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RANS/PDF AND LES/FDF FOR PREDICTION OF TURBULENT

PREMIXED FLAMES

Server Levent Yılmaz, Ph.D.

University of Pittsburgh, 2008

Probability density function (PDF) and filtered density function (FDF) methodologies are

developed and implemented, respectively, for Reynolds-averaged Navier-Stokes (RANS) and

large eddy simulation (LES) of turbulent premixed flames. RANS predictions are made of a

lean premixed bluff-body flame via the joint velocity-scalar-frequency PDF model. LES of

a premixed Bunsen-burner flame is conducted via the scalar FDF methodology. Both sim-

ulations employ finite rate kinetics via a reduced methane chemistry mechanism to account

for combustion. Prediction results are compared with experimental data, and are shown to

capture some of the intricate physics of turbulent premixed combustion.

Keywords: large eddy simulation, filtered density function, Reynolds-averaged Navier-

Stokes, probability density function, turbulent reacting flows, lean premixed combustion.
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NOMENCLATURE

Roman

C0 : model parameter in the SLM equation

C3, C4 : model parameters in the equation for ω

CI : SGS viscosity model parameter

cp : constant pressure specific heat

CR : SGS viscosity model parameter

cv : constant volume specific heat

Cφ : model parameter in the LMSE mixing model

CΩ : constant in the definition of Ω (in Chapter 2)

CΩ : model parameter for SGS mixing (in Chapter 3)

Cω1, Cω2 : model parameters in the equation for ω

d : reference diameter

Di : drift coefficient in the Langevin equation

Da : Damköhler number

E : SGS kinetic energy resolved with respect to the reference velocity U

E : diffusion coefficient in the Langevin equation

f : probability density function (in Chapter 2)

f : the conserved scalar (in Chapter 3)

FL : the scalar filtered mass density function

G : filter kernel

h : enthalpy

hs : equivalent enthalpy

Jα
i : scalar (heat or mass) flux

x



k : turbulent kinetic energy

kbk : backward reaction rate coefficient

kfk : forward reaction rate coefficient

Li : air entrainment (pilot/air mixing layer) height

Le : Lewis number

Mα : molar mass of species α

Mα
i : SGS scalar fluxes

N : total number of realizations

NE : number of MC particles inside the ensemble domain

NS : number of species

P : rate of production of turbulent kinetic energy

p : pressure

q̇ : heat source for hs due to chemical reaction

R : mixture gas constant

r : number of reactions in a chemical mechanism

R (x, t) : a random variable

R0 : universal gas constant

Re : Reynolds number

Sij : strain rate tensor

Sα : chemical source term

Sω : mean source of turbulence frequency

Sct : SGS Schmidt number

T : temperature

t : time

Tij : SGS stress tensor

U : reference velocity vector used in MKEV SGS model

u : Eulerian velocity

u∗ : velocity vector used in the calculation of E

v : sample space variable corresponding to u

W : independent vector valued Wiener process in the physical space
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Wk : rate of reaction k

w(n) : particle weight

W u : independent vector-valued Wiener process in the velocity space

W ω : independent Wiener process in the frequency space

x : position vector

x : axial (streamwise) direction

Xα : mole fraction of species α

y, z : lateral directions

Yα : mass fraction of species α

Greek

γ : specific heat ratio

γ : thermal or mass diffusivity

γt : subgrid diffusivity

δ : Dirac delta function

δij : Kronecker delta

∆E : ensemble domain size

∆L : filter width

∆l′ : secondary filter size used in MKEV model

∆m : mass of a particle with unit weight

∆x : FD grid spacing along x

∆y : FD grid spacing along y

∆z : FD grid spacing along z

ζ : fine-grained density

θ : sample space variable corresponding to ω

µ : dynamic viscosity

ν ′αk : the stoichiometric coefficients of reaction k in forward direction

ν ′′αk : the stoichiometric coefficients of reaction k in backward direction

νt : subgrid viscosity

ξ : random number with normal distribution

xii



ρ : density

〈ρ〉MC : MC density defined in Eq. (3.33)

τij : viscous stress tensor

φ : fuel/air equivalence ratio

φ : scalar (mass fractions and enthalpy) vector

ψ : sample space variable corresponding to φ

Ω : conditional Favré averaged turbulent frequency

ω : turbulent frequency

Ωm : frequency of SGS mixing

Superscripts

q+ : Lagrangian variable

q′ : fluctuating component

q′′ : Favré fluctuating component

q(n) : n-th particle or n-th realization

Subscripts

α : scalar index

i : dimensional index

k : reaction index

qref : reference value of the quantity q

Symbols

Q : time average

〈R | v,ψ〉 : mean of R conditional on u = v and φ = ψ

〈q〉 : ensemble average

q̃ : Favré mean

〈Q〉l : filtered quantity Q with the filter width of ∆L (Eq. (3.6))

〈Q〉L : Favré filter

〈q〉l′ : filtered quantity Q with the filter width of ∆l′

〈Q |ψ〉l : filtered value of Q conditional on φ = ψ

xiii



Abbreviations

DNS : direct numerical simulation

FD : finite difference

FDF : filtered density function

FV : finite volume

GB : 109 bytes

GFLOP : 109 floating point operations

GTC : gas turbine combustion

LES : large eddy simulation

LHS : left-hand-side

LMSE : linear mean square estimation

LP : lean premixed

LPC : lean premixed combustion

MC : Monte-Carlo

MKEV : modified kinetic energy viscosity

ODE : ordinary differential equation

PaSR : partially stirred reactor

PDF : probability density function

PSR : perfectly stirred reactor

RANS : Reynolds-averaged Navier Stokes

RHS : right-hand-side

SDE : stochastic differential equation

SFMDF : scalar filtered mass density function

SGS : subgrid scale

SLM : simplified Langevin model
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1.0 INTRODUCTION

Research into optimization of power generation systems for advanced energy and emissions

performance has become increasingly important in the last two decades largely due to the

increasing regulation of NOx and SOx emissions, along with other greenhouse gases such

as CO2.
1 Microturbine generation systems are on the forefront of this research due to the

promise of “high-efficiency, ultra-clean” systems that can be used to produce electrical energy

as well as thermal energy in co-generation applications. Specific objectives of optimizing mi-

croturbines include fuel flexibility with the ability to use multiple fuels such as diesel, ethanol,

landfill gas and biofuels along with natural gas, and a total NOx emission typically less than

7 ppm for natural gas. The efficiency and emissions of microturbines rely on the use of

lean premixed combustion (LPC) techniques, performance issues of which are widely known

to be a function of the fuel composition. Even the seasonal variability in the composition

of natural gas, which is the primary fuel of choice, may alter the emission characteristics

of the combustor by changing the combustion process and chemical kinetics.2 Some recent

experimental studies3–5 have tackled the issue of fuel variability on gas turbine combustion

by tabulating the emissions for a variety of fuel compositions. Another promising area of

low-emission gas turbine combustion (GTC) is the use of hydrogen enriched gaseous fuels.

Some recent experimental studies6–9 have identified the advantages of hydrogen enriched

fuels in lowering emissions.

There is a continuing need to develop and implement advanced computational tools for

modeling and prediction of turbulent combustion for a wide range of mixing, fuel compo-

sitions and flow configurations. Reliable and flexible computational modeling is the key in

achieving the objectives of modern gas-turbine design. Direct numerical simulation (DNS),

Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) are widely con-
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sidered as three principal approaches in computational turbulent combustion.10 DNS consists

of solving the transport equations of fluid flow and resolving all of the scales of motion. In

RANS, the transport equations are averaged over realizations, and the mean transport equa-

tions are solved. In LES, the spatially filtered equations of motion are considered, solution

of which portrays the large scale motion. DNS provides a very accurate, model-free repre-

sentation of the unsteady evolution of turbulent flows. However, applications are limited by

the computational power.11–13 RANS is the most popular approach for engineering applica-

tions.14 LES has been the subject of much modern research and is increasingly becoming

more popular.15

Turbulence-chemistry interactions require modeling in both RANS and LES.11 The prob-

abilistic approach has proven effective in this regard.11,15–17 This approach follows from the

definition of the fine-grained density function.18 In RANS, the ensemble average of the

fine-grained density function is considered, and is termed the probability density function

(PDF).19 In LES, the spatially filtered fine-grained density is termed the filtered density

function (FDF).11,15, 17 The primary advantages of probability methods are: (i) they provide

closed-form representation of chemical source terms, and (ii) they are applicable to both

premixed and non-premixed flames.15,20, 21

The RANS/PDF methods have been popular since 1970’s.22–24 Development of the La-

grangian Monte Carlo particle methods20 has enabled PDF calculations to be conducted of a

variety of flame configurations.14,25–43 Most of the progress in LES/FDF has occurred within

the past decade, but the methodology is rapidly becoming very popular.38,44 Examples are

contributions in its basic implementation,45–55 fine-tuning of its sub-closures,56,57 and its

validation via laboratory experiments.58–61 The LES/FDF is finding its way into commer-

cial codes62,63 and has been the subject of detailed discussions in several textbooks.16,21, 64, 65

Givi15 provides a comprehensive review of the state of progress in LES/FDF.
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1.1 OBJECTIVE AND SCOPE

The objective of this Dissertation is to implement both RANS/PDF and LES/FDF method-

ologies for prediction of turbulent premixed flames. The joint velocity-scalar-frequency

PDF is formulated for RANS predictions of a lean-premixed bluff-body stabilized methane

flame.66,67 The scalar FDF is employed for LES of a Bunsen burner.68 In Chapter 2, the

results of RANS/PDF predictions are presented, whereas Chapter 3 contains the results via

LES/FDF. Chapter 4 provides a concise summary along with some suggestions for future

research.

3



2.0 RANS/PDF PREDICTION

In RANS, the ensemble averaged forms of the transport equations of the chemically react-

ing flow are considered.69 These equations require closures for the convection and chemical

reaction source terms. Compared to conventional turbulence models,16 the probability den-

sity function (PDF) method offers the advantage of accounting for convection and reaction

in closed forms.20 This has proven to be very useful for prediction of complex turbulent

reacting flows.14,25 The two most widely used PDF methods in RANS are the scalar PDF

and the velocity-scalar-frequency PDF methods.16 In the former, a model is required for the

turbulent transport. In the latter, the convective transport is in a closed form.

