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INDUCED SENSITIZATION OF NORADRENERGIC NEURONS OF THE 

LOCUS COERULEUS  
 

Hank Peter Jedema, PhD 
 

University of Pittsburgh, 2002 
 
 

Chronic stress exposure can produce sensitization of norepinephrine release in the 

terminal fields of locus coeruleus (LC) neurons. The present studies explore the potential 

localization and mechanism underlying the sensitized response of LC neurons in rats 

following chronic exposure to cold (2 weeks; 5°C).  

Single unit recordings of LC neurons in halothane-anesthetized rats were used to 

compare the effect of intraventricular administration of corticotropin releasing hormone 

(CRH; 0.3-3.0µg) in control and previously cold-exposed rats. The CRH-evoked increase 

in LC neuron activity was enhanced following chronic cold exposure, without alteration 

in basal activity. The enhanced activation was only apparent at higher doses of CRH, 

resulting in an increased slope of the dose-response relationship for CRH in previously 

cold-exposed rats. It is concluded that the sensitization of CRH-evoked norepinephrine 

release in cold-exposed rats is accompanied by sensitization of LC neuron activity. We 

hypothesized that the response of LC neurons to multiple excitatory inputs is enhanced.  

Using in vitro intracellular recordings, we subsequently examined whether CRH 

exerts a direct effect on LC neurons, and which ionic currents and second messenger 

systems are likely affected by CRH. It was demonstrated that CRH dose-dependently 

increases the firing rate of LC neurons through a direct (TTX-insensitive) mechanism by 
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decreasing a potassium conductance via adenylate cyclase and protein kinase A. The 

CRH-evoked activation of LC neurons is, at least in part, mediated by CRH1 receptors.  

In subsequent in vitro experiments using intracellular recordings, the 

electrophysiological properties of LC neurons were compared between control and cold-

exposed rats. We observed that the excitability and input resistance of LC neurons was 

enhanced in slices from cold-exposed rats. In addition, the accommodation of spike firing 

was reduced and there was a strong trend toward a reduction of the post-activation 

inhibitory period. These data demonstrate that the stress-induced sensitization of LC 

neurons is, at least in part, maintained in vitro and suggest that alterations in 

electrophysiological properties of LC neurons contribute to the chronic stress-induced 

sensitization of central noradrenergic function observed in vivo. Furthermore, these data 

suggest that an alteration in auto-inhibitory control of LC activity is involved in chronic 

stress-induced alterations. 
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PREFACE 

 

Organization of the thesis 

 

The present thesis is comprised of a general introductory chapter, followed by 

three chapters each representing a manuscript, and a concluding chapter with a general 

discussion. The three manuscripts included in this thesis are listed below: 

 

Chapter 2: Jedema HP, Finlay JM, Sved AF, Grace AA (2001) Chronic cold exposure 

potentiates CRH-evoked increases in electrophysiologic activity of locus 

coeruleus neurons. Biological Psychiatry 49:351-359. 

 

Chapter 3: Jedema HP, Grace AA (Submitted) The effect of corticotropin-releasing 

hormone on noradrenergic neurons of the locus coeruleus recorded in vitro.  

 

Chapter 4: Jedema HP, Grace AA (In Press) Chronic exposure to cold stress alters 

electrophysiological properties of locus coeruleus neurons recorded in vitro. 

Neuropsychopharmacology. 
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1 GENERAL INTRODUCTION 

 

1.1 Clinical significance of norepinephrine and stress: a brief history. 

As an element of the autonomic nervous system, norepinephrine (NE), originally 

referred to as “adrenin”, has long been recognized as a critical neurotransmitter in the 

response to stress (Cannon, 1939). In subsequent studies NE was found in the central 

nervous system (CNS), although it was first hypothesized that “sympathin” originated 

from cerebral vasomotor nerves (Von Euler, 1946). In 1954, Marthe Vogt first 

hypothesized a role for NE independent of the sympathetic vasomotor nerves (Vogt, 

1954). Her hypothesis was based on the uneven distribution of sympathin in the brain, the 

drug-induced depletion of sympathin from enriched areas in the brain, and the 

dissociation between drug-induced depletions in the adrenal gland and hypothalamus. In 

subsequent work, it has been found that the NE system in the CNS was exquisitely 

sensitive to stress exposure (Stanford, 1993; Zigmond et al., 1995) and reviewed in 

section 1.5). Based on clinical findings of abnormalities in NE in the human CNS, central 

NE has been implicated in mood and anxiety disorders (Charney et al., 1995). 

Furthermore, classical as well as newer antidepressants exert their effect, at least in part, 

by modulation of noradrenergic activity in the CNS, providing additional support for 

noradrenergic dysfunction in the pathophysiology of mood and anxiety disorders (Grant 

and Weiss, 2001). It has been noted that stress exposure can precipitate or exacerbate 

symptoms of mood and anxiety disorders. This interaction of CNS NE with mood and 

anxiety disorders and stress exposure has driven the research on NE that started in the 

1960’s and continues today. Given the alterations in central NE system following chronic 
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stress exposure, many chronic protocols have been studied in the hope of elucidating their 

mechanism and their potential relevance for pathological changes in mood and anxiety 

disorders. Interestingly, following chronic stress exposure behavioral alterations have 

been reported which are reminiscent of the alterations observed in patients afflicted with 

mood and anxiety disorders. Moreover, behavioral alterations evoked by chronic stress 

coincide with alterations in central noradrenergic function. Therefore, in the present 

work, I will further examine alterations in the central noradrenergic system following 

chronic stress exposure.  

 

1.2 Anatomy of the locus coeruleus system 

Since the initial demonstration of formaldehyde vapor-induced fluorescence cell 

groups in the brain stem and midbrain (Dahlstrom and Fuxe, 1964), the locus coeruleus 

(LC) has been intensely studied as the largest norepinephrine (NE) containing cell group 

in the central nervous system (Moore and Bloom, 1979; Pfister and Danner, 1980; Foote 

et al., 1983; Moore and Card, 1984). The LC proper in the rat, located at the lateral edge 

of the floor of the fourth ventricle, contains the densely-packed somata of approximately 

1600 neurons per hemisphere (Swanson, 1976). Cytoarchitectonically, the LC can be 

divided in a dorsal and ventral division, with the largest number of predominantly 

fusiform neurons densely-packed in the dorsal LC and approximately 200 neurons in the 

ventral division (Swanson, 1976). Based on morphological heterogeneity among somata, 

LC neurons can also be divided in at least two groups distinguished by their dendritic 

orientations (Shimizu and Imamoto, 1970; Swanson, 1976; Pfister and Danner, 1980; 

Cintra et al., 1982).  
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LC neurons send projections throughout the entire neuraxis (Foote et al., 1983). 

Unmyelinated axon collaterals of individual neurons project to functionally and 

architectonically distinct brain regions such as the thalamus, hypothalamus, amygdala, 

hippocampus, cerebellum, and the entire cortical mantle (Moore and Bloom, 1979; Foote 

et al., 1983; Moore and Card, 1984), making the LC the most widely projecting cell 

group in the central nervous system (Aston-Jones et al., 1995). Despite the relatively low 

number of neurons, the LC provides the source of approximately two third of all NE in 

the central nervous system and it is the sole source of NE in the cortex and hippocampus 

(Nakamura and Iwama, 1975; Levitt and Moore, 1978; Ader et al., 1980; Loy et al., 

1980; Nagai et al., 1981a, b; Room et al., 1981; Loughlin et al., 1982). Despite their 

highly divergent projections there is a topographical organization of LC neurons within 

the LC (Loughlin et al., 1986a; Loughlin et al., 1986b; Grzanna and Fritschy, 1991). 

Neurons in the ventral LC predominantly project to the spinal cord, while LC efferents to 

the hippocampus are located in the dorsal LC. The neocortical projections of LC neurons 

are also topographically organized (Waterhouse et al., 1983). Originally the 

noradrenergic innervation of the cortex was reported to be largely non-synaptic or “en 

passage” (Beaudet and Descarries, 1978; Seguela et al., 1990), leading to the proposal 

that noradrenergic neurotransmission mainly occurred in a “volume transmission” mode 

(Zoli et al., 1998). However, more recent ultrastructural data generated from serial 

sections demonstrate that the noradrenergic afferents to the cortex , cerebellum, and 

subcortical structures form (small) synaptic contacts (Olschowka et al., 1981; 

Papadopoulos et al., 1989; Parnavelas and Papadopoulos, 1989; Papadopoulos and 

Parnavelas, 1990; Paspalas and Papadopoulos, 1999).  
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In contrast to the widespread and diffuse character of LC projections, LC afferents 

were previously thought to be restricted to input from the brainstem nuclei 

paragigantocellularis (PGi) and prepositus hypoglossi (Aston-Jones et al., 1986; Aston-

Jones et al., 1991b). However, Golgi and dopamine-ß-hydroxylase (DßH) studies had 

demonstrated that LC dendrites extend far outside of the nucleus proper (Swanson, 1976; 

Grzanna and Molliver, 1980; Pfister and Danner, 1980; Cintra et al., 1982; Shipley et al., 

1996). Similarly, we found fluorescent processes extending as far as 1 mm away from 

individual LC neurons filled with Lucifer Yellow (figure 1), which could be traced well 

into the pericoerulear area (Jedema and Grace, 1999). Consequently, more recent studies 

have demonstrated additional afferent input to these extranuclear dendrites (Luppi et al., 

1995; Zhu and Aston-Jones, 1996; Van Bockstaele et al., 1999; Aston-Jones et al., 2001), 

which is consistent with pioneering studies by Cederbaum and Aghajanian (Cedarbaum 

and Aghajanian, 1978a). The trans-synaptic tracing techniques that have recently become 

available should provide a very useful tool for obtaining additional insight in afferents to 

extranuclear LC dendrites (Aston-Jones and Card, 2000). 
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Figure 1 LC neuron filled with Lucifer Yellow following in vivo intracellular 
recording 

Montage of LC neuron filled with Lucifer Yellow. Arrow indicates presumed axon. Note 

varicose axon and dendrites. Processes originating from both poles of the fusiform-

shaped cell body extended as far as 960 µm away. Scale bar = 30 µm. 
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1.3 Neurochemistry 

NE is synthesized from the amino acid tyrosine (Udenfriend, 1966). DßH and the 

rate limiting enzyme tyrosine hydroxylase (TH) are essential biosynthetic enzymes 

specific for the synthesis of (nor)epinephrine and catecholamines, respectively, and the 

presence of these enzymes is often used as a marker for the noradrenergic phenotype of 

LC neurons. All neurons in the LC of the rat contain enzymes unique to the NE 

biosynthesis and are therefore presumed to be noradrenergic (Swanson, 1976; Grzanna 

and Molliver, 1980), although the rostral pole of the LC consists of a more heterogeneous 

population of neurons which includes non-noradrenergic neurons. The LC of primate and 

rabbit is similarly homogeneous to that of the rat (Hubbard and Di Carlo, 1973; 

Freedman et al., 1975; Redmond, 1987; Caffe, 1994), while in the cat, guinea pig, and 

opossum noradrenergic neurons are interdigitated with non-noradrenergic neurons (Leger 

and Hernandez-Nicaise, 1980; Martin et al., 1982; Foote et al., 1983; Jones and Beaudet, 

1987). In addition to NE, many neurons in the rat LC colocalize the neuropeptides 

galanin (GAL) and/or neuropeptideY (Melander et al., 1986; Holets et al., 1988; Austin 

et al., 1990). Slightly different patterns of co localization have been described in the cat 

(Fung et al., 1994).  

The adrenergic receptors which mediate the effect of noradrenergic 

neurotransmission, can be categorized in two major classes (α,β) which can be further 

divided into multiple sub-classifications (Bylund et al., 1994; Aantaa et al., 1995; 

Wozniak et al., 1995). All adrenergic receptors are metabotropic receptors, with 

individual receptor subtypes using different second messenger systems (Duman and 

Nestler, 1995; Wozniak et al., 1995). LC neurons express only mRNA for α2 receptors, 
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which exert an important role on LC neurons as autoreceptors (Nicholas et al., 1993). 

Ultrastructurally, α2A and α2C receptors have been localized to noradrenergic terminals as 

well as dendrites (Lee et al., 1998a, b). Physiological experiments also support an 

important role for α2 receptors in LC neurons, whereas α1- or β-receptor stimulation does 

not affect LC neuron activity (Aghajanian et al., 1977; Cedarbaum and Aghajanian, 

1978b; Aghajanian and VanderMaelen, 1982; Williams et al., 1985). Stimulation of α2 

receptors causes a G-protein-mediated hyperpolarization of LC neurons through the 

opening of potassium channels and the reduction of NE release (Aghajanian and 

VanderMaelen, 1982; Williams et al., 1985; Abercrombie et al., 1992). Even though α2 

receptor stimulation decreases adenylate cyclase (ADC) activity (Beitner et al., 1989), the 

opening of potassium channels involves a direct action of the G-protein on the channel 

and does not involve diffusible second messengers (Grigg et al., 1996; Arima et al., 

1998). Once NE is released it can be taken up by the NE transporter (NET), which plays 

an important role in the clearance of NE from the extracellular space (Barker and 

Blakely, 1995; Blakely and Bauman, 2000).  

 

1.4 Electrophysiology  

Despite the morphological distinctions between subclasses of LC neurons, their 

electrophysiological features appear quite homogeneous. Both in in vivo and in vitro 

preparations, LC neurons exhibit a characteristic tonic pattern of spontaneous activity 

(~1-3 Hz) with action potentials exhibiting long duration action potentials followed by a 

prominent afterhyperpolarization (AHP) (Aghajanian and VanderMaelen, 1982; Williams 

et al., 1984). Electrotonic coupling among neurons is thought to contribute to the 
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synchronization of spontaneous activity between LC neurons although the prevalence of 

electrotonic coupling in the LC of adult rats is unclear (Christie et al., 1989; Christie and 

Jelinek, 1993; Ishimatsu and Williams, 1996; Usher et al., 1999). The pacemaker activity 

of LC neurons is likely an intrinsic property because the spontaneous activity persists in 

in vitro slice preparations and in acutely dissociated neurons (Williams et al., 1984; 

Arima et al., 1998). Furthermore, blockade of synaptic activity by tetrodotoxin (TTX) 

does not disrupt the spontaneous discharge of calcium-spikes in these neurons (Williams 

et al., 1984). In anesthetized subjects, LC neurons are mainly activated by noxious 

stimuli (Cedarbaum and Aghajanian, 1976) and the stimulation-evoked excitation of LC 

neurons is followed by a period of quiescence, or post-activation inhibition (PAI), which 

has been attributed to the activation of calcium-activated potassium channels and 

autoreceptor-mediated collateral inhibition (Cedarbaum and Aghajanian, 1978b; Andrade 

and Aghajanian, 1984; Ennis and Aston-Jones, 1986; Osmanovic and Shefner, 1993). 

The electrophysiological activity of LC neurons is influenced by a multitude of 

neurotransmitter systems which is consistent with a more diverse input to LC neurons 

than was once hypothesized (Aston-Jones et al., 1986). Thus, glutamate (Ivanov and 

Aston-Jones, 1995), substance P (SP) (Koyano et al., 1993), vaso-active intestinal peptide 

(VIP) (Wang and Aghajanian, 1990), acetylcholine (ACH) (Egan and North, 1986), and 

orexin (OX) (Horvath et al., 1999; Ivanov and Aston-Jones, 2000) depolarize or increase 

the firing rate (FR) of LC neurons, whereas (nor)epinephrine (Williams et al., 1985), γ-

amino-butyric acid (GABA) (Shefner and Osmanovic, 1991), enkephalin (ENK) 

(Williams and North, 1984), somatostatin (SOM) (Inoue et al., 1988), NPY (Illes and 

Regenold, 1990), and GAL (Pieribone et al., 1995) hyperpolarize or decrease LC FR. A 
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physiological role for these neurotransmitters is hypothesized based on immunoreactivity 

for these transmitters in LC afferents and the presence of appropriate receptors within the 

LC (Aston-Jones et al., 1995).  

The net effect of NE on post-synaptic targets is often referred to as 

neuromodulatory, resulting in an increased signal-to-noise ratio of other afferents inputs 

(Woodward et al., 1991; Waterhouse et al., 1998b). For example, at doses lower than 

those necessary to directly influence the firing rate of the post-synaptic neuron, NE 

potentiates the effect of GABA on Purkinje cells in the cerebellum (Moises et al., 1983; 

Sessler et al., 1989), increases the glutamate-or current-evoked excitability of spinal 

motoneurons (White et al., 1991), and hippocampal (Harley, 1991), and cortical 

pyramidal neurons (Waterhouse et al., 1998a). The proposed neuromodulatory role for 

NE is further supported by the wide spread and divergent projections of the LC system, 

the slow axonal conduction velocity of LC neurons (Aston-Jones et al., 1985), and the 

fact that adrenergic receptors exert their effect via metabotropic signaling cascades. In 

awake rats, cats, and primates, the activity of LC neurons varies with the behavioral state 

of the animal (Aston-Jones and Bloom, 1981b; Rasmussen et al., 1986; Grant et al., 

1988). LC neurons respond to multimodal sensory stimuli (Foote et al., 1980; Aston-

Jones and Bloom, 1981a; Valentino and Foote, 1988) and the stimulus-evoked activation 

of LC FR is most profound in cases where the stimulus disrupts ongoing behavior and 

elicits an orienting response (Aston-Jones and Bloom, 1981a; Grant et al., 1988). Based 

on these observations a role for LC neurons in attention and arousal has been 

hypothesized (Cole and Robbins, 1992; Robbins, 1997; Aston-Jones et al., 2000; 

Berridge, 2001).  



 

10 

1.5 NE system and the response to stress 

Numerous studies have demonstrated the excitatory effect of acute stress exposure 

on central noradrenergic function (for review see (Stanford, 1995; Zigmond et al., 1995). 

For example, in response to acute exposure to stressors, Fos expression in LC neurons is 

increased (Ceccatelli et al., 1989; Pezzone et al., 1993; Passerin et al., 2000). In addition, 

following acute exposure, NE tissue levels are decreased in multiple brain regions, 

presumably as a result of an enhanced release of NE and an increased NE turnover, which 

is defined as the ratio of NE metabolites and NE (Maynert and Levi, 1964; Thierry et al., 

1968; Zigmond and Harvey, 1970; Korf et al., 1973; Kvetnansky et al., 1977; Nakagawa 

et al., 1981; Roth et al., 1982; Irwin et al., 1986). Furthermore, NE efflux as measured 

with in vivo microdialysis, is increased in response to acute stress exposure (Abercrombie 

et al., 1988; Rossetti et al., 1990; Cenci et al., 1992; Nakane et al., 1994). 

Electrophysiological experiments in awake cats and primates have demonstrated that 

noxious or stressful stimuli are most effective in increasing LC FR (Rasmussen and 

Jacobs, 1986; Abercrombie and Jacobs, 1987; Grant et al., 1988; Aston-Jones et al., 

1991a). Finally, acute stress exposure increases the capacity for NE synthesis of LC 

neurons by increasing the amount or activity of essential enzymes for NE biosynthesis 

(Nisenbaum and Abercrombie, 1992; Serova et al., 1999; Chang et al., 2000). In addition 

to LC activation elicited by stressful stimuli, some behavioral responses to stress 

exposure can be mimicked by electrical stimulation of the LC, while lesions of the LC 

prevent emotional responses to threats in non-human primates (Redmond, 1987), further 

implicating a role for the LC in an organism’s behavioral response to stress exposure.  

