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There is a class of complex problems that may be too complicated to solve by any single 

analytical technique.  Such problems involve so many measurements of interconnected factors 

that analysis with a single dimension technique may improve one aspect of the problem while 

overall achieving little or no improvement.  This research examines the utility of modeling a 

complex problem with multiple statistical techniques integrated to analyze different types of 

data.  The goal was to determine if this integrated approach was feasible and provided 

significantly better results than a single statistical technique.  An application in engineering 

education was chosen because of the availability and comprehensiveness of the NELS:88 

longitudinal dataset.  This dataset provided a huge number of variables and 12,144 records of 

actual students progressing from 8th grade to their final educational outcomes 12 years later.   

The probability of earning a Science, Technology, Engineering, or Mathematics (STEM) 

degree is modeled using variables available in the 8th grade as well as standardized test scores. 

The variables include demographic, academic performance, and experiential measures.  

Extensive manipulation of the NELS:88 dataset was conducted to identify the student outcomes, 

prepare the covariates for modeling, and determine when the students’ final outcome status 
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occurred.  The integrated models combined logistic regression, survival analysis, and Receiver 

Operating Characteristics (ROC) Curve analysis to predict obtaining a STEM degree vs. other 

outcomes.  The results of the integrated models were compared to actual outcomes and the 

results of separate logistic regression models.  Both sets of models provided good predictive 

accuracy.  The feasibility of integrated models for complex problems was confirmed.  The 

integrated approach provided less variability in incorrect STEM predictions, but the 

improvement was not statistically significant.   

The main contribution of this research is designing the integrated model approach and 

confirming its feasibility.  Additional contributions include designing a process to create large 

multivariate logistic regression models; developing methods for extensive manipulation of a 

large dataset to adapt it for new analytical purposes; extending the application of logistic 

regression, survival analysis, and ROC Curve analysis within educational research; and creating 

a formal definition for STEM that can be statistically verified. 
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1.0  ANALYSIS OF COMPLEX PROBLEMS 

1.1 INTRODUCTION 

There is a class of complex problems that may be too complicated to be solved by any single 

analytical technique.  Such problems involve so many measurements of interconnected factors 

that single dimension techniques are very limited in their ability to conduct significant analysis.  

Sometimes sophisticated modeling can provide an excellent or very good solution to these types 

of problems.  However, frequently utilization of a single analytical technique may lead to an 

improvement in one aspect of the problem, but it risks achieving no improvement over the 

remaining portions of the system or conceivably worsening the overall status.  Such complex 

problems involve assorted data collected at many points in the system and at various times.  In 

order to analyze this class of problems and obtain significant improvements, a methodology that 

employs multiple modeling techniques and an extensive dataset might be valuable. 

Two questions are raised by this scenario.  Is it feasible to develop a methodology 

integrating multiple analytical techniques and test it against a standard single analytical 

technique in solving a complex problem application?  If the methodology is feasible, would it 

provide a solution that was significantly better than that of the standard single analytical 

technique? 

1 



A “complex” problem may be defined as a problem that is sufficiently large and intricate 

that creating a smaller version with simplifying assumptions for analysis is of limited usefulness.  

Analysis of such a simplified sub-problem does not allow for the interactions with other factors 

that affect the problem and risks producing results that lead to a significantly sub-optimal 

solution.  Complexity in this sense does not refer to the information theory definition of 

complexity which is the amount of time required to solve a problem of a given size with an 

algorithm. 

Characteristics of Complex Problems: 

• The process contains numerous interconnected factors such that changing one 

aspect has ramifications for other factors 

• The process occurs over an extended time period that exceeds a threshold number 

of time units 

• The process has numerous inputs and outputs such that creating a simplified sub-

problem that realistically mirrors the original problem is difficult 

• Measuring the state of the process requires extensive data collection at many 

different points throughout the process functionally and temporally  

 

Attributes of a Dataset for a Complex Problem: 

• May be high dimensional in terms of numbers of variables collected 

• Data is often measured at different times 

• Dataset may include repeated measures 

• May contain many categorical variables as well as continuous variables 
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• May have multiple sources of data such that variables are obtained from different 

parts of the system 

• May consist of an extensive number of records 

 

In some instances a methodology is sufficiently comprehensive to provide an excellent 

solution if the modeling is done carefully.  While this is difficult using very large datasets it is 

possible.  In other instances additional techniques need to be applied concurrently or sequentially 

to enhance the solution.  In either case, the models need to be applied in an integrated way. 

The concept behind the integrated methodology is similar to approaches developed to 

solve other problems.  For example, integer optimization is one of the most challenging classes 

of problems in operations research.  Optimizing a solution in which numerous variables are 

constrained to be integers is far more difficult than doing so for a problem in which the variables 

have a continuum of values.  Algorithms have been developed to solve these problems by 

decomposing them into simpler problems and applying a series of techniques in combination.  

Benders Decomposition1 works by simplifying the problem into the original objective function 

with a subset of the original constraints.  Once the simplified problem is solved additional 

constraints are added to successively shape the problem until an acceptable answer to the original 

problem is found.  This combines delayed constraint generation with the cutting plane method to 

produce better answers than if a single technique had been applied.  In the methodology of this 

dissertation, different statistical techniques were linked sequentially and in parallel such that 

each was matched to appropriate data from portions of the problem and the output of one 

technique became an input to the other. 
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The methodology in this dissertation integrated statistical techniques to analyze a 

complicated problem involving different types of data measures.  The application chosen was the 

process of students completing their education during a 12 year period from the 8th grade in order 

to predict which students would get a four year college degree in a quantitative subject.  

