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BOSONIC FIELD METHODS FOR UNQUENCHED LATTICE QCD

Jaebeom Yoo, PhD

University of Pittsburgh, 2003

Two new algorithms of particular interest in unquenched lattice quantum chromodynamic

simulations (lattice QCD) are studied: the all-point quark propagator algorithm for extract-

ing full quark propagators, and the combined truncated determinant/multiboson algorithm

for simulating full dynamical QCD. In each case, a detailed study of the statistical properties

and efficiency of the algorithm is made, allowing optimization of the relevant parameters,

as well as an application of the algorithm to a problem of physical interest in lattice QCD.

In the first case, the all-point method is applied to the problem of extracting parameters of

the QCD chiral Lagrangian from lattice QCD measurements of hadronic correlators. In the

second case, the truncated determinant/ multiboson method is used to search for a potential

Sharpe-Singleton chiral phase in the strong-coupling region of unquenched QCD.
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1.0 INTRODUCTION TO LATTICE GAUGE THEORY

Quantum chromodynamics(QCD) is the theory of strong interactions between hadronic par-

ticles. The full analytic solution of the theory has never been found. In some field theories

such as QED (quantum electrodynamics, the quantized field theory of interacting electrons

and photons), calculations of the physical observables can be done perturbatively to any

given accuracy with analytical methods since the coupling constant is small. That is, one

first expands equations for the physical observables in order of the small coupling constant,

and then does analytic calculations term by term in the expansion. However, although it be-

comes small in the high momentum regime, the effective coupling constant of QCD becomes

large in the low momentum regime, excluding perturbative calculations for low momentum

quantities. In order to perform controlled nonperturbative calculations in QCD, one instead

puts the fields on a space-time lattice for computational simulations. The continuous space-

time is replaced by a finite four-dimensional discrete set of points, which is called a lattice.

Then, quantum fields are defined on the points in a lattice, or on the links connecting adja-

cent points [1]. The desired physical results for a continuum space-time are then recovered

by extrapolation to the limit where the lattice spacing (the distance between adjacent points

on the lattice) is taken to zero (or in practice, much smaller than the important physical

distance scales in the problem).

In Quantum Field Theory, physical observables are extracted from correlation functions

of fields, which can be calculated by the functional integral method. Putting fields on a lattice

with the physical lattice spacing a regularizes those functional integrals with the momentum

cutoff of order ' 1/a. Field correlators are calculated numerically using computers, as we

shall explain below [1, 2, 3, 4, 5].
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Figure 1.1: A lattice

1.1 GAUGE FIELDS ON A LATTICE

Before considering Quantum Chromodynamics on a lattice, let us begin with a pure gauge

theory based on a SU(3) gauge group, on a lattice. In the continuous four-dimensional

Euclidean space, the nonabelian gauge theory has the action

Sg =
1

4

∫
d4xF a

µνF
a
µν = − 1

2g2

∫
d4x TrFµνFµν , (1.1)

where the field strength tensor F a
µν is defined with gauge field Aa

µ as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcA

b
µA

c
ν , (1.2)

where g is a coupling constant, a = 1, . . . , 8 is a color index, and µ, ν = 1, 2, 3, 4 are Euclidean

space-time indices. It is convenient to use a matrix form of the field strength, defined as

Fµν = −igF a
µν(x)T a with T a, a =1,. . . ,8 the generators of SU(3).

In order to regularize functional integrals in this theory on a lattice, one needs to put the

gauge fields on a lattice, write the action in terms of the lattice language, and calculate path

integrals of correlation functions with a lattice version of the action. Fµν in the gauge action

Sg is a complicated function of the gauge field Aµ. Fortunately there is a simple relation

between Aµ and Fµν , which is used to define a lattice action.
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The continuum theory has a relation which relates a line integral over a closed loop of

Aµ to a surface integral of Fµν enclosed by the same loop:

P e−
H

Aµ dxµ = e−
RR

Fµν dσµν

, (1.3)

where P on the left indicates that the integration is path ordered along the loop (this is

essential in the nonabelian case as Aµ is a matrix, Aµ ≡ −igAa
µT

a). This relation allows the

lattice action(basically the square of the field strength Fµν) to be written in terms of loop

integrals of Aµ around the elementary squares(plaquette) on the lattice.

Define an operator(referred to in the following as a “link variable”) connecting two points

x, x + µ̂ on the lattice(with µ̂ the unit vector in the µ direction) as

Ux,µ ≡ e−
R

dxµ Aµ(x) = e−aAµ(x+a
2
µ̂) , (1.4)

where the integration is done along the path from x and x + µ̂, and so link variables have a

direction. Each link variable is a unitary matrix, with the hermitian conjugate (or inverse)

representing the path integral along the reversed link.

s s-
x Ux,µ x + µ̂

Consider the ordered product Ux,µν of the four SU(3) matrix link variables along the smallest

square (called a plaquette) with length of side a in the µ̂, ν̂ plane (see Fig. 1.2) [3]:

Ux,µν ≡ U †
x,ν U †

x+ν,µ Ux+µ,ν Ux,µ (1.5)

Noting the relation (1.3), this becomes in the continuum limit a → 0

Ux,µν = e−a2Fµν(x), (1.6)

from which one can get

Tr(Ux,µν + U †
x,µν) = 2 Tr (1) + a4Tr(Fµν(x)2) + O(a6) (1.7)

Now with these new lattice link variables one can express the gauge action on the lattice [1]:

Sg =
∑

p

β(1− 1

3
Re TrUp) , (1.8)

where β = 6
g2 , and the sum is over all plaquettes p. It should be noted that the lattice gauge

action (1.8) is constructed without the complicated definition (1.2) of Fµν in terms of Aµ

and derivatives of Aµ.

3
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1.2 PATH INTEGRAL IN FIELD THEORY

In this section let us see how a path integral in a continuum field theory becomes a multi-

dimensional integral in the corresponding lattice theory. As an example, the free field of a

scalar particle on a lattice is considered [4].

The Lagrangian for a real scalar field φ is written as

L =
1

2
(∂µφ)2 +

1

2
m2φ2 . (1.9)

The theory is quantized by the path integral, which is a sum over all configurations

Z =

∫
[dφ] e−S , (1.10)

where S is the action of each field configuration:

S =

∫
d4xL . (1.11)

On the lattice the derivatives of φ are replaced by the ratio of nearest neighbor differences

to the lattice spacing a

∂µφx → (φx+µ̂ − φx)/a . (1.12)

4



The action is a sum

S = a4
∑
<xy>

(φx − φy)
2/(2a2) + a4

∑
x

m2φ2
x/2 , (1.13)

where < xy > represents the set of all nearest-neighbor pairs of lattice sites. The action S

can be written as an quadratic form in φ with the V × V matrix M with the lattice volume

V :

S =
1

2

∑
xy

φxMxyφy , (1.14)

where M in this case is a finite-dimensional real symmetric matrix. Consequently, on the

lattice the path integral is an ordinary multidimensional integral:

Z =

∫
[dφ]e−S ∝ 1

det(M)
. (1.15)

Let us calculate the propagator of φ:

< φxφy > ≡ 1

Z

∫
Dφφxφye

−S . (1.16)

This integral can be easily calculated by introducing an external source Jx coupled to the

field φx in the action:

S[J ] =
1

2

∑
xy

φxMxyφy −
∑

x

Jxφx . (1.17)

This can be made a quadratic form as follows:

S[J ] =
1

2

∑
xy

[
φx −

∑
z

M−1
xz Jz

]
Mxy

[
φy −

∑
z

M−1
yz Jz

]
− 1

2

∑
xy

JxM
−1
xy Jy . (1.18)

The propagator of field φ is obtained by differentiating S[J ] with the external source J (and

then setting J=0).

1

Z

∫
Dφ φxφye

−S =
1

Z
(

∂

∂Jx

∂

∂Jy

)

∫
Dφ e−S[J ] . (1.19)
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As one changes the integration variable φ to φx−
∑

z M−1
xz Jz, the integral (1.19) can be easily

done:

< φxφy >=
1

Z
(

∂

∂Jx

∂

∂Jy

)e
1
2

P
xy JxM−1

xy Jy |J=0 (1.20)

This gives

< φxφy >= M−1
xy . (1.21)

The propagator of φ is the inverse of the matrix M on the lattice. Similarly, one can

calculate correlators of any number of φ as averages of products of matrix elements of M−1.

In general, propagators in lattice field theory amount to inverses of (very large) matrices, and

the important physical quantities (correlators) to products of elements of these propagators.

1.3 QUARK FIELDS ON A LATTICE

In QCD quarks are represented by fermionic fields that have spinor and color degrees of

freedom. Quark fields are defined on a four dimensional lattice of discrete points. To

understand the specific problems of fermion fields on a lattice, let us first put a free fermion

field on a lattice. The continuum theory of a fermion field ψ with mass m has the Lagrangian

Lq = ψ̄(iγµ∂µ + m)ψ , (1.22)

where γµ are the 4x4 Dirac matrices. The above Lagrangian contains a first order derivative

with respect to space and time. A derivative ∂f(x) is the limit of the ratio of f(x+ε)−f(x) to

ε as ε tends to zero. Once this limit is taken, the derivative ∂ is associated with a single point

x and becomes an exactly antihermitian operator(recall that i∂ is the hermitian momentum

operator in quantum mechanics)

6



The naive lattice version of the derivative is to just replace ε by the lattice spacing a

in the continuum definition, which can be done in two possible ways. Define forward and

backward derivatives as

∂f ≡ f(x + a)− f(x)

a

∂b ≡ f(x)− f(x− a)

a
, (1.23)

respectively. However, neither of them is an antihermitian operator. By combining both of

them, one can obtain an antisymmetrized lattice derivative

1

2
(∂f + ∂b)f(x) =

f(x + a)− f(x− a)

2a
(1.24)

Note that the middle point x is skipped. Using this definition of the lattice derivative one

can write a Lagrangian of the fermions on a lattice:

Lq = ψ̄(
1

2
iγµ(∂f

µ + ∂b
µ) + m)ψ , (1.25)

where 1
2
γµ(∂f

µ + ∂b
µ) is the Dirac operator for free fermions on a lattice. Unfortunately,

the above lattice regularization of the derivative operator(although preserving the desired

antisymmetry) leads to an unwanted proliferation of fermionic states in the continuum limit,

sometimes called the doubling problem.

For example, the above Lagrangian gives the propagator of the free fermion field as

< ψ(x)ψ̄(y) >=

∫ π/a

π/a

d4 p

(2π)4

−i
∑

γµp̄µ + m∑
µ p̄2 + m2

eipx , (1.26)

where an infinite volume lattice is considered for simplicity, and p̄µ = 1
a
sin(pµa).

The lattice momentum p̄µ in the denominator of (1.26) is a sine function of pµ. Thus, the

above integral gets equal contributions from all 16 corners pµ = (0, π/a) in which sin(pµ) '
0. But the corner at (0,0,0,0) only has a correct continuum limit as smooth fields in the

continuum limit correspond to pµ ∼ 0, not π/a. The 15 other contributions are unphysical.

Interestingly one can show that by skipping the middle point in defining the lattice derivative,

the Dirac operator has additional symmetries [2]. In particular, one can show that the above

Dirac operator has unphysical modes which wildly oscillate from point to point on the lattice

7



so that the lattice derivative is a bad approximation to the continuum one [2]. Since the

operators

Q̂µ : ψx → (−1)xµγµγ
5ψx (1.27)

commute with the Dirac operator and anticommute with each other, one can show that for

a given eigenfunction u of the Dirac operator with eigenvalue λ, the 16 functions

u , Q̂µu , Q̂[µQ̂ν]u , Q̂[µQ̂νQ̂ρ]u , Q̂[µQ̂νQ̂ρQ̂σ]u (1.28)

form a degenerate 16-plet. The origin of this unwanted degeneracy is that, in order to

make the lattice derivative antisymmetric, one uses fields at x + a and x − a, skipping x,

which induces this additional symmetry of the lattice Dirac operator. This is the “doubling

problem”(although more accurately the problem in four dimensional space-time is one of a

16 fold multiplication of fermionic states).

Wilson proposed a solution to this problem by adding an artificial term proportional to

a, and therefore, vanishing in the continuum limit [1]. That is,

1

2
iγµ(∂f

µ + ∂b
µ) −→ 1

2
iγµ(∂f

µ + ∂b
µ)− 1

2
a ∂f

µ∂b
µ (1.29)

This Dirac operator of free fermions has the correct continuum limit as a tends to zero.

In the continuum QCD the quark part in the Lagrangian includes a gauge field:

Lq = ψ̄iγµ(∂µ + Aµ)ψ ≡ ψ̄D/ψ (1.30)

The gauge covariant derivative D can be understood in terms of parallel transporters, fol-

lowing the analogy with General Relativity. To define the derivative requires to subtract two

values of the field separated by a small distance. To do that, a field at one point needs to be

8



parallel dragged to the other. With a fixed gauge field the Dirac operator in the continuum

theory can be written as a limit of discrete derivatives as follows:

− iDψ(x) = (∂µ + Aµ)ψ(x)

= lim
δxµ→0

ψ(x + δxµ)− ψ(x) + Aµ(x) δxµ ψ(x)

δxµ

= lim
δxµ→0

(1 + Aµ(x) δxµ)ψ(x + δxµ)− ψ(x)

δxµ

= lim
δxµ→0

U(x, x + δxµ)†ψ(x + δxµ)− ψ(x)

δxµ

, (1.31)

where one can see that the link variable U(x, x+δxµ) ≡ e−Aµδxµ acts as a parallel transporter.

Thus, the operator

U(xy) = P e−
R y

x Aµ(x) dxµ , (1.32)

where the integral is done along the path, can be considered as a parallel transporter for x

and y separated finitely along a certain curve.

As seen above, considering a link variable as a parallel transporter, a gauge covariant

derivative can be defined. It is used to define the lattice counterpart of the gauge covariant

derivative of fermion fields. One can write a naive lattice quark Lagrangian with a fixed

gauge field:

Lq = ψ̄(
1

2
iγµ(∇b

µ +∇f
µ) + m)ψ , (1.33)

where ∇f and ∇b are gauge covariant forward and backward derivatives(recall Eq. (1.23)).

This action has the same doubling problem as do free fermions. To cure the problem, adding

the Wilson term just as for free quarks one can write the lattice Dirac operator with a fixed

gauge field:

D =
1

2
(iγµ(∇b

µ +∇f
µ)− a∇f∇b) (1.34)

Rescaling the quark field, one can have the lattice quark action of a simple form:

S =
∑

x

{(ψ̄(x)ψ(x)− κ
∑

µ

(ψ̄x[1 + γµ]ψ(x + µ̂))} ≡
∑
xy

(ψ̄yQyxψx) (1.35)

9



where Q is called the Wilson-Dirac operator, and κ is called the hopping parameter and is

varied to change the bare quark mass in the action. In a theory of a free quark, it is related

to the mass of the quark by m = 1
2κ
− 1

2κc
with κc = 1

8
. In a theory of interacting quarks

and gluons, the value of κ for which the renormalized quark mass is zero, κc, is called the

critical kappa. In the real world, κ for the light up and down quarks is very close to κc.

In the previous section we obtained the lattice gauge action. Combining the quark action

with it yields the complete QCD action on a lattice:

SQCD =
∑

p

β(1− 1

3
Re TrUp) +

∑
yx

ψ̄yQyxψx . (1.36)

A hadronic correlator G[ψ, ψ̄] is calculated by the path integral

< G[ψ, ψ̄] > =

∫
DUDψ̄Dψ G[ψ, ψ̄] e−SQCD

Z
, (1.37)

where the normalization constant Z is

Z =

∫
DUDψ̄Dψ e−SQCD . (1.38)

Whereas the integral over gauge link fields U in (1.37) is a standard integral(over the Haar

measure of SU(3)), the Dψ, Dψ̄ fermionic integrals have to be defined formally in terms

of anticommuting Grassmann variables (to preserve the anticommuting property of fermion

fields), as described below.
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1.4 FERMION DETERMINANT

In order to ensure the proper Pauli statistics, fermionic path integrals are defined with an-

ticommuting Grassmann variables. Consider ψ and ψ̄ as independent Grassmann variables,

ψ2 = ψ̄2 = 0. Integrals of Grassmann variables ψ, ψ̄ are defined by

∫
dψ =

∫
dψ̄ = 0 ,

∫
dψ ψ =

∫
dψ̄ ψ̄ = 1 . (1.39)

Let us consider a simple example with only two Grassmann variables ψ1, ψ2 (with their

conjugates). Let M be a general two dimensional matrix. The two dimensional fermionic

path integral is

∫
Dψ̄Dψ e−ψ̄mMmnψn ≡

∫
dψ̄1dψ̄2dψ1dψ2 e−M11ψ̄1ψ1−M12ψ̄1ψ2−M21ψ̄2ψ1−M22ψ̄2ψ2 . (1.40)

Using the definition (1.39) one can show (by expanding the exponential)

∫
Dψ̄Dψ e−ψ̄mMmnψn = det(M) . (1.41)

In general, the Grassmann integral over fermionic fields can be regarded simply as a

formal shorthand for the determinant of the matrix defining the fermionic part of the action.