Even though from the literature described above it is clear that a variety of stressful 

stimuli increases the LC FR and NE release and synthesis, more complex alterations of 
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noradrenergic function occur following repeated or prolonged exposure to stressors (for 

review see (Abercrombie et al., 1992; Stanford, 1993; Stanford, 1995; Zigmond et al., 

1995). Thus, chronic exposure to cold or repeated exposure to foot shock, tail shock, or 

restraint does not decrease and often increases baseline tissue NE levels (Ingenito and 

Bonnycastle, 1967; Thierry et al., 1968; Bhagat, 1969; Adell et al., 1988), although the 

baseline extracellular levels of NE as measured by microdialysis are unaltered following 

chronic exposure to some of these stressors (Nisenbaum et al., 1991; Gresch et al., 1994; 

Terrazzino et al., 1995). The foot shock-evoked depletion of tissue NE levels observed in 

control rats does not occur following repeated foot shock exposure (Zigmond and 

Harvey, 1970; Irwin et al., 1986). Furthermore, the NE turnover in hypothalamus, 

hippocampus, and brainstem-mesencephalon is enhanced following repeated exposure to 

foot shock (Thierry et al., 1968; Irwin et al., 1986; Anisman and Zacharko, 1990) and NE 

tissue levels are further depleted by exposure to a novel stressor following repeated 

restraint (Adell et al., 1988). More recently, microdialysis studies have extended these 

results by demonstrating that NE efflux is enhanced following chronic stress exposure 

(Nisenbaum et al., 1991; Pacak et al., 1992; Gresch et al., 1994). It has been suggested 

the alterations in NE tissue levels, NE turnover, and efflux are at least in part a 

consequence of alterations in the capacity to synthesize NE, because the amount or 

activity of TH and DßH is increased following repeated or chronic stress exposure 

(Gordon et al., 1966; Thoenen, 1970; Zigmond and Harvey, 1970; Melia and Duman, 

1991; Melia et al., 1992; Serova et al., 1999). Furthermore, the increase in TH mRNA or 

tyrosine hydroxylation in response to exposure to an (novel) acute stressor is enhanced 
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following repeated stress exposure (Nisenbaum et al., 1991; Nisenbaum and 

Abercrombie, 1992; Rusnak et al., 2001). 

Repeated or chronic stress exposure has been reported to enhance the basal FR of 

LC neurons in some studies (Pavcovich et al., 1990; Mana and Grace, 1997), while others 

report no significant change of basal FR (Simson and Weiss, 1988; Curtis et al., 1995). 

Even though these discrepancies could be attributed to differences in methodology or 

differences in type, duration, frequency, or intensity of stress exposure, more consistent 

results have been obtained examining the effect of evoked LC FR following the exposure 

to these different chronic stress paradigms. Thus, prior exposure to tail shock, foot shock, 

and cold enhance the evoked increase in LC FR (Simson and Weiss, 1988; Curtis et al., 

1995; Mana and Grace, 1997).  

 

1.6 CRH and response to stress 

 
The neuropeptide corticotropin releasing hormone (CRH) also plays an important 

role during stress-exposure. First, CRH is the primary activator of adrenocorticotropin 

hormone (ACTH) release from the anterior pituitary resulting in activation of the 

hypothalamus-pituitary-adrenal (HPA)-axis during stress-exposure (Vale et al., 1981). In 

addition, CRH is localized to many areas outside the hypothalamus (Swanson et al., 

1983; Sakanaka et al., 1987), where it also plays an important role in an organism’s 

response to stress exposure (Owens and Nemeroff, 1991; Heinrichs et al., 1995). The LC 

in particular is an important extrahypothalamic site of action of CRH (Valentino et al., 

1993; Valentino et al., 1998), and local injection of CRH into the LC results in alterations 

in behavior similar to those elicited by stress exposure (Butler et al., 1990). The LC 
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receives CRH immunoreactive afferents from the dorsal cap of the hypothalamus, the 

central nucleus of the amygdala (CeA), the PGi, and Barrington’s nucleus (Valentino et 

al., 1992; Van Bockstaele et al., 2001). Despite co-localization of catecholamines with 

multiple neuropeptides, CRH does not colocalize with TH in LC neurons (Valentino et 

al., 1992). Intraventricular (ICV) or intra-coerulear CRH administration potently 

increases the FR of LC neurons and NE release in terminal regions (Valentino et al., 

1983; Valentino and Foote, 1988; Emoto et al., 1993a; Smagin et al., 1995; Curtis et al., 

1997; Finlay et al., 1997). Following cold exposure and adverse early life experiences 

CRH levels in the LC increase (Chappell et al., 1986; Ladd et al., 2000). Furthermore, 

several studies have demonstrated an essential role of CRH in the activation of LC 

neurons in response to hypovolemia (Page et al., 1993), colon distention (Lechner et al., 

1997), restraint (Emoto et al., 1993b; Smagin et al., 1996; Smagin et al., 1997), and cold 

exposure (Melia and Duman, 1991). 

 

1.7 Cold exposure as a stressor 

Even though exposure to a variety of stressors can cause alterations in central 

noradrenergic function, it is clear that exposure to different stressors results in stressor-

specific response patterns (Herman and Cullinan, 1997; Pacak and Palkovits, 2001). 

Therefore, different stressors are not necessarily interchangeable (Jedema et al., 1999; 

Dayas et al., 2001). Because this work will focus on the effects of chronic cold exposure, 

the impact of chronic cold exposure on multiple physiological parameters including 

central noradrenergic function is discussed in more detail.  
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Prolonged exposure to cold has been used as a laboratory stressor for decades 

(Cannon, 1939; Maynert and Levi, 1964). Even though some of the early physiological 

experiments were performed in cats, the majority of the data on cold exposure as a 

stressful stimulus has been obtained in rats. Acute exposure to cold causes multiple 

alterations in physiology, some of which return to baseline following prolonged 

exposure. For example, cold exposure initially reduces weight gain, however, following 

approximately one week of exposure to cold, weight gain returns to levels similar to 

control rats (Folk Jr., 1974). In addition, cold exposure increases plasma NE levels 

although NE levels appear to decline with continued exposure (Benedict et al., 1979). It 

is not clear whether plasma NE levels remain elevated with prolonged exposure, although 

this may be hypothesized based on the increased capacity for biosynthesis of NE in the 

adrenal following chronic cold exposure (Fluharty et al., 1983; Stachowiak et al., 1986; 

Baruchin et al., 1990), and the increased urinary NE-metabolite levels (Leduc, 1961; 

Ostman-Smith, 1979). Additional alterations that persist following chronic cold exposure 

include increased basal and evoked adrenocorticotropin hormone (ACTH) levels 

(Vernikos et al., 1982; Uehara et al., 1989) as well as increased plasma and pituitary 

prolactin levels (Jobin et al., 1975). In addition, chronic cold exposure increases basal 

and evoked plasma corticosterone and causes adrenal hypertrophy (Daniels-Severs et al., 

1973; Vernikos et al., 1982).  

Changes in the central nervous system that have been reported following chronic 

cold exposure include an increased basal and evoked firing rate of the basolateral nucleus 

of the amygdala, a reduction in evoked firing rate of the central nucleus of the amygdala, 

and a reduction of the number of spontaneously active dopamine neurons in VTA in 
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combination with increased burst firing of the dopamine neurons that continue to be 

spontaneously active (Correll et al., 2001; Moore et al., 2001; Correll et al., 2002). 

Examination of the interactions of these cold-induced alterations with those in the central 

noradrenergic system (described below) has only recently been started (Ramsooksingh et 

al., 2001). 

 

1.8 Sensitization of LC neurons following chronic cold exposure 

LC neurons do not exhibit an immediate strong Fos-activation in response to cold 

exposure as they do in response to noxious stimuli (Miyata et al., 1995; Baffi and 

Palkovits, 2000; Passerin et al., 2000). Nevertheless, some investigators demonstrate a 

modest increase in Fos in LC following acute or chronic cold exposure, while others do 

not (Miyata et al., 1995; Baffi and Palkovits, 2000). An enhanced increase in evoked NE 

efflux in the hippocampus and medial prefrontal cortex (mPFC) and LC spike firing have 

been demonstrated following chronic cold exposure (Nisenbaum et al., 1991; 

Abercrombie et al., 1992; Gresch et al., 1994; Finlay et al., 1997; Mana and Grace, 1997; 

Jedema et al., 1999; Ramsooksingh et al., 2001). We have referred to these alterations 

following chronic cold exposure as stress-evoked sensitization of LC neurons. The 

development of stress-evoked sensitization is characterized by an enhanced activation of 

LC neurons in response to tail shock, sciatic nerve stimulation, or ICV CRH (Nisenbaum 

et al., 1991; Abercrombie et al., 1992; Gresch et al., 1994; Finlay et al., 1997; Mana and 

Grace, 1997; Jedema et al., 1999; Ramsooksingh et al., 2001). In contrast, baseline levels 

of NE release or spike firing of LC neurons are minimally affected in cold-exposed rats.  
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Consistent with the enhanced activity of LC neurons following chronic cold 

exposure, levels of TH mRNA and TH activity are increased in the LC (Gordon et al., 

1966; Thoenen, 1970; Zigmond et al., 1974; Richard et al., 1988; Seiple et al., 1997) and 

the increase in tyrosine hydroxylation evoked by exposure to a novel stressor is enhanced 

(Nisenbaum and Abercrombie, 1992).  

The increase of NE efflux in the hippocampus in response to hippocampal 

elevations in potassium concentrations was also reported to be enhanced following 

chronic cold exposure. Based on these data it was hypothesized that the sensitization of 

NE efflux was a terminal phenomenon (Nisenbaum and Abercrombie, 1993). This was 

further supported by the demonstration that the response to hippocampal infusion of the 

autoreceptor agonist, clonidine was augmented (Nisenbaum and Abercrombie, 1993). 

However, subsequent studies found no enhancement of NE efflux in response to local 

potassium elevations or local infusion of amphetamine (Finlay et al., 1997). In addition, 

an enhanced increase in NE efflux evoked by ICV administration of CRH was found, 

suggesting that the sensitization of NE efflux was not just a terminal phenomenon (Finlay 

et al., 1997). Consistent with this hypothesis, it has been found that the increase of LC 

firing rate in response to sciatic nerve stimulation is enhanced following chronic cold 

exposure (Mana and Grace, 1997). Therefore, I will continue to refer to the alterations 

observed following chronic cold exposure as sensitization of LC neurons, which will 

include sensitization of NE release. 

Two weeks of cold exposure is necessary to elicit an enhanced NE efflux in 

response to subsequent tail shock exposure, and longer exposure to cold does not lead to 

further enhancement of the sensitization (Finlay et al., 1997). Furthermore, the 
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sensitization of NE efflux is treatment-dependent, since one week of cold exposure 

followed by 2 weeks at room temperature does not result in sensitization of NE efflux 

(Finlay et al., 1997). Similar to these neurochemical data, the increase in spike firing of 

LC neurons evoked by sciatic nerve stimulation was enhanced following 2weeks, but not 

1 week, of cold exposure (Mana and Grace, 1997). Finally, the sensitization of LC 

neurons is a lasting phenomenon because the enhanced LC spike firing in response to 

sciatic nerve stimulation (Mana and Grace, 1997; Ramsooksingh et al., 2001) persists for 

at least 10 days following the discontinuation of 2 weeks of cold exposure 

(Ramsooksingh et al., 2002).  

 

1.9 Research objectives 

In the present work, I sought to further examine some fundamental questions 

regarding the stress-induced sensitization of LC neurons. Studies were designed to 

explore the potential localization and potential mechanisms underlying sensitization of 

NE release in chronically stressed rats along the following specific aims:  

 

1] To determine the effect of chronic cold-exposure on electrophysiological 

activation of LC neurons in response to ICV CRH.  

Based on the neurochemical evidence of sensitized NE release in response to CRH 

and the hypothesis that sensitization of NE release is not simply a terminal phenomenon 

(Finlay et al., 1997), the electrophysiological response to different doses of CRH was 

determined in control and previously cold-exposed rats. It was hypothesized that the 
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sensitization of NE release in response to CRH following chronic cold exposure would be 

accompanied by an enhanced increase of electrophysiological activity of LC neurons.  

 

2] To determine potential mechanism of CRH activation of LC neurons in vitro 

 

2A] To determine whether CRH activates LC neurons directly or via presynaptic 

modulation of afferent input 

Based on the ultrastructural evidence indicating that CRH-immunoreactive (ir) 

terminals make synaptic appositions with TH-ir dendrites as well as non-TH-ir terminals 

in the pericoerulear area, the effect of CRH on LC neurons was characterized in brain 

slices containing the LC using intracellular recordings. In addition, the persistence of any 

CRH-evoked effects on LC neurons was examined following the blockade of synaptic 

activity using TTX. It was hypothesized that CRH would activate LC neurons in vitro via 

a direct (TTX-insensitive) mechanism. 

 

2B] To determine potential pathways mediating the CRH-evoked activation of 

LC neurons.  

Using inhibitors of the adenylate cyclase (ADC)-cAMP-protein kinase A (PKA)-

signaling cascade, it was examined whether specific blockade of steps in this second 

messenger cascade could prevent the CRH-evoked effect on LC neurons. It was 

hypothesized that the CRH-evoked activation of LC neurons would be mediated by a 

second messenger mechanism involving ADC and PKA. 
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3]  To determine the effect of chronic cold-exposure on the activation of LC 

neurons by excitatory inputs in vitro. 

Based on the enhanced activation of LC neurons in response to multiple excitatory 

inputs, the persistence of stress-induced sensitization of NE neurons was examined in the 

in vitro slice preparation. It was hypothesized that the stress-induced sensitization of LC 

neurons of LC neurons would persist in vitro. 
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2 CHRONIC COLD EXPOSURE POTENTIATES CRH-EVOKED INCREASES 
IN ELECTROPHYSIOLOGICAL ACTIVITY OF LOCUS COERULEUS 
NEURONS. 

 

2.1 INTRODUCTION 

Dysfunction of noradrenergic neurons of the LC has long been implicated in the 

pathophysiology of psychiatric disorders such as anxiety, panic disorder and depression 

(Aston-Jones et al., 1994; Asnis and Van Praag, 1995; Bremner et al., 1996; Anand and 

Charney, 1997; Wong et al., 2000). In support of this view, studies of patients afflicted 

with these disorders have demonstrated increased urinary, plasma, or cerebrospinal fluid 

(CSF) levels of NE or its primary metabolite (reviewed by (Charney et al., 1995; 

Schatzberg and Schildkraut, 1995), and a blunted growth hormone and plasma catechol 

response to the adrenergic agonist, clonidine (Matussek et al., 1980; Matussek and 

Laakmann, 1981; Nutt, 1989; Charney et al., 1992). In addition, recent imaging studies 

suggest that patients with post-traumatic stress disorder (PTSD) exhibit an enhanced 

activation in prefrontal, temporal, parietal, and orbitofrontal cortices in response to a 

challenge administration with the adrenergic antagonist, yohimbine (Bremner et al., 

1997). The involvement of noradrenergic systems in anxiety and depression is further 

supported by the efficacy of NE uptake inhibitors as antidepressant drugs for the 

treatment of these psychiatric disorders (Barker and Blakely, 1995).  

Acute exposure to a stressor transiently increases the discharge rate of 

noradrenergic neurons (Abercrombie and Jacobs, 1987), resulting in an increase in the 

release of NE (Abercrombie et al., 1988). Furthermore, chronic exposure to stress can 

alter the response of LC neurons to subsequent presentations of a stressor (for review see 

(Stanford, 1993; Zigmond et al., 1995). For example, we found that rats previously 
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exposed to cold (5°C) for 2-4 weeks exhibit a greater increase in extracellular NE in 

hippocampus and mPFC in response to acute tail shock (Nisenbaum et al., 1991; Gresch 

et al., 1994; Finlay et al., 1997; Jedema et al., 1999), as well as greater activation of LC 

neuron discharge rate in response to sciatic nerve stimulation (Mana and Grace, 1997). 

We have referred to this phenomenon as stress-induced sensitization of NE neurons.  

Previous exposure to chronic cold also enhanced the increase of NE release in 

response to ICV administration of CRH (Finlay et al., 1997). CRH, a neuropeptide first 

discovered to function in the pituitary as the primary initiator of ACTH release (Vale et 

al., 1981; Rivier et al., 1983), also exists in many extrahypothalamic structures in the 

brain including the LC (Swanson et al., 1983; Owens and Nemeroff, 1991; Morin et al., 

1999). In the LC and peri-coerulear area, CRH immunoreactive terminals contact TH 

immunoreactive dendrites (Van Bockstaele et al., 1996a, 1998a; Van Bockstaele et al., 

1999). CRH administered either ICV or locally into the LC increases the 

electrophysiological activity of LC neurons and the release of NE from nerve terminals 

(Valentino et al., 1983; Smagin et al., 1995; Curtis et al., 1997; Finlay et al., 1997; Page 

and Abercrombie, 1999). CRH is known to play a role in the response to stress (for 

review see (Dunn and Berridge, 1990; Valentino et al., 1993; Koob, 1999). It has been 

demonstrated that CRH levels in the LC increase during stressful events (Chappell et al., 

1986). In addition, the increase in electrophysiological activity of LC neurons in response 

to some stressful stimuli can be prevented by pre-treatment with CRH antagonists 

(Valentino et al., 1991; Page et al., 1993; Smagin et al., 1997). Prior exposure to stress 

can also alter CRH-evoked changes in electrophysiological activity of LC neurons (Curtis 
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et al., 1995; Conti and Foote, 1996; Curtis et al., 1999), suggesting that CRH also may 

play a role in the adaptation of LC neurons to chronic or repeated stress exposure. 

In the present study we examined whether ICV CRH elicits an enhanced activation 

of LC neuron electrophysiological activity in rats previously exposed to cold. We used 

single unit extracellular recording to compare the increase in electrophysiological activity 

produced in LC neurons in response to different doses of CRH in both control and 

previously cold-exposed rats.  

 

2.2 METHODS AND MATERIALS  

 

2.2.1 Animals 

Upon arrival, male Sprague-Dawley rats (Hilltop, Scottdale, PA) weighing 150-175 

g were singly housed in hanging stainless steel cages in a colony room maintained at an 

ambient temperature of 23°C. Throughout the experiments, lights were maintained on a 

12 hr light/dark cycle (lights on at 08.00 a.m.), with food (Laboratory rodent diet 5001, 

PMI Feeds, St. Louis, MO) and water available ad libitum. All rats were housed in the 

colony room for 5-10 days prior to any treatment. All protocols were approved by the 

Animal Care and Use Committee at the University of Pittsburgh and were in accordance 

with the National Institute of Health Guide for the Care and Use of Laboratory Animals.  