Variables that measured demographic, academic, attitudinal, and experiential factors for the 

students were analyzed using multiple regression methods2  including nonlinear regression3 to 

determine which variables were significant predictors of educational outcomes.  For example, 

data collected during the 8th grade were examined with logistic regression4 to predict which 

students earned a bachelors degree in a subject such as engineering vs. another outcome within 

the 12 year period.  Data that reflected the educational outcome status of the students at different 

points over the period were examined using survival analysis methods5 to estimate the 

probability of a student remaining on course to achieve a degree in a quantitative subject beyond 

a given point in time.  An integrated model was developed that linked different statistical 

techniques to analyze multiple factors from 8th grade, standardized test scores collected by 12th 

grade, and the time at which the students’ educational outcomes occurred in order to predict the 

students’ final outcomes.  Models were also fitted with the 8th grade variables and without the 

standardized test scores.  The predicted outcomes were compared to actual outcomes to test the 

research hypothesis that an integrated multiple technique methodology would provide a better 

solution than a standard single technique methodology. 
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1.2 THE NATURE OF A COMPLEX PROBLEM: AN EXAMPLE 

An example of the class of complex system problems for which an integrated model is applicable 

is the network of a large transportation provider.  For example, a Class One6 freight railroad in 

the United States typically maintains a network of thousands of miles of rail tracks, hundreds of 

railroad yards, thousands of employees, and an enormous fleet of railcars, locomotives, and 

maintenance equipment.  Every day freight trains originate at one point on the railroad, operate 

across the network, and terminate at another point.  The termination of the train occurs with the 

final delivery of the cars, the further sorting of the cars to other destinations, or the interchange 

of cars to a different railroad.  Cars circulate through the system with empty cars delivered to 

shippers for loading and loaded cars transported to receivers.  Locomotives are assigned to trains 

as required by the tonnage to be hauled, the elevation traveled, and the later demands for 

locomotives at the destination.  Train crewmembers are assigned to specific trains based on work 

requirements, federal hours of service regulations, agreements with labor unions, and the need to 

balance the supply of crews at origin/destination locations.  The movement of trains through the 

network is controlled by train dispatchers that decide the sequence of trains traveling through the 

territory they are responsible for based upon the train schedule, priority of traffic, the 

performance of individual trains, and responses to unexpected events (derailments, accidents, 

mechanical failures, etc.). 

An attempt to improve one aspect of the transportation network by applying a single 

analytical technique risks ignoring the interconnectedness of the system and degrading its overall 

performance for the sake of a small improvement in one narrow area.  For instance, consider a 

single scheduled train operating from point A five days per week and traveling to point B over 

the course of 24 hours.  If the objective were to analyze the on time record of this scheduled train 
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and improve it by reducing late arrivals then a variety of single techniques are available.  The 

train’s performance is measured against its schedule at various geographic points in its progress 

to forecast its total “lateness” as a function of its accumulated late/early arrival times at a series 

of intermediate points.  Factors that are involved in the train’s performance include the number 

of cars picked up/dropped off at each intermediate point, the mix of locomotives assigned, and 

competition from other trains for transit across the trackage.   

Any attempt to optimize the performance of this single scheduled train risks potentially 

adverse effects on other trains or support functions within the network.  For example, assume the 

analysis reveals that lateness typically occurs near the middle of the train’s journey where it 

encounters congestion among other trains seeking to use the same trackage.  The train under 

study can be optimized by increasing its priority to the train dispatcher controlling that territory.  

As a consequence, other trains are delayed.  The net effect of delaying other trains while 

reducing lateness for the train of interest may be higher expenses.  If the most significant factor 

causing lateness is the typical assignment of lower powered locomotives to the train this can be 

ameliorated by assigning additional or higher powered locomotives to the train.  Since 

locomotives are a scarce resource, the assignment of more resources to the train in question 

reduces locomotives available for assignment to other time-sensitive trains.  This is an obvious 

risk of making improvement decisions on the basis of a single analytical technique applied to a 

complex problem. 

The use of single dimensional analytical techniques to solve problems in complex 

networks is more successful if a specific sub-problem can be identified that presents limited 

interactions with other aspects of the network.  If the problem is too complex to isolate it from 

the other portions of the network, single techniques are limited in their usefulness.   
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Developing a methodology to integrate multiple statistical techniques in modeling 

complex problems required working with a practical application to create a model and validate 

the methodology.  A model that was successful in analyzing one application could lead to a 

general model applicable to other complex problems.  The application chosen for development 

and testing of the model required extensive background knowledge to understand the problem’s 

aspects and select appropriate statistical techniques to be integrated.  The more complex the 

problem area, the greater the background knowledge required to work with it.   

As discussed, transportation networks can be very extensive involving thousands of 

personnel, expensive capital equipment, and a myriad of interconnected support functions.  Other 

complex problems exist on a smaller scale sufficient to develop the integrated methodology and 

demonstrate its viability.  An aspect that was weighed in selecting the application was the 

accessibility of data.  The voluminous and varied data required to examine a complex problem 

was difficult to obtain in the transportation network instance.  Commercial freight transportation 

networks operate in a highly competitive environment where such data is a sensitive, proprietary 

resource to be shielded from competitors, customers, and potential hostile actors such as 

terrorists.  Gaining access to such data and permission to conduct publishable academic research 

was not feasible. 

1.3 EDUCATION AS AN APPLICATION AREA 

The education of students in the U.S. is another example of the type of complex system problem 

for which the integrated methodology was suitable.  The education system is a network of 

teachers, students, administrators, and support staff working to instill a basic level of competency 
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in subjects including reading, English, history, mathematics, science, and physical education.  

Additional training in the arts, sciences, and vocational/technology topics are provided for 

students to partake as their interests direct.  Teachers present information in a given subject at 

each grade level that builds upon knowledge students have acquired in earlier grades.  Teachers 

also work to correct deficiencies in students’ learning and assist those struggling with concepts.  

