism for most 

bacteria. Clear-cut isolation only seems to occur when a single clone is isolated from all 

conspecifics (Dykhuizen 2000), such as obligate intracellular symbionts like Buchnera (Sullivan, 

Waterbury et al. 2003). 

One thoroughly studied proposal for an isolating mechanism is the reliance of 

homologous recombination on high levels of sequence identity between the donor and recipient 

molecules. Studies of this mechanism have revealed that there is no clear threshold of sequence 

divergence beyond which homologous recombination ceases to act (Zawadzki, Roberts et al. 

1995; Vulic, Dionisio et al. 1997; Majewski and Cohan 1999; Vulic, Lenski et al. 1999; 

Springer, Sander et al. 2004). Instead, the efficacy of recombination decreases as an exponential 

function of sequence divergence. Simulations have examined the dynamics that would arise as a 

population diversifies and sequence divergence inhibits recombination (Falush, Torpdahl et al. 

2006; Hanage, Spratt et al. 2006; Fraser, Hanage et al. 2007). These models have suggested that 

sequence divergence could undermine the cohesive effects of recombination under the right 

conditions, allowing populations to diverge indefinitely, and providing a tipping point that is 

equated to “speciation” (Fraser, Hanage et al. 2007), even though low levels of recombination 

would occur even past this point. 

However, such models are easily undermined by the complicated processes that 

determine sequence divergence in actual bacterial populations. Most notable is that sequence 

divergence varies greatly around the genome, as the effect of mutation and selection can vary by 

locus. Much of this variation is the result of gene expression levels, which is inversely associated 

with substitution rates (both synonymous and non-synonymous), and is probably effected 

through a combination of mutational effects and different levels of purifying selection (Eyre-
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Walker and Bulmer 1995; Stoletzki and Eyre-Walker 2007). In a less systematic manner, 

selective sweeps purge diversity at associated loci (Guttman and Dykhuizen 1994), while 

divergent selection maintains excess diversity (Wildschutte and Lawrence 2007). What’s more, a 

single recombination event between divergent strains can create large differences in divergence 

among neighboring loci, resulting in substantial differences in recombination efficiency among 

loci (Demerec and Ohta 1964). A consequence of this diversity is that mismatch induced 

speciation would not apply to the entire genome, but only to those regions of the genome that 

have passed the divergence tipping point.  

A further limit to the idea of a speciation tipping point caused by sequence divergence is 

that it could always be negated by a few recombination events that decreased sequence 

divergence. Natural selection could be sufficient to cause the occasional “cross-species” allele to 

reach fixation in the recipient population (Didelot, Achtman et al. 2007; Sheppard, McCarthy et 

al. 2008), or the mismatch repair system responsible for recombination interference could be 

inactivated, allowing high levels of recombination even among diverged sequences (Demerec 

and Ohta 1964; Vulic, Dionisio et al. 1997).  

Strains with defective mismatch-repair machinery are called “mutators” due to their 

tendency to accumulate mutations, along with their increased tendency to integrate foreign DNA 

into their chromosome. These mutator strains may arise frequently and persist in a population 

because they carry no immediate fitness detriment but can enable rapid adaptation to changing 

environments. They are observed both in laboratory evolution experiments (Negri, Morosini et 

al. 2002; Lenski, Winkworth et al. 2003) and in the wild (del Campo, Morosini et al. 2005). 

Evidence of recombination in natural populations indicates that bacterial lineages may pass 

through periods of elevated recombination due to the disruption of these genes, during which 
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they rapidly diversify due to the import of novel gene sequences (Hanage, Fraser et al. 2009), 

ultimately returning to infrequent recombination when the anti-mutator genes are repaired by 

recombination (Denamur, Lecointre et al. 2000; Brown, LeClerc et al. 2001). 

1.1.2 Prokaryotic species as ecotypes 

As described above, natural selection can shape the patterns of gene exchange among 

prokaryotic genomes, leading to both convergence and divergence. This fact, combined with the 

fact that prokaryotic populations can expand greatly without gene exchange (Fraser, Hanage et 

al. 2005), has contributed to arguments that ecological factors are the essential forces behind 

bacterial evolution, and gene exchange is incidental to the definition and identification of species 

(Cohan 2001).  

Levin (1981), extending ideas of Atwood et al. (1951), proposed periodic selection as a 

mechanism through which microbial population could retain similarity and avoid mutation-

driven diversification. Here, when selectively-beneficial mutations sweep a population, the entire 

chromosome “hitchhikes” with it, thus purging variability at all loci. The resulting clonal 

expansion of the strain bearing the beneficial allele is bounded only by its ability to out-compete 

similar strains lacking this allele. Cohan and colleagues have termed such lineages as ecotypes 

(Cohan 2001; Gevers, Cohan et al. 2005; Cohan and Perry 2007; Koeppel, Perry et al. 2008), 

arguing that their sweeps purge genetic variability only within ecologically-identical strains. 

Hence, periodic selection events result in genotypic cohesion in a bacterial population.  

In many ways, ecotypes have properties that are associated with species. Similarity is 

maintained among individuals in a population by an active process, groups are clearly 

differentiated from one another by ecological distinctiveness, and there is a mechanism (fixation 



11 

of beneficial mutations) that can lead to lineage separation. Thus ecotypes could be considered 

one of the most fundamental units of organization of bacterial strains. But ecotypes may not be 

sufficiently stable to warrant identification as a truly distinct form of life.  

From a genetic perspective, the scope of an ecotype – that is, the boundaries of the 

population encompassed by a periodic selection event – is a function of the nature of the 

beneficial mutation driving periodic selection. Mutations of small benefit would define a narrow 

ecotype, whereas those with greater benefits would purge variability among a group of more 

diverse strains. Distinguishing among ecotypes has proven difficult even in laboratory model 

systems, where closely related ecotypes have demonstrated the ability to invade each other’s 

niche by adaptive processes (Dykhuizen and Dean 2004). The stability of ecotypes may also be 

undermined by source-sink processes, illustrated by opportunistic infections, where variants of a 

parental ecotype regularly invade a new environment, and adapt to it, before going extinct and 

opening the environment to recolonization from the parental species (Chattopadhyay, Feldgarden 

et al. 2007). 

Another complication in the ecotype view of species, both conceptually and practically, is 

that the evolutionary potential of an ecotype may be strongly influenced by the limited collection 

of genomes that it can acquire genetic material from by recombination. Beneficial alleles that 

arise within an ecotype may also spread to a much larger, and more diverse, set of strains via 

homologous recombination (Guttman and Dykhuizen 1994; Guttman and Dykhuizen 1994; 

Cohan 2001). By preventing the gradual divergence of ecotypes, recombination could obscure 

the phylogenetic patterns produced by periodic selection (Levin 1981).  

Indeed, the maintenance of diversity among several ecotypes within a recombining 

population may be necessary to generate the diversity that permits homologous recombination to 
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act as a source of evolutionary novelty for recipients. Considering the interaction between 

ecological differentiation and genetic exchange in clonally reproducing populations, we can 

imagine two interacting scales of population structure. At the larger scale is the recombining 

population, and within it are several ecotypes. The ecotype populations may expand and contract 

as they encounter good growth conditions or acquire adaptive traits, while exchanging alleles 

with other ecotypes within the recombining population. New ecotypes may arise and go extinct 

frequently, while the recombining population is maintained for a longer period due to its greater 

inclusivity.  

1.2 ADAPTATION IN PROKARYOTES 

Bacteria exhibit an extraordinary ability to adapt to novel environments, and even to specialize 

within a seemingly homogenous environment. Upon being introduced into novel laboratory 

environments, E. coli fitness regularly increases by 20% over the course of several months, 

following multiple adaptive paths (Maharjan, Seeto et al. 2006; Cooper and Lenski 2010). In 

spatially structured environments, clones rapidly diversify into specialists adapted to the different 

regions (Rainey and Travisano 1998). Even in the absence of spatial structure, specialists 

develop from a shared ancestor, possibly due to metabolic specialization (Rozen and Lenski 

2000). This metabolic specialization may or may not be stable, as strains previously adapted to 

feeding on different sugars do not necessarily manage to coexist when co-cultured with both 

sugars present (Dykhuizen and Dean 2004).   

 Adaptation in the wild is more difficult to trace, but closely related Bacillus isolates from 

an “evolution canyon” show subtle adaptations to growth on north-facing and south-facing 
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slopes, which vary drastically in solar exposure (Connor, Sikorski et al. 2010). More drastic 

adaptations are apparent in response to exposure to man-made antibacterial compounds (Holt, 

Parkhill et al. 2008). 

Much of the physiological variation seen between species can be traced to the patterns of 

gene presence/absence among bacteria. Within species, there is extensive variation in both the 

number and identity of genes, sometimes producing noticeable phenotypic differences. For 

instance, the first three E. coli genomes sequenced ranged in size from 4288 to 5063 protein 

coding genes, but only shared 2996 of these genes (Welch, Burland et al. 2002). The genomes of 

Shigella species are distinguished from E. coli primarily by the acquisition of particular 

pathogenicity genes (Lan and Reeves 2001). Even within a single serotype, E. coli O157:H7, 

variable presence was detected for over 200 of the 4753 genes from the Saki strain that were 

examined in four other strains of the same serotype (Wick, Qi et al. 2005). Gene 

presence/absence polymorphisms have been observed to spread among E. coli by recombination 

(Schubert, Darlu et al. 2009). 

Many laboratory adaptations of bacteria have been observed to result from the gain or 

loss of genes, though gene gain necessarily occurs under extremely unnatural conditions, such as 

selection for phenotypes of interest following transformation with libraries constructed from 

metagenomic DNA (Handelsman 2004). Another commonly identified avenue of adaptation is 

through amino acid substitutions that produce modified biochemical activities in gene products 

(Lunzer, Miller et al. 2005). Widespread positive selection for amino acid substitutions has been 

inferred from several phylogenetic studies of bacterial genomes (Orsi, Sun et al. 2008; Lefebure 

and Stanhope 2009; Soyer, Orsi et al. 2009). Changes in gene expression patterns are also 

commonly cited as the target for natural selection (often a consequence of amino acid changes in 
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or inactivation of regulatory proteins). A long-term study of E. coli adaptation to laboratory 

conditions resulted in many fitness-increasing changes in gene expression, which emerged 

independently in parallel replicates of evolving populations (Cooper, Remold et al. 2008). 

Adaptation of the regulatory system is also apparent in comparisons between different pathogens 

within the Enterobacteriaceae; for instance, the PhoPQ system activates different (yet 

overlapping) sets of genes in Yersinia pestis and Salmonella enterica (Perez, Shin et al. 2009).  

One form of adaptation that is difficult to observe in the laboratory, despite being 

widespread in nature, is codon adaptation. Selection on synonymous codons produces systematic 

biases among the open reading frames found in a genome, where the frequency of certain codons 

increase relative to their synonyms as a result of selection for that codon (Ikemura 1981). While 

codon selection is not the only selective force that affects the nucleotide identity of synonymous 

sites, it is the primary selective force in many bacteria, with the less-preferred codons existing as 

a result of mutation and genetic drift (Bulmer 1991; Smith and Eyre-Walker 2001). This bias 

increases in tandem with the expression level of the ORF, indicating stronger selection in these 

genes (Sharp, Bailes et al. 2005). Once codon usage is optimized in a gene, purifying selection 

reduces population polymorphism and divergence between species (Sharp, Emery et al. 2010). 

The genes encoding core physiological processes often exhibit high frequencies of 

preferred codon usage. Aside from widely conserved, highly expressed genes (e.g., ribosomal 

proteins (Sharp, Bailes et al. 2005)), enrichment for preferred codon usage is also seen in genes 

that are distinctive to particular groups of bacteria (e.g., photosynthesis genes in cyanobacteria 

(Karlin and Mrazek 2000)), suggesting that codon selection acts beyond those genes that are 

essential for all organisms.  
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While differences in preferred codon usage have been noted among orthologous genes 

(Karlin and Mrazek 2000), these differences have not been examined quantitatively and therefore 

the extent of such changes is unknown. However, since codon bias tracks the gene expression 

level, changes in codon selection may be common, regardless of whether the change in gene 

expression is a consequence of regulatory changes or of simple environmental changes.  

All of the above modes of adaptation have the potential to produce population structures 

that may be identified as species – groups of bacteria sharing similarity due to their shared 

ancestry and adaptation to the same niche. However, such structure could be limited to particular 

loci within the genome, if recombinational processes are able to spread alleles into genomes that 

are adapted to alternative (but possibly overlapping) niches. The interplay of homologous 

recombination and adaptation in these organisms is as yet unresolved, and likely to play out in 

myriad ways, due to the vast ecological and genetic diversity of prokaryotes (Doolittle and 

Zhaxybayeva 2009). 
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2.0  TEMPORAL FRAGMENTATION OF SPECIATION IN BACTERIA 

The proper identification and delineation of bacterial species plays a critical role in medical 

diagnosis, food safety, epidemiology and bioterrorism. Human responses are guided by 

perceptions of the biological properties and capabilities of a named species, as well as an 

understanding of their natural variability and potential to change. The Biological Species 

Concept (BSC) considers a species to be a group of organisms that readily exchange genetic 

information only with each other (Mayr 1942). In eukaryotes, recombination – here defined as 

allelic exchange – is often tied to reproduction, whereby meiosis is followed by the karyogamy 

of two entire haploid genomes. Consequently, as new species arise, genetic isolation would occur 

simultaneously for all loci, meaning that all pairs of orthologous genes would be diverging for 

approximately the same amount of time. While bacterial speciation is a complex process (Cohan 

2001; Lawrence 2002; Gevers, Cohan et al. 2005), the BSC has also been applied to bacteria 

such as Escherichia coli (Dykhuizen and Green 1991). Here, recombination involves the 

occasional, unidirectional transfer of small DNA fragments from one strain into the homologous 

locus of another. Because only a small portion of the genome is transferred, orthologs would 

have diverged for differing amounts of time (Figure 2.1AB). Inter-species transfer is limited by 

mismatch repair systems, which reject recombination when donor and recipient sequences are 

not nearly identical (Vulic, Dionisio et al. 1997). Yet this process does not speak to how 
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recombination ceases within a group of recombining strains – wherein allelic differences are few 

– thereby allowing two genetically distinct groups to form.  

 

 

Figure 2.1 Models of bacterial lineage diversification 

(A) Rapid isolation model for bacterial speciation. A population divides into two, each of which 

adapts to a particular niche without further genetic input from the other. While recombination (cross-

hatching) may produce different times of divergence between genes in taxa A & B (region between 

horizontal, dashed lines), no cross-population recombination occurred after lineage-specific genes 

were acquired (vertical arrow). (B) Temporal fragmentation model for bacterial speciation. 

Ecological diversification, involving lineage-specific gene acquisition, occurs in the context of 

genetic exchange (vertical arrow). (C) The number of synonymous substitutions (Ks) between 

homologous sequences is a function of both the rate of substitutions (estimated by CAI) and the 

amount of time that the sequences have been diverging. 