2.2.2 Cold exposure 

Rats were randomly assigned to a control or a cold-exposed group (n=25 and 23, 

respectively). Control rats were housed in the same colony room where they had been 

housed previously, for an additional 14 days. Given that the effects of chronic cold 
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exposure on adrenal TH are more profound in shaved than unshaved rats (Fluharty et al., 

1983), the body fur of rats in the cold-exposed group was shaved from the rump to the 

forelimbs, immediately prior to cold exposure. These rats were singly housed in hanging 

stainless steel cages in a cold room maintained at an ambient temperature of 5°C, where 

they remained undisturbed for 14 days. Cold-exposed rats appeared healthy and they 

continued to eat and increase their body weight. Nevertheless, cold-exposed rats gained 

weight at a reduced rate, such that at the time of electrophysiological recording a slight 

but significant reduction in body weight of cold-exposed rats was observed compared to 

control rats (302 ± 6 vs 333 ± 5 g respectively; t(46)=-4.280, p<0.001). Rats were 

removed from the cold room the afternoon prior to the experiment, and housed overnight 

in a colony room maintained at an ambient temperature of 23°C, thereby maintaining a 

protocol similar to that used previously for microdialysis experiments studying 

sensitization of NE release (Nisenbaum et al., 1991; Gresch et al., 1994; Finlay et al., 

1997; Jedema et al., 1999).  

2.2.3 Electrophysiological Recording 

Single-unit activity was recorded from neurons in the LC of rats weighing 245-

380g. Rats were anesthetized with 5% halothane (Halocarbon Laboratories, River Edge, 

NJ) in O2 and placed in a stereotaxic apparatus (David Kopf, Tujunga CA) with the nose 

pointing downward at an angle of ±15° from the horizontal plane (differential of DV 

coordinates of bregma and lambda was 3.0 mm). During the remainder of the experiment, 

anesthesia was maintained with 1.5-2.5% halothane in O2 using a vaporizer (Matrix 

Medical Inc., Orchard Park, NY). Core temperature was maintained at 37°C using a 

heating pad (Fintronics VL-20F, New Haven, CT). Holes were drilled in the skull 
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overlying the lateral ventricle and the LC. A 33G stainless steel cannula was implanted 

into the lateral ventricle (-1.0mm AP, ±1.4mm ML with respect to bregma, and 5.3 mm 

DV from dorsal brain surface). The cannula was connected via PE tubing to a syringe for 

intraventricular drug infusion. In some experiments a second aCSF-filled cannula was 

placed in the lateral ventricle in the opposite hemisphere, in an attempt to minimize 

ventricular pressure fluctuations and stabilize recording conditions. Intraventricular 

administration of CRH was chosen to allow comparison with the neurochemical studies 

performed previously (Finlay et al., 1997). Glass electrodes (Omegadot, 2mm; WPI, New 

York, NY) pulled using a vertical puller (Narishige PE-2, Tokyo, Japan) were filled with 

2M NaCl/2% Pontamine Sky Blue (impedance 6-12 MΩ). Electrodes were positioned in 

the LC (-3.5mm AP, ±1.1mm ML with respect to lambda, and -5.0-6.0 mm DV from 

dorsal brain surface) using a hydraulic microdrive (Kopf model 640). LC neurons were 

tentatively identified based on well-established criteria including spike waveform, firing 

pattern, and response to paw compression (Cedarbaum and Aghajanian, 1978a; Foote et 

al., 1983; Mana and Grace, 1997). Signals from electrodes were amplified using a high-

impedance headstage amplifier connected to a amplifier/window discriminator 

(Fintronics WDR 420). Electrophysiological activity was monitored using an audio 

monitor (Grass AM-8, West Warwick, RI) and a storage oscilloscope (Hitachi V134, 

Brisbane, CA). In addition, data was monitored and analyzed on-line using a data 

acquisition board (Microstar Labs™, Bellevue, WA) interfaced with a Windows based PC 

and custom designed software (Neuroscope®).  

Rat/human CRH (RBI, Natick, MA) was dissolved to a concentration of 1.0, 0.33, 

or 0.11 µg/µl in artificial cerebrospinal fluid (aCSF) containing 145 mM NaCl, 2.7 mM 
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KCl, 1.0 mM MgCl2, 1.2 mM CaCl2, 0.1% bovine serum albumin, and 0.3 mM ascorbate. 

Aliquots were stored at –80°C for up to 3 weeks. When stable, well-isolated recordings 

of single LC neurons were achieved, basal activity was monitored for a minimum of 5 

min. Subsequently, CRH was infused through the cannula into the lateral ventricle 

ipsilateral to the recording site at a flow rate of 1.0 µl/min using a 10-µl Hamilton syringe 

and a syringe pump (KDS-1; KD Scientific, Boston, MA). Depending on the dose, a 2.7 

µl aliquot (0.3 µg) or a 3.0 µl-aliquot (1.0 or 3.0 µg) of CRH was infused. Control 

infusions consisted of 3.0 µl vehicle (aCSF) infused at 1.0 µl/min. Because of the long 

duration of LC activation following CRH administration, the response to CRH was tested 

on only one cell per rat, and the effect of only a single dose of CRH was tested in each 

rat. The single-unit activity was recorded for a minimum of 12 min (up to 45 min) 

following infusion. In cases where a post-infusion recording could not be maintained for 

12 minutes, baseline data was included in the analysis provided that the histological 

criteria (see below) were met.  

2.2.4 Histology 

Following each experiment, the location of the recording site was marked by 

iontophoretic ejection of Pontamine Sky Blue from the tip of the electrode using –30 µA 

constant current delivered for 30 min. In addition, a Fast Green solution was infused 

through the cannula in the lateral ventricle. Each rat received an overdose of anesthetic, 

and was decapitated. The brain was removed and the presence of dye in the third 

ventricle close to the optic chiasm was taken as evidence that the infusion cannula had 

been located in the lateral ventricle. Subsequently, brain tissue was post-fixed in 10% 

buffered formalin solution (Fisher scientific; Pittsburgh, PA), sectioned into 40 µm thick 
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slices and stained with cresyl violet. Only data from subjects with recording sites within 

the LC (figure 2) and cannula placement in the lateral ventricle were included in the data 

analysis. 

2.2.5 Data analysis 

Basal activity of LC neurons was quantified by determining 1] the basal FR, 

expressed as the average number of spikes per second, and 2] the percentage of spikes 

occurring within bursts. The onset of a burst was defined as two spikes occurring with an 

interspike interval (ISI) equal to or less than 80 msec, and the termination of a burst was 

defined as a subsequent ISI exceeding 160 msec, as previously described (Grace and 

Bunney, 1984; Mana and Grace, 1997). To determine the effect of CRH on individual LC 

neurons, sliding FR averages were calculated using 20 consecutive 1-sec bins. The 

maximal response to CRH was defined as the difference between the peak value of these 

sliding FR averages and the basal FR of the neuron. The time of maximal response was 

defined as the 1 sec bin during which this maximal increase in FR was first attained. 

Basal activity (FR and spikes fired in bursts) in control rats and cold-exposed rats 

was compared using independent t-tests. Comparison of the maximal response to CRH 

was performed using a 2-way ANOVA with group and dose as factors, followed by 

planned t-tests. Multiple regression analysis was performed to compare the slope of the 

log-transformed dose response curve of the cold-exposed and control group.  
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Figure 2 Localization of recording electrode in the LC 
Photomicrograph of a 40 µm thick coronal section of a rat brain sectioned at the level of 

the LC and stained with cresyl violet. Tissue damage dorsal to the LC and iontophoretic 

injection of Pontamine Sky Blue (dark area; arrow) indicate the location of the recording 

electrode. IV: 4th ventricle. Dorsal portion of the section is at the top of the 

photomicrograph. Scale bar indicates 1 mm. 
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2.3 RESULTS 

Basal electrophysiological activity of LC neurons was similar in control and cold-

exposed rats (figure 3). The basal FR in control rats of 1.52 ± 0.12 Hz did not differ from 

the FR in cold exposed rats of 1.67 ± 0.21 Hz. (n=25 and 23, respectively; t(46)=0.63). A 

small proportion of LC spikes occurred in bursts (for definition see 2.2 METHODS), and 

this value was also similar for control and cold-exposed animals (1.58 ± 0.45 vs 2.07 ± 

0.57 % respectively; t(46)=0.70). In both groups, the vast majority (>95%) of bursts 

occurred as doublets, while on occasion triplets were observed. 

 

 

 

 

 

 

Figure 3 Basal discharge characteristics of LC neurons in cold-exposed and control 
rats 
The basal discharge rate in control rats was similar to that in cold-exposed (14 days at 

5°C) rats (1.52 ± 0.12 Hz [n = 25] and 1.67 ± 0.21 Hz [n = 23], respectively). The 

percentage of spikes occurring in bursts was also similar in control and cold-exposed rats 

(1.58% ± 0.45% vs. 2.07% ± 0.57%, respectively). 
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Intraventricular administration of CRH increased LC FR (figure 4). Following a 

brief delay, presumably due to the time required for diffusion of the peptide from the 

injection site, LC firing gradually increased to reach a maximum approximately 10 min 

following CRH injection in both the control and cold-exposed rats [time post-infusion to 

peak response 643 ± 40 (n=18) and 623 ± 61 sec (n=22), respectively, t(38)=-0.30]. The 

increase in FR often lasted until the end of the recording session, as much as 45 min 

following the start of the infusion of CRH. Therefore, it was not feasible to maintain the 

recording until the neuron had returned to its pre-drug level of activity.  

The increase in FR was dose-dependent in control and cold exposed rats (figure 5). 

Higher doses resulted in higher drug-evoked maximal increases in FR [main effect of 

dose F(3,32)=27.2, p<0.01]. Comparison of the dose response curves for control and 

previously cold-exposed rats demonstrated that prior cold exposure enhanced the CRH-

evoked increase in FR at the higher dose but not at the lowest doses, as evidenced by a 

significant group x dose interaction [F(3,32)=3.6, p<0.05]. Comparison at individual dose 

levels indicated a significant difference in response to CRH between control and cold-

exposed rats at the 3.0 µg dose (t(9)=3.8, p<0.01). Multiple regression analysis of the 

log-transformed dose response curves of the cold-exposed and the control group 

indicated a significant difference in slope (2.566 ± 0.386 and 1.117 ± 0.399, respectively; 

t(33)=-2.54, p<0.05). Therefore, cold exposure did not result in a simple leftward shift of 

the dose-response curve, but rather in a change in the slope of the dose-response curve. 

 



 

30 

 

 

 

 

 

Figure 4 Representative firing rate histograms of a control and a cold-exposed rat 

In the control rat the FR increased from 1.2 Hz to 3.0 Hz following CRH administration 

(3.0µg ICV; indicated by the horizontal bar). In the cold-exposed (14 days at 5°C) rat the 

FR increased from 1.6 Hz. to 5.2 Hz following the same dose of CRH. Arrows indicate 

the time point of the maximal response. 
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Figure 5 Dose response curve for CRH in control and cold-exposed rats 
The response of LC neurons to intraventricular administration of CRH following chronic 

cold exposure (14 days at 5°C) was significantly greater than that in control rats. The 

maximal change from baseline to a single intraventricular dose of CRH was similar in 

both groups at low doses of CRH, but was larger in previously cold-exposed rats at 

higher doses [F(3,32)=3.6, p<0.05; n=3-8 rats per dose per group].  

* Significantly different from respective dose in control group p<0.01 
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2.4 DISCUSSION 

The present study demonstrates that cold exposure for 2 weeks enhances the 

electrophysiological response of LC neurons to CRH in a dose-dependent manner, 

supporting the view that the sensitization of NE release in response to CRH in cold-

exposed rats (Finlay et al., 1997) may be accompanied by sensitization of 

electrophysiological activation of LC neurons. The response of control rats to ICV CRH 

was comparable in magnitude, onset latency and duration to previously published data 

(Valentino et al., 1983; Conti and Foote, 1995; Curtis et al., 1995; Borsody and Weiss, 

1996; Conti and Foote, 1996). In contrast, previously cold-exposed rats exhibited an 

enhanced response to CRH, even though the change in basal activity of LC neurons was 

minimal. This finding is in correspondence with our neurochemistry experiments 

demonstrating an enhanced NE efflux in response to 3.0 µg CRH without alterations of 

basal NE levels in cold-exposed rats (Finlay et al., 1997). Interestingly, the CRH-evoked 

increase in both NE efflux (Finlay et al., 1997) and LC discharge rate (present study) in 

response to 3.0 µg of CRH was approximately twice as great in cold-exposed rats than in 

control rats. 

Removing rats from the cold room and housing them overnight at room temperature 

may itself trigger adaptive changes to the noradrenergic system. However, our previous 

studies suggest that continuous cold exposure is responsible for the observed changes in 

the responsivity of LC neurons. First, cold exposure for 1 week followed by overnight 

housing at room temperature does not result in sensitization of NE release, whereas cold 

exposure for two weeks followed by overnight housing at room temperature does (Finlay 

et al., 1997). Second, intermittent exposure to cold for 4 hrs per day with repeated 
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overnight housing at room temperature for a total period of two weeks does not result in 

sensitization of NE release (Jedema et al., 1999).  

In the present study, basal activity (FR and bursting) of LC neurons in cold-exposed 

rats did not differ from control rats. In contrast, a previous study reported a slight, but 

significant increase in FR and bursting in cold-exposed rats (Mana and Grace, 1997). A 

difference in the method of anesthesia (chloral-hydrate in the previous study vs. 

halothane in the present study) may have contributed to this discrepancy. However, the 

basal FR observed in the previous study is within the distribution of values obtained in 

the present study, using a larger number of subjects. Nevertheless, the finding of 

enhanced responsivity of LC neurons under stimulus-evoked conditions is consistent 

across the two studies. 

We found a slight but significant decrease in body weight of cold-exposed rats at 

the time of experimentation (302± 6 vs 333± 5 g). However, there was no correlation 

between the magnitude of the CRH-evoked increase in LC activity and body weight at 

any dose level in either group. For example, the difference in increase of LC activity 

between cold and control rats at the 3.0 µg dose of CRH was 1.6-fold, whereas the 

difference in body weight at this dose level was less than 7% (315 vs 295 g). 

An augmented CRH-evoked activation of LC neuron FR in cold exposed rats may, 

in part, underlie the sensitized CRH-evoked NE efflux reported previously (Finlay et al., 

1997). Results of several studies suggest that ICV CRH acts directly within the LC 

(Valentino and Wehby, 1988; Valentino et al., 1993). The effect of ICV CRH can be 

mimicked by direct administration of CRH into the LC (Curtis et al., 1997) and can be 

blocked by administration of a CRH antagonist directly into the LC (Smagin et al., 1995; 



 

34 

Curtis et al., 1997). Therefore, the sensitization of CRH-evoked NE release following 

cold exposure may occur in part due to an altered responsiveness of LC neurons at the 

cell body level.  

The present data show that following chronic cold exposure there is a significant 

increase in the responsiveness of LC neurons to a higher dose but not the lower doses of 

CRH. This effect differs from the results of studies demonstrating that swim stress or 

repeated foot shock stress results in a leftward shift of the dose-response curve for CRH 

while decreasing the maximum CRH-evoked response (Curtis et al., 1995; Curtis et al., 

1999). However, previous studies from our laboratory suggest that the impact of chronic 

stress on LC neurons varies as a function of the nature and the pattern of stress exposure. 

For example, it is known that neither repeated intermittent cold exposure nor repeated 

intermittent foot shock for 2 weeks results in sensitization of NE release (Finlay et al., 

1997; Jedema et al., 1999). An increase in the slope of the dose-response curve for CRH 

following cold exposure suggests that the altered response of cold-exposed rats is not a 

result of increased affinity of CRH receptors or increased effectiveness of its second 

messenger cascade. Indeed, previous studies reported a lack of change in affinity or 

receptor number following swim stress or repeated foot shock (Curtis et al., 1995; Curtis 

et al., 1999). A change in clearance of CRH or a change in the interaction with CRH 

binding protein could underlie the present observation of increased CRH-evoked 

activation of LC neurons following chronic cold exposure. 

Alterations in the responsiveness to CRH are however, not the only change 

observed following chronic cold exposure. In a previous study on rats exposed to cold, a 

marked increase in the response of LC neurons to sciatic nerve stimulation was observed 
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with only a minor increase in basal activity (Mana and Grace, 1997). Sciatic nerve 

stimulation increases LC activity via glutamatergic inputs to the LC (Ennis et al., 1992) 

and this excitation is insensitive to local administration of CRH antagonists (Valentino et 

al., 1991). Therefore, the present study in combination with data from Mana & Grace 

(Mana and Grace, 1997), suggest a general increased responsivity of LC neurons to 

excitatory inputs in rats exposed to cold. The fact that the response of LC neurons to 

excitatory input mediated by glutamate and CRH may be enhanced without major 

alterations of basal activity suggests that previous cold exposure may alter either the 

intrinsic properties of LC neurons or their regulation by a feedback loop. In addition to 

potentially enhancing activation within feedforward loops, it is possible that inhibitory 

feedback loops could be altered following chronic stress exposure, such as the direct 

feedback by NE acting on dendritic α2 autoreceptors or feedback loops involving the 

GABA/benzodiazepine (BZD) receptor complex or enkephalin (Van Bockstaele, 1998). 

Previous data suggest that α2 receptor regulation of LC neurons is increased following 

chronic cold exposure (Nisenbaum and Abercrombie, 1993; Mana and Grace, 1995a, b) 

and repeated immobilization (Pavcovich et al., 1990); although see (Pavcovich and 

Ramirez, 1991), arguing against a decreased α2 receptor-mediated feedback inhibition 

contributing to sensitization of LC neurons. An alteration in the interaction between the 

GABA/BZD complex and LC neurons following chronic cold stress has been reported 

(Finlay et al., 1995; Mana and Grace, 1995a), such that reduced GABA-ergic inhibition 

of LC neurons occurs under both basal and stress-evoked conditions. Given the tonic 

GABA-ergic inhibition of LC neurons (Ennis and Aston-Jones, 1989; Kawahara et al., 

1999), additional alterations to the LC system must be hypothesized to account for the 
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observation that basal LC FR and release are not altered by chronic cold exposure. 

Opioids directly inhibit LC activity (Williams and North, 1984; Aghajanian and Wang, 

1987; Williams et al., 1988), and appear to exert their effect on LC neurons under 

stressful conditions (Abercrombie and Jacobs, 1988). However, no studies have reported 

on the modulation of opioid-LC interaction following repeated or chronic stress. Changes 

in intrinsic properties of LC neurons following chronic stress may also contribute to 

stress-induced sensitization. For example, alterations in electrotonic coupling between 

LC neurons (Christie and Jelinek, 1993), or alterations in input resistance or calcium-

activated potassium conductance could underlie the development of stress-induced 

sensitization.  

