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Chemical looping combustion (CLC) is an emerging technology for clean energy-production. In 

CLC, an oxygen carrier is periodically oxidized with air and then reduced in contact with a fuel. 

CLC is thus a flame-less oxy-fuel combustion without an air separation unit, producing 

sequestration-ready CO2-streams without significant energy penalty. However, a major hurdle 

towards technical implementation of CLC is the development of robust oxygen carrier materials. 

In this thesis, we report on a combined study of theoretical and experimental 

investigations of oxygen carriers for CLC. A detailed thermodynamic screening of oxygen 

carriers based on several comparison criteria was carried out to come up with the best candidates 

for CLC and then effect of sulfur contamination in the fuel stream on the performance of these 

selected oxygen carriers was studied. In sulfur-free streams the carriers show stable and fast 

reduction and re-oxidation kinetics. Sulfur contamination results not only in sulfidation of the 

metal carrier component, but also in partial sulfidation of the support matrix which marginally 

alters the redox kinetics but does not affect carrier stability. Interestingly, the support sulfidation 

leads to a significant increase in the oxygen carrying capacity of the carriers. Further 

investigation of Cu-based carriers showed that efficient desulfurization of the fuel reactor exit 

stream is achievable with quantitative S-recovery in the air reactor effluent. 

Beyond combustion, chemical looping can be used to produce hydrogen by replacing air 

with steam as oxidant in a ‘chemical looping steam reforming’ process (CLSR). The effluent of 
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the oxidizer is PEMFC-ready hydrogen without further purification steps, resulting in significant 

process intensification. Challenges in CLSR are slower steam vs air oxidation kinetics, high-

temperature carrier stability, and attrition due to large solids transport in a two-bed process. 

In the final part of the thesis, we report on experimental investigations of Fe-based 

nanostructured carriers to study their oxidation kinetics and high-temperature stability. Effect of 

temperature and particle size on hydrogen production and carrier utilization was studied which 

further demonstrated the importance of nano-sizing of the carrier. Finally, a reactor model was 

developed demonstrating that a fixed-bed approach is feasible for CLSR.  
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1.0  INTRODUCTION 

In the last decades, significant research has been carried out to better understand the world 

climate and the long-term impact of climate change. There is now evidence that the mean annual 

temperature at the earth's surface increased over the past 200 years [1]. This temperature increase 

is commonly known as global warming. Emissions of greenhouse gases, CO2, NOx , SOx, CH4, 

is considered as main contributor to global warming and among these gases CO2 is the most 

common gas emission. Combustion of fossil fuels releases a significant amount of carbon 

dioxide into the atmosphere. It is estimated that total carbon dioxide released from fossil fuel 

based power generation is about one third of the total carbon dioxide released from fuel 

combustion [2]. One obvious approach to minimize CO2 emissions is to increase the use of 

renewable energy resources, such as biomass, solar and wind energies. Being renewable, these 

alternative energy sources have the intrinsic advantage of not generating CO2 or contributing 

with a zero net CO2 emissions. However, considering their current state of development and/or 

availability, it is almost impossible for them to fully replace the existing fossil fuels-based power 

generation. Thus, we heavily depend on the use of fossil fuels as the dominant source for the 

world’s energy, and no significant change is anticipated for the next few decades [3]. Thus, in 

the near future power generation via fossil fuel combustion with efficient CO2 capture is going 

to be the key contributor to world’s energy supply. The CO2 capture can be done by number of 

available processes which can be broadly classified in three categories as follows: (i) pre-

combustion, in which the fuel is de-carbonized prior to combustion (ii) oxy-fuel combustion, in 
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which pure oxygen obtained from the cryogenic separation of nitrogen from air is used and (iii) 

post-combustion, in which CO2

There are number of technologies currently available for CO

 is separated from flue gases using different capture technologies. 

2 capture although the majority of 

them were not specifically developed for CO2 sequestration. These processes have been 

practiced for a long time in chemical and petrochemical industries [1]. They are based on 

physical and chemical separation of CO2 which includes absorption, adsorption, cryogenic 

separation and membrane separation. Absorption techniques use a suitable solvent to absorb CO2

Adsorption capture technologies use a solid adsorbent such as zeolites, alumina and 

activated carbon to selectively adsorb CO

 

from the flue gas stream. Alkanolamines such as monoethanolamine (MEA) and diethanolamine 

(DMEA) are typically used in chemical absorption while methanol, dimethylether, polyethylene 

glycol and sulfolane are used in physical absorption [1]. Equipment corrosion in presence of 

oxygen and the energy intensive solvent regeneration are the major bottlenecks in absorption 

techniques. In addition, the presence of common flue gas contaminants such as SOx, NOx can 

negatively impact the process performance.  

2

All these techniques are energy intensive and hence introduce a significant penalty on the 

overall power plant efficiency and therefore result in a net increase in the price of the produced 

electricity. Considering all these factors, chemical-looping combustion (CLC) appears to have 

the potential to stand out as an efficient and low cost technology. This process was initially 

 from flue gases. These techniques require energy 

intensive adsorbent regeneration. Porous membranes separate gas molecules based on their sizes. 

Major drawback of membrane separation is its low gas throughput which makes a multistage 

operation a must and hence makes the process energy intensive. 
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proposed to increase thermal efficiency in power plants, but later on proposed as a technology 

with inherent CO2

1.1 CHEMICAL LOOPING COMBUSTION (CLC) 

 capture with minimal energy losses [4-5]. 

Chemical looping combustion (CLC) is a novel combustion technology which offers an elegant 

and highly efficient route towards clean fossil fuel combustion [6]. In CLC, the combustion of a 

fuel is broken down into two, spatially separated steps (see figure 1): The oxidation of an oxygen 

carrier (typically a metal or metal sulfide) with air, and the subsequent reduction of this carrier 

via reaction with a fuel (i.e. combustion). After combustion, the reduced metal is transferred 

back to the oxidation stage, closing the materials “loop”. Among the main advantages of the 

CLC concept are the fact that the combustion is flame-less, it operates at sufficiently low 

temperatures to avoid NOx formation in the air-blown oxidizer, and it completely suppresses 

prompt-NOx formation by avoiding any contact between the fuel and air. Finally, CLC ideally 

produces a pure mixture of CO2 and H2O as combustion gases, from which high-concentration, 

high-pressure (i.e. sequestration-ready) CO2-streams can be easily produced by condensation of 

water. Thus, the concept results in no significant efficiency penalty for CO2 capture, making it 

rather unique among current and emerging capturing technologies [7-8]. 
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Figure 1. Schematic for chemical looping combustion using syngas 

A generalized combustion reaction in the fuel reactor can be written as follows: 

( ) ( ) 2212 22 nCOOmHOMmnHCOMmn xymnxy +++→++ −  

Once fuel combustion is complete the reduced metal oxide 1−xyOM (or metal) is transferred back 

to the air reactor where it is re-oxidized according to the following reaction: 

( ) ( ) ( ) ( )airfromNOMmnairfromNOmnOMmn xyxy 2221 2
2

22 ++→+
+

++ −  

Thus, the overall reaction of the entire process is simply the conventional combustion of fuel 

using air, 

( ) ( )airfromNnCOOmHairfromNOmnHC mn 222222 2
2

++→+
+

+  

The reduction reaction in the fuel reactor is generally endothermic whereas the oxidation 

reaction in the air reactor is exothermic. Heat of the reaction in the fuel reactor depends on fuel 

type and on the metal oxide used as oxygen carrier. However the net total heat evolved for the 
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combined reduction and oxidation steps remains the same, as the one in a conventional 

combustion where the fuel is burned in direct contact with air. Thus, CLC does not bring any 

enthalpy gains or losses; given the overall heat generation is equal to the heat of combustion of 

fuel. Its major advantage, however, is the inherent separation of CO2 from the flue gases. In 

addition, CLC also minimizes NOx formation since the fuel burns in the fuel reactor in an air 

free environment and the reduced oxygen carrier is re-oxidized in the air reactor at a temperature 

(usually lower than 1200o

1.1.1 Exergy 

C) which is low enough to avoid any NOx formation.  

Exergy is a measure of the maximum theoretical work that can be extracted from a combined 

system of a process and the environment as the process passes from one given state to the 

equilibrium with the environment. When the process comes to equilibrium with the environment 

the net exergy of the system is zero. Exergy in contrast to energy is destroyed in all real 

processes and can not be recovered. An exergy analysis can be used for evaluating new processes 

by testing if the new process has lower exergy destruction than the original process.  

Two step combustion of the fuel in CLC is claimed to reduce exergy destruction in 

combustion [7]. A detailed exergy analysis showed that in CLC with Ni as oxygen carrier 7% 

lesser exergy is destroyed than conventional combustion power plant [7]. The same exergy 

analysis showed that CLC has 12.5% higher exergetic power efficiency, which is the fraction of 

fuel energy converted into net power output, and approximately 8% lesser exergy leaving the 

power plant in exhaust gases [7]. The analysis does not consider the major advantage of CLC 

which is inherent CO2 capture, which when taken into account makes the process even more 

superior to conventional combustion. 
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1.1.2 Brief insight into economic analysis 

Table 1 summarizes a case study that compares the natural gas fired combined cycle (NG-fired 

CC) power plant, semi-closed cycle power plant with chemical absorption (SC-CA) for CO2 

capture and unfired CLC power plant [9] based on the net plant capacity, capital cost, electricity 

cost and net CO2 emissions. The CLC plant considered for economic assessment was sized to a 

power output of about 400 MW, to avoid discrepancies coming from different scales. It can be 

observed that CLC gives higher net power output than NG-fired CC and this is because of the 

lesser exergy destruction in CLC as discussed in previous section 1.1.1. The decrease in net plant 

power (~11%) in SC-CA compared to NG-fired CC is due to the energy penalty it receives from 

the separation process whereas there is no such energy penalty on CLC because of an in-situ 

separation of CO2. The CO2 emissions in NG-fired CC are suppressed by ~90% in SC-CA 

whereas there are absolutely no CO2 emissions from CLC plant and these reductions in CO2 

emissions come at the expense of increased electricity cost, highest being in CLC. The analysis 

assumes that conventional NG-fired CC power plant has no restrictions on CO2 emissions while 

calculating the cost of electricity. However if the currently followed regulations on CO2 

emissions are considered the conventional power plant must account for its CO2

In conclusion, although the available technologies for CO

 emissions 

which will significantly increase the electricity cost. 

2 capture are technically mature 

enough to be implemented at large-scale they are highly energy intensive and as a result quite 

costly. Thus, CLC offers great opportunity to eliminate the energy intensive CO2 removal steps 

minimizing sequestration cost. However, at its present status this technology is probably not 

mature enough to be implemented in a commercial scale. Therefore in the last several years, 
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numerous research and development efforts have been addressed towards the establishment of 

this promising process. 

Table 1. NG-fired CC v/s SC-CA v/s CLC (400MW capacity) [9] 

Parameter NG-fired CC SC-CA CLC 

Net plant capacity (MW) 373 332 403 

CO2 356  emission rate (g/kWh) 36 ~0 

Cost of electricity (€/MWh) 40 51 59 

Net capital cost (M€) 151 185 256 

1.1.3 Literature review 

In 1987, Ishida and coworkers first reported a CLC-based power generation for inherent CO2 

separation [5]. According to Ishida and coworkers, approximately 50–60% electrical efficiency 

can be obtained by employing a CLC integrated power generation system. In such process, the 

calculated CO2

In 1998, Anheden and Svedberg performed a detailed energy analysis for two different 

CLC gas turbine systems [7]. In the first system, methane was used as a fuel and NiO as oxygen 

carrier, while in the second system; the fuel employed was gasified coal (CO and H

 emission rate was 0.33 kg/kWh of produced electricity, which is significantly 

lower than the one of a conventional fossil fuel power plant. 

2) and Fe2O3 

as oxygen carrier. The power efficiency in both cases was 48%, which is comparable to the one 

of a conventional power generation station. However, taking into account the gains of inherent 

CO2 separation, a CLC-based process offers higher overall energy efficiencies. 
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In 2005, Wolf et al. [10] and Wolf and Yan [11] developed a comparative analysis 

between a CLC and a MEA process for CO2 capture in a conventional power generation station. 

According to this study, the energy losses in CLC are smaller than those experienced in 

conventional combustion, although the electrical efficiency of CLC is slightly lower. However, 

once the CO2 separation is included in the calculation and given that CLC does not require 

additional energy for CO2

According to these studies CLC offers overall higher efficiencies compared to 

conventional fuel combustion with CO

 capture, the CLC process provides a higher efficiency than the one for 

conventional combustion. 

2

It is well known that large scale application of CLC is contingent to the availability of 

suitable oxygen carriers. In fact the amount of the bed material in each reactor and the solid 

circulation rates between reactors mainly depends on the oxygen carrying capacity of the 

carriers. Therefore, a most important characteristic of a successful oxygen carrier is its reactivity 

in both reduction and oxidation cycles. In addition, its ability to completely combust a fuel is 

another important characteristic in order to achieve maximum fuel combustion efficiency. 

Furthermore, oxygen carrier particles should be thermally stable in repeated redox cycles at high 

temperatures, be fluidizable, be resistant to attrition and crushing, should not be hazardous to 

environment and should be economical. 

 capture by solvents. However, one should also realize 

that assessment of these efficiencies is normally based on the assumption of instantaneous 

reaction in air and fuel reactor and no deactivation of the oxygen carrier. Neither of these 

assumptions is true in practice and it may significantly affect the overall efficiencies. Both of 

these assumptions heavily rely on the choice of a proper oxygen carrier material which is one of 

the most essential parts of CLC.  
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Most of the technical literature on CLC is focused on developing the oxygen carrier 

material for CLC. Transition metal oxides such as copper, nickel, cobalt, iron and manganese are 

good candidates due to there favorable redox properties. Mattisson et al.[12-15] and Jernald et al. 

[16] reported a detailed thermodynamic analysis for a choice of an oxygen carrier. Both of these 

studies use a technique of Gibb’s free minimization to calculate carrier reducibility and fuel 

conversion.  

Apart from thermodynamics, Adanez et al. [17], Cho et al. [8] and Mattisson et al.  [18] 

studied some other important physical properties such as density, active surface area, pore 

volume, particle size and crushing strength. The density and particle size not only determine the 

fluidizability of the oxygen carrier but also may affect the overall reaction rate, given their 

influence on mass and heat transfer inside the particles. The crushing strength of the particle is 

also an important property due to the physical stresses associated with fluidization. 

Majority of the published work considers Fe, Cu and Ni as the candidates of choice.  Fe 

and Cu are preferred due to their abundant availability, favorable thermodynamics and low cost, 

whereas Ni is chosen due to its superior redox kinetics and thermal stability. In order to increase 

the thermal stability and reactivity of these oxygen carriers they are supported on high 

temperature stable ceramics like SiO2, TiO2, Al2O3, ZrO2

All these studies are based on sulfur-free fuel. However, in practice natural gas, syngas 

and coal, which are considered as fuel for CLC, contain significant amount of sulfur 

contamination which may interact with the oxygen carrier and can further impact the overall 

efficiency of CLC. Neither of these studies deals with the experimental investigation of effect of 

sulfur contamination in fuel on the performance of oxygen carriers. The major goal of our work 

 and bentonite [2,8,13-14,16-26]. 
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was to investigate the impact of sulfur contamination in fuel on the thermal stability and redox 

kinetics of the oxygen carriers in CLC. The results will be discussed in detail in chapter 3 and 4.  

1.2 HYDROGEN PRODUCTION BY CHEMICAL LOOPING STEAM REFORMING 

(CLSR) 

In principle, chemical looping combustion can process any combination of fuel and oxidizing gas 

as long as the oxygen carrier shows sufficient reactivity towards both reactants. The replacement 

of air with steam as oxidant is of particular interest, since in this case ultra-pure hydrogen is 

produced as effluent of the oxidizer after condensation of unreacted steam (figure 2) [27-29].  

This process has a long history, dating back to the early decades of the 20th century, i.e. 

preceding recent development in chemical looping by many decades, and is historically often 

referred to as "steam-iron process" [30-31]. 

Utilizing steam as oxidant in a chemical looping process results in “chemical-looping 

steam reforming” (CLSR) as net reaction, which is illustrated here with synthesis gas ("syngas") 

as fuel: 

Oxidizer:  2 Me + 2 H2O  →  2 MeO + 2 H2

Reducer:   CO + H
  (I) 

2 + 2 MeO  →  CO2 + H2O + 2 Me (II) 
 

Overall:  CO + H2O     →  CO2 + H2 
 

   (III) 

where 'Me' represents the (typically metal-based) oxygen carrier, and MeO the corresponding 

metal oxide. Since chemical looping is a highly fuel-flexible process, syngas can be replaced 

with other fuels, such as methane (natural gas) or even coal, resulting in net reactions of methane 

steam reforming and coal gasification, respectively, albeit with the advantage over the respective 
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conventional processes of yielding “perfect” selectivity for hydrogen and inherently separating 

the hydrogen effluent from the carbon species. 