Administrators work with students, teachers, staff, school boards, parents, and local communities 

to manage educational resources.  Students progress through grades crossing between 

elementary, middle, and high schools with learning at later points affected by what was learned 

earlier.  Many students progress further to additional vocational training or institutions of higher 

education. 

Students’ educational progress is assessed regularly through assignments, tests, and 

course grades.  Students’ attitudes and behaviors are periodically measured with survey 

instruments.  Variables that measure school resources such as the numbers of teachers by subject, 

budget dollars, etc. are recorded at regular intervals.  Local, state, and federal education entities 

measure attributes of schools and their overall educational performance.  Because of the 

significant amount of government funded research being done on education, varied and 

voluminous datasets were readily available to a researcher as opposed to the proprietary data for 

the freight transportation network instance.  Aspects of the education system have complexity 

similar to the freight railroad example given previously, but with the greater data availability this 

area was more conducive for development of the proposed methodology. 

A study of the complex process involved in U.S. students’ acquisition of college degrees 

in Science, Technology, Engineering, and Math (STEM) was the education application chosen 

for the methodology development.  Currently, insufficient numbers of American students are 
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achieving college degrees in STEM topics7.  The number of U.S. citizens and permanent 

residents who earned bachelors, masters, and doctoral degrees in Engineering increased very 

little from 1996 through 2005 despite greater increases in undergraduate enrollment levels from 

1992 through 20048 on.  Degrees in mathematics followed a similar trend.  Graduate degrees in 

other areas of Science increased slightly or declined through 2001 despite increasing numbers of 

full-time graduate students9.  The inputs to the STEM degree acquisition process are the quantity 

and quality of students, educators, and institutions.  The production processes are the 

mechanisms by which American students are recruited, educated, and developed into STEM 

degree-holders.  The students are a prime area upon which to focus initial analysis since they 

represent the “raw material” to be transformed by the education system into STEM degree 

graduates.  As with all raw materials to a system, there may be issues with supply and input 

quality affecting the system’s output.  For college students, this would translate into the number 

of American students entering STEM degree programs, their educational performance 

capabilities, and their motivation to persevere until achieving a bachelor’s degree.  Examining 

this issue with a single statistical technique may ignore the complex nature of the problem.   

Performance capability can influence interest in pursuing a course of study since people 

are naturally inclined towards subjects within which they feel confident of success.  Astin10 

found that students with a higher probability of persisting in engineering majors or switching to 

engineering from another major had high self-confidence in their mathematical abilities.  Astin’s 

results indicated that students were more apt to switch majors out of disappointment or 

frustration if their college grades were poor.  Performance capability develops over time as 

students acquire greater knowledge and experience.  Thus an attempt to increase the number of 

STEM degree-holders must explore significant factors affecting students’ learning in core STEM 

 9 



areas over time, their interest in pursuing a STEM degree, and their persistence in achieving the 

degree.  These factors may encompass the students’ academic experience throughout their pre-

college education, demographic information, and education institutions’ characteristics.   

Berryman11 states that fewer Americans achieving degrees in STEM will mean reduced 

competitiveness of America in the fields that rely heavily on skills acquired through the study of 

STEM topics.  These fields have traditionally offered high-paying salaries and prestige.  Having 

fewer Americans competitive in these fields limits their ability to compete for these higher 

wage/prestige jobs.  Data to examine this application is available from the U.S. Department of 

Education’s National Center for Education Statistics (NCES).  NCES has conducted a series of 

extensive longitudinal studies to collect data about selected students, their families, their schools, 

and their teachers in each decade since the 1970’s.  Among them is the National Education 

Longitudinal Study of 1988 (NELS:88)12 conducted between 1988 and 2000.  The dataset from 

this study is impressively comprehensive and captures many aspects of the complex education 

problem including demographic characteristics, school characteristics, coursework taken, and 

cognitive test results.   

Overall, education is a valid example of a complex problem involving many different 

interconnected factors in a process that occurs over time.  Educational attainment by the general 

public and the numbers of STEM degree-holders are of great importance to society.  Examining 

the process of STEM degree acquisition was a useful test of the integrated model approach. 
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1.4 THE RESEARCH PROTOCOL  

This dissertation examines the utility of modeling a complex problem with a set of statistical 

techniques integrated to analyze different types of data measured from the problem.  The goal 

was to determine if this integrated approach was feasible and provided significantly better results 

than employing a single statistical technique.  An application in engineering education was 

chosen because of the availability and comprehensive nature of the NELS:88 dataset.  The 

NELS:88 dataset provided a huge number of potential predictor variables and 12,144  records of 

actual students progressing from 8th grade through a 12 year period showing their actual 

educational outcomes. 

In order to address the inconsistency in defining STEM by prior research, the potential 

educational outcomes were classified as earning a STEM bachelor degree; earning a bachelor 

degree in a major that involved quantitative coursework similar to STEM (STEM-Related); 

earning a bachelor degree in another four year program; earning an associate or certificate 

degree; or earning no college degree.  The no college degree category was further subdivided 

into students that dropped out of high school, students that dropped out of college, students that 

were still in college at the study’s conclusion, and students for whom completing high school 

was the highest educational attainment.  Various combinations of the categories were created so 

that multiple pairs of outcomes could be modeled.  A rigorous approach was developed to 

construct multiple samples of fit and test data so that different versions of the same model could 

be created and compared to one another in how well the fitted models performed when applied to 

the test data samples.   