 

2.5 CONCLUSION & CLINICAL IMPLICATIONS 

In summary, the present studies demonstrate that CRH-evoked LC activation is 

enhanced following chronic exposure to cold stress. Together with previous studies, these 

data suggest a general increased responsiveness of the noradrenergic LC system to 

excitatory input following chronic stress. Studies in humans have implicated enhanced 

activity of central NE neurons in mood and anxiety disorders (Aston-Jones et al., 1994; 

Bremner et al., 1996; Bremner et al., 1997; Southwick et al., 1997a; Southwick et al., 

1997b; Maes et al., 1999; Wong et al., 2000). Other physiological changes associated 

with mood and anxiety disorders are also present in rats chronically exposed to cold. For 

example, both clinical anxiety disorders and cold exposure are associated with increased 

basal heart rate (Leduc, 1961; Barney et al., 1980; Orr et al., 1997), sympathetic 

activation (Leduc, 1961; McFall et al., 1990), and tyrosine hydroxylase levels in LC 
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(Nisenbaum et al., 1991; Nisenbaum and Abercrombie, 1992; Ordway et al., 1994). In 

addition, alterations in CRH-LC interactions have been implicated in both anxiety 

disorders (Aston-Jones et al., 1994; Weiss et al., 1994) and following cold exposure 

(Finlay et al., 1997), present study). Therefore, the paradigm of continuous cold exposure 

in rats may represent a unique experimental model to study the mechanisms underlying 

the enhanced activation of LC function following chronic stress and its relation to anxiety 

and mood disorders.  
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3. THE EFFECT OF CORTICOTROPIN-RELEASING HORMONE ON 
NORADRENERGIC NEURONS OF THE LOCUS COERULEUS RECORDED IN 
VITRO 

 

3.1 INTRODUCTION 

Since the initial discovery of CRH as the primary initiator for the release of ACTH 

from corticotropes (Vale et al., 1981), it has become clear that CRH is also located at 

many extrahypothalamic sites (Swanson et al., 1983; Potter et al., 1994), where it plays 

an important role in the behavioral response to stress (Dunn and Berridge, 1990; Owens 

and Nemeroff, 1991; Valentino et al., 1993; Heinrichs et al., 1995).  

The major source of norepinephrine (NE) in the central nervous system, the LC, 

receives CRH afferents from Barrington’s nucleus, the central nucleus of the amygdala, 

the brainstem nuclei PGi and PrH, and the dorsal cap of the paraventricular nucleus of the 

hypothalamus (Valentino et al., 1992; Van Bockstaele et al., 1999). Some CRH afferents 

to LC preferentially target the rostromedial and dorsolateral pericoerulear regions, 

whereas other afferents target the LC proper (Valentino et al., 1992; Van Bockstaele et 

al., 2001). Furthermore, CRH terminals contact LC dendrites as well as presynaptic 

terminals, thereby providing a neuroanatomical substrate for an interaction between CRH 

and noradrenergic activity throughout the entire forebrain (Van Bockstaele et al., 1996a, 

1998a; Van Bockstaele et al., 1999).  

CRH administration either ICV or locally into the LC increases the FR of LC 

neurons and NE release in terminal fields of LC neurons (Valentino et al., 1983; 

Valentino and Foote, 1988; Smagin et al., 1995; Finlay et al., 1997; Jedema et al., 2001). 

CRH immunoreactivity in the LC is increased by cold exposure (Chappell et al., 1986) 

and CRH is functionally important for activation of the LC during exposure to several 
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stressors (cold, hypovolemia, and immobilization) (Valentino and Wehby, 1988; Melia 

and Duman, 1991; Valentino et al., 1991; Smagin et al., 1995; Smagin et al., 1996; Curtis 

et al., 1997). 

CRH receptors have also been demonstrated in the LC (Millan et al., 1986; De 

Souza and Insel, 1990; Primus et al., 1997; Sanchez et al., 1999; Chen et al., 2000) and a 

recent study suggests that these CRH receptors are of the CRH1 receptor subtype 

(Sauvage and Steckler, 2001). CRH receptor mRNA has been detected in LC neurons of 

primates (Sanchez et al., 1999), although it has been difficult to detect in rodents (Potter 

et al., 1994; Chalmers et al., 1995; Chalmers et al., 1996; Van Pett et al., 2000). Given the 

problems detecting CRH mRNA in LC neurons of rats, a preferential presynaptic 

neuromodulatory role for CRH innervation of the LC could be hypothesized, although 

very recent ultrastructural evidence for CRH1 receptors on LC neurons has been reported 

(Fox et al., 2002). 

In addition to the site at which CRH acts to affect LC neurons, the mechanism 

underlying the CRH activation of LC neurons is unknown. In hippocampus CRH is 

thought to inhibit a calcium-activated potassium current (IK(Ca)) (Aldenhoff et al., 1983; 

Siggins et al., 1985), while in the amygdala CRH activates a calcium current (ICa) and 

inhibits IK(Ca) (Rainnie et al., 1992; Yu and Shinnick-Gallagher, 1998). In corticotropes, 

CRH activates ICa and a hyperpolarization-activated current (IH), in addition to inhibition 

of an inward rectifying current (IK(IR)) (Kuryshev et al., 1996a, b; Kuryshev et al., 1997).  

All CRH receptors subtypes cloned and characterized to date are G-protein coupled 

receptors linked to ADC (Litvin et al., 1984; Chen et al., 1986; Battaglia et al., 1987; De 

Souza, 1995). In some studies inhibition of PKA inhibited the effect of CRH (Kuryshev 
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et al., 1995; Bundey and Kendall, 1999; Thiel and Cibelli, 1999; Cibelli et al., 2001). It 

has been hypothesized that CRH activates LC neurons in a similar manner as vasoactive 

intestinal peptide (VIP) (Alreja and Aghajanian, 1991a; Nestler et al., 1999), which has 

been demonstrated to increase LC FR by increasing a TTX-insensitive sodium current via 

ADC activation, resulting in a cAMP-mediated activation of PKA (Wang and 

Aghajanian, 1990).  

In the present studies we have characterized the effect of local application of CRH 

on the electrophysiological activity of LC neurons in horizontal brain stem slices of rats 

using in vitro intracellular recording techniques.  

 

3.2 METHODS 

 
3.2.1 Animals  

Male Sprague-Dawley rats (Hilltop, Scottdale, PA) were housed singly in hanging 

stainless steel cages in a colony room maintained at an ambient temperature of 23°C. 

Throughout the experiments, lights were maintained on a 12 hr light/dark cycle (lights on 

at 08.00 a.m.), with food (Laboratory rodent diet 5001, PMI Feeds, St. Louis, MO) and 

water available ad libitum. All protocols were approved by the Institutional Animal Care 

and Use Committee at the University of Pittsburgh and were in accordance with the 

USPHS Guide for the Care and Use of Laboratory Animals.  

3.2.2 Tissue preparation  

Rats (180-300g) were anesthetized with chloral hydrate (400 mg/kg, i.p.) and 

perfused through the ascending aorta with an ice-cold, oxygenated (low Na/high sucrose) 

perfusion solution (1.9 mM KCl, 1.2 mM Na2HPO4, 6 mM MgCl2, 33 mM NaHCO3, 20 
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mM glucose, 229 mM sucrose saturated with 95% O2/5% CO2) (Aghajanian and 

Rasmussen, 1989). Following decapitation, the brain was rapidly removed, placed in cold 

perfusion solution and 300 µm thick horizontal slices containing the LC were prepared 

using a DSK Microslicer (Ted Pella, Redding, CA). Tissue was transferred to cold, 

oxygenated aCSF (124 mM NaCl, 5 mM KCl, 1.2 mM KH2PO4, 2.4 mM CaCl2, 1.3 mM 

MgSO4, 26 mM NaHCO3, 10 mM glucose saturated with 95% O2/5% CO2). After a 

recovery period of a minimum of 60-90 min, sections were transferred to a temperature-

controlled recording chamber (RC-22C; Warner Instrument Corp., Hamden, CT) where 

they were superfused with oxygenated aCSF at a flow rate of 0.8-1.5 ml/min at 35°C.  

3.2.3 Electrophysiology  

Intracellular recordings were obtained from neurons in the LC that were initially 

identified by their location within the trans-illuminated slice. Electrodes were filled with 

Biocytin (2% biocytin in 2-3M KC2H3O2 or 2M KCl) and had an impedance of 

approximately 50-100 MΩ. Putative LC neurons were identified based on a regular 

pattern of low frequency discharge of long duration action potentials, as described in 

previous studies (Andrade et al., 1983; Williams et al., 1984; Ivanov and Aston-Jones, 

1995) and a minimal spike amplitude of 65mV. Electrodes were connected to the 

headstage (HS-2A) of an Axoclamp-2A amplifier (Axon Instruments, Union City, CA) in 

current clamp mode. The output of the amplifier was displayed and analyzed using an 

A/D-board (Microstar Labs, Bellevue, WA) and customized data-analysis software 

(Neuroscope). Following determination of basal activity for 3-10min, CRH was locally 

applied by pressure ejection using a Picospritzer II (General Valve, Parker Hannifin 

Corp; Fairfield NJ) from a calibrated glass pipette positioned in the bath above the slice 
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(tip size 10-20µm ID, approximately 400-600µm from recording site, ejection pressure 

50-75psi). For each neuron multiple doses of CRH were administered in order to 

determine the “sensitivity” of the neuron to CRH, which appeared to be a function of the 

responsivity of the individual neuron tested and the proximity of the CRH pipette to the 

neuron.  

3.2.4 Drugs  

Rat/human, CRH obtained from RBI (Natick, MA) or Bachem (Torrance, CA) was 

dissolved to a concentration of 1µg/µl in aCSF containing 0.1% bovine serum albumin 

and 0.3mM ascorbate. Generally, it was necessary to acidify the solution using 1µl of a 

30% acetic acid solution. D-Phe-CRH (12-41) and α-helical CRH were obtained from 

Bachem. CP154,526 was a gift from Pfizer Inc. (Groton, CT). A stock solution of 

CP154,526 was made by dissolving the compound in either 0.1M HCl or in aCSF 

containing 10% DMSO. The stock solution was subsequently diluted to final 

concentration using aCSF. The final DMSO concentration in the buffer was equal to or 

less than 0.1%. Apamin and SQ22,536 were obtained from Calbiochem (La Jolla, CA). 

Rp-cAMPS was obtained from Tocris Cookson Inc. (Ellisville, MO). Tetrodotoxin (TTX) 

and all other compounds were obtained from Sigma (St. Louis, MO). All drugs were 

dissolved in aCSF and bath-applied at the concentration mentioned, with the exception of 

the PKA-inhibitor Rp-cAMPS, which was applied intracellularly via the recording 

electrode (10mM). The exchange from aCSF to drug-containing aCSF was achieved 

using a switch valve (UpChurch Scientific; Oak Harbor, WA). Following switchover it 

required approximately 45 sec for the drug-containing solution to reach the recording 

chamber and 2-3 min before stabilization of the drug effect.  
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Biocytin was injected into the recorded cell for histological verification. The 

activity and responsiveness of only one neuron per slice was determined. 

3.2.5 Immunocytochemistry 

The location of the recorded neurons was microscopically verified to be within the 

LC (figure 6) following immunocytochemical processing for TH and biocytin as 

previously described (Jedema and Grace, In Press). Briefly, tissue sections were post-

fixed in 4% paraformaldehyde or 10% buffered formalin solution, and following a freeze-

thaw procedure and overnight incubation in a 1% Triton X-100 solution, they were 

incubated in avidin-biotin peroxidase complex (ABC; 1:200; Vectastain Elite kit; Vector 

Laboratories). The peroxidase reaction was visualized by incubating the sections in 

0.022% diaminobenzidine, 0.3% NiSO4(NH4)2SO4 and 0.003% hydrogen peroxide for 6-

7 min. Following incubation in blocking solution containing 3% normal goat serum, 

0.4% Triton X-100, and 1% bovine serum albumin, sections were incubated overnight in 

blocking solution containing a monoclonal antibody raised in mouse against TH 

(1:10,000; Chemicon), followed by incubation in secondary antibody (BA2001; 1:200; 

Vector), which was then visualized using an ABC and a peroxidase reaction.  

3.2.6 Data Analysis 

The membrane potential was determined from the change of potential following 

withdrawal from the neuron. Action potential threshold was defined as the potential 

where the greatest change in slope of the membrane potential occurred, which was 

determined from the second order derivative of membrane potential waveform. 

Amplitude of action potential and afterhyperpolarization (AHP) were measured relative 

to this threshold, and the action potential duration was measured at the level of threshold. 

The average rate of repolarization was defined as the ratio of the magnitude of individual 
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AHP and ISIs. To determine the effect of CRH on the action potential waveform, the 

characteristics for all action potentials occurring during a 5 sec window around the time 

point of maximal CRH-evoked activation were averaged for each neuron and compared 

to the average of the same number of action potentials occurring immediately prior to 

CRH administration using paired t-tests. The FR was calculated as the sliding average of 

the number of spikes per second occurring during a 10 second window starting 4 seconds 

prior and ending 5 seconds following the one second bin for which it was calculated 

(Jedema et al., 2001). CRH-evoked increases in FR were expressed as the maximal 

increase in FR within 30 sec following CRH administration. We observed that this 

increase in FR above baseline was fairly constant and independent of “basal” FR by 

altering FR by hyperpolarizing and depolarizing current injection. The effect of drug 

application is expressed as a percentage (±SEM) of the CRH-evoked effect in that neuron 

under non-drug conditions. The CRH-evoked effect was the average of the CRH effect 

before drug application and, whenever possible, after drug washout. CRH-evoked 

depolarization was measured as the maximal change in membrane potential within 60 sec 

following CRH administration. The reversal potential of the CRH-evoked depolarization 

for each neuron was estimated by linear regression of the relationship between the 

maximal CRH-evoked depolarization versus membrane potential. The average basal 

activity calculated for the LC neurons in the present study includes the basal activity of 

some control LC neurons examined in another manuscript (Jedema and Grace, In Press). 
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Figure 6 Identification and morphology of LC neurons 
An LC neuron stained with biocytin (black) following intracellular recording in a 300µm 

thick horizontal slice of the rat brainstem. Immunoreactivity for tyrosine hydroxylase 

(brown) in somata outlines the locus coeruleus. Immunoreactive processes illustrate the 

extensive arborization of LC neurons outside the nucleus proper.  

Scale bar = 50 µm; IV: fourth ventricle 
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3.3 RESULTS  

 
3.3.1 Basal activity of LC neurons 

The vast majority of LC neurons recorded in vitro with potassium acetate electrodes 

were spontaneously active (53/57) with an average basal firing rate (FR) of 2.2±0.2 Hz. 

Hyperpolarizing current injection caused an amplitude-dependent deflection of the 

membrane potential. The relationship between the magnitude of the current injection and 

the resulting membrane potential deflection, which demonstrated inward rectification, 

could be well-described by a quadratic function (R2=0.97±0.01, n=19) (figure 7). The 

input resistance obtained from the y-intercept of the derivative of this function was 81±5 

MΩ.  

 

 

 

 

 

Figure 7 Input resistance of LC neurons 

Plotting the deflection of the membrane potential versus the amplitude of hyperpolarizing 

current injected to elicit them revealed a non-linear current-voltage relationship (inward 

rectification). The input resistance calculated from the slope of the curve at the zero-

current level is 81±5 MΩ (n=19). 
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3.3.2 Effect of CRH on spontaneous activity 

Administration of CRH (average dose 143±15ng) transiently increased the FR of 51 

out of 53 neurons (figure 8). The increase was dose-dependent with an average increase 

of 0.7±0.1 Hz occurring approximately 14±1 sec after ejection of CRH from the pipette, 

and the CRH-evoked activation subsided by 90-120 sec (following the termination of the 

CRH ejection). The time course of CRH-evoked activation of LC neurons observed in 

this study is remarkebly similar to the time course of CRH-evoked activation of anterior 

pituitary cells (Watanabe and Orth, 1987). LC neurons showed little if any short-term 

desensitization in their response when pulses of CRH were administered repeatedly at 

~3min intervals. Similar results were obtained with electrodes filled with potassium 

chloride suggesting that chloride currents are unlikely to be involved in the effect of CRH 

on LC neurons. Vehicle ejections (acidified aCSF with 0.1 BSA and 0.3mM ascorbate) 

did not cause an activation of LC FR (data not shown). These findings are consistent with 

the existing evidence of an excitatory effect of CRH on LC neurons observed in vivo 

(Valentino et al., 1983; Valentino et al., 1991; Valentino et al., 1993; Conti and Foote, 

1995; Curtis et al., 1997; Pavcovich and Valentino, 1997; Jedema et al., 2001). Because 

CRH was administered by local application, it is difficult to estimate the concentration of 

CRH at the receptor site, especially since the drug is washed out rapidly by fresh buffer 

entering the recording chamber. Based on an average volume of 143 nl per CRH 

administration, one would estimate a more than 1000-fold dilution in recording chamber 

(200 µl), which would result in an estimated CRH concentration of approximately 150 

nM. The concentration of half-maximal activation of CRH1 and CRH2 receptors by 

r/hCRH has been reported to be in the low nanomolar range (Lovenberg et al., 1995).  
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Figure 8 CRH increases the firing rate of spontaneously active LC neurons 
(A) The average baseline firing rate (FR) of this spontaneously active LC neuron was 

0.85 Hz. CRH (105ng) was ejected in the bath approximately 400 µm from the recording 

site (horizontal bar). A maximum FR of 2.00 Hz was reached at 12 sec (arrow) following 

CRH ejection. (B) Plotting the firing rate of another neuron over time demonstrates that 

repeated CRH administration causes an increase in firing rate that is transient and dose-

dependent. The maximal activation in this LC neuron occurs ~15 sec after CRH ejection 

and the firing rate has returned to baseline levels within 90-120 sec. 
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In previous studies 15-500 nM of CRH has been used for electrophysiological 

experiments on corticotropes (Kuryshev et al., 1996a, b; Kuryshev et al., 1997) and 

neurons in the amygdala and hippocampus (Aldenhoff et al., 1983; Siggins et al., 1985; 

Aldenhoff, 1986; Rainnie et al., 1992; Yu and Shinnick-Gallagher, 1998). In studies on 

an LC-like cell line (CATHa), 500nM of CRH was necessary to achieve a maximal effect 

on neurite outgrowth and cAMP accumulation (Bundey and Kendall, 1999; Thiel and 

Cibelli, 1999; Cibelli et al., 2001). Therefore, the doses of CRH used in the present study 

may be estimated to be within the range of those used in previous in vitro studies.  