 

 

Figure 2. Schematic of chemical-looping steam reforming (CLSR) using syngas as fuel 

If CLSR is operated with syngas the net reaction yields water-gas-shift (WGS), as seen in 

the sum reaction (III) above. However, conventional WGS is thermodynamically limited at high-

temperature conditions and kinetically limited at low-temperature conditions, which requires a 

two-stage process in industrial practice [32].  In contrast, the chemical looping based WGS 

process can be run at high temperature without thermodynamic constraints, i.e. it allows to 

overcome the inherent thermodynamic limitations of WGS. By breaking the reaction down into 

two half-reactions via chemical looping the process can hence take full advantage of the fast 

reaction kinetics at high-temperature conditions. Since the steam/hydrogen stream is never 

contacted with the fuel, the typical problems with CO contamination of the hydrogen effluent in 

steam reforming and WGS processes are avoided, making additional clean-up of the hydrogen 
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stream via preferential oxidation (PROX), methanation, and/or other reaction or separation 

stages unnecessary. Overall, CLSR is hence an attractive, strongly intensified, fuel-flexible 

technology for PEM fuel cell-ready H2

1.2.1 Literature review 

 production from fossil or renewable fuels. 

Chemical looping steam reforming has a very long history dating back to the early decades of 

20th

Recently industry is looking at hydrogen as an alternative fuel and at the same time the 

focus is on minimizing the carbon foot-print. Steam-iron process has the potential to satisfy both 

of these needs i.e. hydrogen with low carbon foot-print, therefore this process is recently being 

developed. The focus of all current studies is to stabilize the iron particles in repeated high 

temperature redox cycles. Gupta et al. studied a syngas redox process to produce hydrogen from 

 century and it was referred as steam-iron process. In 1904, Howard Lane (an engineer in 

Birmingham, England) devised an apparatus to produce hydrogen by steam-iron process [33]. 

Hydrogen produced by this technique was used in inflating military balloons. The plant was 

awarded a silver medal for its scientific achievement. Later on in 1911, Messerschmitt filed a 

patent on steam-iron process for hydrogen production [30]. The concept was to pass steam over 

iron at proper temperature which converts iron into iron oxide, and in the process hydrogen is 

liberated. This reaction is carried out until iron can not take up any more oxygen. The iron is then 

regenerated by reducing the oxide to metallic iron by passing synthesis gas over the iron oxide. 

The major setback to this process was deactivation of iron particles after few oxidation-reduction 

cycles. This problem was never properly analyzed and meanwhile other process for hydrogen 

production like methane steam reforming, which was more efficient than steam-iron process, 

took over and steam-iron process lost attention. 
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coal derived syngas [29]. Ni, Cu, Cd, Co, Mn and Fe were evaluated based on the 

thermodynamic equilibrium limitations and Fe was found to be the best candidate for the redox 

process. Based on a thermo gravimetric analyzer (TGA) study they reported that composite 

particles with Fe2O3 as the key ingredient undergo multiple redox cycles without loss of the 

activity. A detailed process simulation showed that the process is capable of converting 74% of 

coal energy into hydrogen energy while inherently capturing the CO2

Galvita et al. studied a similar process, cyclic water gas shift (CWGS) reaction which 

involved use of Fe supported on CeO

 produced during reduction 

of the carrier. 

2-ZrO2

Ryden and Lyngfelt reported a similar approach to produce hydrogen by methane steam 

reforming in chemical looping combustion [34]. They reported co-feeding of natural gas and 

steam to the fuel reactor where it reacts with the iron oxide to produce reformer gas. This 

reformer gas is then fed to the water gas shift reactor to increase its hydrogen content which is 

then separated by pressure swing absorption. Upon reduction of iron oxide metallic iron is 

produced in the fuel reactor which is then oxidized back to the iron oxide in the air reactor. It is 

found that this process gives better selectivity towards hydrogen than conventional methane 

steam reforming due to lower reactor temperatures and favourable heat transfer conditions. 

 [27]. Syngas was used to reduce the oxidized carrier 

and steam was used to oxidize the reduced carrier and thereby producing hydrogen. Hydrogen 

produced by this method was used for a PEM fuel cell without any further purification steps. 

Some coke was formed due to Bouduard reaction which was oxidized by steam to carbon 

monoxide in re-oxidation step. The extent of coke formation was controlled by controlling the 

extent of reduction of the oxidized carrier. The feasibility of this process was demonstrated by 

combining CWGS reactor with a 5 cell PEMFC stack. 



 14 

All these studies focus on the preparation of thermally stable and highly active material 

for hydrogen production via chemical looping carried out in a fluidized bed reactor 

configuration. We focus on the hydrogen production by CLSR in a fixed bed reactor where hot 

spots and heat accumulations can be more pronounced than in fluidized bed reactors. Thermal 

stability and reactivity of the material, effect of particle size on the hydrogen production, and a 

brief model describing the feasibility of fixed bed operation for CLSR will be discussed in 

chapter 5.  
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2.0  THERMODYNAMIC EVALUATION OF OXYGEN CARRIERS 

The large-scale application of CLC depends on the availability of suitable oxygen carriers. They 

should have favorable oxidation and reduction thermodynamics, high oxidation and reduction 

capacity, mechanical stability under repeated oxidation/reduction cycles and thermal stability at 

operating temperature. Other important factors would be cost and environmental impact. This 

section focuses on comparative thermodynamic analysis of a wide range of metals and metal 

sulfides for CLC of syngas and natural gas. Thus, the analysis provides a guideline for selection 

of an oxygen carrier for more thorough kinetic studies required for actual implementation on 

commercial scale. 

In order to evaluate the feasibility of different metals / metal sulfides for CLC an 

equilibrium analysis was carried out using the commercial software package ‘Factsage 5.5’. Two 

types of fuel were considered for the analysis, syngas and natural gas. Composition of syngas 

used in the analysis was the same as the one obtained from EASTMAN gassifier at NETL, 

Morgantown and the composition of natural gas was same as the one obtained at Salt Lake, USA 

[35]. Equilibrium in the fuel reactor was studied for a stoichiometric mixture of fuel and oxidized 

oxygen carrier over a wide temperature range applicable to CLC and at a pressure varying from 1 

to 30bar. In some instances analysis was repeated with excess amount of carrier required for 

complete fuel conversion. Fuel conversion, selectivity, resistance to coking, resistance to sulfide 

formation and thermal stability were the major criteria for comparison. Performance of a broad 
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range of metals and corresponding metal sulfides was evaluated. Only selected metals and metal 

sulfides are presented here for the discussion. 

2.1 CLC OF SYNTHESIS GAS USING METALS AS OXYGEN CARRIERS 

Table 2 shows the composition of the syngas used for the thermodynamic calculations. It can be 

seen that the syngas contains a significant amount of sulfur contamination (~10000ppm: H2

A wide range of metals were analyzed and only those selected few which looked promising for 

CLC, based on the comparison criteria explained above, are shown here. Thermodynamic 

analysis was performed at pressures of 1 to 30bar but no significant effect of pressure was 

observed on the equilibrium conversion of syngas. This makes sense since the total number of 

moles of gaseous species remains same in the fuel reactor and hence pressure will not have any 

effect on the equilibrium conversion. However, for this particular study 30bar pressure is used 

for analysis for the following reasons -  

S, 

COS combined) and thus it is a good choice to analyze thermodynamic feasibility of oxygen 

carriers in a very harsh reducing atmosphere. The results are discussed in subsequent section. 

1) Efficiency of the cycle in the CLC loop will be increased at higher pressures [36] 

2) Having CO2 as a high pressure gas at the outlet of CLC requires very small amount of 

additional power for further compression of the CO2

 

 for the sequestration [37] 
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Table 2. Composition of syngas obtained from EASTMAN gasifier, Morgantown, WV 

Constituent Composition (Vol %) 

CH 0.035 4 

H 30.8 2 

CO 38 

CO 13 2 

H2 16.5 O 

H2 0.961 S 

COS 0.061 

N 0.523 2 

Ar 0.1218 

2.1.1 Equilibrium syngas conversion 

Figure 3 (left) shows the equilibrium conversion of syngas at different temperatures. It can be 

seen from the figure 3 (left) that for all oxygen carriers the equilibrium syngas conversion drops 

down with increasing temperature because for all of them syngas combustion is an exothermic 

process. The dashed black line represents the equilibrium for the homogeneous gas phase 

reaction in absence of any metal oxide. It can be seen from the plot that introducing metal oxides 
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significantly improves the fuel conversion and hence they may be used as oxygen carriers. Ni, 

Cu and Co show high equilibrium conversions and therefore they are the most suitable 

candidates for CLC. 

 

Figure 3. Equilibrium conversion of syngas using metals (left), resistance of metals to coking (right) 

2.1.2 Coking 

Hydrocarbon combustion over a solid material often results in coking at lower temperatures. At 

lower temperatures incomplete combustion is favored over complete combustion [38-40] and 

results in carbon residue deposition on the solid material used in the combustion. This carbon 

deposition on an oxygen carrier may block its availability for the reaction and hence might 

deactivate the carrier entirely. Hence it is worthwhile to look at the resistance of these oxygen 

carriers to coking in the CLC operating temperature regime. Figure 3 (right) shows resistance of 

different oxygen carriers to coking. Interestingly, all oxides show very high resistance to coking 

in the temperature range of 700 to 1200 oC except Fe2O3 which shows significant coking below 

800oC. Hence if iron is used in CLC then one should operate CLC at a temperature above 800oC. 
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2.1.3 Effect of sulfur contamination 

In fuel combustion, sulfur poisoning of the catalyst is a major concern. Sulfur shows very high 

affinity for metals. At low concentration it binds with the metal surface by physical adsorption 

while at high concentration it forms a chemical bond with the metal to form the corresponding 

metal sulfide [41]. Metallic oxygen carriers are no exception and they can easily get poisoned by 

sulfur under the CLC operating conditions. Once poisoned the activity of the metals for fuel 

combustion might drop down significantly and this may have direct impact on the attainable 

conversions. Also from the mechanical stability point of view, formation of metals sulfides may 

severely affect the structural stability of the carrier. Hence here we looked at the resistance of 

oxygen carriers to sulfur present in the synthesis gas. Figure 4 shows the extent of sulfidation of 

different oxygen carriers at different temperatures which is defined as:  

Extent of sulfidation = Metal atoms in metal sulfide at equilibrium / total number of metal atoms 

It can be seen that all oxygen carriers are prone to sulfide formation except Cr and for all 

of them the extent of sulfidation decreases with increase in temperature. Cu, Ni and Co turned 

out very efficient oxygen carriers in terms of fuel conversion but also are highly prone to 

sulfidation. Hence a detailed kinetic analysis for the sulfidation of these carriers is required 

before accepting or rejecting them for CLC. Cr is the only oxygen carrier which is highly robust 

to sulfidation at all temperatures but thermodynamically poor in terms of syngas conversion. 
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Figure 4. Resistance of metals to sulfide formation during syngas combustion 

2.1.4 Thermal stability 

CLC deals with metallic compounds at very high temperatures. Sintering is a major issue at such 

a high temperatures. Sintering of any of the metallic compounds present in the CLC loop will 

lead to pore plugging, agglomerization which eventually will lead to reduction in surface area of 

the carrier and hence the lowered throughputs. Therefore it is important to keep an eye on the 

thermal stability of the metallic compounds at the operating temperature of CLC. Figure 5 shows 

the melting points of metals, metal oxides and metal sulfides. All metals have melting point 

higher than 1200oC except Cu, which melts around 1080oC. 1200oC can be taken as an upper 

limit on the operating temperature of CLC. All metal oxides have melting point greater than 

1200oC and hence they are thermally stable for CLC operation. Among the sulfides, Cu-sulfide, 

Ni-sulfide and Fe-sulfide have melting points lower than 1200oC and hence they are not 

thermally stable for CLC operating up to 1200oC. In particular Ni-sulfide has very low melting 
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point (around 750oC) which might completely eliminate Ni as oxygen carrier for sulfur 

contaminated syngas. 

 

Figure 5. Thermal stability of solids in CLC 

2.1.5 Excess over stoichiometry 

Complete conversion of fuel into CO2 and H2O is very important in CLC. Any unreacted fuel 

will show up in the exhaust gases from the fuel reactor and must be separated from CO2 before it 

goes to sequestration unit. In order to avoid this downstream separation complete conversion of 

fuel is necessary. From the above mentioned analysis it can be seen that only Ni and Cu give 

complete conversion at all temperatures. For all other carriers excess amount of carriers could be 

used in order to achieve complete syngas conversion. Among all the metals discussed above iron 

showed lowest conversion but least reactivity towards sulfur contamination in syngas and 

essentially no coke formation above 800oC. The major advantage iron has is its low cost and low 

toxicity compared to all other metals. Considering the fact that CLC involves a heavy solid 

transport, attrition of the carrier is a major hurdle in technical realization of the CLC. However, 
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if the carrier is as cheap as iron, one can tolerate high attrition rates by simply replacing the 

deteriorated carrier by fresh carrier. Hence there have been many studies focusing on the use of 

iron as oxygen carrier [10,13-14,26,42]. Thermodynamic calculations showed that equilibrium 

syngas conversion is not linearly dependent on excess amount of iron oxide used. In fact the 

results showed a very complex dependence of syngas conversion to excess amount of iron oxide 

used. Figure 6 (left) shows the effect of excess Fe2O3 on equilibrium syngas conversion. Clearly 

equilibrium syngas conversion has no linear relationship with the excess amount of Fe2O3. In 

fact at all temperatures between 700oC and 1200o Figure 6C four distinct zones exist.  (right) 

shows such a plot at 1200oC. 

 

Figure 6. Equilibrium syngas conversion v/s excess Fe2O3 (left), equilibrium syngas conversion v/s excess Fe2O3 at 

1200 o

Figure 7

C (right) 

 shows different iron oxide phases at equilibrium at 1200oC (left) and gas phase 

distribution at equilibrium when varying excess of Fe2O3 used for syngas combustion at 1200o

figure 7

C 

(right). It is evident from  that solid phase transformation is competing with syngas 

combustion. In zone I (0-150%) excess Fe2O3 reacts with syngas. In the process Fe2O3 is 
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reduced to FeO and the corresponding oxygen consumption can be seen in figure 7 (right) in the 

form of decreasing CO, H2 and increasing CO2 and H2O. 

 

Figure 7. Different iron oxide phases at equilibrium at 1200oC (left), gas phase distribution at equilibrium at 1200o

In zone II (150-550%) solid phase transformation is thermodynamically favored over the 

syngas combustion and hence despite the increase in excess amount of Fe

C 

(right) 

2O3 there is no drop in 

equilibrium amounts of CO and H2. The solid transformation results in consumption of FeO and 

formation of Fe3O4 figure 7 phase as shown in  (left). In zone III (550-850%) Fe2O3 amount is so 

high that FeO is completely consumed in solid transformation reaction and then the surplus 

Fe2O3 reacts with the syngas. As a result syngas conversion increases. The equilibrium 

conversion finally attains maxima i.e. complete combustion of syngas around 850% excess. In 

zone IV (above 850%) no further change in equilibrium conversion occurs. Thus the range 

between ~180 to ~580% excess is a dead zone in terms of improvement in equilibrium syngas 

conversion. In reality it might not be feasible to use an excess beyond 600% as it may increase 

material cost, reactor cost, solid handling cost etc. Instead it may be more feasible to recycle the 

unreacted fuel. However it should be kept in mind that this is a thermodynamic evaluation and 
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suggests only the feasibility or infeasibility of the process. Detailed kinetic studies must be 

carried out to correlate the thermodynamic results. 

2.2 CLC OF SYNHESIS GAS USING METAL SULFIDES AS OXYGEN CARRIERS 

Metal sulfides can also act as oxygen carriers and are being considered an alternative to metals as 

oxygen carriers [43-44]. Metals have major disadvantage of getting poisoned in sulfur 

atmosphere. Metal sulfides inherently have sulfur present in their structure and are hence 

inherently sulfur resistant. Another major advantage metal sulfides have over metals is their 

higher oxygen carrying capacity. Metal sulfide (MS) can carry four oxygen atoms per mole of 

metal sulfate (MSO4

The reactions in air and fuel reactor when metal sulfide is used as oxygen carrier are as 

shown below, 

) whereas the oxygen carrying capacity of metals depend on the type of 

metal and metal oxide and it usually varies between one to three oxygen atoms per mole of metal 

oxide. This very high oxygen carrying capacity of metal sulfides can provide higher throughputs. 