Logistic regression was chosen as the statistical technique used to create the initial set of 

predictive models and to serve as the standard by which the integrated modeling approach was 
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judged.  A set of potential covariates was selected after examining the variables available from 

the students’ 8th grade and standardized test scores by 12th grade.  The variables selected as 

potential covariates measured factors that prior educational research found significant in 

analyzing STEM students.  Extensive manipulation of the NELS:88 dataset was conducted to 

identify the student outcomes, prepare the set of potential covariates for modeling, and determine 

the time at which students experienced their final educational outcome.  Much of the data was 

categorical in nature and lacked a clear binary or ordinal scale.  The covariates were adjusted to 

ensure each could be utilized in the model fitting process.  Multiple random samples were drawn 

from the data so that prediction models were fitted multiple times and tested against student 

records not used in the model fitting process.  Predicted outcomes were obtained from the fitted 

models applied to the withheld test data.  The predicted outcomes were compared to the actual 

outcomes by determining the number of correct and incorrect STEM predictions.  The logistic 

regression models are much stronger than originally anticipated and provide good or better 

predictive accuracy.  These models are potentially useful in their own right for future educational 

research.   

Survival analysis was chosen as another statistical technique to be linked with logistic 

regression analysis in creating the integrated models.  Survival analysis was employed to gain 

additional information from the NELS dataset by examining if and when students failed to 

“survive” on the track to earning a STEM degree and instead experienced a different educational 

outcome.  Analyzing the different survival times for the students and the factors that potentially 

affected the times provided a way to use additional data about the students’ educational process 

to see if better predictions could be obtained by knowing differences in the STEM track survival 

times. 
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ROC Curve analysis was the third technique chosen to analyze how responsive the 

prediction accuracy was to slight changes in the models’ settings.  This technique visually 

depicted the percentage of correct STEM predictions vs. the percentage of incorrect STEM 

predictions for different model settings.   

The integrated model was constructed by using the estimated probability of a STEM 

outcome from the logistic regression analysis and its predicted outcome for each student as input 

variables for survival analysis and applying the third technique to examine the correct vs. 

incorrect predictions that resulted.  One integrated approach linked each analytical technique in 

series while a second also linked the logistic regression in parallel so that final predictions of the 

students’ earning a STEM degree depended upon agreement between both techniques.  Different 

integrated models were fitted and tested using the same samples created for the logistic 

regression analysis.   
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2.0  LITERATURE REVIEW 

2.1 INTRODUCTION 

There are areas relating to this work in which significant prior research has been accomplished.  

These include the acquisition of STEM degrees, the disparities in educational achievement 

between different population subgroups, and the identification of variables significant in the 

educational acquisition process.  In addition, quantitative methods employed in the conduct of 

this research are based upon work done in other areas particularly Survival Analysis and 

Receiver Operating Characteristics (ROC) Curve Analysis.  The background for these techniques 

is also described as part of the literature review.  Both of these methodologies have been used 

extensively in other areas such as medical research, but their application to educational outcome 

modeling is newer. 

2.2 THE STEM PROBLEM 

As discussed earlier, one approach to increase the number of American students that pursue 

STEM degrees in college is to widen the pool of students that consider studying STEM.  There 

are numerous theories for the disparity in academic achievement between various segments of 

the American population.  Differences exist in the preparation of children for elementary school 
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between the races/ethnicities.  Caucasian children tend to start elementary school with a larger 

spoken vocabulary13 and more exposure to reading.  Socioeconomic status may affect the access 

to resources that assist children14 in learning.  Parents of greater economic means can afford to 

select housing in areas with higher quality schools, send their children to private schools with 

superior academic records, and pay for private tutoring.  Differences in family structure 

including parenting practices and educational involvement can affect children’s emotional 

support15 for learning.  Schools vary in the quality of education they deliver, and many of the 

schools with primarily minority or poor populations16 are of low quality.  Differences in 

expectations by teachers may affect teaching and ultimately how students perform17.  Another 

theory suggests minority children may feel “threatened” in test situations by fear that they will 

not do well, thereby, confirming negative stereotypes about their group’s academic skills18.  In 

effect, the negative stereotype may cause test anxiety that leads to lower performance on tests. 

The gaps in performance that exist at the elementary school level tend to expand as 

children progress through secondary school19.  Acquiring a college degree in a STEM subject 

requires strong skills in science and mathematics.  Students who lack strong self-confidence in 

their skills in these topics are less likely to choose a STEM major in college20.  

These disparities in academic performance between the races/ethnicities are generally 

referred to as the “achievement gap.”  Different approaches are being pursued to solve the 

achievement gap problem and promote overall higher performance by students of all segments of 

the population.  These include increasing the rigor of the academic curriculum21 22, reducing the 

student/teacher ratio23, increasing school budgets24, offering tutoring programs25, creating 

mentoring programs26, instituting regular standardized testing of school achievement27, 
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increasing teacher performance standards28, providing vouchers for other schools29, creating 

charter schools30, and experimenting with single-sex classrooms31 32. 

2.3 DATABASES 

General research into students’ college educational experience has been extensively conducted.  

Among the datasets developed for this purpose are the Cooperative Institutional Research 

Program (CIRP) 33, the Your First College Year survey (YFCY), the National Longitudinal 

Study of the High School Class of 1972 (NLS-72)34, the High School and Beyond Study 

(HS&B)35, the National Education Longitudinal Study of 1988 (NELS:88), and the ongoing 

Educational Longitudinal Study of 2002 (ELS:2002)36.   

CIRP is operated by the Higher Education Research Institute (HERI).  Since 1966, CIRP 

has conducted surveys of incoming college freshmen students collecting data including their high 

school grades, SAT/ACT scores, attitudes, behaviors, goals, and intended major.  More than 11 

million students have been surveyed across about 1,800 community colleges, four-year colleges, 

and universities.  The CIRP data contains self-reported data about the students’ high school 

experiences from the perspective of an incoming college freshman.  It does not contain 

independently verified data about high school performance or measures of students’ attitudes, 

behaviors, and experiences at time points during the period of high school. 