 

3.3.3 Effect of CRH on action potential characteristics 

There was no difference in the action potential waveform immediately prior to and 

at the point of maximal CRH-evoked activation (table 1). However, the rate of 

repolarization of the membrane potential following action potential discharge was faster 

after CRH administration, resulting in a more rapid depolarization to spike threshold 

(table 1; figure 9). Given that CRH increases LC FR, it was indeed expected that CRH 

affects conductances that are active during the period between action potentials rather 

than conductances that are only active during action potential discharge. 
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Table 1: Action potential characteristics before and during CRH 
Characteristics of spontaneously occurring action potentials recorded during a 5sec epoch of maximal 

CRH-evoked activation compared to the same number of action potentials recorded immediately prior to 

CRH administration (two pulses for each neuron) in 10 LC neurons. (* p < 0.05 versus control) 

 

 

 Control CRH 
   
Threshold (mV) -45.9±2.1 -45.7±2.1 

Amplitude (mV) 71.7±1.2 71.3±1.2 

Duration (msec) 2.0±0.1 2.0±0.1 

AfterHyperPolarization (mV) 20.4±0.5 20.3±0.6 

Inter-Spike Interval (msec) 585±114 421±84 * 

Rate of repolarization (mV/sec) 55±7 74±9 * 
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Figure 9 CRH increases the rate of repolarization without affecting the action 
potential waveform of spontaneously occurring action potentials  
An overlay of 5 action potential waveforms at the time point of maximal CRH-evoked 

activation (black) demonstrates that the waveform is similar to the waveform of 5 action 

potentials from the same neuron immediately prior to CRH ejection (gray). At the time of 

maximal CRH-evoked activation the rate of repolarization following action potential 

discharge is faster leading to a more rapid return to action potential threshold and 

consequently an increase in the firing rate of the neuron. 
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3.3.4 Effect of CRH following blockade of synaptic activity 

When synaptic activity in the slice was prevented by bath application of 2µM TTX, 

the spontaneous discharge of action potentials was changed, resulting in the discharge of 

putative calcium spikes (Williams et al., 1984). In most cases (4/6) the neurons would 

cease their spontaneous activity, although calcium spike discharge activity could be re-

instated by a small amount of intracellular depolarizing current injection (20-250 pA). In 

two cases these calcium spikes continued to occur spontaneously. Administration of CRH 

(same doses as prior to TTX) in the presence of TTX caused a transient increase in 

calcium spike activity with a similar time course as in the same cell tested prior to TTX 

perfusion. This was observed in 6 out of 6 LC neurons. (figure 10). The fact that the 

increase in FR persisted following blockade of synaptic activity by TTX demonstrates 

that the effect of CRH in vitro is largely mediated via a direct action onto LC neurons, 

and that fast sodium currents are likely not to be a major contributor to the excitatory 

effect of CRH. The fact that no post synaptic potentials were observed in our slices 

before and during CRH administration is consistent with CRH exerting its strong 

excitatory effect via a direct action on LC neurons. 

 

3.3.5 Effect of CRH on hyperpolarized LC neurons 

When hyperpolarizing current was delivered through the recording electrode to prevent 

spike discharge, the administration of CRH caused a transient depolarization (average 

depolarization: 2.9 ±0.5 mV) with a similar time-course as the CRH-evoked increase in 

FR (time point of maximal depolarization: 17±1sec after CRH) (figure 11). 
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Figure 10 CRH increases the discharge rate of putative calcium spikes in LC 
neurons in the presence of TTX  
When synaptic activity is prevented by bath application of TTX (2 µM), LC neurons 

continue to discharge calcium spikes. CRH administration (36ng, horizontal bar) 

increased the calcium spike rate of this spontaneously active LC neuron from 1.20 to 2.20 

Hz at 16 sec following CRH ejection. CRH increased the calcium spike rate in 6/6 

neurons. 
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The magnitude of the depolarization was voltage-dependent with a reversal potential of –

115±8 mV (n=20). In some experiments, repeated brief hyperpolarizing current steps (10-

20msec, 100-300pA, 1Hz) were applied in addition to the constant hyperpolarizing 

current in order to estimate changes in input resistance. An increase in input resistance 

was noticed that coincided with the CRH-evoked depolarization (figure 11). A 

depolarization of similar magnitude evoked by reducing the amplitude of constant 

hyperpolarizing current injected did not change the input resistance estimate (Data not 

shown). The CRH-evoked depolarization also persisted in the presence of TTX (not 

shown).  

 

3.3.6 Inhibition of potassium conductances 

To determine whether the increase in FR was mediated by calcium-activated 

potassium conductances (KCa), the effect of bath application of apamin (200nM) was 

examined. Apamin caused a small reduction in the amplitude of the AHP but the CRH-

evoked increase in FR persisted during bath application of apamin in 3/3 neurons (figure 

12A). The effect of blockade of the inward-rectifying potassium (KIR) conductances on 

the CRH-evoked increase in FR was examined using bath application of BaCl2 (100µM). 

BaCl2 application increased the spontaneous FR of LC neurons in all neurons tested. The 

current-voltage relationship of LC neurons during BaCl2 application was linear indicating 

that the KIR conductances were effectively blocked (figure 12B). The CRH-evoked 

increase in FR persisted during bath application of BaCl2 in 5 out of 5 neurons (figure 

12B). 
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Figure 11 CRH depolarizes the membrane of LC neurons in the absence of action 
potential discharge 
When action potential discharge is prevented by constant hyperpolarizing current 

delivered through the recording electrode, CRH ejection causes depolarization of the 

membrane potential. The magnitude of voltage deflections caused by repeated current 

steps (0.3nA, 10msec, 1 Hz) increases during the CRH-evoked depolarization, indicating 

an increase in input resistance. A current-evoked depolarization of the same magnitude as 

that caused by CRH did not change the input resistance. 
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Figure 12 The CRH-evoked increase in firing rate persists in the presence of 
blockade of several potassium conductances 
(A) Bath application of a blocker of calcium-activated potassium conductances, apamin 

(200nM), does not affect the CRH-evoked increase in LC firing rate. The effectiveness of 

apamin blockade on the after hyperpolarization is evident in an overlay of the action 

potential waveform obtained before and during apamin administration. (B) Bath 

application of a blocker of inward rectifying potassium conductances, BaCl2 (100µM), 

increases the spontaneous firing rate of LC neurons but does not affect the CRH-evoked 

increase in LC firing rate. The effectiveness of barium in blocking inward-rectifying 

potassium conductances is evident from a comparison of the current-voltage plots 

obtained before and during barium administration. 
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3.3.7 Effect of CRH following PKA inhibition 

LC neurons recorded with electrodes containing the specific PKA-inhibitor Rp-

cAMPS (10mM) exhibited normal electrophysiological characteristics immediately 

following penetration by the electrode. The spontaneous activity of these neurons 

gradually decreased over a 5-10min time period and eventually ceased. When CRH was 

applied during the first 5 min following penetration of the cell, an increase in FR was still 

observed that exhibited a similar time course as observed with standard potassium-acetate 

containing electrodes (figure 13). However, the response of the neurons recorded with 

electrodes containing the PKA-inhibitor subsequently decreased until, at time points of 

~5 min or greater, CRH was no longer capable of producing an increase in the firing rate 

of the neurons, even at substantially higher concentrations of CRH (n=3). Similarly, in 

one experiment using bath application of the cell-permeable ADC inhibitor, SQ22536 

(1µM), the neuron ceased firing and the CRH-evoked depolarization was greatly reduced 

(data not shown).  

 

3.3.8 Effect of CRH antagonists 

Bath application of the CRH antagonist D-Phe-CRH (0.1-1 µM) caused a transient 

increase in basal FR in 5/7 LC neurons. Nevertheless, the magnitude of the CRH-evoked 

increase in FR was reduced to 64±12% by the administration of D-Phe-CRH (figure 14). 

Local application of D-Phe-CRH via pressure ejection also increased the spontaneous 

discharge activity. The increase in FR elicited by local D-Phe-CRH was transient and had 

a similar time course as the CRH-evoked activation (figure 14). A similar effect was 

observed for local application of another peptidergic CRH antagonist, α-helical CRH. 

Despite the fact that local administration of the antagonist increased basal FR, it reduced 
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the absolute magnitude of the CRH-evoked activation (to 77±11%; n=3). Bath 

application of the specific CRH1 receptor antagonist CP154,526 (1-100µM) reduced the 

magnitude of the effect of CRH without alterations of basal firing rate (figure 14). 
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Figure 13 The CRH-evoked increase in firing rate is prevented by intracellular 
administration of the PKA inhibitor, Rp-cAMPS 
(Top two traces) Within the first 5 min of impalement of the neuron with an electrode 

containing Rp-cAMPS (10mM), CRH administration (50ng) increased LC neuron firing 

rate. (Bottom two traces) Diffusion of Rp-cAMPS into the cell decreases the spontaneous 

FR. Five minutes following the initial activation by CRH, administration of a 10-fold 

higher dose of CRH no longer increases LC firing rate. 
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Figure 14 The magnitude of CRH-evoked increase in firing rate is reduced by CRH 
antagonists 
(A) Local administration of D-Phe-CRH increases LC firing rate with a time course 

similar to the CRH-evoked activation of LC neurons. (B) Although bath application of 

the CRH antagonist D-Phe-CRH (1µM) also increased the spontaneous firing rate of LC 

neurons, it reduced the magnitude of the effect of CRH. Bath application of CP154,526 

(1-100µM) reduced the effect of CRH without increasing the basal firing rate. The 

numbers on each bar indicate the number of neurons contributing to the average. 
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3.4 DISCUSSION 

 

3.4.1 Site of action of CRH on LC neurons 

Valentino and co-workers first demonstrated that CRH increases LC FR in vivo 

(Valentino et al., 1983) and have long hypothesized that CRH acts within the LC based 

on the fact that 1] CRH applied into the LC exerts a more potent effect than ICV CRH 

and 2] the effect of ICV-administered CRH and certain stressors can be blocked by 

infusion of a CRH antagonist into the LC (Valentino and Wehby, 1988; Valentino et al., 

1991; Smagin et al., 1995; Curtis et al., 1997; Lechner et al., 1997; Smagin et al., 1997). 

In the present experiments we clearly demonstrate that CRH can activate LC neurons 

directly even when synaptic activity is prevented. The possibility of a direct action of 

CRH on LC neurons is further supported by ultrastructural evidence for synaptic contacts 

between LC dendrites and CRH immunoreactive terminals and by the presence of CRH1 

receptors on LC neurons (Van Bockstaele et al., 1996a, 1998a; Van Bockstaele et al., 

1999; Fox et al., 2002). The present data demonstrating a clear direct excitatory effect of 

CRH on LC neurons in vitro do not, however, rule out the possibility of additional 

presynaptic actions of CRH in vivo. Others have argued that CRH would increase 

presumed NE efflux through an indirect mechanism (Palamarchouk et al., 2000), 

although several alternative interpretations of these results may account for their findings. 

For example, based on the caudal injection sites in LC in their study, CRH would have to 

diffuse a much greater distance to its receptor if one considered the point of CRH 

innervation in pericoerulear area (Van Bockstaele et al., 1996a, 1998a; Van Bockstaele et 

al., 1999), compared to glutamate, which would be expected to act on its receptors at any 
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site along the dendritic tree (Van Bockstaele and Colago, 1996). In addition, faster 

diffusion characteristics for glutamate based on lower molecular weight (Nicholson and 

Tao, 1993), and a very short half-life for glutamate in the extracellular space due to an 

efficient uptake system (Danbolt, 2001) could further contribute to the difference in time 

course of glutamate and CRH-evoked NE efflux. The fact that in the present experiments 

the CRH-evoked activation reaches a maximum within approximately 15sec following 

CRH administration further suggests that differences in diffusion kinetics underlie the 

difference in time course of NE efflux that these authors observed. 

 

3.4.2 Potential mechanism of CRH action: Potassium conductances 

Consistent with a CRH-evoked increase in FR of LC neurons, CRH administration 

depolarized LC neurons when spike discharge was prevented by hyperpolarizing current 

injection. The reversal potential of the CRH-evoked depolarization was more 

hyperpolarized than the reversal potential for potassium predicted by the Nernst equation 

(-88mV at 35˚C and [K+]o=6.2mM; (Egan et al., 1983), and was accompanied by an 

increase in input resistance. The combination of an increase in input resistance and a 

reversal potential of –115 mV suggests that the depolarizing effect of CRH is largely 

mediated by a decrease in potassium conductances. The fact that CRH likely acted on 

sites electrotonically distant to the soma could account for the discrepancy between the 

reversal potential for the CRH-evoked depolarization and that for potassium. LC neurons 

in general, and LC neurons in horizontal slices in particular, are known not to be 

electrotonically compact (Ishimatsu and Williams, 1996; Travagli et al., 1996). Given 

that a large part of the CRH innervation of LC neurons occurs in the peri-coerulear area, 

i.e. distal to the soma, one would predict that the reversal potential of an effect measured 
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at the somatic recording site would overestimate the reversal potential of an event that 

occurs at electrotonically distal sites. However, as reported previously (Brown et al., 

1971), it is also possible that other conductances with a positive reversal potential are 

contributing to the CRH-evoked depolarization, resulting in a reversal potential more 

negative than that for potassium. Thus, the closing of an inward cation conductance in 

addition to the opening of a potassium conductance has been suggested for the 

enkephalin- and muscarine-mediated hyperpolarization of LC neurons (Shen and North, 

1992a; Alreja and Aghajanian, 1994), whereas the opposite has been suggested for the 

substance P-mediated depolarization of LC neurons (Shen and North, 1992b; Koyano et 

al., 1993). Therefore, the present data suggest that a potassium conductance carries the 

majority of the CRH-evoked response, but cannot exclude contribution of other 

conductances in the CRH-evoked depolarization. 

The effect of CRH on LC neurons could not be blocked by the specific blocker for 

IK(Ca), apamin. The concentration of apamin used was effective in reducing the amplitude 

of the AHP and has been demonstrated to be effective in blocking a IK(Ca) current 

involved in the intermediate component of the afterhyperpolarization in LC neurons 

(Osmanovic et al., 1990; Osmanovic and Shefner, 1993). The blockade of IK(IR) did not 

prevent the effect of CRH on LC neurons even though barium clearly blocked the inward 

rectification. These data suggest that CRH modulates LC neuron activity via a different 

type of potassium conductance than has been suggested for corticotropes and neurons in 

hippocampus and amygdala (Aldenhoff et al., 1983; Siggins et al., 1985; Aldenhoff, 

1986; Rainnie et al., 1992; Kuryshev et al., 1997).  
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Several neurotransmitters influence LC activity via modulation of potassium 

conductances. Thus, NPY, GAL, SOM, ENK and NE all reduce LC activity by increasing 

an inward rectifying potassium conductance (Williams et al., 1985; Inoue et al., 1988; 

Williams et al., 1988; Illes et al., 1993; Pieribone et al., 1995), while orexin/hypocretin, 

substance P (SP), and VIP increase LC activity by decreasing a potassium conductance 

(Wang and Aghajanian, 1990; Koyano et al., 1993; Ivanov and Aston-Jones, 2000). 

Based on occlusion experiments, it has been suggested that ENK, NE, SP, SOM, and 

NPY affect the same inward rectifying potassium conductance, even though their effect is 

mediated by different receptors (Aghajanian and Wang, 1987; Illes and Regenold, 1990; 

Velimirovic et al., 1995). It has been reported that SP receptors colocalize with Kir2.2 

potassium channels in LC neurons (Stonehouse et al., 1999). Future experiments will 

have to address whether the main effect of CRH is also achieved by affecting this 

potassium conductance. 

 

3.4.3 CRH effects are mediated by second messenger cascade 

The excitatory effect of CRH, established immediately following penetration of the 

neuron, was prevented by the intracellular PKA inhibitor, Rp-cAMPS. Rp-cAMPS 

treatment also blocked spontaneous spike discharge of the neuron, as was previously 

shown following PKA inhibition (Alreja and Aghajanian, 1991b), although action 

potentials could still be elicited by depolarizing current injection. Similarly, extracellular 

application of a membrane permeable ADC inhibitor blocked the spontaneous activity of 

the neuron and reduced the CRH-evoked depolarization. These data suggest that the 

effect of CRH on the electrophysiological activity of LC neurons in vitro is completely 

mediated by activation of the ADC-cAMP-PKA second messenger cascade, consistent 
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with observations of the effect of Rp-cAMPS on the effect of CRH in a CATHa cell line 

(Bundey and Kendall, 1999). Since the binding site for cyclic nucleotides is not very 

specific and is affected by cAMP analogs (Ingram and Williams, 1996; Bois et al., 1997), 

direct effects of Rp-cAMPS on cyclic nucleotide-gated channels should also be 

considered. The fact that intracellular inhibition of the second messenger system coupled 

to CRH receptors blocks the CRH-evoked activation of LC neurons is again consistent 

with a direct action of CRH on LC neurons. 

 

3.4.4 Antagonists of CRH receptors  

The effect of CRH administration was reduced by local or bath application of the 

CRH receptor antagonist D-Phe-CRH, although a complete blockade of the effect of 

CRH was not observed. Since D-Phe-CRH is a competitive antagonist, local application 

of small volumes of agonist in high concentration may have effectively displaced a 

sufficient amount of antagonist to elicit some excitatory effect. In addition, we noted a 

significant activation of LC neurons by local or bath application of the antagonist alone, 

and the time course of activation by local antagonist administration was similar to that of 

the CRH-evoked activation. Such data are consistent with a partial agonist action of D-

Phe-CRH, perhaps similar to the effect of higher concentrations of D-Phe-CRH reported 

for dorsal raphe neurons (Kirby et al., 2000) but not in the LC (Curtis et al., 1994; Curtis 

et al., 1999). However, in vivo a partial agonist effect of D-Phe-CRH in the LC could 

potentially be masked by a low baseline CRH tone. Partial agonist effects of α-helical 

CRH have been reported previously in vitro (Rainnie et al., 1992; Yu and Shinnick-

Gallagher, 1998; Smart et al., 1999) and in vivo (Menzaghi et al., 1994; Borsody and 

Weiss, 1996). Regardless of their potential partial agonist effect, the CRH antagonists 
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reduced the magnitude of the CRH-evoked increase in LC FR. Given that very recently a 

novel CRH receptor has been characterized in catfish (Arai et al., 2001), the possibility of 

a novel type of CRH receptor should be considered (Bittencourt and Sawchenko, 2000; 

Van Pett et al., 2000), although previous in vivo studies suggest that the receptor 

mediating the effect of CRH in LC can be blocked by D-Phe-CRH (Curtis et al., 1994; 

Curtis et al., 1997). The receptor subtype-specific antagonist CP154,526 did not cause a 

change in basal FR, but due to the poor solubility of this compound in aqueous 

physiological solutions it was not possible to determine whether the effect of CRH could 

be completely prevented by this antagonist. Nevertheless, at the doses used, CP154,526 

reduced the effect of CRH suggesting that CRH affects LC neurons in vitro at least in 

part via CRH1 receptors. This finding is consistent with recent evidence demonstrating 

CRH1 receptor immunoreactivity in LC (Sauvage and Steckler, 2001; Fox et al., 2002) 

and evidence demonstrating that systemic CP154,526 could reduce the increase in LC FR 

evoked by ICV CRH (Schulz et al., 1996). 

 

3.4.5 Relevance to stress-related psychiatric disorders 

The noradrenergic system of the LC has long been implicated in the 

pathophysiology of mood and anxiety disorders (Charney et al., 1995; Wong et al., 2000). 

Increased CSF levels of CRH, which primarily reflect CRH activity at extrahypothalamic 

sites (Kalin et al., 1987), have been reported in several studies of patients with major 

depression, PTSD, obsessive compulsive disorder (OCD), and Tourettes’s Syndrome (see 

(Arborelius et al., 1999) for review). Furthermore, chronic treatment with different types 

of antidepressants alters the interaction between CRH and LC neurons (Curtis and 

Valentino, 1994). Therefore, the direct link between the CRH and noradrenergic systems 
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reported in the present study further supports the notion that the interaction between these 

transmitters systems plays an important role in the pathophysiology of mood and anxiety 

disorders.  
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4 CHRONIC EXPOSURE TO COLD STRESS ALTERS 
ELECTROPHYSIOLOGICAL PROPERTIES OF LOCUS COERULEUS 
NEURONS RECORDED IN VITRO. 