A detailed thermodynamic analysis was carried out for a wide range of metal sulfides in order to 

see their feasibility in CLC. Only selected metal sulfides are shown here. 
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2.2.1 Equilibrium conversion and coking 

Pressures of 1 to 30bar were tested for their effect on the syngas conversion. Since very little 

effect of pressure on syngas conversion was observed a pressure of 30bar was selected for the 

further analysis. Figure 8 shows the equilibrium conversion of syngas (left) when CaS, MnS, 

Co9S8

Figure 8

 and FeS were used as oxygen carriers. It can be seen that all of them give very high fuel 

conversion.  (right) shows resistance to coking, which indicates that all of the metal 

sulfides are highly resistant to coking. 

 

Figure 8. Equilibrium conversion of syngas (left), coke formation when different metal sulfides were used as 

oxygen carrier (right) 

2.2.2 Sulfur loss from metal sulfide 

While performing the calculations it was observed that gas phase at equilibrium had sulfur gases 

– H2S, SO2 and SO3 along with CO, H2, CO2 and H2O. This is important since this suggested 

that part of the sulfur associated with metal sulfide was lost in the fuel reactor in the first 

reduction cycle. Naturally this loss of sulfur will be extended to subsequent reduction cycles and 
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ultimately all the sulfur associated with metal sulfide will be gone and the CLC will come to a 

shut down. A careful analysis showed that depending on the temperature there exist two 

processes which were responsible for the sulfur loss from metal sulfates, thermal decomposition 

of sulfates at high temperature and carbonate formation at low temperature. Figure 9 (left) shows 

the permanent sulfur loss for different sulfates in one reduction cycle. It can be seen that all 

metal sulfides show permanent sulfur loss except Co-sulfide shows sulfur loss only above 

1200oC because of thermal decomposition. 

 

Figure 9. Permanent sulfur loss from metal sulfate in fuel reactor, in one reduction cycle (left), equilibrium 

composition of CaCO3 and H2

Carbonate formation and thermal decomposition reactions are as shown below,  

S in fuel reactor after first reduction cycle (right) 

Carbonate formation:  MSO4 + 2CO + 2H2 ↔ CO2 + H2O + H2S + MCO3

Thermal decomposition: 2MSO

  

4 ↔ 2MO + ½ O2 + SO2 + SO

In carbonate formation, sulfur is lost via H

3 

2S formation while in case of sulfate 

decomposition it is lost via sulfur dioxide and sulfur trioxide formation. Metal carbonates are 

generally not stable at high temperature and hence loss of sulfur via carbonate formation occurs 

at low temperatures. CaCO3 is very stable in between 400oC and 600oC and hence CaSO4 loses 
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all sulfur associated with it by forming CaCO3 when reacted with syngas. As temperature 

increases thermal stability of CaCO3

Figure 9

 decreases and hence sulfur loss via carbonate formation 

decreases.  (right) shows equilibrium moles of CaCO3 and H2S after the reduction. It 

shows that CaCO3 and H2

2.3 CLC OF NATURAL GAS USING METALS AS OXYGEN CARRIERS 

S are formed in approximately equimolar amounts at equilibrium and 

hence supports the carbonate formation hypothesis. Thus, if one wants to utilize the potential of 

metal sulfides as oxygen carrier one must alter the kinetics in such a way that thermal 

decomposition of sulfates and the carbonate formation is minimized. 

Table 3 shows the composition of the natural gas used for the thermodynamic calculations which 

is same as the composition of sulfur-free natural gas obtained at Salt Lake, USA. Carrier 

performance was first analyzed using sulfur-free natural gas and then the effect of 1% H2S 

contamination (with adjusted N2

The reaction scheme for natural gas combustion is as follows, 

 content) in the same natural gas was observed on the carrier 

performance. Along with the attainable equilibrium conversion, resistance to coking, resistance 

to sulfide formation and thermal stability, selectivity towards complete combustion was another 

important criterion. The results are discussed in subsequent sections. 

OHCOOCHOverall

MOHCOCHMOducer
MOOMOxidizer

2224:
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Again, the overall reaction is oxy-fuel combustion of natural gas. 
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Table 3. Composition of natural gas[35] 

Constituent Composition (Vol %) 

CH 95 4 

C2H 0.8 6 

C3H 0.2 8 

CO 3.6 2 

N 0.4 2 

 

2.3.1 Equilibrium conversion and selectivity 

Figure 10 (left) shows equilibrium natural gas conversion at different temperatures for selected 

metals. As observed in case of syngas combustion Cu, Ni and Co are highly efficient oxygen 

carriers for natural gas combustion as well. Mn, Cr and Fe are also good choices at temperatures 

above 1000o

Figure 10

C. Equilibrium conversion dependence on temperature in case of Fe is not regular 

exponential but rather it shows a sharp increase followed by a slow increase and then the usual 

exponential increase to maximum equilibrium conversion. This shall be explained later in detail 

in sec. 2.3.3.  (right) shows the selectivity towards complete combustion. Selectivity 

towards complete combustion decreases with increase in temperature for all carriers simply 

because partial combustion takes over at higher temperatures [38-40]. Again Fe shows a complex 

behavior of increase in selectivity below 720oC and this will be explained later in sec. 2.3.3. 
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Figure 10. Equilibrium natural gas conversion v/s temperature (left), selectivity of metal oxides towards complete 

combustion (right) 

2.3.2 Selectivity towards hydrogen production and coking 

Fe, Mn and Cr give very high fuel conversion above 1000o

figure 10

C but very low selectivity towards 

complete combustion (see ). Hence, it is interesting to see if these carriers are good for 

partial oxidation of methane and hence for the hydrogen production. Catalytic partial oxidation 

of methane is a well studied reaction in the literature [45-51] which motivates this analysis of 

using chemical looping combustion for simultaneous hydrogen production. Figure 11 (left) 

shows the selectivity of Mn, Cr and Fe towards hydrogen production. It can be seen that all of 

them show selectivity towards hydrogen production greater than 50% above 800oC. This might 

not be as high as obtained by catalytic partial oxidation of methane [51] but since these carriers 

are used in CLC process CLC can be tuned to produce hydrogen while maintaining its main 

purpose of combustion. This is just a hypothesis and should be evaluated with thorough kinetic 

studies.  
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Figure 11 (right) shows coke formation. Again, Ni, Cu and Co being highly efficient 

carriers are very robust to coking above 500oC. Cr and Mn show coking below 600oC. Fe once 

again shows complex behavior of increasing coke formation with increasing temperatures below 

675oC. Above 675oC this coke formation decreases and above 830oC it is essentially zero. 

 

Figure 11. Selectivity towards hydrogen production (left), coke formation (right) 

2.3.3 Anomalous behavior of iron 

The complex behavior of Fe can be explained with the help of figure 12 which shows the iron 

oxide phases depending on the temperature. It also shows the net oxygen availability for the 

combustion based on temperature and the corresponding CO2 production. Clearly the plot has 

four distinct zones of reduction. In zone I (500 to 675oC) Fe2O3 is completely reduced to Fe3O4 

giving constant oxygen availability for the combustion. In zone II (675 to 720oC) reduction of 

Fe2O3 is stronger than that in zone I. Here Fe2O3

figure 10

 further reduced to FeO, therefore net oxygen 

availability for combustion strongly increases in this zone. As a result there is sharp increase in 

equilibrium conversion (see  (left)), selectivity towards complete combustion (see figure 
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10 (right)) and a sharp decrease in selectivity towards H2 figure 11 production (see  (left)) and 

coke formation (see figure 11 (right)). In zone III (720 to 830oC) Fe2O3 is completely reduced to 

FeO giving constant oxygen availability. At higher temperatures partial combustion takes over 

complete combustion hence in zone III, above 720oC, selectivity towards complete combustion 

decreases. Increase in equilibrium conversion in this zone is not as sharp as in zone II simply 

because the oxygen availability for combustion is constant. In zone IV (830 to 1200oC) FeO is 

reduced to Fe releasing more oxygen. With increase in temperature extent of reduction increases 

and finally above 1100oC equilibrium limit on reduction is reached as can be seen from 

flattening of FeO and Fe curves. Oxygen availability exponentially increases and hence 

equilibrium conversion sees one more sharp increase around 830oC finally attaining the complete 

conversion above 1100o

figure 10

C. Due to exponential increase in oxygen availability decrease in the 

selectivity towards complete combustion is not as sharp as in zone III (see  (right)) and 

the selectivity towards H2 figure 11 production decreases (see  (left)).  

 

Figure 12. Temperature dependent reduction of Fe2O3 
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It would be interesting to take advantage of this temperature dependent reduction of 

Fe2O3

2.3.4 Effect of sulfur contamination 

 to tune the partial and complete combustion depending on the process requirement. For 

this purpose iron should be studied in more detail in kinetic studies. 

Effect of 1% H2S in the natural gas on the carrier performance was analyzed as it was done for 

syngas. It was found that the equilibrium conversion, selectivity towards complete combustion, 

selectivity towards hydrogen production and resistance to coking were virtually unaffected by 

1% H2

figure 13

S contamination. However significant sulfide formation was observed for all carriers 

except Cr as shown in . The trend is very similar to that observed in case of syngas 

combustion. One interesting point is that Fe shows no sulfide formation above 1000oC and hence 

could be a good alternative for efficient but expensive carriers like Cu, Ni and Co when natural 

gas is used as fuel. 

 

Figure 13. Resistance of Oxygen carriers to sulfide formation during natural gas combustion 

 



 33 

2.4 SUMMARY 

Thermodynamic analysis discussed in this chapter clearly suggests that there is no 

“perfect” oxygen carrier for CLC. This analysis only serves as a guideline for choosing an 

appropriate oxygen carrier depending on the fuel type and the operating temperature. However in 

real process the reactor configuration, size of the carrier, contact time, heat and mass transfer and 

other kinetic parameters play very important role and they affect the suitability of a particular 

carrier for that process.  Nevertheless, the thermodynamics gives a rough estimate of what carrier 

could be feasible and can be taken as a good starting point for thorough kinetic studies.  
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3.0  NANOCOMPOSITE OXYGEN CARRIERS FOR CHEMICAL LOOPING 

COMBUSTION OF SULFUR CONTAMINATED SYNTHESIS GAS 

Based on the results of thermodynamic evaluation it is evident that no single carrier is perfect 

and all have their own pros and cons. Hence choice of an oxygen carrier totally depends on the 

fuel type, operating conditions and process requirements. If the fuel conversion, resistance to 

coking and selectivity are taken as major comparison criteria then for a sulfur-free fuel Ni and 

Cu are the obvious choices among the metals. Both give 100% fuel conversion, are highly robust 

to coking and are highly selective towards complete combustion in the operating temperature 

range of 700-1200oC. However when exposed to the redox environment of CLC both Ni and Cu 

(and all other oxygen carriers) suffer from insufficient thermal stability and slow redox kinetics. 

Cu-, Ni-, Fe-, Mn- and Co-based oxygen carriers have been tested with regard to their thermal 

stability and redox kinetics [13,16,42]. Typically, these metals are rendered thermally stable by 

supporting them on appropriate high-temperature supports such as Al2O3, SiO2, or similar 

oxides [25,52-53].  All these studies have been carried out for a sulfur-free fuel and much less 

attention has been given to-date to the interaction of sulfur contaminants with oxygen carriers. 

All fossil - and most renewable - fuels contain significant amounts of sulfur contaminants 

(mainly in the form of H2S), which, as seen in thermodynamic analysis (section 2.1.3), can react 

with metal and metal oxides to form corresponding metal sulfides and can thus impact the 

performance of carrier materials [16,52,54]. Metal sulfides also often have lower melting points 
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(refer section 2.1.4) than the corresponding metals or metal oxides, and thus put an additional 

constraint on the operating temperature of a combustion process. As decreasing fossil fuel 

reserves are leading to a shift towards increasingly “dirty” fuels, the performance of fossil fuel-

based processes and materials in such environments is hence becoming ever more important. 

We have previously demonstrated that the embedding of metal nanoparticles into a 

ceramic matrix (BHA = Barium Hexaaluminate) can result in unusually active and sinter-

resistant nanocomposite materials which combine the high reactivity of metals with the high-

temperature stability of ceramics [55]. The resulting materials show very fast oxidation and 

reduction kinetics, and were stable in multiple redox cycles in the temperature range of interest 

for chemical looping (~700 – 1000o

Here, we investigate the effect of H

C). 

2S (as the typical main S-contaminant) in a typical 

coal-derived syngas on the redox kinetics of these nanostructured oxygen carriers. 

Thermodynamic analysis in previous section shows that Ni and Cu are highly efficient oxygen 

carriers for syngas combustion. Hence nanocomposite Ni- and Cu-BHA carriers were chosen for 

the kinetic studies. They were synthesized, characterized before and after exposure to H2

3.1 EXPERIMENTAL 

S, and 

evaluated with regard to their performance in cyclic redox operation, as characteristic for CLC. 

3.1.1 Synthesis and characterization 

The synthesis of the nanocomposite oxygen carriers is schematically shown in figure 14. It is a 

sol-gel synthesis approach which is template by a reverse microemulsion template. In this 
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synthesis, metal nanoparticles are synthesized simultaneously with the high temperature stable 

ceramic matrix in one pot synthesis. A reverse microemulsion is prepared by mixing aqueous 

metal salt solution (Ni(NO3)3
 * 6 H2O (99.999%) and Cu(NO3)2 * 2.5 H2O (99.99%), 

respectively, for Ni- and Cu-based carriers) with iso-octane (2,2,4-trimethylpentane, 99.7%) and 

a surfactant (poly(ethylene oxide)-block- poly(propylene oxide)-block-poly(ethylene oxide), 

Aldrich). 1-pentanol (99+%) is added as a co-surfactant. Aluminum isopropoxide and barium 

isopropoxide (both 99.9%) at a stoichiometric ratio of 1 to 12 are dissolved in dry isopropanol 

before addition to the reverse microemulsion. The isopropoxides diffuse through reverse micelles 

where they hydrolyse. Simultaneously, the metal salt is reduced to metal nanoparticles, which are 

embedded between the oxide nanoparticles. The microemulsion is then aged for 48 hours, before 

separating the water and oil phase by temperature induced phase separation. The product phase is 

washed several times with acetone and remaining volatile residues are removed by freeze drying. 

This procedure results in a powdered material which is then calcined in air for 5 hours at 600o

 

C 

to get the final form of the material. 
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Figure 14. Schematic synthesis of nanocomposite oxygen carriers 

The materials were characterized at various stages (after synthesis, exposure to H2S, and 

after various reactive tests) via transmission electron microscopy (TEM, JEOL 200), X-ray 

diffraction (XRD, Phillips PW1830 with typical scans between 15o and 90o (2θ) in steps of 0.08o

figure 15

 

with a minimum counting time of 0.2 s at each step), and nitrogen porosimetry (Micromeritics 

ASAP 2020). A typical TEM image is shown in , where the highly homogeneous 

nanostructure of the material consisting of Ni nanoparticles (black) and the BHA matrix (grey 

background) can be observed. 
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Figure 15. TEM image of a typical nanocomposite Ni-BHA (37wt% Ni). 

3.1.2 Reactive tests 

Kinetics and stability of the carriers were evaluated in cyclic thermogravimetric (TGA) 

experiments, using a Perkin Elmers TGA-7 thermogravimetric analyzer. In a typical run, 

between 20 and 40 mg of the nanocomposite carriers were heated inside the TGA cradle in an 

inert gas stream (N2, purity 4.0) to the desired reaction temperature. Then, a dry syngas mixture 

with or without H2 table 4S contamination (see  for detailed compositions of syngas) and air 

(purity: 0.1) were flown alternatingly at a flow rate of 60 sccm (standard cubic centimeters per 

minute) in order to simulate the periodic oxidation-reduction cycles of CLC.  Between oxidation 

and reduction phases, the TGA was purged with nitrogen (flow rate 60 sccm) in order to avoid 

potentially flammable gas mixtures inside the instrument. The duration of the oxidation, 

reduction, and purge phases in a typical experiment were 10 - 15 min, 15 min, and 7 min, 

respectively. All experiments were conducted at ambient pressure conditions. 
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Table 4. Composition of syngas used for TGA tests 

Syngas w/o sulfur Syngas w/ sulfur 

Constituent Moles (%) Constituent Moles (%) 

H 27 2 H 27 2 

CO 36 CO 36 

CO 12 2 CO 12 2 

He 25 He 24 

H2 0 S H2 1 S 

3.2 RESULTS AND DISCUSSION 

3.2.1 Structural stability 

In order to test the structural stability of the above described nanocomposite carriers in a sulfur-

containing atmosphere, Ni-BHA was first oxidized in air at 8000C for 30 minutes, and the 

oxidized powder sample was then exposed to 10,000 ppm H2

Figure 16

S in Argon in a calcinations over at 

various temperatures for 30 min. each. After this exposure, the sample composition was 

evaluated using X-ray diffraction.  shows the results obtained after exposure at 300oC, 

500oC, 700oC and 800oC. 
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After exposure at 300oC, the sample shows only weak reflexes representing NiO and the 

ceramic matrix (consisting of a largely amorphous and hence poorly resolved mix of BaO and 

Al2O3 as precursor of the high-temperature BHA phase). This temperature is too low to result in 

significant reaction between H2S and NiO. Only after exposure at 500oC first weak reflexes for 

nickel sulfide indicate the onset of sulfidation. As expected, the degree of sulfidation then 

increases with increasing temperature, and the sample appears fully sulfidized at 800 oC. 