 

Given the vast range of recombination rates seen for bacterial populations (Feil and 

Spratt 2001; Hanage, Fraser et al. 2006), we propose two models for lineage separation 

following the emergence of and selection for a differentially-adapted genotype. First, nucleotide 

substitutions and lineage-specific loci could be acquired quickly relative to the rate of 

recombination (Falush, Torpdahl et al. 2006). Under this model, genetic isolation would be 

established at approximately the same time for all orthologs (Figure 2.1A). Alternatively, niche-
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specific changes may be acquired more slowly relative to the rate of recombination, and gene 

conversion events would continue at loci unlinked to niche-defining genes (Figure 2.1B) (Fraser, 

Hanage et al. 2007). Here, variability-purging selective sweeps (Guttman and Dykhuizen 1994) 

would occur only at loci that are unlinked to genes imparting ecological distinctiveness, because 

recombinants would likely be poorly-adapted to either environment and be counter-selected 

(Lawrence 2002). Thus, alleles may undergo selective sweeps across ‘species’ boundaries when 

not proximate to niche-specific loci; over time, all loci would become genetically isolated as 

mismatches accumulate and the number of niche-specific loci increases. This fragmented 

speciation model further predicts that early-diverging genes will be linked to loci that interfered 

with effective inter-lineage recombination, such as those encoding niche-specific traits or those 

subject to diversifying or frequency-dependent selection (Milkman 1997; Wildschutte, Wolfe et 

al. 2004). 

2.1 SEQUENCE DIVERGENCE VARIATION AMONG SITES RESULTING FROM 

HOMOLOGOUS RECOMBINATION  

To detect temporal fragmentation of speciation, we must first distinguish between early- and 

late-diverging orthologues. Since divergence is a function of both time and evolutionary rate, 

time may be estimated from divergence once evolutionary rate is determined (Figure 2.1C). At 

synonymous sites, evolutionary rate can be estimated from the codon adaptation index (CAI), an 

intragenomic, time-independent measure of selection (Sharp and Li 1987). Divergence at 

synonymous sites is measured as Ks; because Ks decreases as CAI increases (Figure 2.1C), CAI 

can be used to generate the expected value of Ks if divergence times are uniform among genes 
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(see Methods). Early-diverging orthologs will have larger Ks values than expected because more 

time has elapsed since their divergence, and late-diverging orthologs will have lower values than 

expected (Figure 2.1C).  

We applied this method to the genomes of Escherichia coli and Salmonella enterica; 

recombination is common within either taxon (Guttman and Dykhuizen 1994; Feil, Holmes et al. 

2001; Falush, Torpdahl et al. 2006), while inter-species recombination is inhibited (Daubin, 

Moran et al. 2003). To assemble a robust data set, we analyzed genes with orthologues present in 

each of three different E. coli and S. enterica genomes representing the most diverse available 

genome sequences for these species (see Methods). These strains share a chromosomal backbone 

of 2677 sets of orthologs. CAI and between-species Ks were computed for protein-coding genes 

and the relationship was fit by polynomial regression (Figure 2.2). As expected, increasing 

selection for preferred codons (high CAI) is generally reflected by lower divergence (Ks). We 

ignored 527 pairs of genes with <50 synonymous sites, whose Ks values were in saturation, or 

where the relationship between CAI and Ks was unclear (Figure 2.2). The effect of map position 

on Ks (Sharp, Shields et al. 1989) was estimated by treating CAI-corrected-Ks as a linear function 

of the gene’s distance from the E. coli K12 replication origin (Figure 2.2 inset). Ultimately, 

relative divergences of 2150 genes along the chromosomal backbone (Figure 2.3) were 

calculated as the ratio of observed Ks to that expected from CAI and map position (see Methods).  
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Figure 2.2 Influences on synonymous substitution rate. 

Synonymous substitutions as a function of mean codon bias of the ORFs, with polynomial least-squares 
regression lines. The vertical line indicates the value of CAI above which the relationship between CAI 
on Ks was unclear. Inset: Scatter plot of third-order regression residuals as a function of distance from the 
E. coli K12-MG1655origin, with a linear least-squares regression line. 
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Figure 2.3 Time of divergence of chromosomal regions 

Relative divergence for orthologs is plotted against E. coli K12-MG1655 chromosomal position, averaged across a 7-gene window; dark lines 
indicate divergence times of regions longer than 6 genes. Dashed lines delineate 95% of the range of divergence values. Shared loci are noted in 
italics; Escherichia- and Salmonella-specific are noted at their corresponding location on the backbone in inverse and bold-faced type. Inset: 
Intraclass correlations of relative divergence for gene pairs as a function of distance; solid line, all gene pairs; dotted line, gene pairs not within 
runs of consecutive genes transcribed in the same direction.   



22 

 

While stochastic variation in the accumulation of substitutions will account for much of the 

variability in relative divergence, genes that have recombined more recently will tend to have lower 

values. To detect this footprint of recombination, we rely on a mechanistic constraint of bacterial gene 

exchange: physically-proximate genes will be transferred in the same recombination events. As a result, 

early- and late-diverging genes will not be randomly distributed throughout the genome, but will cluster 

in regions defined by the most recent exchange between the lineages. Therefore, physical association 

among genes with Ks values higher or lower than expected can be taken as evidence for recombination. 

The scale of recombination regions was estimated from the correlation of relative divergence values for 

pairs of orthologs (Figure 2.3 inset, solid line). Adjacent genes showed a strong intraclass correlation 

(ICC=24%, P < 10-24, F-test) which decreased as pairs of orthologs became more distantly situated on 

the chromosomal backbone, becoming undetectable when position differed by more than 20 genes (~32 

kb). These results are consistent with the boundary of recombination interference observed for the rfb 

locus (Milkman and Bridges 1993; Milkman, Jaeger et al. 2003). To remove any correlation in Ks 

among cotranscribed genes resulting from transcription-associated repair or selection for mRNA 

stability, ICCs were recalculated having excluded comparisons between genes consecutively transcribed 

in the same direction. Despite the decreased sample size, a significant correlation (11%, P < 10-2, F-test) 

extended to the same distance (Figure 2.3 inset, dashed line). These data show that genes diverged at 

significantly different times at different locations within the E. coli/S. enterica chromosomes.  

Regions of potential recombination events were delineated using an agglomerative clustering 

algorithm (see Methods), identifying regions wherein variability in relative divergence was lowest; the 

most robust segments – maximum SE=0.013; each longer than 6 genes, covering 49% of genes – appear 

as black bars in Figure 2.3. If E. coli and S. enterica genes have been diverging for ~140 million years 

(MYr) on average (Ochman and Wilson 1988), the distribution of divergence times shows that genetic 
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isolation developed over a period of ~70 MYr (Figure 2.3, region between dashed lines). As expected, 

among the first regions to diverge were those containing shared genes that produce surface structures, 

such as the rfa, rfb, rff, flg, mipA and phoE genes, which are often subject to frequency-dependent or 

diversifying selection. Other early-diverging regions are associated with differences in gene content, 

such as those adjacent to the S. enterica cbi, pdu, std, and tct operons, and the E. coli lac and xdh 

operons (Figure 2.3), most of which encode physiological functions that distinguish the two species 

(Rambach 1990). In contrast, the regions around Salmonella Pathogenicity Islands SPI1 and SPI2 

diverged more recently, suggesting that they do not represent the initial differences separating E. coli 

and S. enterica. Even though relative divergence has been corrected for evolutionary rate, the major 

peaks in Figure 2.3 consistently represent clusters of genes with high CAI values. We posit that these 

slowly evolving regions offer longer stretches of DNA free of substitutions, thereby postponing the 

establishment of recombination barriers.  

As a control, we compared the genomes of Buchnera aphidicola strains APS and Sg whose 489 

conserved protein-coding genes show divergence similar to E. coli / S. enterica comparisons (mean Ks 

of 0.89, and 0.97, respectively). Buchnera are recA-deficient intracellular endosymbionts believed to 

rarely recombine (Tamas, Klasson et al. 2002). We would expect lineage diversification to affect all loci 

simultaneously and analysis of these genomes showed no significant correlation in relative divergence 

The solid line denotes ICCs calculated from 
all gene pairs of a given distance. The 
dotted line denotes ICC calculated having 
excluded comparisons between genes that 
are within a single run of consecutive genes 
transcribed in the same direction. 

Figure 2.4 Correlation of relative coalescence times for pairs of genes based on their relative positions in the 

Buchnera backbone 
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for adjacent genes (Figure 2.4). To control for the lower sample size, we examined all regions of the E. 

coli / S. enterica genomes with equal numbers of genes; these regions showed significant ICCs that were 

invariably stronger than the Buchnera value, suggesting that the lack of correlation for Buchnera reflects 

a lack of recombination.  

2.2 CHANGES IN GENE CONTENT AND HOMOLOGOUS RECOMBINATION 

The Fragmented Speciation Model (Figure 2.1B) predicts that genetic and ecological differentiation 

developed even as high levels of recombination continued at loci not conferring ecological 

distinctiveness. Niche-specific traits often arise by gene gain or loss, where altered physiology allows 

cells to thrive in conditions that are hostile to parental strains (Ochman, Lawrence et al. 2000). If 

recombination between incipient E. coli and S. enterica continued at some loci even after lineage-

specific loci had arisen, then the regions around the lineage-specific genes should be among the first to 

be genetically isolated, because recombination in those regions would have eliminated the gene-content 

differences at those loci. Conversely, if the differences in gene content developed only after inter-lineage 

recombination had effectively ceased, then these genes should be distributed without regard to the 

divergence time of the surrounding region.  
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We defined a locus as a pair of genes in the E. coli/S. enterica comparative backbone. There 

were 514 dynamic loci (685 genes; some genes contributed to 2 loci), at which some E. coli strain 

contained a gene between the conserved pair that was absent from all S. enterica genomes, or vice versa 

(see Methods); the remaining 2106 static loci showed no insertion/deletion events (Figure 2.5, white 

bars). Genes at static loci have an average divergence time 4.4% younger than the average for the entire 

genome (P < 10-5 by randomization), likely because the longer stretches of uninterruptible, slowly-

evolving genes allow for continued recombination. A fraction of dynamic loci (178 loci, Table S2) show 

species-specific differences, whereat the conserved gene pair was interrupted in the three strains of one 

species by genes absent from the other species; these loci would include those whereat differences arose 

while the E. coli and S. enterica lineages were diverging. Other dynamic loci – e.g., those where only a 

single strain shows a difference – would have arisen only after recombination had effectively ceased 

between the two lineages. Genes adjacent to species-specific loci are 6.2% older than genes adjacent to 

other dynamic loci (P < 10-2 by randomization; Figure 2.5, gray bars); thus, species-specific genes are 

not distributed randomly in the chromosomal backbone but are found preferentially in the older regions, 

Figure 2.5 Relative divergence based on region character 

Bars show the mean relative divergence 
of sets of orthologues (numbers above 
bars) classified according to adjacency 
to loci that distinguish genomes 
(number of loci in parentheses). Error 
bars show 1 SE for the distribution of 
randomized samples. *, P < 0.01; **, P 
< 0.000001. 
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indicating that the incipient E. coli and S. enterica lineages continued to participate in recombination at 

loci unlinked to lineage-specific genes.  

2.3 CONCLUSIONS 

In contrast to the rapid formation of eukaryotic species boundaries, which are generally 

established within a couple million years (Coyne and Orr, 2004), the ~70 MYr time frame over which 

genetic isolation evolved between E. coli and S. enterica represents a temporal fragmentation of 

speciation. Because separate lineages arise within populations that continue to recombine at some loci 

for tens of millions of years, relationships among species inferred from few loci may underestimate their 

underlying complexity. Taxa may show different relationships depending on which genes are compared. 

Long periods of partial genetic isolation allows extant, named species – such as Escherichia coli itself – 

to contain multiple nascent species. Although one can observe recombination at some genes within E. 

coli as a whole, strains also have niche-specific loci that may act as genetic progenitors for the creation 

of new species. That is, a clean distinction between intra- and inter-specific variability may not be 

possible (Hanage, Fraser et al. 2005), and clearly-defined species cannot represent newly-formed 

lineages. Therefore the Dykhuizen and Green species concept (Dykhuizen and Green 1991) – gene 

phylogenies are congruent among representatives of different species, but are incongruent among 

members of the same species – works to delineate long-established species, but fails to recognize 

incipient species. 
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3.0  PHYLOGENETIC INCONGRUENCE ARISING FROM FRAGMENTED SPECIATION 

IN ENTERIC BACTERIA 

At first glance, prokaryotes appear to have simple, well-ordered relationships resulting from 

asexual reproduction and divergence by mutation. However, homologous recombination between 

closely related strains can lead to complex, non-clonal relationships (Dykhuizen and Green 1991). 

Recombination has implications that are so profound that its potential within populations is often taken 

to be the definitive feature of species. Mayr’s Biological Species Concept (BSC) frames species in the 

context of reproductive barriers, whereby only conspecific individuals exchange genes; individuals that 

fail to recombine represent different species (Mayr 1942). Despite its formulation for sexual eukaryotes, 

Dykhuizen and Green (Dykhuizen and Green 1991) proposed that the BSC could apply to bacteria; 

operationally, phylogenies of orthologous genes would be identical for strains of different species but 

demonstrably different for strains within species due to recombination. Several studies have applied 

these criteria to multi-locus phylogenetic analysis of prokaryotes, supporting the notion that there are 

distinct groups of organisms experiencing recombination within each group but not between them 

(Wertz, Goldstone et al. 2003). 

Despite these results, the BSC may not be generally applicable to prokaryotes, even for taxa that 

undergo high rates of recombination. While eukaryotic recombination affects all genes during meiosis, 

recombination in prokaryotes involves only a small fragment of DNA being introduced into a cell via 

transformation, phage-mediated transduction or plasmid conjugation. In both prokaryotes and 
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eukaryotes, recombinants may be counter-selected when genomic incompatibilities reduce hybrid 

fitness. In eukaryotes, this inhibits gene exchange genome-wide (Rieseberg, Wood et al. 2006), while in 

prokaryotes recombination interference affects only that small portion of the genome that carries the 

incompatible DNA. Similarly, antirecombination driven by sequence divergence and the mismatch 

repair system causes hybrid sterility in eukaryotes such as Saccharomyces (Greig 2009), while in 

prokaryotes it simply prevents the integration of the particular sequence that has diverged from the 

recipient (Shen and Huang 1986).  

As a result, barriers to recombination in bacteria are more modular than in eukaryotes. Consider 

a bacterial population freely recombining at all loci. Subpopulations can develop through genetic 

isolation of only a few loci, driven by ecology or sequence divergence; such subpopulations –

recombining at many loci but genetically isolated at other loci – could be numerous within a larger 

population. Consistent with this fragmented speciation model (Lawrence 2002), several Multilocus 

Sequence Analysis (MLSA) studies identified closely related populations that appear to be recombining 

at some loci but remain genetically isolated at others (Spratt, Bowler et al. 1992; Hanage, Fraser et al. 

2005). In addition, a comparison of Escherichia and Salmonella genomes revealed extensive variation in 

the level of sequence divergence across regions of the chromosome, suggesting that many regions 

experienced homogenizing recombination as much as 70 million years after other regions had become 

isolated (Chapter 2). Critically, excessively diverged regions were clustered around the loci where gene 

gains or losses distinguish Escherichia from Salmonella; such adaptive changes in gene inventory could 

have contributed to ecological differentiation within the recombining ancestral population and been the 

focus of selection against recombination.  

If recombination barriers are imparted gradually as populations split, they may not be complete 

before each descendent population splits again. The stepwise acquisition of genetic isolation at different 
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locations around the chromosome would lead to differing phylogenies of orthologous genes, resulting in 

the lack of clear organismal relationships. Alternatively, recombination could cease for all loci instantly 

when each population splits, as suggested for Yersinia pestis (Dykhuizen 2000). In this instant speciation 

model, all recombination events occur prior to the acquisition of genome-wide genetic isolation. Any 

phylogenetic incongruence would result from the partitioning of ancestral variation among descendent 

lineages, which would confound our ability to discern otherwise robust organismal relationships. Here, 

we test these models directly.  