 

4.1 INTRODUCTION 

The neurons of the LC, tightly clustered at the floor of the fourth ventricle, provide 

the major source of NE in the central nervous system via their projections throughout the 

entire neuraxis (Foote et al., 1983; Moore and Card, 1984). NE released from LC neurons 

is thought to play an important role in attention and arousal (Robbins, 1984; Aston-Jones 

et al., 1999; Berridge, 2001) and alterations in central noradrenergic function have been 

implicated in the pathophysiology of multiple mood and anxiety disorders (Charney et 

al., 1990; Aston-Jones et al., 1994; Charney et al., 1995; Bremner et al., 1996; Wong et 

al., 2000).  

The noradrenergic system is postulated to play a primary role in an organism’s 

response to stress (Stanford, 1995). Thus, it is well-established that acute stress exposure 

can increase the discharge activity and NE release from noradrenergic LC neurons (Korf 

et al., 1973; Abercrombie and Jacobs, 1987; Abercrombie et al., 1988). Furthermore, 

chronic exposure to stress can alter the response of LC neurons to subsequent stress 

exposure (for reviews see (Stanford, 1993; Stanford, 1995; Zigmond et al., 1995). For 

example, the activity of the rate-limiting enzyme in the synthesis of NE, TH, is increased 

in the LC following chronic exposure to cold, social stress, social isolation, or repeated 

exposure to restraint, or foot shock (Zigmond et al., 1974; Stone et al., 1978; Angulo et 

al., 1991; Nisenbaum et al., 1991; Watanabe et al., 1995; Rusnak et al., 1998). 

Furthermore, the stress-evoked turnover of NE is enhanced following repeated exposure 

to foot shock or restraint (Thierry et al., 1968; Irwin et al., 1986; Adell et al., 1988; 
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Anisman and Zacharko, 1990), and the evoked increase in LC spike firing is enhanced 

following chronic exposure to cold, repeated exposure to foot or tail shock but not to 

white noise (Simson and Weiss, 1988; Curtis et al., 1995; Conti and Foote, 1996; Mana 

and Grace, 1997; Jedema et al., 2001). We have focused on cold exposure as a chronic 

stressor because the alterations in central noradrenergic function that occur in rats 

following chronic cold exposure resemble those observed in humans afflicted with mood 

and anxiety disorders (Aston-Jones et al., 1994; Charney et al., 1995; Wong et al., 2000). 

Thus, in addition to the alterations in TH (Zigmond et al., 1974; Nisenbaum et al., 1991; 

Melia et al., 1992) and evoked LC spike firing (Mana and Grace, 1997; Jedema et al., 

2001) described above, chronic exposure to cold also increases the evoked release of NE 

from nerve terminals in the hippocampus or mPFC (Nisenbaum et al., 1991; Gresch et al., 

1994; Finlay et al., 1997; Jedema et al., 1999) and the increased responsivity of the LC 

noradrenergic system persist for many days following removal from the cold 

(Ramsooksingh et al., 2001). We have referred to this phenomenon as stress-induced 

sensitization of NE neurons.  

Given that sciatic nerve stimulation activates LC neurons via a mechanism 

mediated by excitatory amino acids (Ennis et al., 1992) and is not mediated by CRH 

(Valentino et al., 1991), we hypothesized that either: 1] cold exposure leads to 

sensitization of multiple pathways that activate LC neurons, or 2] that the LC neurons 

themselves are more responsive to excitatory input in general following chronic cold 

exposure (Jedema et al., 2001). If the sensitized response occurs at the level of the LC 

neuron itself, then the enhanced responsiveness could be maintained in the in vitro brain 

slice preparation.  
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The present experiments used intracellular recording techniques to examine whether 

the sensitization of NE neurons observed previously in vivo is also present in vitro in 

brainstem slices containing the LC. Specifically, we examined both basal 

electrophysiological properties and excitability of LC neurons in slices obtained from 

control rats and rats previously exposed to cold. In addition, we compared the 

morphology of the recorded neurons from both groups. 

 

4.2 METHODS 

 
4.2.1 Animals 

Male Sprague-Dawley rats (Hilltop, Scottdale, PA) weighing 50-100g at the time of 

arrival were housed singly in hanging stainless steel cages in a colony room maintained at 

an ambient temperature of 23°C. Throughout the experiments, lights were maintained on 

a 12 hr light/dark cycle (lights on at 08.00 a.m.), with food (Laboratory rodent diet 5001, 

PMI Feeds, St. Louis, MO) and water available ad libitum. All rats were housed in the 

colony room for 5-10 days prior to any treatment. All protocols were approved by the 

Institutional Animal Care and Use Committee at the University of Pittsburgh and were in 

accordance with the USPHS Guide for the Care and Use of Laboratory Animals.  

4.2.2 Cold Exposure 

Rats (135-200g) were randomly assigned to a control or a cold-exposed group. 

Control rats were housed singly in hanging stainless steel cages in a colony room 

maintained at an ambient temperature of 23°C for 2 weeks. The effects of chronic cold 

exposure on adrenal TH are more profound in shaved than unshaved rats (Fluharty et al., 

1983) despite adequate thermal homeostasis (Moore et al., 2001). Therefore, the body fur 
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of rats in the cold exposure group was shaved from the rump to the forelimbs 

immediately prior to cold exposure. These rats were housed singly in hanging stainless 

steel cages in a cold room maintained at an ambient temperature of 5°C, where they 

remained undisturbed for 2 weeks. Cold-exposed rats were removed from the cold room 

the afternoon prior to the experiment and housed overnight in a colony room maintained 

at an ambient temperature of 23°C, thereby maintaining a protocol similar to that used 

previously for studying stress-induced sensitization of NE neurons (Nisenbaum et al., 

1991; Gresch et al., 1994; Finlay et al., 1997; Mana and Grace, 1997; Jedema et al., 

2001). 

4.2.3 Tissue preparation 

Rats (190-300g) were anesthetized with chloral hydrate (400 mg/kg, i.p.) and 

perfused through the ascending aorta with an ice-cold, oxygenated (low Na/high sucrose) 

perfusion solution (1.9 mM KCl, 1.2 mM Na2HPO4, 6 mM MgCl2, 33 mM NaHCO3, 20 

mM glucose, 229 mM sucrose saturated with 95% O2/5% CO2) (Aghajanian and 

Rasmussen, 1989). Following decapitation, the brain was rapidly removed, placed in cold 

perfusion solution and 300 µm thick horizontal slices containing the LC were prepared 

using a DSK Microslicer (Ted Pella). Tissue was transferred to cold, oxygenated aCSF 

(124 mM NaCl, 5 mM KCl, 1.2 mM KH2PO4, 2.4 mM CaCl2, 1.3 mM MgSO4, 26 mM 

NaHCO3, 10 mM glucose saturated with 95% O2/5% CO2) (Lavin and Grace, 1998). 

After a recovery period of a minimum of 60-90 min, sections were transferred to the 

recording chamber where they were superfused with oxygenated aCSF at a flow rate of 

0.8-1.5 ml/min at 35°C.  
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4.2.4 Electrophysiology 

Intracellular recordings were obtained from neurons in the LC that were tentatively 

identified by their location within the trans-illuminated slice. Electrodes were filled with 

biocytin (2% biocytin in 2-3M KC2H3O2) and had an impedance of approximately 50-100 

MΩ. Putative LC neurons were identified based on a regular pattern of low frequency 

discharge of long duration action potentials, as described in previous studies (Andrade et 

al., 1983; Williams et al., 1984; Ivanov and Aston-Jones, 1995). Input resistance was 

determined from current-voltage relationships using hyperpolarizing current steps (0.02-

0.4nA, 200msec, 0.2Hz). Following recording of basal activity for 3-10min, small 

depolarizing current pulses (0.05-0.4nA; 500msec, 0.5 Hz, 4 current steps at each 

intensity with different intensities delivered at 20-30 sec intervals) were applied through 

the recording electrode in order to examine the neuronal excitability. At the end of each 

recording session, biocytin was ejected into the recorded cell for histological verification. 

Only one neuron per slice was examined. 

4.2.5 Immunocytochemistry 

Sections were stored in 4% paraformaldehyde or 10% buffered formalin solution 

for a minimum of 1 week. Sections were rinsed several times in phosphate buffer (PB; 

0.1M; pH 7.2-7.4) or tris-buffered saline solution (TBS; 0.1M; pH 7.6) before and 

between the following steps. Following a freeze-thaw procedure using decreasing 

concentrations of cryoprotectant and overnight incubation in a 1% Triton X-100 in TBS 

solution, tissue sections were incubated in avidin-biotin peroxidase complex (ABC; 

1:200; Vectastain Elite kit; Vector Laboratories) in TBS. The peroxidase reaction was 

visualized by incubating the sections in 0.022% diaminobenzidine (DAB), 0.3% 

NiSO4(NH4)2SO4 and 0.003% hydrogen peroxide in TBS for 6-7 min. The peroxidase 
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reaction was terminated by several rinses in TBS. Subsequently, the tissue was processed 

for TH-immunoreactivity. Following incubation for 30 min in blocking solution (BS) 

containing 3% normal goat serum, 0.4% Triton X-100, and 1% bovine serum albumin in 

TBS, pH 7.6, sections were incubated overnight in BS containing a monoclonal antibody 

raised in mouse against TH (1:10,000; Chemicon). Following rinses in TBS, tissue was 

incubated in secondary antibody (1:400; BA2001, Vector Laboratories) in BS for 30 min, 

rinsed in TBS, and incubated in ABC. The peroxidase reaction was visualized by 

incubation in 0.022% DAB and 0.003% hydrogen peroxide in TBS for ~5 min. Finally, 

sections were mounted on gelatin-coated glass slides, dehydrated through increasing 

concentrations of alcohols followed by xylene, and coverslipped, before verification that 

the location of the recorded neuron was indeed within the LC.  

4.2.6 Data Analysis:  

Stable basal activity of LC neurons was recorded for a minimum period of 3 min. 

Data for all action potentials for each individual neuron were averaged over the baseline 

period, and these values for each neuron were averaged for each treatment group. FR was 

expressed as the average number of spikes discharged per second. The average 

membrane potential was estimated from the reading of the Vm displayed on the amplifier 

within the first 30 sec of the penetration of the neuron. The action potential threshold was 

defined as the potential at which the greatest change in slope of the membrane potential 

occurred, which was determined from the second order derivative of the membrane 

potential waveform. The amplitude of the action potential and afterhyperpolarization 

were measured relative to this threshold, and the action potential duration was measured 

at the level of threshold. Statistical comparison of all parameters of basal activity between 

LC neurons from control and cold-exposed rats was performed using a t-test for 
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independent samples. The excitability of LC neurons in response to current injection was 

defined as the differential of the firing rate occurring during a depolarizing current step 

and the basal FR for a specific neuron. Statistical comparison was performed by 

Greenhouse-Geisser corrected ANOVA using group as factor and current intensity as a 

repeated measure. We expressed accommodation as the differential of the increase in 

instantaneous firing (reciprocal of ISI) above basal firing rate between the first two and 

last two action potentials during the train evoked by depolarizing current injection in 

order to account for any confounding effect due to differences in basal firing rate. The 

duration of the PAI was expressed as the ISI between the last action potential during and 

the first action potential following a 0.4nA current step. Statistical comparison of 

accommodation and PAI were performed using a t-test for independent samples. All 

statistical comparisons were performed using SPSS for Windows v10.1 (Chicago, IL) and 

the α-level was set to 0.05. 

 

4.3 RESULTS 

 

4.3.1 Morphology of LC neurons 

Recordings were made from 66 spontaneously active neurons from 29 control and 

17 cold-exposed rats. The majority of these neurons (44 out of 66) was filled with 

biocytin following the recording session and subsequently processed for double labeling 

immunocytochemistry against biocytin and TH. In all cases in which a cell was filled 

with biocytin, it was surrounded by TH-immunoreactive somata and processes (figure 15)  
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Figure 15 Identification and morphology of LC neurons recorded in vitro 
(left) A representative example of an LC neuron filled with biocytin (black) in a 

horizontal brainstem slice obtained from a control rat. Immunoreactivity for tyrosine 

hydroxylase (brown) outlines the area of the locus coeruleus.  

Representative examples of LC neurons from a control (left) and cold-exposed rat (right) 

demonstrate that LC neurons from control and cold-exposed rats have a similar 

morphology. LC neurons in slices from control rats had an average soma size of 26±1 µm 

with an average of 5.7±0.2 primary dendrites emanating from its perimeter (n=33), while 

LC neurons from in slices from cold-exposed rats had an average soma size of 25±2µm 

with an average of 5.6±0.4 primary dendrites emanating from its perimeter (n=11). Scale 

bar represents 50 µm for both photomicrographs. 
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demonstrating that the recorded neuron was indeed within the LC. The morphology of the 

biocytin-immunoreactive neurons was consistent with that of identified LC neurons based 

on previous anatomical studies (Swanson, 1976; Groves and Wilson, 1980b; Cintra et al., 

1982) as well as that of LC neurons stained intracellularly in in vivo or in vitro 

preparations (Aghajanian and Vandermaelen, 1982; Travagli et al., 1996; Jedema and 

Grace, 1999): a disc-shaped or multipolar soma with 4-9 processes emanating from its 

outer edge. There were no gross morphological differences between LC neurons from 

previously cold-exposed rats and control rats. LC neurons in slices from control rats had 

an average soma size of 26±1 µm with an average of 5.7±0.2 primary dendrites 

emanating from its perimeter (n=33), while LC neurons from in slices from cold-exposed 

rats had an average soma size of 25±2 µm with an average of 5.6±0.4 primary dendrites 

emanating from its perimeter (n=11). 

 

4.3.2 Basal discharge activity 

The spontaneous discharge frequency of LC neurons in slices from control and 

cold-exposed rats was not significantly different (2.15±0.19Hz vs 2.81±0.55 Hz; n=43 

and 23, respectively). There were no differences in any of the action potential waveform 

characteristics between slices from control and cold-exposed rats (table 2). No 

spontaneous post-synaptic potentials (excitatory or inhibitory) were observed.  

 

4.3.3 Hyperpolarizing current injection  

Hyperpolarizing current injection (duration 200-300msec) through the recording 

electrode resulted in an amplitude-dependent deflection of the steady-state membrane 
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Table 2: Action potential waveform characteristics of control and cold-exposed LC 
neurons 
Action potential waveform characteristics (±SEM) for spontaneous action potentials in LC neurons in slices 

obtained from control and previously cold-exposed rats (n=14 for each group). No between-group 

differences were observed. 

 

 

 Control Cold 

Resting membrane potential (mV) -58.2 ± 2.0 -56.0 ± 1.4 

Action potential threshold (mV) -49.4 ± 2.5 -50.2 ± 1.9 

Action potential amplitude (mV) 73.2 ± 2.0 75.3 ± 1.3 

Afterhyperpolarization (mV) 19.0 ± 0.6 20.1 ± 0.9 

Action potential duration (msec) 2.2 ± 0.1 2.1 ± 0.1 

 

 

 

potential (figure 16). Neurons from both cold-exposed and control rats exhibited inward 

rectification of the conductance, which is characteristic for LC neurons (Williams et al., 

1984). The current-evoked steady-state membrane potential deflection was greater in LC 

neurons from cold-exposed rats [F(1,304)=9.101, p=0.007) compared to control rats 

(figure 17). The difference in membrane potential deflection between cold-exposed and 

control neurons varied linearly with the intensity of current injection in the range tested  

(-0.5 to 0.0 nA). The input resistance as determined from the instantaneous slope of the 

steady-state current-voltage relationship was greater in neurons from cold-exposed rats 

compared to control rats [F(1,304)=4.948, p=0.038), and this effect was independent of 

the amplitude of the current injection (figure 17). 
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Figure 16 Current-voltage relationship of LC neurons from a control and a cold-
exposed rat 
Hyperpolarizing current steps (0-0.5nA, 200msec) delivered through the recording 

electrode caused a deflection of the membrane potential in LC neurons from a control (A) 

and cold-exposed rat (B). C) Overlay of traces from a neuron of a control and cold-

exposed rat shows the larger deflection in the neuron of the cold-exposed rat. The values 

plotted in the current-voltage plot (D) were acquired at membrane steady-state, which 

was more than 125 msec following the initiation of the current pulse. The steady-state 

deflection of the membrane potential varied with the amplitude of current injection in a 

non-linear manner indicative of inward rectification. The slope resistances at the zero-

current level calculated from the (quadratic) regression line were 81 MΩ and 98 MΩ for 

the control and cold-exposed rat, respectively. 
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Figure 17 Input resistance of LC neurons from control and cold-exposed rats 
Plotting the amplitude of hyperpolarizing current steps (200-300msec) against the 

resultant steady-state deflection of the membrane potential for all neurons revealed that 

LC neurons from cold exposed rats exhibit a larger deflection than control rats. The 

differential in voltage deflection between cold-exposed and control rats varies with the 

amplitude of current injection in a linear manner. (Inset) The slope resistance of neurons 

of cold-exposed rats is larger compared to control. The average slope resistance at the 

zero-current level is 84±6 and 93±5 MΩ for control (n=12) and cold-exposed rats (n=9), 

respectively. 
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4.3.4 Depolarizing current injection 

In response to intracellular depolarizing current injection (duration 500msec), an 

amplitude-dependent increase in the discharge activity above basal activity was observed, 

with larger current steps eliciting larger increases in discharge activity for neurons from 

both control and previously cold-exposed rats (figure 18). Neurons from cold-exposed 

rats showed a progressively larger increase in activation compared to neurons from 

control rats as evidenced by a significant group by current interaction [F(7,44)=3.849, 

p=0.044].  

 

 

 

 

 

 

Figure 18 Excitability of LC neurons from control and cold-exposed rats 
In response to an intracellular depolarizing current step (500msec), LC neurons from 

cold-exposed rats exhibited a larger increase in firing rate above baseline compared to 

control rats [F(7,44)=3.849, p=0.044; n= 20 and 26 respectively]. 
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When sufficient depolarizing current was injected through the electrode, multiple 

spikes could be elicited with progressively longer ISI’s; a process referred to as 

accommodation. The distribution of spikes during a current step, adjusted to evoke the 

same number of spikes above baseline, was different between neurons from cold-exposed 

and control rats. Specifically, when spike trains elicited by current steps adjusted to 

evoke six spikes were compared, the accommodation was significantly less in neurons 

from cold-exposed rats compared to control rats (figure 19). Thus, neurons from cold-

exposed rats exhibited a smaller decrease in instantaneous firing rate above baseline 

(inverse of ISI minus basal FR) during the current step compared to neurons obtained 

from control rats. The instantaneous firing rate above baseline for the last spike pair 

during the current step was 49±2% of that for the first spike pair in neurons from cold-

exposed rats versus 44±1% in control rats [t(36)= 2.328; p= 0.026] (Fig.6). The PAI, or 

time necessary to resume firing following a depolarizing current step eliciting the same 

number of spikes, appeared to be shorter in neurons from cold-exposed rats compared to 

those from controls (2227±359 msec versus 3151±360 msec; n= 16 and 20, respectively; 

figure 20); however, this difference was not significant (p=0.069) due to the large 

between-subject variation within both treatment groups. 
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Figure 19 Example of trains of action potentials of LC neurons from control and 
cold-exposed rats evoked by sustained depolarizing current injection 

In response to an intracellular depolarizing current step of equal amplitude (0.2nA), LC 

neurons from cold-exposed rats (B) discharged more action potential than control 

neurons (A). When the amplitude of current injection was adjusted to achieve the same 

level of excitability (i.e. the same number of action potentials), the neurons from the 

cold-exposed rat (C) exhibit less accommodation of spike firing than neurons from 

control rats. Basal firing rates were 2.5 and 2.6 Hz for the neurons from the control and 

cold-exposed rat, respectively. 



