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TECHNOLOGY MAPPING FOR CIRCUIT OPTIMIZATION USING

CONTENT-ADDRESSABLE MEMORY

Joshua M. Lucas, M.S.

University of Pittsburgh, 2005

The growing complexity of Field Programmable Gate Arrays (FPGA’s) is leading to archi-

tectures with high input cardinality look-up tables (LUT’s). This thesis describes a method-

ology for area-minimizing technology mapping for combinational logic, specifically designed

for such FPGA architectures. This methodology, called LURU, leverages the parallel search

capabilities of Content-Addressable Memories (CAM’s) to outperform traditional mapping

algorithms in both execution time and quality of results. The LURU algorithm is funda-

mentally different from other techniques for technology mapping in that LURU uses textual

string representations of circuit topology in order to efficiently store and search for circuit

patterns in a CAM. A circuit is mapped to the target LUT technology using both exact and

inexact string matching techniques. Common subcircuit expressions (CSE’s) are also iden-

tified and used for architectural optimization—a small set of CSE’s is shown to effectively

cover an average of 96% of the test circuits.

LURU was tested with the ISCAS’85 suite of combinational benchmark circuits and

compared with the mapping algorithms FlowMap and CutMap. The area reduction shown

by LURU is, on average, 20% better compared to FlowMap and CutMap. The asymptotic

runtime complexity of LURU is shown to be better than that of both FlowMap and CutMap.
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1.0 INTRODUCTION

1.1 MOTIVATION

The subject of this thesis is an approach to technology mapping for FPGA’s (field pro-

grammable gate arrays). The work is motivated by both the state of the art in technology

mapping and important trends in FPGA architectures. There is currently no area-optimal

solution to technology mapping. The best algorithms in use today use heuristics to address

the graph-covering problem, known to be NP-hard. Technology mapping is an important

phase of design. It has a great effect on both the area requirements and delay charac-

teristics of integrated circuits. Recent trends in FPGA architecture suggest a change in

thinking regarding technology mapping. More FPGA’s are heterogeneous and include mul-

tiple functional units. As technology capabilities improve, FPGA’s include more look-up

tables (LUT’s) with a higher number of inputs.

1.2 TECHNOLOGY MAPPING

Technology mapping is the last in a series of procedures for the synthesis of digital integrated

circuits. A design flow for such circuits is shown in Figure 1 [1]. This process begins with

HDL (hardware description language) descriptions of a system. Such descriptions allow for

system modeling at various levels of abstraction, such as the architectural and logic levels

depicted in Figure 1. The task of scheduling determines the timing and parallelism of opera-

tions in the hardware system [1]. Binding is the process of mapping system operations to the

hardware resources used by those operations [1]. Binding uses information from the schedul-
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ing task, as scheduling places restrictions on resource sharing in the system [1]. Architectural

synthesis uses scheduling and binding to obtain a resource-bound schedule of operations that

satisfies system constraints and is optimal according to some criteria [1]. Sequential synthe-

sis translates a control specification (that is, a finite state machine) into a representation

consisting of combinational logic and registers [1]. Combinational synthesis optimizes the

combinational logic of the system using criteria such as speed and area. Finally, technology

mapping (also known as library binding) maps the combinational logic and registers of the

system to a library of hardware elements. For FPGA’s, these elements are generally LUT’s.

Scheduling

Binding

Architectural 
Synthesis & 
Optimization

Sequential 
Synthesis & 
Optimization

Combinational 
Synthesis & 
Optimization

Library 
Binding

Architectural Level Logic Level
Sequential Combinational

HDL Models

Figure 1: A synthesis and optimization design flow for digital integrated circuits according

to De Micheli [1].

Technology mapping is the process of mapping a circuit from a technology-independent

form onto hardware elements of a particular technology [2]. Excellent introductions to the

topic have been written by DeMicheli [1] as well as Hachtel and Somenzi [3]. Because
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hardware elements are often organized as a library, this process is also called library binding

or cell-library binding. Techniques for technology mapping can be divided into two broad

categories: rule-based techniques and graph-covering algorithms [3].

Rule-based techniques for technology mapping bind a circuit to a library through stepwise

refinement. Local transformations of the circuit, performed according to a database of

transformation rules, preserve functionality while improving the efficiency of the mapping.

Each transformation effectively replaces a subcircuit with an equivalent subcircuit of library

elements that makes best use of the library. Rule-based technology mapping is similar to

rule-based Boolean optimization [1].

In the graph-covering paradigm, the circuit (or subject graph) is converted to a network

of chosen base functions. Likewise, each element in the hardware library is converted into

a pattern graph of the same base functions. The goal of graph-covering algorithms, then, is

to find a cover - a minimum-cost covering of the subject graph by library elements (pattern

graphs). The cost function of graph-covering algorithms could be a sum of the areas of

pattern graphs in the cover (in the case of area-optimizing technology mapping) or the

critical path delay of the cover (in the case of delay-optimizing technology mapping) [3]. In

the Boolean approach to graph covering, the circuit graph and the library are represented

as Boolean equations. The structural approach, on the other hand, uses the graph data

structure itself [1]. Graph-covering algorithms use heuristics, as the graph-covering problem

is NP-hard [3].

The two approaches have advantages and disadvantages. A rule-based approach may, in

fact, be used to combine technology-independent logic optimization and technology mapping

into one synthesis phase. However, rule-based systems are tuned to provide locally optimized

results, while graph-covering algorithms provide more globally optimal results [3]. Gener-

ally, graph-covering algorithms provide more optimal results and have better runtimes. In

practice, rule-based techniques are often used to improve the results of graph-covering algo-

rithms [1].

The technology mapping approach outlined in this thesis (called LURU ) is a graph-

covering algorithm. However, as the approach is specifically for FPGA’s with LUT’s (look-up

tables), the library consists of all Boolean equations which may be implemented by a LUT.
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1.3 CONTENT-ADDRESSABLE MEMORY

A CAM (content-addressable memory) is a hardware search memory implemented in a VLSI

circuit. Unlike standard RAM (random access memory), where data is stored in and re-

trieved from specific addresses, data storage and look-up in CAM is by content. Common

applications of CAM are network routing tables and cache memories, among others [4].

In a traditional CAM, the search data must be an exact match of the data stored in

the CAM. In a ternary CAM, a mask may be used to specify matching of only certain data

bits [4]. CAM performs a parallel search of its contents in a constant number of cycles. For

example, the Micron T-CAM [5] can contain over 16,000 entries with individual masks that

can be searched in one clock cycle when data is pipelined and in four cycles using individual

searches.

1.4 TRENDS IN FPGA ARCHITECTURE

The capabilities of modern Field Programmable Gate Arrays continue to increase in both

logic capacity and performance. The common size of the core logical building block in an

FPGA [called a look-up table (LUT)], has until recently been fixed at four (4) inputs and one

(1) output. Recently, however, larger LUT’s with up to seven (7) inputs have become avail-

able [6]. The shift to higher LUT input cardinalities in FPGA’s is an important architectural

adjustment that permits more complex logic to be implemented using a single LUT. Note

that LUT input cardinality may be increased without scaling up the size of the underlying

SRAM devices [6], making it possible to improve the performance of critical paths while

decreasing area requirements. In order to take advantage of higher input cardinality LUT’s,

it is important for technology mapping to efficiently map circuits onto these LUT’s. Current

technology mapping algorithms, while capable of mapping to various LUT cardinalities, are

tuned to provide best results for smaller numbers of inputs such as commonly used 4-input

LUT’s.
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1. LIIU (gate 1) 
2. LLIIUIU (gates 1, 2) 
3. LIRIIUU (gates 1, 3) 
4. LLIIURIIUU (gates 1, 2, 3) 
5. LIIU (gate 2)
6. LLIIUIU (gates 2, 4)
7. LLLIIUIUIU (gates 1, 2, 4)
8. LLLIIUIURIIUU (gates 1, 2, 3, 4)
9. LIIU includes gate 4) 
10. LIIU includes gate 3)

"search file"
(library of all

K-input strings)

1. LIIU (gate 1) 
2. LLIIUIU (gates 1, 2) 
3. LIRIIUU (gates 1, 3) 
4. LLIIURIIUU (gates 1, 2, 3) 
5. LIIU (gate 2)
6. LLIIUIU (gates 2, 4)
7. LLLIIUIUIU (gates 1, 2, 4)
8. LLLIIUIURIIUU (gates 1, 2, 3, 4)
9. LIIU includes gate 4) 
10. LIIU includes gate 3)

CAM

K-LUT

K-LUT

K-LUT

partition
and 

subcircuit
extraction

LURU strings:

subcircuit string
storage

CAM
search

LUT
mappings

(a) (b)

(c)(d)
(e)

Figure 2: FPGA technology mapping design flow using LURU with CAM.