PDF methods are appropriate for prediction of premixed, partially premixed, and non-

premixed flames.14,21, 70 Raman et al.71 and Lindstedt et al.72 employed scalar PDF in RANS

prediction of the Sandia piloted flames.73 These flames were also investigated by Xu and

Pope,32 Tang et al.,74 and Wang and Pope75 using the joint velocity-scalar-frequency PDF.

The non-premixed bluff-body stabilized flame76 has been investigated by Muradoglu et al.33

using scalar PDF, and by Liu et al.37 using the joint velocity-scalar-frequency PDF. Cao

et al.36 employed velocity-scalar-frequency PDF for prediction of partially premixed lifted

H2/O2 flames. Masri et al.77 employed scalar PDF for simulation of a strongly swirling bluff

body stabilized non-premixed flame. Applications to premixed and lean premixed flames are

somewhat limited. Cannon et al.30 and Vicente et al.35 employed scalar PDF for simulation

of a lean premixed bluff body flame. Lindstedt and Vaos40 employed the same methodology

for simulation of the Bunsen burner.

The present work provides the first application of the joint velocity-scalar-frequency for

RANS prediction of a lean premixed turbulent flame. The bluff-body stabilized lean pre-

mixed (LP) methane-air flame is considered. This configuration has been the subject of

4



several previous experiments and computational investigations. Pan66 studied the effects

of the stabilizer geometry and provided measurements of the velocity and the temperature

fields under several lean-stoichiometric conditions. Nandula et al.67 provided non-intrusive

measurements of temperature, major and minor species mole fractions, including the pollu-

tants CO and NO. Cannon et al.30 and Brewster et al.70 employed the velocity-composition

PDF coupled with the k − ǫ turbulence model in RANS simulation of the bluff-body LP

flame. Fueyo et al.78 employed the composition PDF for a comparative study of alternative

reduced-chemistry mechanisms for prediction of the LP flame. Vicente et al.35 used the same

model to investigate the effects of mixing. Nanduri et al.79 compared the predicted results

via various RANS based models in the commercial software FLUENT80 with those presented

in this Dissertation.

2.1 FORMULATION

The hydrodynamic and thermochemical properties of reacting system are characterized by

the velocity, enthalpy, pressure and mass fractions of each chemically reacting species. Space

(x ≡ xi, i = 1, 2, 3) and time (t) variations of these quantities satisfy the following compress-

ible form of the continuity, momentum, enthalpy and species mass conservation equations,

under the assumptions of low Mach number, ideal gas, negligible viscous dissipation:69

∂ρ

∂t
+
∂ρui

∂xi
= 0 (2.1a)

∂ρui

∂t
+
∂ρuiuj

∂xj
= −

∂p

∂xi
+
∂τij
∂xj

(2.1b)

∂ρφα

∂t
+
∂ρφαuj

∂xj
= −

∂Jα
i

∂xi
+ ρSα (2.1c)

p = ρRT. (2.1d)

where u = ui, i = 1, 2, 3 is the velocity vector, p is the pressure, ρ is the flow density,

φα = Yα for α = 1, 2, . . . , Ns are the species mass fractions for Ns species, and φNs+1 = h is

the enthalpy representing thermodynamic and chemical (but not mechanical) energy. R =

R0
∑Ns

α=1 Yα/Mα is the mixture gas constant with the universal gas constant R0 and molar

5



mass of species Mα, and T is the gas temperature. For a Newtonian fluid with zero bulk

velocity and Fickian diffusion, the viscous stress tensor τij, and the scalar (mass and heat)

flux Jα
i are given by,

τij = µ

(
∂ui

∂xj
+
∂uj

∂xi
−

2

3

∂uk

∂xk
δij

)
(2.2a)

Jα
i = −γ

∂φα

∂xi
, (2.2b)

where, µ is the dynamic viscosity and γ = ρΓ denotes the thermal and the mass diffusivity co-

efficients for all species (assuming unity thermal to mass diffusivity ratio, i.e., Lewis number

Le = 1).

The chemical source terms, Sα for α = 1, . . . , Ns, are functions of the composition vari-

ables φ = [Y1, Y2, . . . , YNs, h] and are determined by the gas-phase reaction mechanisms.

Most of the reaction rate data for pure hydrocarbon fuels up to n-heptane and iso-octane

are very detailed.81 For example, the GRI-Mech 3.0 mechanism82 for methane oxidation ac-

counts for 325 reactions among 53 species. The rate of reaction k in a mechanism containing

r chemical reactions is

Wk ≡ kfk

Ns∏

α=1

(
ρYα

Mα

)ν′

αk

− kbk

Ns∏

α=1

(
ρYα

Mα

)ν′′

αk

, (2.3)

where kfk and kbk are the rate coefficients of the forward and backward reaction, respectively.

In general, they are temperature dependent and may also depend on pressure. The exponents

ν ′αk and ν ′′αk are the stoichiometric coefficients of reaction k in forward and backward direction,

respectively. The mass production rate of species α per unit volume and unit time is the

sum over all reactions in the mechanism:

ρSα = Mα

r∑

k=1

ναkWk (2.4)

where ναk = ν ′′αk − ν ′αk. The sum over all source terms vanishes:

Ns∑

α=1

ρSα = 0 (2.5)
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Under the assumptions of negligible viscous dissipation and low compressibility, the source

term for the enthalpy, SNs+1, represents the effects of radiation. For small laboratory flames

heat loss by radiation is usually a negligible fraction of the total heat flow; therefore SNs+1 ≈

0.

Equations (2.1) and (2.2) form a closed set. Analytical solutions have only been obtained

for simple laminar flows. In general, numerical solution via DNS is the only way for turbulent

flows, but this is restricted by computer power to very low Reynolds number flows. In RANS,

ensemble (realization) averaging operation is used:

〈q (x, t)〉 ≡ lim
N→∞

1

N

N∑

n=1

q(n) (x, t) . (2.6)

where q(n) (x, t) is the value of a transport variable q at x and t in the n-th of N total

realizations. The fluctuations are defined as

q′ (x, t) ≡ q (x, t) − 〈q (x, t)〉 , (2.7)

〈q′〉 = 0. (2.8)

A more convenient form of the equations are obtained by the density weighted or Favré

averaging:83

q̃ ≡
〈ρq〉

〈ρ〉
(2.9)

q′′ ≡ q − q̃ (2.10)

q̃′′ = 0, 〈q′′〉 6= 0. (2.11)

The Favré averaged form of the transport equations are

∂ 〈ρ〉

∂t
+
∂ 〈ρ〉 ũi

∂xi

= 0 (2.12)

∂ 〈ρ〉 ũi

∂t
+
∂ 〈ρ〉 ũiũj

∂xj
= −

∂ 〈p〉

∂xi
+
∂ 〈τij〉

∂xj
−

∂

∂xj

(
〈ρ〉 ũ′′i u

′′

j

)
(2.13)

∂ 〈ρ〉 φ̃α

∂t
+
∂ 〈ρ〉 ũiφ̃α

∂xi
= −

∂J̃α
i

∂xi
−

∂

∂xi

(
〈ρ〉 ũ′′i φ

′′

α

)
+ 〈ρ〉 S̃α (2.14)

〈p〉 = 〈ρ〉 R̃T , (2.15)
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The quantities appearing in these equations are (i) the mean quantities which it is the

objective to determine (ũ, φ̃ and 〈p〉), (ii) the density weighted velocity-velocity and velocity-

scalar correlations (ũ′′i u
′′

j and ũ′′i φ
′′

α), and (iii) the density weighted average of the highly

nonlinear reaction source term S̃α. It is the principle aim of combustion modeling in RANS

to provide closure for the terms (ii) and (iii). At the core of PDF methods lies the definition

of the one-point, one-time, joint probability density function (PDF) of u (x, t) and φ (x, t)

at location x and time t:

f (v,ψ;x, t) ≡ 〈ζ [v,u (x, t) ,ψ,φ (x, t)]〉 (2.16)

where v = [v1, v2, v3] and ψ = [ψ1, ψ2, . . . , ψNs+1] are the sample space variables for the

velocity and the composition vectors, respectively. The PDF is the ensemble average of the

fine-grained density, ζ , defined as,18

ζ [v,u (x, t) ,ψ,φ (x, t)] ≡
3∏

i=1

Ns+1∏

α=1

δ (vi − ui (x, t)) δ (ψα − φα (x, t)) . (2.17)

where δ is the Dirac delta (or unit impulse) function. In variable density flows, the density-

weighted joint PDF is a useful quantity, and is defined as

f̃ (v,ψ;x, t) ≡ 〈ρ (φ (x, t)) ζ [v,u (x, t) ,ψ,φ (x, t)]〉

= f (v,ψ;x, t)
ρ (ψ)

〈ρ〉
(2.18)

For a random variable R (x, t), the Favré mean can be determined by

R̃ =

∫

ψ

∫

v

〈ρ (φ)R |u = v,φ = ψ〉 f (v,ψ) / 〈ρ〉dvdψ

=

∫

ψ

∫

v

〈R |u = v,φ = ψ〉 ρ (ψ) f (v,ψ) / 〈ρ〉 dvdψ

=

∫

ψ

∫

v

〈R |u = v,φ = ψ〉 f̃ (v,ψ) dvdψ (2.19)

where 〈R |u = v,φ = ψ〉, or in short 〈R | v,ψ〉, denotes the expectation of R conditioned

on u = v and φ = ψ. If R is independent of u and φ, then

〈R | v,ψ〉 = 〈R〉 , (2.20)
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in which case f does not carry any information about R, and Eq. (2.19) is not useful. If R

is completely determined by u and φ, then

〈R (u,φ) |v,ψ〉 = R (v,ψ) (2.21)

and Eq. (2.19) reduces to the definition of the unconditional mean.