Institutions that agree to participate in the CIRP survey are automatically entitled to 

receive the data obtained from incoming freshmen for their school.  Institutions are then able to 

use the data to analyze trends in their incoming students from year to year.  A researcher may 

gain access to another university’s CIRP data by contacting the other school to request that it be 

 16 



provided.  If the request is approved, the other institution provides its data directly.  HERI has 

conducted a set of follow up CIRP surveys which track the educational outcomes of students 

originally surveyed as freshmen.  In addition, HERI now offers institutions the option to also 

conduct surveys of students as they finish their freshmen year and again in their senior year to 

find out how their attitudes, behaviors, etc. developed since the incoming freshman survey.  The 

Your First College Year survey (YFCY) was initiated in 2000.  The College Senior survey (CSS) 

was redesigned from a more general college student survey to serve as an exit survey.  The data 

collected continues to focus on attitudes, behaviors, experiences, career aspirations, and cultural 

aspects.  Students are asked to report their average grade level, the highest degree expected to be 

completed soon, and any intentions they have to pursue a graduate degree.  This allows 

institutions to study trends in how students progressed from their freshman to senior years.   

The National Education Longitudinal Study of 1988 (NELS:88) study consisted of 

collecting demographic, attitudinal, experiential, educational, and vocational data about a 

representative cohort of American students at specific stages in their scholastic progression.  The 

goal of the study was to be able to draw conclusions about the factors that could affect the 

student’s progression and achievement by 2000.  Academic performance was validated by 

obtaining transcripts from post-secondary school attended and by conducting cognitive learning 

tests in three waves of data collection during high school. Parents, teachers, and school 

administrators were also invited to complete surveys of questions regarding specific students 

participating in the study.  In contrast to the CIRP survey, NELS:88 data was collected at 

periodic intervals during the high school years, during the likely midpoint of college, and after 

most students had completed their post-secondary education. 
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The NELS:88 dataset is very impressive in terms of the scope of the data collected and 

the degree of detail obtained.  Portions of the dataset are available to the public for analysis and 

review.  Obtaining access to the full dataset including sensitive restricted access variables such 

as academic performance measures, standardized test scores, college transcript records, and 

identifiable details is limited to researchers that complete an extensive set of application 

requirements.  Researchers seeking access to the restricted data must supply a rigorous 

explanation of the proposed research, obtain their institution’s Institutional Review Board (IRB) 

approval, provide a security plan to safeguard the data, and sign notarized affidavits agreeing to 

keep the data confidential.   

The NELS:88 study was part of a series of high school longitudinal studies developed by 

the National Center for Education Statistics (NCES) including the National Longitudinal Study 

of the High School Class of 1972 (NLS-72), the High School and Beyond Study (HS&B), and 

the Educational Longitudinal Study of 2002 (ELS:2002).  The ELS:2002 study began with 

students as high school sophomores in 2002 and continued with the first follow up in 2004 when 

most of the students were seniors.  A second follow up was conducted in 2006 as many students 

were completing their second year of post-secondary education.  One to two more follow ups 

may be conducted in 2010 and 2012 to determine the overall life outcomes of the students.  

While the ELS:2002 dataset contains the most current longitudinal data for high school students, 

its incomplete status made it less suitable for this research than the NELS:88 dataset.  In 

addition, the ELS:2002 study began with students in 10th grade as opposed to the 8th grade of the 

NELS:88 study.  The potential for a successful intervention to encourage students towards 

STEM is higher at an earlier point in their educational career prior to their assignment to a 

general mathematics path vs. a college-preparatory mathematics path37 for the final years of high 
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school.  ELS:2002 would be appropriate for ongoing studies of students’ educational choices and 

outcomes. 

2.4 PRIOR EDUCATION RESEARCH 

2.4.1 CIRP-based Studies 

The CIRP data has been utilized by many researchers to study students in U.S. colleges.  Sax38 

studied students that achieved a bachelor’s degree in a STEM∗ subject to determine the 

likelihood they would go on to pursue a scientific research career.  She explored differences by 

gender in the students’ persistence in a scientific research career.  Persistence in Sax’s research 

was defined as students who achieved a bachelor’s degree in a STEM major continuing their 

STEM education until they earned a STEM graduate degree.  It should be noted that other 

researchers have defined persistence differently to suit the educational outcomes they were 

examining.  Examples of these include persisting through high school until achieving a diploma, 

persisting through college to earn a bachelor’s degree, or persisting in a particular major to earn a 

degree in that subject. 

The study reviewed prior research into persistence predictors including science/math 

preparation, undergraduate experience, post-graduate experience, parental influences, personal 

confidence in skills, and balancing family vs. career.  Initial freshman data was collected from 

                                                 

∗ The term SME is often used by researchers to refer to science, math, or engineering.  The acronym STEM will be 
used in this document to refer to these areas of study. 
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12,000 students as part of CIRP and follow-up data was collected four and nine years later on the 

cohort of 2,563 that achieved a science, math, or engineering bachelor’s degree.   

Sax employed stepwise linear regression to identify the student profiles and 

undergraduate measures that best predicted pursuing a STEM graduate degree.  The CIRP data 

was used to obtain specific independent variables reflecting the students’ goals, reasons for 

choosing their college, activity times per week, intended major, intended career, and family 

educational/career history.  There were differences between the areas of STEM studied in 

determining which students were most likely to pursue a STEM graduate degree.  Engineering 

and the physical sciences were more likely to produce students interested in graduate school than 

mathematics/computer sciences or biological sciences.  Gender differences were observed in the 

graduate school tendencies of students in the physical sciences and mathematics/computer 

science.  Female students in these fields were less likely than male students to pursue a graduate 

degree.  The desire to make a theoretical contribution to science was the most valuable predictor 

of females’ persistence towards a STEM graduate degree.  Another positive predictor for females 

was having a mother that was a college educator or a research scientist.    