In the case of QCD, this is the Wilson-Dirac matrix Q in (1.36). With the Grassmann

integrals one first integrates out quark fields in functional integrals (1.37), which yields

< ψ(x)ψ̄(y) >∝
∫

DU detQ[U ] (Q−1)xye
−Sg , (1.42)

where the inverse Q−1 of the Wilson-Dirac operator is the quark propagator. In the first

step to evaluating field correlations, one generates gauge configurations with the Monte Carlo

simulation according to the probability weight:

P [U ] ∝ detQ[U ]e−Sg . (1.43)

The determinant detQ[U ] is called an quark determinant. It contains the contributions from

closed (internal) quark loops. However, a direct calculation of detQ[U ] is impossible, as Q is

typically a very large matrix. The multidimensional integral (1.42) is completely conventional

but obviously immensely complex. As an example, evaluation of this integral on a 404 lattice
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with two light quarks (up and down) involves an integration over 81920000 real variables (8

components of each of 4x404 link variables for the SU(3) gauge group), where the integrand

requires evaluation of the determinant of the 61440000 dimensional matrix Q ! Remarkably,

developments in both algorithms and supercomputer technology will make such calculations

feasible in the next decade.

To evaluate the path integrals (1.37) in QCD with the Monte Carlo method, one might

think that one could first generate gauge configurations with the pure gauge action only, and

then include the quark determinant (assuming one could actually calculate it!) as a prefactor

when calculating physical correlators (averages of products of quark propagators). This

direct approach does not work because the quark determinant fluctuates too strongly with

the gauge configurations generated from the pure gauge action [3], inducing huge statistical

errors in the measured quantities.

The quenched approximation to QCD consists of ignoring the effect of the closed quark

loops in the quark determinant by setting det[Q] to a constant so one just generates gauge

configurations without the quark determinant detQ[U ]. In Feynman graph language (per-

turbation theory) this corresponds to ignoring graphs with closed internal quark loops.

An unquenched QCD simulation, in which the quark determinant is included properly,

is extremely expensive due to the huge size of the matrices involved. There are several

algorithms for unquenched QCD simulations such as the Hybrid Monte Carlo method, the

Multiboson method, etc.

1.5 TWO BOSONIC FIELD METHODS IN THIS THESIS

QCD path integrals involve integrals over anticommuting Grassmann variables. The results

from Grassmann integrals in hadronic correlators appear in two forms: quark propagators

and the quark determinant.

The conventional method to calculate a quark propagator is to use matrix linear solvers.

This method gives a quark propagator with one source(where a quark is created). Calcu-

lation of some hadronic observables, however, requires quark propagators from any source

point to any sink point(where a quark destroyed). In unquenched simulations, to extract

12



the full physical content from each gauge configuration is also important, given the huge

computational investment in generating these configurations. Due to the large size of the

Wilson-Dirac matrix, the conventional method is impractical for all-point propagators. A

bosonic field method is developed to calculate all-point quark propagators using Monte Carlo

techniques.

The probability weight of gauge configurations in full QCD simulation includes the quark

determinant. One needs to convert the quark determinant to bosonic integrals for Monte

Carlo simulations. Present algorithms work well only for heavy quarks, and the perfor-

mances become poor at light quarks. The truncated determinant approximation method,

which includes the infrared part of the quark determinant only, has been shown to be very

effective with light quarks [18]. The exact algorithm of the TDA algorithm combined with

the multiboson method as suggested by [18, 32], is studied for the possibility to reduce the

computational cost of unquenched simulation of light quarks.
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2.0 ALL POINT PROPAGATORS

2.1 THE NEED FOR ALL-POINT PROPAGATORS

Once gauge configurations are generated from the Monte Carlo simulation of the path integral

of the gauge field, one performs the calculation of the quark part in the path integral (1.37)

of the hadronic correlator with each gauge configuration. For example, consider the pion

propagator, using ψ̄γ5ψ as the interpolating field for the pion. The path integral giving this

propagator is

< ψ̄xγ5ψx ψ̄yγ5ψy > ≡
∫

Dψ̄DψDU ψ̄xγ5ψx ψ̄yγ5ψy e−SQCD . (2.1)

Calculation of the Grassmann integral over the quark fields gives

< ψ̄xγ5ψx ψ̄yγ5ψy > = −
∫

DU Tr
[
Q−1

xy (U)γ5Q
−1
yx (U)γ5

]
det(Q) e−Sg . (2.2)

With a fixed gauge configuration, the Feynman diagram of the quark fields can be drawn

as in Fig. 2.1. The two lines in the figure represent the quark propagator Q−1. The pion

is created at point x, and destroyed at point y. In order to calculate the quark diagram

one has to calculate the quark propagator Q−1 with each gauge configuration. The average

value and the error of the propagator can be obtained from the statistical analysis of the

measurement from each gauge configuration. The average value of the propagator is

< ψ̄xγ5ψx ψ̄yγ5ψy > = −
∑

i

1

N
Tr

[
Q−1

xy (Ui)γ5Q
−1
yx (Ui)γ5

]
, (2.3)

where Ui are N gauge configurations generated from the Monte Carlo simulation of (1.43).

Similarly, to obtain this quark propagator with a fixed gauge configuration is necessary in

the computation of any other hadronic correlator(whether for mesons, baryons, etc).
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Figure 2.1: The Feynman graph for the pion propagator, < ψ̄xγ5ψx ψ̄yγ5ψy > (a pion is

created at x, and destroyed at y).

With a fixed gauge configuration the path integral giving the quark propagator is written

as the fermionic (Grassmann) integral:

< ψxψ̄y >≡
∫

Dψ̄Dψ ψxψ̄y e−ψ̄Qψ

Z
= Q−1

xy , (2.4)

where the lattice points x and y are called a source(where the quark is created) and sink

(where the quark is destroyed), respectively and the normalization constant is

Z =

∫
Dψ̄Dψ e−ψ̄Qψ . (2.5)

This integral cannot be evaluated using the Monte Carlo technique because it involves ab-

stract anticommuting Grassmann numbers so the concept of a probability is not applicable

here. Thus, instead, one has to find a way to compute the matrix Q−1 in some other way.

The conventional method to calculate a quark propagator makes use of matrix inversions

to obtain Q−1, but is designed to calculate not the whole matrix of the quark propagator

Q−1, but only one row or column of the matrix. With y fixed, the propagator Q−1
xy is the

solution of the linear equation:

∑
x

QyxXx = ey , Xx = Q−1
xy , (2.6)

where the elements of the column vector e are zero except ey = 1 at sink point y. Thus,

matrix inversion algorithms such as conjugate gradient, biconjugate gradient, etc, which find
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the solution of Eq. (2.6) iteratively, can be used to find the quark propagators with a delta

function source(or sink), where the quark is created(or destroyed) at a single point. The

advantage of this method is that although one cannot calculate a full quark propagator(i.e.

all source points to all sink points), but needs to fix the source point, a propagator obtained

in this manner is exact to the machine precision so that there is no statistical error associated

with calculation of quark propagators.

However, for some hadronic observables one needs a propagator from any source point

to any sink point, namely an all-point quark propagator, such as a hadronic correlator in

momentum space. As a simple example, consider

∫
d4xd4y eip(x−y)〈0|ψ̄γ5ψ(x) ψ̄γ5ψ(y)|0〉, (2.7)

which is the pion propagator in momentum space: the integral over x and y clearly requires

all-point quark propagators. The pion form factor is an even more complicated example of a

hadronic correlator requiring all-point propagators. To extract the pion formfactor, we need

the following 3-point function:

Jt0t1t2(~q) =
∑

~w~x~y~z

ei~q·(~x−~y)f sm(~z)f sm(~w)

< ψ̄(~z + ~x, t2)γ5ψ(~x, t2)ψ̄(~y, t1)γ0ψ(~y, t1)ψ̄(~w, t0)γ5ψ(0, t0) > (2.8)

where f sm is a spatial wavefunction to maximize the overlap of the pion field ψγ5ψ with the

ground state.

To calculate an all-point propagator with the conventional conjugate gradient method

is completely impractical. A typical lattice volume(the number of all lattice points) V is

∼ 104. With the latest Pentium processor one quark inversion takes from a few minutes

to a few hours depending on the complexity of the quark action, the lattice size and the

quark mass. Thus, one cannot practically calculate an all-point quark propagator with this

method. On the other hand, it is important to extract the full content of information from

each gauge configuration, especially for the unquenched QCD simulation, since generating

gauge configurations with the quark determinant is computationally very expensive. Since

the conventional method calculates the quark propagator with one source point, one uses
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only a small amount of physical content from each gauge configuration. On the other hand,

an all-point quark propagator contains the maximum information which a single gauge con-

figuration yields.

2.2 PSEUDOFERMION FIELDS

A quark propagator with a fixed gauge configuration on a lattice is the inverse of the Wilson-

Dirac operator as a finite dimensional matrix. Consider the propagator of two complex

bosonic fields on the lattice:

< φxφ
†
y >≡

∫
Dφ†Dφ φxφ

†
y e−φ†H2φ

Z
, (2.9)

where H is the hermitian Wilson-Dirac operator defined as H = γ5Q,

φ†H2φ ≡
∑
z,w

φ†z(H
2)zwφw,

and the normalization factor is

Z =

∫
Dφ†Dφ e−φ†H2φ . (2.10)

Since the operator H is hermitian, H2 is nonnegative. For a finite quark mass H does not

have zero modes so H2 is positive definite. The above integral is therefore a well defined

multidimensional gaussian integral. This bosonic path integral gives

< φxφ
†
y >= H−2

xy . (2.11)

The lattice points x and y in Eq. (2.11) are discrete indices labeling fields, not continuous

variables. Thus, one can multiply the matrix H on both sides of Eq. (2.11) from the right.

This gives

∑
z

< φxφ
†
z > Hzy = < φx(φ

†H)y >

= H−1
xy

= (Q−1)xyγ5 . (2.12)
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As H−1(modulo a trivial factor of γ5) is the quark propagator from any point x to any other

point y, the all-point quark propagator can therefore be obtained by inverting the hermitian

Wilson-Dirac operator H2 with bosonic fields [3, 6, 7] (originally suggested by Michael and

Peisa in the context of static quark systems in [6]). That is, one can calculate a propagator

of fermionic quark fields using bosonic fields. These bosonic fields used in calculating a quark

propagator are called pseudofermion fields. One notes that this integral involves the complex

bosonic fields and the positive definite exponential factor. So the Monte Carlo techniques

used to evaluate multidimensional integrals can be applied to this bosonic correlator.

Let us apply this pseudofermion method to the calculation of pion propagators in mo-

mentum space. The pion propagator with a fixed gauge configuration becomes

< ψ̄xγ5ψx ψ̄yγ5ψy > = −Tr H−1
xy H−1

yx

= −
∑

a,b,α,β

H−1
xaα,ybβH−1

ybβ,xaα , (2.13)

where the indices (a, b), and (α, β) are for the color and spin, respectively. In terms of a

pseudofermion field φ,

−
∑

a,b,α,β

H−1
xaα,ybβH−1

ybβ,xaα = −
∑

a,b,α,β

< φxaαφ̃†ybβ >< φybβφ̃†xaα > , (2.14)

where φ̃ ≡ Hφ. This is a product of two separate path integrals. This can be written as a

single path integral(but over two independent fields) by introducing another pseudofermion

field χ:

− Tr H−1
xy H−1

yx = −
∑

a,b,α,β

< φxaαφ̃†ybβ χybβχ̃†xaα > . (2.15)

Rearranging the pseudofermion fields, one has

< ψ̄xγ5ψx ψ̄yγ5ψy > = −
∑

a,b,α,β

< (φ̃†ybβχybβ) (χ̃†xaαφxaα) >

≡ − < (φ̃† · χ)y (χ̃† · φ)x > . (2.16)
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Note that the factor depending on x and the factor depending on y are separated. This fact

is used to obtain the pion propagator in momentum space. The pion propagator on a lattice

can be defined as

∆ps−ps(p) ≡ 1

V

∑
x,y

eip(x−y) < ψ̄xγ5ψx ψ̄yγ5ψy > . (2.17)

Using Eq. (2.16), one can Fourier-transform the x-dependent factor and the y-dependent

factor separately. This gives

∆ps−ps(p) = − 1

V
< (φ̃† · χ)(−p) (χ̃† · φ)(p) > , (2.18)

where

(φ̃† · χ)(−p) =
∑

x

e−ipx(φ̃† · χ)x ,

(χ̃† · φ)(p) =
∑

x

eipx(χ̃† · φ)x .

The calculation of the integral (2.18) gives the pion propagator in momentum space. Namely,

the pion correlator in momentum space is calculated with this pseudofermion correlator as an

integral over bosonic rather than fermionic fields. Evaluating the pion propagator in this way

ensures that the maximum physical information is extracted from each gauge configuration.

The multidimensional integral (2.18) is done with the Monte Carlo method. One updates

the field φx, and χx at site x according to the Boltzmann factor e−S at one site at a time

for all sites on the lattice. A complete update over the entire sites is called a sweep. As one

continues sweeps, one measures

− 1

V
(φ̃† · χ)(−p) (χ̃† · φ)(p) . (2.19)

The pseudofermion action is quadratic with φ and χ. Moreover, it is local. That is, the

part of action depending on x can be written in terms of field values at neighboring sites.

Thus, the update can be implemented with the standard local heatbath algorithm.

The part of the action depending on φx at x has of the form:

S(φx) = φ†xAφx − 2Re
[
φ†xbx

]
, (2.20)

19



where

A = (1 + 16κ2)1 , (2.21)

bx = 2κ
∑

µ

Ux−µ̂,ν φx−µ̂

−κ2
∑

|µ|6=|ν|
(1 + γµ)(1− γν)U

†
xµU

†
x+µ̂,ν φx+µ̂+ν̂ . (2.22)

bx does not depend on φx This S(φx) becomes

S(φx) = A|φx − 1

A
bx|2 + C (2.23)

with an irrelevant constant term C. One needs to update the field φx at x according to e−S(φx).

Let ξx be an random gaussian vector generated with the probability density proportional to

e−ξ†xξx . The new field φ is obtained with this random gaussian vector as follows:

φnew
x =

1√
A

ξx +
1

A
bx . (2.24)

One does this local update for all of the sites on the lattice. After a sweep, one measures

Eq. (2.19). The simulation proceeds as follows:

• generate pseudofermion fields φ and χ with the probability weight of e−φ†H2φ and e−χ†H2χ,

respectively.

• calculate and Fourier-transform the overlap fields φ̃† · χ, and χ̃† · φ.

• measure the product field, (2.19), of the two overlap fields.

This pseudofermion method was tested with a configuration on a 64 lattice. Since the

start of the run, the fields φ , χ are updated for 1000 sweeps without measuring the propagator

in order for the field to reach the thermal equilibrium. After the first 1000 sweeps the pion

propagator was measured after every sweep. (In a real simulation, the propagator is measured

less frequently to ensure decorrelation: here the measurement is done at every sweep in order

to check the autocorrelation time.) A total of 20000 sweeps was performed.

The correlation between the updated configurations is expressed in terms of the auto-

correlation function, which is defined for a given quantity A as

CAA(t) ≡ (Ai − A)(Ai+t − A) , (2.25)
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Figure 2.2: Cumulative averages of the pseudoscalar correlator
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Figure 2.3: Autocorrelations of the pseudoscalar correlator
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where the bars over the quantities means their averages, and i, i + t are simulation times.

The normalized autocorrelation function is

ρA(t) ≡ CAA(t)

CAA(0)
. (2.26)

The statistical error of A is related to the integrated autocorrelation time τint, defined as [8]

τint ≡ 1

2
+

∞∑
t=1

ρA(t) . (2.27)

When each measurement of Ai is statistically independent, the variance of A is

σ2
A0 ≡

1

N − 1
(Ai − A)2 . (2.28)

With the correlation, the true variance of A increases by a factor 2τint:

σ2
A = 2τintσ

2
A0 . (2.29)

Fig. 2.2 shows the cumulative average of the pion propagators ∆(q2) in momentum

space, (2.17) at the three points qµ = (0, 0, 0, 0), qµ = (0, 0, 0, 1), and qµ = (0, 0, 0, 2) as the

update proceeds, and Fig. 2.3 shows their normalized autocorrelation functions. From these

graphs one can see the different behavior between the zero momentum mode and the nonzero

momentum modes. The cumulative averages of the nonzero momentum modes become

flat just after several thousands sweeps, and the autocorrelations drop very fast. However,

the cumulative averages of the zero mode still oscillates even at the 20000 sweep, and the

autocorrelation has a long tail over hundreds of sweeps. The integrated autocorrelation times

at the three momentum points were measured as 171, 4, and 1 sweeps, in order of increasing

momentum.