1.5 LURU: A NEW APPROACH

This thesis describes LURU, a methodology for FPGA technology mapping through the

highly parallel search capability provided by CAM. An overview of the LURU flow is shown

in Fig. 2. First, the combinational circuit to be mapped is partitioned into a set of subcircuits.

The topologies of these subcircuits are then described using textual string representations

[note (a) and (b) in Fig. 2]. These string representations need only encode the topology

of the circuits because a LUT can compute any Boolean equation with a certain number

of inputs. A precomputed set of string representations for the circuit topologies that can

be contained in a K-input LUT [illustrated in Fig. 2 (d)] can then be matched against the

circuit representation in parallel using the CAM shown in Fig. 2 (c). By using CAM, the

search space is increased over traditional technology mapping algorithms. The final mapping

is produced for an FPGA device consisting of a network of K-input LUT’s as shown in Fig. 2

(e).
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Note that CAM’s are capable of both exact and inexact matching. Therefore, techniques

for technology mapping with both exact matching and inexact matching are proposed and

analyzed. Exact matching provides the best mapping density for large cardinality LUT’s

and is closely related to traditional technology mapping algorithms. Inexact matching takes

advantage of frequently occurring common subcircuit expressions (CSE’s) within a circuit.

By optimizing and reusing frequently occurring CSE’s, or, by discovering CSE’s that match

existing architectural features, inexact matching can be used to further improve technology

mapping.

Experimental results demonstrate that LURU can improve the quality of mapping results

by up to 53%, with an average of 25% improvement over traditional technology mapping

techniques such as FlowMap and CutMap [7]. By using inexact matching, it is possible to

match approximately 96% of subcircuits to a set of 16 basic CSE’s [8].

1.6 KEY CONTRIBUTIONS

The LURU approach to technology mapping offers several additions to the current state

of the art in technology mapping. LURU is a dramatic shift from conventional technology

mapping algorithms in that it transforms the graph-covering problem into a search problem.

Specifically, LURU searches through subcircuits represented as strings. These strings (LURU

strings) are created via a depth-first search of each subcircuit and encode the topology of

each subcircuit. As discussed in Section 3.1, the LURU string format permits the circuit to

be stored in CAM and permits parallel searches through the circuit in constant time. This

string representation is discussed in detail in Sections 3.2 and 3.3. It is used in the exact

string matching version of the LURU algorithm, as discussed in Section 3.3.1.

The LURU string representation of subcircuits was generalized through the use of wild-

cards to create the HLS (homogenous LURU string). Ternary CAMs permit partial string

matches based on a mask of wildcards. The HLS format is used in the inexact string matching

version of LURU (see the detailed discussion in Section 3.3.2) and allows a ternary CAM to

match over 90% of subcircuits with a set of 16 LURU strings, as demonstrated in Section 5.2.
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Another significant result of the work is the ability to produce a subcircuit profile for

every circuit mapped. This profile is exploited in the LURU technique to identify frequently

occurring subcircuits. The profile includes every conceivable subcircuit of the input circuit

(that is, it includes all gate combinations that constitute a valid subcircuit). This profiling

capability is important for the discovery of circuit patterns for optimization. Frequently oc-

curring subcircuits are encoded as HLSs and are known as Common Subcircuit Expressions

(CSEs). Using an inexact matching scheme, a small set of CSEs is used to map a majority of

subcircuits. Profiling also allows for identification of CSEs for purposes of circuit optimiza-

tion. A standard cell implementing a CSE would occur frequently in an implementation. If

such a standard cell were optimized for some criterion, the high frequency of the CSE would

permit the entire circuit implementation to be improved substantially on that criterion.

The exact string matching version of the LURU technique reduces the LUT requirement

over FlowMap and CutMap (by as much as 53%, see Section 5.1). LURU features an

algorithmic complexity that scales better than these two algorithms (Section 3.3.3). The

inexact string matching version of LURU, which uses CSEs, greatly reduces the number of

CAM searches performed by LURU while incurring an increase in area (as much as 17%)

over the exact string matching version of LURU (see Section 5.3). The exact version of

LURU requires over 5000 CAM searches, while the current inexact version requires just 16

CAM searches.

The remainder of this thesis is organized as follows: Chapter 2 describes work related to

and motivating this research. Chapter 3 discusses the LURU technique in detail: Section 3.2

explains the LURU circuit representation while Section 3.3 illustrates the LURU algorithm.

Section 3.3.2 describes an inexact matching extension of the technique. The asymptotic

complexity of the LURU algorithm is covered in Section 3.3.3. The implementation of

LURU is discussed in Chapter 4, which includes a step-by-step description of the program’s

execution and the details of certain implementation issues. Chapter 5 provides experimental

results of the techniques, comparing them with FlowMap and CutMap. Chapter 6 presents

conclusions drawn from the work.
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2.0 RELATED WORK

2.1 TECHNOLOGY MAPPING DEVELOPMENTS

FPGA technology mapping algorithms have been developed to achieve various objectives:

area minimization, depth optimization, routability optimization, and combinations of these [9].

The goal of area minimization, in particular, is to implement a circuit with a minimal num-

ber of LUT’s. The goal of depth optimization is a solution with minimum delay, and the

goal of routability optimization is a solution that simplifies the placement and routing of

the implementation. Most of these algorithms use heuristics, as the conventional technology

mapping problem for general networks is NP-hard [10].

Keutzer introduced the DAGON technology mapping algorithm [2]. This graph-covering

algorithm (recall Section 1.2) reduces the DAG-covering problem by locally and optimally

covering divisions of the circuit DAG. The algorithm first partitions the input circuit DAG

into trees at gates with multiple fanout. That is, every gate in the DAG with a fanout of

greater than one becomes the root node of a tree data structure [2]. A minimal cost mapping

to a hardware element (cell) in the library is then determined for every tree [2]. The cells

(or tree-covers) are then formed into a graph structure to implement the functionality of the

input circuit [3].
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Note that DAGON requires an explicit library of cells. This type of library is required

for technology mapping in ASIC (application specific integrated circuit) designs, where a

limited set of Boolean equations are implemented in hardware cells. However, FPGA’s fea-

ture k-input LUT’s capable of implementing any Boolean equation of k or fewer variables.

Thus it is not necessarily desirable to enumerate the entire cell library [1] for FPGA tech-

nology mapping. The following two technology mapping algorithms, developed specifically

for FPGA’s, use an implicit library of k-input LUT’s.

Cong, et al., developed the FlowMap algorithm for FPGA technology mapping [10].