A study by Smyth and McArdle39 used CIRP data to obtain students’ average high school 

grades, SAT scores, and intended major.  This was combined with the students’ college 

transcripts data and college attributes to explore racial/ethnic and gender differences in students 

achieving a STEM degree from selective institutions.  The social sciences were deliberately 

excluded from the STEM degree category for this analysis.  A series of hierarchical linear 

models (HLM) were used to estimate the effects of student oriented variables based upon the 

institutional characteristics.  The authors modeled the log-transformed odds of graduating with a 

STEM degree to avoid serious violations of standard regression assumptions such as normality 
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and linearity.  The results indicated minority students were less likely than Caucasian students to 

achieve a STEM degree, and much less likely than Asian students to do so.  Male students were 

more likely to graduate with a STEM degree than female students.  Quantitative measures of 

student achievement such as SAT math scores and high school average grades were significant in 

predicting STEM graduation.  Among the authors’ conclusions was the notion that students 

would be advantaged by attending a school where the mean student measures in math and high 

school grades were comparable to their individual measures.  The risk of not achieving a STEM 

degree increased when the student chose an academically challenging college in which his/her 

scores were in a low percentile.   

Pascarella, Smart, Ethington, and Nettles40 explored racial and gender differences in the 

impact of institution on social and academic self-concept of students.  CIRP data from 487 

institutions were combined with follow up data collected in surveys about nine years later.  The 

CIRP data were used to obtain variables measuring pre-college self-concept, expectations, goals, 

and academic achievement for a sample of 4,597 students at 379 four-year institutions.  The self-

concept information was obtained from students’ self-ratings of their academic and social 

qualities.  Gender, race, degree aspirations, and socioeconomic status were also obtained from 

the CIRP dataset.  Multiple regression analysis was utilized to test the hypotheses of 

gender/racial effects on the students’ self-concept.  The data was broken into four groups by 

gender (male/female) and race (black/white) for separate analysis of each cohort.  College social 

and academic experiences had significant effects on the students’ self-concept.  The factors that 

affected academic and social self-concept were generally alike for race and gender.  Pre-college 

social self-concept positively influenced social leadership/participation in college.  Similarly, 

pre-college academic self-concept positively influenced college academic accomplishment.   
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Nicholls, Wolfe, Besterfield-Sacre, Shuman, and Larpkiattaworn41 created a 

methodology for rapidly analyzing CIRP data to identify variables that predicted interest in a 

STEM major.  Majors in Science, Technology, Engineering, Math, or the professional health 

fields were classified as STEM.  All other college majors including “Undecided” were classified 

as “Non-STEM” in this analysis.  Basic statistical tests were applied to the CIRP dataset 

variables to look for statistically significant differences between STEM and Non-STEM students 

in population subgroups divided by educational institution, gender, and race/ethnicity.  Variables 

that consistently revealed significant differences between STEM and Non-STEM students across 

multiple subgroups were considered more valuable than variables which showed significant 

differences across fewer subgroups.  The analysis of two universities’ CIRP freshmen surveys 

found that 22 of 216 variables consistently exhibited significant differences between STEM and 

Non-STEM students across the multiple subgroups.  The methodology identified several 

variables as the most consistently valuable predictors of STEM interest including high school 

GPA, SAT scores, self-rating of mathematics ability, self-rating of academic ability, and 

commitment to studying STEM.  These findings were consistent with results reported by other 

researchers suggesting that the methodology developed was successful and could be applied to a 

general subject of interest.  The approach allowed the voluminous CIRP database to be 

efficiently analyzed for variables that predicted an event or characteristic of interest.   

Leslie, McClure, and Oaxaca42 developed separate binomial logit, multinomial logit, and 

ordered logit models using data from CIRP and the National Longitudinal Survey of Youth 

(NLSY) 43 to predict achieving an engineering or science degree.  Maximum likelihood 

estimators were employed.  These methods were chosen since the CIRP and NLSY data are 

virtually all categorical rather than continuous in scale.  The data was analyzed separately in 
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groups by gender (male/female) and race/ethnicity (black/white/Hispanic) where the volume of 

data was sufficient.  The authors concluded that self-concept and self-efficacy were significant in 

explaining the lower participation by women and minorities in STEM studies.  Caucasian males 

were the most likely to rate their science and math preparation as above average.  The self-

efficacy gained from this preparation indicated they were also more likely than Caucasian 

females, Hispanic females, and African-Americans of both genders to pursue a STEM major.  

Hispanic males showed even more positive effects from self-efficacy in math and science in 

choosing a STEM major.  Females that possessed a lower self-concept and sense of control were 

less likely to select a STEM major.  Caucasian females were far more likely to graduate with a 

STEM bachelors or masters degree if they achieved a B or higher grade point average (GPA) in 

their undergraduate years.  

Leslie, et al. also found that having a parent employed in a STEM profession positively 

influenced the choice of a STEM major. The effects were largest for Hispanic males, African-

American males, and Caucasian males, in that order. The effect was greater for male students 

than female.  However, the mother’s education level was one family-related variable for which 

the positive effect was greatest on female students’ achievement of a STEM degree.  Having 

lower interest in marrying was positively related to choosing a STEM major while popularity 

was negatively related to selecting STEM.  Students that identified STEM as their likely career 

were more likely to major in and be employed within STEM.  The effect was larger for males 

than females. 

Astin44 studied CIRP data for a group of 36,581 students across numerous institutions 

and found that the academic achievement in high school and quantitative tests such as the SAT 

accurately projected students’ academic accomplishments in college.   