3.1 PHYLOGENETIC DISCORDANCE IN THE ENTEROBACTERIACEAE DOES NOT 

REFLECT ONGOING RECOMBINATION 

To identify taxa with potentially confounded relationships, we looked within the well characterized 

species-rich clade of enteric bacteria. To establish a reference phylogeny, we aligned a core genome 

containing 1174 orthologous ORFs in each of 17 genomes (Table S4), with <15% of aligned sites 

having gaps in any genome. A NeighborNet (Bryant and Moulton 2004) analysis of the concatenated 

codon alignment of these genes shows conflicting phylogenetic signals among these genomes (Figure 

3.1). Regions with conflicting signal may reflect the incongruent histories among genes due to 

recombination (Lawrence and Retchless 2010). Examining each gene independently by maximum 

likelihood (ML), there is near universal support for the separation of Erwinia, Dickeya, Pectobacterium, 

Serratia, and Yersinia from Cronobacter and the other genomes (>99% of those alignments with a 

single topology in the 90% confidence limit). These taxa are used as outgroup genomes in subsequent 

tests.  
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Figure 3.1 Phylogenetic network of enteric bacteria 

The NeighborNet (Bryant and Moulton 2004) dendrogram was calculated by SplitsTree. Shaded region 
indicates the range for placement of the node separating Escherichia coli and Salmonella enterica according 
to relative divergence analysis (Chapter 2). Inset focuses on the divergence of Escherichia, Salmonella and 
Citrobacter (arrow A). 
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Figure 3.2 Percent of genes supporting clades 

 Each panel shows how often a reference genome was found to be the sister taxon to a second genome (defining each trendline, see 
legend) in a 4-taxa ML phylogeny. Each phylogeny included the reference pair, a constant outgroup and each of a series of test 
genomes. Results are plotted according to the distance from the reference genome to the node leading to the test genome on a 
neighbor-joining tree based on estimates of amino acid substitution counts (Ka). Gene counts were limited to those ORF alignments 
that generated substantial likelihood support for a single topology (90% CI, SH test). Quartet composition is listed to the right of 
each chart; “x” represents the test genome, which is identified on the distance axis. Cko; Citrobacter koseri; Csp, C. sp. 30_2; Cyo, 
C. youngae; Csa, Cronobacter sakazakii; Eal, E. albertii; Eco, E. coli MG1655; Efe, E. fergusonii; Esp, Enterobacter sp. 683; 
Kpn, K. pneumonia; Saz, S. enterica arizonae; Sen, S. enterica LT2; UTI, E. coli UTI89. 
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Using this outgroup, we examined reference pairs of taxa in a quartet analysis to test the 

robustness of their relationship with respect to an additional taxon (Figure 3.2). For high 

confidence phylogenies, the additional taxon should be either a clear outgroup (supporting the 

reference pair as sister taxa) or a clear ingroup (rejecting the pair as sister taxa). As expected 

from the NeighborNet results, virtually all genes supported the Escherichia/Salmonella pair 

when it was evaluated with either Klebsiella or Cronobacter, and virtually no gene supported 

this pair when evaluated with E. albertii, E. fergusonii (Figure 3.2C) or S. arizonae (Figure 

3.2B). However, two regions of the NeighborNet phylogeny show substantial conflicting signal 

(Figure 3.1 regions A & B). The divergence of Escherichia and Salmonella has supported a 

fragmented speciation model (Chapter 2), whereby chromosomal regions became genetically 

isolated during an extended timeframe (shaded area in Figure 3.1). This range includes the nodes 

representing the divergence of the Citrobacter lineages, suggesting that the relationship between 

these three genera will be ambiguous (Figure 3.1, inset). This theme was reinforced by the 

individual gene quartet analyses, where relationships between Escherichia and Salmonella were 

ambiguous – with the pair being neither widely accepted nor widely rejected – when evaluated 

with Citrobacter koseri (14% accepted) or C. youngae (30% accepted). A similar pattern was 

observed for the C. youngae/Salmonella clade (Figure 3.2A).  

Escherichia species represent one of the most recent radiations of bacteria recognized 

phylogenetically as separate species. In contrast to the divergence of Escherichia, Salmonella 

and Citrobacter, which have been separated for tens of millions of years, the three species of 

Escherichia are likely in the final throes of genetic isolation. MSLA data (Walk, Alm et al. 2009) 

is consistent with very low levels of recombination between otherwise distinct groups of 

Escherichia with divergence comparable to E. coli and E. fergusonii. The vast majority of genes 
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in our analysis also supports the monophyly of E. coli K12 with E. coli UTI89 (Figure3.2C) as 

well as the monophyly of the Escherichia relative to other genera; however, the relationships 

between the three Escherichia species remain unclear. The E. coli/E. albertii clade was 

supported by 53% of genes and the alternative E. coli/E. fergusonii clade by 44% of genes. Thus 

these taxa represent the genesis of the phylogenetic ambiguity that plagues the relationships of 

Escherichia, Salmonella and Citrobacter. 

These gene-based quartets provided no evidence for recent recombination between species of 

different genera, indicating that (for the genomes analyzed here) any substantial gene flow was 

limited to the time periods before the genera diversified into extant species. Yet with both 

radiations, the remaining phylogenetic incongruence may be interpreted several ways. The 

conflicting signal may simply represent noise, especially when inferring the relationships 

between the more distantly related Escherichia, Salmonella and Citrobacter. Alternatively, 

conflicting phylogenetic signal may reflect maintenance of ancestral polymorphism, whereby 

incomplete lineage sorting leads to ambiguous phylogenetic relationships even when genetic 

isolation occurs instantly for all genes (Pamilo and Nei 1988). Lastly, the fragmented speciation 

model predicts conflicting phylogenetic signal due to stepwise acquisition of barriers to 

recombination.  

3.2 ROBUST ALTERNATIVE RELATIONSHIPS AMONG BACTERIAL GENERA 

One expects the ratio of phylogenetic signal to noise to be weakest for very short branches, so 

one may posit that the inference of conflicting topologies described above simply reflects the 
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lack of support for the ‘true’ organismal phylogeny. To test this hypothesis we determined if the 

support for alternative topologies is stronger than expected. Likelihood analyses were performed 

on alignments of sequences from 14 genomes representing the maximal available diversity 

among Escherichia, Salmonella, Citrobacter and Klebsiella, while maintaining the monophyly 

of each group (6, 4, 2, and 2 genomes, respectively; Table S4). The use of multiple taxa for each 

clade increased the signal-to-noise ratio. While 2028 potentially orthologous ORFs were present 

in each of the 14 genomes, we removed 705 unreliably aligned ORFs (>5% of their multiple 

sequence alignment contained gaps), 14 potentially paralogous ORFs for which syntenic 

neighboring ORFs could not be reliably identified, and 165 ORFs for which the monophyly of 

each of the four genera was not confidently supported by Bayesian analysis. For the 1144 

remaining ORFs, the three possible relationships of the four genera were evaluated by codon-

based maximum likelihood, holding the relationships within each genus fixed as defined by the 

Bayesian analysis. 

A substantial number of alignments supported each of the three topologies (Figure 3.3AB) 

and several lines of evidence ruled out stochastic and systematic errors as the basis for these 

incongruent results. Among those alignments generating strong bootstrap support for a topology 

(Figure 3.3A), where bootstrap support thresholds provide conservative estimates of accuracy 

(Hillis and Bull 1993; Taylor and Piel 2004), no topology had the level of support expected if it 

were the true topology for all genes (dashed line). Furthermore, an excess of alignments rejected 

each topology with high confidence, indicating strong phylogenetic information at the gene level 

despite the widespread incongruence between genes (Figure 3.3B; p < 0.01 for all categories 

where individual genes are rejected at p <= 0.25; binomial test using threshold gene p-values as 

the expected probabilities). Unlike what would be expected for an unambiguous organismal 
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phylogeny, large fractions of alignments reject the Escherichia/Citrobacter clade, the 

Escherichia/Salmonella clade and, for high confidence alignments (P < 0.25), the 

Citrobacter/Salmonella clade.  

The proportions of alignments supporting each topology were robust to subsampling guided 

by statistical confidence and to a variety of other subsampling techniques that would purge 

different varieties of stochastic and systematic errors. Support for a single topology did not arise 

when we removed potentially mismatched orthologs, alignments with gaps or few informative 

sites, or any alignment generating inconsistent phylogenetic results using a codon-position 

model, other outgroups or fewer taxa (Table S1).  
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Figure 3.3 Phylogenetic discordance at all confidence levels 

  Measures of confidence on ML tests for individual genes do not match expectations for a 
genome-wide topology, either for the relationship among Citrobacter, Escherichia, and 
Salmonella (AB) or E. albertii, E. coli, and E. fergusonii (CD). Bootstrap support is expected to 
correspond to accuracy (AC), and SH test p-values provide expected frequencies of topology 
rejection (BD). Support for (AC) or rejection of (BD) alternative clades is indicated by 
trendlines. Within species quartets are in Fig. S2. 
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3.3 ROBUST ALTERNATIVE RELATIONSHIPS AMONG THE ESCHERICHIA 

The same set of 1144 alignments were tested according to a codon-position maximum likelihood 

model applied to each of the three topologies involving E. albertii, E. coli, and E. fergusonii, 

with an outgroup comprising two genomes each of Salmonella and Klebsiella. As with the 

original tests (Figure 3.2C), roughly equal portions of alignments supported the clustering of E. 

coli with either E. albertii or E. fergusonii, while E. albertii and E. fergusonii rarely clustered 

together (Figure 3.3CD). None of the topologies had support from a sufficient number of genes 

to justify the hypothesis that it is the single true topology and the others are artifactual (Figure 

3.3C), while each topology was rejected more often than expected by chance (Figure 3.3D). 

Support for a single topology did not arise when we removed potentially mismatched orthologs, 

or alignments with gaps, few informative sites, or that did not produce identical results when 

Klebsiella, Citrobacter, or Salmonella were used as single outgroups (Table S2). 

Interestingly, alignments supporting the E. albertii/E. fergusonii clade are rare (Figure 

3.3CD), illustrating the complexity of the isolation process. E. fergusonii and E. albertii may 

have arisen from small populations that rarely encountered each other, but continued to 

recombine with E. coli. Alternatively, ecological differentiation may be greater between E. 

fergusonii and E. albertii than between either of them and E. coli, suppressing recombination 

between them more. The former explanation is consistent with elevated substitution rates in the 

lineages leading to E. fergusonii and E. albertii relative to E. coli observed previously (Walk, 

Alm et al. 2009), but is not exclusive of the latter explanation. Also of note, while the E. 

albertii/E. coli clade is favored by those genes with strongest bootstrap support, a greater number 

of genes support the E. fergusonii/E. coli clade (Figure 3.3CD). This could reflect the 
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idiosyncratic nature of the fragmented speciation process, suggesting either that some loci in the 

E. fergusonii genome became isolated from the E. albertii/E. coli gene pool exceptionally early, 

or the E. albertii/E. coli gene pool maintained coherence at these loci until relatively recently. 

As a final test of the robustness of the incongruence in both quartet analyses, we attempted to 

identify hidden likelihood support (Gatesy and Baker 2005) for a congruent topology by 

concatenating those alignments supporting each of the three topologies tested, then repeating the 

maximum likelihood analysis. In each case, we found unambiguous support for the topology that 

the genes had individually supported (no alternate topology within 99% confidence interval). To 

guard against the analysis being dominated by a few genes with the strongest support for the 

given topology, we repeated the analysis using only those genes that had 50-60% bootstrap 

support for the given topology. Again, we recovered unambiguous support for each topology 

except the E. albertii/E. fergusonii clade, which produced 64% bootstrap support for itself, but 

could not reject the E. fergusonii/E. coli clade. 

3.4 CLUSTERING OF PHYLOGENETIC SIGNAL WITHIN THE CHROMOSOME 

The above results suggest that no single phylogeny is appropriate to describe the relationship 

between Escherichia, Salmonella and Citrobacter, or between the three species of Escherichia. 

If recombination between nascent species were responsible for the phylogenetic incongruence, 

then the phylogenetically informative sites should be clustered in their respective genomes 

according to the topology that they support. To evaluate clustering, we concatenated single-gene, 

high-quality alignments of genes with reliable identification of neighboring ORFs. Supporting 
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sites in the alignment were defined as those for which one topology is more parsimonious than 

the other two. Parsimony criteria were applied to nucleotide, amino acid and synonymous codon 

alignments, and two analyses were performed to measure the clustering of sites supporting each 

topology within the 1309 ORFs.  

A runs test for randomness in the order of supporting sites indicated highly significant 

clustering of supporting sites by topology (p << 10-10, Table 3.1). That is, for both the 

Escherichia/Salmonella/Citrobacter and E. albertii/E. coli/E. fergusonii clades, sites supporting 

each of the conflicting topologies were clustered in these genomes. To test if sites supporting 

each topology were clustered, we repeated the runs test by omitting each topology in turn; 

significant clustering was still observed (Table S3, p < 10-5). To investigate the scale of 

clustering as a function of distance between supporting sites, pairs of sites were binned according 

to distance, calculating the frequency that both sites within the binned distance range supported 

the same topology (Figure 3.4). For all analyses, there was a clear enrichment of sites supporting 

the same topology over the frequency expected from genome averages. This is most noticeable 

for the analysis of Escherichia species, where phylogenetic signal is expected to be the strongest; 

clustering is apparent both within and between genes (Figure 3.4ABC). Clustering is detectable 

in the Escherichia/Citrobacter/Salmonella analysis (Figure 3.4D) though less apparent due to the 

accumulation of noise.  
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Figure 3.4 Chromosomal clustering of parsimony informative sites supporting each topology 

Each site supporting a distinct topology was compared against each other site and the observation binned according to the distance 
between sites. Trendlines report proportions of observations where a site supporting a given topology was paired with a site supporting 
the same topology. Expected values are derived from the genome-wide proportion of sites supporting that topology. Data is plotted at 
the midpoint of the bin range. Within species quartets are in Fig. S3. 
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Table 1 Occurrence of sites supporting the same topology 

 Topology1 Runs of Sites  

 1 2 3 Exp  SD Obs  Z 

ESC Nuc 19539 19886 18829 38827 114 35684 27.6 

ESC Pro 2382 2879 2442 5117 41 4600 12.5 

ESC Syn 12229 11666 11621 23672 89 22844 9.3 

EEE Nuc 9687 19298 18950 30718 102 24327 62.6 

EEE Pro 471 3074 1361 2558 29 1660 31.0 

EEE Syn 6950 11009 13658 20357 83 17159 38.7 

1. ESC1=Cit,Esc; ESC2=Cit,Sal; ESC3=Esc,Sal; EEE1=Eal,Efe, EEE2=Eal,Eco; EEE3=Eco,Efe 

 
  

Columns: 1,2,3: count of sites supporting the specified topology; Exp, Expected number of runs if sites are 
arranged randomly; SD: standard deviation of expectation; Obs: Observed number of runs; z: z value (Obs-
Exp)/SD. All values are highly significant (p << 0.001) 
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3.5 PHYLOGENETIC INCONGRUENCE DOES NOT REFLECT INCOMPLETE 

LINEAGE SORTING 

The clustering of informative sites is evidence that recombination produced different 

phylogenies for different regions of these genomes, thus eliminating the possibility of recovering 

an unambiguous organismal phylogeny from the sequence data. Yet this evidence is not 

sufficient to determine whether recombination occurred at some loci subsequent to the genetic 

isolation at other loci (fragmented speciation), or an ancestral population split into two 

descendent populations, one of which split again before its ancestral polymorphisms had been 

resolved (incomplete lineage sorting). By the latter model, one topology would reflect the history 

of population splitting (the species topology), and the other two would represent the diversity of 

the original population (Pamilo and Nei 1988). To evaluate this “instant speciation” model 

empirically, we compared the observed diversity of the extant populations to the inferred 

diversity of the ancestral population that could have generated the incongruent phylogenies (Fig 

S1). Putative ancestral diversity was measured as the length of the innermost branch connecting 

all four genera on a maximum likelihood tree (internal branch). The diversity within an extant 

population was measured as half of the distance separating any two genomes in that population 

(terminal branch). Four E. coli genomes were selected to include maximal diversity (Touchon, 

Hoede et al. 2009), as were 3 S. enterica enterica genomes. As reported above, widespread 

support for the monophyly of E. coli indicates that E. albertii and E. fergusonii do not recombine 
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freely with E. coli; therefore they were not included in measures of extant diversity. Higher 

levels of congruence supported the distinctness of S. enterica enterica (subspecies I) relative to 

S. enterica arizonae (>97.5% of alignments where no alternate topology is within the 90% 

confidence limit).  