FlowMap demonstrated that depth minimization in a LUT network can be achieved in

polynomial time [11]. A DAG circuit representation is used in FlowMap, where Boolean

gates are graph nodes and wires are graph edges. Suppose Nv is a subgraph of the circuit

DAG that includes a node v and all predecessors of node v. The label of node v, l(v), is the

depth of the depth-optimal K-LUT mapping for Nv. In the first phase of FlowMap, such a

label is computed for every node of the DAG. In a second phase, circuit outputs are mapped

to LUT’s according to the labels (depth-optimal mappings) determined in the first phase. L

is the set of circuit outputs to be mapped to LUT’s and initially consists of only the primary

output nodes of the circuit. The outputs in L are mapped sequentially. Suppose v is an

output node in L. A LUT is assigned to implement the Boolean equation of v. L is then

updated with new output nodes for those predecessors of v not covered by the assigned LUT.

This process continues until L is empty and all nodes of the DAG have been assigned a LUT

implementation [10].

The CutMap algorithm is an improvement on FlowMap, guaranteeing depth minimiza-

tion while using 15% fewer LUTs than FlowMap, on average [12]. The CutMap algorithm

is similar to FlowMap. CutMap performs a similar labeling phase, and then computes slack

values for each node based on path criticality. The algorithm then iterates through a queue

of output nodes from least node slack to most node slack. Suppose v is one such output

node. As the node v is processed, a cost is computed for each node in Nv, the subgraph that

includes v and the predecessors of v. The costs are used to compute a minimum-cost cut of

Nv, which determines how Nv is mapped. As in FlowMap, output nodes are added to the

queue for predecessors of v not included in the mapping of Nv [12].

9



Although LURU is an algorithm for FPGA technology mapping, it uses concepts from

DAGON. The input circuit DAG is partitioned into trees, as done in DAGON, and the trees

are covered locally. However, as discussed in Section 3.3, LURU enumerates all conceivable

subtrees, thereby achieving a broader scope than that of DAGON. In addition, as seen in

Section 4.2.2, the library in LURU is explicitly enumerated for all Boolean equations of eight

or fewer variables.

2.2 CIRCUIT REPRESENTATION TECHNIQUES

Note that the computer implementations of mapping algorithms such as FlowMap and

CutMap use directed acyclic graph (DAG) representations of circuits. To store DAG’s in

computer memory, graph nodes (generally corresponding to gates within the circuit) are

stored in the RAM memory. Gate connectivity is stored using memory pointers. Pointer

use is inherently sequential, thereby requiring that these DAG based mapping algorithms

are also sequential in nature.

Many tools for logic synthesis use another circuit representation, the OBDD (ordered

binary decision diagram). OBDD’s use a tree data structure to store Boolean functions,

where tree nodes correspond to input variables of the Boolean function. While OBDD’s

offer highly efficient Boolean manipulation, they too require the use of memory pointers for

computer storage [13].

As discussed in Section 3.1, CAM circuit storage requires a one-dimensional format

free of pointer use. The LURU technique presented here uses a new string-based circuit

representation discussed thoroughly in Section 3.2.
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2.3 APPLICATIONS OF CONTENT-ADDRESSABLE MEMORY

Applications for CAM have been mostly limited to networking applications. For example,

CAM has been used to implement a string search engine to speed up network address filtering

[14]. This work uses CAM to store 256 workstation addresses. CAM has also been used

to implement the memory-intensive components of Asynchronous Transfer Mode (ATM)

switch components. A translation table, shared buffer switch, and space switch input buffer

are implemented in CAM [15]. CAM has also seen fairly limited utilization outside the

networking area. CAM has been used to support a lossless image compression algorithm

[16]. This work uses CAM to implement a hash table for a Ziv-Lempel type coder. CAM

also shows promise as an efficient database engine [4]. Software based on SQL (Structured

Query Language) can interface with CAM to provide for fast database searches.
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3.0 THEORETICAL FOUNDATIONS

This chapter details the fundamental ideas that collectively form the LURU technique for

technology mapping. Section 3.1 describes how the use of CAM motivates a new, one-

dimensional string representation of combinational circuits. Section 3.2 describes this new

format in detail. Section 3.3 describes the LURU technology mapping algorithm in detail.

This chapter does not discuss implementation issues, which receive their own treatment in

the next chapter.

3.1 CONSIDERATIONS OF CONTENT-ADDRESSABLE MEMORY

The use of CAM in LURU is based on a one-dimensional string representation of combi-

national circuits. The contents of a CAM are a representation of the data in the CAM

(not a list of addressable entries) so every CAM entry must be an independently searchable

item [4]. Thus, for the textual representation of a circuit to be useful, a string stored in

the CAM must uniquely represent the topology of the represented circuit. The challenge of

such a representation is to translate circuit topology into a one-dimensional canonical string

format.

The constraints of CAM and the needs of technology mapping led to the development of

a string circuit format with the following properties:

P1 Boolean gate types are ignored in the LURU string format and only the topology of a

subcircuit is encoded. The reason for this strategy is that the number of LUT’s required

to map a subcircuit depends only on the number of primary inputs to this subcircuit.

12



Circuit behavior (the actual Boolean functionality) does not impact the mapping. Single-

input gates such as buffers and inverters are ignored because they do not affect the

number of primary inputs to a subcircuit.

P2 If x is a subcircuit of a circuit X, then the string representation of x can be found as

a substring of the string representation of X. This is because the LURU string for a

subcircuit is derived from the depth-first search of a tree. This property facilitates the

replacement of one subcircuit with another, as described in Section 3.3.1.

P3 LURU strings are independent and self-contained such that each string contains suffi-

cient information to describe the topology of its corresponding circuit without additional

contextual information.

3.2 STRING REPRESENTATION OF CIRCUITS

An example of the construction of a LURU string for a subcircuit via a depth-first search

(DFS) is shown in Fig. 3. A DFS starting at the root node in Fig. 3 follows the arrows,

recording the direction of traversal as the tree (circuit) is traversed. The traversal is described

as follows: ‘L’ indicates the left child of a gate (node); ‘R’ indicates the right child of a gate;

‘U’ indicates upward traversal of the tree (toward the root); and ‘I’ indicates a child node

that is a primary input signal to the circuit combined with an implicit ‘U.’ It is from this

textual notation that the name LURU was derived. For gates with more than two inputs,

the textual representation is extended to use numerals in addition to the ‘L’ and ‘R’ children.

The first two children are indicated by ‘L’ and ‘R,’ respectively, while other children are

indicated with a numeral corresponding to a left-to-right ordering of children nodes. For

example, LII2IIUIU describes a circuit consisting of one four-input gate and one two-input

gate, with the two-input gate feeding the third input of the four-input gate.

The LURU string representation of the circuit in Fig. 3 is LLLIIUIURIIUU. This string is

generated by traversing left from the begin node and through gate G1 (L), then moving left

through gate G2 (LL), then left again through gate G4 (LLL). The two inputs of gate G4 are

recorded (LLLII), then the traversal continues up from gate G4 (LLLIIU). The second input
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LLLIIUIURIIUU

Figure 3: A simple circuit to illustrate the generation of LURU string representations.

of gate G2 is noted (LLLIIUI) and the traversal continues up from gate G2 (LLLIIUIU), then

right through gate G3 (LLLIIUIUR) with its two inputs (LLLIIUIURII), then up from gate

G3 (LLLIIUIURIIU). Finally, upward traversal through gate G1 returns to the end node,

resulting in the overall string LLLIIUIURIIUU.

3.3 THE LURU ALGORITHM

3.3.1 LURU Algorithm

The LURU algorithm—shown as pseudo-code in Fig. 4—is conceptually simple and can be

summarized as follows. First, a circuit is partitioned into subcircuits and strings representing

all subcircuits are generated. These strings are stored into a CAM and represent the set of

gate combinations that are candidates for mapping. A pre-generated search file containing

the LURU strings of all possible circuit topologies that can be implemented by a K-input

LUT is used to search against all CAM entries (that is, the entire circuit) in parallel to

accomplish the mapping.
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A combinational circuit is naturally represented in a tree format where the nodes, edges,

and root node of the tree correspond to gates, wires, and the output gate of a subcircuit,

respectively. This representation is what requires the partitioning phase of LURU—the

input circuit is partitioned into subcircuits such that any gate with a fanout of more than

one becomes the root node of a distinct subcircuit tree [2]. This partitioning is illustrated

in Fig. 5. Because of property P1, inverters are neglected—note the transformation of

subcircuit sc3 from Fig. 5 (b) to Fig. 5 (c). Note the generic gates of Fig. 5 (c) as per

property P1.