 23 



2.4.2 Longitudinal Data-based Studies 

Research by Zhang, Anderson, Ohland, and Thorndyke45 obtained results that were similar to 

those of Astin.  Zhang, et al. reported high school GPA and math SAT scores were significant 

predictors.  Their research involved 87,167 engineering students at nine institutions that 

matriculated between 1987 and the summer of 1996.  The data was obtained from the 

Southeastern University and College Coalition for Engineering Education (SUCCEED).  The 

students were followed over time to determine graduation rates and estimate the time-to-

graduation using multivariate logistic regression.  Gender, ethnicity, verbal SAT scores, and 

citizenship were also significant predictors of graduation at some of the nine colleges and 

universities. 

The attitudes of freshmen college students are another area that has been explored to 

explain why some students persist in engineering while others do not.  Besterfield-Sacre, Atman, 

and Shuman46 developed a methodology for assessing the attitudes, self-confidence, and 

expectations of freshmen engineering students.  The goal was to determine if student attitudes 

could accurately predict academic performance and persistence in engineering such that targeted 

intervention programs could positively influence both.  The analysis revealed that students who 

voluntarily left engineering while performing acceptably often had lower interest in engineering 

and were ranked highly in high school.  These students were academically strong enough to be 

successful in engineering but were less personally motivated to pursue it.  It was theorized that 

these students may have responded to family influence in selecting engineering initially and later 

chose to switch majors to pursue interests they personally found more appealing.  In contrast, 

students who changed from an engineering major after performing poorly tended to have high 
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expectations of engineering and may have been drawn to it by anticipated financial benefits from 

employment after graduation. 

A subsequent study by Besterfield-Sacre, Moreno, Shuman, and Atman47 built upon this 

analysis by examining differences in attitudes among freshmen engineering students across 17 

institutions by ethnicity and gender.  The Pittsburgh Freshman Engineering Attitude Survey 

(PFEAS) was administered at the start of the freshman year and again at the end of the first 

semester or first academic year.  Since the assumption of normality did not hold for much of the 

attitudinal data non-parametric comparison tests including the Mann-Whitney were used to 

detect differences between cohorts.  Female students tended to have less confidence in their 

general knowledge of engineering and their ability to achieve success in this field.  Male students 

tended to rate their study skills lower and their problem-solving skills higher than their female 

counterparts.  There were also significant differences in attitudes between majority students and 

their African-American, Asian Pacific, and Hispanic counterparts.  Interestingly, the changes in 

attitude between pre and post surveys varied across the institutions.  There were differences in 

direction observed by gender and institution suggesting that the academic experience of the 

school attended may affect the students’ self-concept and attitudes.   

Larpkiattaworn, Muogboh, Besterfield-Sacre, Shuman, and Wolfe48 examined issues 

associated with employing statistical analysis to assess and evaluate engineering education 

initiatives.  The article illustrated several techniques for managing Type I errors when 

conducting multiple comparisons and provided guidance in selecting from among the techniques.  

The classic Bonferroni method, Scheffe’s procedure, Tukey’s test, and the sequentially rejective 

Bonferroni procedure (SRBP) were among the methods discussed.  Two example cases were 

presented including scenarios under which a particular technique was best suited.  The paper also 
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presented an argument for employing tree diagrams instead of classification tables when 

evaluating the predictive power of a model whose recommendations were not always followed.  

The researchers developed a model using logistic regression to predict whether freshmen 

engineering students would be more likely to succeed if they took a class in pre-calculus before 

calculus.  Five separate models were created by randomly selecting samples from the same 

dataset and splitting them into portions for model fitting and model validation.  The final 

prediction was the result of agreement between three or more of the five logistic regression 

models.  Advisors were encouraged to consider the model’s recommendation prior to making 

their own.  Thus a classification table that compared predicted success/failure with actual 

success/failure did not accurately reflect actual results from ignoring the model’s prediction.  The 

tree diagram more accurately measured the model’s effectiveness.      

Adelman49 analyzed longitudinal data over a 13-year time span for a set of students 

starting in 1982 during their sophomore year.  The dataset employed was the NCES’ High 

School and Beyond/Sophomore Cohort (HS&B/So).  His findings included a direct relationship 

between the pattern of advanced technical courses in high school and choosing engineering as a 

college major.  The students with a greater propensity to major in engineering were the students 

with higher quantitative standardized test scores and greater academic achievement.  Students 

with lower test scores and lesser overall academic records were less likely to select engineering 

as a major.  This pattern was also observed when examining the records of female students.  

There were comparatively fewer female than male students pursuing engineering degrees.  

However, those females majoring in engineering also tended to have higher academic 

achievement.   

 26 



Hintze and Silberglitt50 examined oral reading curriculum-based measurement (R-CBM) 

scores of students in 1st through 3rd grade to determine how well they predicted the students that 

would pass a high stakes academic capability test, the Minnesota Comprehensive Assessment 

(MCA), which was taken at the end of the 3rd grade.  The R-CBM was tested eight times from 

the winter semester of grade 1 through the spring semester of grade 3 by having 1,766 students 

read carefully structured passages to demonstrate their level of fluency.  Each of the R-CBM 

scores across the three year period was used as a predictor in a series of single variable models to 

project whether the students would pass or fail the MCA test.  In addition, each of the 8 

longitudinal R-CBM scores was used to predict the result of the successive R-CBM assessment.  

Logistic regression, receiver operating characteristics (ROC) curves, and discriminative analysis 

were used to create the predictions in order to determine if one method performed better than the 

others.  The sensitivity, specificity, positive predictive power, and negative predictive power 

were assessed for each independent variable at a set “cut score” used as the dividing line between 

predicting the student’s outcome on the MCA test.   