Interestingly, strong BaSO4 reflexes at temperatures above 700o

Most importantly, we do not find evidence for the formation of Ni

C indicate that at sufficiently 

high temperature the Ba-content of the support is becoming sulfidized as well. 

3S2 under any conditions. This 

sulfide has a very low melting point (Tm ~ 789o

The NiO-BHA sample sulfidized at 800

C) and could hence lead to unstable operation of 

the carrier due to plugging of pores and agglomeration of particles. 

oC (i.e. the sample with the highest degree of 

sulfidation) was then re-oxidized in air at 800oC for 30 minutes. XRD analysis of the resulting 

sample shows complete conversion of NiS to NiO, while retaining unchanged BaSO4

figure 17

 reflexes 

( ). Overall, this indicates that the nanocomposite Ni-BHA carriers are fully sulfidized 

during exposure to H2

However, the irreversible formation of BaSO4 raised concerns about the structural 

stability. Therefore, the morphology of the carriers before and after exposure to H

S at sufficiently high temperature, but that this sulfidation is completely 

reversible upon re-oxidation.  

2

Figure 18

S, as well as 

after re-oxidation, was evaluated via nitrogen sorption.  shows a BET pore analysis of a 

sample before sulfidation, after sulfidation, and after re-oxidation at 800oC. One can see that 

upon sulfidation the pore volume drops slightly but the pore size distribution remains essentially 
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unchanged. Once the sample is re-oxidized, it quantitatively recovers the pore volume within 

experimental error.  
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Figure 16. XRD patterns of NiO-BHA after 30 min. exposure to 10,000 ppm H2S in Ar at 3000C (top left), 5000C 

(top right), 7000C (bottom left) and 8000

The drop in pore volume can hence be attributed to the larger volume of NiS (i.e. fully 

sulfidized NiO particles) embedded in the ceramic pore structure. Since the NiS particles are 

fully re-oxidized to NiO, this effect is completely reversible. Sulfidation of the Ba content in the 

sample, on the other hand, has apparently a negligible effect on the pore size distribution, 

presumably due to the low total Ba content of the samples. Most importantly, it does not affect 

any irreversible changes in pore morphology and hence has no measurable impact on carrier 

stability. 

C (bottom right) 
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Figure 17. XRD pattern of NiO-BHA after exposure to 10,000 ppm H2S in argon for 30 min (see also figure 16, 

bottom right graph) and re-oxidization in air at 800o
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Figure 18. BET pore analysis of NiO-BHA before, after sulfidation and after re-oxidation at 800o

3.2.2 Ni-BHA 

C. 

Once the structural stability of Ni-BHA upon exposure to H2S was verified, the nanostructured 

carrier were subjected to cyclic-TGA (thermogravimetric analysis) tests with H2S-contaminated 

syngas in order to evaluate the effect of H2S on redox kinetics. During the experiments, Ni-BHA 

carriers were oxidized in air for 10 min, and then reduced in a sulfur-free and a sulfur-containing 

dry syngas for 15 min. The composition of both syngas streams is identical except for the H2

table 4

S 

content and the adjusted He balance (see  above). Both oxidation and reduction were 
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conducted at 900oC and 1 bar.  The H2S concentration (1% = 10,000 ppm) represents the upper 

limit of sulfur concentrations typically found in coal-fuel derived syngas and is used as a 

stringent test for the performance of the carriers in an H2

In order to establish a base line for the carrier performance, the cyclic TGA experiments 

were first run with sulfur-free syngas, followed with multiple cycles in H

S-containig atmosphere.  

2

figure 19

S containing syngas. 

After that, the fuel stream was switched back to sulfur-free syngas to test for any irreversible 

changes in the kinetic behavior during exposure to the sulfur-containing syngas. Results are 

shown in . 
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Figure 19. Sample weight versus time for Ni-BHA during cyclic TGA redox experiments at 900o

One can see the periodic oxidation and reduction of the sample as reflected in the weight 

changes: The upper limit of the weight curve represents the fully oxidized sample, while the 

C with sulfur-free 

syngas (t=125-300 min), followed by sulfur-contaminated syngas (t=300 – 500min), and again by sulfur-free syngas 

(t>550 min, as indicated by the shadings) 
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lower limit represents the fully reduced sample. Clearly, oxidation of the sample during the first, 

sulfur-free, phase is very fast with almost instantaneous weight changes, while reduction is 

slightly slower. This agrees well with our previous studies of these carriers. Upon switching to S-

contaminated syngas streams, the total weight curve is shifted towards higher values reflecting 

the increased sample weight due to sulfidation, as discussed above. This weight shift stabilizes 

already after only ~2 cycles. The cycle seems otherwise largely unaffected by the sulfur 

exposure, although reduction appears somewhat accelerated and oxidation slightly slowed down.  

When the reducing gas is switched back to sulfur-free syngas, the sample loses the added weight 

again and slowly falls back to the initial weight levels by sulfur oxidation.  This process reflects 

the loss of sulfur from the sample, including the loss of sulfur from BaSO4, once the sample is 

exposed to a sulfur-free atmosphere. Since the sulfate cannot be removed during the oxidation 

phase, as shown above, this indicate sulfate decomposition during the reduction phase with 

sulfur-free syngas. Due to the low conversions in the TGA experiment, it was not possible to 

detect product gases with sufficient sensitivity, but it seems likely that the decomposition 

proceeds via two consecutive steps: First, the sulfate is reduced to the sulfide through oxidation 

of CO and H2 in the syngas, and then the sulfide is further reduced via formation of H2

In order to allow for a more direct comparison of the redox kinetics before, during, and 

after H

S. This 

explanation is confirmed by thermodynamic calculations as explained in previous section 2.2.2. 

In contrast to the sulfur uptake upon exposure to sulfur-contaning syngas, the sulfur loss during 

re-exposure to sulfur-free syngas is relatively slow. Nevertheless, the fact that the initial weight 

levels are eventually recovered further supports the above observation that the carrier 

morphology and hence also its redox kinetics are stable during sulfur exposure. 

2 figure 20S exposure,  shows single redox cycles from the three phases of the above 
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discussed cyclic TGA experiment (in each case the final cycle from the respective phase is 

shown). The y-axis has been normalized by plotting conversion versus time, where conversion is 

defined as the fractional conversion of the oxidized carrier as derived from the observed sample 

weight, i.e.: XW = (W – Wmin)/(Wmax-Wmin),  where Xw denotes the (fractional) carrier 

conversion, W is the (momentary) sample weight, Wmin the minimum (i.e. fully reduced) sample 

weight, and Wmax the maximum (fully oxidized) sample weight. Xw = 1 hence represents a 

completely oxidized carrier, while Xw
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Figure 20. Effect of H2S on redox kinetics of Ni-BHA: Conversion during a single redox cycle before (dotted line), 

during (solid line), and after sulfur exposure (dashed line; T= 900o

One can see that very high initial rate of reaction during the reduction phase is unaffected 

by the sulfur exposure, i.e. the slope of the weight trace is identical between the three curves. 

Interestingly, however, the sulfur-containing syngas results in a deeper reduction of the sample, 

suggesting that H

C) 

2S is undergoing fast oxidation (via formation of water and SO2), and hence 

accelerating reduction. Furthermore, the sample conversion goes through a minimum for the 
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sample exposed to the H2S-containing atmosphere, suggesting that the sample is starting to take 

up sulfur in the later stages of the reduction cycle, i.e. once the sample is sufficiently oxygen-

depleted, the mechanism appears to change from the full oxidation of H2S to water and SO2 to 

the reduction of H2

The (apparent) increase in conversion due to sulfur uptake continues well into the purge 

phase. This is a result of the build-up of sulfur residues on the (cold) outer walls of the TGA flow 

tube, which leads to a low, but continued, exposure of the sample to sulfur during the purge 

phase. It was unfortunately not possible to suppress this sulfur formation entirely in our 

experimental set-up. However, since the residue burnt off quickly during the oxidation phase and 

further accumulation was hence avoided, the experimental results are not significantly affected 

by this background exposure.   

S to hydrogen and metal sulfide.  

Finally, in the oxidation phase, one observes no significant difference in the oxidation 

kinetics before and after exposure to H2S.  However, the oxidation during the cyclic experiments 

with H2

Comparison with the oxidation traces during the cyclic TGA experiments with S-free 

syngas, allows identification of the process responsible for the slow second oxidation process. 

Generally, three different oxidation reactions occur during oxidation of the sulfidized sample: 

Oxidation of the metallic Ni nanoparticles to NiO, conversion of NiS to NiO, and oxidation of 

BaS to BaSO

S-containing syngas shows two distinct oxidation stages, a fast initial phase with a rate 

comparable to the oxidation rate before and after sulfur exposure, followed by a significantly 

slower oxidation phase (at t~ 30 min) which then appears to accelerate again.  

4. Since the slow-down in the oxidation phase is absent in the sample before sulfur-

exposure, it cannot result from the oxidation of the metallic Ni nanoparticles. Similarly, the S-

free experiment after exposure to H2S, does not show the slow-down despite the fact that a 
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significant amount of BaS is still present during the first few cycles after switching back to 

sulfur-free syngas. Hence, the oxidation of BaS also cannot be responsible for the slow oxidation 

step.  Therefore, the oxidation of NiS to NiO must be responsible for the apparent slow-down of 

the oxidation. Since the conversion of NiS to NiO results in a weight loss, i.e. it counters the 

general weight increase during sample oxidation, this results in the observed flattening of the 

weight curve. Hence, the oxidation trace indicates that the conversion of NiS is delayed in 

comparison to the other oxidation reactions, but the increase in the slope towards the very end of 

the oxidation phase also shows that NiS conversion is complete before the other components 

have been fully oxidized. 

The latter observation is significant for CLC operation. Conventional (i.e. not 

nanostructured) carriers typically show significant slow-down of the oxidation rate with 

increasing degree of oxidation due to increasing diffusion resistance through the growing oxide 

layer on the metal particle. It has been suggested that this slow-down can be circumvented by 

utilizing only the redox potential of the outer layers of the carriers, i.e. the initial 

oxidation/reduction phase, and hence minimizing diffusion limitations at the expense of reduced 

oxygen carrying capacity. As the present results indicate, this could lead to incomplete recovery 

of sulfides in sulfur-contaminated fuel streams, resulting in accumulation of sulfides and 

ultimately in shut-down of the CLC process. 

3.2.3 Cu-BHA 

In addition to Ni-BHA, nanocomposite Cu-BHA samples were subjected to the same analysis as 

described above.  Cu is frequently discussed as an alternate metal for oxygen carrying in 

chemical looping, and we had previously already studied the redox kinetics of nanocomposite 
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Cu-carriers in comparison to conventionally prepared carriers during CLC of clean (i.e. sulfur 

free) syngas [56]. 

The Cu-based carriers showed qualitatively the same phenomena as discussed above for 

Ni-BHA, and we will hence only briefly discuss some main results. Figure 21 shows again the 

results of TGA experiments during cyclic reduction and oxidation in sulfur-free syngas (t<190 

min), syngas with 1% H2S (190 min < t < 490 min), and again with sulfur-free syngas. All 

experimental conditions were identical to the respective Ni-BHA experiments. 
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Figure 21. Sample weight versus time for Cu-BHA during cyclic TGA redox experiments at 900oC with sulfur-free 

syngas (t=35-190 min), followed by sulfur-contaminated syngas (t=190 – 490 min), and again by sulfur-free syngas 

(t >4900 min, as indicated by the shadings) 

Overall, one observes the same trends as above described for Ni-BHA:  Very fast 

oxidation-reduction kinetics during the initial, sulfur-free cycles, a strong increase in sample 

weight during sulfur exposure, and a slow drop of the sample weight after switching back to 
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sulfur-free syngas. The only significant difference between the Cu- and the Ni-experiments is the 

rate of sample weight increase during exposure to H2S-contaminated syngas. While the Ni-

sample weight had stabilized after about 3 cycles (compare figure 19), the Cu-sample shows a 

stable sample weight only after ~5 cycles, suggesting a slower or more extensive sulfur uptake. 

Comparing the increase between the weight maxima before and during S-exposure for Cu and Ni 

samples, we find an increase of ~ 4% for Ni samples vs ~6% for Cu samples, i.e. sulfur uptake is 

increased for Cu-based samples.  This is in qualitative agreement with our thermodynamic 

evaluation of oxygen carrier materials, which shows that Cu is significantly more prone to 

sulfide formation (see section 4.1) 
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Figure 22. Effect of H2S on redox kinetics of Cu-BHA: Conversion during a single redox cycle before (dotted line), 

during (solid line), and after sulfur exposure (dashed line; T= 900o

In order to facilitate a direct comparison of the redox kinetics before, during, and after 

sulfur exposure, we calculated again conversion versus time. 

C) 

Figure 22 shows again single redox 

cycles in direct comparison between pre-sulfur exposure, during sulfur exposure, and post-sulfur 
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exposure cycles. As for Ni, we find that the reduction kinetics is essentially unaffected by the 

exposure to sulfur, with the exception of the strong sulfur uptake evidenced by the even more 

pronounced sample weight increase in the later stage of the reduction (resulting in an apparent 

increase in conversion). Furthermore, the fast, deep reduction observed for Ni-BHA is absent. 

This could be caused by the more pronounced, faster sulfur uptake which would mask the 

reduction by counter-acting the weight loss associated with the reduction.  

During the oxidation, the time traces before and after exposure to sulfur are again 

virtually indistinguishable (the slightly lower degree of oxidation after sulfur exposure indicates 

that the sulfur loss is not complete yet), and the oxidation trace during sulfur exposure once 

again shows two distinct oxidation regimes. However, in comparison to Ni-BHA, the Cu samples 

show the above discussed slow-down in the oxidation kinetics due to the conversion of the 

sulfide to the oxide at a much early point in the re-oxidation (X ~ 0.3-0.4, versus X ~ 0.8- 0.9 for 

Ni). In fact, the oxidation rate is clearly slowed down in comparison to the experiments with S-

free syngas even before the pronounced plateau, indicating that Cu sulfide conversion sets on 

immediately upon starting the oxidation phase. After the plateau, the rate of oxidation (i.e. the 

slope of the line) becomes virtually identical to the rate of oxidation during the sulfur-free redox 

cycles indicating unchanged re-oxidation kinetics of the remaining Cu-BHA sample.  

This observation suggests that CuS is preferentially reacting with oxygen, unlike Ni, where the 

sulfide appeared delayed in the oxidation kinetics. Hence, the above discussed problems with 

incomplete redox cycles should be of lesser concern for Cu-based carriers.   
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3.2.4 Material balance calculations 

The sequence of the experiments discussed above allows for a straight-forward evaluation of the 

extent of sulfidation of the metal and the Ba in the carrier matrix.  The basis for the calculations 

is shown schematically in figure 23.  

NiO
BaO
Al2O3

Ni, NiS
BaO, BaS

Al2O3

NiO
BaO, BaSO4

Al2O3

Reduction Re-oxidation

 

Figure 23. Schematic for material balance calculations 

The weight change during the initial, sulfur-free redox cycles allows for precise 

determination of the metal weight loading of the sample. Upon reduction with S-contaminated 

syngas, NiO is completely converted to Ni and NiS, whereas BaO is sulfidized to BaS. BaO can 

not be reduced to metallic barium under the given reducing atmosphere and alumina remains 

unaffected throughout the oxidation-reduction cycles. Upon re-oxidation Ni and NiS are 

quantitatively converted to NiO, and BaS is completely oxidized to BaSO4

Based on these considerations and the known total weight after reduction and after re-

oxidation, the material balances for the reduction and oxidation processes yield two equations 

with two unknowns, namely the extent of sulfidation of Ni and Barium, respectively, which can 

hence easily be calculated. Results of this analysis are shown in 

. All these 

considerations are supported by the XRD analysis shown in figures 16 and 17.  

figure 24, where the extent of 

sulfidation (defined as the fractional conversion of metal to metal sulfide) is shown versus cycle 

number for Ni-BHA (left) and Cu-BHA carriers (right). 
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Figure 24. Extent of sulfidation per cycle: Ni-BHA (left) and Cu-BHA (right) 

For both carriers, BaO is preferentially oxidized in the first cycle, resulting in a partial 

initial “shielding” of the metal particles. This effect is much more pronounced for Cu, where it 

extends over the first three cycles. Clearly, BaO is more prone to sulfidation than either metal. 