The significance of the PDF approach is that the reaction source and the convective

transport terms are functions of u and φ can be evaluated directly. For example, for the

reaction rates

S̃α (x, t) =
˜̂
Sα (φ (x, t)) =

∫

ψ

∫

v

Ŝα(ψ)f̃ (v,ψ;x, t) dvdψ (2.22)

where Ŝα is the reaction rate as a function of composition variables. Of course, f̃ (v,ψ;x, t)

contains far much more information than is required – that is S̃α, ũ′′i u
′′

j and ũ′′i φ
′′

α.

Using the above definitions, the transport equation for f̃ can be derived from the con-

servation equations, Eqs. (2.1):84

∂f̃

∂t
+
∂vj f̃

∂xj
= −

∂Sαf̃

∂ψα
+

∂

∂vk

(〈
1

ρ

∂p

∂xk

∣∣∣∣v,ψ
〉
f̃

)

−
∂

∂vk

(〈
1

ρ

∂τkj

∂xj

∣∣∣∣v,ψ
〉
f̃

)
+

∂

∂ψα

(〈
1

ρ

∂Jα
j

∂xj

∣∣∣∣v,ψ
〉
f̃

)
. (2.23)

The two terms on the left-hand-side (LHS) of this equation denote evolution in time and

physical space due to convection, and are closed. Also closed is the first term on the RHS,

which is transport in the composition space due to chemical reaction. The two terms in-

volving conditional expectations require closures. These are the transport in velocity space

due to viscous stress tensor and the pressure gradient, and the molecular transport in the

composition space, respectively.

The unclosed terms in the joint PDF transport equation, Eq. (2.23), are due to the fact

that f̃ is a one-point, one-time statistic, and contains no length-scale information. Ievlev85

provides a general transport equation for n-point joint PDF of velocity and scalars in which

the (n+ 1)-point distribution is approximated in terms of n-point distributions.
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2.2 MODELING AND SIMULATION

The closure for PDF transport equation is provided in the form of a set of Stochastic Dif-

ferential Equations (SDEs).86–88 All of the modeling in the PDF transport equation is via

selection of the parameters of the SDEs which describe a diffusion process.89 A determinis-

tic description of this process is given by the corresponding Fokker-Planck equation.90 The

closure for the PDF transport equation, Eq. (2.23), is made by constructing a direct analogy

to the Fokker-Planck equation.

The most comprehensive model to date is given by the joint velocity-scalar-frequency

PDF model, which introduces the following SDEs:14,21, 25, 27

dX+
i = u+

i dt , (2.24a)

du+
i = −

1

〈ρ〉

∂ 〈p〉

∂xi
dt−

(
1

2
+

3

4
C0

)
Ω(u+

i − ũi)dt+

√
C0k̃Ω dW u

i , (2.24b)

dφ+
α = Sα

(
φ+
)
dt− CφΩ

(
φ+

α − φ̃α

)
dt , (2.24c)

dω+ = −C3

(
ω+ − ω̃

)
Ωdt− SωΩω+dt+

√
2C3C4ω̃Ωω+dW ω , (2.24d)

where X+(t), u+(t), φ+(t) and ω+(t) denote the stochastic evolution of position, velocity

vector, composition variables and turbulence frequency, respectively. The models implied by

these equations are the Simplified Langevin Model (SLM)16 for closure of viscous dissipation

and fluctuating pressure gradient, the linear mean-square estimation (LMSE)22 to account

for the effects of molecular diffusion, and the modified gamma-distribution model31 for tur-

bulent frequency. In these equations, Ω ≡ CΩ 〈ρ+ω+ |ω+ ≥ ω̃〉 / 〈ρ〉 is the conditional Favré

averaged turbulent frequency, k̃ ≡ ũ′′i u
′′

i /2 is the turbulent kinetic energy, W terms are inde-

pendent Wiener processes in the velocity (u) and frequency (ω) space, Sω = Cω2 −Cω1P/k̃Ω

is the turbulence source term where P ≡ −ũ′′i u
′′

j
∂ũi

∂xj
is the turbulent production, and the

coefficients C0, CΩ, Cω1, Cω2, C3, C4 and Cφ are the model constants. The Fokker-Planck

corresponding to these SDEs gives the following modeled PDF transport equation:
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1

〈ρ〉

∂ 〈ρ〉 f̃

∂t
= −

vi

〈ρ〉

∂ 〈ρ〉 f̃

∂xi
+

1

〈ρ〉

∂ 〈p〉

∂xi

∂f̃

∂vi

+

(
1

2
+

3

4
C0

)
Ω
∂

∂vi
[f̃(vi − ũi)] +

1

2
C0k̃Ω

∂2f̃

∂vi∂vi

+Ω
∂

∂θ
(f̃ θSω) + C3Ω

∂

∂θ
[f̃(θ − ω̃)] + C3C4Ωω̃

∂2f̃θ

∂θ2

−
∂f̃Sα

∂ψα

+
1

2
CφΩ

∂

∂ψα

[f̃(ψα − φ̃α)]. (2.25)

From the computational standpoint, solution of the SDEs is significantly easier than that

of the modeled PDF transport Eq. (2.25). The most effective way is via the Monte Carlo

(MC) method. These methods have been used for simulation of a wide variety of stochastic

problems91 and have benefited significantly from modern developments in numerical meth-

ods for SDEs.92 In the MC method, the PDF is represented by an ensemble of stochastic

particles. These particles carry information pertaining to their positions X(n)(t), velocities

u(n)(t), scalar values φ(n)(t) and turbulence frequency ω(n)(t), which are initialized in accord

with the initial mean fields. This information is updated via temporal integration of the

modeled SDEs given in Eq. (2.24). Several mean fields are required in order to carry out

the integration. In a sole MC simulation, these fields are extracted directly from the particle

properties. However, it has been shown that such simulations suffer from deficiencies caused

by statistical fluctuations in the particle mean fields.93,94 To overcome these deficiencies, a

hybrid methodology is devised by Jaberi et al.95 in which a set of deterministic transport

equations are solved along with MC simulation of SDEs. These are the mean conservation

equations obtained by integration of the model PDF transport Eq. (2.25), and are solved by

traditional finite difference (FD) or finite volume (FV) techniques:

∂ 〈ρ〉

∂t
+
∂ 〈ρ〉 ũi

∂xi
= 0, (2.26a)

∂ 〈ρ〉 ũi

∂t
+
∂ 〈ρ〉 ũiũj

∂xj

+
∂ 〈p〉

∂xi

= −
∂

∂xj

(
〈ρ〉 ũ′′i u

′′

j

)
, (2.26b)

∂ 〈ρ〉 h̃s

∂t
+
∂ 〈ρ〉 h̃sũi

∂xi
= −

∂ 〈ρ〉 ũ′′i h
′′

s

∂xi
+ 〈ρ〉 ˜̇q (2.26c)
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where hs ≡ (γ/(γ − 1))p/ρ is the equivalent enthalpy with γ = cp/cv being the ratio of

specific heats, and q̇ =
∑

α
∂hs

∂φα
Sα is the heat source due to chemical reaction. All the

terms appearing on the right-hand side are obtained from the MC simulations as statistical

estimations.

To understand the operational procedure, the elements of the computation as utilized in

our simulations are shown in Fig. 1. The computational domain is discretized on a number

of fixed grid points with spatial spacing ∆. The MC particles are distributed randomly and

are free to move anywhere within the domain as governed by Eq. (2.24). This transport is

Lagrangian, and thus the solution is free of mesh constraints typical of FD or FV simulations.

Statistical information required in Eqs. (2.26) at any grid point is obtained by considering an

ensemble of NE computational particles residing within an ensemble domain of side length

∆E centered around the grid point. For reliable statistics with minimal numerical dispersion,

it is desirable to minimize the size of ensemble domain and maximize the number of MC

particles.20 In this way, the ensemble statistics tend to the desired Favré averaged values.

Some of the coefficients of the SDEs in Eq. (2.24) are in turn obtained by interpolation to

the particle locations.

With the hybrid method employed here, some of the quantities are obtained by MC, some

by FV, and some by both. In particular, since the deterministic equations are introduced only

to overcome the problem associated with statistical errors of the stand-alone MC simulation,

all of the mean quantities obtained from FV solutions can be extracted from the particle

fields. At the level of governing equations, Eq. (2.24) and Eq. (2.26) are consistent. However

with certain schemes, the solutions may not be identical due to the accumulation of numerical

errors. Here, in RANS/PDF simulations a time-inaccurate, semi-implicit FV scheme is

employed in order to achieve fast steady state solutions. The SDEs are integrated with a

first order accurate explicit Euler-Maruyamma scheme.92 In order to enforce consistency,

artificial correction of particle fields are required. The correction algorithm proposed by

Muradoglu et al.96 is employed here for this purpose.
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2.3 FLAME CONFIGURATION AND MODEL PARAMETERS

The schematic diagram of the bluff-body flow configuration as considered in the experiments

of Pan66 and Nandula et al.67 is given in Fig. 2. Methane and air under lean premixed

conditions with equivalence ratio φ = 0.586 is fed through an annular ring. A conical bluff

body stabilizes the flame within the recirculation zone that extends about one diameter

downstream. The recirculation zone anchors the flame by trapping the hot products, which

then flow downstream and exit into the atmosphere. Transient eddies issued at the bluff

body base enhance mixing between the reactants and the products. The Reynolds number

based on inlet gas velocity and bluff body diameter is 66,000. The experiments66,67 provide

data in the form of radial profiles near the recirculation zone at selected axial locations

(shown in Fig. 2) above the bluff-body.

In our simulations, the combustor chamber is represented by a 2D axisymmetric domain

starting at the bluff body base and extends to 5.6 diameters downstream. The two lateral

boundaries coincide with the chamber wall and the symmetry axis. The inlet velocity and

Reynolds stress profiles are imposed based on cold flow simulations (obtained via the FLU-

ENT80) which also include upstream of the conical bluff-body. Perfectly mixed conditions

for fuel and air are assumed at the inlet. Adiabatic conditions are imposed at the bluff-

body base and at the walls. The domain is discretized into 140× 70 non-uniform structured

FV cells with stretching applied at the shear layer and near the walls. The mesh size and

stretching is based on the grid independence tests made for cold flow (see Figs. 3 and 6).

The ensemble domain size is equal to the FV cell size. About 100 Monte-Carlo particles

per ensemble domain are used. The PDF model constants are those suggested in previous

work,37 and are shown in Table 1.