 

83 

 

 

 

 

 

 

 

Figure 20 Evoked spike train characteristics of LC neurons from control and cold-
exposed rats 
(Left) In response to a depolarization of the membrane, LC neurons discharged trains of 

action potentials that exhibited accommodation, which is observed as a decrease in 

instantaneous firing rate above baseline from the first to the last spike during a current 

step (expressed as percentage of initial instantaneous firing rate). LC neurons in slices 

from control rats showed a larger decrease in instantaneous firing rate: instantaneous 

firing rate at the last spike over the first spike in control neurons was significantly less 

compared to neurons from cold-exposed rats. (Right) LC neurons typically show a post-

activation period of inhibition. The duration of inhibition appeared shorter in neurons 

from cold-exposed rats, although this difference was not statistically significant as a 

result of large between-subjects variation within groups. 
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4.4 DISCUSSION 

The present data demonstrate that, following chronic cold-exposure, LC neurons 

recorded in vitro exhibit an increased excitability without major alterations in basal firing 

rate. These data extend those of previous in vivo experiments demonstrating stress-

induced sensitization of NE neurons (Nisenbaum et al., 1991; Gresch et al., 1994; Finlay 

et al., 1997; Mana and Grace, 1997; Jedema et al., 1999; Jedema et al., 2001). The fact 

that an increased excitability without alteration of basal activity is found in the present in 

vitro experiments, in which presynaptic input does not play a significant role, supports 

the hypothesis that the sensitization of NE neurons observed in vivo is, at least in part, 

mediated by an alteration of the LC neurons themselves (Jedema et al., 2001).  

 

4.4.1 Chronic cold exposure 

Chronic cold exposure, as used in the present study, is a complex stressor consisting 

of shaving, relocation to another room, return to a room at room temperature prior to 

testing, etc. We feel that the cold exposure itself is the most likely cause for the 

alterations in central noradrenergic function that is studied. Thus, we demonstrated that 

shaving followed by intermittent cold-exposure or continuous cold-exposure for only one 

week does not result in sensitization of NE release or electrophysiological activity of LC 

neurons (Finlay et al., 1997; Mana and Grace, 1997; Jedema et al., 1999), suggesting that 

neither shaving, room changes nor removal from the cold room are responsible for the 

sensitization of NE neurons. Nevertheless, the possibility exists that an interaction of cold 

exposure and other factors is required to cause sensitization of LC neurons. 
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4.4.2 Basal discharge activity 

The basal discharge activity of LC neurons in slices from both control and 

previously cold-exposed rats is similar to that observed in our in vivo experiments (Mana 

and Grace, 1997; Jedema et al., 2001). In addition, the values obtained for basal LC 

activity in slices from control rats were consistent with previously reported values from 

other in vitro experiments (Andrade et al., 1983; Williams et al., 1984; Ivanov and Aston-

Jones, 1995). Furthermore, the action potential waveform characteristics of 

spontaneously occurring action potentials of LC neurons from both control rats and cold-

exposed rats were similar to each other and they were completely consistent with those 

reported previously (Andrade et al., 1983; Williams et al., 1984; Travagli et al., 1996). 

 

4.4.3 Hyperpolarizing current injection  

The amplitude of the steady-state membrane potential deflection produced in 

response to hyperpolarizing current injection increased with the current injection 

amplitude in a non-linear manner, which could be well described by a quadratic function. 

LC neurons show a clear inward rectification as previously described (Williams et al., 

1984; Williams et al., 1988). This rectification is thought to be a result of the inward 

rectifying properties of potassium conductances (Williams et al., 1984; Williams et al., 

1988; Grigg et al., 1996). The input resistance in control slices was lower than the 

majority of previously published findings. However, it should be noted that in the present 

study brainstem slices were used that were sectioned in the horizontal plane. It has been 

reported that the plane in which slices are sectioned greatly influences the number of 

remaining dendrites and the input resistance of LC neurons (Travagli et al., 1996), with 

horizontal sections allowing the greatest preservation of the dendritic arbor. Indeed, the 
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input resistance obtained in the present study in horizontal slices of control rats is similar 

to the values for LC neurons in horizontal slices estimated from the publication by 

Travagli and co-workers (Travagli et al., 1996). In addition, the input resistance in our 

slice experiments more closely approximate previous findings for input resistance of LC 

neurons obtained in vivo (Aghajanian and VanderMaelen, 1982; Jedema and Grace, 

1999). 

The membrane potential deflection produced in neurons from cold-exposed rats was 

significantly greater when compared to control rats. This difference in membrane 

potential deflection varied linearly with the amplitude of current injection, which would 

suggest that a change in non-rectifying conductances underlies the observed difference 

between neurons from cold-exposed and control rats. Although the amplitude of 

hyperpolarization did not extend into the voltage range where inward rectification is most 

prominent (Williams et al., 1988), inward rectification was evident in the present 

recordings in both control and cold-exposed preparations (i.e. figures 16-17). The 

difference in input resistance between LC neurons from control and cold-exposed rats 

was independent of the amplitude of the hyperpolarizing current injected throughout the 

range of hyperpolarizing current steps tested, further indicating that the difference 

between neurons from cold-exposed and control rats was not caused by alteration of 

conductances exhibiting rectification in the voltage range tested.  

4.4.4 Depolarizing current injection 

A higher level of excitability was observed in LC neurons obtained from cold-

exposed rats when compared to control rats, which was most apparent with larger 

amplitudes of depolarization. This was likely due, at least in part, to a change in 

membrane conductance since the input resistance of LC neurons from cold-exposed rats 
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was greater compared to control rats. The fact that higher amplitudes of current injection 

will evoke a greater number of action potentials, in combination with an increase in the 

input resistance, suggests that a decrease in potassium or chloride conductances is 

involved in the mechanism underlying the enhanced excitability that we have observed in 

neurons from chronically stressed rats. The chloride conductance evoked by GABA 

administration, however, is known to exhibit a strong outward rectification (Osmanovic 

and Shefner, 1990), suggesting that this conductance is not responsible for the observed 

differences between neurons from cold-exposed and control rats. 

In addition to an increase in excitability, LC neurons from cold-exposed rats 

exhibited a smaller decrease in instantaneous firing rate over baseline (i.e. less 

accommodation) during a 500 msec “burst” evoked by depolarizing current injection. 

Nonetheless, there was no significant difference in the amplitude of the AHP between 

control and cold-exposed groups. Differences in AHP duration, on the other hand, were 

difficult to evaluate in spontaneously active LC cells, because the membrane potential 

increases in a continuous manner from the AHP into the depolarizing ramp that precedes 

the next action potential discharge. Even though only voltage clamp recordings will 

enable us to resolve which currents are altered by chronic cold exposure, one potential 

alteration that could contribute to a change in AHP duration could be the apamin-

sensitive calcium-activated potassium conductance that plays an important role during the 

middle phase of the AHP as well as in the accommodation observed in LC neurons 

(Osmanovic et al., 1990; Osmanovic and Shefner, 1993). Apamin was reported to cause 

these changes in AHP and accommodation without changing the spontaneous firing rate 

or membrane potential of the majority of the LC neurons (Osmanovic et al., 1990). In a 
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few cases we tested the excitability of control neurons during bath application of apamin 

and observed an increase in excitability similar to what we observed in neurons of cold-

exposed rats (Jedema and Grace, unpublished observations). Even though a reduction in a 

calcium-activated potassium conductance may potentially account for the increase in 

excitability, it is unlikely that this would explain the increased membrane potential 

deflection in response to hyperpolarizing current, given the requirement for calcium 

influx.  

Alterations in autoreceptor function following chronic stress exposure that might 

result in changes in auto-inhibition have been described in vivo (Pavcovich et al., 1990; 

Pavcovich and Ramirez, 1991; Nisenbaum and Abercrombie, 1993; Flugge, 2000). 

Alpha-2 receptor activation causes a G-protein-mediated hyperpolarization of LC 

neurons via the opening of potassium channels (Aghajanian and VanderMaelen, 1982; 

Williams et al., 1985; Arima et al., 1998). This hyperpolarization is accompanied by a 

decrease of the input resistance, and the current-voltage relationship of this conductance 

is fairly linear (Williams et al., 1985). However, the role for α-adrenergic autoreceptors 

in the auto-inhibition of LC neurons in vitro is controversial (Andrade and Aghajanian, 

1984; Ivanov and Aston-Jones, 1995), and it is unclear to what extend the basal activity 

of LC neurons in vitro is influenced by tonic α2-receptor activation. Regardless, whether 

it is an α2 receptor effect on potassium conductances or a calcium-activated potassium 

conductance, an alteration in auto-inhibition is a likely candidate that may contribute to 

the differences that we have observed in vitro between LC neurons from control and 

cold-exposed rats. It remains to be determined whether the difference in excitability 

observed in the present experiments can completely account for the enhanced excitability 
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observed in our in vivo experiments, or whether alterations in LC afferent input also play 

a role. Additional alterations to afferent input are suggested by recent in vivo studies from 

our laboratory demonstrating a prolonged or secondary excitation in addition to an 

enhanced excitation of LC neurons in cold-exposed rats in response to sciatic nerve 

stimulation (Mana and Grace, 1997; Ramsooksingh et al., 2001). 

4.4.5 Conclusion & clinical implications  

In summary, the present studies demonstrate an enhanced evoked activity of LC 

neurons following chronic cold exposure. Studies in humans have implicated an 

enhanced central noradrenergic activity in mood and anxiety disorders (Charney et al., 

1990; Aston-Jones et al., 1994; Charney et al., 1995; Bremner et al., 1996; Wong et al., 

2000). Given the proposed role for central NE in arousal and attention (Robbins, 1984; 

Aston-Jones et al., 1999; Berridge, 2001), an enhanced central noradrenergic activation 

could underlie the increased response to stress observed in post-traumatic stress disorder 

or the increased distractibility reported for attention deficit hyperactivity disorder 

(ADHD). Given other parallels between mood and anxiety disorders in humans and 

alterations in rats following cold exposure, the paradigm of continuous cold exposure and 

the resultant sensitization of LC neuron responses may represent a unique experimental 

model to study potential mechanisms involved in the alterations underlying these 

disorders. The fact that the changes in excitability occur in vitro, largely in absence of 

synaptic input, suggests that alterations integral to the LC neurons themselves underlie 

the enhanced noradrenergic function in cold exposed rats, and perhaps could contribute to 

the altered central noradrenergic function in mood or anxiety disorders observed in 

humans. 
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5 GENERAL DISCUSSION 

 

The studies described in the previous chapters aim to further elucidate the 

mechanism(s) underlying chronic stress-induced sensitization of NE neurons. First, we 

determined that the enhanced increase of NE efflux in the mPFC evoked by ICV 

administration of CRH observed in chronically cold-exposed rats was accompanied by an 

enhanced increase of LC FR. The enhanced response to ICV CRH was apparent at higher 

doses, but not a lower doses of CRH, leading to a steeper slope of the dose-response 

relationship. Based on these data, it was hypothesized that sensitization of NE efflux is 

not solely a terminal phenomenon, as originally thought (Nisenbaum and Abercrombie, 

1993), and that the electrophysiological response of LC neurons to multiple excitatory 

stimuli is enhanced (Jedema et al., 2001).  

It has been questioned whether CRH has a direct action on LC neurons based on the 

difficulty to demonstrate CRH receptor mRNA in LC neurons in the rat (Chalmers et al., 

1996). Because ICV administration of CRH is likely to increase LC firing rate via an 

action within the LC (Curtis et al., 1997), the effect of CRH on LC neurons recorded in 

vitro was subsequently characterized. Based on experiments demonstrating that the CRH-

evoked activation of LC neurons recorded in vitro persists following blockade of synaptic 

activity and that intracellular inhibition of the seconds messenger cascade for CRH 

receptors inhibited the CRH-evoked activation, it was concluded that CRH has direct 

effects on LC neurons (Jedema and Grace, Submitted).  

Because the response of LC neurons to multiple excitatory stimuli is enhanced, it 

was hypothesized that alterations in feedback pathways recruited following activation of 

LC neurons or alterations of intrinsic properties of LC neurons would, at least in part, 
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underlie the sensitization of LC neurons observed in vivo (Jedema et al., 2001). It was 

further hypothesized that, if alterations of intrinsic properties of LC neurons were 

involved in the mechanism underlying sensitization of LC neurons in vivo, these 

alterations could persist in the in vitro slice preparation (Jedema and Grace, In Press). In 

subsequent in vitro experiments it was demonstrated that the excitation of LC neurons 

evoked by intracellular current injection was enhanced following chronic cold exposure 

(Jedema and Grace, In Press). The findings summarized above have been discussed in 

the previous chapters. In the following paragraphs I will elaborate on the interpretations 

of these findings and discuss potential underlying mechanisms in further detail. 

 

5.1 Basal activity of LC neurons 

Baseline LC electrophysiological activity following chronic cold exposure was 

similar to control both in our in vivo and in vitro studies. Despite the discrepancy of these 

findings with the only report on LC firing rate following cold exposure (Mana and Grace, 

1997), they are consistent with neurochemical data demonstrating similar baseline 

extracellular NE levels following chronic cold exposure in hippocampus and PFC 

(Nisenbaum et al., 1991; Gresch et al., 1994; Finlay et al., 1997; Jedema et al., 1999), and 

the observation that basal levels of tyrosine hydroxylation were similar to control 

following chronic cold exposure (Nisenbaum et al., 1991; Nisenbaum and Abercrombie, 

1992). The slight but significant increase in baseline FR of LC neurons observed in the 

one previous study (Mana and Grace, 1997) may reflect differences in methodology or 

the fact that the basal firing rates of LC neurons in that study were not all independent of 

each other. Alternatively, the slight increase in basal firing rate may indicate that there is 
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an increase of LC FR along a continuum of activity that is simply more profound at 

higher (evoked) levels of activity. In this regard, it should be pointed out that across all 

studies using chronic cold exposure, basal levels of NE efflux or LC FR were higher, 

albeit in most cases not significantly, in all (Nisenbaum et al., 1991; Gresch et al., 1995; 

Mana and Grace, 1997; Jedema et al., 1999; Jedema et al., 2001; Jedema and Grace, In 

Press), but one study (Finlay et al., 1997). Furthermore, exposure to other chronic 

stressors, like tail shock, foot shock or restraint, increases baseline LC FR, although again 

these increases do not reach statistical significance in some cases (Weiss and Simson, 

1988; Pavcovich et al., 1990; Curtis et al., 1995). Indeed, if the chronic stress-evoked 

sensitization of LC neurons is a consequence of alterations within LC neurons as we 

proposed (Jedema and Grace, In Press), one would have to hypothesize that this altered 

process is not at all involved in the spontaneous activity of LC neurons for this alterations 

not to affect basal NE efflux or LC FR.  

 

5.2 Evoked activity of LC neurons 

A clearly consistent finding across different studies in both anesthetized and awake 

rats following chronic cold exposure as well as different stressors is the enhanced evoked 

activity of LC neurons in response to excitatory stimuli (Simson and Weiss, 1988; 

Nisenbaum et al., 1991; Gresch et al., 1994; Curtis et al., 1995; Finlay et al., 1997; Mana 

and Grace, 1997; Jedema and Grace, 1999; Jedema et al., 2001). The fact that a sensitized 

response is present in vitro demonstrates that at least some of the physiological 

alterations underlying chronic stress-induced sensitization are maintained in the slice and 

are localized within LC neurons or their proximity. In addition, the enhanced response of 
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LC neurons to excitatory stimulation can not be an acute consequence of sensitization 

that occurs in the HPA axis or sympathetic nervous system following chronic stress 

exposure (Vernikos et al., 1982; Konarska et al., 1989). However, as discussed below 

(Section 5.4.3 and 5.5), chronic upregulation of ACTH and corticosterone could lead to 

long term alterations in channels or receptors within the LC that then lead to a sensitized 

response of LC neurons to subsequent stimulation. Furthermore, alterations in other brain 

regions may further contribute to the sensitization of LC neurons observed in vivo.  

It has been demonstrated that in LC neurons, PKA activity and basal and evoked 

ADC activity are increased following 5-days of cold exposure as well as following 

chronic opiate treatment (Melia et al., 1992; Nestler et al., 1999). In addition, it has been 

demonstrated that ADC and PKA activity are important for the spontaneous pacemaker 

activity and VIP-evoked inward current in LC neurons (Wang and Aghajanian, 1990; 

Alreja and Aghajanian, 1991a, b). Based on these data it was hypothesized that the 

observed upregulation of PKA and ADC might underlie the enhanced excitability of LC 

neurons following chronic stress exposure or chronic opiate treatment (Nestler et al., 

1999). However, our findings of an increased excitability combined with an increased 

input resistance of LC neurons following chronic cold exposure suggest that there is also 

a contribution of an inhibition of other (outward) conductances to the alterations observed 

following chronic cold.  

The enhanced response of LC neurons in vitro was evoked by current injection, thus 

by-passing any receptors that mediate a pharmacological excitation. These data indicate 

that stress-induced sensitization of NE neurons is not dependent on enhanced sensitivity 

of one or more excitatory receptors. Based on the steeper slope of the dose-response 
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relationship for CRH, we hypothesized that stress-induced sensitization of NE neurons 

was a consequence of an alteration in a feedback circuit (Jedema et al., 2001). Given that 

this feedback circuit is maintained in vitro, this feedback circuit is expected to be a local 

circuit and is likely inhibitory, based on the presence of GABA-ergic interneurons on the 

border of the LC area (Van Bockstaele and Chan, 1997). Based on these findings, it could 

be hypothesized that stress-induced sensitization of NE neurons is a consequence of a 

reduction of the effect of local GABA-ergic interneurons or auto-inhibition of LC 

neurons.  