The irreversibility of the BaS formation is reflected in the fact that the extent of sulfidation drops 

to zero after the first two cycles for Ni, and after 6 cycles for Cu. In contrast to that, NiS and 

Cu2

3.2.5 Effect of BaSO4 on oxygen carrying capacity 

S can be recovered as the respective oxides in subsequent re-oxidation cycle and the extent 

of sulfidation per cycle reaches a constant level as soon as the BaO is saturated.   

The significant degree of sulfidation of BaO in both samples, and the irreversibility of this 

conversion during cyclic redox operation with S-contaminated syngas, suggest that the BaS 

formed in this process actually participates in the oxidation-reduction cycles and hence should 

contribute to the oxygen carrying capacity of the carriers. We hence calculated the oxygen 

carrying capacity for Ni-BHA and Cu-BHA as a function of redox cycle after switching to S-
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contaminated syngas. Results are shown in figure 25, where the oxygen carrying capacity is 

defined as the mass of oxygen in the fully oxidized sample divided by the mass of the initial, 

fully reduced sample. 
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Figure 25. Effect of H2S on oxygen carrying capacity (as percentage of total reduced carrier weight) in subsequent 

redox cycles with S-contaminated syngas for Ni-BHA (left) and Cu-BHA (right) 

One can see that in both cases the oxygen carrying capacity increases significantly upon 

exposure to H2S. While this increase is instantaneous for Ni-BHA – in agreement with the 

virtually complete BaS formation in the first cycle (see figure 24) - the increase for Cu-BHA 

reaches its final value only after ~5 cycles.  Also, while the increase in oxygen carrying capacity 

for Ni-BHA is significant with about a 27% increase, the increase is even more drastic for Cu-

BHA with a ~57% increase in oxygen carrying capacity!  

Overall, the exposure to S-contaminated syngas hence resulted in only minor changes in 

the redox kinetics, but surprisingly strong increases in oxygen carrying capacity. The metal 

sulfide-sulfate cycle has been proposed previously as a potentially quite efficient alternative to 

the basic metal/metal oxide cycle for chemical looping[43-44]. In the present work, exposure to 

S-contaminated syngas resulted in the formation of sulfide/metal hybrid carriers, where the 
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support matrix does not only avoid sintering of the metal component, but also contributes 

significantly to the oxygen carrying capacity.  It seems interesting to consider the targeted 

synthesis of such hybrid carriers as highly stable, high capacity carrier configurations. 

3.3 SUMMARY 

Chemical looping combustion is a promising technology for the clean combustion of fossil and 

renewable fuels with inherent air separation and CO2 capture. We have previously shown that 

nanocomposites have a great potential for this application due to fast redox kinetics and very 

good thermal stability compared to conventional carriers. In this chapter, we demonstrated that 

the stability of nanostructured Ni-BHA and Cu-BHA is not affected by the presence of H2S even 

in concentrations as high as 10,000 ppm over a broad range of temperatures.  

The redox kinetics is only mildly affected by the presence of H2S in synthesis gas, 

although care must be taken to assure complete re-oxidation of the carriers in order to avoid 

accumulation of sulfides which could result in shut-down of the reactor operation.  

The formation of metal sulfides is completely reversible for Cu and Ni upon re-oxidation. 

In contrast to that, we find irreversible sulfidation of a fraction of the BaO in the support matrix. 

However, this does not appear to affect the carrier stability, and even results in the emergence of 

BaS  BaSO4 cycles with a correspondingly strong increase in oxygen carrying capacity by as 

much as 57%. Overall, the present study hence confirmed the stability and robustness of 

nanocomposite oxygen carriers and their potential for use in chemical looping combustion of 

high-sulfur fuels. 
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4.0  INTEGRATING DESULFURIZATION WITH CO2 CAPTURE IN CHEMICAL 

LOOPING COMBUSTION 

Motivated by the stable and robust operation observed before, the aim of this study was 

investigation of the sulfur-capturing capability of these carriers in a CLC process in order to 

evaluate the potential of utilizing these highly robust nanocomposite oxygen carriers for 

simultaneous in-situ desulfurization and CO2 capture. 

Figure 26 schematically illustrates the concept of sulfur-capture in CLC process: In the 

reducer, sulfur present in the fuel (here: synthesis gas with S-contaminants in the form of H2S 

and COS) is captured by the metal in the oxygen carrier as metal sulfide. In oxidizer, this metal 

sulfide is then recovered as metal oxide via oxidation with air, while the sulfur captured from the 

fuel stream in the reducer is released as SO2. Overall, such a scheme would hence allow 

simultaneous capture of CO2 and SO2 in separate effluent streams and thus eliminate the need for 

desulfurization of the fuel, or, for sulfur-containing fuels, avoid formation of corrosive acids 

downstream of the fuel reactor and eliminate the need for downstream separation of sulfur 

species from CO2 before sequestration.  
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Figure 26. Schematic representation of a CLC process scheme with integrated sulfur capture 

Conceptually, simultaneous desulfurization and CO2-capture is a simple process in CLC. 

The main challenge, however, is maintaining thermal stability and fast redox kinetics of the 

oxygen carrier while achieving deep desulfurization of the fuel reactor effluent.  We have 

previously demonstrated that the embedding of metal nanoparticles into a ceramic matrix (here: 

BHA = Barium-Hexaaluminate) can result in unusually active and sinter-resistant nanocomposite 

materials which combine the high reactivity of metals with the high-temperature stability of 

ceramics [55,57-58]. Ni- and Cu-BHA carriers showed very fast oxidation and reduction 

kinetics, and, most significantly in the present context, showed stable operation in CLC of sulfur-

free as well as sulfur-laden syngas [59]. Interestingly, both carriers showed a strong increase in 

oxygen-carrying capacity when contacted with sulfur-laden syngas, which could be traced back 

to partial sulfidation of the support.  
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4.1 CHOICE OF THE CARRIER 

In order to select a suitable oxygen carrier for the proposed desulfurization scheme, a 

thermodynamic analysis of a wide range of metals was carried out using a commercial software 

package FACTSAGE 5.0, which is based on Gibb’s free energy minimization to calculate the 

equilibrium composition of the gas-solid mixtures. Stoichiometric amounts of different metal 

oxides and syngas were used in the calculation. The composition of sulfur contaminated syngas 

is as shown in table 4. As initial reference point, operating conditions of 900o

figure 27

C and 30 atm were 

used. The equilibrium amount of sulfur species in the reducer exhaust is shown in (left) 

for a select range of carriers (most carriers were discarded due to poor redox properties, lack of 

sulfur capturing ability, cost, or toxicity considerations). The graph shows that Ni and Cu stand 

out with regard to their sulfur capturing capabilities: both carriers are capable of significantly 

reducing the sulfur content in the gas phase at equilibrium approximately by three orders of 

magnitude (note the logarithmic scale on the y-axis!). Among Cu and Ni, Cu is capable of 

reducing the sulfur contamination from ~10000ppm to <10ppm, and hence Cu is selected as the 

most promising candidate for the desulfurization scheme. 

Since temperature is expected to have a significant impact on sulfur capturing, the effect 

of operating temperature on the residual sulfur concentration at equilibrium for stoichiometric  

Cu/syngas mixture was investigated as well. Results are shown in figure 27 (right graph). As 

expected, the amount of sulfur species present in gas phase increases with increasing 

temperature, particularly at T>900oC, i.e. the capacity of Cu for sulfur capturing decreases. 

However, this does not impose a severe limitation, since metallic Cu has a melting point of 

1,085oC, and operation of Cu carriers at temperatures in excess of 900oC would likely result in 

stability issues at extended operation anyway. Combining this upper temperature limit with the 
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typical operating temperature ranges discussed for CLC processes of ~600-1200oC, a 

temperature window of 600-900oC was used for the experimental kinetic evaluation of Cu-based 

oxygen carriers. 

 

Figure 27. Equilibrium amount of sulfur species in the reducer exhaust at 900oC, 30 atm for select oxygen carriers 

(left); and the equilibrium amount of sulfur species for Cu as function of temperature (T =600-1000o

4.2 EXPERIMENTAL 

C, P= 30 atm; 

right graph) 

4.2.1 Synthesis and characterization 

Cu-BHA was synthesized by the same technique as described in section 3.1.1. It was 

characterized after synthesis and after several reactive tests via transmission electron microscopy 

(TEM, JEOL 200), X-ray diffraction (XRD, Phillips PW1830 with typical scans between 15o and 

90o (2θ) in steps of 0.08o with a minimum counting time of 0.2 s at each step), and nitrogen 

porosimetry (Micromeritics ASAP 2020). 
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 A typical TEM image is shown in figure 28, which shows the homogeneous 

nanostructure of the material consisting of Cu nanoparticles (black) and the BHA matrix (grey 

background). 

 

Figure 28. TEM image of a typical nanocomposite Cu-BHA (40wt% Cu) 

Compositional analysis with energy-dispersive X-ray (EDX) after synthesis and 

calcination gave a typical composition of about 30 wt % (15 mol %) Cu, 29 wt % (32 mol %) Al, 

14 wt % (3 mol %) Ba, and 27 wt % (50 mol %) O. In these materials, Ba fulfills an important 

role as stabilizer for the alumina matrix [60-61]. Due to the low Ba content of only 3 mol %, the 

cost of Ba should not affect the overall cost of the materials significantly. However, while no 

data on the toxicity of BHA appears to be available at this point, the known toxicity of barium 

aluminate (3BaO · Al2O3) suggests that appropriate care should be taken in handling this 

material on an industrial scale. 

Figure 29 (left) shows nitrogen adsorption isotherm for a typical 40wt% Cu-BHA 

sample. The nanocomposite shows a typical hysteresis of a type-IV adsorption isotherm 

characteristic for mesoporous materials. The pore size distribution calculated via BJH-analysis of 

the desorption branch of the isotherm (figure 29, right) shows that the nanocomposite has a very 
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broad pore size distribution with an average pore diameter around 20nm, which assures good 

accessibility of the Cu nanoparticles for reaction at the high-temperature conditions of CLC. 

 

Figure 29. Nitrogen adsorption isotherm (left) and pore size distribution (right) of 40wt% Cu-BHA 

4.2.2 Reactive tests 

Kinetics of the desulfurization was studied in a fixed bed reactor. A quartz glass tube of 1/4” 

diameter was used as a reactor. 130mg of Cu-BHA was placed inside the reactor which was 

placed in an electric oven (Thermo Electron Corporation – Lindberg / Blue M). The oven was 

heated to the desired temperature and a dry syngas with or without sulfur contamination (see 

table 4) and air (0.1 grade) were flown alternating at a flow rate of 5 sccm to simulate the 

periodic oxidation and reduction in CLC. In between oxidation and reduction of the carrier the 

reactor was purged with Argon (5.0 grade) to avoid formation of explosive mixture of air and 

syngas inside the reactor. The duration of oxidation, reduction and purge phase in a typical 

experiment were 10-25 min., 6-10 min., and 20-30 min., respectively. Exit gases from the reactor 

were recorded using a mass spectrometer (Omnistar QMS 200). 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Reactivity of Cu-BHA 

In order to characterize the Cu-BHA nanocomposite carriers in their oxidized and reduced state, 

Cu-BHA was first oxidized and reduced in air and sulfur-free syngas, respectively, in a fixed bed 

reactor at 900o Figure 30C, and then characterized via XRD.  shows the respective diffractograms 

of the reduced and oxidized samples. The presence of Cu reflexes and absence of Cu-oxide 

reflexes in the diffactogram of the reduced sample demonstrates complete reduction of the 

carrier, while the presence of CuO reflexes and absence of Cu reflexes in the diffractogram of 

the oxidized sample verifies complete re-oxidation of the carrier, confirming easy accessibility 

and high reactivity of the Cu nanoparticles in the Cu-BHA carriers. 

 

Figure 30. XRD diffractogram of Cu-BHA reduced in sulfur-free syngas (left) and re-oxidized in air (right) at 

900oC 
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4.3.2 Cyclic operation with sulfur free synthesis gas 

Once the reactivity of Cu-BHA for oxidation and reduction was confirmed, the carriers were 

subjected to cyclic redox tests with H2S-free syngas in a fixed-bed reactor at 900o

Figure 31

C in order to 

establish a reference point for further tests with S-contaminated syngas. The exit gases from the 

reactor were recorded using mass spectrometer.  (top) shows six representative redox 

cycles. Shown are CO and CO2 concentrations during the reduction half-cycle, and N2 and O2 

concentrations during the oxidation half-cycle. As expected from our previous investigations 

[57,59] , stable operation was observed even at 900o

Figure 31

C, i.e. at the high-temperature limit of the 

temperature range for our investigations. 

 (bottom - left) shows a closer look into a single reduction cycle. At t=0 min., 

syngas is introduced to the reactor, which contains the carrier in oxidized state (from the 

previous oxidation cycle). The onset of CO2 and H2O as soon as syngas is fed to the reactor 

indicates the reduction of CuO. Complete breakthrough of CO and H2 is observed after 

approximately 4 minutes, indicating complete reduction of CuO to Cu, i.e. exhaustion of the 

oxidation capacity of the carrier. Quantitative analysis shows that, before the breakthrough, 

essentially complete conversion of H2 is achieved (XH2 > 99.96%), whereas CO conversion is 

limited to ~94%. Since H2 is more reactive than CO it is not surprising to see a higher conversion 

for hydrogen than CO, in agreement with previous reports for chemical looping combustion of 

synthesis gas over Cu- and Fe-based carrier materials [62-63].  

Figure 31 (bottom - right) shows a single oxidation cycle, where a complete breakthrough 

of O2 after approximately 9 minutes indicates complete oxidation of Cu to CuO. No detectable 

amount of CO2 or CO was observed over the entire re-oxidation half-cycle, indicating that no 

significant coke formation occurred during the reduction with syngas. 
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Figure 31. Top: Select representative redox cycles for Cu-BHA oxidized and reduced in air and sulfur-free syngas, 

respectively (flow rates of syngas and air= 5 sccm, T= 900o

4.3.3 Impact of sulfur contaminants 

C, P= 1atm). Bottom: Blow-up of a single reduction half-

cyle (left) and oxidation half-cycle (right) 

In order to identify the impact of exposure to sulfur contamination on the carriers, Cu-BHA was 

first oxidized and reduced in a fixed-bed reactor at 900oC in air and a syngas with 1vol% H2S, 
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respectively. Figure 32 shows again the results from an XRD analysis of the reduced and 

oxidized sample in order to identify the solid phase changes during reduction and oxidation. For 

the reduced sample, the presence of Cu2S reflections indicates the (partial) sulfidation of CuO 

(see figure 32, left). In agreement with our previous investigations [59], the presence of BaSO4 

reflections indicates that the Ba content of the support is also getting partially sulfidized. (The 

presence of BaSO4 rather than BaS, which is expected to form during sulfidation in the reducing 

atmosphere, is due to sample oxidation during transfer to XRD instrument). We had previously 

seen that this sulfidation of the Ba content of the carrier results in an increase in oxygen carrying 

capacity of the carriers, since Ba now also starts to act as oxygen carrier based on an additional 

BaS <-> BaSO4 cycle [59]. Thus, exposure to sulfur contamination gives rise to a "hybrid 

carrier" where both the metal Cu content and BaS act as oxygen carrying component of the 

carrier.  

Upon re-oxidation of the carrier, BaS is oxidized to BaSO4, i.e. once Ba is sulfidized this 

sulfur remains stable in the carrier structure, while both Cu2S and metallic Cu are quantitatively 

oxidized to CuO (see figure 32, right graph), i.e. Cu is completely regenerated and the sulfur 

captured by the Cu content of the sample is released during the oxidation process. 
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Figure 32. X-ray diffractogram of CuO-BHA reduced in syngas with 1% H2S (left) and re-oxidized in air at 900o

4.3.4 Cyclic operation with sulfur containing synthesis gas 

C 

(right) 

In order to study the impact of the above described phase changes due to H2S exposure on the 

operation of Cu-BHA in the cyclic redox reactions characteristic for CLC, Cu-BHA was 

subjected to cyclic oxidization and reduction with air and syngas with 1% H2S, respectively. The 

experiment was carried out in a fixed-bed reactor and at three different temperatures of 600, 700 

and 900o

Figure 33

C. Exit gases from the reactor were again recorded using mass spectrometry. As 

reported previously, stable operation was observed over the entire temperature range.  