A systematically reduced chemical mechanism with 5 global steps, 9 solved and 38 steady

state species is used for methane oxidation. This mechanism is developed by Mallampalli

et al.97 and is based on the Gas Research Institute (GRI) 2.11 mechanism.98 The species

considered are CH4, O2, H2O, CO2, N2, OH, NO, H2 and CO. The reduced system is
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Table 1: PDF model constants used in bluff-body simulations

C0 CΩ Cω1 Cω2 C3 C4 Cφ

2.1 0.6893 0.56 0.9 1.0 0.25 1.5

described by the following global reaction steps:

R1 : 3H2 + O2 + CO2 ⇐⇒ 3H2O + CO

R2 : H2 + 2OH ⇐⇒ 2H2O

R3 : 3H2 + CO ⇐⇒ H2O + CH4

R4 : H2 + CO2 ⇐⇒ H2O + CO

R5 : 3H2 + CO2 + 2NO ⇐⇒ 3H2O + CO + N2

(2.27)

Mallampalli et al.97 evaluated this mechanism in a perfectly stirred reactor (PSR), and in

laminar premixed flames. Their calculated temperature, CO and NO concentrations are

shown to be within 2% of the full mechanism predictions at lean conditions. They also take

into account the effects of molecular mixing in a partially stirred reactor (PaSR) model,

and observe that the mechanism accurately describes the evolution of the mean and the rms

temperature, CO and NO concentration over a wide range of the mixing frequency.

2.4 RESULTS

The capability of the method to predict the hydrodynamics is demonstrated by comparison

with the cold flow measurements of Pan.66 Figure 3 shows the predicted radial profiles of

the mean axial and radial velocities compared with the experimental measurements. The

agreement is good, in particular the extent of the recirculation zone is captured well. This

is further ascertained via comparison of the 2D axial velocity contours shown in Fig. 4. It

is observed that the predicted stagnation boundary (identified with the thick black contour)

is similar to that in the experiment. Closer to the axis, the magnitude of the axial velocity
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is underpredicted. This is attributed to the simplified Langevin model employed in model

SDEs, which yields the Rotta’s closure99 for the pressure-strain correlation. This model

does not properly account for the anisotropies of the highly recirculating flow in this region.

Moreover, the measurements for the magnitude of the radial velocity are somewhat sensitive

and more prone to experimental errors.66 As shown by the radial profiles in Fig. 3 and 2D

contours in Fig. 5, the predictions are in good agreements with data at all axial locations.

However, the magnitude is overpredicted in the upstream, and is underpredicted downstream.

Figure 6 shows the radial profiles of the rms velocity components. Despite some statistical

errors, the overall agreement with experimental data is good.

Figure 7 shows the predicted radial profiles of the mean axial and the radial velocities.

The location of the shear layer is portrayed well by the model. Also captured is the decrease

of the axial velocity along the streamwise direction up to x/d = 0.6, and the increase from

0.6 to 1.0. The discrepancies in predictions of the centerline axial velocity are similar to

those reported by Cannon et al.30 and Vicente et al.35 who employed RANS models without

proper consideration of the recirculation effects.

Figure 9 shows the radial profiles of the mean temperature. The recirculation zone behind

the bluff-body allows hot combustion products to mix and react with the incoming fuel-air

mixture and, thus stabilizes the flame. The profiles for temperature reveal the location

of cold reactants and hot products within the combustion chamber. The predicted mean

temperature in the recirculation zone (r/d < 0.5) is in agreement with the data, except in

the upstream region the values are overpredicted by ≈100K. This is due to the neglect of

heat losses due to radiation and convection on the bluff body surface. In fact, the predicted

value is closer to the adiabatic equilibrium temperature (≈1640K). The predicted locations

of the sharp temperature gradients where hot and cold gases mix, are in good agreement

with data, particularly at x/d = 0.3, 0.6 and 0.8. The location of the gradient at x/d = 1.0

is underpredicted by about 0.1d. This indicates either an insufficient heat-release due to

the reduced chemical mechanism, or an over-prediction of mixing at this location. Also

shown in Fig. 9 are the radial profiles of the mean N2 mole fractions. The reduced chemistry

model accounts for only one other N-containing species, NO, and that is a minor species

which exists only in trace amounts. All other N-containing species are lumped into the N2
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concentration. Therefore, the predicted profiles are more or less flat in the chamber, whereas

the experimental profiles show variations, particularly close to the flame surface.

The radial profiles of CH4 and CO2 mole fractions are shown in Fig. 10. The locations

of hot product and cold reactants are revealed by these profiles. The predictions are in

excellent agreements with data at all axial locations except at x/d = 1.0 where the shift in

the gradient is similar to that observed in the temperature profiles. This indicates that the

model underpredicts the CH4 consumption at the end of the recirculation zone, and may be

attributed to an excess mixing rate. The radial profiles of H2O and O2 mole fractions are

given in Fig. 11. The predictions are in good agreements with the measurements. As observed

for the temperature and for CH4, the predicted values of the reactants are higher than

those measured experimentally at downstream of the recirculation region. The differences

of the calculated and the measured values of H2O mole fractions in this region are not as

pronounced. This indicates that H2O approaches the equilibrium value at a faster rate than

does CO2. Overall, the major species predictions are in good agreements with measurements

in the recirculation zone at all axial locations, and in the shear layer region.

The radial profiles of mole fractions of the minor species NO and OH are shown in Fig. 12.

The NO profiles indicate the location of reacted or partially reacted gas experiences long

reaction times to form prompt, N2O-intermediate, and thermal NO. The reduced mechanism

accounts for these reasonably well. The OH profiles are overpredicted by a factor of 10 at

the lowest axial location x/d = 0.1, but the predictions are in a better agreement with

data at x/d = 1.0. The measured value of OH mole fraction at the lower recirculation

region is close to the equilibrium value of 200 ppm, and much higher in the upstream region.

The superequilibrium behavior portrayed by the model may be due to two factors: (i) the

reduced mechanism does not account for OH in an accurate manner, which is also indicated

in previous PSR calculations.97 (ii) The production of OH is very sensitive to temperature,

and slight overprediction of temperature leads to excess amount of OH. Temperature is

indeed overpredicted in the downstream region as shown in Fig. 9.

The radial profiles of the minor species CO and H2 are shown in Fig. 13. The measured

data for CO reveal the location of the quenched product zone. The CO mole fractions peak

at the mixing layer, indicating reaction quenching at the region where the hot products meet
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the cold stream. At the opposite end, closer to the centerline, and near the bluff body base,

the CO oxidizes to form CO2. The measured values in the chamber are much higher that

the equilibrium value of 7 ppm. This is captured by the model reasonably well, except at

x/d = 1.0, where the values are underpredicted especially near the shear layer. The H2

profiles follow similar trend as CO, and predictions are in good agreements with data.
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Figure 1: Element of computation as used in hybrid simulations. Solid squares denote grid

locations of the FD or FV mesh, and the circles denote the MC particles. Also shown are

three different ensemble domains.
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Figure 2: Schematic diagram of the bluff body configuration.66 The x/d axial locations

where experimental measurements are made are marked.
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Figure 3: Bluff-body, cold flow: The radial profiles of the mean axial and radial velocity

components on three FV-meshes: 80×40, 140×70, and 180×100, where nx×nr

indicate number of FV cells in the axial and the radial directions. fu Experiment.66
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3.0 LES/FDF PREDICTION

In comparison to RANS, the LES/FDF methodology provides a more detailed description

of turbulent reacting flows because it accounts for the large scale unsteady transport.49

Jaberi et al.95 provide the original formulation of FDF for LES of variable-density flows.

Sheikhi et al.49 employed FDF for LES of non-premixed flames. Drozda et al.54 and Raman

et al.48 applied FDF for prediction of bluff-body stabilized non-premixed flames. A recent

application to a complex dump combustor is given by Afshari et al.100 Combustion chemistry

is represented by either a flamelet model or global one or two step mechanisms in most of the

previous studies.54 While there are a wide variety of applications in which such chemistry

models are appropriate,44 most practical applications (such as lean premixed gas turbine

combustion) require a more accurate representation of chemistry. In this work, LES/FDF

with a comprehensive kinetics model is employed for prediction of turbulent premixed flames.

The flow considered is the piloted Bunsen burner configuration investigated experimen-

tally by Chen et al.68 They consider three stoichiometric premixed methane-air flames (F1-

F3) featuring a range of Reynolds and Damköhler numbers. Flame F3 is considered here in

which Re ∼= 22500 and Da > 1. The significance of these flames are that they are dominated

by the distributed-reaction-zones where the flame stretch by turbulence is important and

local quenching effects are possible.44,68 This is in contrast to the flamelet-regime where the

chemical flame time is the shortest time scale in the flow.101–104 The Bunsen burner has

been the subject of a number of other numerical investigations. RANS simulations of Flame

F3 was conducted by Prasad and Gore105 using a flame surface density model. Herrmann106

conducted RANS simulations of all three flames using a level-set flamelet model. LES pre-

diction of the F3-flame is reported by Pitsch and de Lageneste.107 Lindstedt and Vaos40

employed a composition PDF model for 2D axisymmetric RANS/PDF predictions of flames
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F1 and F3. The present work provides the first application of LES/FDF for a comprehensive

study of this flame.