22



2.3 MODE SHIFTING

The presence of small eigenvalues of H(and very small eigenvalues of H2 !) for light quarks

induces long autocorrelations of the lowest momentum modes in the pseudofermion Monte

Carlo simulation. This problem can be greatly reduced by defining a modified operator Hs

in which the smallest eigenvalues(which causes long correlations) are shifted to larger values

[9].

Let λi and |λi〉, i = 1, . . . N , be the eigenvalues and the eigenvectors of the N lowest

modes of H. Let us define the shifted hermitian Wilson-Dirac operator to remove the lowest

modes from H as follows:

Hs ≡ H +
N∑

i=1

(λs
i − λi)|λi〉〈λi| , (2.30)

where λ
(s)
i is defined as 1 for negative λi and +1 for positive λi. The eigenvalues of the N

lowest eigenmodes of the shifted operator H are now +1, or −1 depending on the sign of λi,

so that these lowest eigenmodes have been removed from the original operator H.

Let us reconstruct the operator H−1 with this shifted operator:

H−1 =

(
1

λ2
i

|λi〉〈λi|
)

H

=

[
H−2

s −
N∑

i=1

(1− 1

λ2
i

)|λi〉〈λi|
]

H. (2.31)

Evaluating H−2
s with the pseudofermion field yields

H−1
xy =< φxφ̃

†
y > −

N∑
i=1

(λi − 1

λi

)〈x|λi〉〈λi|y〉 , (2.32)

where φ̃ ≡ Hsφ. The pseudofermion simulation inverts not H2 with small eigenvalues but H2
s

with the shifted modes. The pion propagator in momentum space with these pseudofermion

23



fields becomes

∆ps−ps(p) =
∑
x,y

eip(x−y){< (φ̃ · χ)x(χ̃ · φ)y

−
N∑
i

(λi − 1

λi

)
[
(χ̃ · vi)x(vi · χ)y + (vi · φ)x(φ̃ · vi)y

]
>

+
N∑
i,j

(λi − 1

λi

)(λj − 1

λj

)(vi · vj)x(vj · vi)y} , (2.33)

where vi is the eigenvector of H with the eigenvalue λi. The N lowest modes of the operator

H are exactly calculated and included in the action so that one expects that the long au-

tocorrelation of the zero mode of the pion propagator is removed. These lowest eigenmodes

should be calculated before the simulation of the pseudofermions.

First, the test runs with up to 10 shifted modes were performed with the same gauge

configuration used in the previous section to check the computational cost and their effi-

ciency using a PC with the Xeon 2.8GHz CPU. As before, the total sweeps were 20000,

and the propagator was measured at each sweep after the first 1000 sweeps. The exact

computational costs for the updates and measurements were measured in units of time/site

for each mode-shift. The time to update one site, and the time to measure the pion cor-

relator divided by the number of sites are shown in Fig. 2.4 as the number of the shifted

modes is changed from 0 to 10. In this figure, the zero-mode shift means the pure heatbath.

Their integrated autocorrelations are shown in Fig. 2.5. From Fig. 2.4 one can see that the

measurement time increases very sharply compared to the update time as the number of

the shifted modes increases. For more than 5 shifted modes the measurement takes longer

than the update. The integrated autocorrelation times drop very fast with only a few lowest

eigenmodes included, whereas for more than three shifted modes they change little. Since the

computational cost increases with more shifted modes, the case of three shifted modes has

been chosen to compare the mode-shifted method with an alternative approach to reducing

long autocorrelations, the overrelaxation method, which will be described in the forthcoming

section.

With the 3 shifted modes the cumulative averages and the autocorrelations of the same

gauge configuration were calculated. Fig. 2.6 shows the cumulative averages of the pion
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Figure 2.4: Computational cost of the updates and the measurements of the mode-shifted

method.
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Figure 2.7: Autocorrelations of the pseudoscalar correlator with the 3 mode shifted Wilson-

Dirac operator
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propagator at the three points, qµ = (0, 0, 0, 0), qµ = (0, 0, 0, 1), and qµ = (0, 0, 0, 2), as

studied in the previous section, from the mode-shift Wilson-Dirac operator. One can see the

great improvement in the convergence of the cumulative average of the zero mode. The large

statistical fluctuations over hundreds of sweeps have disappeared. The pion propagators at

the three points have integrated autocorrelation times 17, 3, and 1, in order of the increasing

momentum. Note that the autocorrelation time of the zero momentum mode has dropped

from 171 to 17. The mode-shifting has almost completely removed the long-range fluctuation

that comes from the smallest eigenvalues.

We calculated the full pion propagator in momentum space (Fig. 2.8). With the mode-

shift improvement the propagator is obtained accurately at all momenta. From the momen-

tum space propagator one can obtain an all-point propagator in coordinate space with any

source points and any sink points. For example, one can calculate the timeslice propagator,

in which spatial momentum p is set to zero:

∆(t) ≡
∑
x

∆ps−ps(x, t) . (2.34)

This propagator is used to compute the mass of the pions, since it decays as e−mt with pion

mass m for large Euclidean time t. Using the propagator in momentum space, one can easily

get

∆(t) =
∑
x

1

V

∑
p

e−ipx ∆ps−ps(p) (2.35)

=
1

T

∑
p0

e−ip0t ∆ps−ps(p = 0, p0) . (2.36)

With the same gauge configuration this timeslice propagator is calculated (Fig. 2.9). This

propagator obtained from the all-point propagator should be the average over all 64 = 1296

single-source propagators that are obtained from the conventional method. Fig. 2.9 compares

this all-point propagator with a few single-source propagators. Thus, an all-point propagator

extracts the full physical content from the gauge configurations, in a computationally feasible

way.
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Figure 2.8: A pion propagator in momentum space from the mode shift
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Figure 2.9: An all-point propagator from the mode shift
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2.4 IMPROVEMENT BY OVERRELAXING PSEUDOFERMIONS

The gaussian heatbath used in the previous section updates the fields at one site at a time.

After one sweep over the entire sites in the lattice, the field is strongly correlated to the

old field. The overrelaxation method is a standard technique to reduce the autocorrelation

of the gaussian local updates [10, 11]. Consider the quadratic action of a one-dimensional

variable x, for simplicity:

S(x) = ax2 + bx + c, a > 0 , (2.37)

where a, b, and c are constant. Instead of e−S(x) the overrelaxation algorithm uses the

probability transition function:

P (xi → x′i) ∝ e−
a

ω(2−ω) [ωx+(1−ω)xi−x′i]
2

, (2.38)

where x is the minimum, −b/2a, of the S(x), and ω is a number between 1 and 2. When

ω = 1, the update is the ordinary heatbath. For ω > 1, the new minimum of the exponent

becomes ωx + (1 − ω)xi, which is in the other side of the original minimum. Therefore,

the updated x′ tends to go away from x. As ω increases, this tendency increases. In this

way the overrelaxation reduces the correlations between x and x′. For the special case of

ω = 2, the action does not change so that every possible configuration is not accessible

with the update process (i.e., the update process does not satisfy ergodicity). One needs to

combine the overrelaxation of ω = 2 with a separate update process which is chosen to ensure

the ergodicity (in particular, to change the action). So in this case, there is an additional

computational cost.

Using this overrelaxation method one can improve autocorrelation arising in a pure heat-

bath update of the pseudofermion fields. The new updated field is obtained as follows:

(A = (1 + 16κ2)1 for Wilson fermions, but a nondiagonal 12 × 12 matrix for more compli-

cated quark actions)

φnew
x = (1− ω)φx + ωA−1bx +

√
ω(2− ω)A−1/2ξx . (2.39)
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Table 2.1: Integrated autocorrelations versus ω

ω 1.0 1.3 1.6 1.9 2.0

τint 171 76 41 17 26

The test runs with ω = 1.3, 1.6, 1.9, and 2.0 were performed with a total of 20000 sweeps.

The propagators were measured at every sweep after the first 1000 sweeps. For the ω = 2.0

run the ordinary heatbath and the overrelaxation were alternated to ensure the ergodicity

for a total of 40000 sweeps, in which the measurements were made after every combined

heatbath and overrelaxation after the first 2000 sweeps. The autocorrelations and the errors

of the pion propagator at the point pµ = 0 are shown in the table (2.1). In the simulation,

the matrix A in Eq. (2.39) at each site is diagonalized in the beginning before starting the

update, although A is a multiple of the identity in the present case , as we use the simplest

QCD action, namely Wilson action. Then, φnew in Eq. (2.39) can be calculated during the

update without additional cost. i.e., the speed with overrelaxation remains the same as the

pure heatbath. Note that even though the run with ω = 2.0 is twice as slow as the others,

the autocorrelation and error are not better than for ω = 1.9. The case of ω = 1.9 will be

chosen for the later simulation.

With ω = 1.9 we checked the cumulative average and the autocorrelation of the propa-

gator at qµ = (0, 0, 0, 0). The results of a comparison of the mode shifting and overrelaxation

methods are shown in Fig. 2.10 and 2.11. The integrated autocorrelation time at the lowest

momentum value is 17 with overrelaxation. The cumulative average and the autocorrelation

of the lowest momentum mode are greatly improved compared to the simple heatbath algo-

rithm. The mode shifting(3 modes) and overrelaxation methods(ω = 1.9) decorrelate fields

at roughly the same rate.

Let us compare the speed of the two algorithms, the mode-shift and overrelaxation. As

said, the overrelaxation update has the same speed as the pure heatbath. But the mode-shift

method takes longer for both the update of the pseudofermion fields and the measurement

of the correlator.
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Figure 2.10: Autocorrelations of the pion propagator at zero momentum point with the

overrelaxation and mode-shift methods
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Figure 2.11: Cumulative averages of the pion propagator at zero momentum point with the

overrelaxation and mode-shift methods
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update measurement

overrelaxation 0.182 ms/site 0.020 ms/site

mode-shift 0.190 ms/site 0.156 ms/site

With the overrelaxation an update per site takes 0.182 ms but a measurement per site is

only 0.020 ms. The measurement needs very little time compared to the update. However,

with the mode-shift method an update per site takes 0.190 ms, and a measurement per site

is 0.156 ms. The update time increases by 15 percent, but the measurement time increases

by a factor 8, and becomes comparable with the update time. Now let us take into account

the time of calculating the eigenmodes. The mode-shift method has to find the eigenvalues

and eigenvector to be shifted before starting the Monte Carlo simulation. For a 64 lattice,

with the same computer, each eigenvector with the eigenvalue takes 8.8min. With 3 modes,

the total time is 26min. Considering the time for finding the eigenmodes, the overrelaxation

method works better than the mode-shift method.

Finally, let us combine the mode-shift with the overrelaxation. Since the overrelaxation

does not require an additional cost, this runs at the same speed as the mode-shift. Again, the

cumulative averages and the autocorrelations of the three points were computed (Fig. 2.12

and 2.13). One can see that the cumulative average at the zero point becomes flat faster than

that of the mode-shift, or the overrelaxation method. The integrated autocorrelation times

were measured as 9, 2, and 1. With the overrelaxation and mode-shift methods combined

one can reduce autocorrelation time by a factor 2 from the mode-shift or overrelaxation. Let

us measure the propagator at every five sweeps. Then, the updated new fields of all non-zero

momentum modes are completely decorrelated from the field at the preceding measurement.

Then, with the overrelaxation method, five sweeps plus one measurement takes 0.93V ms,

and with the combined mode-shift/ overrelaxation method 1.106V ms with the lattice volume

V . With the 64 lattice, doing 20000 sweeps with measurements every five sweeps after the

1000 sweeps, the overrelaxation method takes 80 min. The mode-shift method combined

with the overrelaxation takes 95 min plus 26 min for the calculation of eigenmodes. Since

the mode-shift method combined with the overrelaxation is twice as good with respect to

the autocorrelation time, for example, running 121(= 95 + 26)min for the total sweeps of

20000 with this method is more efficient than 160(2 × 80)min for 4000 sweeps with the
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Figure 2.12: Cumulative averages of the pseudoscalar correlator with the 3 mode shifted

Wilson-Dirac operator and the overrelaxation combined
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Figure 2.13: Autocorrelations of the pseudoscalar correlator with the 3 mode shifted Wilson-

Dirac operator and the overrelaxation combined
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overrelaxation to get the same statistical error. As measurements are done less frequently,

which is needed for the case of longer autocorrelation, this combined method becomes much

more efficient. That is, the combined mode-shift/overrelaxed method is the most efficient

heatbath algorithm among the algorithms considered here for the pseudofermion simulation

of a pion propagator.

The optimal number of eigenmodes required for the mode-shift varies as the smallest

eigenvalues of the Wilson-Dirac operator, which depends on the quark mass in simulation,

and the autocorrelation time is also dependent on a specific problem, especially on ob-

servables. Thus, the efficiency should be determined for each problem under consideration

separately.
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3.0 CHIRAL LAGRANGIAN AND CURRENT CORRELATORS

Many phenomenological investigations of low energy QCD employ the effective Lagrangian

of chiral perturbation theory. The parameters(couplings) in this effective Lagrangian are

in principle determined - in a completely nonperturbative way - from the underlying QCD

Lagrangian, via methods of lattice QCD (cf. Ch. 4). In this chapter, we review the basic

features of chiral perturbation theory [13, 14, 15, 16, 17].

3.1 CHIRAL SYMMETRY

The QCD Lagrangian for N flavors of quarks in the continuum theory is

LQCD =
1

4
F a

µνF
a
µν +

N∑

f

ψ̄f (iD/−mf )ψf . (3.1)

We are interested in low energy QCD with the two lightest quarks, up and down quarks,

ignoring the other heavy quarks. Since the mass difference between up and down quarks is

negligible, it is assumed that the two quarks are degenerate. From now on, QCD with two

degenerate up and down quarks will be considered.

Let us denote the quark field by a column vector as follows:

q(x) =


 u(x)

d(x)


 , (3.2)

where u(x) and d(x) represent up and down quark fields, respectively. Let us define the

left-handed quark field qL and the right-handed quarks field qR:

qL =
1− γ5

2
q , qR =

1 + γ5

2
q , (3.3)
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respectively, and so their conjugates become

q̄L = q̄
1 + γ5

2
, q̄R = q̄

1− γ5

2
. (3.4)

In terms of qL and qR, the quark part of the QCD Lagrangian can be written as follows:

Lq = q̄LiDqL + q̄RiDqR + m(q̄LqR + q̄RqL) , (3.5)

where m is the mass of degenerate up and down quarks. When the mass term is ignored,

the Lagrangian is invariant under the following global symmetry:

qL → ULqL qR → URqR , (3.6)

where UL and UR are any two independent SU(2) matrices. This symmetry group is a

product UL × UR of the two subgroups, UL and UR. This symmetry is called the chiral

symmetry. The currents associated with the separate symmetries, UL and UR are

jµi
L = q̄LγµT iqL , jµi

R = q̄RγµT iqR , (3.7)

where T i ≡ τ i/2 for the Pauli matrix τ i, i = 1, 2, 3. For the above currents, there are

conserved charges:

Qi
L =

∫
d3x j0i

L , Qi
R =

∫
d3x j0i

R . (3.8)

In the Lagrangian of the real QCD, the chiral symmetry is broken by the mass term. Let

us ask a purely mathematical question. When the masses of the quark are taken to zero

in the limit mathematically, is the ground state of the QCD degenerate under the chiral

symmetry or not? This can be formulated in the following mathematical terms. Let |0′〉 be

a state transformed from the ground state |0〉 under the SU(2)L×SU(2)R chiral symmetry.

Since |0′〉 and |0〉 are degenerate ground states if and only if 〈0′|H|0′〉 = 〈0|H|0〉, the above

question is equivalent to whether

Qi
L|0〉 = Qi

R|0〉 = 0, (3.9)

or not. Since the quarks in the real world are massive, this question can only be checked in

the mathematical limit of m = 0.
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When the left-hand and right-hand quarks are rotated in the same or opposite directions

under the symmetry SU(2)L × SU(2)R, the quark field transforms as follows:

q → eiT iαiq , q → eiγ5T iαiq , (3.10)

respectively. The Lagrangian of the massless QCD is invariant under these transformations.