(left) shows again a single reduction cycle at the highest operating temperature of 900o

figure 31

C. There 

are four striking differences compared to the reduction in absence of H2S (see , bottom 

left). First, it can be seen that complete breakthrough of CO and H2 are observed only after 6 

minutes (i.e. delayed by ~2 min.), indicating that complete reduction of the carrier in presence of 

H2S takes longer than complete reduction in absence of H2S. This can be explained by the added 

oxygen carrying capacity of the sulfidized carrier, i.e. the above described formation of an 
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additional BaS <-> BaSO4 cycle. Second, no H2S is detected over the first ~7 min. of the half-

cycle, i.e. including the entire duration of the reduction, indicating that H2S concentrations are 

reduced from the 10,000 ppm at the inlet to below the detection limit of our mass spectrometer of 

~25 ppm. Clearly, Cu-BHA acts as expected as a very efficient S-capturing component in these 

experiments. Third, COS is detected as soon as the sample has been completely reduced (at t~ 6 

min.). This indicates that once the oxygen capacity of the carrier is exhausted, CO in the syngas 

apparently reacts with the sulfur in the carrier to form COS (a direct, non-catalytic gas phase 

reaction between H2S and CO in the syngas in unlikely since no COS is detected before the fixed 

bed). This is significant since it indicates that undesirable COS formation can be avoided in this 

process, but that a precise timing of the flow switching between oxidation and reducing half-

cycles is critical in order to achieve this. Finally, and surprisingly, formation of a small amount 

of SO2 is also observed. This SO2 formation starts about half-way through the reduction phase 

and stops once the carrier is fully reduced. Formation of SO2 hence appears to be the result of 

reaction of H2S with a partially reduced carrier, which will be further discussed below.  

Figure 33 (right) shows a single re-oxidation cycle at 900oC. SO2 is detected right from 

the beginning of the oxidation half-cycle, goes through a maximum after about 2 min., and then 

tails off, disappearing entirely once the carrier is completely oxidized as indicated by a complete 

breakthrough of O2. This suggests that sulfur is preferentially oxidized during the initial stage of 

the carrier re-oxidation, presumably due to a high sulfur concentration on the Cu particle surface 

since diffusion of the large S is expected to be hindered in comparison to oxygen bulk diffusion. 

The observations further confirm that sulfur captured during the reduction of the carrier can be 

efficiently recovered as SO2 during the re-oxidation of the carrier. 
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Figure 33. Reduction of CuO-BHA in syngas with 1% H2S (left) and oxidation in air (right) at 900o

4.3.5 Mechanism of sulfidation 

C 

The above observations essentially confirm that an efficient S-capturing based on the Cu-content 

of the oxygen carrier should be possible. However, the results also showed some undesirable SO2 

formation during the reduction cycle, which limits the efficacy of the S-capture. In order to 

understand the occurrence of this "reduction SO2", we will briefly discuss the possible reaction 

pathways during Cu sulfidation and their importance for the present system. 

Generally, sulfidation of CuO by H2S can occur via two different pathways, as shown 

below. In the first case, if no reducing gas is present, H2S has been shown to react directly with 

CuO to produce Cu2S and SO2 [64]: 

1.5 CuO + H2S → 0.75 Cu2S + H2O + 0.25 SO2     (R1) 

However, if strongly reducing gases - such as CO or H2 - are present along with H2S, 

CuO is preferentially reduced first rather than reacting with H2S via reaction R1. Reduction of 
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CuO nanoparticles follows a two step process [65]. CuO is first reduced to Cu2O and then to 

metallic Cu:  

2 CuO + H2 → Cu2O + H2O        (R2) 

Cu2O + H2 → 2 Cu + H2O        (R3) 

2 CuO + CO → Cu2O + CO2        (R4) 

Cu2O + CO → 2 Cu + CO2        (R5) 

In this case, H2S reacts with Cu2O and metallic Cu to produce Cu2S [64]. However, note 

that in these reactions no SO2 is produced: 

Cu2O + H2S → Cu2S + H2O        (R6) 

2 Cu + H2S → Cu2S + H2        (R7) 

Thus, sulfidation of CuO can follow three different reaction routes, R1, R6 and R7, 

depending on the availability of reducing gases versus H2S. Figure 34 shows the thermodynamic 

feasibility of these three sulfidation reactions between 600 and 900OC. It can be seen that all 

three reaction have very large equilibrium constants, i.e. are thermodynamically feasible between 

600 and 900OC, with R7 least favored and R1 most favored. 
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Figure 34. Equilibrium constants for Cu, Cu2O, and CuO sulfidation reactions between 600oC and 900o

4.3.6 Effect of BaSO4 on sulfidation of CuO 

C 

Based on this sulfidation mechanism, SO2 can only be produced by reaction R1, which proceeds 

only in the absence of a reducing gas [64]. However, in our experiments, SO2 formation is 

observed even in the presence of CO and H2 (see figure 33, left). This suggests that during the 

course of the reduction, the availability of the reducing gases for CuO reduction is decreased and 

hence reaction R1 can occur. We propose that this is explained by the presence of the BaS <-> 

BaSO4 cycle in the Cu-BHA samples. XRD analysis of the oxidized carrier (see figure 32, right) 

show the presence of BaSO4, which is also reduced by CO and H2 in the reduction cycles [59]. 

Hence, the availability of CO and H2 for the reduction of CuO decreases, CuO becomes available 

for reaction R1, and SO2 is hence produced. Thus, presence of BaSO4 is responsible for the 

production of SO2 during the reduction of the carrier. This explanation for SO2 production during 

the reduction of Cu-BHA is consistent with experimental results obtained by Yasyerli et al. who 

studied sulfidation of CuO and mixed oxides of Cu-V and Cu-Mo with H2S [64]. They 
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demonstrate that no SO2 is produced when CuO is contacted with a stream of 1% H2S and 10% 

H2 in He. However, SO2 production was observed when mixed oxides of Cu-V and Cu-Mo were 

contacted with the same gas mixture, which was attributed to the reduced availability of H2 for 

reduction of CuO.  

Hence, while the formation of the BaS phase as an additional oxygen carrier was a 

surprising and welcome observation in our previous studies, where increases in oxygen carrying 

capacity of up to ~60% were observed due to the added CuS <-> CuSO4 cycle, this additional 

oxygen reservoir limits the efficiency of S-capture under the conditions of the present 

experiments [59]. 

4.3.7 Effect of temperature 

Due to the expected strong impact of temperature on the kinetics of the redox process as well as 

the S-capturing capability of the carriers, further fixed-bed experiments with H2S-contaminated 

syngas were carried out at 700 and 600o

Figure 35

C. At each temperature, multiple oxidation and reduction 

cycles were carried out and gas phase concentrations were recorded via mass spectrometry. 

 and figure 36 show single reduction and oxidation cycles at 700 and 600oC, 

respectively. 
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Figure 35. Reduction of CuO-BHA in syngas with 1% H2S (left) and oxidation in air (right) at 700oC 

 

Figure 36. Reduction of CuO-BHA in syngas with 1% H2S (left) and oxidation in air (right) at 600o

Figure 35

C 

 (left) and figure 36 (left) show that there is no significant change in time 

required for complete reduction of the carrier when compared with results at 900o figure 

33

C (see 

, left). Apparently, the redox kinetics for the highly active Cu nanoparticles is so fast at all 

temperatures studied here that the conversion is mass-transfer limited, in agreement with our 

earlier findings [56]. With decreasing temperature, H2S and COS formation is delayed and 

reduced, with no H2S and no COS detectable over the first 8 min. at 600 and 700oC, respectively. 

At both lower temperatures the formation or break-through of these undesirable species hence 
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becomes sufficiently separated in time from the reduction process that they do not pose a 

concern at practical operation any more.  

The re-oxidation of the samples at 700oC and 600o

figure 35

C is shown in the right-hand graphs in 

 and figure 36, respectively. Unexpectedly, one can see that the time required for 

complete re-oxidation becomes shorter with decreasing temperature. This is surprising at first, 

since a decrease in temperature should result in slower kinetics and hence a longer duration for 

full re-oxidation. However, the reason for the acceleration can be found in the different degrees 

of sulfidation of the samples: A clear trend towards significantly compressed SO2 signals in the 

re-oxidation cycles with decreasing temperature indicates that the samples are less deeply 

sulfidized and hence re-oxidation is accelerated due to the reduced amount of oxygen (and hence 

time) required to remove the sulfur in the form of SO2. 

The trend in sample sulfidation with temperature are summarized in figure 37, where the 

effect of temperature on SO2 production during the reduction (left) and re-oxidation (right) of the 

carrier is shown in direct comparison between the three experimental temperatures. 

 

Figure 37. SO2 production during reduction (left) and oxidation (right) at three different temperatures (T= 600oC, 

700oC, 900oC) 
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The SO2 trace during the reduction of the carrier (figure 37, left graph) shows two 

pronounced trends: SO2 production decreases and the onset of SO2 formation is delayed with 

increasing temperature. Similarly, the SO2 trace during re-oxidation shows two distinct features: 

A sharp initial peak, which is temperature-invariant, followed by a broad shoulder, which is 

almost absent at 600o

The trends during the reduction cycle can again be explained by the mechanism detailed above: 

SO2 formation occurs along (R1), i.e. only in the presence of unreduced CuO. While CO and H2 

quickly reduce CuO to Cu2O and Cu, and hence largely suppress SO2 formation, the presence of 

the (reducible) BaSO4 phase results in reduced syngas partial pressures and hence leaves some 

CuO available for reaction (R1). With decreasing temperature, however, both the reaction of 

BaSO4 with syngas as well as the reduction of CuO to Cu2O and Cu by syngas are slowing 

down, leaving more CuO available for reaction with H2S, and hence result in an increasing 

amount of SO2 formation.   

C and becomes very pronounced with increasing temperature. 

The two stages in the SO2 formation during re-oxidation, on the other hand, can be 

attributed to surface and bulk sulfidation of the carriers: At lower temperature (600o

Obviously, an ideal carrier should capture all sulfur present in the syngas feed without 

any production of SO2 or other sulfurous gases during the reduction phase, and should allow 

C) bulk 

diffusion processes are very slow and hence the process is almost entirely dominated by surface 

sulfidation, which is removed very fast during re-oxidation. In agreement with this, this surface 

sulfidation peak is virtually unaffected by temperature, since the surface sulfur layer is present at 

all temperatures. However, with increasing temperature, deeper bulk sulfidation of the Cu 

particles becomes possible, giving rise to a much slower, secondary process during re-oxidation, 

which shows up as the pronounced shoulder in the re-oxidation trace.  
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quantitative recovery of the captured sulfur during re-oxidation. Clearly, the present carriers fail 

to meet this specification, since some SO2 is produced during the reduction of the carrier at all 

temperatures. If SO2 production during the reduction of the carrier is significant, it may make the 

intended desulfurization scheme unpractical since it might necessitate additional separation of 

SO2 from the fuel reactor effluent, defeating the purpose of the proposed process scheme.  

Figure 38 quantifies the relative amounts of sulfur species during the complete reduction 

and re-oxidation of the carrier as a fraction of the S fed to the reactor as H2S in the syngas during 

the reduction phase (“fuel H2S”). No significant amount of H2S or COS (< 25 ppm) is detected 

during the time required for complete reduction of the carrier at any temperature. With 

increasing temperature, the amount of SO2 produced during the reduction of the carrier decreases 

and the amount of SO2 produced during the oxidation of the carrier increases, i.e. sulfur capture 

is more effective at higher temperatures. At 900o

figure 38

C about 90% of the H2S fed into the reactor is 

captured as SO2 in the air-reactor effluent. However, the remaining 10% remain (again as SO2) 

in the fuel reactor effluent, significantly limiting the efficiency of the proposed scheme. While 

the trends in  suggest that operation at even higher temperature should result in further 

reduction of the S-breakthrough on the fuel reactor side, the relatively low melting point of Cu 

(~1,065o

 

C) makes higher operating temperatures questionable. 
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Figure 38. Sulfur species during the reduction (shaded) and oxidation (solid) at the three different temperatures 

However, based on the presented results, at least two strategies can be proposed which 

should allow efficient deep desulfurization of the fuel reactor effluent with essentially complete 

recovery of the sulfur in the air reactor effluent: On one hand, our results suggest that utilization 

of a different support matrix, which is non-reducible and does not interact with the fuel sulfur (to 

form a reducible sulfate phase), should allow implementation of the proposed scheme for 

simultaneous desulfurization and CO2-capture via chemical looping. On the other hand, even 

with the present carrier deep desulfurization would be attainable at 900o

figure 33

C, if the carrier reduction 

is stopped at an early time point (at t~3 min. in our experiments; compare , left graph), 

i.e. before significant SO2 formation occurs. While this would limit the reactor throughput (or 

space-time-yield) to about 60% of the attainable maximum based on the carrier reduction alone, 

it would allow almost entire elimination of SO2 formation without requiring changes to the 

carrier, which might result in the loss of the exceptional activity and stability of the present Cu-

BHA nanocomposite carrier materials. 
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4.4 SUMMARY 

In this chapter, we proposed a novel scheme for chemical looping combustion with integrated 

deep desulfurization of the fuel reactor effluent, which would allow capturing CO2 and SO2 in 

two separate effluent streams. Again, realization of this scheme depends on the selection of an 

appropriate carrier. Based on thermodynamic screening calculations, Cu was chosen in the 

present study, and a nanostructured Cu-BHA carrier was synthesized and tested in fixed-bed 

reactor studies over a temperature range of 600-900o

Nevertheless, the results suggest that the proposed process for simultaneous deep 

desulfurization and CO2 capture is feasible if a proper support material is chosen (which should 

be non-reducible and resistant against sulfidation), or if the cycle time during the reduction of the 

present carrier is properly adjusted.  Overall, the proposed integrated process would hence result 

in a novel, strongly intensified process for low-emission, high efficiency combustion of sulfur 

contaminated fuel streams. 

C. The carrier was able to reduce the S 

content in the effluent by up to 90% during cyclic reduction and oxidation with a syngas 

containing 1% H2S and air, respectively. The sulfur captured by the carrier during the reduction 

half-cycle is quantitatively recovered during re-oxidation. The efficiency of the process is limited 

due to some SO2 formation during the reduction phase, which was attributed to the presence of a 

reducible BaSO4 phase in the oxidized carrier.  
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5.0  HYDROGEN PRODUCTION VIA CHEMICAL LOOPING STEAM 

REFORMING (CLSR) IN A PERIODICALLY OPERATED FIXED BED REACTOR 

In principle CLC can be carried out with any oxidizing gas as long as it is reactive towards 

oxygen carrier material. When air is replaced by steam as oxidizing agent ultra-pure hydrogen 

stream is produced at the exit of the oxidizer. This process is referred as chemical looping steam 

reforming (CLSR). Since CLSR is CLC derived technology most of the issues in CLC are also 

present in CLSR. Major challenges for CLSR are slow oxidation kinetics, since steam is a 

weaker oxidant than air, insufficient high temperature stability of many carrier materials, and 

particle attrition in the circulating fluidized-bed configuration of typical CLC process schemes. 

In this chapter, we report results from a feasibility study of CLSR which aims to directly 

address the above issues: First, thermodynamic calculations were conducted to screen for 

suitable metal-based carriers for CLSR. Then, nanostructured oxygen carriers were synthesized 

as highly active and high-temperature stable materials and their activity and stability was 

evaluated in reactor studies. Finally, a brief reactor modeling study was conducted to evaluate 

the feasibility of CLSR in a periodically operated fixed-bed reactor in order to avoid carrier 

attrition associated with the use of fluidized beds. 



 78 

5.1 CHOICE OF THE CARRIER 

As a first step, a detailed thermodynamic screening study of a broad range of metals was 

conducted in order to identify promising candidates for CLSR. A commercial software package 

(FACTSAGE 5.0) was used to evaluate the equilibrium conversion for a stoichimetric mix of 

steam with the respective metals or partially reduced metal oxides. Figure 39 (left) shows results 

in terms of steam conversion vs temperature for select carriers, where steam conversion is 

defined as usual as XH2O = 1-  NH2O,equil/NH2O,initial.  Only metals with any significant degree of 

conversion are shown in the graph.   