"BLS" = LURU string for a single gate only
"Active LURU string" = LURU string marked
to replace ’I’ with the BLS of the current gate g

L = an initially empty list of LURU strings
"search file" = file of all LURU strings possible
for chosen K, sorted by gate count

partition circuit into trees at gate fanout > 1
for each circuit partition p
perform DFS on p
g = gate in p currently visited by DFS
add g’s basic LURU string to L, (step 1)
marked to replace ’I’ with the BLS(s)
of g’s child gate(s)

for each active LURU string s in L (step 2)
if replacement will result in #’I’s <= K
add a copy s’ of s to L
replace ’I’ in s’ with g’s BLS
if s’ now has K inputs
mark s’ as completed

store the list L into the CAM
for each LURU string x in search file
search for x in the CAM

Figure 4: Pseudo-code for the LURU algorithm. A list L of LURU strings is generated for

a given input circuit, the list is stored into a CAM, and the CAM is searched for subcircuit

occurrences.
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(a) (b) (c)

sc1

sc2

sc3

sc2sc1

sc3

sc3

Figure 5: The input circuit in (a) is partitioned into subcircuits sc1, sc2, and sc3 in (b) at

the point of multiple fanout. Subcircuit sc3 is represented in (c) without the inverter and

with generic gate types, as permitted by property P1 in Section 3.1.

A

B C

D E
F

G

Figure 6: Example circuit to be mapped with LURU.
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The LURU algorithm is formally described by the pseudo-code in Fig. 4 and illustrated

with the circuit in Fig. 6. Note that for simplicity (and without loss of generality) this circuit

does not have any gates with fanout greater than one. Assume that one wishes to map this

circuit to LUT’s with K = 4. A basic LURU string (BLS) is defined as a LURU string that

describes a single gate. Gate A in Fig. 6 is the root node of the tree (partition p in Fig. 4).

Step 1 of Fig. 4 records the BLS of gate A:

1. LIIU (BC) [A]

This LURU string describes the subcircuit consisting of gate A (including its two inputs)

and constitutes the beginning of a working list of LURU strings. Children (fan-in) gates of

gate A (indicated in parentheses) will be used to replace the ‘I’s in string 1. The gate(s)

described by a string (in this case gate A) are indicated in brackets to the right.

The DFS visits gate B. Step 1 adds the BLS of gate B to the list. In step B, string 1 is

identified as an active LURU string (because B is included in parentheses for string 1). A

copy of string 1 is added to the list (string 3 below) and the first ‘I’ in the copy is replace

with B’s BLS:

1. LIIU (BC) [A]
2. LIIU (DE) [B]
3. LLIIUIU (DEC) [AB]

The DFS visits gate D. Step 1 adds D’s BLS to the list. Step 2 identifies strings 2 and 3 as

active LURU strings, adds copies of them to the list (strings 5 and 6 below), and replaces ‘I’

in the copies with D’s BLS. The minus signs preceding strings 4 and 6 indicate that these are

completed strings. Completed strings have no additional opportunity for expansion. String

4 is completed because gate D has no children gates. String 6 is completed because of the

choice of LUT input cardinality K = 4. This string 6 already has four (4) inputs and any

copy-replacement operations would produce invalid strings with too many inputs to fit in a

4-input LUT:

1. LIIU (BC) [A]
2. LIIU (DE) [B]
3. LLIIUIU (DEC) [AB]
4. -LIIU (00) [D]
5. LLIIUIU (00E) [BD]
6. -LLLIIUIUIU (00EC) [ABD]
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The DFS then visits gate E. Again, it’s BLS is added to the list. Active strings (in this case

2, 3, and 5) are copied and the new BLS is inserted to replace the appropriate “I.”

1. LIIU (BC) [A]
2. -LIIU (DE) [B]
3. LLIIUIU (DEC) [AB]
4. -LIIU (00) [D]
5. -LLIIUIU (00E) [BD]
6. -LLLIIUIUIU (00EC) [ABD]
7. -LIIU (00) [E]
8. LIRIIUU (D00) [BE]
9. -LLIRIIUUIU (D00C) [ABE]

10. -LLIIURIIUU (0000) [BDE]

At gate C, C’s BLS is added to the list. Copy-replacement is performed for active strings 1 and 3:

1. LIIU (BC) [A]
2. LIIU (DE) [B]
3. LLIIUIU (DEC) [AB]
4. -LIIU (00) [D]
5. LLIIUIU (00E) [BD]
6. -LLLIIUIUIU (00EC) [ABD]
7. -LIIU (00) [E]
8. LIRIIUU (D00) [BE]
9. -LLIRIIUUIU (D00C) [ABE]

10. -LLIIURIIUU (0000) [BDE]
11. LIIU (F0) [C]
12. LIRIIUU (BF0) [AC]
13. -LLIIURIIUU (DEF0) [ABC]

At gate F, F’s BLS is added and copy-replacement is performed for active strings 11 and 12:
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1. LIIU (BC) [A]
2. LIIU (DE) [B]
3. LLIIUIU (DEC) [AB]
4. -LIIU (00) [D]
5. LLIIUIU (00E) [BD]
6. -LLLIIUIUIU (00EC) [ABD]
7. -LIIU (00) [E]
8. LIRIIUU (D00) [BE]
9. -LLIRIIUUIU (D00C) [ABE]

10. -LLIIURIIUU (0000) [BDE]
11. LIIU (F0) [C]
12. LIRIIUU (BF0) [AC]
13. -LLIIURIIUU (DEF0) [ABC]
14. LIIU (G0) [F]
15. LLIIUIU (G00) [CF]
16. -LIRLIIUIUU (BG00) [ACF]

Finally, the DFS visits gate G where G’s BLS is added and copy-replacement is performed

for active strings 14 and 15: The DFS subsequently visits gates E, C, F, and G and adds

LURU strings in a similar fashion. The final list of LURU strings for the circuit from Fig. 6

is as follows:

1. LIIU (BC) [A]
2. LIIU (DE) [B]
3. LLIIUIU (DEC) [AB]
4. -LIIU (00) [D]
5. LLIIUIU (00E) [BD]
6. -LLLIIUIUIU (00EC) [ABD]
7. -LIIU (00) [E]
8. LIRIIUU (D00) [BE]
9. -LLIRIIUUIU (D00C) [ABE]

10. -LLIIURIIUU (0000) [BDE]
11. LIIU (F0) [C]
12. LIRIIUU (BF0) [AC]
13. -LLIIURIIUU (DEF0) [ABC]
14. LIIU (G0) [F]
15. LLIIUIU (G00) [CF]
16. -LIRLIIUIUU (BG00) [ACF]
17. -LIIU (00) [G]
18. LLIIUIU (000) [FG]
19. -LLLIIUIUIU (0000) [CFG]
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This final list includes a string representation for every valid subcircuit of the circuit in

Fig. 6. This can be verified by checking the gates in brackets in the list above: every gate

combination that constitutes a subcircuit of four (4) or fewer inputs is represented. This list,

along with lists for other subcircuit partitions of an input circuit, is written into a CAM as

illustrated in Fig. 2 (b, c).

The pre-generated search file contains the LURU strings for all possible gate combina-

tions than can be implemented with a K-input LUT (e.g., K = 4 for the previous example).