The currents associated with these symmetries are

jµi = q̄γµT iq , jµ5i = q̄γµγ5T iq , (3.11)

respectively, where jµi is called the isospin current, and jµ5i the axial isospin current. Thus,

the chiral symmetry group of the product of UL and UR is equivalent to the the product

group of the isospin and axial isospin symmetry group. Namely,

SU(2)R × SU(2)L ≡ SU(2)V × SU(2)A . (3.12)

These currents have the conserved charges:

Qi = Qi
L + Qi

R , Q5i = Qi
R −Qi

L. (3.13)

In the QCD ground state, pairs of the quark and antiquark are expected to form a

condensate similar to electron pairs in a superconductor. The result is that the expectation

value of the scalar operator q̄q becomes nonzero:

〈0|q̄q|0〉 6= 0 . (3.14)

The chiral symmetry is affected by the nonvanishing quark condensate. Let us see how

the operator Ai = q̄γ5T
iq transforms under the axial isospin symmetry. For an infinitesimal

εk,

eiQ5kεkAie−iQ5kεk = (q̄e−iγ5T kεk)γ5T i(e−iγ5T kεkq) (3.15)

where the repeated index k should not be summed. Expanding both sides up to the first

order of ε yields

Ai + iεi[Q
5k, Ai] = Ai − iεkq̄{T k, T i}q . (3.16)
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This gives

[Q5k, Ai] = −q̄{T k, T i}q (3.17)

Setting i = k,

[Q5k, Ak] = −1

4
q̄q (3.18)

Thus, when the quark condensate does not vanish,

〈0|[Q5i, Ai]|0〉 6= 0, (3.19)

i.e.,

Q5i|0〉 6= 0 (3.20)

That is, a nonvanishing quark condensate (3.14) implies that the chiral symmetry is spon-

taneously broken as follows:

SU(2)V × SU(2)A → SU(2)V (3.21)

The Goldstone theorem says that when a continuous global symmetry is spontaneously

broken in the ground state, for each broken generator of the symmetry group, there exists a

massless spinless particle of the same quantum numbers as the current associated with the

symmetry. Therefore, due to the broken SUA symmetry, massless particles with odd parity

and zero spin are expected to exist in the massless limit of the quarks (for the two flavors,

the three generators of SU(2) imply that the number of these particles should be three).

In real QCD the quarks are massive, and there are no massless bosonic particles with odd

parity, but three light pions with the expected quantum numbers. Since the masses of the

up and down quarks are small, the chiral symmetry is still a very good symmetry. Thus, the

mass term can be treated a perturbation to the Lagrangian of the massless quarks in the low

energy region. Then the Goldstone particles can get small masses from this perturbation,

still having the same quantum numbers.
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3.2 CHIRAL PERTURBATION THEORY

Pions are Goldstone boson particles coming from the approximate chiral symmetry sponta-

neously broken. The masses of up and down quarks are only ∼ 7MeV, though the charac-

teristic hadronic scale is ∼ 500MeV. So it is expected that there is a low energy regime in

which high energy degrees of freedom are negligible and the relevant degrees of freedom are

the pion fields only. The idea of chiral perturbation theory is that one ignores(integrates

out) those high energy degrees of freedom, and writes the Lagrangian with the low energy

(pionic) degrees of freedom only. This effective Lagrangian can be determined from the sym-

metries of QCD including the chiral symmetry (it is written as the most general Lagrangian

satisfying the required symmetries). Gasser and Leutwyler [16] derived the chiral effective

Lagrangian, and calculated various low energy field correlators including the two-point cur-

rent correlators.

Let us sketch briefly how the current correlators are calculated from chiral perturbation

theory as we follow Ref. [16] closely. As demonstrated with the scalar field in Ch. 1, a field

correlator can be obtained from the generating functional by differentiating with respect to

the external source. With the source fields vµ, aµ, s, p for the vector, axial vector, scalar,

and pseudoscalar currents, respectively, the QCD Lagrangian can be written as follows [16]:

L = LQCD
mquark=0 + q̄γµ(vµ + aµγ5)q − q̄(s− iγ5p)q , (3.22)

where the source field s fluctuates around the quark mass matrix. This Lagrangian is invari-

ant under the chiral symmetry SU(2)L×SU(2)R with the appropriately chosen transforma-

tion properties of the external source fields under the symmetry.

Consider a O(4) vector field U(x) with the unit length, i.e., UT U = 1. The chiral

symmetry SUL(2)× SUR(2) can be realized as follows:

U → U ′ : U ′(x) · τ = VLU(x) · τVR , (3.23)

where VL, VR are symmetry transformations for SUL(2), SUR(2), respectively. One can write

the most general Lagrangian satisfying the chiral symmetry with the scalar field U(x) in an
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expansion in order of the pion momentum p. The order counting rule is that

U(x) ∼ 1,

vµ(x), aµ(x), ∂µU(x) ∼ p,

s(x), p(x), ∂νvµ(x), ∂µ∂νU(x) ∼ p2 . (3.24)

With this rule, one can obtain the effective chiral Lagrangian in order of p. The leading

order of the chiral effective Lagrangian is p2:

L1 =
F 2

2
∇µU

T∇µU + 2BF 2(s0U0 + piU i) , (3.25)

where∇µ is the covariant derivative under the symmetry transformation of SU(2)L×SU(2)R.

Gasser and Leutwyler [16] obtained the next-to-leading order Lagrangian of p4 and using

this Lagrangian, they calculated various two-point and three-point functions in pion physics

including the one-loop corrections, such as pseudoscalar and axial-vector current correlators,

pion form factor, etc.

From [16] the effective Lagrangian of order p4 is

L2 = l1(∇µUT∇µU)2 + l2(∇µUT∇νU)(∇µU
T∇νU)

+ l3(χ
T U)2 + l4(∇µχT∇µU)

+ l5(U
T F µνFµνU) + l6(∇µUT Fµν∇νU)

+ l7(χ̃
T U)2 + h1χ

T χ + h2Tr(FµνF
µν) + h3χ̃

T χ̃ , (3.26)

where Fµν is defined by

(∇µ∇ν −∇ν∇µ)U = FµνU (3.27)

and

χ = 2B(s0, pi) χ̃ = 2B(p0,−si) . (3.28)

With the above Lagrangian in hand, one can apply the standard perturbation technique

to calculate field correlators. In order to see how the loop integrals shift the chiral parameters

in the current correlators, let us present the calculation of the pseudoscalar correlator of
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Gasser and Leutwyler in some detail here. In Ch. 5, the loop integrals in the infinite space-

time will be replaced for the finite volume integral to derive the finite volume effect. This is

important as all calculations in lattice QCD necessarily involve a finite volume space-time

effect. The basic results, which will be compared with the results of lattice QCD calculations

in the next Chapter, are (3.38-3.41), for the reader who wishes to skip the details.

Since we are only concerned with the pseudoscalar correlator, vµ, aµ, s
i, F µν in Eq. (3.26)

are set to zero, and

s0 = m, (3.29)

∇ → ∂µ (3.30)

Then the Lagrangian becomes at O(p2)

L1 =
F 2

2

(
∂µU i∂µU

i + U i∂µU iUk∂µU
k
)

+2BF 2

(
−1

2
mU i2 − 1

8
m(U i2)2 + piU i

)

=
F 2

2

(
∂µU i∂µU

i + M2U i2
)

+
F 2

2

(
U i∂µU iUk∂µU

k − 1

4
M2(U i2)2 + 4BpiU i

)
, (3.31)

and at O(p4):

L2 = l3(2B)2
[
−m2U i2 + (piU i)2 + 2mpiU i

]

+l4(2B)(−pi�U i) + h1(2B)2pi2

= l3

[
−M4U i2 + (2B)2(piU i)2 + 4BM2piU i

]

+l4(2B)(−pi�U i) + h1(2B)2pi2 (3.32)

The correlator of the pseudoscalar P i = ψ̄γ5
τ i

2
ψ is obtained by differentiating the generating

functional with respect to pi twice:

i < P i(x)P k(j) > = 8iδikδ(x− y)B2h1

− [
(2BF 2)2 + l3(4BFM)2

]
< U i(x)Uk(y) >

+l42(2BF )2 < �U i(x)Uk(y) > (3.33)
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The Lagrangian L1 of p2 order is used to generate the Feynman graphs up to one loop,

and the Lagrangian of p4 order only at level of the tree graphs for the next-leading order

contribution. < U i(x)Uk(y) > only in (3.33) can get the contributions of the loop integral

because according to (3.24) < �U i(x)Uk(y) > is already of higher order.

Expanding eiL in the path integral up to the next-to-leading order yields

i < U i(x)Uk(y) >= i < U i(x)Uk(y) >0

− F 2

2

∫
d4z < U i(x)Uk(y)U l(z)∂µU l(z)Um(z)∂µU

m(z) >0

+
1

8
(MF )2

∫
d4z < U i(x)Uk(y)U l4(z) >0

+ l3M
4

∫
d4z < U i(x)Uk(y)U l2(z) >0 ,

(3.34)

where the subscript 0 indicates that the expectation values are taken with the free vacuum

of field U .

The second and the third terms in (3.34) can be expressed graphically as

- -
p p

k

×

-

&%

'$

The one-loop integral above is

µ4−d

∫
dd k

(2π)d

1

k2 + M2
=

µ4−dmd−2

(4π)d/2
Γ(1− d

2
). (3.35)

Using

Γ(1− d

2
) = − 1

2− d
2

+ λE − 1 (3.36)

this loop integral becomes

M2

16π2

(
− 1

2− d
2

+ λE − 1− ln 4π

)
+

M2

16π2
ln

M2

µ2
(3.37)

The renormalization scheme used is that the terms with the first part in (3.37) in the per-

turbative calculation are subtracted by shifting the chiral parameters. Then the calculation

of the above Feynman graph containing the one-loop is straightforward.
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Calculating all contributions in (3.33), one gets the pseudoscalar-pseudoscalar correlator

up to the next-leading order as follows:

i

∫
d4x eip(x−y) < P i(x)P k(y) > = δik

[
G2

π

M2
π − p2

+
B2

2π2
(h̄1 − l̄4)

]
(3.38)

with

M2
π = M2{1− M2

32π2F 2
l̄3 + O(M4)}

Gπ = 2BF{1− M2

32π2F 2
(l̄3 − 2l̄4) + O(M4)} , (3.39)

and constants l̄3, l̄4, h̄1.

Similarly, one can compute the axial vector-axial vector correlator with the one-loop

correction:

i

∫
d4xeip(x−y) < Ai

µ(x)Ak
ν(y) >

= δik{ pµpνF
2
π

M2
π − p2

+ gµνF
2
π + (pµpν − gµνp

2)
1

48π2
(h̄2 − l̄5}+ O(p4)

(3.40)

with

Fπ = F{1 +
M2

16π2F 2
l̄4 + O(M4)} , (3.41)

and constants l̄5, h̄2.

The importance of calculations of this kind is that they provide a direct link between the

QCD Lagrangian, used to calculate correlators like (3.38) and (3.40) via lattice QCD, and the

parameters (such as l̄3, h̄1) of the effective Lagrangian, which is of great phenomenological

importance.
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4.0 MATCHING CURRENT CORRELATORS IN LATTICE QCD TO

CHIRAL PERTURBATION THEORY

Pseudoscalar and axial-vector current correlators in momentum space were calculated with

gauge configurations on a 64 lattice using the pseudofermion method to compute all-point

propagators [7, 19]. Chiral perturbation theory gives the expansion of current correlators at

low energy in order of pion momentum. By fitting the lattice data to the chiral expansions

of up to the next-to-leading order the chiral parameters were extracted.

4.1 SIMULATION

This simulation has been carried out on a 64 lattice using the 800 unquenched gauge config-

urations generated with the Truncated Determinant Approximation algorithm(TDA). This

algorithm will be explained in detail in a later chapter. Its main feature is that, instead of

calculating the full quark determinant of the matrix Q in Eq. (1.43), det Q, which is equal to

det H with H = γ5Q a hermitian matrix, is replaced with the product of a fixed number of

lowest eigenvalues of H, called the infrared determinant. The eigenvalues of H correspond

physically to the off-shellness of quarks in virtual quark loops: by including exactly all eigen-

values up to ∼ 500MeV, the low energy physics relevant to chiral perturbation theory should

be properly included. The objective of the calculations presented here is twofold: to check

the adequacy of the TDA approximation in representing low energy chiral theory, and to

test the practicality of all-point methods for computing chiral current correlators. These

issues can be tested on small lattices. The effect of high modes of Q is believed to be a

renormalization of the bare QCD coupling [20]. Though the simple Wilson quark action is
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Figure 4.1: A twisted rectangle

used for the quark part of the lattice QCD action, the twisted rectangle term(Fig.4.1) is

added to the Wilson gauge action to remove the errors of order O(a2) from the finite lattice

spacing [21]. For this 64 run, the 860 lowest eigenvalues(up to ∼ 420MeV) are included in

the infrared determinant. The kappa value for the quark mass is chosen as 0.2050, which is

equivalent to the pion mass Mπ = 0.396 in lattice unit from the analysis of smeared-local

pion propagators. The lattice spacing is measured as a = 0.4F from calculations of the string

tension [22].

The two-point current correlators, pseudoscalar and axial-vector, are calculated using the

two pseudofermion fields as explained in Sec. 2.2. The correlators were measured every two

pseudofermion sweeps after the first 1000 sweeps. A total of 20000 sweeps were performed

for each gauge configuration, which takes 2.1 hrs with a Pentium 1.5 GHz CPU.
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4.2 EXTRACTING CHIRAL PARAMETERS FROM PSEUDOSCALAR

CORRELATORS

In this section we show the lattice data of the pseudoscalar current correlator, and their fit

to the chiral formula. The isovector pseudoscalar current correlator in momentum space is

the Fourier transform of the two-point function of field q̄τiγ5q:

∫
d4x〈q̄τiγ5q(x)q̄τjγ5q(y)〉eiq(x−y), (4.1)

where τi are the Pauli matrices for SU(2) flavor space. q(x) is a two component quark field

of up and down quarks. In our calculation the masses of up and down quarks are assumed

equal. This current correlator can be related to the pion propagator in Ch. 2. The pion

propagator ∆ps−ps(q) in momentum space in Ch. 2 is defined as

∆ps−ps(q) =

∫
d4x 〈ψ̄γ5ψ(x)ψ̄γ5ψ(y)〉eiq(x−y) (4.2)

for quark field ψ. With τ± = 1
2
(τ1 ± iτ2), this is equal to

∫
d4x〈q̄τ−γ5q(x)q̄τ+γ5q(y)〉eiq(x−y). (4.3)

Thus,

∆ps−ps(q) =
1

2

∫
d4x〈q̄τiγ5q(x)q̄τiγ5q(y)〉eiq(x−y), (4.4)

for any i. In the previous chapter, we have obtained the low energy expansion of the current

correlator in the right side of (4.4). So ∆ps−ps has a low energy expansion in terms of pion

momentum:

∆ps−ps(q
2) ' 1

2
(

G2
π

q2 + M2
π

+
B2

2π2
(l̄4 − h̄1) + O(q2)). (4.5)

We have calculated ∆ps−ps(q
2) from 800 gauge configurations using the pseudofermion

method. Points in Fig. 4.2 show the average values of ∆ps−ps(q
2) for this ensemble. The

statistical errors of momentum modes were obtained from the fluctuations between configu-

rations, ignoring the statistical error in each configuration. The statistical errors are smaller

than the symbol sizes. The pseudofermion simulation causes a statistical error in ∆ps−ps(q
2)

for each gauge configuration. The errors are very small except for the zero momentum mode.
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Thus in our data analysis this zero-momentum point is discarded. The natural lattice mo-

mentum is 2 sin(πnµ

L
) at the lattice point nµ in the Fourier transformed space from lattice

coordinate space. To calculate q2, this formula for lattice momentum is used. The entire

range of q2 is from 0 to 16 in lattice unit. A lattice momentum unit corresponds to 0.25

GeV2 in physical unit.

Let us first describe the conventional way to calculate the pion mass. First one calculates

the timeslice operator of pion fields for each gauge configuration:

∑
x

< ψ̄γ5ψ(x, t)ψ̄γ5ψ(0) > . (4.6)

For large t, the lowest energy state at zero spatial momentum(as a result of the sum over

x) is dominant in (4.6). This decays as e−Mπt for large t in infinite space-time. But in finite

volume with the periodic boundary condition, this timeslice operator becomes ∼ (e−Mπt +

e−Mπ(T−t))(∝ cosh(Mπ(t − T/2))) for large t due to the periodicity. One fits data of the

timeslice operators to this formula to get the pion mass. Lattice simulations are performed

on a finite lattice, and for intermediate t, the expectation value (4.6) has contributions from

the excited states. To extract better signals, normally one uses a smeared operator to create

the pion:

∑
z

f(z)ψ̄(x + z, t)γ5ψ(x, t), (4.7)

where f(z) is a spatial wavefunction. This wavefunction is chosen to maximize the overlap-

ping of the field operator with the lowest energy state. This conventional method with the

smeared pion operator gives Mπ = 0.396 ± 0.007 in lattice unit with the same set of gauge

configurations.