While a range of metals show very high steam conversion over the entire temperature 

range, most had to be discarded either due to low melting points, toxicity of the metal, or the 

irreversibility of the oxidation process.  Among all screened metals, Fe and its lowest-valent 

oxide FeO showed most promise as carrier for CLSR, combining good reactivity with low cost 

and low toxicity. This result agrees of course with the long history of iron as metal-of-choice in 

the "steam-iron process". (All thermodynamic results shown here are calculated for P = 30 bar. 

However, due to the nature of the net reaction, the equilibrium is essentially invariant to pressure 

changes, as verified over the range of P = 1 - 30 bar). 
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Figure 39. Equilibrium conversion of steam versus temperature for select metals and metal oxides (left), and 

Fe/oxide phases versus temperature for a stoichiometric FeO:steam ratio (right) 

 

Figure 40. Fe/oxide phases v/s temperature for stoichiometric Fe3O4:syngas ratio (left), conversion of FeO to Fe3O4 

v/s excess steam for four different temperatures (right). Steam "excess" is defined relative to stochiometric feed for 

complete conversion to Fe3O4 (excess = 0). 100% excess thus refers to 2-fold stoichiometric supply 

A more detailed look at the iron oxide phases present at equilibrium (figure 39, right 

graph) shows that the oxidation process is limited to the formation of Fe3O4, i.e. neither Fe nor 

FeO can be fully oxidized to Fe2O3 at the given conditions. In fact, at temperatures above 500oC, 

even Fe3O4 becomes unstable, explaining the limit on the attainable steam conversion seen in the 
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calculations (figure 39, left). The choice of FeO as the reduced (i.e. initial) state of the carrier in 

the calculations is based on thermodynamic calculations for the reduction for Fe3O4 with 

stoichiometric amounts of syngas (for composition see table 1), which show that the oxide can 

only be reduced to FeO (see figure 40, left graph). (No other Fe-compounds - beyond Fe, FeO, 

and Fe3O4 - were obtained at the conditions studied; in particular no formation of highly volatile 

and toxic carbonyls was observed during the reduction with syngas.)  

The usable oxygen carrying capacity of Fe-based carriers for the present process is hence 

limited to Fe3O4 as upper and FeO as lower bound, reducing the maximum accessible oxygen 

carrying potential from 24g O/mol Fe for the full oxidation of Fe → Fe2O3 to 5.3g O/mol Fe.  In 

practice, this number will be further lowered by the use of support materials for the iron 

component. 

In order to test whether this limitation can be overcome, i.e. whether the oxidation 

process can be pushed further to the oxide (Fe3O4), additional calculations were conducted with 

increasing amount of “excess” steam, i.e. with over-stoichiometric supply of H2O.  Results for 

select temperatures are shown in figure 40 (right graph). One can see that at relatively low 

temperatures (T < 700oC), full oxidation to Fe3O4 can be achieved with a reasonable amount of 

steam excess (< 100%), while for high temperatures this amount increases rapidly and quickly 

reaches unrealistically high numbers (up to 8-fold excess for 1200oC). Similar results were 

obtained for the reduction with over-stoichiometric supply of syngas (not shown here). However, 

it should be noted that the thermodynamic calculations assume a closed reactor system, i.e. they 

correspond to a transport reactor configuration in which solid and gas phase move co-currently at 

the same velocity. In a fixed-bed reactor configuration with a stationary solid phase, or in a 

transport reactor with a counter-current flow arrangement, the local reactant concentrations 
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through the reactor will correspond more closely to a large “excess”, and one can hence expect 

increased conversion and carrier utilization, as shown in figure 40 (right graph).  

Overall, these thermodynamic calculations demonstrate that - at least among 

monometallic materials - iron-based carriers are the most efficient materials for hydrogen 

production in a CLSR process. However, the results also point out limitations regarding the 

accessibility of its highest and lowest oxidation states which may significantly reduce the oxygen 

carrying capacity, depending on the flow configuration in the reactor. Nevertheless, the overall 

favorable thermodynamic redox potential combined with low cost and low toxicity makes Fe the 

carrier of choice for CLSR. 

5.2 EXPERIMENTAL 

Based on the results from the thermodynamic screening, Fe was selected as active redox 

component for the development of suitable oxygen carrier materials. A key target for the 

development was fast oxidation kinetics, since the oxidation of a metal carrier with steam can be 

expected to be significantly slower than with air. Additionally, iron oxides are well known to 

form dense oxide overlayers which severely slow reaction kinetics and limit accessibility of bulk 

iron. Due to the high-temperature conditions of CLSR processes, high-temperature stability, i.e. 

strong resistance to sintering, was a second target. The approach chosen was based on our 

previous work in developing nanostructured, high-temperature stable catalysts and oxygen 

carriers [55-56,66] and is briefly described in the following 
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5.2.1 Synthesis and characterization 

Fe-BHA was synthesized using the same technique as described in section 3.1.1. It was 

characterized using x-ray diffraction, nitrogen sorption (BET), and transmission electron 

microscopy (TEM, JEOL 200). A typical TEM image is shown in figure 41 (left). One can see 

the homogeneous nanostructure of the material consisting of Fe nanoparticles (black) and the 

BHA matrix (grey background). The Fe nanoparticles have diameters of 15-20 nm after 

calcination, in agreement with our previous observations with this type of nanostructured carrier 

[55], and are embedded into the porous network of the BHA. Figure 41 (right) shows a typical 

nitrogen adsorption isotherm of these Fe-BHA nanocomposites. The isotherm shows a typical 

hysteresis corresponding to a type-IV mesoporous material with a broad distribution of pore 

sizes. Typical BET surface areas after calcination at 600oC were 100-150 m2/g.  

 

Figure 41. TEM image (left) and BET isotherm (right) of a typical nanostructured Fe-BHA (40wt% Fe) after 

calcination at 600o

Figure 42

C 

 (left) shows XRD spectra of Fe-BHA which was completely reduced in Hydrogen at 

800oC. Presence of strong reflexes of Fe and absence of reflexes of any higher oxides confirm 
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the complete reduction of the carrier. This completely reduced carrier was then subjected to 

oxidation in steam at 500o Figure 42C.  (right) shows the XRD spectra of sample after oxidation 

in steam. Presence of Fe3O4 reflexes confirms the oxidation of sample in steam. Reflexes of Fe 

are significantly reduced but not completely disappeared, which suggests incomplete oxidation 

of the sample (for details on incomplete oxidation refer section 5.3.2 and 5.3.3). Absence of 

Fe2O3 indicates that the oxidation process does not go beyond Fe3O4 which is consistent with 

thermodynamic results discussed in section 5.1. All carriers used in the experiments reported 

here had Fe weight-loading of ~40wt%. 

 

Figure 42. XRD spectra of Fe-BHA completely reduced in H2 at 800oC (left) and corresponding sample oxidized in 

steam at 500o

5.2.2 Reactive tests 

C (right) 

As a proof-of-concept study of CLSR of syngas (or “chemical looping WGS”), and in order to 

test the activity and stability of the nanostructured Fe-BHA carriers, fixed-bed reactor studies 

were conducted in a simple, externally heated tubular reactor. 200mg of Fe-BHA was placed 

inside a quartz-glass tube (1/4" I.D.) which was positioned in an electric oven. The assembly was 
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heated in an inert stream (Ar, 5.0 grade) to the desired reaction temperature, and then a dry 

syngas (composition see table 4– syngas w/o sulfur) and a mixture of 98.5vol% steam in Argon 

(5.0 grade) were flown alternating at a flow rate of 2 sccm and 230 sccm, respectively, to 

simulate the periodic reduction and oxidation in CLSR. The flow rates were chosen based on 

experimental limitations (minimum adjustable flow-rates) and to achieve good time resolution 

for the transient experiments.  In between oxidation and reduction of the carrier the reactor was 

purged with argon, at a flow rate of 120 sccm, to avoid formation of poorly defined mixtures of 

reactive gases inside the reactor and to allow clear differentiation of products from the oxidation 

and reduction phase of the experiment. The duration of oxidation, reduction, and purge phases in 

a typical experiment were 25, 20 and 10-20 minutes respectively. Exit gases from the reactor 

were passed through a cold trap to condense unreacted steam before they were recorded using a 

mass spectrometer (Pfeiffer Omnistar QMS 200). 

5.3 RESULTS AND DISCUSSION 

5.3.1 Thermal stability 

Figure 43 shows six representative redox cycles for the cyclic oxidation and reduction of Fe-

BHA at 800oC with steam (98.5vol% in Ar) and syngas, respectively, (top graph) as well as the 

concentration traces for one reduction (bottom left) and oxidation half cycle (bottom right). In 

both cases, the concentration traces of CO, H2 and CO2 during the reduction of the carrier with 

syngas, and the concentration traces of H2 and CO2 produced during the oxidation of the sample 

with steam are shown vs time. One can see from the top graph that the carrier shows stable 
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operation with no changes in height or shape of the concentration traces with time within 

experimental error. This confirms the stability of the nanostructured carrier, at least over the 

duration of the experiment of several hours (it should be mentioned that the experiment was 

reproduced several times without changing the carrier, and no signs of deactivation due to this 

extended operation or the repeated shut-down and start-up were observed). While a long-term 

test (over 1000's of hours) is beyond the scope of the present studies, we hence expect that the 

material should withstand long-term continuous operation.  

During the reduction phase, once can observe the break-through of CO and hydrogen 

after about one minute of flowing syngas. CO shows high (>90%), but incomplete conversion at 

all conditions, while hydrogen is consumed entirely before break-through. This is not unexpected 

due to the competition for carrier oxygen between these two syngas components and the known 

higher reactivity of hydrogen in comparison to CO. 

During the carrier oxidation phase, one observes pronounced peaks in the hydrogen 

concentration, indicating the formation of hydrogen in the reaction between steam and the 

reduced carrier. Somewhat surprisingly, small CO and CO2 peaks during this phase indicate that 

a small amount of carbon is being carried over from the reduction phase to the oxidation phase. 

This could be due either to the formation of small amounts of carbonaceous deposits on the 

carrier during reduction, or due to CO adsorbed on the high surface area of the nanostructured 

carrier during exposure to syngas, some of which then gets oxidized to CO2 during the oxidation 

phase. The absolute amount of COx is minimal, however, remaining well in the sub-ppm range 

for the product gas averaged over the duration of the oxidation phase, and hence should have no 

impact even on the production of PEMFC-ready hydrogen streams, since CO2 itself is not a 

PEMFC poison, and modern PEMFCs can tolerate CO contamination well into the 100 ppm 
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range[67]. Nevertheless, if the high-purity hydrogen product stream is intended for other 

applications with even more stringent requirements on contamination levels, including CO2 

levels, this carbon carry-over will require further consideration. 

 

 

Figure 43. Six redox cycles for Fe-BHA oxidized and reduced in a mixture of steam (98.5%) in Argon and syngas, 

respectively (top) and a single, enlarged reduction and oxidation cycle showing the gas phase concentrations 

(bottom) 
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5.3.2 Effect of temperature 

Figure 44 shows the molar flow rate of hydrogen produced during one oxidation cycle (left 

graph) along with the corresponding (fractional) conversion of the carrier (right graph) at four 

different temperatures between 500oC and 800o

At the highest temperatures (650

C. Carrier conversion is here defined as Xcarrier = 

NH2 / (4 NFe3O4 - NFeO), where NH2 is the cumulative number of moles of hydrogen produced, 

NFe3O4 is the number of moles of Fe3O4 in the completely oxidized carrier and NFeO the number 

of moles of FeO in the completely reduced carrier. Since our thermodynamic calculations 

indicate that FeO and Fe3O4 are the lowest and highest oxidation states of Fe attainable at these 

conditions, the denominator hence indicates the maximum possible oxygen uptake by the carrier 

during the oxidation phase, while the numerator represents the actual oxygen consumption from 

steam.  

oC and 800o

Below 600

C) the oxidation kinetics is initially very fast, 

followed (after t~ 6-7 min.) by a long trailing tail. We attribute this strong slow-down in the 

kinetics to a transition from a kinetically controlled process to a solid-state diffusion controlled 

process as the oxidation yields a Fe3O4 overlayer which hampers further oxidation of the FeO 

particle "cores".  However, due to the controlled “nano-size” of the carriers, the transition to the 

slow diffusion controlled process occurs only after ~90% of the usable carrier capacity has been 

exhausted. Clearly, the small size of the embedded Fe nanoparticles helps to accelerate the 

kinetics and maximize the accessible oxygen carrying potential.   

oC, the kinetics slow down very quickly with decreasing temperature, resulting in a 

strong drop in carrier conversion from ~70% at 650oC to <30% at 500oC at the end of the 

oxidation phase. Interestingly, the fractional carrier conversion also drops from ~70% to ~66% 

upon increasing the reaction temperature from 650oC to 800oC. This suggest that the oxidation is 
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becoming thermodynamically limited, in qualitative agreement with our thermodynamic 

calculations which show a strong decrease in equilibrium conversion in thus temperature range 

(i.e. between ~600oC - 900oC, see fig. 39, left graph). However, it should also be noted that the 

attained conversions are quantitatively well in excess of the ~40-60% conversion predicted for a 

stoichiometric mix of FeO and steam in this temperature range, which can be expected for the 

present fixed-bed configuration as discussed in section 5.1. 

 

Figure 44. Hydrogen stream produced over one oxidation phase during steam oxidation of Fe-BHA at different 

temperatures (left), and corresponding carrier conversions (i.e. fractional oxidation) as function of time (right) 

Overall, these initial results on chemical looping steam reforming of a syngas feed stream 

demonstrate the fundamental feasibility of CLSR processes. Hydrogen production rates as high 

as 4.15 mmole H2 / g Fe over a single oxidation cycle could be attained under the current, non-

optimized conditions (at T=650oC for a cycle duration of 25min). As expected, iron functions as 

an efficient oxygen carrier between steam and the syngas mixture, and the utilization of a high-

temperature stabilized nanostructured carrier allows fast and robust cycling between the 

oxidation and reduction phase in a fixed-bed configuration. Furthermore, the results demonstrate 

that by appropriate timing of the half cycles, it should be possible to attain complete conversion 
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of CO and H2 in the reduction phase of the carrier combined with high yields of H2 during the 

oxidation phase, hence entirely bypassing thermodynamic limitations for high-temperature 

WGS. More detailed investigations of the oxidation and reduction kinetics are currently under 

way. 

5.3.3 Effect of particle size 

Figure 45 shows the particle size distribution of Fe-BHA calcined at three different temperatures 

– 800oC, 900oC and 1000oC. Average particle diameter increases with increase in the 

calcinations temperature and it was 16nm, 22nm and 54nm at 800oC, 900oC and 1000oC 

respectively. 

 

 

Figure 45. Particle size distribution of Fe-BHA cancined at 800oC (top left), 900oC (top right) and 1000oC (bottom) 
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It was expected that with decrease in particle size diffusion limitations can be minimized 

and final carrier conversion can be enhanced. In order to study this, Fe-BHA with average 

particle size of 16nm, 22nm and 54nm was subjected to conditions of CLSR as described in 

section 5.2.2. Figure 46 (left) shows the hydrogen production rate and figure 46 (right) shows the 

carrier conversion as a function of time for three different particle sizes. It can be observed that 

with decrease in particle size hydrogen production rate increases and consequently final carrier 

conversion increases. This is due to the fact that with decrease in particle size diffusion 

limitations are minimized. 

 

Figure 46. Effect of particle size of Fe on hydrogen production (left) and carrier conversion (right) at 800o

These results underline the importance of nanosizing of the carrier for CLSR process and 

clearly indicate that in order to have > 65% carrier utilization the particle diameter should be less 

than 16nm. Achieving such a small particle size is not possible in the synthesis of BHA based 

carrier. However, it is well known that metals can have very small diameter (<10nm) when silica 

is used as support and thus silica based carrier can be a very good alternative to Fe-BHA, 

provided it is thermally stable at the operating conditions. Therefore, it is worthwhile to look at 

the performance of Fe supported on silica in CLSR which can be taken as a guideline for future 

research on CLSR. 

C 
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5.3.4 Fixed bed reactor calculations 

As a final step of the present proof-of-concept study, a fixed-bed reactor model was developed 

and analyzed in order to evaluate the feasibility of conducting CLSR in a periodically operated 

fixed-bed reactor. The analysis is built on a previously published model by Kuipers and 

coworkers who analyzed a similar periodic fixed-bed process for “conventional” chemical 

looping combustion of methane with air[68].  