If incomplete lineage sorting were to produce the observed phylogenetic ambiguity between 

Escherichia, Salmonella and Citrobacter, then the terminal and internal branch-lengths on 

maximum likelihood trees with non-species topologies would be comparable because both would 

represent within-species diversity. Only trees with the ‘true’ species topology could have 

accumulated extra divergence along the internal branch. For all three topologies we counted the 

number of trees for which the internal branch was longer than the terminal branch. To provide a 

conservative estimate, we focused on the pair of E. coli genomes that most often provided a 

terminal branch measurement that exceeded the length of the internal branch. Still, the average 

terminal branch of UMN026/UTI89 was generally longer than the internal branch. This was true 

for each topology, in 93.0% (346/372), 94.8% (292/308), and 95.7% (443/463) of the trees that 

clustered Escherichia with Salmonella, Escherichia with Citrobacter or Citrobacter with 

Salmonella, respectively (Fig. S1A). Diversity within S. enterica enterica was always smaller 

than the ancestral variation in at least than 98% of trees.  

To determine how often the internal branch would be longer than the terminal branch if 

genetic isolation were imposed simultaneously for all genes, we simulated the evolution of these 

taxa according to the best ML tree. This guide tree was modified so that the internal branch 

length was equal to the average terminal branch length between strains UMN026 and UTI89 

(Fig. S1B). We repeated the quartet analysis using 100 simulations of the set of 1144 genes (Fig. 

S1C). The internal branch on a ML tree of the simulated data was longer than the average 
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terminal branch for 60 ± 1 % of the genes (maximum value 63.9%). Comparable values were 

found when the genes supporting each topology were analyzed separately (Table S5; maximum 

value 66.8% for the 308 genes supporting the Escherichia/Citrobacter clade). Therefore, our 

data indicate that measured ancestral diversity for the Escherichia/Salmonella/Citrobacter split 

far exceeds diversity found in extant species of E. coli and S. enterica. Because the data suggest 

that all three topologies represent the ‘true’ species topology, we reject incomplete lineage 

sorting as the mechanism leading to phylogenetic incongruence. Similar results were found using 

the internal branch of the E. albertii/E. coli/E. fergusonii split when the genes supporting each of 

the two dominant topologies were analyzed (Table S5); the rare gene alignments that supported 

an E. albertii /E. fergusonii clade produced branch lengths within the expected distribution, 

which is consistent with the lack of prolonged recombination between these genes in these 

lineages, as was suggested above. 

 

3.6 QUESTIONING THE TREE OF LIFE 

Significant phylogenetic incongruence was observed between bacterial taxa (Figure 3.1). 

This incongruence could have reflected noise, recent recombination between otherwise 

genetically isolated populations, or the random assortment of ancestral diversity following 

instant acquisition of genetic isolation. Above, we provided evidence rejecting these alternatives; 

therefore, another model, such as the stepwise acquisition of genetic isolation (fragmented 

speciation), must be invoked to explain the data. In accordance with this model, previous data for 
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E. coli and S. enterica show that genetic isolation occurred at different times for different genes, 

driven by adaptive change (Chapter 2). The fragmented speciation model suggests that 

organismal phylogenies cannot be deduced from gene phylogenies since genes have different 

evolutionary histories. Given the vast diversity of prokaryotes (Dykhuizen 1998), groups of 

ambiguously related taxa produced by rapid evolutionary radiations may be common.  

The number and density of such problematic relationships can only increase as more 

microbial diversity is characterized. In the most extreme interpretation, this would invalidate the 

Tree of Life hypothesis, which is founded on the idea that extant taxa have unambiguous 

relationships (Doolittle and Bapteste 2007). Phylogenetic trees of organisms serve as frameworks 

for interpreting evolutionary change; characteristics of ancestral taxa are inferred by coalescence 

and serve as platforms for interpreting changes in descendent taxa. Yet our data suggest that such 

ancestral taxa may not have existed, and inferences that require them, e.g., any utilization of 

parsimony, would fail. For example, if one accepts an organismal phylogeny that places 

Escherichia as an outgroup to the Citrobacter/Salmonella clade, then any feature in common 

between E. coli and Salmonella would be interpreted as a parallel gain or a loss from Citrobacter 

(Fig. S4). Alternatively, this feature may have been shared by the two taxa throughout the 

fragmented speciation process, since a distinct taxon ancestral to the Citrobacter/Salmonella 

clade need not exist (Lawrence and Retchless 2010). Given these complications, the Tree of Life, 

in demanding a strict bifurcating relationship among descendent taxa, cannot form the basis for 

rigorous examination of bacterial diversity. 
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3.7 QUESTIONING BACTERIAL SPECIES CONCEPTS  

The patterns of incongruence that we identified suggest that populations of potentially 

recombinogenic bacteria are neither freely recombining nor genetically isolated at all loci as 

required by the BSC. The implication is that any apparently freely-recombining population 

actually comprises many partially genetically-isolated subpopulations. As a result, Mayrian 

species boundaries cannot be defined rigorously by gene flow because extant species will include 

numerous ecological protospecies that are in partial genetic isolation, leading to ambiguity in the 

relationships among derived taxa as shown above. Moreover, ecotypes are not a good basis for 

species identification, as closely related ecotypes can still experience substantial gene flow, 

causing the evolution of one ecotype to influence the trajectory of another as in Neisseria (Spratt, 

Bowler et al. 1992) or Campylobacter (Sheppard, McCarthy et al. 2008). Given the complexity 

of bacterial gene exchange, we are unlikely to identify any rules for identifying the threshold 

beyond which two populations are destined to follow separate paths. Historical evidence for 

recombination does not necessitate ongoing potential for recombination. 

Thus species concepts may not apply to bacteria (Doolittle and Zhaxybayeva 2009), even if 

phenotypically distinct groups of related bacteria are readily identifiable. Such concepts connect 

patterns of phenotypic diversity in groups of organisms to the evolutionary forces acting upon 

those organisms’ constituent genes. Forces that lead to cohesion within sexual eukaryotic 

populations act upon all genes in concert; as a result, the history of such organisms is reflected in 

the collective history of their genes. Their sexual systems simplify species conceptualization by 

producing mating barriers that affect entire genomes at once (Rieseberg, Wood et al. 2006). In 

contrast, evolutionary forces do not act on all bacterial genes in unison; recombination may be 
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successful at some loci, but be counterselected at others. The evolutionary independence of 

bacterial genes afforded by position-specific gene exchange generates incongruence among gene 

trees. Therefore, a species concept attributing the unambiguous species delineation to the action 

of a particular evolutionary process may be unattainable in bacteria. 

One response would be for taxonomy to embrace the pluralistic nature of bacterial taxa, 

placing strains into more than one species (Bapteste and Boucher 2009), or abandoning species 

names altogether for a less hierarchical approach (Lawrence, Hatfull et al. 2002). Yet one could 

argue that bacterial species names carry the greatest practical impact, placing organisms into 

defined groups that are utilized for agriculture, biotechnology, epidemiology, public health, 

disease diagnosis, and bioterrorism. Indeed, the public policy impact of such ambiguity and 

fluidity in the characterization of bacteria may preclude the widespread adoption of such a 

classification system. Barring this approach, then, what is left is the necessary use of practical 

definitions in the absence of a feasible species concept. Such definitions would encompass 

collections of bacteria that are phenotypically similar by criteria that are subjectively important 

to the classifiers, leading to both narrowly-defined (e.g., Bacillus anthracis) and broadly-defined 

(e.g., E. coli) groups. The ease by which many medically relevant taxa can be classified suggests 

that it can be an effective approach. While this lacks the elegance and satisfaction of groupings 

driven by biological processes, the absence of strong theoretical underpinning to their delineation 

does not detract from their utility. 
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4.0  QUANTIFICATION OF CODON SELECTION FOR COMPARATIVE 

BACTERIAL GENOMICS 

It has long been recognized that protein coding sequences show nonrandom, organism-specific 

patterns of codon usage (Grantham, Gautier et al. 1980). Codon usage bias is most pronounced in 

highly expressed genes (Ikemura 1981), where codon preferences are associated with the tRNA 

abundance within the cytoplasm (Ikemura 1981). Measurement of codon selection is of interest 

because the extent to which different genes use the preferred codons is predictive of their 

expression levels. Comparative studies of codon selection have provided insight into the 

population structure and lifestyle of organisms (Sharp and Li 1987; Karlin and Mrazek 2000; 

Rocha 2004; Sharp, Bailes et al. 2005; Vieira-Silva and Rocha 2010). 

Numerous statistics have been devised to measure variation in codon selection among 

Open Reading Frames (ORFs) within a genome, yet none fully account for the evolutionary 

dynamics that shape codon usage bias. The simplest metrics evaluate how much the codon usage 

frequencies of a gene deviate from expected frequencies. These methods, such as the Effective 

Numbers of Codons (ENC) and the ENC′  (Wright 1990; Novembre 2002), incorporate no 

information about the fitness differences among synonymous codons. The logic of these metrics 

has been expanded by Karlin (Karlin and Mrazek 2000) and Supek (Supek and Vlahovicek 

2005), comparing each gene’s codon usage to both genome-wide codon frequencies 
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(representing mutational tendencies) and to codon frequencies in a defined set of genes believed 

to experience strong codon selection. However, these “reference point” approaches have been 

criticized for being designed such that genes with the most extreme biases in terms of preferred 

or non-preferred codons would not be assigned the most extreme values (Henry and Sharp 2007).  

An alternative approach is to assign a score to each codon based upon inferences 

regarding the typical fitness advantage of the codon relative to its synonyms. The simplest such 

statistics summarize the optimal codon frequency for each amino acid (Fop (Ikemura 1981) and 

CBI (Bennetzen and Hall 1982)) while more complicated “scoring table” methods incorporate 

additional information about the relative importance of non-optimal codons (e.g. CAI (Sharp and 

Li 1987), tAI (dos Reis, Savva et al. 2004), GCB (Merkl 2003)). Use of a scoring table weights 

the statistic so that it is influenced more by those amino acids for which the synonymous codons 

have a greater perceived fitness difference. Such statistics may still be normalized to assure that 

the amino acid composition of a protein does not influence them, allowing them to reflect 

variation in synonymous codon usage only. One method for normalizing across amino acids is to 

compare the score of the observed codons against the maximum possible score for an ORF with 

the same amino acid composition (CAI, tAI). This normalization produces a uniform maximum 

score for all ORFs regardless of amino acid composition, but does not normalize non-optimal 

codons across amino acids, allowing the final statistic to be influenced by amino acid 

composition for the majority of ORFs containing many non-optimal codons (Sharp, Emery et al. 

2010). Alternatively, the statistic can be calculated as the unweighted average of the statistic for 

each amino acid (Eyre-Walker 1996), but this ignores the differences in information content 

arising from different abundances of amino acids in a protein. 
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Despite the power of these statistical methods, none of them quantify the patterns of 

variation that are expected to arise from mutation-selection balance, which is the primary 

explanation for  the occurrence of non-optimal codons (Bulmer 1991; Smith and Eyre-Walker 

2001). The selection-mutation-drift theory of synonymous codon usage describes an equilibrium 

condition where preferred and non-preferred codons occur in proportions determined by 

mutational biases, selection, and the effective population size. Recent studies have calculated the 

parameters of this model explicitly (Sharp, Bailes et al. 2005; dos Reis and Wernisch 2009; 

Sharp, Emery et al. 2010), but only codons for two-fold degenerate amino acids were analyzed, 

limiting the information available to make inferences about individual genes. To date, no 

analytical method accounts for the variation in the codon usage statistic that arises from the 

stochastic nature of the selection-mutation-drift model. 

Here, we expand upon the scoring table class of methods by introducing a new statistic 

that incorporates a stochastic model allowing ORFs to be evaluated in terms of their deviation 

from a null expectation of codon composition in genes lacking strong codon selection. This 

allows us not only to measure the impact of selection against the background of mutational bias, 

but to normalize the values assigned to non-preferred codons of different amino acids so that 

each amino acid is expected to contribute an equal score under the null model. By deriving the 

expected distributions of the statistic under a null hypothesis about codon frequencies, our 

statistical framework provides a means to compare the strength of codon selection within and 

between genomes. 

Below, we describe a statistic for summarizing the codon usage of a protein coding 

sequence. The raw statistic is the sum of values assigned to each of the codons in the sequence 

and may be normalized according to its expected distribution. Normalized scores for individual 
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genes can be combined to summarize the magnitude of codon selection operating on the entire 

genome. We compare our measure to previously described codon usage statistics, both 

conceptually and empirically. 

4.1 RELATIVE ADAPTIVENESS OF SYNONYMOUS CODONS 

To quantify enrichment of a codon among genes experiencing codon selection, we define a score 

(δ) for each codon cdn in a manner similar to Merkl’s CB (Merkl 2003) as, 

𝛿𝑖𝑗 = log 𝑓𝑜(𝑐𝑑𝑛𝑖𝑗)
𝑓𝑛(𝑐𝑑𝑛𝑖𝑗)

 , 

where cdnij is the jth codon of the ith amino acid and f(cdnij) is the expected frequency of 

that codon among its synonyms in genes that have (fo) or have not (fn) been optimized by codon 

selection. Use of the logarithm enables us to summarize the codon optimization of a gene or set 

of genes as the sum of the individual scores of the codons comprising the gene, generating the 

Summed Codon Bias (SCB). To facilitate examination of the stochastic properties of the SCB, it 

is calculated as the sum of the composite scores for each amino acid (α), which are determined 

from the scores of their constituent codons as,  
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where Ni is the number of synonyms and Cij is the count of that codon within the gene 

being analyzed. Merkl (Merkl 2003) argues that statistics of this form are the optimal test 

statistics for distinguishing between two populations. Here, we use the sum because it has 

convenient properties, described below, which we will use to normalize this continuous statistic. 

The SCB is related to other codon optimization statistics by different normalization routines. 