The strings in the search file are applied sequentially (one at a time) to the CAM, as shown

in Fig. 2 (d). The LURU strings in the search file are searched in order from most gates

to least gates. This order is easily accomplished by sorting the strings according to their

number of ‘U’ characters. A LUT is assigned to map each CAM hit, as shown in Fig. 2 (e).

The CAM search technique described above permits a profile to be generated of the

frequency of occurrence of a subcircuit within the input circuit. This profile may indicate

the dominance of particular subcircuits and help inform circuit designers of possible opti-

mizations. In addition, the profile permits a context for developing inexact CAM searching

schemes, as discussed in the next section.

The search file that represents all LURU strings possible for a K-input LUT is built

recursively as follows. Two-input LUT topologies are known (the only one being ‘LIIU’).

Three-input LUT topologies are generated by inserting copies of the two-input LURU strings

into each other at every input location. This insertion results in the three-input strings LIIIU,

LLIIUIU, and LIRIIUU. Four-input strings are generated by combining two- and three-input

strings and so on. Eventually, all LUT topologies with up to K inputs are generated. A

total of 5440 strings are generated and stored in the search file for K = 8. Note that the

generation occurs only once and imposes no overhead during the execution of the LURU

CAM searches.

3.3.2 Inexact Matching Extension

The LURU algorithm described in Section 3.3.1 searches the CAM for the entries in the

pre-generated search file, one at a time. This procedure can be time-consuming, because of
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the thousands of entries in the search file. As LUT input cardinality increases, it becomes

desirable to reduce the number of CAM searches by decreasing the size of the search file, that

is, by using a smaller set of LURU strings to search the CAM. However, the randomness of

mapped circuits can lead to poor results unless a “good” subset of the search file is chosen.

On the other hand, if a given search string matches multiple subcircuit topologies, the

corresponding CAM search covers more of the circuit and thus fewer searches are required.

Inexact matching imposes additional requirements on the LURU string format. A stan-

dard string length is required for search strings as well as strings stored in the CAM, so that

different subcircuits in the CAM can match the same search string. Because the string length

is dependent on the topology of a subcircuit, a standard topology of four (4) gate inputs and

three (3) logic levels was chosen for all subcircuits. This topology appears in Fig. 7 along

with its LURU string representation. This string representation is a homogeneous LURU

string (HLS).

Consider a typical CAM with 32,000 entries of 576 bits each [17]. To support the standard

string format described above, three (3) bits per character are required to properly represent

the HLS’s. Thus, the CAM can support a maximum of 192 = 576/3 characters per string.

Assuming four gate inputs and three logic levels, each of the four children circuits of a

subcircuit’s output gate requires a maximum of 26 characters. The addition of the initial ‘L’

and final ‘U’ characters brings the total to 106 characters (as demonstrated in Fig. 7), well

within the 192-character CAM limit. The choice of four gate inputs and three logic levels

reflects the fact that the majority of logic gates in the ISCAS’85 benchmark suite have four

or fewer inputs.

Note that an HLS uses null characters (0’s) to represent unused portions of the standard

topology. The HLS format handles input signals differently. The input signal representation

depends on the logic level (tree level) where the input signal is encountered. An input signal

to the topmost-level gate is represented by an ‘I’ and 25 nulls. An input at the next level

down is represented by an ‘I’ and 5 nulls. At the bottom level, a single ‘I’ is used. Note that

this notation is required to keep a consistent string length. In other words, every subcircuit

of the circuit in Fig. 7 will be represented by the constant-length string described above.

Fig. 8, for example, shows the HLS of the subcircuit from Fig. 3.
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L LLIIIIURIIIIU2IIIIU3IIIIUU

RLIIIIURIIIIU2IIIIU3IIIIUU

2LIIIIURIIIIU2IIIIU3IIIIUU

3LIIIIURIIIIU2IIIIU3IIIIUU U

Figure 7: Homogeneous LURU circuit topology expressed as an HLS (homogeneous LURU

string).

LLLIIUIURIIUU

L LLII00UI00000000000000000U

RI00000I00000000000000000U

00000000000000000000000000

00000000000000000000000000 U

Figure 8: Example circuit of Fig. 3 with standard LURU and HLS representations.
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(a) (b)

LLLIIIUIIUIIIU

L LLIII0UI00000I00000000000U

I0000000000000000000000000

I0000000000000000000000000

I0000000000000000000000000 U

Figure 9: Example circuit, similar to that of Fig. 8 (a) standard LURU topology (b) LURU

with HLS representation.

Consider the circuit shown in Fig. 9 (a). The LURU string for this circuit is significantly

different than the LURU string from Fig. 3. However, the HLS representations shown in

Fig. 8 and Fig. 9 (a) are similar. Thus, it is possible to use wildcards to construct a string

matching both circuits. The string, shown in Fig. 10, is constructed by using wildcards

(asterisks) wherever the two strings differ. The first wildcard represents the additional input

on the bottom gate of Fig. 9 (a). The second wildcard represents the additional gate input

of the middle gate in Fig. 9 (a). The next four wildcards represent the G3 gate of Fig. 3,

which is not present in Fig. 9 (a). The final two wildcards represent the additional inputs

to the root gate of Fig. 9. In all cases, a wildcard represents a wildcard condition.

While the string generation algorithm of the inexact matching extension is nearly iden-

tical to that of the standard LURU technique, the CAM search for the extension consists

of two separate phases. In the first phase, the set of HLS’s representing the input circuit is

written into a CAM. Patterns in the small set of CSE’s are searched for one at a time in the

CAM (note that these are inexact CSE’s). For LUT input cardinality K = 8, for example,
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L LLII*0UI00000*00000000000U

**00000*00000000000000000*

*0000000000000000000000000

*0000000000000000000000000 U

Figure 10: HLS matching the subcircuits of Fig. 8 and Fig. 9.

the number of inexact searches goes down from 5440 to 16. The coverage of this approach

exceeds 90% on average as described in Section 5.

The second phase of the inexact CAM search is required to cover those subcircuits not

covered in the first phase. The second phase is required because HLS’s can only represent

subcircuits with three or fewer levels of logic and four or fewer inputs at their gates. Sub-

circuits not meeting these criteria generally account for less than 10% of the original circuit

and may be mapped using traditional mapping techniques such as FlowMap or CutMap. In

this paper, the second phase uses LURU with exact matching.

3.3.3 LURU Algorithm Complexity

The time complexity of LURU is analyzed using the pseudo-code of Fig. 4. Let a given

Boolean network have n gates. The maximum input cardinality of the available LUT’s is

K. As the pseudo-code indicates, the DFS visits each gate in the network twice (upward

and downward traversal results in a total of 2n gate visits). For each gate visit, a number of

strings are added to the list of subcircuits after being copied and undergoing replacement.

The number of string additions is limited to K, as K places a limit on the number of valid
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subcircuits for mapping to a LUT. By storing LURU strings in a similar format as an HLS,

only K +2 characters must be changed (e.g., LIIIIU for K = 4). Thus, the time complexity

of LURU is O[2n×K × (K + 2) + C] , where C is a constant representing the time required

to perform CAM searches. The complexity may be simplified to O[2nK2 + C]. Each CAM

search completes in constant time and the required number of CAM searches is independent

of n, as described in Section 3.3.1. The time complexity of FlowMap is O(Kn2) and that of

CutMap is O(2KnbK/2c+2) [11, 12]. In reality, n� K. Therefore, LURU scales much better

than FlowMap or CutMap.

The preceding analysis considers only the time complexity of the LURU algorithm. The

efficiency of the algorithm also carries a price of physical CAM hardware. As in the preceding

complexity analysis, the number of strings generated is O[2nK2]. For a fixed K, then, the

CAM storage requirement is linear in n. Because the algorithm requires that all strings are

stored in CAM, the number of required CAM’s is O[2nK2/M ], where M is the capacity of a

single CAM. Note that there are two alternatives regarding physical CAM use. The first is

to use a single CAM to store all strings generated by the algorithm. This option minimizes

the CAM space but if the number of strings exceeds the capacity of a single CAM, the CAM

must be erased and rewritten with strings not able to be written into the CAM initially.