The choice of a fixed-bed reactor for CLSR processes is motivated on one hand by the 

intent to avoid carrier attrition issues, which pose a significant problem in circulating fluidized 

beds, as well as by the fact that the transition from the conventional air-blown chemical looping 

combustion process to a steam-fed chemical looping reforming process results in a strong 

reduction of the exothermicity of the overall reaction, and, depending on the fuel, can even result 

in endothermic net reactions. In contrast to the conventional CLC process, in which the strong 

heat release causes concerns due to excessive bed temperatures and the formation of hot 

spots[68], heat integration between the two half-reactions (i.e. oxidation of the fuel and reduction 

of H2O) is therefore a beneficial, if not required, effect for efficient operation of CLSR. Cyclic 

operation of fixed-bed reactors has been shown to be a highly efficient and straight-forward way 

to achieve excellent heat-integration, even resulting in super-adiabatic temperatures at 

autothermal operation when using a reverse-flow configuration [69-72]. The current analysis, 

however, is limited to a periodically operated fixed bed configuration with co-current feed of 

syngas and steam, respectively. 

The computations are based on a dynamical analysis of the pseudo-homogeneous energy 

balance for a fixed-bed process. Noorman et al. demonstrated that the energy balance can be 

solved analytically if a number of further simplifying assumptions are made, and we adapt the 
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solution for our steam reforming process discussed here[68].  Primary aim of the analysis is to 

identify the maximum temperature excursions in the bed, which can be directly derived from the 

energy balance using a number of simplifying assumptions: It is assumed that the carrier in the 

fixed bed is initially in its reduced form, and reacts with the steam instantaneously, i.e. with an 

infinitely fast reaction rate, until complete carrier conversion is attained. Similarly, 

instantaneous, complete reaction with syngas during the reduction phase is assumed. While 

neither assumption (infinite reaction rate and complete conversion) is strictly true in our case, as 

shown in the reactive tests in section 5.3.2, the analysis based on these assumptions will yield a 

conservative estimate for the maximum temperatures that can be expected in the process.  

Due to the coupling between the gas-solid reaction and the convective gas flow, two 

spatially separated travelling fronts develop, which move through the reactor with different front 

velocities: The velocity of the  heat front (vh), where heat is transferred from the fixed bed to the 

gas phase, and the velocity of the reaction front (vr), where the entire steam fed reacts with the 

oxygen carrier: 
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(for the meaning of the variables please see section ‘Appendix B - Nomenclature’). It is assumed 

that the heat capacity of the gas and the solid (CP,g and CP,s) and the solid density (ρS) are 

constant, and that the influence of pressure drop over the fixed bed and the variation of the mass 

flow rate can be neglected. Since the heat of reaction ( RH∆ ) and specific heat capacity of the 

reactants (CP,g) are only weakly dependent on temperature over the temperature range of interest, 
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average values for RH∆  and CP,g were utilized and the calculations are not dependent on a 

specific reference temperature. 

Assuming furthermore that the gas phase volumetric heat capacity is negligible, the heat 

produced by the oxidation of the oxygen carrier is taken up entirely by the solid carrier, and the 

energy balance can be written as 

( ) ( )( )2

2

,
, max 0

in
g g g H O

R s s P s r h
H O

v w
H C v v T T

M
ρ

ε ρ−∆ = − −       (3) 

Substituting equations (1) and (2) in (3) and rearranging gives the maximum temperature rise in 

the bed: 

( )
2

2

max max 0
,,

,

R

P g H OP s act
in

act g H O

HT T T C MC M
w wξ

−∆
∆ = − =

−
      (4) 

As already pointed out by Noorman et al., this maximum temperature rise is independent 

of the gas flow rate (under the given assumptions)[68]. This is noteworthy, since it indicates that 

the fixed-bed reactor should be robust against changes in production capacity and hence offer a 

significant degree of flexibility with regard to hydrogen production rates.  The key assumption 

which causes this decoupling of the maximum temperature rise from the gas flow is the 

negligible heat capacity of the gas phase in comparison to the solid phase, which results in 

negligible convective heat transport with the gas flow. Due to the large difference in volumetric 

heat capacities between gases and solids, this assumption can be expected to hold broadly.  

Furthermore, equation (4) does not show any influence of the reaction rate. While this is simply a 

result of assuming an infinitely fast reaction in the derivation of the equation, Noorman et al. 

verified for their model of the chemical looping combustion of methane that the resulting 

analytical solution (eq. 4) shows little sensitivity to changes in the reaction rate coefficient (even 
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for changes by as much as a factor of 7) as long as the rate was sufficiently fast. This point 

further motivates the development of nanostructured Fe carriers for this process in order to 

achieve sufficiently fast kinetics and hence attain the flexibility and scalability suggested by 

these reactor modeling results. 

Figure 47 (left) shows the maximum temperature change during the reduction of a FeO-

based carrier (with syngas as fuel) along with the maximum temperature rise during oxidation of 

the carrier with steam and, for comparison, with air as a function of the weight fraction of FeO in 

the oxygen carrier. In agreement with results from our above discussed thermodynamic analysis 

of the carriers and our initial experimental results, we limit the redox process to FeO <=> Fe3O4 

(i.e. the lowest and highest oxidation states, Fe and Fe2O3, are not accessible). 

 

Figure 47. Maximum temperature difference during oxidation with air or steam, and during reduction with syngas 

as a function of FeO loading in the fixed bed (left graph); and maximum temperature rise during oxidation with 

different diluted steam streams (right graph; steam weight fraction increasing from 5% to 100% from bottom to top; 

the balance is inert gas) 

As expected, replacing air with steam as oxidant results in a strong reduction in the 

maximum temperature rise during carrier oxidation. For FeO loadings below ~50% maximum 

temperature excursions remain below 150K, i.e. well below the >400K temperature rise observed 



 95 

in the air-blown process, indicating that a fixed-bed reactor configuration should be possible 

without encountering problems due to heat accumulation or excessive hot spots during the 

oxidation phase. The results also show that the maximum temperature change during reduction 

of the carrier in contact with syngas is negative, i.e. the reduction of the carrier with syngas is 

endothermic, although the absolute value of the temperature change (|ΔTmax| < 100 K) is smaller 

than that of the temperature rise during the oxidation half-cycle, in agreement with the overall 

exothermal net reaction (WGS). This further supports the motivation to use a periodically 

operated fixed-bed for CLSR where the oxygen carrier acts a solid heat reservoir, allowing for 

efficient heat integration between the two half cycles of the process.  

Another key result from the reactor analysis is shown in the right-hand graph in figure 47, 

where the maximum temperature rise versus FeO weight loading of the carrier is shown for 

several different mass fractions of steam in the oxidizing gas (the balance is assumed to be inert 

gas). It can be seen that reducing the steam content in the oxidizing gas to as little as 20wt% has 

very little effect on the maximum temperature. Obviously, operation with lower steam partial 

pressures is advantageous since condensation of steam becomes much less of a concern, 

particularly at high-pressure operation. However, this would also result in the dilution of the 

hydrogen/steam exit gas stream, which might again require separation of H2 from a non-

condensible inert gas, unless the dilution with an inert gas is tolerable for the intended 

application.  

Overall, the reactor model analysis indicates that a periodically operated fixed-bed is a 

very well-suited configuration for chemical looping steam reforming. This reactor concept is 

much less sensitive to changes in feed flow, allows operation in much more compact reactors 

than a fluidized bed, and entirely avoids the issues associated with circulating fluidized beds, 
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such as gas-solid separation, particle attrition, and blow-out of powdered solids. The well-

established heat-integration between the two half cycles in a periodically operated fixed-bed is a 

further benefit for CLSR due to the strongly reduced exothermicity in comparison to CLC. 

5.4 SUMMARY 

In this chapter, we reported on a feasibility study of a syngas-fed CLSR process in a periodically 

operated fixed bed reactor. This process results in a water-gas-shift reaction in which the two 

half steps – oxidation of CO and reduction of H2O - are conducted in different half-cycles of the 

process, hence conceptually allowing the complete de-coupling of thermodynamics and kinetics. 

Our study combined thermodynamic screening of (monometallic) oxygen carriers with the 

synthesis and reactive evaluation of a nanostructured carrier, and a simplified fixed-bed reactor 

modeling study in order to establish the feasibility of the process.  

Thermodynamic screening of a wide range of metals yielded the well-known Fe-based 

carriers as the best candidates based on thermodynamic limits during oxidation and reduction, 

melting point, toxicity, and cost. Based on these results, nanostructured Fe-BHA carriers were 

synthesized, and the reduction and oxidation kinetics of these carriers was evaluated in fixed-bed 

reactor studies. The studies demonstrated the thermal stability of the material in repeated cycles 

and showed fast kinetics during oxidation with steam. Most significantly, the reaction studies 

suggest that at temperatures as high as 800oC complete conversion of CO and high yields of H2 

should be attainable via appropriate timing of the half cycles. At this temperature, a 

“conventional” WGS process is constrained by severe thermodynamic limitations. The chemical 

looping-based process allows breaking these limitations in an elegant and efficient way.  
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Finally, a reactor model, originally developed by Kuipers and co-workers, was adapted to 

study the feasibility of CLSR of syngas in a periodically operated fixed-bed reactor 

configuration. The analysis supports the suitability of this reactor concept for CLSR by showing 

that heat accumulation and hot spots in the reactor bed are unlikely, and demonstrating a 

remarkable robustness of this reactor configuration against changes in operating conditions, such 

as throughput and dilution of the steam feed.  

Overall, the present feasibility study thus strongly supports the proposition of “chemical 

looping steam reforming” of synthesis gas as an interesting alternative to conventional WGS, 

which allows for the production of ultra-pure hydrogen streams with simultaneous capture of 

CO2 in separate effluent streams. Similar to “conventional” chemical looping combustion, CLSR 

is furthermore in principle fuel-flexible, i.e. it should be possible to operate this process with a 

wide range of fuels, including natural gas, coal, and biomass, making CLSR a highly promising 

process for the efficient, robust and fuel-flexible production of ultra-clean hydrogen streams.  
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6.0  SUMMARY AND OUTLOOK 

6.1 SUMMARY 

This work consists of three parts: In the first part thermodynamic evaluation of oxygen carriers 

for CLC of synthesis gas and natural gas was carried out.  In the second part, based on the results 

of the thermodynamic study, we investigated CLC of sulfur contaminated synthesis gas; and in 

the third and final part we studied the application of chemical looping for hydrogen production. 

Every aspect of this work is important with respect to the energy production for the future. The 

major objective of this study was to understand the concept and challenges of these next-

generation energy technologies and to come up with the most appropriate materials solutions. 

The study demonstrated that both the processes (CLC and CLSR) are inherently highly 

intensified and, with the appropriate choice of the material, have potential to get commercialized. 

Nevertheless a thorough process simulation is needed for detailed comparison with conventional 

processes. 

6.1.1 CLC of sulfur contaminated synthesis gas 

As fossil fuel reserves are depleting with time, refineries are being fed with more and more dirty 

fuel which contain high amount of sulfur contaminants. These sulfur contaminants interact 

strongly with the metals used in the different processes and therefore it is essential to come up 
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with either robust materials or alternative process routes. In this work we studied the impact of 

sulfur contaminants in the inlet fuel on the performance of CLC.  We observed that both Ni-

BHA and Cu-BHA interact strongly with the H2S in inlet synthesis gas. Ni, Cu and BaO from 

support get sulfudized upon contact with H2S at the operating conditions of CLC. For Ni and Cu 

sulfidatoion is reversible but support sulfidation is irreversible. It was observed that both Ni-

BHA and Cu-BHA are very stable in repeated redox cycles of CLC of sulfur contaminated 

synthesis gas. Moreover an increase in oxygen carrying capacity was observed due to the 

participation of sulfudized support in the redox process. 

Due to the cyclic nature of the process with an inherent re-oxidation step and robustness 

of the material to high sulfur contamination in the fuel it was anticipated that these BHA based 

carriers can be used for deep desulfurization of the inlet fuel while satisfying all the requirements 

of CLC. Based on this idea a novel scheme of integrating desulfurization with simultaneous CO2 

capture in CLC was proposed. Cu was chosen as the candidate for desulfurization due to its high 

affinity for sulfur. While Cu in Cu-BHA was able to capture >90% of inlet sulfur, the remaining 

sulfur came out as SO2 during the reduction step due to the reduction of sulfidized support. 

Nevertheless this study suggests that with appropriate selection of the support (non-reducible and 

sulfur resistant) complete desulfurization of fuel with simultaneous CO2 capture is feasible. 

6.1.2 Hydrogen production via CLSR in periodically operated fixed bed reactor 

Chemical looping combustion (CLC) is a promising technology for the clean combustion of 

fossil and renewable fuels with inherent air separation and CO2 capture. By replacing air with 

steam as oxidizing gas, CLC can be converted into a chemical looping steam reforming process 

(CLSR) which conceptually allows for the fuel-flexible production of ultra-clean hydrogen 
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streams without the need for further purification steps. When synthesis gas is used as fuel, the 

overall process of CLSR turns out to be the conventional water gas shift (WGS) reaction. CLSR 

is able to break the thermodynamic barriers on WGS by breaking down the WGS in two separate 

reactions.  

We studied the CLSR process by combination of thermodynamic evaluation, kinetic 

studies and a reactor model. Thermodynamic evaluation of carriers resulted in Fe as the best 

candidate for the CLSR process. It was observed that Fe-BHA is thermally stable and highly 

active in repeated redox cycles of CLSR in a fixed bed reactor. Finally, a reactor model was 

developed to study the feasibility of CLSR in a fixed bed reactor configuration. It was observed 

that hot spots are unlikely in a fixed bed process and there is a possibility of heat integration 

between the reduction and oxidation step. Overall CLSR of synthesis gas is a promising 

alternative to conventional WGS for the production of ultra-pure hydrogen with simultaneous 

CO2 capture.  

6.2 OUTLOOK 

6.2.1 Non-reducible and sulfur resistant supports for CLC with sulfur capture 

In chapter 4, we proposed a novel scheme of in-situ desulfurization of syngas in CLC. Our 

experimental study showed that Cu-BHA can capture 90% of the sulfur in inlet synthesis gas at 

900oC, but remaining 10% comes out as SO2 in the fuel reactor exhaust. As discussed in section 

4.3.6, BaSO4, formed by sulfidation of BaO in BHA, is reducible and hence reacts with the 

syngas. This reduces the availability of syngas for CuO reduction which makes CuO available 
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for SO2 producing reaction. Thus, even though BHA is a very stable support in sulfur 

environment it is not good for in-situ desulfurization scheme. Clearly, a proper support which is 

sulfur resistant and non-reducible is needed for this scheme. Silica can be a good choice because 

it is non-reducible and sulfur resistant, but detailed experimental studies should be carried out in 

order to verify its thermal stability and, if any, effect of elemental sulfur deposition within the 

silica pores. 

6.2.2 Fe supported on silica for CLSR 

In chapter 5 we discussed a scheme of hydrogen production by chemical looping steam 

reforming (CLSR). Fe-BHA used in the experimental studies of CLSR suffers from diffusion 

limitations. Section 5.3.3 explains this effect in detail. With decreasing Fe particle size these 

diffusion limitations are minimized. However, for Fe-BHA the smallest attainable particle size is 

~15nm which is not enough for completely eliminating the diffusion limitations caused by Fe3O4 

overlayer. Lower bound on the particle size is inherent in the synthesis and hence can not be 

avoided. Thus, in order to achieve Fe partice size less than 15nm one should select either a 

different synthesis route or a different support. Silica could be a good choice because metals 

supported on silica can have very small diameters. Fe particle size of ~ 5nm can significantly 

reduce the diffusion limitations and can increase the carrier conversion beyond 90%. However, 

silica is not thermally stable at very high temperatures especially above 600oC therefore a 

thorough kinetic evaluation of silica based material is needed in order to verify its suitability for 

the high temperature redox environment of CLSR. 
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APPENDIX A 

NANOCOMPOSITE OXYGEN CARRIER SYNTHESIS 

Table 5. A typical recipe for Cu-BHA (40.04 wt% Cu) synthesis 

Microemulsion MW  moles mass (g) vol (ml) 
PEPP (surfactant) 2000.00 0.0050 10.0 --  
Pentanol (co-surfactant) 88.15 1.3213 116.5 142.9 
Iso-octane (oil phase) 114.23 0.2621 29.9 43.4 
H2O (water) 18.00 0.4732 8.5  -- 
Cu(NO3)2*2.5H2O (metal salt) 232.59 0.0143 3.332  -- 
Metal Alkoxides         
Al-Isopropoxide 204.24 0.0213 4.3572  -- 
Ba-Isopropoxide 255.51 0.0018 0.4599  -- 
Isopropanol 60.10 1.0885 65.42 83 
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