Merkl’s GCB (Merkl 2003) is the length-normalized form of the SCB. The logarithm of the CAI 

(Sharp and Li 1987) can be derived from the SCB by calculating δij with a non-optimized table 

(fn) showing no bias among synonymous codons, then subtracting SCB from the maximum 

possible value available given its amino acid composition, and dividing by the number of codons 

in the ORF, ignoring methionine and tryptophan.  

Crucially, scoring tables created from δij reveal which codons increase in frequency 

among the most optimized proteins, and to what degree. This is different from the RSCU values 

that are used to calculate the CAI (Sharp and Li 1987), which reflect simply the abundance of 

codons in optimized genes without reference to their abundance in non-optimized genes. Codons 

with greatest abundance in optimized genes may not have experienced the strongest selection for 

enrichment and, in the worst cases, may actually be disfavored. This adjustment to the estimate 

of codon adaptiveness should have the greatest effect in genomes where nucleotide composition 

shows the greatest deviation from equal usage. To examine the effect of this difference between 

SCB and CAI, we evaluated multiple genomes by constructing fo from a set of 40 protein-coding 

genes whose products comprise the ribosome and other parts of the translation apparatus (see 

Methods, (Sharp, Bailes et al. 2005)) and constructing fn from all protein coding sequences in the 

genome. Accounting for the biases in fn creates substantial changes in δ relative to the values 

obtained otherwise (Table 4.1), even changing estimates of which codon is most preferred. In 
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Pseudomonas putida (67% GC), for four amino acids, the synonymous codons that are enriched 

among ribosomal proteins and translation elongation factors are not the same as the synonymous 

codons that are most abundant among those proteins. These effects are also observed in genomes 

with less bias in nucleotide composition, such as Bacillus subtilis (44% GC) and Escherichia coli 

(51% GC), each of which had one amino acid where the enriched codon is not the most abundant 

codon. 
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Table 2 The effect of mutational biases on codon scores 

  
Escherichia coli MG1865 

 
Bacillus subtilis 168 

 

Pseudomonas putida 
KT2440 

Residue Codon All 40 Dif 
 

All 40 Dif 
 

All 40 Dif 
Lys AAG 0.303 0.380 1.000 

 
0.427 0.189 0.441 

 
1.000 1.000 0.634 

Lys AAA 1.000 1.000a 0.800 
 

1.000 1.000 1.000 
 

0.385 0.607 1.000 

             Pro CCG 1.000 1.000 1.000 
 

1.000 0.279 0.127 
 

1.000 1.000 0.409 
Pro CCA 0.358 0.183b 0.511 

 
0.439 0.962 1 

 
0.2817 0.689 1.000 

Pro CCT 0.295 0.206 0.697 
 

0.659 1.000 0.693 
 

0.2374 0.557 0.959 
Pro CCC 0.231 0.017 0.074 

 
0.206 0.039 0.086 

 
0.4627 0.151 0.134 

             Thr ACG 0.613 0.082 0.050 
 

0.652 0.233 0.140 
 

0.264 0.046 0.078 
Thr ACA 0.290 0.094 0.121 

 
1.000 0.606 0.238 

 
0.104 0.054 0.232 

Thr ACT 0.374 1.000 1.000 
 

0.392 1.000 1.000 
 

0.137 0.307 1.000 
Thr ACC 1.000 0.924c 0.346 

 
0.386 0.026 0.026 

 
1.000 1.000 0.448 

             Val GTG 1.000 0.229 0.160 
 

0.906 0.168 0.185 
 

1.000 0.646 0.117 
Val GTA 0.415 0.545 0.916 

 
0.695 0.629 0.904 

 
0.201 0.399 0.361 

Val GTT 0.698 1.000 1.000 
 

1.000 1.000 1.000 
 

0.181 1.000 1.000 
Val GTC 0.587 0.139 0.166 

 
0.904 0.157 0.174 

 
0.572 0.798 0.253 

a. Red cells indicate that this table overestimates selection against this codon and incorrectly denotes it as the preferred codon. 
b. Yellow cells indicate that this table overestimates selection against this codon. 
c. Green cells indicate that this table underestimates selection against this codon. 

 
Table 4.1. Normalized Synonymous Codon Usage values (NSCU, (Sharp and Li 1987)) for select amino acids, illustrating the effect 
of calculating these values relative to the genome-wide codon composition. NSCU is the frequency of each codon divided by the 
frequency of the most common of its synonyms. For each genome (listed at top), three columns represent NSCU values calculated for 
the frequency of codons in the entire genome (All, fn), in 40 highly expressed proteins (40, fo), and the ratio of the two (Dif, fo/fn) 



55 

 

 

4.2 NORMALIZATION OF CODON BIAS STATISTICS TO A THEORETICAL 

DISTRIBUTION 

Rigorous interpretation of any codon bias statistic depends upon knowledge of its distribution 

given expected synonymous codon usage frequencies. Issues as simple as discerning if one 

protein coding sequence is more enriched for optimal codons than another cannot be resolved 

unless we know what values of the summary statistic are expected to occur for protein coding 

sequences that vary in amino acid composition but not synonymous codon frequencies. 

Likewise, unless the variance of the summary statistic is known, variation between genes cannot 

be inferred to result from differences in the strength of selection rather than being due to the 

stochastic nature of mutation and drift.  

If the null hypothesis is that a protein coding sequence has not been shaped by selection 

for optimal codons, then the table of expected codon frequencies for each amino acid is 

equivalent to fn, above. We will use genome-wide codon composition as estimates of fn. To 

estimate the distribution of the SCB expected for a given protein coding sequence, we first 

estimate the sampling distribution of the composite score for each amino acid (α). The expected 

contribution of each amino acid is the count (C) of that amino acid, multiplied by the weighted 

average of the scores of each of its codons (δ), so that 

𝐸(𝛼𝑖) = 𝐶𝑖�𝑃𝑖𝑗𝛿𝑖𝑗

𝑁𝑖

𝑗=1
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and 

𝐸(𝑆𝐶𝐵) = �𝐸(𝛼𝑖)
20

𝑖=1

= �𝐶𝑖�𝑃𝑖𝑗𝛿𝑖𝑗

𝑁𝑖

𝑗=1

20

𝑖=1

  , 

where Pij, the probability of observing that codon at random, is the frequency of that 

codon among genes lacking selection, equivalent to fn(cdnij).  In our null model, the identity of 

the codon at each site is independent of that at other sites, meaning that the variance of the SCB 

is the sum of the variance for each site, so that 

𝑉(𝛼𝑖) = 𝐶𝑖  ��𝑃𝑖𝑗

𝑁𝑖

𝑗=1

𝛿𝑖𝑗
2 −  ��𝑃𝑖𝑗𝛿𝑖𝑗

𝑁𝑖

𝑗=1

�

2

� 

and 

𝑉(𝑆𝐶𝐵) = �𝑉(𝛼𝑖)
20

𝑖=1

. 

Being the sum of several independent random variables, the SCB has an approximately 

normal distribution according to the Central Limit Theorem (Sheskin 2007). Many statistical 

tests assume a normal distribution, so we will describe a statistic derived from that distribution. 

The Adaptive Codon Enrichment (ACE) is the difference between the observed SCB and the 

expected SCB for a protein coding sequence: 

ACE = 𝑆𝐶𝐵 − 𝐸(𝑆𝐶𝐵). 

This may be normalized in two ways. First, it may be presented as a standard deviation 

score or z-value as, 

ACE𝑧 =
ACE

�𝑉(𝑆𝐶𝐵)
=
𝑆𝐶𝐵 − 𝐸(𝑆𝐶𝐵)
�𝑉(𝑆𝐶𝐵)

  . 



57 

 

Alternatively, the ACE may be unit normalized so that it reflects the deviation averaged 

per codon in the coding sequence as, 

ACE𝑢 = ACE ��𝑉(𝛼𝑖)𝐶𝑖

20

𝑖=1

�   . 

Because each amino acid provides different amounts of variance to the final score, 

normalization takes into account the variance contributed by each amino acid rather than simply 

dividing by the length of the protein coding sequence. This is equivalent to calculating ACEu as 

the average of the z-value for each individual codon. Notably, the ACE is indifferent to the 

inclusion or exclusion of methionine and tryptophan codons because, having only single codons, 

they always make an equal contribution to the observed and expected value and do not contribute 

to the variance. This is in contrast to statistics that are sensitive to the frequency with which the 

most preferred codon occurs, such as the CAI, where methionine and tryptophan are explicitly 

ignored (Sharp and Li 1987). 

To validate that ACE statistics can be treated as random normal variables, we used Monte 

Carlo simulations to examine the properties of genes for which the SCB fit this assumption. 

Distributions were constructed from 2000 Monte Carlo samples for each ORF of E. coli and P. 

putida, using the expected codon distribution of the respective genome. The predicted mean and 

variance were universally accurate, while skewness and kurtosis produced deviations from 

normality that were only detectable within the GC-biased P. putida genome. D'Agostino's K-

squared test (Sheskin 2007) identified an excess of genes having non-normal SCB null 

distributions (p < 0.05 for 340 of 5350 ORFs; 6.3%), although the skewness and kurtosis values 

were universally small (-1×10-3 to 8×10-4 and -6×10-4 to 6×10-4, respectively) and the worst 
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approximations were concentrated among genes with less than 100 degenerate codons (67 of 503 

small ORFs being non-normal at p < 0.05).  

4.3 PREDICTION OF GENE EXPRESSION DATA 

Using existing gene expression data, we examined the predictive power of several codon 

selection statistics and their robustness in the face of uncertainty regarding optimal 

parameterization. Here we examined those methods that use information about the frequency 

with which each codon is used within a set of ORFs optimized for translation (fo). A robust 

method will generate a consistently high level of performance when parameterized with any set 

of ORFs for which the codon usage bias has been shaped by codon selection. We selected three 

datasets of transcript abundance data for evaluation: Escherichia coli (Bernstein, Khodursky et 

al. 2002)(Figure 4.1 AB), Pseudomonas aeruginosa (Waite, Paccanaro et al. 2006) (Figure 4.1 

CD), and Saccharomyces cerevisiae (Dudley, Aach et al. 2002) (Figure 4.1 EF). These include 

both bacteria and eukaryotes, with genomic nucleotide compositions ranging from strongly AT 

biased to strongly GC biased.  

  



59 

 

Escherichia coli 

  
Pseudomonas aeruginosa 

  
Saccharomyces cerevisiae 

  

Figure 4.1 Correlation coefficients of codon selection statistics and transcript abundance data.  

CAI, green line; E, blue dashes; MELP, red dashes; GCB, purple line; ACE, blue line. Abscissa: 
the number of genes included in the highly expressed gene set (fo). Ordinate: Correlation 
coefficient between respective codon statistic and transcript abundance level for each gene (see 
main text). From top to bottom: E. coli, P. aeruginosa, S. cerevisiae 
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For each dataset, we examined the correlation of the transcript abundance data relative to 

each codon optimization statistic (CAI (Sharp and Li 1987), GCB (Merkl 2003), length-

normalized ACE (this study), Karlin’s E (Karlin and Mrazek 2000), and MELP (Supek and 

Vlahovicek 2005)) when the codon statistic was calibrated against the most abundant transcripts 

from the same dataset. Here, our intention is not to actually predict the transcript abundance data, 

but to evaluate the behavior of each method under optimal conditions. By using the dataset that 

the statistics are tested against, we avoid any semi-arbitrary decisions in parameterization that 

may inadvertently favor one method over another. To examine how each statistic responds to 

decreased precision in identifying the optimal genes, the number of genes contributing codons to 

fo was gradually increased, 20 at a time until it included half of all genes. For the statistics that 

require an estimate of codon usage in the absence of codon selection (fn), we used the codon 

composition of the entire genome. 

The correlation between CAI and expression was generally weak in S. cerevisiae and P. 

aeruginosa (Figure 4.1 C-F), which is expected given that these genomes exhibit strong biases in 

their nucleotide composition and CAI does not incorporate any information about this bias. For 

this reason, the author of the CAI suggested that the it may not be applicable to highly biased 

genomes such as P. aeruginosa  (Grocock and Sharp 2002). The other four methods, taking the 

nucleotide composition into account, perform much better on biased genomes (Figure 4.1 C-F).  

These four methods perform comparably when evaluated with Spearman’s (rank) 

correlation (Figure 4.1 A,C,E), but show differences when evaluated with Pearson’s correlation 

(Figure 4.1 B,D,F). For the calculation of Pearson’s correlation, a logarithmic function was 

applied to the transcript abundance, E, MELP, and CAI, because they generally performed better 

after this transformation, and the GCB and ACE are intrinsically calculated with logarithms. 
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Pearson correlations are generally higher than Spearman correlations, indicating that there is 

some proportionality between these statistics and gene expression levels. The highest 

correlations were typically produced by the GCB and ACE (Figure 1, purple and blue lines), and 

these correlations are most robust to the decreased resolution of the set of “highly expressed 

genes”. The length-normalized ACE performed similarly to the ACE𝑢, so the later was not 

displayed in the graphs. The MELP also performed rather well, but exhibited erratic behavior 

when examined with the Pearson correlation; this effect arises from the fact that the component 

metric (the MILC (Supek and Vlahovicek 2005)) can approach zero, producing extreme values 

for MELP (genes with negative scores were excluded from the correlation calculation). 

The ability of the ACE to predict gene expression levels in P. aeruginosa with such high 

accuracy (ρ = 0.65, 5543 genes, using the 100 most highly expressed genes to construct fo) is 

surprising in light of previous studies suggesting that there is little codon selection acting in this 

genome (Sharp, Bailes et al. 2005). Grocock and Sharp found that codon variation in P. 

aeruginosa was primarily due to the presence of genes with atypical nucleotide composition 

(presumably recently acquired), with a secondary trend due to codon selection (Grocock and 

Sharp 2002). Recently acquired genes tend to be expressed weakly so that, even in the absence of 

codon selection, a statistic that simply discriminated between native and foreign genes would be 

expected to correlate with expression levels. We tested whether this factor contributed to the 

high correlation by limiting the analyses to the 1678 genes that are likely to be native to P. 

aeruginosa because orthologs were detected in each of four other diverse Pseudomonas species: 

P. mendocina, P. stutzeri, P. entomophila, and P. putida (mean dS  > 1.25 for each of the 10 

pairs, where dS is synonymous divergence estimated by the method of (Yang and Nielsen 

2000)). For the 1677 genes in this set that also had transcript abundance values, the correlation 
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coefficient actually increased to 0.75 when the 100 most highly expressed genes were used to 

construct fo, indicating that most of this correlation is indeed due to codon selection. 

4.4 SUMMARIZING GENOMIC CODON SELECTION 

The level of codon selection may vary between genomes and several approaches have been 

implemented to measure these differences (Lawrence 2001; dos Reis, Savva et al. 2004; Rocha 

2004; Dethlefsen and Schmidt 2005; Sharp, Bailes et al. 2005). These studies have found that 

codon selection increases in genomes with greater numbers of tRNA- and rRNA-encoding genes, 

suggesting that codon adaptation is associated with genomic structures that minimize generation 

time under optimal growth conditions (Sharp, Emery et al. 2010; Vieira-Silva and Rocha 2010).  