 

5.3 GABA-ergic inhibition of LC neurons 

In vivo the LC is under tonic inhibitory control of GABA-ergic neurons (Ennis and 

Aston-Jones, 1989; Kawahara et al., 1999; Pudovkina et al., 2001). GABA-ergic neurons, 

both from extrinsic sources as well local interneurons innervate the LC (Van Bockstaele 

and Chan, 1997; Van Bockstaele, 1998). GABA-ergic inhibition of LC neuronal FR and 

NE release is largely mediated by GABAA receptors with a small contribution of GABAB 

receptors (Shefner and Osmanovic, 1991; Kawahara et al., 1999). The GABAA receptor 

complex also contains the BZD binding site. Alterations in GABAA receptor binding and 

pharmacology as well as alterations in BZD receptor binding and expression have been 

described following chronic stress exposure (Acosta et al., 1993; Deutsch et al., 1994; 

Orchinik et al., 1995; Orchinik et al., 2001). In addition, alterations in GABAA and BZD 

receptors have been described in the LC following adverse early life experiences (Caldji 

et al., 2000a; Caldji et al., 2000b). However, these changes are generally small and 

variable (Deutsch et al., 1994). Nevertheless, a reduction of GABA-ergic tone under 
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baseline conditions in cold-exposed rats can be concluded from a microdialysis study 

demonstrating that intraperitoneal injection of diazepam does not reduce baseline NE 

levels as in control rats (Finlay et al., 1995). However, the response to acute stress 

exposure in the control rats was not reduced by benzodiazepine administration, 

suggesting that GABA-mediated inhibition does not play a major role in the modulation 

of evoked NE release (Finlay et al., 1995). Since the effect of sensitization of LC neurons 

is most prominent under evoked conditions, this would argue against a reduction in 

GABA-ergic function underlying stress-induced sensitization of LC neurons. On the 

other hand, the foot shock evoked activation of CeA neurons is reduced following 

chronic cold exposure (Correll et al., 2002), which may lead to a reduced inhibition 

during foot shock based on the GABA-ergic nature of CeA afferents to the LC (Cassell et 

al., 1999). Furthermore, the response of LC neurons to CeA stimulation, which is 

typically inhibitory in control rats, is greatly reduced in cold-exposed rats (Ramsooksingh 

et al., 2001). Given that CeA stimulation typically results in a general suppression of LC 

activity rather than a time-locked discreet inhibition (Ramsooksingh et al., 2001), perhaps 

the reduction in evoked activation of CeA neurons and the reduced response of LC 

neurons to CeA stimulation might contribute to the sensitization of LC neurons by 

influencing the late component of the excitation of LC neurons evoked by sciatic nerve 

stimulation (Ramsooksingh et al., 2002). Even though these alterations in interaction 

between different brain regions may further contribute to stress-induced sensitization of 

LC neurons in vivo, only a potential decrease of function of local GABA-ergic 

interneurons or GABAA receptors can be involved in the enhanced excitation that was 

observed in vitro (Jedema and Grace, In Press). It is not clear whether there is any 
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GABA-ergic tone present in vitro or whether there is any functionally important GABA-

ergic activity of interneurons in the LC as a result of an increase in the activity of LC 

neurons.  

 

5.4 Auto-inhibition of LC neurons 

 

5.4.1 Auto-inhibition 

Auto-inhibition of LC neurons mediated by α2 receptor has been extensively 

debated and the resolution of this issue has been hampered by (nor)adrenergic innervation 

of the LC from extrinsic sources (Hökfelt et al., 1984; Milner et al., 1989; Kachidian et 

al., 1990; Pieribone and Aston-Jones, 1991; Shipley et al., 1996; Van Bockstaele et al., 

1996b; Van Bockstaele et al., 1998b). In addition to extrinsic (nor)adrenergic innervation, 

the presence of axon collaterals (Shimizu and Imamoto, 1970; Swanson, 1976; Cintra et 

al., 1982) and dendro-dendritic contacts (Shimizu and Imamoto, 1970; Sladek and 

Parnavelas, 1975; Shimizu et al., 1979; Groves and Wilson, 1980a, b; Milner et al., 1989; 

Van Bockstaele et al., 1996b; Van Bockstaele et al., 1998b) have been reported in the LC. 

It has been suggested that auto-inhibition of LC neurons in vivo occurs via NE release 

from feedback axon-collaterals or from dendrites (Aghajanian et al., 1977; Cedarbaum 

and Aghajanian, 1978b; Ennis and Aston-Jones, 1986). In contrast, it has been suggested 

that auto-inhibition in vitro does not involve NE release, but that it is a consequence of 

activation of a calcium-activated potassium conductance (Andrade and Aghajanian, 

1984). The plane of section used for preparation of slices for in vitro recording influences 

the preservation of axon collaterals or dendrites (Travagli et al., 1996) and based on the 
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morphology of LC neurons and the orientation of their dendritic arborization (Swanson, 

1976; Cintra et al., 1982; Travagli et al., 1996; Jedema and Grace, 1999), it would be 

expected that in preparations using coronal sections many of these processes potentially 

involved in auto-inhibition would be severed. Both in vivo and in vitro studies have 

demonstrated that administration of α2-receptor antagonists increases basal FR of LC 

neurons (Cedarbaum and Aghajanian, 1976; Simson and Weiss, 1987; Ivanov and Aston-

Jones, 1995; Simson, 2001). The increase in basal firing rate observed in vivo and in vitro 

following administration of α2-receptor antagonists suggests the presence of a constant 

adrenergic tone, which would be consistent with NE-mediated inhibition. Furthermore, in 

vivo administration of the auto-receptor antagonist idazoxan greatly increases the 

excitability of LC neurons in response to glutamate, nicotine and sensory stimulation 

(Simson and Weiss, 1987; Simson, 2001). Similarly, bath application of yohimbine or 

idazoxan enhances the increase in FR evoked by local administration of glutamate in 

vitro (Ivanov and Aston-Jones, 1995). These data suggest that even in vitro, NE is being 

released from LC neurons leading to auto-inhibition of their own activity.  

 

5.4.2 Stress-induced alterations in auto-inhibition 

Several chronic stress-induced alterations of α2 receptor function have been 

reported previously. Thus, α2 receptor binding and α2A mRNA in LC are decreased in tree 

shrews following exposure to chronic social stress (Flugge, 1996; Meyer et al., 2000) 

although more recently this same group failed to replicate its own binding data (Flugge et 

al., 2001). In rats, α2 receptor binding in the LC is decreased following adverse early life 

experiences (Ladd et al., 2000; Liu et al., 2000). In addition, rats chronically exposed to 

tail shock exhibit a decreased sensitivity to the α2 receptor antagonist idazoxan (Simson 
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and Weiss, 1988). In contrast, a paradoxical increase in sensitivity to the α2 receptor 

agonist clonidine has been reported for NE release in the hippocampus following chronic 

cold exposure (Nisenbaum and Abercrombie, 1993). In addition, repeated immobilization 

has been reported to increase the sensitivity to clonidine (Pavcovich et al., 1990), while 

an increased sensitivity to clonidine was reported following acute exposure to foot shock 

(Pavcovich and Ramirez, 1991). Even though these apparent discrepant alterations in α2 

receptors may be hard to reconcile, it should be noted that a change in α2 receptor-

mediated auto-inhibition could also occur without alterations in the number or affinity of 

receptors. Alterations in the efficacy of the coupling of the receptor to the intracellular 

effector enzymes or alterations within the second messenger pathways can functionally 

impact on auto-inhibition. For example, a decrease in α2 receptor function can be caused 

by a decrease in the amount or activity of the Gi protein coupling the α2 receptor to its 

effector, whether that is a potassium channel or the enzyme ADC. Many different types 

of regulators of G-protein-signaling (RGS) have been described which can dramatically 

alters Gi protein efficacy (Hepler, 1999). Agonist binding typically results in the 

dissociation of the G-protein into Giα and Giβγ subunits. The Giα subunit subsequently 

activates ion channels or enzymes like ADC. More recently a signaling role for the Giβγ 

subunit has also been recognized (Hepler, 1999). Termination of the channel opening or 

enzyme activation occurs through the endogenous GTP-ase activity of the Giα subunit 

leading to the reunion of an Giα and a Giβγ subunit. It has been demonstrated that RGS is 

necessary for normal kinetics of G protein-coupled inward rectifying potassium (GIRK) 

channel-inactivation (Doupnik et al., 1997). Furthermore, RGS4, which is preferentially  
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Figure 21 Potential alterations to second-messenger systems after chronic cold 
Chronic stress exposure increases RGS4, which can result in increase of the endogenous 

GTP-ase activity of Giα leading to a more rapid termination of α2 receptor stimulation, 

thereby reducing its effect. In addition, this could lead to a disinhibition of PKA activity 

and an enhancement of receptor stimulation that involves this second messenger cascade.  
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expressed in the brain, has been demonstrated to greatly increase the GTP-ase activity of 

the Giα subunit activated by α2A receptor stimulation (Cavalli et al., 2000), thereby greatly  

reducing the effect of α2A receptor stimulation (figure 21). In addition, the effect of 

stimulation of metabotropic receptors, which exert their effect through the PKA second 

messenger cascade, such as CRH receptors, would be hypothesized to be even further 

enhanced. Interestingly, RGS4 levels in LC neurons are high (Gold et al., 1997) and these 

levels are further increased by 10days of chronic unpredictable stress (Ni et al., 1999). 

Thus, chronic and variable stress exposure may effectively reduce the efficacy of α2A 

receptor stimulation and perhaps other metabotropic neurotransmitter receptors that are 

coupled to Gi or Gq. The stress induced increase in RGS4 levels is highly specific for LC 

neurons, since in all other brain regions RGS4 levels are unaffected with exception of the 

paraventricular nucleus of the hypothalamus (PVN), where levels are decreased by 

chronic stress exposure (Ni et al., 1999).  

 

5.5 Potassium channel function 

In addition to chronic cold-evoked alterations in the number of autoreceptors or the 

efficacy of their signaling cascade, alterations in the number or function of the ion 

channels mediating their effect can influence neuronal excitability in a similar manner. 

Based on the linear current-voltage relationship of the differential voltage deflection 

between neurons from control and cold-exposed rats and the strong trend toward a 

reduction of the duration of the PAI, we hypothesized that a change in potassium 

conductance is most likely underlying the differences observed between both groups 

(Jedema and Grace, In Press). An alteration in potassium conductance could very well be 
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a consequence of an alteration of (auto)receptor number or function as described in the 

previous section.  

Although alterations in potassium channel function per se have not been described 

following chronic stress exposure, recently it has been demonstrated that 

hypophysectomy greatly reduces the excitability of adrenal chromaffin cells via alteration 

of BK potassium channels (Lovell and McCobb, 2001). Furthermore, low levels of 

ACTH or cAMP analogs have been demonstrated to greatly reduce the expression of 

voltage gated potassium channels (Kv1.4) and consequently IK(A) in adrenal cortical cells 

(Enyeart et al., 2000). As mentioned previously, following chronic cold exposure basal 

and evoked ACTH levels are enhanced (Vernikos et al., 1982). Thus, a similar alteration 

of the function of potassium channels that are expressed in LC neurons could lead to an 

enhanced excitability.  

 

5.6 Role of glucocorticoids 

Glucocorticoid (GC) receptors are present in many brain regions, and they are 

present in high amounts in the LC (Harfstrand et al., 1986). Given the fact that GC act 

following translocation to the nucleus through modulation of gene transcription, 

alterations in LC function resulting from alterations in GC signaling would be expected 

to persist for some time in an in vitro preparation. GC are thought to exert an inhibitory 

function on noradrenergic activity. Consistent with an inhibitory effect of GC on LC 

function is the fact that adrenalectomy increases the basal FR of LC neurons. This 

increase presumably occurs via an increase of CRH release in the LC since the increase 

in FR is prevented by intra-LC administration of a CRH antagonist (Pavcovich and 
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Valentino, 1997). The increase in LC FR evoked by sciatic nerve stimulation or 

carbachol is not altered following adrenalectomy, but the effects of hypotensive challenge 

or low doses of CRH were enhanced (Pavcovich and Valentino, 1997). Following chronic 

cold exposure the basal and evoked levels of GC are enhanced (Vernikos et al., 1982), 

which would be expected to result in a reduction rather than a sensitization of 

noradrenergic function. Furthermore, following chronic cold exposure CRH levels in the 

LC are enhanced (Chappell et al., 1986), and the response to exogenous CRH is enhanced 

(Jedema et al., 2001). These data are not consistent with a primary role for an alteration 

in GC affecting CRH levels to underlie the stress-induced sensitization of LC neurons. 

On the other hand, GC mimic the effect of chronic stress on RGS4 levels in LC neurons 

(Ni et al., 1999), which would be expected to reduce the autoinhibitory function of α2A 

receptor stimulation (Cavalli et al., 2000). As described above, a decreased α2A receptor 

function is consistent with the alterations observed in LC neurons following chronic cold 

exposure.  

In addition to the effect of GC on RGS4 levels in the LC, chronic stress levels of 

GC affect the levels of GABAA receptor subunits mRNA in hippocampus (Orchinik et 

al., 1995) and alter the pharmacology of GABAA receptor function in hippocampus 

(Orchinik et al., 2001). Whether similar chronic GC-evoked alterations in GABAA 

receptors subunits occur within the LC area is unknown.  

 

5.7 The role of CRH 

Previously, it was clearly demonstrated that CRH can increase the 

electrophysiological activity of LC neurons and NE release at the terminals of LC 
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neurons (Valentino et al., 1983; Smagin et al., 1995; Curtis et al., 1997). These data of 

CRH evoked activation of LC neurons were extended by the present work by the 

demonstration that CRH can directly increase the FR of LC neurons in vitro and by the 

demonstration that the dose-response relationship for the electrophysiological activation 

of LC neurons by CRH is altered following chronic cold exposure.  

The observation that CRH continues to activate LC neurons in the presence of TTX 

demonstrates that the blockade of impulse-dependent neurotransmitter release does not 

prevent CRH from exerting its excitatory action on LC neurons and suggest a direct 

action of CRH on receptors on LC neurons in vitro. However, the experiment in TTX 

does not rule out the possibility that CRH also affects LC activity by modulating 

presynaptic afferents to LC neurons in vivo. However, other than the presence of CRH 

receptors in the LC without CRH receptor mRNA in LC neurons, there is currently no 

evidence available to support this notion. As indicated in sections 3.1 and 3.4.1 

preliminary ultrastructural evidence has been obtained demonstrating the presence of 

CRH receptors on the surface of LC neurons (Fox et al., 2002). The experiment in TTX 

also does not rule out the possibility that CRH acts through stimulation of impulse-

independent neurotransmitter release from presynaptic terminals afferents that form 

synapses onto LC neurons. Nevertheless, I do not believe that CRH is acting through 

such a mechanism in vitro. First, neither before nor during CRH administration was there 

any evidence of post-synaptic potentials that would be indicative of impulse-independent 

neurotransmission. Nevertheless, it should be acknowledged that such post-synaptic 

potentials could be too small to detect at the soma when they occur at the distal dendrites. 

Second, blockade of the intracellular signaling cascade reported to mediate the effect of 
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CRH receptors, completely inhibited the CRH-evoked increase in FR of LC neurons. 

Given that the blockade of the intracellular signaling cascade occurred intracellularly, it 

would not be expected to influence the effect of CRH on any potential impulse-

independent neurotransmitter release that might subsequently affect LC activity. 

Nevertheless, the possibility still exists that CRH were to act through stimulation of 

impulse-independent release of a neurotransmitter that subsequently influenced LC 

activity through the stimulation of a metabotropic receptor that exerted its effect via a 

signaling cascade involving PKA. An experiment in which the depolarization evoked by 

CRH administration were recorded in a low calcium-high magnesium buffer would 

address the uncertainty left by the experiment of CRH administration in the presence of 

TTX.  

 

5.8 Functional implications 

It has been clearly demonstrated that the evoked LC spike firing rate is enhanced 

following chronic cold exposure (Mana and Grace, 1997; Jedema et al., 2001; Jedema 

and Grace, In Press) and that the increased excitability of LC neurons is translated in an 

enhanced release of NE in the terminal regions (Nisenbaum et al., 1991; Gresch et al., 

1994; Finlay et al., 1997; Jedema et al., 1999). The functional outcome of this enhanced 

NE release is less clear. NE released in terminal areas exerts its function on multiple 

subclasses of post-synaptic α- and β receptors. Chronic foot shock or restraint-induced 

decreases in α1 function and β receptor density have been reported presumably mediated 

by alterations in by GC (Stone and Platt, 1982; Stone, 1987). In addition, a reduction in 

cortical α2 receptor function following chronic GC treatment has been observed (Duman 
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et al., 1986). It is unknown whether the density or efficacy of adrenergic receptors is 

affected by chronic cold-exposure, but given the modulatory role of GC on these 

adrenergic receptors and the elevated GC levels following chronic cold exposure it is 

likely that the effect of NE on its targets is altered following chronic cold exposure. 

Given the opposing effects of different adrenergic receptor subtypes on behavior (see 

below), the final outcome of these hypothesized adrenergic receptor alterations is difficult 

to predict. 

Under normal conditions, NE has complex effects on the performance in tasks 

requiring focused attention. This has led to the hypothesis that the dose-response 

relationship of task performance as a function of NE concentration follows a Yerkes-

Dodson relationship (i.e. an inverted U-shape) (Usher et al., 1999; Arnsten, 2000). 

Whereas low levels of NE were associated with drowsiness, moderate levels of NE 

improved task performance via high-affinity α2 receptors (Arnsten et al., 1996; Franowicz 

and Arnsten, 1999), whereas higher levels of NE resulted in an increased false-alarm rate 

via lower affinity α1 receptors (Birnbaum et al., 1999; Mao et al., 1999). Assuming that 

the enhanced release of NE also takes place in situations with more selective, low levels 

of stimulation of NE release in target areas rather than massive NE release, which is 

expected to occur during stress exposure, task performance would be differently affected 

by enhanced NE release dependent on whether low or high levels of NE are present. 

Thus, under low basal levels of NE stimulation one may hypothesize an improvement of 

task performance in sensitized rats, whereas under high levels of NE stimulation a 

deterioration of task performance could be hypothesized. If, on the other hand, NE levels 

are selectively enhanced in sensitized rats during high levels of LC activity and NE 
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release, a further deterioration of task performance would be expected following chronic 

stress exposure. 

There is limited behavioral data on rats following chronic cold exposure. The 

locomotor activity of cold-exposed rats in response to exposure to shock is enhanced 

without alterations of basal locomotor activity (Moore, Jedema, Seiple, Finlay; 

unpublished observations). In addition, rats previously exposed to chronic cold spent less 

time in the open arms of an elevated plus maze than naive control rats (Seiple et al., 

1997). Similar data have recently been obtained in cold-exposed mice (Hata et al., 2001). 

A decrease of time spend in open arms of the elevated plus maze is often interpreted as 

evidence for an increased level of anxiety, given that anxiogenic drugs decrease and 

anxiolytic drugs increase the amount of time rodents spend in the open arms of the 

elevated plus maze (File, 2001). Therefore, the available data suggest that chronic cold 

exposure may increase anxiety in rats.  

Abnormalities in noradrenergic function have long been associated with a number 

of mood and anxiety disorders (Charney et al., 1995; Bremner et al., 1996; Wong et al., 

2000). Thus, noradrenergic dysfunction has been implicated in depression (monoamine 

hypothesis of depression)(Schatzberg and Schildkraut, 1995), as well as in PTSD (Aston-

Jones et al., 1994; Southwick et al., 1999), panic disorder (Charney et al., 1995), OCD, 

and ADHD (Solanto, 1998; Biederman and Spencer, 2000; Berridge, 2001). For example, 

recent imaging studies of PTSD patients demonstrated an increased activity in multiple 

cortical areas in response to the α2 receptor antagonist yohimbine (Bremner et al., 1997). 

Furthermore, the anxiogenic response to yohimbine was enhanced in PTSD patients 

(Bremner et al., 1997). Thus, the increased anxiety in cold-exposed rats, perhaps as a 
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consequence of, or at least in combination with the alterations of noradrenergic function 

following chronic cold exposure, may indicate that chronic cold exposure of rats can be a 

useful model to study the hypothesized pathophysiology of the noradrenergic system in 

mood and anxiety disorders. Therefore, the alterations observed in electrophysiological 

properties of LC neurons reported in the present work may further aid to elucidate the 

pathological changes in noradrenergic function in patients with mood and anxiety 

disorders. 
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