This rewriting of the CAM may need to occur several times, depending on the number of

strings generated by the algorithm, and has the drawback of adding memory overhead to

the time complexity of the algorithm. The second option, of course, is to use enough CAM

devices to store all the generated strings. This option avoids additional time overhead, but

is more expensive in terms of hardware.
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4.0 IMPLEMENTATION

This section will describe the actual implementation of the LURU technique in detail. To

evaluate the propsed LURU algorithm, a simulator was developed for a workstation with a

hardware accelerated search memory (CAM). The simulator was built in the Objective-C

programming language on an Apple G5 Workstation. The CAM model has 16,000, 576-bit-

wide entries following a typical IDT family device [7, 17].

The ISCAS’85 combinational benchmark circuits were partitioned, as described in [2],

and used to evaluate the performance of the LURU algorithms. The benchmark circuits

were mapped using LURU, FlowMap, and CutMap onto a homogeneous structure of 8-input

LUT’s. All ISCAS circuits fit into a single CAM. Note, however, that larger circuits that

exceed the size of a single CAM can either be depth expanded or computed in two or more

sequential steps.

4.1 PROGRAM FUNCTIONALITY

This section discusses the operation and functionality of the LURU implementation. The

LURU program accepts four parameters from the user: (1) the ISCAS-format input netlist

to be mapped by the algorithm [18], (2) the name of the file that contains all the LUT

equations to be searched in the CAM (the ”search file”), (3) the name of the file to which

a BLIF-format LUT netlist will be written, and (4) the name of the file to which a DOT-

format graphics file representing the LUT netlist will be written [19]. After processing these

parameters and initializing data structures, the program parses the input netlist.
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Each line of the ISCAS-format input file is processed. There are three basic types of

lines in the input file [18]. The first type of line, denoted as a gate line, contains the

following information for a gate of the circuit: unique address, unique name, Boolean type,

fanout number, fanin number, and fault information (fault information is unused by LURU).

The second type, an input line, contains the addresses of nodes that are inputs of the gate

described on the previous gate line. The third type, a fanout line, is for a special circuit node

used by the ISCAS format to specify nodes that have multiple outputs. The line contains the

address of the fanout node, its name, the “from” classifier, the name of the gate being fanned

out, and fault information. For each node line in the file, the parser creates a new Node

object and sets its properties according to those in the file. Nodes listed as inputs of nodes

are set as children of the nodes. Each node created is added to an array that constitutes the

input network.

The program then determines the actual input and output nodes of the circuit. Input

nodes are listed in the input file as type “inpt,” while output nodes simply have 0 fanout.

Output nodes are added to an array. The nodes in this array will constitute the initial set

of root nodes for the trees (SubTrees) which constitute the partitioned circuit. The program

then processes the network’s “high-fanin” gates (gates with more than K inputs). Such gates

cannot be mapped with a K-LUT. So the program removes such gates and replaces them

with equivalent networks of gates of K or less inputs. That is, the network is transformed

into a K-bounded network.

The program then partitions the network at any gate with multiple fanout. This divides

the network into SubTree objects. The program traverses the array of the circuit’s output

nodes. A depth-first search DFS is performed on the network beginning at each output node.

When a gate with more than one fanout is encountered by the DFS, that gate is added to

the list of output nodes. That is, the gate becomes the root of a new SubTree. The DFS

at each output node x forms a SubTree that is defined as the set of x and x’s descendants

that have only one fanout. Descendant gates with more than one fanout are excluded from

x’s SubTree and instead become roots of new SubTrees. In this way, the program forms an

array of SubTrees to represent the circuit. The SubTrees do not replicate gates of the input

netlist among themselves: each SubTree is an independent portion of the circuit.
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Next, the program consolidates SubTrees by resolving “from” nodes. These are nodes of

the ISCAS ’85 netlist fle that indicate multiple fanout. Each “from” node has a source node

and destination node. The “from” node itself is present merely to indicate a fanout from

the source node to the destination node. The program eliminates these “from” nodes from

the network, setting source nodes as children of destination nodes.

The program then eliminates inverter gates and buffer gates from the network. These

gates do not affect the number of inputs required for a LUT to implement a SubTree, so they

are removed from the network. Child gates of such an inverter or buffer are set as children of

the parent gate of the inverter or buffer. After this process, some SubTrees (which consisted

only of inverters and/or buffers) are now void of gates and are eliminated from the array of

SubTrees.

The next major step of the program is to generate SubTree objects for all the possible

subcircuits within each SubTree. This step involves exponential growth of data structures,

so it is desired to limit this operation to only subcircuits that are realizable with a K-LUT.

So before the subcircuit generation occurs, the program further partitions large SubTrees

into smaller ones. Any SubTree of greater than K inputs is partitioned. The child gates

of the SubTree’s output gate become roots of new SubTrees and the output gate itself is

grouped with one of these new SubTrees.

Next the actual generation of subcircuits occurs. This step involves creating an array of

SubTree objects (for each original circuit partition, or SubTree) that represents all possible

subcircuits within a SubTree. This is done in a recursive manner. Each gate of the SubTree

is visited, and a SubTree for that gate is added to an array. Also at each gate visit, any

SubTree in the array that contains the parent gate of the current gate is copied and the

current gate is added to it. In this way, an array of SubTree objects is built that represents

every possible subcircuit within the SubTree.
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We now have represented in memory every possible combination of gates that constitutes

a valid subcircuit (implementable with a K-LUT). Now the program generates LURU strings

via a DFS of each SubTree object. The program simply records the direction of traversal

as the DFS proceeds to form the LURU string. Standard LURU strings and homogeneous

LURU strings are formed in the same manner, with the exception of input signals (“I”

characters, as discussed in Section 3.3.2).

Next the CAM is loaded with all the LURU strings representing subcircuits of the input

netlist. The CAM is then searched with a library of LURU strings. In the case of the inexact

LURU technique, this library is the set of 16 CSEs. The “CAM” in this implementation

is a simple array of SubTrees. A true hardware CAM would store the LURU strings of

the circuit. The same is accomplished, at a significant performance penalty, by this array

of SubTrees (each SubTree object contains its own LURU string). Each of the 16 CSEs is

searched, one at a time, in the CAM. Each CAM “hit” indicates an occurrence in the circuit

of one of the CSEs. A LUT object is created for that SubTree and the LUT is added to a

network of LUTs that will form the implementation of the circuit. Some gates cannot be

covered by CSEs, as they belong only to subcircuits of more than 3 logic levels or subcircuits

with gates of more than 4 inputs. That is, such subcircuits cannot be represented with

an HLS. Additionally, there may be gates that belong to representable subcircuits that are

not mapped simply because the CSEs did not cover a particular subcircuit pattern. Any

uncovered gates from this first CAM search are covered in a second CAM search. This CAM

search simply searches the CAM with the search file. The search file contains LURU strings

for all conceivable K-LUT-implementable subcircuits. So this second CAM search covers the

remaining uncovered gates. As before, each CAM hit constitutes a LUT and each LUT is

added to the LUT network. The program then prints the LUT network as a DOT graphics

file and prints to the screen the number of LUTs required to implement the circuit.
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4.2 OTHER IMPLEMENTATION ISSUES

4.2.1 Common Subcircuit Expressions

Common Subcircuit Expressions (CSE’s) represent one or more subcircuits that occur fre-

quently in benchmark circuits and can be represented with HLS’s. The CSE’s in this work

were obtained through analysis of the ISCAS’85 circuit benchmarks by storing the frequen-

cies of matches for each LURU string as the exact LURU algorithm proceeded. Intuitively,

the longest strings (that is, the largest subcircuits) in each partition are expected to have the

greatest mapping impact and are selected to be CSE’s. A small set of CSE’s was selected

and run on the benchmarks. Whenever better coverage was possible with an additional

HLS, that string was either added as a CSE or an existing similar CSE was modified with

wildcards in the manner of Section 3.3.2 to match the new HLS. In this way, the CSE set

was created to cover as many subcircuits as possible while keeping the set small. As noted

before, 16 CSE’s were found to cover over 90% of subcircuits.