Unlike other measure of gene-level codon usage bias, the ACE lends itself naturally to 

estimates of genome-wide codon selection. A χ2 distribution is defined as the sum of the squares 

of samples from a standard normal distribution. Therefore, we can calculate a normalized χ2 

statistic for each genome – measuring the degree to which selection has moved codon usage 

away from that expected by mutation alone – by calculating the average of the squared z-scores 

for each gene g, as 

𝐴𝐶𝐸χ2 =
1
𝑁
�𝐴𝐶𝐸𝑧𝑔

2
𝑁

𝑔=1

 

In the absence of codon selection, values should approach 1.0, where genes, on average, 

share the same codon usage (Sheskin 2007). The Monte Carlo simulations described above 

confirmed that when all ORFs share the same codon composition, the ACEz distribution for the 
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genome has a mean of zero, and a variance of one, resulting in a normalized χ2 of one. The χ2 

statistic is suitable for summarizing across several genes, since when it is generated from a set of 

genes experiencing uniformly strong codon selection, it will be proportional to the total number 

of codons evaluated, because the contribution of each amino acid to the z score is proportional to 

the square root of the number of codons encoding that amino acid. 

 To examine the behavior of this statistic, we quantified selection in three diverse 

bacterial genomes under a variety of analytical assumptions. First, we examined Buchnera 

aphidicola, which is generally believed to experience very little codon selection. The ACEχ2 for 

the entire genome (563 ORFs) ranged from 1.64 to 1.94, depending on whether fo was calculated 

using the orthologs of the 27 E. coli genes used to calibrate the original CAI, or the orthologs of 

40 E. coli translational genes (see Methods, see Fig. S5 for distribution of ACEz). Limiting the 

analysis to the 498 ORFs shared with E. coli K12 (for both fn and ACEχ2 ) resulted in an altered 

ACEχ2  of 1.42 and 1.96 for the two fo tables. 

The choice of genes for fn and ACEχ2 has a greater impact in larger genomes with a 

greater number of horizontally acquired genes. For example, in E. coli K12 the ACEχ2 for the 

entire genome (4149 ORFs) ranged from 9.8 to 10.3 for the different fo tables. Limiting the 

analysis to the 2628 ORFs shared with E. fergusonii and E. albertii (for both fn and ACEχ2 ) 

increased ACEχ2 scores to 11.79 and 11.3 for the two different fo tables. A more extreme 

restriction to the 498 genes shared with Buchnera increased the scores to 18.7 and 17.7.  

The increase in scores generated by the more restricted set of widely conserved genes is 

due to the tendency of widely conserved genes (those shared with Buchnera) to be highly 

expressed and therefore experience strong codon selection. In fact, this increase in ACEχ2 is 
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moderated by the simultaneous adjustment of fn to represent a population that is more strongly 

influenced by codon selection, thereby decreasing the ACE of those genes with the greatest 

optimization. The impact of fn is apparent from comparing ACEχ2 for the 486 E. coli ORFs that 

have matches in each of the other three genomes (Buchnera, E. fergusonii, and E. albertii). 

When using the 40 translational proteins for fo, ACEχ2 increases from 17.9 for the 

Buchnera/Escherichia fn, to 24.9 for the Escherichia fn, to 29.2 for the E. coli fn. The 

 ACEχ2 calculated from the broader set of 2628 Escherichia orthologs is not as responsive to the 

composition of fn, being 11.3 for the Escherichia fn, and 11.7 for the E. coli fn. The variability of 

the  ACEχ2 as a result of the genes selected for fn and  ACEχ2 illustrates the need to consider 

carefully the composition of these sets before interpreting the ACEχ2. One approach for cross-

genome comparisons is to select orthologous genes for all steps of the analysis (fo, fn, ACEχ2), 

which is the approach that will be used below. 
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As a final examination of the behavior of ACEχ2, we considered P. aeruginosa. Grocock 

and Sharp (Grocock and Sharp 2002) demonstrated that highly expressed genes exhibit 

distinctive codon usage in this genome, which was verified above with the high correlation 

between ACE and transcript abundance. But Sharp’s attempt (Sharp, Bailes et al. 2005) to 

estimate the strength of codon selection on 40 translational proteins revealed no selection (S = 

-0.019). This was attributed to the fact that S was calculated based on the codons for only four 

amino acids, which were not the amino acids for which the synonymous codons were enriched in 

the highly expressed genes of P. aeruginosa (Sharp, Bailes et al. 2005). Because ACE 

incorporates information from all synonymous codons, this limitation should be avoided.  

To examine this, we repeated the above analysis where the fo table was constructed with 

incrementally increasing sets of genes having the most abundant transcripts. Using all 

genes, ACEχ2 ranged from 3.7 to 5.5, which is noticeably greater than the value expected in the 

absence of selection (1.0) or the value obtained for Buchnera aphidicola (~2.0). A more accurate 

measure should be obtained by limiting the analysis (for both fn and  ACEχ2) to the 1678 genes 

with orthologs in the four other Pseudomonas species. Here, ACEχ2 ranged from 6.1 to 7.3, 

providing additional evidence of codon selection since the codon usage variation in this set of 

native genes is revealed by calibration on the most highly expressed genes. 

To compare the strength of selection between different genomes, we examined a broad 

set of 15 genomes from the Enterobacteriaceae (Table 4.2), limited to those genomes where the 

average synonymous divergence (Yang and Nielsen 2000) was greater than 1.0 for all pairwise 

comparisons. An fn table was constructed for each of the genomes based on its contribution to the 

634 sets of putative orthologs, where each gene was the pairwise reciprocal best match to the 

gene in each genome, so that each gene had a one-to-one relationship to a gene in each other 
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genome. The fo table of each genome was constructed from the genes found in the same set of 

putative orthologs as the 40 E. coli translational genes (see Methods). The ACEχ2 for the 634 

genes shared among these 15 genomes ranged from 3.0 for Hamiltonella defensa, a secondary 

endosymbiont of aphids with a reduced genome, to 15.7 for E. coli (Table 4.2). 

Previous studies have identified a correlation between genome-scale codon selection and 

the number of tRNA genes in a genome, suggesting that the two may be causally linked. 

The ACEχ2 is likewise correlated to tRNA gene copy number (Figure 4.2, Table 4.2). This effect 

is most pronounced when comparing H. defensa to the other genomes, but is still substantial 

even when this outlier is excluded (r2 = 0.31). Reanalysis of these genomes without H. defensa 

permitted the inclusion of 989 sets of putative orthologs (used for both fn and ACEχ2), but only 

changed ACEχ2 values slightly (Figure 4.2, Table 4.2). The values from this larger set of genes 

are slightly lower than the values from the previous analysis, but strongly correlated (r2 = 0.98), 

indicating that cross-genome comparisons are robust to the exact set of orthologs examined. 

 

Table 3 Properties of 15 genomes from Enterobacteriaceae. 

Organism ORF count % coding tRNA count 𝐀𝐂𝐄χ𝟐(14) 𝐀𝐂𝐄χ𝟐 (15) 

Dickeya dadantii 3970 85.21 74 8.3 9.7 

Edwardsiella tarda 3535 85.44 95 12.1 14.7 

Enterobacter sp. 638 4115 87.8 83 12.8 14.2 

Cronobacter sakazakii  4255 89.1 80 13.0 15.1 

Pectobacterium atrosepticum  4472 85.94 76 9.2 10.6 

Erwinia tasmaniensis  3427 85.08 81 8.2 10.0 

Escherichia coli 4149 85.2 86 14.6 15.9 
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Photorhabdus luminescens  4683 81.09 85 7.3 8.3 

Proteus mirabilis  3607 84.36 83 10.3 12.0 

Serratia proteamaculans  4891 87.26 85 9.6 10.9 

Sodalis glossinidius  2432 50.91 69 5.3 6.5 

Yersinia enterocolitica  3978 83.6 81 10.0 11.0 

Hamiltonella defensa 2094 80.41 42 N/A 3.1 

Xenorhabdus bovienii 4260 85.64 83 8.7 10.4 

Pantoea ananatis 4237 87.95 67 8.9 10.5 

 

 

Columns: ORF, number of annotated open reading frames on main chromosome; % coding, total 
nucleotide length of annotated ORFs as a percentage of the nucleotide length of the main chromosome; 
tRNA count, number of annotated tRNA genes on main chromosome; ACEχ2(14), the normalized 
chi-square ACE for the 989 genes found in the 14 larger genomes; ACEχ2 (15), the normalized 
chi-s;uare ACE for the634 genes found in all 15 genomes 
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Figure 4.2 Phylogenetic relationship of 15 Enterobacteria                             Figure 4.3 Association of 𝐀𝐂𝐄χ𝟐 with tRNA gene copy number 

 
  Scatter plot of tRNA count vs. ACEχ2 scores (see Table 4.2). 

The filled squares represent ACEχ2(15), while the diamonds 
represent ACEχ2(14). 

   

Neighbor Joining tree constructed from concatenated amino-
acid alignment of 93 core genes from 15 Enterobacteria, 
where each multiple sequence alignment had fewer than 1% 
of positions with gaps. Constructed by ClustalW(Larkin, 
Blackshields et al. 2007) 
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4.5 INTERPRETATION OF ACE 

The ACE does not measure the magnitude of selection (s) on codon choice but rather the 

magnitude of the effect of codon selection on codon choice. While being strongly correlated to s, 

it actually addresses a slightly different issue. We have taken care to remove the influence of 

amino-acid composition from the ACE to provide a better prediction of physiological parameters 

such as gene expression levels. In contrast, an estimate of s should be sensitive to the amino acid 

composition, and a direct estimate of codon selection will likely provide better estimates of 

population diversity parameters such as the patterns of polymorphism (Sharp, Emery et al. 2010). 

Moreover, the ACE is a linear function of codon frequency; for an amino acid encoded by two 

codons, the contribution to ACE is directly proportional to the frequency of the preferred codon 

(P). In contrast, selection is a non-linear function of P (Nes = log[(kP)/(1-P)]) where k represents 

the mutational balance).  

The ACE uses an estimate of the codon composition specified as arising from mutational 

processes alone. We constructed a single table to reflect these codon frequencies, implicitly 

assuming that a uniform process is acting upon all genes in the genome. This assumption is 

reasonable for bacteria once recently introduced genes are excluded, aside from subtle strand 

variation and origin-to-terminus gradients (Ochman 2003), and the model could be refined to 

accommodate such variance by creating separate fo and fn tables for leading and lagging strands, 

or for origin-proximal and terminus-proximal genes and interpolating the values to estimate fo 

and fn according to chromosomal position. This assumption of mutational uniformity is more 

severely undermined in some eukaryotes genomes that harbor isochores, wherein separate tables 

would need to be created.  
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4.6 VARIANCE IN THE ACE 

We modeled the stochastic distribution of the ACE as though each gene had a constant amino 

acid composition and each amino acid could be encoded by any of its encoding codons with a 

probability given by genome-wide substitution parameters. Of course, amino acids will vary 

stochastically in a constant regime of mutation and selection, and modeling such variation may 

increase the expected variance of the ACE, though the normalization across amino acids should 

minimize any variance introduced by amino acid substitutions. Regardless of that correction, 

amino acid composition should not be modeled as a simple random variable because selective 

pressures acting on amino acid substitutions clearly are not uniform across the length of the 

protein. Substitution tables may provide some guidance for simulating the variation in amino 

acid composition that may be expected among ORFs experiencing identical mutational and 

selective pressures.  

Selection acting on synonymous substitutions varies among sites within ORFs (Eyre-

Walker and Bulmer 1995; Cannarozzi, Schraudolph et al. 2010; Tuller, Carmi et al. 2010). The 

ACE is robust to this complication layered on top of the mutation-selection-drift model, and can 

be interpreted as being proportional to the number of sites under strong selection for use of the 

globally preferred codon. Such variation in the strength of selection among sites would reduce 

the variance in the ACE and other codon bias statistics. 
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4.7 COMPARISONS OF CODON SELECTION ACROSS GENOMES 

The ACEχ2 is fundamentally different from previous attempts to quantify variation in the 

strength of codon selection between genomes. Three recently proposed methods have focused on 

a small fraction of the ORFs in each genome (e.g. ribosomal proteins) and used the deviation of 

their codon usage from the genome-wide average as an estimate of the efficacy of selection in 

each genome (Rocha 2004; Dethlefsen and Schmidt 2005; Sharp, Bailes et al. 2005). These 

methods have two assumptions that can be examined with the methods proposed here. First, they 

use the whole genome codon composition to estimate the equilibrium arising from mutational 

processes; second, they interpret the strength of selection on a particular subset of ORFs as being 

representative of, or proportional to, the strength of selection acting on all ORFs in the genome. 

In contrast, our ACE χ2 statistic can be calculated from all genes believed to be long-term 

residents of the genome. While ACE χ2 is correlated with tRNA copy number, as are these other 

statistics, differences between the statistics could indicate that the pre-selected subset of genes 

contributes more or less to the total codon selection experienced by a genome. 

4.8 EXTENDING THE ACE FRAMEWORK TO OTHER ANALYSES.  

The scoring table class of statistics includes several where the scoring table values (i.e., δij) are 

generated by calculations that do not consider the codon composition of actual genes [e.g., the 

tAI (dos Reis, Savva et al. 2004) and eAI (Najafabadi, Lehmann et al. 2007)], instead relying on 

estimates arising from knowledge of molecular mechanisms. All of these approaches are 
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amenable to the statistical analysis described for the ACE. While these reductionist approaches 

aim to reveal the same general phenomenon as the CAI or ACE, they are limited by uncertainty 

in how physiological properties such as tRNA abundance affect selection on codon usage. Even 

if knowledge of tRNA modifications and their effect on codon selection were perfect, these 

reductionist approaches would only illuminate the nature of contemporary selection, since they 

rely on descriptions of the current tRNA repertoire and suite of modifications. Yet tRNA genes 

are gained and lost from the genome (Withers, Wernisch et al. 2006) and the nature of their 

modifications also changes.  Thus, mechanistic predictions of translational efficiency cannot 

capture a gene’s history of codon selection as effectively as statistics that examine the codons 

themselves. 
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5.0  CONCLUDING REMARKS ON PROKARYOTIC BIODIVERSITY 

Species concepts provide researchers with an intellectual framework within which to think about 

the relationships among organisms. Using these concepts to identify the definitive units of 

biodiversity remains problematic. This may be especially problematic for prokaryotes, with their 

immense diversity of genetic systems and ecological relationships (Doolittle and Zhaxybayeva 

2009). Many prokaryotes are highly (though facultatively) recombinogenic, while others are 

essentially non-recombinogenic. Prokaryotes also follow different rules for different kinds of 

recombination, being able to acquire new genes from essentially any other organism, even as the 

transfer of allelic variants is limited to closely related organisms – usually. Prokaryote ecology 

also ranges from free-living organisms living in complex ecosystems, to obligate endosymbionts 

which are in many ways more like organelles than organisms. 

The ecology of prokaryotes is just beginning to come to light. The vast diversity of many 

microbial communities creates opportunities for myriad ecological interactions, including 

predatory, competitive, and mutualistic. Each of these interactions creates opportunities for 

ongoing adaptation, which can happen quite quickly in prokaryotes. The spatial and temporal 

scale of these interactions is largely unexplored (Hunt, David et al. 2008; Vos, Birkett et al. 

2009), leaving open the question of how barriers to migration contribute to biodiversity (Papke 
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and Ward 2004; Green, Bohannan et al. 2008). Human transportation technology may even be 

changing the biogeography of microbes in a fundamental way (Gevers, Cohan et al. 2005). 