Now the fit results of the pseudoscalar correlators from the pseudofermion simulation to

the chiral form will be described. From (4.5), the following fitting formula is obtained:

∆(q2) =
A1

q2 + M2
π

+ A2 + A3q
2 + A4(q

2)2 (4.8)
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Figure 4.2: Fit of measured pseudoscalar correlator ∆(q2), 1 ≤ q2 ≤ 10
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Table 4.1: Dependence of fitted pion mass on momentum fitting range.

q2range Mπ χ2/d.o.f

1-8 0.324± 0.033 3.6

1-9 0.352± 0.026 2.7

1-10 0.422± 0.020 2.6

1-11 0.449± 0.017 2.3

1-12 0.480± 0.015 2.2

1-13 0.530± 0.013 2.7

The pion masses from the fits over various ranges of q2 are shown in Table 4.1. The χ2/d.o.f.

has a minimum in the region 10 ≤ q2 ≤ 12. We have picked the fitting range q2 = 1− 10 for

analysis. The fitting for this range gives

A1 = 1.52± 0.029

Mπ = 0.422± 0.020

A2 = 0.622± 0.010

A3 = −0.0460± 0.0015

A4 = 0.00163± 0.00007 (4.9)

with χ2/d.o.f = 2.6. Fig. 4.2 shows the fitting graph with the data. The pion mass from this

fit is consistent with that from the analysis of the smeared-local correlators. In this fit, the

term of order q4 is important. From the fit with up to terms of only order q2, χ2/d.o.f. is

large(> 5), and Mπ becomes very different from the value from the smeared-local operators,

if the momentum extends over 6. One should note that parameters in higher order terms

are calculated with very small statistical errors as well as in the leading order term, and

are small. So chiral perturbation is accurate even at quite high momenta. From A1 we find

Gπ = 1.74± 0.02.
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4.3 EXTRACTING CHIRAL PARAMETERS FROM AXIAL CURRENT

CORRELATORS

The axial-vector current correlator is defined as

∫
d4x〈q̄τiγ5γµq(x)q̄τjγ5γνq(y)〉eiq(x−y). (4.10)

Following the same approach as in the case of the pseudoscalar correlator, define

∆ax−ax(q) ≡ 2gµν

∫
d4x < ψ̄γ5γ

µψ(x)ψ̄γ5γ
νψ(y) > eiq(x−y) (4.11)

for a quark field ψ. Using the τ+ and τ−, this can be related to the axial-vector correlator

of degenerate up and down quarks:

∆ax−ax(q) = 2gµν

∫
d4x < q̄τ−γ5γ

µq(x)q̄τ+γ5γ
νq(y) > eiq·(x−y)

= gµν

∫
d4x < q̄τiγ5γ

µq(x)q̄τiγ5γ
νq(y) > eiq·(x−y) (4.12)

for any i. The chiral expansion at low momentum gives [16] :

∆ax−ax(q) ' F 2
πq2

q2 + M2
π

− 4F 2
π +

1

16π2
(l̄5 − h̄2)q

2 + O(q4) (4.13)

From (4.13) we have the fitting formula:

∆ax−ax(q) =
F 2

πq2

q2 + M2
π

+ A1 + A2q
2 + A3q

4, (4.14)

where A1 corresponds to −4Fπ but is made a free parameter because this comes from a

contact term ∝ δ4(x − y) in the coordinate space correlator which is highly UV-divergent

and not accessible from our lattice calculation. The pion mass is fixed at Mπ = 0.422 from

the analysis of pseudoscalar correlator.

With the fitting range 0 ≤ q2 ≤ 10, the parameters are obtained as

Fπ = 0.187± 0.011

A1 = 0.8148± 0.0038

A2 = 0.0777± 0.0003

A3 = −0.00442± 0.00002 (4.15)
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2), 0 ≤ q2 ≤ 10
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with χ2/d.o.f. = 2.0. These values have very small statistical errors. The higher order

parameters are very small. This shows that at least for axial current correlators the chiral

perturbation theory is accurate at up to 2.5GeV2, consistent with the case of the pseudoscalar

correlator.

The chiral Ward identity relates the bare quark mass to Mπ, Fπ, Gπ:

m̂ =
FπM

2
π

Gπ

(4.16)

The values of Gπ = 1.74± 0.02, Fπ = 0.187± 0.011,Mπ = 0.422± 0.020 give the bare quark

mass m̂ = 0.0191±0.0021. Independently the quark mass can be obtained from a calculation

of topological charge. Topological charge on a lattice can be defined in terms of the quark

propagator as follows:

Q = m̂ < ψ̄ψ(x) >= m̂TrH. (4.17)

With the lattice definition of quark mass m = 1/2κ− 1/2κc, the topological charge is [18]

Q = (
1

2κ
− 1

2κc

)
∑

i

1

λi

, (4.18)

where λi are eigenvalues of H. This method gives m̂ = 0.020 [23, 24]. The two quark masses

from the two independent methods are consistent.

In summary, the chiral parameters with very small statistical errors have been extracted

from the fits of the lattice current correlators in momentum space. The pion mass and quark

mass are consistent with results from other methods, i.e., analysis of smeared-local pion

propagators and topological charges. The parameters in higher order terms are very small

compared to the parameters in the leading order term.
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5.0 FINITE VOLUME EFFECTS

5.1 DIMENSIONAL REGULARIZATION IN A FOUR-DIMENSIONAL

HYPERCUBIC BOX

Lattice calculations of QCD are performed on a finite space-time. Thus a path integral of the

correlator of hadronic field O(x) is calculated with gauge field U and quark field ψ defined

on the volume V :

Z−1

∫

V

Dψ̄DψDU O(x)Ō(y)e−
R

V d4x L ≡ 〈O(x)Ō(y)〉V , (5.1)

where to emphasize the finite volume a subscript V is added to the right side of (5.1). This

path integral is not equal to the expectation value with respect to the vacuum of the finite

space-time system, i.e.,

〈O(x)Ō(y)〉V 6= 〈0V |O(x)Ō(y)|0V 〉, (5.2)

where |0V 〉 is the vacuum state of the finite space-time system. These two are equal only in

the limit of T →∞ (where T is the Euclidean time extent of the lattice).

Even though in lattice QCD 〈O(x)Ō(y)〉V is calculated on a finite volume, and is not a

vacuum expectation value, the assumptions used in chiral perturbation theory can be still

applied [25]. That is, there should be a regime at low energy and large T such that the

hadronic correlators are dominated by pion fields, and the Lagrangian can be expanded in

terms of pion momentum in such regime. However, coordinates x in integrals are restricted

to the finite volume V . To extract the errors coming from the finiteness of space-time, let us

consider the continuous four-dimensional box (V = L3T ). Since the rotational symmetry in

the finite box is lost, when one writes the most general effective Lagrangian, it could contain
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a term only satisfying the discrete rotation by a multiple of π/2 like
∑4

µ=1(∇µφ∇µφ)2 for

the theory of scalar fields φ. Those terms could appear from p4 order so that it is expected

that the contributions from those terms are comparable with terms at that order satisfying

the continuous rotation symmetry. As the chiral parameters of the terms of order p4 in the

lattice calculation in Ch. 4 were very small compared to those of the leading-order terms,

the terms with the discrete rotational symmetry are expected to be also very small. In this

study of chiral perturbation in a finite box, those terms are ignored.

The free propagator of the scalar field φ in the infinite Euclidean space-time is

〈0|φ(x)φ(y)|0〉 =

∫
d4k

(2π)2

eik(x−y)

k2 + M2
. (5.3)

The momentum k is continuous from −∞ to +∞. In a four dimensional box, the momentum

becomes discrete:

knµ =
2π

Lµ

nµ, nµ = −∞· · · ,−1, 0, 1, · · ·∞ (5.4)

so the free propagator of the scalar field in finite V is a discrete sum:

〈φ(x)φ(y)〉V =
1

L3T

∑
nµ

eik(x−y)

k2
nµ

+ M2
(5.5)

In our lattice study of chiral perturbation theory, we calculated current correlators in

momentum space. The Fourier transform of (5.5) is 1/(k2
nµ

+ M2). Finite volume effects

arise from the discrete momenta appearing in sums like (5.5), which appear in loop integrals.

Our task is to compare the sums for finite box V with the integrals for infinite space-time

in the loop integrals.

A loop integral appearing in the chiral perturbation calculations(this is the only loop

integral contained in the pseudoscalar and axial-vector current correlators up to the next-

to-leading order) is ∫
d4x

(2π)2

1

k2 + M2
→ 1

L3T

∑
nµ

1

k2
nµ

+ M2
(5.6)

This loop integral in infinite volume is regularized by the dimensional regularization. Like-

wise, we do the dimensional regularization on a hypercubic box of (d-1) space dimension and

one time-dimension:

µ4−d

∫
ddk

(2π)d

1

k2 + M2
→ µ4−d

Ld−1T

∑
nµ

1

k2
nµ

+ M2
(5.7)
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To do this summation, first let us convert it to a exponential form using a Schwinger

parameter λ:
1

k2 + M2
=

∫ ∞

0

dλe−λ(k2+M2) (5.8)

This yields
µ4−d

Ld−1T

∫ ∞

0

dλ e−λM2
∑
nµ

e−λk2
nµ (5.9)

By changing the integration variable λ → 4π2λ/L2, this integral becomes

µ4−d

(2π)2Ld−3T

∫ ∞

0

dλe−
M2L2

4π2 λ

( ∞∑
n=−∞

e−λn2

)3 ( ∞∑
n4=−∞

e−L2λn2
4/T 2

)
(5.10)

One needs to evaluate the sum:

+∞∑
n=−∞

e−λn2 ≡ √
πI(λ) (5.11)

The Poisson sum formula is [26]

∞∑
n=−∞

f(2πn) =
1

2π

∞∑
n=−∞

∫ ∞

−∞
f(τ)e−inτ dτ (5.12)

where f is any smooth function. Using the Poisson sum formula,

I(λ) =
1

2π3/2

∞∑
n=−∞

∫ ∞

−∞
e−λτ2/4π2

e−inτ dτ

The integral in the above equation becomes

∫ ∞

−∞
e−λτ2/4π2

e−inτ dτ =

√
4π3

λ
e−π2n2/λ

Thus,

I(λ) =
1√
λ

+∞∑
n=−∞

e−
π2n2

λ (5.13)

This can be expanded for large λ:

1√
λ

+∞∑
n=−∞

e−
π2n2

λ =
1√
λ

(
1 + 2

∞∑
n=1

e−π2n2/λ

)
' 1√

λ
(1 + 2e−

π2

λ + ...) (5.14)
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Then, the loop integral in d dimensional hypercubic box becomes

S2 ≡ µ4−d

4π2− d
2 Ld−3T

∫ ∞

0

dλe−
M2L2

4π2 λId−1(λ)I(λ
L2

T 2
) (5.15)

For large volume, Id−1(λ)I(λL2

T 2 ) can be expanded:

Id−1(λ)I(λ
L2

T 2
) '

(
T

L

)
1

λd/2
(1 + 2(d− 1)e−

π2

λ + 2e−
π2

λ
( T

L
)2 + ...) (5.16)

One can show that the first term in (5.16) gives the infinite volume singularity:

S2 =
µ4−d

4π2− d
2 Ld−3T

(
T

L
)

∫ ∞

0

dλe−
M2L2

4π2 λ 1

λd/2

=
µ4−d

4π2− d
2 Ld−3T

(
T

L
)(

ML

2π
)d−2Γ(1− d

2
)

=
µ4−dMd−2

(4π)d/2
Γ(1− d

2
), (5.17)

which is exactly the same as (3.35) for infinite space-time. The remaining of the integral

(5.15) can be shown to be finite. For d = 4,

SF
2 ≡ 1

4LT

∫ ∞

0

dλe−
M2L2

4π2 λ

[
I3(λ)I(λ

L2

T 2
)− (

T

L
)

1

λ2

]
(5.18)

Since

∞∑
n=−∞

e−π2n2/λ <

∞∑
n=−∞

e−π2n/λ, (5.19)

SF
2 is bounded from above:

SF
2 <

T

4L3

∫ ∞

0

dλe−
M2T2

4π2 λ


 1

λ2

( ∞∑
n=−∞

e−π2n/λ

)4

− 1

λ2


 . (5.20)

After doing the geometrical sum, the quantity in the bracket becomes

1

λ2

( ∞∑
n=−∞

e−π2n/λ

)4

− 1

λ2
=

1

λ2

(
1 +

1

eπ2/λ − 1

)4

− 1

λ2
. (5.21)

Let us check how this behaves in the limits of λ → 0 and λ → ∞. First, for λ → 0, this

becomes

1

λ2
(1 + e−π2/λ)4 − 1

λ2
' 4

λ2
e−π2/λ → 0 (5.22)
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So the integrand in (5.20) is well behaved at λ = 0. In the other limit of λ →∞,

1

λ2

(
1 +

1

1 + π2

λ
· · · − 1

)4

− 1

λ2
∼ λ2 (5.23)

When this factor is multiplied with e−
m2T2

4π2 λ, the whole integrand vanishes fast enough as

λ → ∞ that the integral (5.20) exists. Thus as SF is bounded by a finite number, it must

be finite.

For a large volume, the leading term in SF
2 is a good approximation. It has a closed

form. For the case of L = T , the leading-order SF
2 becomes

SF,leading
2 =

2

L2

∫ ∞

0

dλ
e−

M2L2

4π2 λ−π2

λ

λ2
=

2

π2

M

L
K1(ML) (5.24)

where K1(x) is a modified Bessel function. For the limit of large ML,

K1(ML) ∼
√

π

2ML
e−ML

so

SF,leading
2 ∼

√
2ML/π3

L2
e−ML (5.25)

5.2 FINITE VOLUME CORRECTIONS TO TWO-POINT HADRONIC

CORRELATORS

When we fit current correlators to the chiral formula in Ch. 4, we used the formulas for infinite

volume, ignoring the errors from the finite volume. By doing the dimensional regularization

in a finite hypercubic box, we can derive the corrections to these values due to finite volume.

The one-loop integral in the pseudoscalar and axial-vector current calculators up to the next-

to-leading order involves (5.6) only so that the finite volume corrections come from this loop

integral. In infinite volume, with the same renormalization scheme as in Sec. 3.2 the loop

integral gives a logarithmic term:

∫
d4k

(2π)4

1

k2 + M2
−→ M2

16π2
ln M2. (5.26)
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Table 5.1: Finite volume corrections GF
π ,MF

π , F F
π on a 64 lattice with Gπ = 1.87, Fπ = 0.187

ML 1.0 2.0 3.0 4.0 5.0 6.0

SF
2 0.0244 0.0044 0.0013 0.00041 0.00015 0.000053

GF
π 0.607 0.109 0.032 0.010 0.0037 0.0013

MF
π -0.196 -0.018 -0.0035 -0.00082 -0.00024 -0.00007

F F
π 0.130 0.024 0.0070 0.0022 0.00080 0.00028

Using the same renormalization scheme for finite volume, the finite volume loop integral

gives

∞∑
nµ=−∞

1

k2
nµ

+ M2
−→ M2

16π2
ln M2 + SF

2 . (5.27)

Using this rule, the finite volume corrections to Mπ, Gπ, Fπ can be calculated as follows:

Gπ → Ginf.vol.
π − B

F
SF

2

Mπ → M inf.vol.
π +

M

4F 2
SF

2

Fπ → F inf.vol.
π − 1

F
SF

2 (5.28)

So we only need to calculate the integral SF
2 to find the finite volume corrections to leading

order in chiral perturbation theory. In our simulation in Ch. 4, M2L2/4π2(' 0.40, ML ' 2.5)

is small so that the accurate calculation of the integral in the region of small λ is necessary.

Thus SF,leading
2 can not be used in this case. Mathematica is used to calculate the sum in SF

2

numerically to include more terms in the expansion. This yields S2
F = 0.0022. For the case of

L = T = 6, the values of SF
2 and the finite volume corrections (denoted by GF

π , MF
π , F F

π ) to

Gπ,Mπ, Fπ for several different values of ML are shown in Table 5.1. ML = 1.0 corresponds

to that the correlation length 1/M is equal to L, and for ML = 6.0, 1/M is the lattice spacing.