4.2.2 The Search File

The search file that represents all LURU strings possible for a K-input LUT is built recur-

sively as follows. Two-input LUT topologies are known (the only one being ‘LIIU’). Three-

input LUT topologies are generated by inserting copies of the two-input LURU strings into

each other at every input location. This insertion results in the three-input strings LIIIU,

LLIIUIU, and LIRIIUU. Four-input strings are generated by combining two- and three-input

strings and so on. Eventually, all LUT topologies with up to K inputs are generated. A

total of 5440 strings are generated and stored in the search file for K = 8. Note that the

generation occurs only once and imposes no overhead during the execution of the LURU

CAM searches.

The search file that represents all LURU strings possible for a K-input LUT is built from

the bottom up. Two-input LUT topologies are known (the only one being “LIIU”). Three-

input LUT topologies are generated by inserting copies of the two-input LURU strings into

each other at every input location. This insertion results in the three-input strings LIIIU,
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LLIIUIU, and LIRIIUU. Four-input strings are generated by combining two- and three-

input strings in the same manner. In the same way, all LUT topologies through K inputs

are generated. A total of 5440 strings are generated and stored in the search file for K=8.

In general, the number of strings generated grows exponentially with K. However, the

generation occurs only once, so the number of LURU strings in the file is constant for all

circuits. In turn, the number of CAM searches is constant for all circuits.
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5.0 RESULTS

LURU was evaluated with the implementation discussed in Chapter 4. Partitioned version

of the ISCAS’85 combinational benchmark circuits were used to measure the effectiveness of

both the exact and inexact string matching LURU techniques. Results for both techniques

follow, as well as a comparison of the two techniques.

5.1 PERFORMANCE OF THE EXACT LURU TECHNIQUE

Area results in terms of the number LUT’s used in mapping the ISCAS’85 circuits with the

exact matching version of LURU are presented in Table 1. The circuits were mapped using

LURU, FlowMap, and CutMap onto a homogeneous structure of 8-input LUT’s. Note that,

in all cases, LURU requires fewer LUT’s than FlowMap or CutMap to implement a circuit.

The average area savings over CutMap is 25%, with a maximum reduction of 53%.

5.2 PERFORMANCE OF THE INEXACT LURU TECHNIQUE

The inexact string matching version of LURU performed similarly to the exact version.

Table 2 shows the area results for the ISCAS’85 benchmarks using the inexact version of

LURU. The inexact technique requires equal or fewer LUT’s than FlowMap and CutMap.

However, the inexact technique does not perform as well as the exact technique with regard

to area. This disadvantage presents an interesting tradeoff discussed in Section 5.3.
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Table 1: LUT’s required to map the ISCAS’85 circuits. Percentage improvement of LURU

(with exact matching) over CutMap is shown in parentheses.

FlowMap CutMap LURU
(exact)

c432 75 75 57 (24%)
c499 66 66 64 (3%)
c880 140 135 129 (4%)
c1355 266 266 264 (1%)
c1908 395 395 206 (48%)
c2670 607 597 283 (53%)
c3540 813 773 590 (24%)
c5315 1232 1182 656 (45%)
c6288 1456 1456 1440 (1%)
c7552 1626 1554 867 (44%)

Table 2: LUT’s required to map the ISCAS’85 circuits. Percentage improvement of LURU

(with inexact matching) over CutMap is shown in parentheses.

FlowMap CutMap LURU
(inexact)

c432 75 75 57 (24%)
c499 66 66 64 (3%)
c880 140 135 135 (0%)
c1355 266 266 264 (1%)
c1908 395 395 203 (49%)
c2670 607 597 324 (46%)
c3540 813 773 600 (22%)
c5315 1232 1182 768 (35%)
c6288 1456 1456 1440 (1%)
c7552 1626 1554 1000 (36%)
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The CSE’s used for the inexact string matching are presented in Table 3. These 16 LURU

strings were constructed based on frequency of subcircuits in the ISCAS’85 benchmark set,

as detailed in Section 4.2.

Usage statistics for the 16 CSE’s appear in Table 4. This table is helpful in determining

which CSE’s are most important for covering the subcircuits of each benchmark. Each

column of Table 4 corresponds to a benchmark circuit, and each row is a particular CSE.

The numbers in the cells indicate how many times a CSE was used in the coverage of a

benchmark. Numbers in parentheses show what percentage of the total input circuit was

covered with each CSE. Blank fields indicate that the CSE in question did not appear in

that circuit. Each column of the table represents a profile of its benchmark circuit, showing

the occurrence of various subcircuit patterns in the circuit. It can be seen in Table 4 that

certain CSE’s have greater matching significance than others (providing higher coverage).

The information in Table 4 is an important result of LURU’s inexact matching extension and

permits designers to quickly identify important subcircuits. If designers wish to optimize a

design for speed or power consumption, they know where to focus their optimization effort.

For example, optimizations of CSE 6 in Table 4 will benefit 32% of subcircuits in c6288.

5.3 PERFORMANCE COMPARISON OF THE TWO TECHNIQUES

LURU’s inexact matching scheme requires a nominal increase in the number of LUT’s (com-

pared to LURU). This disadvantage must be balanced against the significant gain of obtain-

ing a small, robust set of optimized search strings (CSE’s) rather than searching through

all possible topologies for a K-input LUT, as in the exact LURU technique. The potential

circuit optimization opportunities provided by inexact matching with CSE’s outweigh this

relatively minor area increase over exact LURU.
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Consider the case in which an optimized CSE implementation provides an N% improve-

ment in a metric such as area or power versus a LUT. It can be computed using averages

obtained from tables 4 and 2 that direct CSE implementations (e.g., standard cells) would

need to provide an average improvement of N = 13.5% over LUT’s for the inexact LURU

extension to overcome its slight area disadvantage and match standard LURU.

The coverage efficiency of CSE’s is due largely to inexact string matching. Figure 11

shows the number of CSE’s used in the coverage of the ISCAS ’85 circuits. The number of

CSE’s used in inexact string matching is the same as the numbers in Table 4. The number

of CSE’s used in exact matching is a result of wildcards - CSE’s containing wildcards are

generalized representations of several possible subcircuits. A library of all such represented

subcircuits may be used to cover each benchmark (with exact string matching) with the

same coverage as that achieved with inexact string matching. Note that in Figure 11, the

coverage achieved is that shown in the bottom row of Table 4.

The first phase of the inexact LURU technique, which uses CSE’s, matches over 90%

of subcircuits on average. The second phase, which uses exact LURU, must cover only a

few subcircuits not covered in the first phase. Table 5 shows the number of LUT’s used in

the two phases of the inexact LURU algorithm. The numbers for the first phase (1) are

identical to those of Table 4 because each of the LUT’s represents one of the 16 CSE’s. The

numbers for the second phase (2) result from mapping the remaining subcircuits, such as

those containing gates with more than four inputs, that do not fit into an HLS. An exact

LURU approach requires 5440 CAM searches (for K = 8) to map 100% of subcircuits, but

the inexact LURU technique requires just 16 CAM searches to map 92.6% of subcircuits (on

average). In terms of coverage per search, the inexact LURU technique is more efficient than

the exact LURU technique.
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Table 3: Common Subcircuit Expressions, in exact and inexact LURU string forms.