The nature of prokaryotic recombination is also just beginning to be appreciated. The 

potential for genetic exchange is well described, but the factors that influence its actualization 

are poorly understood. Genetic and environmental conditions can greatly impact the frequency 

with which DNA is incorporated into a genome, and once there, selection can act on both the 

gene’s compatibility with the rest of the genome and with the ecological niche occupied by the 

organism. For instance, many genomic fragments have been found to be toxic to the E. coli strain 

used during shotgun sequencing, and this toxicity depends on interactions with the gene 

expression machinery of the host genome (Sorek, Zhu et al. 2007). 

Other components of the genome (e.g. chaperones, nucleoid-structuring proteins) are 

known to modify the behavior of specific genes in the genome; their diversity could play a large 

role in determining which recombination events are evolutionarily consequential. Beyond that, 

the fate of novel genetic material will depend on whether it modifies the existing genome in a 

manner that permits it to exploit new opportunities. Ultimately, genetic exchange and natural 

selection seem bound to interact in myriad complicated manners that prevent biodiversity and 

evolutionary processes from falling into a single, clear cut paradigm such as those provided by 

species concepts. 
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6.0  MATERIALS AND METHODS 

6.1 GENERAL METHODS 

6.1.1 Orthologous and distinctive genes: 

For each pair of genomes, orthologous genes and distinctive genes were identified by performing 

BLASTP (proteins) or BLASTN (structural RNAs) searches with each predicted gene product 

against the products of all genes in the other genome, using default settings, ignoring the 

maximum expected value (Altschul, Madden et al. 1997). Genes that were pairwise reciprocal 

best matches (RBM) in all genomes being compared were used to construct the shared 

chromosomal backbone (table S1), in which gene adjacency was set to mirror the cross-species 

consensus. Where no cross-species consensus was available, adjacency was set to mirror that of a 

particular reference genome, and all analyses were repeated using a reference gene order from 

each taxon. If BLAST identified no possible orthologs in another genome, then the gene was 

listed as being distinctive between the two genomes (table S2), unless the query sequence did not 

contain enough information to confidently identify orthologs, as evidenced by an inability to 

identify itself with a BLAST e-value better than 10-5 in a search of its own genome. Matches 

were considered to be possible orthologs if they met any of the following conditions: were a 

RBM; had the same neighbor among RBMs in the compared genomes; or had amino acid 
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similarity higher than a threshold chosen to distinguish between orthologs and paralogues (table 

S3), based on the distribution of similarity scores for RBMs in conserved locations and RBMs in 

disparate locations in the two genomes, respectively.    

6.1.2 CAI and Divergence measurements: 

Divergence of bacterial genes is inversely proportional to the strength of codon usage bias (Sharp 

and Li 1987). The Codon Adaptation Index (CAI) of each protein coding gene was measured 

after the method of Sharp and Li (1987); NSCU tables were constructed from the most highly-

biased genes that contributed 13000 codons; highly-biased genes were initially identified using 

the P2 measure of codon bias(Gouy and Gautier 1982) and iteratively refined using the CAI. CAI 

values for E. coli, S. enterica and Buchnera genes were calculated using the NSCU tables from 

the K12, LT2 and APS genomes, respectively. CAI values were normalized to the mean CAI of 

all genes in that genome, reported in terms of standard deviations from the mean, and averaged 

across all members within a set of orthologous genes (table S1). Because the CAI is a surrogate 

measure of evolutionary rate, we would eliminate any gene from the analysis whose CAI values 

differed significantly among strains, possibly showing differences in evolutionary rates among 

lineage. We did not detect any such genes among those shared among the 6 strains of E. coli and 

Salmonella tested. 

Synonymous substitutions were estimated for orthologous protein-coding sequences by 

the method of Li (1993), using the BLOSUM90 substitution matrix (Henikoff and Henikoff 

1992) both to perform a local sequence alignment (Smith TF 1981) and to assign weights to 

alternative substitution pathways when aligned codons differed by more than one base. The 



77 

 

variance in Ks is a decreasing function of the number of synonymous sites involved, so 

estimations of Ks were limited to genes containing at least 50 synonymous sites in the 

MG1655/LT2 alignment. To reduce the number of paralogous comparisons, estimations of Ks 

were limited to genes in orthologous sets where all RBMs had amino acid similarity higher than 

a threshold chosen to distinguish between orthologs and paralogs (table S3), based on the 

distribution of similarity scores for RBMs in conserved locations and RBMs in disparate 

locations in the two genomes, respectively. Ks for a set of orthologous genes is the mean of all Ks 

measurements between genes in that set from different species, except when Ks could not be 

calculated for a pair due to saturation of synonymous substitutions.  

For genomes with biased nucleotide composition, divergence was estimated as dN and dS 

as implemented in the PAML program YN00 (Yang and Nielsen 2000). 

6.2 METHODS OF CHAPTER 2 

6.2.1 Genomes and software: 

Genome sequences were retrieved from NCBI (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/).  

Salmonella enterica was represented by strains LT2 (NC_003197.1), Ty2 (NC_004631.1), and 

ATCC 9150 (NC_006511.1); Escherichia coli was represented by strains K12-MG1655 

(NC_000913.2), EDL933 (NC_002655.2), and CFT073 (NC_004431.1); Buchnera aphidicola 

was represented by strains APS (NC_002528.1) and Sg (NC_004061.1). Genes were retrieved 



78 

 

using the documentation provided by NCBI RefSeq (Pruitt, Tatusova et al. 2005). All analyses 

were performed with DNA Master and DeltaKs; available from http://cobamide2.bio.pitt.edu/. 

6.2.2 Calculation of relative divergence values for orthologous gene pairs: 

Expected Ks values were generated as a function of CAI and distance from the origin of 

replication. Polynomial least-squares regressions were performed on the Ks/CAI data set (Figure 

2.2A). A preliminary expected Ks (EKS) was calculated for each orthologous gene set using the 

CAI and the best regression curve chosen based on the following criteria: having a strong 

correlation between EKS and Ks; being a monotonic function over the relevant range of CAI 

values; and providing only positive EKS values. Calculations of EKS were limited to genes with 

CAI values within the range where the various polynomial regression functions generated similar 

EKS values (Figure 2.2A; vertical dashed line). Because Ks is also influenced by distance from 

the replication origin (Sharp, Shields et al. 1989),the residual from the Ks/CAI regression (i.e. 

Ks-EKS) was regressed as a linear function of the distance from the replication origin in the E. 

coli MG1655 genome (table S1). The corrected EKS (CEKS) is the sum of the EKS of a gene 

and its expected EKS based on its distance from the origin of replication, which represents an 

estimate of the rate of synonymous substitutions over the average divergence time of genes in the 

genome. Therefore, relative divergence is calculated as Ks /CEKS (table S1).  
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6.2.3 Identifying recombination regions: 

To determine if relative divergence values were correlated at a given distance along the shared 

chromosomal backbone, every orthologous set was paired with the set at that distance; an 

analysis of variance was performed to determine if these pairs had significantly different means 

from each other. Between-pair and within-pair variability were measured and used to calculate 

intraclass correlation (ICC) and an F-statistic.  

Regions with similar relative divergence values were identified using an agglomerative 

clustering algorithm that began with each orthologous set as a separate cluster, then iteratively 

merged a pair of adjacent clusters so as to minimize the total variability within clusters. This was 

repeated while monitoring the percentage of gene pairs at each distance that were included in the 

same cluster; clustering was terminated when the proportions at different distances most closely 

reflected the proportions of the ICCs for orthologous sets those distances.  

 

6.2.4 Chromosomal regions associated with changes in gene content: 

A locus is defined as pairs of orthologous genes which are adjacent (ab). For static loci, genes ab 

are adjacent in all 6 E. coli and S. enterica genomes. For dynamic loci, ab are adjacent in one 

genome while interrupted (axb) in another genome, where x represents gene(s) not present in the 

first genome (table S2). Species-specific dynamic loci show genotype ab for the 3 strains of one 

species, and genotype axb for the 3 strains of the other species (table S2); non-specific dynamic 

loci show other patterns. Because no outgroup was defined, locus axb may arise from locus ab 
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by insertion, or locus ab may arise from locus axb by deletion. The average relative divergence is 

calculated for all genes ab in that class. Statistical significance of differences between average 

divergence values was determined by resampling from the parent set of loci and counting the 

portion of resampled sets with average divergence values equal to greater than the value from 

original sample. 

6.3 METHODS OF CHAPTER 3 

6.3.1 Ortholog identification.  

Annotated open reading frames were translated and used as BLASTP queries to search databases 

composed of ORFs from each of the other genomes (e < 1) followed by semiglobal alignment. 

Sets of putative orthologs were assembled from those ORFs where each was a reciprocal best 

match with the others. Analyses of 17 enteric genomes (Figs. 1, 2) used alignments with >65% 

similarity; 14 genome analyses (Figures 3.3, 3.4; Table 3.1) used alignments with >70% 

sequence similarity. Multiple sequence alignments (MSA) were produced with ClustalW and 

back-translated to codon alignments. At least five syntenic genes must have been identified to 

establish orthology. 

6.3.2 Genomes 

 The sequences of Citrobacter sp. 30_2, C. koseri, C. youngae; Cronobacter sakazakii, Dickeya 

zeae, Klebsiella pneumoniae strains 342 and MGH 78578, Enterobacter sp. 638, Erwinia 
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tasmaniensis, Escherichia coli MG1655, UMN026, UTI89, and IAI39, E. fergusonii, E. albertii, 

Pectobacterium wasabiae, Salmonella enterica enterica LT2, CT18, and CVM19633, S. enterica 

arizonae, Serratia proteamaculans and Yersinia enterocolitica were downloaded from NCBI. 

Accession numbers appear in Table S4. 

6.3.3 Quartet analyses 

 For each analysis, we evaluated the relationships among four groups of genomes for each 

orthologs. Alignments for each gene were subject to maximum likelihood analysis for each of 

the three possible topologies, while the relationships within each group were specified if the 

group comprised more than two genomes. The root in Figure 3.2 was specified according to the 

dominant topology in the NeighborNet tree (Figure 3.1), and the relationships among Salmonella 

and Escherichia strains in Figure 3.3AB were specified using MrBayes (Ronquist and 

Huelsenbeck 2003).  

6.3.4 Maximum likelihood on ORFs  

The topologies were evaluated by the PAML package (Yang 2007), using each MSA in turn, 

generating Resampling Estimated Log Likelihood (RELL) bootstrap support and Shimodaira-

Hasegawa (SH) test p-values (Shimodaira and Hasegawa 1999). Our simulations (below) support 

bootstrap thresholds as a conservative estimate of accuracy. Codon-based ML used a single 

omega parameter and the Miyata geometric amino acid substitution probabilities. Codon-position 

ML constructed an HKY85 nucleotide substitution model for each codon position. This model is 
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computationally efficient relative to the codon model, and has been shown to have similar 

accuracy for both closely and distantly related sequences (Ren, Tanaka et al. 2005). 

6.3.5 Simulation of instant speciation 

 Simulated sequences were generated by the Evolver program in PAML. Test trees were 

generated by a codon-position nucleotide model. Using actual sequences, this produced results 

comparable to the full codon model, but was much less computationally intensive. All 

parameters were based upon the actual MSA being tested. The input tree was identical to the ML 

tree generated from the actual MSA, except that the innermost branch was set to be the same 

length as other branches in the tree that were being compared to the innermost branch. Sequence 

length was set to be identical to the number of sites aligned across all sequences of the MSA. 

Codon proportions were identical to the frequencies observed across all sequences in the MSA, 

and the kappa and omega parameters were set according to the parameters estimated by the 

YN00 program, with pairwise values averaged together by first averaging all pairs of genomes 

between any two groups within the quartets, then averaging the six pairwise values for the four 

groups within the quartet analysis. 
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6.4 METHODS OF CHAPTER 4 

6.4.1 Sets of highly expressed genes for fo.  

Pre-selected sets of highly expressed genes were taken from previous literature. The set of 40 

ribosomal proteins and translation elongation factors (Sharp, Bailes et al. 2005) included the 

genes tufA, tsf, fusA, rplA-rplF, rplI-rplT and rpsB-rpsT. The set of 27 highly expressed proteins 

(Sharp and Li 1987) included the genes tufA, tufB, tsf, fusA, rplA, rplC, rplJ, rplK, rplL, rplQ, 

rpsA, rpsB, rpsG, rpsJ, rpsL, rpsO, rpsT, rpsU, rpmB, rpmG, rpmH, lpp, ompA, ompC, ompF, 

recA, and dnaK.  

6.4.2 Genomes used.  

Acquired from the NCBI RefSeq website: Pseudomonas aeruginosa PA01, P. mendocina ymp, 

P. stutzeri A1501, P. entomophila L48, and P. putida KT2440; Escherichia coli K12 MG1665, 

E. fergusonii and E. albertii; Buchnera aphidicola APS. Saccharomyces cerevisiae S288c, 

Dickeya dadantii, Edwardsiella tarda, Enterobacter sp. 638, Cronobacter sakazakii, 

Pectobacterium atrosepticum, Erwinia tasmaniensis, Photorhabdus luminescens, Proteus 

mirabilis, Serratia proteamaculans, Sodalis glossinidius, Yersinia enterocolitica, Hamiltonella 

defensa, Xenorhabdus bovienii, Pantoea ananatis 
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SUPPLEMENTAL MATERIAL 

Table S1 Robustness of incongruence for Escherichia/Salmonella/Citrobacter radiation. 

This table reports the number of alignments (and percentage of all alignments) that support each 

topology after various filters have been applied. Filters are as follows: “RELL bootstrap support” 

= alignments than support the maximum likelihood topology with RELL bootstrap support above 

the specified value (Figure 3.3A). “Informative nucleotide sites” = alignments containing at least 

the specified number of informative sites among the eight genomes (two genomes each of 

Escherichia, Salmonella, Citrobacter, and Klebsiella). “Complete alignment”= alignments where 

the entire sequence of all 14 genomes was aligned in the multiple sequence alignment (other 

analyses require 95% alignment). “Consensus among analyses with taxon resampling (18 tests)” 

=Alignments supporting the same topology for the four genera regardless of the genomes used 

(one test using all 14 genomes, and one test using two representatives from each genus ,16 tests 

using a single representative of each genus). “No unmatched paralogs” = exclusion of all 

alignments where any gene had > 55% amino acid sequence similarity to a gene in any other 

genome that did not have a reciprocal best match in the first gene’s genome. “Consensus 

including Enterobacter outgroup (26 tests)”= Addition of another 8 analyses that used 

Enterobacter sp. 638 as a single outgroup along with a single genome from each of the three test 

genera. All other categories involve the application of two filters at the same time. 