From this table, one can see that for 1
M

. 3 (corresponding to pion mass . 200MeV on these

lattices), the finite volume effect is very small.

The finite volume contribution terms become −BπSF
2 /Fπ, MπSF

2 /4Fπ, and −SF
2 /Fπ to

the leading order. Gπ, Mπ, Fπ obtained in Ch. 4 contain the finite volume errors. To get the
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Table 5.2: Finite volume corrections MF
π on a 64 lattice with Fπ = 0.187 for the conventional

smeared-local operator method in coordinate space

ML 1.0 2.0 3.0 4.0 5.0 6.0

SFs
2 0.00823 0.00221 0.000742 0.000268 0.000100 0.000038

MF
π 0.066 0.0089 0.0020 0.00054 0.00016 0.00005

values corresponding to infinite volume one needs to subtract the finite correction terms in

(5.28) from the fitting results obtained in the previous chapter.

From Fπ = 0.187±0.011,Mπ = 0.422±0.020, the finite volume corrections to Mπ, Fπ are

0.007 and -0.012, respectively. The finite volume correction term of Gπ includes a constant

B. This constant cannot be obtained from the data fits. So we use the relation G = 2BF ,

which becomes Gπ = 2BF to the leading order. Then the finite volume correction of Gπ

becomes GπS
F
2 /2F 2

π . Using the value of Gπ = 1.74, this correction is 0.05. We see that the

finite volume corrections at leading order of chiral perturbation theory to Mπ, Gπ, Fπ are

very small in this simulation.

Let us comment on the finite volume corrections to the pion mass when it is calculated

in coordinate space using smeared-local correlators and cosh fit. The normal way to cal-

culate Fπ, Mπ is to calculate quark propagators in coordinate space, and then fit the pion

propagators with the fit formula of cosh(M(t− L/2) with Euclidean time t. When one uses

local pion operators, the finite volume corrections in (5.28) are still applied. To make the

operator more overlap with the lowest energy state, normally one uses smeared operators.

With an optimal choice of the smearing function the overlap of the pion creation operator

with excited states with pionic quantum numbers would be zero and the sensitivity of the

pion propagator to the finite extent in the Euclidean time direction could be eliminated.

Thus, the effect of smeared operators corresponds to making the ratio of T/L large. When

T/L is large, the factor I(L2

T 2 λ) in (5.18) becomes ' L
T

1√
λ
. Thus the finite part of the integral

becomes

SFs
2 ≡ 1

4L2

∫ ∞

0

dλe−
M2L2

4π2 λ

(
I3(λ)

1√
λ
− 1

λ2

)
(5.29)
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The leading correction for large L regardless of the actual ratio of T/L is

SFs,leading =
3

2L2

∫ ∞

0

dλ
e−

M2L2

4π2 λ−π2

λ

λ2
=

3

2π2

M

L
K1(ML) (5.30)

Using this (5.29),(5.30), finite corrections to Mπ, Fπ which are calculated from smeared

operators in coordinates space can be calculated. With this new formula (5.29), the finite

volume corrections to Mπ are calculated for several values of ML in Table 5.2. As one can

see, using the smeared operator greatly reduces the finite volume corrections.
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6.0 TRUNCATED DETERMINANT APPROXIMATION

In this chapter the truncated determinant approximation(TDA) method, which was intro-

duced by Duncan, et al. [18] to simulate QCD with a small quark mass efficiently, will be

reviewed.

6.1 TRUNCATED DETERMINANT APPROXIMATION

In a simulation to generate a ensemble of gauge configurations U on a lattice, U is updated

according to the following probability weight: (for the case of QCD with the two degenerate

quarks)

P(U) ∝ det(Q2)e−Sg ,

where Q is the Wilson-Dirac operator, and Sg is a gauge action. The determinant of a

nonhermitian matrix Q is equal to the determinant of a hermitian matrix H = γ5Q(as

det(γ5) = 1). For the free theory, eigenvalues of the operator H are ±
√

p2 + m2, which

corresponds to exactly the off-shellness of the virtual quark loops.

To see the effect of high modes of H, the high modes are gradually switched off by

defining a effective action as

D(µ) ≡ Tr ln tanh(
H2

µ
),

with a constant µ. As µ becomes much larger than the largest eigenvalues of H, eD(µ)

becomes ∝ detH2, whereas as µ becomes much smaller than the smallest eigenvalue, eD(µ)

becomes 1. For an intermediate µ, high modes with eigenvalues λ >> µ are suppressed.
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Let µ be much larger than ΛQCD(' 250MeV) so that as µ is varied, the number of high

modes of H included in D are controlled. Ref. [18] performed an analytic calculation for the

case of QED at weak coupling to show that the dependence of D(µ) at large µ is

D(µ) ' βF ln
µ2

m2
q

∫
d4xF 2

µν + O(
1

µ2
(DF )2),

where βF is the one-loop quark contribution to the beta function. That is, varying the

number of high modes is equivalent to the renormalization of the coupling constant. Thus,

the quark determinant detH2 can be split into the ultraviolet determinant UUR from those

high modes and the infrared determinant UIR:

det(H2) =
∏

|λi|<µ

λ2
i

∏

|λi|>µ

λ2
i

≡ DIRDUR

So it is expected that DIR well describes low energy QCD in which virtual quark off-shellness

is typically lower than µ. In lattice simulations, µ is chosen as 2ΛQCD. Eigenvalues in DIR

are calculated with the Lanczos algorithm.

6.2 LANCZOS ALGORITHM

The Lanczos algorithm is an standard technique to calculate eigenvalues of a matrix. Given

a hermitian matrix A, it find a tridiagonal matrix:

T =




α1 β1

β1 α2 β2

. . . . . . . . .

βn−2 αn−1 βn−1

βn−1 αn




(6.1)

A tridiagonal matrix can be easily diagonalized with standard numerical techniques. T can

be written as T = V −1AV with an unitary matrix V . The unitary matrix V can be written as
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V = (v1, · · · ,vn) with orthonormal column vectors vi. Then, αi, βi,vi satisfy the following

relations:

Av1 = α1v1 + β1v2,

Avi = βi−1vi−1 + αivi + βivi+1 for i = 2, · · ·n− 1, (6.2)

Avn = βn−1vn−1 + αnvn

This relation with the orthogonality of vi tells that if one has αi, βi, and vi, one can get

αi+1, βi+1, and vi+1. So starting with a random vector ω0, one can generate all αi, βi by

repeating the following process:

vi = ωi−1/βi−1

αi = < vi, Avi >,

ωi = (A− αi)vi − βi−1vi−1

βi =
√

< ωi, ωi >

i ← i + 1, (6.3)

where <,> means the scalar product of two vectors. The initial β0 and v0 are defined as

β0 =< ω0, ω0 >, v0 = 0. Theoretically this recursion should find all αi, βi after n times of

iteration, unless βi = 0 terminates process, but in real computation, accumulated roundoff

errors in the iterations prevent all vi from being orthogonal, which causes that the matrix

T contains not only eigenvalues of the matrix A but also eigenvalues which are not those

of the matrix A, called the spurious eigenvalues. Cullum and Willoughby [27] proposed a

solution in which the recursions can be done any number of times. One finds good eigenvalues

by removing spurious eigenvalues with the following recipe. Construct another tridiagonal

matrix T2 by removing the first row and column from the original tridiagonal matrix T .

Then, spurious eigenvalues are all common simple eigenvalues of T (i.e., those unchanged by

the deletion with multiplicity=1), and all of the other eigenvalues of T are good eigenvalues

of A.
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6.3 TDA SIMULATIONS

In lattice simulation, new gauge configurations U ′ are generated from old U according to

e−Sg , and then one does a Metropolis update with e−∆DIR , where

∆DIR ≡ ln

Neig∏
i=1

λ2
i

λ′2i
. (6.4)

λ′i are eigenvalues of H with the new gauge configuration U ′. Namely, a new gauge configu-

ration U ′ is accepted/rejected by comparing e−∆DIR with a random number r. If e−DIR > r,

U ′ is accepted, and otherwise U is rejected.

Gauge configurations used in our study of chiral perturbation theory in Ch. 4 were

generated from the TDA method. As shown there, the chiral parameters were extracted

consistently with the results from independent methods. As another example, Fig. 6.1 shows

the static energy on 64 lattices obtained from the TDA simulations from Ref. [28]. One

can see that the static energy shows stringbreaking with an asymptotic value which agrees

well with twice the heavy-light meson mass. Thus, the TDA method reproduces important

aspects of low energy unquenched QCD.
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7.0 EXACT ALGORITHM WITH TDA+MULTIBOSON METHOD

7.1 MULTIBOSON METHOD

The multiboson method [30, 31] was proposed to simulate unquenched QCD of two degen-

erate quarks. For the case of two degenerate quarks, the probability density for a gauge

configuration U is

Peff [U ] ∝ det H2e−Sg[U ].

By introducing bosonic fields, the multiboson method converts detH2 to an effective action

e−Sb such that Sb is a local action of bosonic fields. The absolute value of the spectrum of

the hermitian Wilson-Dirac operator H is bounded by 1 + 8κ so the operator

H ≡ H

1 + 8κ
(7.1)

has a spectrum between -1 and 1. One can rewrite Peff [U ] in terms of this normalized

operator:

Peff [U ] ∝ det H
2
e−Sg [U ].

One wants to approximate detH
2

in terms of a polynomial PN which has N complex roots:

det H
2 ' 1

det PN(H
2
)
.

The polynomial PN(s) is approximating 1/s:

PN(s) ' 1

s
, ε ≤ s ≤ 1,
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where the lower limit ε of the convergence should be less than the smallest eigenvalue of H
2
.

By factorizing P (H
2
) with complex roots zk, k = 1, · · · , N , one can write det(H

2
) as

det (H
2
) '

N/2∏

k=1

1

det
(
(H

2 − zk)(H
2 − zk)

)

This can be written in terms of
√

zk = µk + iνk, νk > 0:

det (H
2
) '

N∏

k=1

1

det
(
(H − µk)2 − ν2

k

) (7.2)

The determinant of each factor in the denominator in (7.2) can be converted to a bosonic

integral with a gaussian action:

Sb =
N∑

k=1

∑
x

(|(H − µk)φk(x)|2 − ν2
k |φk(x)|2)

Thus, the probability weight Peff for the gauge configuration U becomes

Peff [U ] ∝
∫

DφDφ† e−Sb[φ]−Sg[U ] (7.3)

Typically Chebyshev polynomials are used for PN . Roots of Chebyshev polynomials can

be expressed analytically as follows:

zk =
1 + ε

2
(1− cos

2πk

N + 1
)− i

√
ε sin

2πk

N + 1
(7.4)

The relative error for Chebyshev polynomial is bounded by 2(1−√ε
1+
√

ε
)N+1. Fig. 7.1 shows roots

of Chebyshev polynomials for the cases of N = 20, N = 60 with the fixed maximum relative

error' 0.005.

When one simulates small quark mass, H
2

has small eigenvalues. Then, a polynomial

PN of small ε and large N are necessary. The roots of PN are densely concentrated near zero.

This causes critical slowing down of multiboson fields: simulations based on (7.3) display

long autocorrelations of the bosonic fields.
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Figure 7.1: Roots of Chebyshev polynomials
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7.2 TDA + MULTIBOSON

The exact unquenched simulation with the multiboson method requires a large number of

bosonic fields in order to accurately reproduces the small eigenvalues of the quark deter-

minant. For a finite N , the multiboson method is not exact. For a given PN with a low

convergence limit ε, the exact probability density for a gauge configuration U and bosonic

fields φi , i = 1, · · · , N , can be expressed as

P (φ, U) ∝ det
[
PN(H

2
)H

2
]
e−Sb−Sg (7.5)

The exact probability density P (φ, U) has a correction factor det
[
PN(H

2
)H

2
]
. As first

shown in [32], one can make the algorithm exact by evaluating the correction determinant

with the eigenvalues of low modes of H:

det
[
PN(H

2
)H

2
]
'

Neig∏
i

P (λ2
i )λ

2
i (7.6)

Namely, one applies the TDA method to evaluate the correction factor which comes from

the infrared modes of H. So the TDA method takes care of the infrared modes while the

multiboson method approximates the ultraviolet modes. The TDA method combined with

the multiboson method can reduce the number of multiboson fields needed to make the

algorithm exact by computing the exact infrared determinant so that the critical slowing

down of multiboson fields in the continuum limit can be avoided. Even for the case of lattice

simulation of relatively heavy quark mass, this combined method can reduce time required

to generate decorrelated gauge configurations compared with the pure multiboson method.

Moreover, as the errors in the multiboson method are eliminated by exact calculation of low

eigenvalues, the method can be made effectively exact.

Define the determinant compensation factor as the logarithm of the correction factor

from a Neig lowest eigenvalues of H:

DCF (N,Neig) ≡ ln(

Neig∏

k=1

λ2
kPN(λ2

k)).
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Figure 7.2: Convergence of determinant compensation factor on a 64 lattice (N = 20, ε =

0.02)
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The factor e−∆DCF with ∆DCF = DCF − D′
CF will be used in Monte Carlo simulations

to correct gauge configurations generated from the multiboson method. That is, this will

be compared with a random number at the end of each update to decide the Metropolis

accept/reject. To do this, this factor needs to converge with Neig number of eigenvalues.

Fig. 7.2 shows convergences of ∆DCF on a 64 lattice with N = 20, ε = 0.02. The number

of the smallest eigenvalues up to ε = 0.02 are around 850, but to ensure the convergence, in

the following simulation we include 1000 smallest eigenvalues in DCF .

7.3 SIMULATION

We have simulated the TDA + multiboson algorithm on a coarse and physically large 64

lattice. As in TDA simulation in Ch. 4, the gauge part of QCD action is O(a2) improved

with a 8 link loop of twisted rectangle terms whereas the pure Wilson quark action is used:

Sg(U) = βplaq

∑

plaq

1

3
ReTr(1− Uplaq)

+ βtrt

∑
trt

1

3
ReTr(1− Utrt), (7.7)

where “trt” refers to “twisted rectangles”. βplaq, βtrt are chosen as 0.65, 0.75, respectively

so that the lattice spacing is measured as a−1 = 0.54GeV. N = 20, ε = 0.02 are used to

generate the Chebyshev polynomial PN . i.e., we have 20 multiboson fields. 1000 lowest

eigenvalues are calculated exactly by the Lanczos algorithm and included in the determinant

compensation factor.

The Monte Carlo simulation should update both gauge configuration U and multiboson

fields φ. For the update of φ, the gaussian overrelaxation technique is used, and for U ,

the overrelaxation and the pure Metropolis are combined. After updating φ, U , the DCF is

computed to accept/reject updated U, φ. The update proceeds in the following order:

1. update of each multiboson field with 1 overrelaxation (overrelaxation parameter ω = 1.9)

2. update of gauge field with 10 hit Metropolis, 1 overrelaxation and another 10 hit Metropo-

lis.

3. update of each multiboson field with 1 overrelaxation (ω = 1.9)
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4. Metropolis accept/reject with the determinant compensation factor e−∆DCF .

The pure Metropolis and overrelaxation for gauge configurations U are standard. For the

pure Metropolis of gauge configurations U , a table of random SU(3) matrices are generated,

and a U from the table is picked randomly, and then the Metropolis accept/reject is done

with Unew
xµ = UU old

xµ . For overrelaxation of gauge field, one needs to find Umin minimizing

the action with the environment fixed. At each overrelaxation Umin was found numerically.

Then Unew
xµ = U old

xµ U−1
minU

old
xµ is used for the Metropolis accept/reject.

Fig. 7.3 shows the equilibrated DCF versus sequence. One sweep including computation

of DCF takes ∼ 5min with a Pentium 1.6GHz CPU. The acceptance rate is ∼ 50%.

7.4 TDA+MULTIBOSON IN QQ+Q QCD

The TDA+Multiboson algorithm can be extended to the simulation of 2+1 quarks: degen-

erate up and down quarks, and relatively heavy strange quark. For this case, the probability

density P (U) contains two determinant factors from up and down quarks, and one factor

from strange quark:

Peff [U ] ∝ det H
2
det Hse

−Sg[U ],

where Hs is the normalized hermitian Wilson-Dirac operator for the strange quark. For the

determinant of H
2
, one uses a Chebyshev polynomial PN as obtained in Sec. 7.1. Since even

at very small quark mass a quark determinant does not become negative, one has

det Hs = det

√
H

2

s (7.8)

A polynomial P s
N(x) approximating

√
x with N s complex roots can be found from the stan-

dard Remes algorithm, which is fully implemented in Mathematica [33]. Fig. 7.4 shows the

relative error of P s
N(x), i.e.,

R(x) = 1−√xP s
N(x)

for the case of the lower convergence limit ε = 0.02 and the maximum relative error max(R) =

0.003. The exact algorithm now contains two compensation factors. In addition to DCF
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for up and down quark, the compensation factor for strange quark determinant has to be

computed:

Ds
CF = ln

Ns
eig∏

i=1

P s
N(λs2

i )λs2
i , (7.9)

where λs
i is an eigenvalue of Hs. In Monte Carlo simulation for this case, the product

e−∆(DCF +Ds
CF ) is used for the global accept/reject at the last step of each update of φ, U .