3.1 FORMULATION

We formulate the problem by using the compressible form of the continuity, Navier-Stokes,

energy (enthalpy) and species mass conservation equations in a low Mach number flow, along

with an equation of state for ideal gas, with negligible radiative heat transfer and viscous

dissipation:101

∂ρ

∂t
+
∂ρui

∂xi

= 0 (3.1a)

∂ρui

∂t
+
∂ρuiuj

∂xj

= −
∂p

∂xi

+
∂τij
∂xj

(3.1b)

∂ρφα

∂t
+
∂ρφαuj

∂xj

= −
∂Jα

i

∂xi

+ ρSα (3.1c)

p = ρRT. (3.1d)

These equations govern the space (x ≡ xi, i = 1, 2, 3) and time (t) variations of the fluid

density ρ, the velocity vector u, the pressure p, the specific enthalpy h ≡ φNs+1, and the

species mass fractions Yα ≡ φα, α = 1, 2, . . . , Ns, where Ns is the number of species. R =

R0
∑Ns

α=1 Yα/Mα is the mixture gas constant with the universal gas constant denoted by R0,

the molar mass of species by Mα, and T is the temperature. For a Newtonian fluid with

zero bulk velocity and Fickian diffusion, the viscous stress tensor τij , and the scalar (mass

and heat) flux Jα
i are given by,

τij = µ

(
∂ui

∂xj
+
∂uj

∂xi
−

2

3

∂uk

∂xk
δij

)
(3.2a)

Jα
i = −γ

∂φα

∂xi
, (3.2b)

where µ is the dynamic viscosity and γ = ρΓ denotes the thermal and the mass diffusivity

coefficients for all species (assuming unity Lewis number). The chemical source terms, Sα

for α = 1, . . . , Ns, are functions of the composition variables φ = [Y1, Y2, . . . , YNs, h] and are
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determined by the gas-phase reaction mechanism. Most of the reaction rate data for pure

hydrocarbon fuels up to n-heptane and iso-octane are sufficiently detailed.81 For example, the

GRI-MECH 3.0 mechanism82 accounts for methane oxidation by considering 325 reactions

among 53 species. The rate of reaction k in a mechanism containing r chemical reactions is

Wk ≡ kfk

Ns∏

α=1

(
ρYα

Mα

)ν′

αk

− kbk

Ns∏

α=1

(
ρYα

Mα

)ν′′

αk

, (3.3)

where kfk and kbk are the rate coefficients of the forward and backward reaction, respectively.

In general, they are temperature dependent and may also depend on pressure. The exponents

ν ′αk and ν ′′αk are the stoichiometric coefficients of reaction k in forward and backward direction,

respectively. The mass production rate of species α per unit volume and unit time is the

sum over all reactions in the mechanism:

ρSα = Mα

r∑

k=1

ναkWk (3.4)

where ναk = ν ′′αk − ν ′αk. The sum over all source terms vanishes:

Ns∑

α=1

ρSα = 0 (3.5)

Implementation of LES involves the use of the spatial filtering operation16,108

〈Q (x, t)〉l =

∫
∞

−∞

Q (x′, t)G (x′,x) dx′ , (3.6)

where G denotes the filter kernel of width ∆L, and 〈Q (x, t)〉l represents the filtered value of

the transport variable Q (x, t). In variable density flows it is convenient to consider the Favré

filtered quantity, 〈Q (x, t)〉L ≡ 〈ρ (x, t)Q (x, t)〉l / 〈ρ (x, t)〉l. We consider spatially invariant

and localized filter functions, G (x,x′) ≡ G(x′ − x) with the properties109 G (x) = G (−x),

and
∫

∞

−∞
G(x)dx = 1. Moreover, we only consider “positive” filter functions110 for which all

the moments
∫

∞

−∞
xmG(x)dx exist for m > 0.
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The filtered form of Eqs. (3.1) is:

∂ 〈ρ〉l
∂t

+
∂ 〈ρ〉l 〈ui〉L

∂xi
= 0 (3.7a)

∂ 〈ρ〉l 〈uj〉L
∂t

+
∂ 〈ρ〉l 〈ui〉L 〈uj〉L

∂xi
= −

∂ 〈p〉l
∂xj

+
∂ 〈τij〉l
∂xi

−
∂Tij

∂xi
(3.7b)

∂ 〈ρ〉l 〈φα〉L
∂t

+
∂ 〈ρ〉l 〈ui〉L 〈φα〉L

∂xi
= −

∂ 〈Jα
i 〉l

∂xi
−
∂Mα

i

∂xi
+ 〈ρSα〉l (3.7c)

〈p〉l = 〈ρ〉l 〈RT 〉L , (3.7d)

where Tij = 〈ρ〉l (〈uiuj〉L − 〈ui〉L 〈uj〉L) and Mα
i = 〈ρ〉l (〈uiφα〉L − 〈ui〉L 〈φα〉L) denote the

subgrid scale (SGS) stress tensor and the SGS scalar fluxes, respectively. For non-reacting

flows the SGS closure is associated with Tij and Mα
i . In reacting flows, an additional model

is required for the filtered reaction rate, 〈ρSα〉l.

The hydrodynamic SGS closure is based on models that are well established in non-

reacting flows.111–113 The following SGS closure is employed:

Tij = −2 〈ρ〉l νt

(
〈Sij〉L −

1

3
〈Skk〉L δij

)
+

2

3
CI 〈ρ〉l Eδij (3.8)

where the SGS viscosity is

νt = CR∆LE
1

2 . (3.9)

Here E is the modified kinetic energy given as,

E ≡
∣∣〈u∗i 〉L 〈u∗i 〉L − 〈〈u∗i 〉L〉l′ 〈〈u

∗

i 〉L〉l′
∣∣ (3.10)

where u∗i = ui − Ui with Ui being a reference velocity in the xi direction. The subscript l′

denotes a secondary filter level with characteristic filter width ∆l′ > ∆L. This is the modified

kinetic energy-viscosity (MKEV) model, based on the proposed closure by Bardina et al.114

The SGS fluxes are modeled by a similar closure115

Mα
i = −〈ρ〉l γt

∂ 〈φα〉L
∂xi

(3.11)

where γt = νt/Sct is the subgrid diffusivity and Sct is the SGS Schmidt number.
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The additional model for filtered reaction rates is provided by the scalar filtered mass

density function (SFMDF). Let φ (x, t) denote the scalar array. We define SFMDF, denoted

by FL, as:

FL (ψ;x, t) ≡

∫ +∞

−∞

ρ (x′, t) ζ [ψ,φ (x′, t)]G (x′ − x) dx′ (3.12)

ζ [ψ,φ (x, t)] ≡ δ (ψ − φ (x, t)) ≡
Ns+1∏

α=1

δ (ψα − φα (x, t)) (3.13)

where δ denotes the delta function and ψ denotes the composition domain of the scalar

array. The term ζ [ψ,φ (x, t)] is the fine-grained density ,18 and Eq. (3.12) implies that the

SFMDF is the mass-weighted spatially filtered value of the fine-grained density. The integral

property of the SFMDF is such that

∫ +∞

−∞

FL (ψ;x, t) dψ =

∫ +∞

−∞

ρ (x′, t)G (x′ − x) dx′ = 〈ρ (x, t)〉l . (3.14)

For further developments, the mass-weighted conditional filtered mean of the variable Q (x, t)

is defined as

〈Q (x, t) |ψ〉l ≡

∫ +∞

−∞
ρ (x′, t)Q (x′, t) ζ [ψ,φ (x′, t)]G (x′ − x) dx′

FL (ψ;x, t)
(3.15)

Equation (3.15) implies the following:

(i) For Q (x, t) = c, 〈Q (x, t) |ψ〉l = c, (3.16a)

(ii) For Q (x, t) = Q̂ (φ (x, t)) , 〈Q (x, t) |ψ〉l = Q̂ (ψ) , (3.16b)

(iii)

∫ +∞

−∞

〈Q (x, t) |ψ〉l FL (ψ;x, t) dψ = 〈ρ〉l 〈Q (x, t)〉L (3.16c)

where c is a constant, and Q̂ (x, t) = Q (x, t) denotes the case where the variable Q can

be completely described by the compositional variable φ (x, t). From Eqs. (3.16), it follows

that the filtered value of any function of the scalar variable is obtained by integration over

the scalar sample space

∫ +∞

−∞

Q̂ (ψ)FL (ψ;x, t) dψ = 〈ρ〉l 〈Q (x, t)〉L . (3.17)
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The transport equation for SFMDF is developed by considering a time derivative of the

fine-grained density function:19,23, 116

∂ζ (ψ,φ)

∂t
=
∂φα (x, t)

∂t

∂ζ (ψ,φ)

∂φα
= −

∂φα (x, t)

∂t

∂ζ (ψ,φ)

∂ψα
. (3.18)

Substituting the scalar transport equation, Eq. (3.1c), for the first derivative on the RHS of

Eq. (3.18), we obtain the transport equation for the fine-grained density function

∂ρ̂ (φ) ζ (ψ,φ)

∂t
+
∂ρ̂ (φ) ui (x, t) ζ (ψ,φ)

∂xi
= −

(
−
∂Jα

i

∂xi
+ ρ̂ (φ) Ŝ (φ)

)
∂ζ (ψ,φ)

∂ψα
(3.19)

Filtering this equation according to Eq. (3.6) yields the transport equation for FL (ψ;x, t).

The final result after some algebraic manipulation is,

∂FL (ψ;x, t)

∂t
+

∂ 〈ui〉L FL (ψ;x, t)

∂xi
= −

∂Ŝα (ψ)FL (ψ;x, t)

∂ψα

−
∂

∂xi

[(〈ui |ψ〉l − 〈ui〉L)FL (ψ;x, t)] (3.20)

+
∂

∂ψα

[〈
1

ρ̂ (φ)

∂Jα
i

∂xi

∣∣∣∣ψ
〉

l

FL (ψ;x, t)

]
.