Filter Topology1 count Total Portion 

  1 2 3  1 2 3 

None 457 327 360 1144 40% 29% 31% 
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RELL bootstrap support > 0.5 414 290 317 1021 41% 28% 31% 

> 0.6 334 214 245 793 42% 27% 31% 

> 0.7 244 138 180 562 43% 25% 32% 

> 0.8 153 82 130 365 42% 22% 36% 

> 0.9 73 40 69 182 40% 22% 38% 

> 0.95 41 23 40 104 39% 22% 38% 

> 0.99 16 6 14 36 44% 17% 39% 

 
Informative nucleotide sites > 50 446 320 351 1117 40% 29% 31% 

> 100 424 293 312 1029 41% 28% 30% 

> 150 368 255 269 892 41% 29% 30% 

> 200 290 196 209 695 42% 28% 30% 

> 250 216 130 161 507 43% 26% 32% 

> 300 143 93 108 344 42% 27% 31% 

> 350 93 62 69 224 42% 28% 31% 

> 400 66 45 44 155 43% 29% 28% 

 
Complete alignment (all 14 sequences) 169 115 136 420 40% 27% 32% 

 
Consensus among analyses with taxon 

resampling (18 tests) 

142 78 106 326 44% 24% 33% 

 
Consensus & alignment 50 32 37 119 42% 27% 31% 
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No unmatched paralogs (55% similarity) 207 161 202 570 36% 28% 35% 

 
No unmatched paralogs (55% similarity) & 

consensus 

64 42 51 157 41% 27% 32% 

 
Consensus including Enterobacter outgroup 

(26 tests) 

64 25 67 156 41% 16% 43% 

 
Enterobacter consensus and alignment 16 11 22 49 33% 22% 45% 

1. Topologies: 1=(Cit,Esc),Sal; 2=(Cit,Sal),Esc; 3=(Esc,Sal),Cit 
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Table S2 Robustness of incongruence for Escherichia radiation. 

 This table reports the number of alignments (and percentage of all alignments) that support each topology after various filters have 

been applied. Filters are as follows: “RELL bootstrap support” = alignments than support the maximum likelihood topology with 

RELL bootstrap support above the specified value (Figure 3.3C). “Informative nucleotide sites” = alignments containing at least the 

specified number of informative sites among the seven genomes (three Escherichia, and two each of Salmonella and Klebsiella). 

“Complete alignment (14)”= alignments where the entire sequence of all 14 genomes was aligned in the multiple sequence alignment 

(other analyses require 95% alignment). “Complete alignment (7)”= as above, but limited to the 7 genomes in the phylogenetic 

analysis. “Consensus among analyses with different outgroups (3 tests)” =Alignments supporting the same topology for the three 

species regardless of the single outgroup used (Salmonella enterica arizonae, Citrobacter youngae, or Klebsiella pneumoniae str. 

342). “No unmatched paralogs” = exclusion of all alignments where any gene had > 55% amino acid sequence similarity to a gene in 

any other genome that did not have a reciprocal best match in the first gene’s genome. All other categories involve the application of 

two filters at the same time. 

Filter Topology1 count Total Portion 

 1 2 3  1 2 3 

None 602 449 93 1144 53% 39% 8% 

        

RELL bootstrap support > 0.5 579 439 83 1101 53% 40% 8% 
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> 0.6 533 407 65 1005 53% 40% 6% 

> 0.7 469 370 43 882 53% 42% 5% 

> 0.8 397 337 21 755 53% 45% 3% 

> 0.9 276 292 7 575 48% 51% 1% 

> 0.95 195 253 4 452 43% 56% 1% 

> 0.99 70 186 3 259 27% 72% 1% 

        

Informative nucleotide sites > 50 583 437 85 1105 53% 40% 8% 

> 100 510 388 73 971 53% 40% 8% 

> 150 399 319 51 769 52% 41% 7% 

> 200 273 226 32 531 51% 43% 6% 

> 250 177 143 18 338 52% 42% 5% 

> 300 104 95 5 204 51% 47% 2% 

> 350 69 68 2 139 50% 49% 1% 

> 400 41 48 1 90 46% 53% 1% 

        

Complete alignment (for all 14 sequences) 229 144 47 420 55% 34% 11% 

        

Complete alignment (for 7 included 236 157 48 441 54% 36% 11% 
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sequences) 

        

Consensus among analyses with different 

outgroups (3 tests) 

435 342 27 804 54% 43% 3% 

        

Consensus and alignment (14) 158 110 12 280 56% 39% 4% 

        

No unmatched paralogs (55% similarity) 319 204 47 570 56% 36% 8% 

 

 

1. Topologies: 1=(Eal,Efe),Eco; 2=(Eal,Eco),Efe; 3=(Eco,Efe)Eal 
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Table S3 All classes of topology-supporting sites are clustered 
Two-topology runs tests for randomness indicate significant clustering of  topology-supporting 
sites, demonstrating that clustering in the three-category runs test cannot be attributed to the 
clustering of a single topology. Runs tests were performed on the same concatenated alignments 
while ignoring each category of topology-supporting sites in turn.  All z-scores occur with p < 
10-5 in random sequences.  
 

 
Topology1 Run of Sites 

  
 

1 2 3 Expected  Variance Observed  z score 
ESC Nuc All 3 19539 19886 18829 38827.0 12941.2 35684 -27.6 
 1&2 N/A 19886 18829 19712.0 9854.0 18016 -17.1 
 1&3 19539 N/A 18829 19178.4 9584.7 17626 -15.9 
 1&4 19539 19886 N/A 19344.1 9663.6 17722 -16.5 
 

        ESC Prot All 3 2382 2879 2442 5117.2 1703.8 4600 -12.5 
 1&2 N/A 2879 2442 2608.0 1291.1 2375 -6.5 
 1&3 2382 N/A 2442 2412.6 1204.9 2150 -7.6 
 1&4 2382 2879 N/A 2643.6 1311.6 2338 -8.4 
 

        ESC Syn All 3 12229 11666 11621 23671.9 7889.3 22844 -9.3 
 1&2 N/A 11666 11621 11941.9 5966.4 11388 -7.2 
 1&3 12229 N/A 11621 11918.3 5954.0 11586 -4.3 
 1&4 12229 11666 N/A 11644.5 5821.0 11287 -4.7 
 

        EEE Nuc All 3 9687 19298 18950 30717.8 10432.2 24327 -62.6 
 1&2 N/A 19298 18950 12900.1 5739.8 11389 -19.9 
 1&3 9687 N/A 18950 12821.4 5738.9 10856 -25.9 
 1&4 9687 19298 N/A 19123.4 9559.7 12861 -64.1 
 

        EEE Prot All 3 471 3074 1361 2558.1 840.9 1660 -31.0 
 1&2 N/A 3074 1361 817.8 187.9 700 -8.6 
 1&3 471 N/A 1361 700.8 266.8 601 -6.1 
 1&4 471 3074 N/A 1887.7 802.0 992 -31.6 
 

        EEE Syn All 3 6950 11009 13658 20356.9 6832.5 17159 -38.7 
 1&2 N/A 11009 13658 8521.8 4042.1 7864 -10.3 
 1&3 6950 N/A 13658 9213.3 4117.4 8060 -18.0 
 1&4 6950 11009 N/A 12192.3 6024.6 9071 -40.2 

1. ESC1=Cit,Esc; ESC2=Cit,Sal; ESC3=Esc,Sal; EEE1=Eal,Efe, EEE2=Eal,Eco; EEE3=Eco,Efe 
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Table S4 Chromosomes used in this study. 
Seventeen were used for the analyses in Figures 1&2 (Analysis A). Fourteen were used to 
examine the Escherichia/Salmonella/Citrobacter split in Figures 3&4 (Analysis B). Seven were 
used to analyze the E. albertii/E. coli/E. fergusonii split (Analysis C). 
Organism Strain Accession RefSeq 

Annotation Date 
Analyses 

Escherichia coli K12 MG1655 NC_000913 7/30/2009 ABC 
E. coli UMN026 NC_011751 11/10/2009 _B_ 
E. coli UTI89 NC_007946 4/28/2009 AB_ 
E. coli IAI39 NC_011750 11/10/2009 _B_ 
E. fergusonii ATCC 35469 NC_011740 5/7/2009 ABC 
E. albertii TW07627 NZ_ABKX00000000 03/03/2008* ABC 
Salmonella enterica 
subsp. enterica 

LT2 (Typhimurium) NC_003197 4/30/2009 ABC 

S. enterica subsp. 
enterica 

CT18 (Typhi) NC_003198 11/10/2009 _B_ 

S. enterica subsp. 
enterica 

CVM19633 
(Schwarzengrund) 

NC_011094 4/29/2009 _B_ 

S. enterica subsp. 
arizonae 

serovar 62:z4,z23 NC_010067 4/30/2009 ABC 

Citrobacter koseri ATCC BAA-895 NC_009792 5/7/2009 A__ 
C. sp.  30_2 NZ_ACDJ00000000 2/18/2009* AB_ 
C. youngae ATCC 29220 NZ_ABWL00000000 10/01/2008* AB_ 
Klebsiella 
pneumoniae 

342 NC_011283 4/28/2009 ABC 

K. pneumoniae MGH 78578 NC_009648 5/1/2009 _BC 
Cronobacter sakazakii ATCC BAA-894 NC_009778 4/26/2009 A__ 
Enterobacter sp. 638 NC_009436 5/7/2009 A__ 
Erwinia tasmaniensis Et1/99 NC_010694 5/7/2009 A__ 
Serratia 
proteamaculans 

568 NC_009832 5/7/2009 A__ 

Yersinia enterocolitica 8081 NC_008800 11/12/2009 A__ 
Pectobacterium 
wasabiae 

WPP163 NC_013421 11/11/2009 A__ 

Dickeya zeae Ech1591 NC_012912 7/7/2009 A__ 
*Release date of non-RefSeq list of coding regions 
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Table S5 Test of incomplete lineage sorting model. 
Maximum Likelihood (ML) trees generated from actual sequence data were compared to ML trees generated from sequences 
simulated by Monte Carlo codon evolution.  The comparison is based on the frequency with which the internal branch is longer than 
terminal branch for each of the 1144 multiple sequence alignments (Figure S1). Multiple sequence alignments are analyzed by 
topology because according to the incomplete lineage sorting model, one topology represents the species topology and is expected to 
have internal (between species) branches that are longer than the terminal (within species) branches. A total of 100 simulations were 
performed. 

Topology Frequency that ML tree had longer internal branch than terminal branch Significance 
ID Count Actual sequences (count) Simulation mean ± s.d. Simulation  maximum  
      

Cit,Esc 308 94.8% (292) 61.5%  ± 2.5% 66%  p < 0.01 
Cit,Sal 372 93.0% (346) 60.0% ± 2.5% 64% p < 0.01 
Esc,Sal 463 95.7% (443) 60.6% ± 2.5% 65% p < 0.01 

      
Eal, Efe 66 34.8% (23) 40.9% ± 5.1% 56% Not significant 
Eal,Eco 434 88.2% (383) 70.1% ± 1.8% 75% p < 0.01 
Eco,Efe 644 78.7% (507) 61.2% ± 1.7% 64% p < 0.01 
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Figure S1 Schematic of test for incomplete lineage sorting. 

 (Panel A, top) The incomplete lineage sorting model proposes that incongruence among gene 

trees is the result of recombination that occurred in a freely recombining ancestral population 

prior two non-overlapping but closely timed processes producing genetic isolation at all loci (i.e. 

speciation). To test the plausibility of this model, we assumed that the ancestral recombining 

population would be comparable to E. coli (Fig. S2), then we examined the branch lengths on the 

best Maximum Likelihood tree and asking if extant diversity of E. coli (green terminal branches 

E1 and E2, separating Eco1 from Eco2) is large enough to account ancestral diversity inferred 

from the internal branches (red branch A, separating Sal, Cit and Eco) of the non-species 

topologies. (Panel A, bottom) Only for topologies representing the species relationships would 

the internal branch (A) regularly be longer than the terminal branch (one half of E1 + E2), yet all 

three topologies were represented by trees where the internal branch was regularly longer than 

the terminal branch. (Panel B, top) A molecular evolution simulation (100 replicates using the 
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Evolver program in the PAML package; of a codon model and guide tree derived for each 

multiple sequence alignment) generated expected values for the frequency with which terminal 

branch length would exceed internal branch length under this model. The guide tree was 

identical to the ML tree for the actual multiple sequence alignment, except that the internal 

branch was set to be the same length as the terminal branch (green branches). Evolver created a 

root sequence with properties similar to the observed sequence then evolved that sequence by a 

Monte Carlo substitution process for the lengths of time indicated by the tree according to 

substitution parameters inferred from the sequences. Recombination is not explicitly modeled, 

but is implicit in the inferred phylogenies of the E. coli strains that were used as guide trees (Fig. 

S2). The resulting simulated sequences were then subjected to the same quartet analysis as the 

actual sequence data, generating a distribution of values for how many genes generated trees 

where the internal branch length exceeded the terminal branch lengths. (Panel B, bottom; Table 

S7) This test is conservative to the extent that the estimates of terminal branch lengths are larger 

than implied by the population model that likely gave rise to the internal branch length. Gene 

tree incongruence is most pronounced -- and the internal branch length the shortest -- if the two 

speciation events are essentially simultaneous. This would result in a single allele from the 

ancestral population becoming fixed in each of the three descendant species, as long as each 

speciation event produced one low diversity (essentially clonal) population. Alternatively, the 

internal branch length would be longest -- and gene tree incongruence minimized – if the second 

speciation event occurred late enough after the first event that all alleles had become fixed in the 

intermediate species. Similarly, the internal branch length would be increased if, following the 

second speciation event, substantial ancestral diversity were to persist in each of the descendant 

populations and intragenic recombination were to occur. Conversely, recombination among 
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alleles shared across the internal branch would shorten the internal branch (Penny, White et al. 

2008). To account for the potential for these processes to inflate the internal branch length, we 

sampled the two most diverged strains among the E. coli, as though all of the alleles in one strain 

had become fixed (ignoring the incompatibility of this assumption with the observed levels of 

incongruence).   

 

1. Penny D, White WT, Hendy MD, & Phillips MJ (2008) A bias in ML estimates of branch lengths in 
the presence of multiple signals. Mol Biol Evol 25(2):239-242. 
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Figure S2 Phylogenetic discordance within extant recombining populations. 
As in Figure 3.3, bootstrap support is expected to correspond to accuracy (ACE), and SH test p-
values provide expected frequencies of topology rejection (BDF). Support for (ACE) or rejection of 
(BDF) alternative clades is indicated by trendlines. Quartets of strains were analyzed using E. 
fergusonii as an outgroup for E. coli strains (AB) and S. enterica arizonae as an outgroup for analysis 
of S. enterica enterica strains (C-F). Genomes are designated as follows: EcoA, Escherichia coli 
K12 MG1655; EcoB, E. coli IAI39; EcoC, E. coli UMN026; Efe, E. fergusonii ATCC 35469; 
SenA, Salmonella enterica enterica Schwarzengrund CVM19633 ; SenB, S. enterica enterica 
Typhi CT18; SenC, S. enterica enterica Typhimurium LT2; SenD, S. enterica enterica Paratyphi 
A ATCC 9150; SenE, S. enterica enterica Choleraesuis SC-B67; Saz, S. enterica arizonae 62:z4. 
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Figure S3 Chromosomal clustering of parsimony informative sites supporting each topology. 
As in Figure 3.4, each site supporting a distinct topology was compared against each other site and the observation binned according to the 
distance between sites. Trendlines report proportions of observations where a site supporting a given topology was paired with a site 
supporting the same topology. Expected values are derived from the genome-wide proportion of sites supporting that topology. Data is 
plotted at the midpoint of the bin range. Quartets are the same as in Fig. S2. 
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Figure S4 Misinterpretation of character state data. 

At left, the distribution of genotypes depicted on an inferred species tree. If one assumes 

independence of lineage separation events, multiple events are required to explain the existing 

variation (center). Yet the fragmented speciation process can lead to the retention of ancestral 

diversity in the emergent taxa, leading to the apparent discontinuous distribution of genotypes 

(right). 
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Distribution of ACEz scores for 498 orthologs identified between Buchnera aphidicola (A) and 
Escherichia coli (B). 
 

 

Figure S5 Distribution of ACEz scores 
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