Fig. 7.5 shows convergences of ∆(DCF +Ds
CF ) from a qq+q simulation on a 84 lattice. Since

the strange quark is heavier than up/down quark, Hs has fewer small eigenvalues. Thus, the

low convergence limit ε for P s can be larger than ε for P so that the strange quark needs a

smaller number of multiboson fields. Fewer eigenvalues also need to be included in Ds
CF .
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Figure 7.5: Determinant compensation factor from qq+q simulation
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8.0 STATISTICAL PROPERTIES OF TDA+MULTIBOSON METHOD

8.1 AUTOCORRELATION IN PURE MULTIBOSON METHOD

In order to simulate QCD with the pure multiboson method only, the order of a polynomial

PN(s) which approximates 1/s must become large, and ε become small. Then many νk,

imaginary parts of square roots of zk of PN , become ' 0(see Fig. 7.1). The bosonic fields φ

with such small νk’s have bosonic actions∼ e−ν2|φ|2 , which has a width 1/ν. So the correlation

length ξ of φ and U are ∼ 1/νk with the smallest νk. From the analytical expression of roots

of a Chebyshev polynomial Eq. (7.4), one can see that for small νk, ν2
k ∼

√
ε

N
. Thus, ξ2 ∼ N√

ε
.

The pure multiboson algorithm updates gauge field U and bosonic fields φ at each site at a

time with a local effective action. The autocorrelation time with such local updates grows

as ξ2 [29]. So the autocorrelation time τmb with pure multiboson algorithm grows as [30, 32]

τmb ∼ N√
ε

(8.1)

8.2 AUTOCORRELATIONS IN TDA+MULTIBOSON METHOD

To study the computational efficiency of the TDA+Multiboson algorithm we have simulated

QCD with two degenerate quarks with different numbers of multiboson fields. Simple Wil-

son quark and gauge actions for the QCD action are used. The coupling constant β and

the hopping parameter κ are chosen as β = 5.3 and κ = 0.1620. Six runs with different

numbers of multiboson fields(14,20,30,40,50,60) were simulated to see statistical properties

as the number of multiboson fields changes. ε, the low convergence limit of the Chebyshev

polynomial for each run is chosen such that the polynomial have the same maximum relative
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Table 8.1: ε and Neig for each number of multiboson fields

N 14 20 30 40 50 60

ε 0.039 0.020 0.0092 0.0053 0.0034 0.0024

Neig 1200 600 200 100 60 40

error δ(' 0.005) (see Table 8.1). To check that every run simulates the same path inte-

gral, plaquette averages are measured. Every run gives a plaquette average value of (' 0.5)

consistently.

In the pure multiboson method an integrated autocorrelation time τmb of a general

physical quantity is proportional to N√
ε

with the number of multiboson fields N . In the

TDA+Multiboson method one accepts or rejects a generated gauge configuration U and

multiboson fields φ by comparing the determinant compensation factor with a random num-

ber. When they are rejected, the next U and φ are the same as the fields at the preceding

step. Thus an autocorrelation time τ from the TDA+Multiboson method is expected to

decrease by a factor of the acceptance rate ra:

τ =
τmb

ra

Naively, when δ is fixed, one can see that the acceptance rate ra decreases as the number of

multiboson fields N decreases because more eigenvalues need to be included in the compen-

sation factor DCF for the smaller N so that DCF fluctuates more. The measured acceptance

rate for each run is shown in Fig. 8.4. The decreasing rate of ra becomes faster as N gets

smaller. This behavior can be understood approximately as follows.

At the last step of each Monte Carlo update, updated fields U ′ and φ′ generated with the

probability density e−Sg−Sb(i.e, the multiboson part), where Sg is a QCD gauge action and

Sb is an effective bosonic action, are accepted according to the factor min[1, e−∆DCF ](i.e.,

the TDA part). This can be done by comparing the factor e−∆DCF (∆DCF ≡ DCF −D′
CF )

with a random number rrand between 0 and 1 (if e−∆DCF > rrand, accept U ′, φ′, otherwise
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reject), where primes(′) indicate that D′
CF is calculated from the updated fields. Thus the

acceptance rate ra is the average of this factor in the course of a simulation:

ra = << min[1, e−∆DCF ] >> (8.2)

The average << · · · >> in Eq. (8.2) is an average over the entire sequence of configurations

(both accepted and rejected) generated as simulation proceeds. The average of e−∆DCF can

be shown to be equal to 1 [35]. The average of e−∆DCF can be written as

<< e−∆DCF >>=
1

M

∑

(U,φ),(U ′,φ′)

eD′
CF

eDCF
P [(U ′, φ′) ← (U, φ)] eDCF e−Sg−Sb , (8.3)

where S′g, S
′
b are calculated with U ′, φ′, and M is a normalization factor:

M =
∑

U,φ

eDCF e−Sg−Sb .

Since

∑

(U,φ)

P [(U ′, φ′) ← (U, φ)] e−Sg−Sb = e−S′g−S′b , (8.4)

it follows that

<< e−∆DCF >>=
1

M

∑

U ′,φ′
eD′

CF e−S′g−S′b , (8.5)

which is a sum of all probability, i.e., 1.

It is known from spectral theory [34] that eigenvalues of the Wilson-Dirac operator with

random gauge configurations fluctuate more in the sparse region than in the dense region.

The density of eigenvalues λ of the hermitian Wilson-Dirac operator H for λ � ΛQCD

is believed to grow roughly linearly as the absolute value of λ [36] except for the smallest

eigenvalues ' 0. We have checked the spectral density with a typical gauge configuration(see

Fig. 8.1). Except for the region of λ ' 0, the spectral density is roughly linearly proportional

to the magnitude of eigenvalues in the region of our interest. Let us assume this linearity of

the spectral density for small eigenvalues to be included in the DCF .
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Figure 8.1: Spectral density of H from a gauge configuration. Except for the smallest eigen-

values the density grows linearly with magnitude of eigenvalues(fit gives roughly 0.63|λ|−0.1

for the linear part).
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For each eigenvalue λi of H(= H
1+8κ

), the contribution to e−∆DCF is

PN(λ′2i )λ′2i
PN(λ2

i )λ
2
i

≡ (1 + ri) (8.6)

where ri is a relative change of P (λ2
i )λ

2
i . These relative changes ri are very small with the

magnitude . 0.01. Taking the logarithm of (8.6) gives

ln
PN(λ′2i )λ′2i
PN(λ2

i )λ
2
i

≡ ln(1 + ri)

' ri (8.7)

Let us assume that ri for each eigenvalue λi fluctuates randomly with a gaussian probability

distribution with varying size li(although the fact is that the smallest eigenvalues of H are

actually strongly correlated). Fluctuations of ri should be large for small λi and disappear

at around λNeig
(' √

ε) because P (s)s ' 1 between ε and 1. So let us assume that li decays

exponentially with a decay constant inversely proportional to Neig:

li ∝ e−Cλi/Neig (8.8)

From the linearity of the spectral density, Neig, the number of eigenvalues needed for DCF

is proportional to ε.

Then summing of (8.7) is exactly a problem of random walk with varying step size ri for

i-th step. Then probability P (∆DCF ) can be obtained from the general formula for random

walk [37]:

P (∆DCF ) ∝ exp

(
− (∆DCF )2

2Neig < l2i >

)
(8.9)

where < l2i >= 1
Neig

∑
i l

2
i . But this probability distribution is not compatible with the

condition << e−∆DCF >>= 1, because for a gaussian distribution << e−∆DCF >>= 1

requires 2 << DCF >>=<< (DCF )2 >>. Thus to satisfy this condition, let us modify

Eq. (8.9) as follows:

P (∆DCF ) ∝ exp

(
−(∆DCF − Neig<l2i >

2
)2

2Neig < l2i >

)
(8.10)
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From (8.8), the mean-square of li can be easily calculated:

< l2i > =
1

Neig

Neig∑
i

l2i

=

∫ √ε

0
e−2Cλ/Neigλdλ
∫ √ε

0
λdλ

∝ Neig (8.11)

Thus we obtain P (∆DCF )

P (∆DCF ) ∝ exp


−(∆DCF − CN2

eig

2
)2

2CN2
eig


 (8.12)

with a new constant C. Since Neig ∝ ε, one can express P (∆DCF ) in terms of ε:

P (∆DCF ) ∝ exp

(
−(∆DCF − Cε2

2
)2

2Cε2

)
(8.13)

with a redefined new constant C.

Fig. 8.2 shows the probability distribution P (∆DCF ) for each run. The measured prob-

ability distributions match very closely gaussian curves with one fitting parameter(standard

deviation). The standard deviations from measurements grow roughly linearly(see Fig. 8.3)

with ε. Thus, the prediction (8.13) from crude approximations agrees reasonably well with

actual data.

The acceptance rate ra can be calculated with P (DCF ) [35, 38]:

ra = << min[1, e−∆DCF ] >>

=
1

Z

∫ 0

−∞
P (∆DCF ) +

1

Z

∫ ∞

0

e−∆DCF P (∆DCF ) (8.14)

where Z is a normalization for P (∆DCF ). With a new integration variable x = ∆DCF ,

Eq. (8.14) becomes

ra =
1

Z

∫ 0

−∞
e−(x−Cε2/2)2/2Cε2 dx +

1

Z

∫ ∞

0

e−xe−(x−Cε2/2)2/2Cε2 dx

= erfc(Cε) (8.15)
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Figure 8.2: The probability distribution P (∆DCF ) for the cases of ε = 0.039, 0.02, 0.0092,

0.0053, 0.0034, 0.0024 with σ = 0.820, 0.462, 0.249, 0.144, 0.0824, 0.0504, respectively

(symbols are from measurements, and lines are from fits).
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Figure 8.3: Standard deviations of the probability distribution P (∆DCF ). Circles are from

measurements, and line is from fit(slope=23.9).

where erfc() is a error function and C is a constant. The maximum relative error δ in a

Chebyshev polynomial is

δ = 2

(
1−√ε

1 +
√

ε

)N+1

(8.16)

This gives
√

ε ' ln |δ/2|
2(N+1)

. Thus, the number of multiboson fields N is proportional to
√

ε with

a fixed maximum relative error δ of the Chebyshev polynomial PN . So in terms of N , the

acceptance rate ra can be written as

ra = erfc(C ′/N2) (8.17)

with a new constant C ′. The line in Fig .8.4 shows a fit of the measured acceptance rates to

this formula (C ′ = 72 is obtained). Both match reasonably well.

The constant C ′ should be dependent on the quark mass m because as m decreases, more

small eigenvalues exist so that the standard deviation of P (∆DCF ) becomes larger. For small
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Figure 8.4: Acceptance rates with TDA+Multiboson method on a 64 lattice. Circles are

from measurements, and line is from fit(C ′ = 72).
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Figure 8.5: Integrated autocorrelation times with TDA+Multiboson method on a 64 lattice.

Dots are from measurements, and line is from fit.
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quark mass C ′ in Eq. (8.17) can be predicted to become large so that the acceptance rate

drops faster for small m.

Putting the expression (8.15) for the acceptance rate in (8.1), one can estimate the

behavior of autocorrelation times from the TDA+Multiboson method:

τ ∝ N√
ε erfc(Cε)

(8.18)

With the maximum relative error δ of the Chebyshev polynomial fixed, the autocorrelation

time becomes

τ ∝ N2/erfc(C ′/N2) (8.19)

Fig. 8.5 shows the integrated autocorrelation times from measurements and fit (propor-

tional constant = 0.24) as N is varied with δ fixed. For the case of 60 multiboson fields, the

autocorrelation time is so large that the autocorrelation time and error bar are only roughly

estimated. For large N , the autocorrelation time τ grows as N2, which is equivalent to the

pure multiboson algorithm. As N decreases, the decreasing rate of τ becomes slower than

N2, and at a certain number of multiboson fields, the autocorrelation has a minimum. For

N smaller than the minimum, it sharply increases again.

8.3 COMPUTATIONAL EFFICIENCY WITH TDA+MULTIBOSON

METHOD

Efficiency of a given algorithm for Monte Carlo simulation can be determined by the real

computer time needed to generate a decorrelated gauge configuration. This is proportional

to the autocorrelation time τ times computer time per sweep. Efficiency becomes better as

this computer time decreases. Time per sweep for the case of each number of multiboson

fields is measured with a Pentium Xeon 2.8 GHz CPU. The update time of gauge field and

multiboson fields increases linearly with N . The increasing slope is measured as 0.18 seconds.

Running the Lanczos part to calculate the determinant compensation factor DCF takes most

of the simulation time.
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A-priori, one does not know how many low eigenvalues are obtained by Lanczos with a

given number of sweeps. In order to check computer time as the magnitude of the largest

eigenvalue λmax changes, computer times are measured as the number of Lanczos sweeps are

varied. Then the largest eigenvalues in the infrared part are checked. In this way, computer

times versus the largest eigenvalues of H is plotted in Fig. 8.6. The curve roughly grows

as λ3
max. Fit with a dependence λ3

max gives proportionality constant 1480[s]. One needs to

include eigenvalues of the normalized Wilson-Dirac operator H(= H
Nnorm

) up to a little more

than
√

ε. So
√

ε ' λmax/Nnorm with normalization constant Nnorm(=2.4 chosen here). So

the computational time of the Lanczos part is roughly proportional to (
√

ε)3. Since the low

convergence limit of a Chebyshev polynomial
√

ε =
ln δ

2

2(N+1)
, with δ fixed, the computational

time of the Lanczos part is roughly proportional to 1
N3 with proportionality constant 687000.

Computer cost per decorrelated gauge configuration is proportional to autocorrelation

time multiplied by time per sweep. Fig. 8.7 shows this computer cost for each run. As the

number of multiboson fields decreases and simultaneously the number of eigenvalues included

in DCF increases, simulation with the TDA+Multiboson method achieves better efficiency.

At N = 30− 40 the computational cost has a minimum.

This shows that the TDA part in the combined method saves computer time. As N

gets even smaller, the time per decorrelated fields increases again. Thus, when one uses the

number of multiboson fields at which computer cost per decorrelated field is minimum, a lot

of computer time can be saved compared to the pure multiboson method.

Let us try to understand the existence of the minimum in computer cost in terms of the

approximate formulas for autocorrelation time and update time. The computational time T
can be obtained as

T ∼ D
N√

ε erfc(Cε)

[
AN + B(

√
ε)3

]
(8.20)

For a fixed δ

T ∼ DN2

erfc(C ′/N2)

[
AN + B

1

N3

]
(8.21)
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Figure 8.6: Computational time for running the Lanczos part versus the largest eigenvalues

λmax. Line is from fit with a formula λ3
max with the proportionality constant 1840[s]
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Figure 8.7: Computational cost to generate a decorrelated gauge configuration
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with A = 0.18, B = 687000, C ′ = 72, and D = 0.24 as previous estimated. The estimation

from this formula is shown in Fig. 8.7 as line. This formula gives a minimum T at N = 35,

consistently with the real data.

Finally let us study the scaling behavior of T as the quark mass becomes small. With

the lattice volume V and N ,δ fixed, as the quark mass m goes to zero the computer time per

sweep doesn’t change. The quark mass dependence of T comes only from the acceptance

rate ra. As m decreases, the constant C in the acceptance rate should become large. Let us

assume the scaling behavior of C of a form:

C ∼ c′m−γ (8.22)

Putting (8.22) in (8.20), and neglecting the time of updating multiboson fields, one gets

T ∼ 1/erfc(c′m−γε) (8.23)

From this formula, one can estimate the scaling behavior of T with m. Since for large x,

erfc(x) ∼ e−x2
/x, as the quark mass m goes to zero, T behaves as

T ∼ m−γem−2γε2 (8.24)

It is much worse than the pure multiboson method. If ε decreases as ε ∼ mγ with the relative

δ of the Chebyshev polynomial fixed, the mass dependence of the acceptance rate can be

eliminated. In this case(for small m, large N is needed), the multiboson computer time

will be comparable to or much bigger than the Lanczos time. By neglecting the Lanczos

computer time in (8.20), with δ fixed, the T scales as

T ∼ (
√

ε)−3 ∼ m−3γ/2 (8.25)

The smallest eigenvalues of H is proportional to m. If the pure multiboson method is used,

ε should change such that
√

ε ∼ m as m decreases. As long as γ <2, the TDA+Multiboson

method is more efficient than the pure multiboson method as the pure multiboson algorithm

scales as 1/m3, or 1/m4 [32]. Determination of γ requires extensive additional simulations,

which will be performed in future work.
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9.0 STRONG-COUPLING PHASE TRANSITION AT SMALL QUARK

MASS

9.1 SHARPE AND SINGLETON’S TWO PHASE STRUCTURES

QCD simulation by a computer is performed on a finite discrete lattice with nonzero lattice

spacing. So there is a discretization effect as well as finite volume effect (in Ch. 5 the finite

volume effect was considered) at strong coupling. Because of asymptotic freedom, large

lattice spacings correspond to the strong (bare) coupling regime. Sharpe and Singleton [39]

studied the discretization effect on the pion mass qualitatively as the quark mass gets small,

using chiral perturbation theory with the effective Lagrangian including the discretization

effect. They have predicted that there are two different phase structures in the pion mass.