This is an exact transport equation for the SFMDF. The first term on the RHS of this

equation is due to chemical reaction and is in a closed form. The unclosed nature of SGS

convection and mixing is manifested by the last two conditional filtered terms, modeling of

which is discussed in the next subsection.
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3.2 MODELING AND SIMULATION

3.2.1 SGS Closure

Intimately related to the FDF methodology is the procedure by which its transport equation

is solved. The coupling between numerics and SGS modeling is important in all LES,117

but is particularly noticeable in FDF. The simulation procedure is similar to that followed

in numerical simulation of most other stochastic phenomena. This involves consideration

of a set of stochastic differential equations (SDEs).86–88 All of the modeling in the FDF

transport equation is via selection of the parameters of the SDEs. The diffusion process89,118

has proven effective for this purpose. The coefficients in the Langevin equation governing

this process are set in such a way that the resulting Fokker-Planck equation90 defines the

modeled FDF transport equation. In addition to providing the closure, the SDEs are much

more amenable to numerical simulations than are the high-dimensional Fokker-Planck or the

actual FDF transport equation, Eq. (3.20). The diffusion process considered to model this

equation is,

dX+
i (t) = Di

(
X+ (t) , t

)
dt+ E

(
X+ (t) , t

)
dWi (t) (3.21a)

dφ+
i =

[
−Ωm

(
φ+

α − 〈φα〉L
)

+ Sα

(
φ+
)]

dt (3.21b)

where X+
i and φ+

α are probabilistic representations of position and scalar variables, respec-

tively. Di is the drift and E is the diffusion coefficient given as,

Di (X (t) , t) = 〈u〉L +
1

〈ρ〉l

∂ 〈ρ〉l (γ + γt)

∂xi
(3.22a)

E (X (t) , t) =
√

2 (γ + γt) / 〈ρ〉l (3.22b)

TheW term denote the Wiener-Lévy process89 in the physical space. The equation proposed

for evolution of φ+
α is known as the linear mean square estimation (LMSE) model,22 where

Ωm is the frequency of SGS mixing modeled as

Ωm = CΩ
γ + γt

∆2
L

(3.23)
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The Fokker-Planck corresponding to SDEs in Eqs. (3.21a) and (3.21b) is,54

∂FL

∂t
+

∂ 〈ui〉L FL

∂xi

= −
∂SαFL

∂ψα

+
∂

∂xi

[
(γ + γt)

∂FL/ 〈ρ〉l
∂xi

]
+

∂

∂ψα
[Ωm (ψα − 〈φα〉L)FL] (3.24)

This is the model equation for SFMDF transport. A one-to-one comparison with exact

transport Eq. (3.20), implies the following closure:

∂

∂xi
[(〈ui |ψ〉l − 〈ui〉L)FL] +

∂

∂ψα

[〈
−

1

ρ

∂

∂xi

(
γ
∂φα

∂xi

) ∣∣∣∣ψ
〉

l

FL

]
(3.25)

≈ +
∂

∂xi

[
(γ + γt)

∂FL/ 〈ρ〉l
∂xi

]
+

∂

∂ψα

[Ωm (ψα − 〈φα〉L)FL] .

The modeled transport equation Eq. (3.24) can be multiplied by ψn and integrated in the

composition space ψ to obtain a modeled transport equation for the Favré moments. For

example, for the first Favré moment,

∂ 〈ρ〉l 〈φα〉L
∂t

+
∂ 〈ρ〉l 〈ui〉L 〈φα〉L

∂xi
=

∂

∂xi

(
〈ρ〉l (γ + γt)

∂ 〈φα〉L
∂xi

)
+ 〈ρ〉l 〈Sα〉L . (3.26)

Note that this equation is fully consistent with the filtered scalar transport equation Eq. (3.7c).

3.2.2 Solution Procedure

Numerical solution of the equations governing the resolved field is based on a hybrid scheme

in which the hydrodynamic Favré filtered equations Eqs. (3.7) are integrated by a finite

difference (FD) method, and the filtered scalar field is simulated by the Monte Carlo (MC)

solution of the SFMDF transport equation, Eq. (3.24). The FD is based on a fourth or-

der compact parameter scheme.119 A second order symmetric predictor-corrector sequence

is employed for temporal integration of Eqs. (3.7). In addition to Favré filtered quantities,

the solution of these equations also provide the SGS eddy viscosity νt, and the SGS eddy

diffusivity γt. The filtered pressure, 〈p〉l, is obtained from the filtered equation of state,

Eq. (3.7d). Standard characteristic boundary conditions120,121 are implemented for the con-

tinuity, momentum and energy transport equations. All FD operations are conducted on
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a uniform and fixed mesh with grid points separated by length ∆x, ∆y and ∆z in three

coordinate directions, respectively.

The SFMDF is represented by an ensemble of particles, each attributed with a set of

scalars φ
(n)
α (t) and Lagrangian position vector, X(n)(t). Initially, the particles are uniformly

distributed in the solution domain with scalar values assigned in accord with the initial

filtered FD fields. This information is updated via temporal integration of the modeled

SDEs given in Eqs. (3.21). The particle position is integrated via the Euler-Maruyamma

approximation:92

X
(n)
i (tk+1) = X

(n)
i (tk) +D

(n)
i (tk)∆t+ E

(n)
i (tk) ∆t1/2ξ

(n)
i (tk) (3.27)

where ∆t is the computational time increment between two consecutive time levels, ξ(n) is a

random number with normal distribution, and D
(n)
i and E

(n)
i are, respectively, the drift and

diffusion coefficients in Eqs. (3.22) evaluated at the particle location X(n) at time t.

3.2.3 Chemistry

The scalar equation contains the reaction source terms and the mixing term. A comprehen-

sive description of the gas phase kinetics is provided by elementary reaction mechanisms,

where reaction source terms are obtained by Eq. (3.4). However, the use of such detailed

mechanisms in full scale combustion simulations is computationally prohibitive. In order to

overcome this problem a whole range of methods have been developed; see Law and Lu122 for

a recent review. These include mechanism reduction techniques through time-scale analysis

and stiffness elimination (steady-state and partial equilibrium assumptions,123 intrinsic low-

dimensional manifold,124 computational singular perturbation125), removal of unimportant

reactions and species (skeletal reduction), combination of species and reaction pathways

(lumping126), and other techniques such as artificial neural network,127,128 self-organizing

map,129 genetic algorithm,130 graph theory131,132 and tabulation.133 In this work, a sys-

tematically reduced mechanism97 is used which is obtained by steady-state approximation

applied to GRI-MECH 2.11 elementary methane mechanism.98 The reduced mechanism is

described by 5 global reaction steps containing 9 solved and 38 steady state species. The
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solved species are CH4, O2, H2O, CO2, N2, OH, NO, H2 and CO. The global reactions steps

are:

R1 : 3H2 + O2 + CO2 ⇐⇒ 3H2O + CO

R2 : H2 + 2OH ⇐⇒ 2H2O

R3 : 3H2 + CO ⇐⇒ H2O + CH4

R4 : H2 + CO2 ⇐⇒ H2O + CO

R5 : 3H2 + CO2 + 2NO ⇐⇒ 3H2O + CO + N2

(3.28)

Even with the reduction the source terms in Eq. (3.21b) contain contributions from reactions

of different time scales, which vary by several orders of magnitude. Also, the mixing time

scale is determined by SGS mixing frequency, and is generally different from the reaction time

scales. Therefore, the scalar equation Eq. (3.21b) is a stiff non-linear ordinary differential

equation. Solution of this equation is obtained via the stiff ODE solver VODE,134 with Ωm

and 〈φα〉L updated at each flow time step.

To understand the operational procedures of the hybrid configuration, the elements of the

computation are shown, in two dimensions, in Fig. 14. This figure shows the MC particles

randomly distributed and freely moving within the domain. This transport is Lagrangian,

thus the solution is free of constraints associated with typical convection on fixed grid points.

Statistical information is obtained by considering an ensemble of NE particles residing within

an ensemble domain of characteristic length ∆E and centered around a FD grid point.

The ensemble approach is necessary as the probability of finding any particle at the exact

location of a given finite-difference grid point is zero.25 The Favré filter of a given scalar,

〈Q (φ (x, t))〉L, is obtained by taking an average of the values attributed to each particle

in the ensemble domain, Q
(
φ(n)

)
. Specification of the size of the ensemble domain is an

important issue. The ideal condition for accurate statistics requires ∆E → 0 and NE → ∞.

With a finite number of particles, if ∆E is small there may not be enough particles to

construct reliable statistics. A larger ensemble domain decreases the statistical error, but

increases the spatial error which manifests itself in artificially diffused statistical results.

This compromise between the statistical accuracy and dispersive accuracy as pertaining to

Lagrangian MC schemes implies that the optimum magnitude of ∆E cannot, in general, be
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specified a priori .20,135 This does not diminish the capability of the scheme, but exemplifies

the importance of the parameters which govern the statistics.

To reduce the computational cost and maintain a nearly uniform particle number dis-

tribution in a variable density flow, a procedure involving non-uniform particle weights is

used. This allows a smaller number of particles to be imposed in regions where a low degree

of variability is expected. Conversely, in regions of high varying character, a larger number

of particles is allowed. This strictly numerical treatment is analogous to grid compression in

FD schemes. Figure 15 shows a sample instantaneous contour of the instantaneous ensemble

particle weights (i.e.,
∑

n∈(∆E)3 w
(n)) and the particle number density (i.e.,

∑
n∈(∆E)3(1)) at

each FD grid points. Operationally, the particles evolve with a discrete SFMDF,

FN (ψ;x, t) = ∆m

N∑

n=1

w(n)δ
(
ψ − φ(n)

)
δ
(
x−X(n)

)
(3.29)

where w(n) is the weight of the n-th particle and ∆m is the mass of a particle with unit

weight. The SFMDF is the expectation of the discrete SFMDF

FL (ψ;x, t) = ∆m
N∑

n=1

〈
w(n)δ

(
ψ − φ(n)

)
δ
(
x−X(n)

)〉

= ∆m
〈
w(n)δ

(
ψ − φ(n)

)
δ
(
x−X (n)

)〉
for any n = 1, . . . , N (3.30)

where 〈 〉 indicates ensemble averaging. With integration of this expression over the com-

position domain within an infinitesimal volume, it can be shown that

〈ρ〉l ≈
∆m

∆V

∑

n∈∆E

w(n), (3.31)

where ∆V is the volume of the ensemble domain. The Favré-filtered value of a transport

quantity Q̂(φ) is constructed from the weighted average

〈Q〉L ≈

∑
n∈∆E

w(n)Q̂
(
φ(n)

)

∑
n∈∆E

w(n)
(3.32)

The approximations in Eqs. (3.31) and (3.32) are exact in the limit ∆E → 0 and NE → ∞.20

Equation (3.31) implies that the filtered fluid density is directly proportional to the sum

of the weight in the ensemble domain. With uniform weights, 〈ρ〉l ≈ (∆m/∆V )NE and
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〈Q〉L ≈ (1/NE)
∑
Q(n). Hence, with uniform weights, the particle number density decreases

significantly in regions of low density. The implementation of variable weights allows the

increase of the particle number density without a need to increase the number density outside

the reaction zone. The process of ensemble averaging of a MC variable is further illustrated

in Fig. 16. This figure shows different representations of a turbulent quantity in the hybrid

scheme.