0 LLIRIIU2IIU3IIUUIU 8 LIRLIIUIUU

LLI00000RII00U2II00U3II00UUI0000000000000000000000000 LI0000000000000000000000000RLII00UI00000000000000000U

0000000000000000000000000000000000000000000000000000U 0000000000000000000000000000000000000000000000000000U

1 LLIIURIIU2IIUIU 9 LIRIRIIUUU

LLI00000I00000000000000000URI00000I00000000000000000U LI0000000000000000000000000RI00000RII00U000000000000U

2I00000I00000000000000000UI0000000000000000000000000U 0000000000000000000000000000000000000000000000000000U

2 LIII3IIIIUU/LIII3IIIUU/LIII3IIUU/etc. 10 LIRIIU2IIIUU/LIRIIU2IIUU

LI0000000000000000000000000I0000000000000000000000000 LI0000000000000000000000000RI00000I00000000000000000U

I00000000000000000000000003I00000I00000*00000*00000UU 2I00000I00000*00000000000U00000000000000000000000000U

3 LIRIIUU/LIRIIIUU/LIRIIUIU/LIRIIIUIU/etc. 11 LLIIURLIIURIIUUU

LI0000000000000000000000000RI00000I00000*00000000000U LLI00000I00000000000000000URLII00URII00U000000000000U

*0000000000000000000000000*0000000000000000000000000U 0000000000000000000000000000000000000000000000000000U

4 LLIIURIRIIUUU 12 LLIRIIIIUUIU

LLI00000I00000000000000000URI00000RII00U000000000000U LLI00000RIIIIU000000000000UI00000000000000000000000000

0000000000000000000000000000000000000000000000000000U 000000000000000000000000000000000000000000000000000U

5 LLIIUIIU/LLIIIUIIIU/etc. 13 LLLIIURIIUUIIIU/etc.

LL*00000*00000*00000*00000U*0000000000000000000000000 LLLII00URII00U*00000*00000U*0000000000000000000000000

*0000000000000000000000000*0000000000000000000000000U *0000000000000000000000000*0000000000000000000000000U

6 LLIIURIIUU/LLIIIURIIIUU/LLIIURIIUIIU/etc. 14 LLLIIUIIIUIU/etc.

LI00000I00000*00000000000URI00000I00000*00000000000U LLLII00U*00000*00000*00000U*0000000000000000000000000

*0000000000000000000000000*0000000000000000000000000U *0000000000000000000000000*0000000000000000000000000U

7 LIRLIIURIIUUIIU/etc. 15 LII2IIUIU/etc.

LI0000000000000000000000000RLII00URII00U*00000*00000U LI0000000000000000000000000I0000000000000000000000000

*0000000000000000000000000*0000000000000000000000000U 2I00000I00000*00000*00000U*0000000000000000000000000U
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Table 4: CSE’s of partitioned ISCAS’85 benchmark circuits ignoring partitions with a single

gate.

CSE c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552

0 1 (3.4%)

1 8 (27.6%) 1 (0.4%) 2 (0.9%)

2 2 (6.9%) 1 (0.4%)

3 9 (31%) 32 (64%) 7 (8.5%) 8 (3.6%) 50 (22.1%) 33 (7.8%) 71 (10.2%)

4 9 (31%) 8 (9.8%) 1 (0.1%)

5 2 (4%) 3 (3.7%) 2 (1.9%) 7 (5.8%) 52 (23.2%) 29 (12.8%) 71 (16.8%) 16 (3.3%) 41 (5.9%)

6 8 (16%) 26 (31.7%) 104 (98.1%) 96 (80%) 114 (50.9%) 63 (27.9%) 236 (55.9%) 464 (96.7%) 417 (60%)

7 8 (16%) 4 (4.9%) 1 (0.4%) 4 (1.8%)

8 8 (9.8%) 2 (0.9%) 10 (4.4%) 8 (1.9%) 15 (2.2%)

9 1 (0.4%)

10 2 (2.4%) 1 (0.4%) 10 (2.4%) 20 (2.9%)

11 4 (4.9%) 4 (3.3%)

12 1 (1.2%)

13 1 (1.2%) 7 (5.8%) 17 (7.6%) 24 (10.6%) 13 (3.1%) 21 (3%)

14 1 (0.4%) 2 (0.9%) 4 (0.6%)

15 8 (3.6%) 10 (4.4%) 14 (2%)

Total 29 (100%) 50 (100%) 64 (78%) 106 (100%) 114 (95%) 205 (91.5%) 196 (86.7%) 371 (87.9%) 480 (100%) 604 (86.9%)

Figure 11: Number of CSE’s used to cover the ISCAS ’85 combinational benchmark circuits

(with the coverage shown in Figure 4).
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Table 5: LUT’s used in the two phases of LURU’s inexact matching extension, shown with

percentage of total LUT’s for each benchmark ignoring partitions with a single gate.

ISCAS LURU phase 1 LURU phase 2
file (#LUT’s) (#LUT’s)
c432 29 (100%) 0 (0%)
c499 50 (100%) 0 (0%)
c880 64 (78%) 18 (22%)
c1355 106 (100%) 0 (0%)
c1908 114 (95%) 6 (5%)
c2670 205 (91.5%) 19 (8.5%)
c3540 196 (86.7%) 30 (13.3%)
c5315 371 (87.9%) 51 (12.1%)
c6288 480 (100%) 0 (0%)
c7552 604 (86.9%) 91 (13.1%)
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6.0 CONCLUSION

6.1 CONTRIBUTIONS OF THE TECHNIQUE

This work demonstrates the effectiveness of CAM for applications outside of the networking

area, such as the mapping problem explored in this thesis. The LURU technique introduces

a novel string-based circuit representation for use with CAM. The ternary CAM feature of

wildcards is used to expand the string representation to facilitate inexact matching. The

inexact matching LURU technique is capable of exceeding the area quality of both FlowMap

and CutMap, while gaining a significant circuit optimization mechanism to improve upon

the original exact matching LURU technique. The profiling feature of LURU allows a user

to determine which subcircuits (CSE’s) occur most frequently. Standard cells implementing

such CSE’s could be individually optimized. Entire circuit designs may be optimized through

knowledge of their CSE distributions and careful CSE optimization. Highly regular circuits

can especially benefit from such optimizations in area, speed, and power consumption.

The LURU technology mapping technique provides several advantages: the exact string

matching version of the LURU algorithm provides a reduction in the LUT requirement for

technology mapping over FlowMap and CutMap. The average area savings over CutMap

is 25%, with a maximum reduction of 53%. The inexact string matching version of the

algorithm provides an average 21% reduction, with a maximum of 49% (see Tables 1 and 2).

The inexact string matching version is much faster than the exact string matching version,

requiring just 16 CAM searches instead of the 5440 required by the exact string matching

version. The 16 CSEs used by the inexact string matching version cover 92.6% of the

subcircuits (on average) in the ISCAS ’85 benchmark set.
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6.2 FUTURE RESEARCH

Research should be conducted into the chosen set of CSEs, as this choice affects area re-

sults and determines which subcircuits show the most prominence in a circuit. Technology

mapping results using other K values (other numbers of LUT inputs) should be generated

and analyzed to further quantify the benefit of the LURU technique. Also, the technique

should be modified to map to a network of variable-size LUTs. Cleverly choosing LUT siz-

ing in relation to placement may provide for significant improvements. Uses of the LURU

technique within the context of a heterogeneous FPGA fabric should be investigated: mod-

ern FPGAs that include various functional units, RAMs, and LUTs may take advantage of

LURU. Standard cell implementations of CSEs should be developed to evaluate the effec-

tiveness of the optimizations facilitated by the inexact string matching version of the LURU

algorithm. Additionally, an effort should be made to amortize the sub-optimal effects of

circuit partitioning and the impact of the LURU technique on the packing, placement, and

floorplanning stages of design flow need to be explored.
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