In this section their argument will be reviewed.

When the lattice volume tends to infinity and lattice spacing tends to zero, lattice QCD

approaches the continuum theory of QCD. At small lattice spacing a (and large volume such

that the finite volume correction is negligible), lattice QCD is slightly different from the

continuum theory so that the lattice theory can be described with the effective continuum

theory which has the Lagrangian of the continuous QCD with small supplementary terms

arising from the finite lattice spacing. Such supplementary terms can be determined by the

symmetries of QCD on a lattice.

For QCD with two quarks of the same mass m, the Lagrangian of the effective continuum

theory in the region where the lattice quark mass am is of the same order as (aΛQCD)2,

becomes, up to the first order of the lattice spacing,

Leff = Lg + ψ̄(D/ + m)ψ + aψ̄iσµνFµνψ + O(a2) (9.1)
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where Lg is the continuum QCD gauge action and the third, which is proportional to the lat-

tice spacing a, is called a Pauli term (all constants of order one are ignored in this qualitative

analysis).

Like the continuum QCD at low energy(see Ch. 3), low energy hadronic physics with

terms proportional to a can be described by chiral perturbation theory. The effective chiral

Lagrangian of this effective continuum theory can be written in terms of pion fields. Pion

fields are excited around the nonvanishing vacuum expectation value Σ0:

Σ = Σ0 exp

(
i

3∑
a=1

πaσa/Fπ

)
(9.2)

where σ are Pauli matrices. One notes that the way the third term in Eq. (9.1) breaks the

chiral symmetry is the same as the quark mass term (it is odd under ψ → γ5ψ). Thus, the

chiral Lagrangian is of the same form as that of the continuum QCD. The chiral parameters in

this case will depend on the lattice spacing a. One just needs to substitute m for m+aΛQCD

(the subscripts on ΛQCD will be dropped from now on). So the chiral potential energy

becomes

Vχ = −c1

4
Tr(Σ + Σ†) +

c2

16
{Tr(Σ + Σ†)}2 (9.3)

up to the order of m2. The m, a dependencies of the coefficients are shown by Sharpe and

Singleton [39] to be of order

c1 ∼ mΛ3 + aΛ5, c2 ∼ m2Λ2 + maΛ4 + a2Λ6. (9.4)

As the quark mass decreases, the pion mass decreases. When it reaches the region am′ ∼
(aΛ)3, where m′ ≡ m− aΛ, the coefficients become c1 ∼ m′Λ3, c2 ∼ a2Λ6 so that c1 ∼ c2. In

this region the pion mass shows two different behaviors with the quark mass m, depending
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on the sign of c2. Parameterizing the condensate Σ0 = cos θ0 + i sin θ0σ3, one can expand Σ

around Σ0. This gives Tr(Σ + Σ†):

Tr(Σ+Σ†)

= Tr(cos θ0 + i sin θ0σ3)


1 +

i
∑3

a πaσa

Fπ

+
1

2

(
i
∑3

a πaσa

Fπ

)2

+ · · ·

 + C.C.

= 4 cos θ0 − 4
sin θ0

Fπ

π3 − 4
cos θ0

2F 2
π

3∑
a

π2
a + O(π3

a).

This gives Vχ, the effective potential, as a function of pion fields π(a = 1, 2, 3):

Vχ = −c1

(
cos θ0 − sin θ0

Fπ

π3 − cos θ0

2F 2
π

3∑
a=1

π3
a

)

+c2

(
cos2 θ0 − 2 sin θ0 cos θ0

Fπ

π3 +
sin2 θ0

F 2
π

π2
3 −

sin2 θ0

F 2
π

3∑
a=1

π2
a

)
+ O(π3

a)

= − cos θ0 (c1 − c2 cos θ0) +
sin θ0(c1 − 2c2 cos θ0)

Fπ

π3

+c2
sin2 θ0

F 2
π

π2
3 +

c1 cos θ0 − 2c2 sin2 θ0

2F 2
π

3∑
a=1

π2
a + O(π3

a) (9.5)

The vacuum expectation value of Σ, Σ0 is a minimum of Vχ. The minimum can be found

in terms of c1, c2 by parameterizing Σ = A + iB · σ with A2 + B2 = 1. The chiral potential

becomes

Vχ = −c1A + c2A
2 (9.6)

where −1 ≤ A ≤ 1.

First, let us consider the case of c2 > 0. Let us define ε ≡ c1/2c2 ∼ m′/(a2Λ3). If ε is

in the range 1 ≤ ε ≤ 1, ε is a minimum of Vχ so Σ0 = ε. If |ε| ≥ 1, the minimum occurs at

A = 1, or −1, depending of the sign of ε(i.e., the sign of c1), so Σ0 = ±1. So cos θ0 can get

three values:

cos θ0 =





−1 ε ≤ −1

ε |ε| ≤ 1

+1 ε ≥ 1

(9.7)
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Using (9.7) with ε = c1/2c2, the potential becomes

Vχ =





c2

F 2
π

(1− ε2)π2
3 − c2ε

2 + O(π3) |ε| < 1

c2

F 2
π

(|ε| − 1)
∑

a π2
a |ε| ≥ 1

(9.8)

Identifying the factors in π2
a with the pion mass, one has the pion mass:

M2
1 = M2

2 = 0,
M2

3 F 2
π

2c2

= 1− ε2 for |ε| < 1 (9.9)

M2
aF 2

π

2c2

= |ε| − 1 for |ε| ≥ 1 (9.10)

Fig. 9.1 shows the pion mass as a function of ε. The pion mass becomes zero at ε = 1.

Since m is proportional to ε, the graph can be considered as the pion mass as a function of

the quark mass. As m decreases, the pion mass can reach zero. In the region |ε| < 1, two

pions remain massless, and the other becomes massive. This phase is called the Aoki phase

[40]. The appropriate phase for the weak-coupling continuum limit of QCD lies to the left

of ε = −1(or right of ε = +1) in Fig. 9.1, allowing us to tune the bare quark mass so that

Mπ → 0.

Let us consider the other case:c2 < 0. The minimum of Vχ always occurs at A = 1, or

−1 depending on the sign of c1. Vχ becomes

Vχ =
|c2|
F 2

π

(1 + |ε|)
3∑

a=1

π2
a + c2 − |c1|+ O(π3) (9.11)

and the pion masses are

M2
aF 2

π

2|c2| = 1 + |ε| (9.12)

Fig. 9.2 shows the pion mass as a function of ε. The pion mass does not become zero for any

quark mass. Of course, Fig. 9.2 represents a qualitative calculation, ignoring quark mass

dependences in c1, c2 which will alter the symmetry around ε = 0.

In summary, in lattice QCD near the continuum theory with a large volume such that

the finite volume effect is negligible, chiral arguments of Sharpe and Singleton show two

phase structures for the pion mass as the quark mass decreases, depending on the sign of the
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95



coefficient of the second order term in the chiral potential. When the coefficient is positive,

the pion mass can reach zero, and when positive, the pion mass can not reach zero. As

an application of the TDA+multiboson algorithm for full QCD described above, we have

studied the strong coupling limit of lattice QCD with the light degenerate quarks in a search

for the unconventional phase displayed in Fig. 9.2.

9.2 LATTICE SIMULATION

In this section we show the results from the lattice simulation of two light degenerate quarks

on a 64 lattice (physically large but coarse) with the TDA+Multiboson method. The gauge

action was improved at order of O(a2) with the twisted rectangle term (see Ch. 7), but the

quark action used the simple Wilson quark action. The coupling constants βplaq and βtrt for

the plaquette term and the twisted rectangle term are chosen as 3.65 and 0.75, respectively.

The lattice spacing was measured as a−1 = 0.54GeV from the string breaking.

For the multiboson part of the algorithm, we have used the 20-th order of the Chebyshev

polynomial with the low convergence limit of PN , ε = 0.02, which gives the maximum relative

error δ = 0.005. For the TDA part, 1000 lowest eigenvalues are calculated to be included in

the determination compensation factor DCF (see Ch. 7).

In order to simulate small pion mass, we gradually increased κ from the free theory until

the pion mass becomes reasonably small. Then, for four κ’s (0.1900, 1915, 1920, 1925), long

simulations were performed to extract the accurate pion masses. Fig. 9.3 shows the results

from each kappa run. Since the lattice quark mass is defined as m = 1
2κ
− 1

2κc
with the

critical κc, where the quark mass vanishes, the pion masses squared are plotted as a function

of 1/2κ.

The smallest pion mass which we could get was ∼330MeV(0.62 in lattice unit) at around

κ ' 0.1920. As the kappa increases to 0.1925, the pion mass suddenly jumps to ∼ 800MeV.

From the three runs of κ = 0.1900, 1915, 1920, the critical kappa can be estimated as ∼
0.1940. However, the pion mass at kappa values larger than 0.1920 was always & 0.6a−1.

Fig. 9.4 shows the plaquette average for the run at κ = 0.1925 as a function of Monte

Carlo simulation time. As one can see, the plaquette average seemed stable for 7000-8000
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Figure 9.3: Pion mass as a function of 1/2κ
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sweeps, and then it has jumped to a new value. The mass also changed from 0.5 to 1.5(see

Fig. 9.5). We believe that this behavior of the pion mass as a function of κ belongs to the

second among the Sharpe and Singleton’s two phase structures of the pion mass, in which

as the quark mass decreases, the pion mass reaches a nonzero minimum, and after that,

increases, due to the discretization effect of the lattice [39]. The sudden jump corresponds to

a transition from the left to the right branch in Fig. 9.2: note that the starting configuration

for κ = 0.1925 was the final configuration for κ = 0.1920. As pointed out previously, the

qualitative symmetry of Fig. 9.2 depends on simplified assumptions (dependence of c2/c1 on

ε) which are presumably only roughly valid in full QCD.

There is another reason to believe that this pion behavior is from the discretization effect.

In the earlier simulation with the pure TDA algorithm [28], the same forms of gauge and

quark actions were applied on a 64 lattice with almost the same physical lattice size. In

that simulation, the pion mass of ∼ 200MeV could be obtained for the runs of the lightest

quarks (∼ 0.4 in lattice unit), and the finite volume effect on the pion mass was calculated

as only ∼ 25MeV. Since the TDA method includes the infrared determinant only with

the ultraviolet determinant ignored, the existence of a large minimum of the pion mass in

the TDA+Multiboson simulation should come from the ultraviolet determinant, i.e., short-

distance effects most influenced by lattice discretization.
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10.0 SUMMARY

The strong interaction between hadronic particles are described by Quantum Chromody-

namics(QCD). In order to perform nonperturbative calculations in QCD, the continuous

space-time is regularized by a finite discrete lattice in lattice QCD, and gluon and quark

fields are put on the lattice. Path integrals for hadronic field correlators are computed on

the lattice by computer simulations. In this thesis, we have studied two algorithms which

use bosonic fields to calculate path integrals involving anticommuting quark fields: the all-

point quark propagator algorithm for extracting full quark propagators, and the combined

truncated determinant/multiboson algorithm. In each case, the statistical properties of the

algorithm were studied, and an application to a problem of physical interest in lattice QCD

was presented.

Quark propagators are correlators between two quarks. Hadronic correlators can be con-

structed with quark propagators. Thus, in order to calculate hadronic correlators, first one

needs to calculate quark propagators for each gauge configuration. The conventional method

to calculate a quark propagator makes use of linear equation solvers. Such methods give a

quark propagator with a single space-time source (i.e. correspond to computing the action of

a matrix inverse on a single column vector). Calculation of some hadronic observables, how-

ever, requires quark propagators from any source point to any sink point. The pseudofermion

method allows one to compute all-point quark propagators from any source to any sink, and

hence to extract the full physical content from each gauge configuration, which is particularly

important in unquenched lattice QCD as unquenched gauge configurations require a large

amount of computational cost to generate. In this pseudofermion method, by introducing

a bosonic pseudofermion field for each quark propagator in a hadronic correlator, the full

matrix inverse, or all-point propagator, of the Wilson-Dirac operator can be calculated in a
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Monte Carlo simulation. The actual simulation update is most simply implemented with the

standard heatbath algorithm. However, this simplest approach leads to unacceptably large

autocorrelations for low momentum correlators. Further improvements in the Monte Carlo

update can be made with the mode-shift method, and by using overrelaxation. For each

case, the computational effort required to generate fully decorrelated pseudofermion fields

was studied. It was shown that the mode-shift method combined with the overrelaxation

method is the most computationally efficient algorithm for the pseudofermion method to

obtain all-point propagators.

The pseudofermion method for all-point quark propagators was applied to chiral pertur-

bation theory. The pseudoscalar and axial-vector current correlators in momentum space

were calculated. The all-point propagators required for these current correlators were calcu-

lated with the pseudofermion method. The chiral parameters up to the next-to-leading order

were extracted with very small statistical errors. The lattice simulations were performed on

a finite lattice. So there were finite volume effects from the finiteness of the lattice. These

finite volume effects were calculated using dimensional regularization on a hypercubic box.

Formulas to correct the finite volume effects in physical quantities relevant to pion physics

were presented.

Unquenched QCD simulations on a lattice need to generate gauge configurations accord-

ing to the effective Boltzmann factor involving the quark determinant of the Wilson-Dirac

operator which comes from the quark term in the QCD Lagrangian. The nonlocality of the

quark determinant results in a very heavy computational load to do the unquenched simula-

tions. The truncated determinant algorithm(TDA) includes the effect from the quark loops

of large size by calculating the infrared part of the quark determinant only. In the TDA

method one computes the lowest eigenvalues (up to ∼ 2ΛQCD) of the hermitian Wilson-Dirac

operator using the Lanczos algorithm, and calculates the infrared determinant from these

eigenvalues. Then, the full quark determinant is replaced with the infrared determinant.

To make the algorithm exact by including the ultraviolet part of the determinant one can

combine the TDA method with Luescher’s multiboson method. The multiboson method ap-

proximates the ultraviolet determinant with the determinant of the inverse of a polynomial

of the hermitian Wilson-Dirac operator. The determinant of this polynomial is computed
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with multidimensional gaussian integrals of bosonic fields. By doing this, the ultraviolet part

of the nonlocal determinant factor is generated by local multiboson terms in the effective

Lagrangian.

The statistical properties of this combined TDA+Multiboson method were studied. The

computational simulations with this algorithm were performed varying the number of multi-

boson fields. As the quarks become light, since the number of multiboson fields required

to cover the smallest eigenvalues becomes large, the autocorrelation of gauge configurations

from the pure multiboson method becomes large. It was shown that the TDA part saves

computational time compared to the pure multiboson method by calculating low eigenval-

ues of the hermitian Wilson-Dirac operators exactly. The basic result of these studies of

the combined TDA/multiboson algorithm was that the computational cost per decorrelated

gauge configuration has a minimum at a certain number of multiboson fields. A formula to

roughly estimate this minimum was derived and confirmed numerically.

The TDA+Multiboson method was applied to a unquenched QCD simulation at strong

coupling with two light degenerate quarks on a 64 lattice with the O(a2) improved gauge

action with the twisted rectangle term, and simple Wilson quark action. It was found that

for this strongly coupled system at large lattice spacing the pion mass does not become zero

with any κ value, but rather has a large minimum as the bare quark mass is tuned through a

critical value. According to the Sharpe and Singleton analysis of the pion mass as a function

of quark mass, there are two possible phase structures of the pion mass. One is a ordinary

phase structure expected to hold at weak coupling, and in the continuum limit, in which the

pion mass becomes zero at a critical kappa. In the other strong coupling phase, the pion

mass does not become zero for any kappa value. Our simulation results confirm the existence

of the second Sharpe-Singleton phase at strong coupling.
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