3.2.4 Parallelization

In a typical simulation, millions of MC particles are required for accurate extraction of

statistics. The MC solver typically consumes more than 95% of the total computation

time. The CPU requirements of LES/FDF computations under various conditions are given

in Table 2. Clearly, sequential execution of an LES/FDF solver is not very efficient and

scalable parallelization at the particle level is required

At any time during the flow evolution, different regions of the flame undergo different

stages of the combustion process with varying levels of computation intensity. Consequently,

even with a uniform particle number density, computational load from one ensemble domain

to another varies significantly. The primary reason for this imbalance is the varying level of

stiffness due to chemistry. For some state of the chemical composition, the integration of

chemistry over the flow time-step can be done quickly via a few explicit sub-steps. However,

for some other states, e.g. near extinction/reignition regions, implicit stepping over many

smaller sub-steps is required. This is particularly expensive due to calculations of the Jaco-

bian matrix corresponding to Eq. (3.21b). The computational load variation is illustrated

in Fig. 17. On the left, the instantaneous filtered CO mass fraction field is shown. It is

representative of the combustion process and somewhat indicates the variations in stiffness.

On the right, the total computation time for integration of the particle equations inside each

ensemble domain is shown. It is observed that the computational requirement very much

non-uniform throughout the domain and is a function of proximity to the flame region. Vir-
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tually no time is spent during calculations near the cold jet or the cold surrounding air, and

most of the computational load is concentrated at the shear layer regions around the hot

pilot.

A popular parallelization strategy in structured FD/FV is the uniform and fixed-in-time

block domain decomposition.∗ With this technique, the mesh is partitioned into equally sized

domains and each partition assigned to different processors at the onset of the simulation.

In most cases, this provides an effective parallelization and is relatively easy to implement.

However, it can lead to extremely poor load distribution in LES. This is illustrated in Fig. 18

where the domain is uniformly decomposed, and each CPU is assigned equal number of grid

points and (approximately) equal number of particles. As shown, the computational load is

not equally distributed, and processors with less amount of load complete their part of the

job and remain idle until the synchronization at the end of each time step. To remedy the

problem, an adaptive decomposition procedure is developed. The decomposition represents

the uniform Eulerian mesh as a weighted undirected graph of grids points. That is, as

far as the decomposition of the MC solver, the grid is assumed to be unstructured. A

weight is attributed to each grid point based on the total computational requirements for

particles inside the ensemble domain around the grid point. The grids are then decomposed

via a weighted-graph partitioning algorithm136 which partitions the domain into clusters of

ensemble domains, which in general, do not have a structured shape. Figure 19 illustrates

this decomposition technique. In contrast with Fig. 18, the idle CPU time is greatly reduced.

As the simulation proceeds, the computational requirements change in a transient man-

ner, and the load becomes imbalanced again. When the imbalance reaches to a certain

threshold, the partitioning procedure is repeated and the data in previous partition are

migrated to the new partition. Depending on the communication requirements and the com-

putational cost of computing the metric, the frequency of the load redistribution can be

adjusted.

∗Domain decomposition is used to mean Data Decomposition, not to be confused with domain decompo-
sition in preconditioning methods for solution of linear systems.
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Table 2: CPU and run time requirements of 3D LES/FDF

Case-1 Case-2 Case-3

Number of grids 106 106 5 × 106

Number of particles 6 × 106 6 × 106 50 × 106

Number of species/reactionsa 5/9 15/19 15/19

Required memory (GBs) 1.69 2.48 24.0

GFLOPb per iteration 29.5 90.7 544.7

Number of iterationsc 60,000 60,000 220,000

Run-time with 1 GFLOP per secondd 20.5 days 63.0 days 3.8 years

a An additional chemical mechanism with 15 solved species and 19 reduced
reactions137 is considered only for the purpose of estimating computational
requirements. This mechanism is not used in actual flame simulations.

b 109 floating point operations.

c Based on several residence times on the same domain size and flow conditions.

d Flop/s rate based on a highly optimized sequential code for the Cray-XT3 system
at the Pittsburgh Supercomputing Center.
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3.3 FLAME CONFIGURATION AND MODEL PARAMETERS

The schematic diagram of the Bunsen burner that is considered in the experiments of

Chen et al.68 is shown in Fig. 20. The nozzle diameter for the jet stream, d, is 1.2 cm

and the pilot stream issues through a perforated plate around the central nozzle with an

outer diameter of 6.8 cm. Both the pilot and the jet contain stoichiometric methane-air

mixtures, i.e., equivalence ratio is φ = 1.0. The mean exit velocities are 3000 cm/s at the

nozzle and 22 cm/s at the pilot (84 cm/s through each one of 1175 perforations of 1-mm

diameter). The Reynolds number based on the jet diameter is 22, 400.

Table 3 lists the values of some of the simulation parameters and reference quantities.

The magnitude of the mean and the rms-velocity imposed at the inlet are those measured

by Chen et al.68 and are shown in Fig. 21. The flow is excited by superimposing oscillating

axial and helical perturbations at the inlet plane. The procedure is similar to that of Danaila

and Boersma.138 The amplitude of the perturbations is adjusted to match the inlet mean

and the rms velocity values as obtained experimentally. The pilot flame and the perforated

plate are represented by issuing stoichiometric hot burnt gas at the mean pilot velocity.

The jet composition is a stoichiometric methane-air at 300K. The pilot composition and

enthalpy are calculated using chemical equilibrium with 10% heat-loss to the burner (T =

2000K), which corresponds to the experimentally reported temperature at the pilot exit.

Partially reflecting characteristic boundary conditions120 are implemented at the outlet, and

non-reflecting characteristics139 are imposed at the lateral boundaries allowing for cold air

entrainment. The computational domain spans a region of 12d × 10d × 10d in the stream-

wise (x) and the two lateral (y, z) directions, respectively. The number of grid points is

101 × 91 × 91 in the x, y and z directions, respectively. The filter size is set equal to ∆L =

2(∆x∆y∆z)1/3, where ∆x, ∆y and ∆z are grid spacings in the corresponding directions.

The size of the ensemble domain is set to twice the filter size. There are approximately

48 particles per ensemble domain. These selections for MC simulation is made based on

previous studies,47,54, 95, 135, 140 where it is shown to be sufficient to yield statistical accuracy

with minimal dispersive errors.
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Table 3: Summary of the simulation parameters and reference quantities.

Parameter Value Description

∆x,∆y,∆z (0.125,0.111,0.111) FD grid spacing

∆L (∆x∆y∆z)1/3 Characteristic filter size

CI 0 MKEV model parameter

CR 0.1 MKEV model parameter

U (0.8,0,0) MKEV reference velocity

∆l′ 3∆L Characteristic secondary filter size

Sct 0.75 SGS Schmidt number

CΩ 8.0 SGS mixing frequency

rtol 10−6 Relative tolerance for ODE solver

atol 10−9 Absolute tolerance for ODE solver

Lref 1.2 cm Reference length (integral length scale)

Uref 3000 cm/s Reference speed

tref 4 × 10−4 s Reference time

Tref 300 K Reference temperature

pref 1 atm Reference pressure

γref 1.387 Reference specific heat ratio

ρref 1.1125 × 10−3 g/cm3 Reference density

µref 1.1805 × 10−4 g/cm s Reference viscosity

Re 22,400 Reynolds number

Ma 0.085 Mach number
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3.4 RESULTS

The predictive capability of LES/FDF is demonstrated by comparing flow statistics with the

available experimental data. These statistics are obtained by time averaging of the filtered

field over 3 flowthrough (residence) times. A total of 30,000 samples of each of the variables

are collected in this recording period. The notation Q denote the time-averaged mean value

of the variable Q. Note that time-averaged mean fields extracted as such from the filtered

fields are equivalent to the time-averaged results reported in the experiments given that the

filter is generic and that the filter size ∆L remains small.

3.4.1 Cold Flow

The predictive capability of the solver is demonstrated via comparisons of the cold flow

statistics with laboratory data. Chen et al.68 reports cold flow measurements for the mean

axial velocity, u, and the turbulent kinetic energy, k = u′′i u
′′

i /2. Variation of the mean axial

velocity and the turbulent kinetic energy along the axial direction at the centerline of the

burner is shown in Fig. 22. The radial profiles are shown at several axial locations in Fig. 23.

The contribution of the SGS kinetic energy is ignored since it cannot be estimated accurately

via the MKEV model. The measurements indicate the spreading of the mean axial velocity

corresponding to open jet flows. The potential core extends approximately to x/d = 4.5,

where the maximum mean velocity decreasing at a faster rate as the jet expands in the radial

direction. These are captured reasonably well.

3.4.2 Consistency Assessments

The objective of this section is to demonstrate the consistency of the hybrid algorithm used

for LES/FDF. For this purpose, comparison is made of the 〈ρ〉l and 〈RT 〉L fields as obtained

from both the MC and FD solvers. Also considered is a conserved passive scalar variable f .

This variable is governed by the scalar transport equation, Eq. (3.7c), and by the stochastic

equation, Eq. (3.21b), both with S = 0. The inlet profile for 〈f〉L is taken as that of the
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streamwise velocity in Fig. 21 normalized to the range [0, 1]. Equation (3.32) is used in MC

for 〈RT 〉L , 〈f〉L and the MC density, defined as

〈ρ〉MC ≡

(∑
n∈∆E

w(n) 〈p〉l /RT
(n)

∑
n∈∆E

w(n)

)
(3.33)

Also considered for 〈ρ〉l is the particle weight density given by Eq. (3.31).

The simplest consistency check is via flow visualization. Contours of the instantaneous

〈ρ〉l , 〈RT 〉L and 〈f〉L fields are shown in Figs. 24, 26 and 28, respectively. The central jet

lies in the middle along the streamwise coordinate, surrounded by the high temperature pilot

where 〈RT 〉L is the highest and 〈ρ〉l the lowest, and encircled by the entraining air. Due to

the presence of helical instabilities, the instantaneous flow is asymmetric. The consistency

is portrayed in these figures and is also observed at all other times. Contours of the time

averaged fields are shown in Figs. 25, 27 and 29. The effects of numerical oscillations in

FD and localized statistical error in MC are diminished by time averaging. Therefore, the

averaged fields are in a closer agreement. The consistency is further assessed via comparisons

of the radial profiles as shown at several axial locations in Fig. 30 for instantaneous fields,

and in Fig. 31 for time averaged fields.

Complementary consistency assessments are made by constructing the scatter plots of

the instantaneous and the time averaged values. These are shown at four adjacent segments

of the computational domain. The instantaneous MC density, 〈ρ〉MC , is highly correlated

with the fluid filtered density, as Fig. 32 shows. This figure also shows close correlation of

〈RT 〉L and 〈f〉L from the FD and the MC solvers. Note that, due to numerical oscillations,

the FD passive scalar violates the realizability (unless an artificial limiter is employed), but

the MC predictions always remain bounded. Scatter plots of the time averaged values are

shown in Fig. 33. The increase in coherence of the time averaged quantities is obvious.

3.4.3 Reacting Flow

The centerline mean velocity and turbulent kinetic energy are compared with experimental

data in Fig. 34. Compared to the non-reacting case, the turbulent kinetic energy is nearly

constant along the axial direction and so is the maximum velocity at the centerline. This
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indicates that the potential core is significantly longer in the reacting case and the flow is not

excited until further downstream. As Fig. 35 shows, the radial profiles of the axial velocity

are much broader in comparison with that in the cold-flow (see Fig. 23), and the shear layer

spreads further. This is due to the effects of volumetric expansion due to exothermicity.

LES/FDF capture these effects well, as the predicted values are in good agreement with

data, except that the potential core as estimated by LES/FDF is somewhat longer than that

in the measurements.

The radial distribution of the mean temperature is shown to compare well with data in

Fig. 36. The overprediction at the near field by ≈ 150K is due to the neglect of heat losses

to the burner surface. As the measured profiles indicate, the centerline mean temperature

increases starting at roughly x/d = 4.5. This is due to the fact that the unsteady flame

crosses the centerline at certain instants resulting in the increase in the mean temperature.

Herrman106 points out that in the RANS approach, such large scale fluctuations are not

adequately taken into account, and in fact the centerline temperature is predicted to be

constant at the unburnt temperature. LES/FDF is able to resolve these instabilities, and

reproduce the correct behavior.

The statistics of the mass fractions of species for which measurements are available are

compared with data. Figure 37 shows radial profiles of the mean CH4 and O2 mass fractions.

The near field predicted results compare well with the data. At x/d = 4.5, the estimated

location of the shear layer where the hot pilot and cold reactants mix is offset by 0.1d, but

the gradient is captured well. Due to the large velocity difference between the jet and pilot

streams, there is a strong entrainment of hot pilot gas into the main jet. This is observed via

the radial expansion of the reactant profiles along the streamwise direction, an effect which is

portrayed well by the predictions. The outer air is also entrained into the flame above an axial

position called the mixing layer height between pilot and air, Li. Detailed measurements

are not available for r/d > 1.2, but it is reported in the experiments68 that Li = 5d and

it is suggested that entrainment of cool air can be excluded below this axial location. This

entrainment effect and the mixing layer height are captured by the computations where the

O2 profile is flat at x/d = 2.5 and outer layer profiles slightly increase downstream. The CO2

and H2O mass fraction profiles are shown in Fig. 38. The shear layer offset at x/d = 4.5 is
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more pronounced in the predicted mass fractions of CO2 and H2O, and the CO2 values are

slightly underpredicted at x/d = 6.5, but the overall agreement is good.

Figure 39 shows the comparison of the CO and OH mass fraction profiles with data. At

the jet/pilot mixing layer, the CO levels are overpredicted by a factor of 2 in the nearfield

and 1.5 downstream. After an initial maximum, the CO levels decrease strongly until x/d =

4.5 then the radial profiles assume smaller gradients. This effect is captured well by the

simulation. The OH levels are strongly influenced by the temperature, and the apparent

overprediction of temperature upstream at x/d = 2.5 is responsible for the OH profiles

with higher peak at this location. Further downstream the temperature levels are predicted

correctly, thus the simulated OH profiles agree favorably with the measurements.
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Figure 14: Element of computation as used in hybrid simulations. Solid squares denote grid

locations of the FD or FV mesh, and the circles denote the MC particles. Also shown are

three different ensemble domains.
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Figure 15: Contours of the instantaneous particle number density (top-left) and ensemble

particle weights (bottom-right) in the MC solver.
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Figure 16: Conserved scalar fields obtained by (left) ensemble averaged MC, (middle) MC

particles (colored according to f+), (right) FD.
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Figure 17: Instantaneous distribution of CPU requirements in the LES/FDF solver. (Left)

filtered CO mass fraction field, (right) CPU time in milliseconds spent during particle com-

putations. Transparent regions (no colors) indicate negligible computation.
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Figure 18: (a) Domain boundaries in the uniform decomposition. Each color indicates

a separate domain. (b) Total computational time per CPU. Red color indicates active

computation, black color indicates idle time.
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Figure 19: (a) Domain boundaries in the adaptive decomposition. (b) Total computational

time per domain. Red color indicates active computation, black color indicates idle time.
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Figure 20: Schematic diagram of the Bunsen burner configuration.68
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Figure 21: Bunsen burner: Radial profiles of the mean and the rms axial velocity at the

inlet.
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measurements.68
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Figure 23: Bunsen burner, cold flow: Radial profiles of the mean axial velocity and the

turbulent kinetic energy. LES, fu Experimental measurements.68
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Figure 24: Bunsen burner, reacting flow: Contours of the instantaneous 〈ρ〉l field as obtained

from (left) MC density as given by Eq. (3.33), (middle) FD, and (right) MC particle weight

density as given by Eq. (3.31).
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Figure 25: Bunsen burner, reacting flow: Contours of the time averaged 〈ρ〉l field as obtained

from (left) MC density as given by Eq. (3.33), (middle) FD, and (right) MC particle weight

density as given by Eq. (3.31).
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Figure 26: Bunsen burner, reacting flow: The instantaneous 〈RT 〉L field as obtained from

MC (left) and FD (right).
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Figure 27: Bunsen burner, reacting flow: The time averaged 〈RT 〉L field as obtained from

MC (left) and FD (right).
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Figure 28: Bunsen burner, reacting flow: The instantaneous 〈f〉L field as obtained from MC

(left) and FD (right).
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Figure 29: Bunsen burner, reacting flow: Contours of the time averaged 〈f〉L field as obtained

from MC (left) and FD (right).
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Figure 30: Bunsen burner, reacting flow: Radial profiles of the instantaneous 〈ρ〉l , 〈RT 〉L

and 〈f〉L fields as obtained from FD and MC solvers. FD, MC, MC density as

given in Eq. (3.33)
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Figure 31: Bunsen burner, reacting flow: Radial profiles of the time averaged 〈ρ〉l , 〈RT 〉L

and 〈f〉L fields as obtained from FD and MC solvers. FD, MC, MC density as

given in Eq. (3.33)
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Figure 32: Bunsen burner, reacting flow: Scatter plots of the instantaneous 〈ρ〉l , 〈RT 〉L and

〈f〉L fields as obtained from FD and MC solvers. The correlation coefficient is displayed on

bottom right of each figure.
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Figure 33: Bunsen burner, reacting flow: Scatter plots of the time averaged 〈ρ〉l , 〈RT 〉L and

〈f〉L fields as obtained from FD and MC solvers. The correlation coefficient is displayed on

bottom right of each figure.
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Figure 38: Bunsen burner, reacting flow: The radial profiles of the mean CO2 and H2O mass

fractions. LES/FDF, fu Experimental measurements.68
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4.0 CONCLUDING REMARKS

RANS via PDF, and LES via FDF are at a stage that can be used for affordable, reliable

and systematic prediction of turbulent reacting flows. This Dissertation demonstrates some

of the applicabilities of these methodologies for simulation of turbulent premixed flames.

The velocity-scalar-frequency PDF is employed for prediction of a lean-premixed bluff

body flame and the results are appraised via comparison with experimental data. In these

simulations, methane oxidation is represented with a systematically reduced 5 step, 9 solved

species reaction mechanism. Predictions are able to reproduce the location and the extent

of the recirculation zone, and the mean values of the major species and temperature are in

good agreements with data. Some of the minor species are not predicted well. For example,

the simulated OH levels are much higher than the measured values close to the bluff body

surface. But the NO levels are in a very close agreement at most locations inside recirculation

zone and at the flame surface.

The scalar FDF methodology is employed for LES of a premixed Bunsen burner. Chem-

istry is represented via a systematically reduced 5 step, 9 solved species reaction mechanism.

To enhance the efficiency of the LES/FDF computations a scalable parallelization algorithm

is developed. This algorithm takes into account the variability of computational require-

ments throughout the domain, and decomposes the load accordingly. The FDF simulations

are performed with significantly reduced turn-around times using this new methodology.

After establishing the consistency of the hybrid solver, the predictions are compared with

experimental data. The mean values of the mass fractions of the major and the minor species

and temperature are predicted well, and unsteady effects are captured by the model. The

CO levels are higher by almost a factor of 2 at the downstream region, where the predicted

OH profiles are in good agreements with data.
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There are several ways by which this work can be continued:

• Assessment of various chemistry mechanisms. Several parametric studies have been

conducted for RANS/PDF predictions non-premixed flames.141 Similar studies should

be conducted for premixed flames via both RANS and LES.

• Use of more comprehensive FDF models for premixed flames. A more accurate account

of turbulence-chemistry in LES can be made by the joint velocity-scalar FDF,54,55, 142

and the joint velocity-scalar-frequency FDF.143

• Inclusion of the effects of radiation and surface heat flux. Near the stabilizer, such effects

are particularly important. Proper account for the heat loss would remedy this situation.

• Study of configurations with solid wall boundaries, and applications to more complex

flames within realistic geometries.

• Extension of the FDF methodology to account for differential diffusion effects.144–150

The models employed in this Dissertation are limited to flows with unity Lewis number.

Proper account of such effects would improve the accuracy of minor species predictions,

and is required in prediction of H2/O2 flames.
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