Hintze and Silberglitt reported results indicating that the R-CBM scores were good 

predictors of MCA performance, and the later R-CBM scores gathered in 3rd grade were better 

predictors of the MCA test results than those collected earlier in the study period.  Also, the 

predictions of the R-CBM score for a given semester based on the R-CBM scores from the 

preceding semester were very strong.  All three statistical techniques produced cut scores that 

offered acceptable accuracy, but the authors indicated that the logistic regression models created 

with a single R-CBM predictor variable were more parsimonious than the models created with 

discriminative analysis.  The specificity and negative predictive power of the models appeared to 

be stronger than the sensitivity or positive predictive power.  The authors suggested that using R-
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CBM scores would allow educators to identify students that had skill deficits such that an 

intervention program could be offered to them.  However, there was no discussion of how the 

evaluation measures at a single cut score could be used to adjust the models to produce greater 

accuracy.  There was also no indication that separate random samples of the 1,766 students were 

used to fit and test the models.   

In 2008 Brasier51 utilized the NELS:88 dataset to examine the effects of parental 

involvement on children’s aspirations to complete college.  Logistic regression models were 

constructed to predict how far in school students expected to get based on their parents’ level of 

involvement in terms of discussing school events, topics studied, and selection of courses.  The 

models also included variables that controlled for race/ethnicity, gender, maternal expectations, 

paternal expectations, socioeconomic status quartile, and the students’ academic capabilities.  

The models were fitted with records from 9,707 students that participated in the 1988 and 1990 

waves of data collection and provided complete responses to the questions that were used to 

obtain the variables.  The college aspiration variables were recoded to have a binary scale with 0 

indicating a low level and 1 indicating a high level of aspiration to complete a college degree.  

The covariates were recoded to have a binary or ordinal scale as well.  Principle factor analysis 

(PFA) was employed to distill the three measures of parental involvement into a single covariate.  

A probability threshold of 0.50 was used to divide the estimated probability of high aspiration 

into a prediction of high vs. low aspiration.  Separate logistic regression models were constructed 

for the 8th grade and the 10th grade using only the covariates collected in 1988 and 1990, 

respectively.  Two models were created for each of the grade levels with one including parental 

involvement as a factor and one without this variable.  This research design allowed the analyst 

to determine if parental involvement significantly contributed to the prediction of college 
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aspiration in each grade and if the contribution of parental involvement varied between the 

grades.  The observed vs. predicted aspiration levels were compared and an overall percentage of 

correct high and low aspiration level predictions was calculated for each model.  The area under 

the ROC curve for each of the four logistic regression models was among the different statistics 

used to assess their strength.   

Brasier found that the models strongly predicted college aspiration levels and that 

parental involvement was a significant predictor in both grades.  However, the contribution of 

parental involvement to the students’ aspiration level was significantly stronger in the 8th grade 

model than in the 10th model.  Male students were less likely to have high college aspirations 

than their female counterparts in both grades.  Being African-American was found to be a 

significant predictor of having high aspirations in both grades while being Hispanic was 

significant only in the 8th grade and being Asian was found to be significant only in the 10th 

grade.  Higher academic ability, socioeconomic status, maternal expectations, and paternal 

expectations were significant predictors of higher aspiration levels in both grades.  These results 

led to a conclusion that parental involvement and children’s college aspirations had a dynamic 

relationship subject to change as the children developed and that encouragement from parents 

was very important in students deciding to pursue post-secondary education.   

The main differences between the methodology developed in this dissertation and the 

analysis by Brasier are the focus on college aspirations vs. final educational outcomes and the 

objective of significance testing vs. outcome prediction.  Brasier was exploring a portion of the 

students’ educational trajectory towards college in order to determine if parental involvement 

was a significant predictor of college aspirations.  The logistic regression models were developed 

using the entire set of 9,707 students in the sample developed by Brasier as opposed to selecting 
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multiple random sub-samples of the records for repeated model fitting and testing.  Brasier’s 

goal was to determine the extent to which parental involvement could predict student aspirations 

to finish college.  Predicting the level of college aspirations was a means to evaluate the models’ 

findings of significance rather than the ultimate objective of creating the models.  The set of 

potential covariates used by Brasier was carefully chosen and meticulously tested for inclusion in 

the modeling process, but it was much smaller than that chosen for this dissertation.   

Huang, Taddese, and Walter52 analyzed the factors that affect female and minority 

students’ pursuit, persistence, and completion of postsecondary science and engineering degrees.  

The researchers analyzed two datasets to test groups of variables for their relative importance in 

the continuing technical education gaps exhibited by female and minority students.  NELS:88 

data from the base year of 1988 through the third follow-up in 1994 was analyzed to study 

variables that affected female and minority students through high school and entry into a 

technical field of study.  Data from the Beginning Postsecondary Student Longitudinal Study 

(BPS) covering a five-year period was analyzed to study variables that affected students during 

the pursuit of a technical degree.  This paper was particularly informative for the purposes of this 

research since it focused on the issue of persistence in acquiring an engineering or science degree 

in college. 

Huang, et al. drew a sample from the NELS data which included students that did not 

attend college since this outcome represented a portion of the achievement gaps and not 

including these students could have led to underestimation of the gaps.  Descriptive analysis was 

utilized first to decide which potential variables showed an association with selecting a technical 

major.  The results of this analysis suggested that female students experienced primarily 

psychological disadvantages in pursuing a technical field of study while minority students were 
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hampered by lesser educational opportunities as well as psychological disadvantages.  The 

psychological disadvantage stemmed from comparatively fewer female/minority students 

wanting to study technical subjects in college. 

Multivariable logistic regression analysis was used by Huang, et al. to determine the 

relative importance of the factors identified with descriptive analysis.  The dependent variable 

was the enrollment in science or engineering in college of a student from the NELS dataset.  

Among the specific independent variables tested were the students’ personal interest in science, 

goals to work in a technical career, participation in gifted/advanced programs, total credits in 

science and math, total advanced credits in science and math, teachers’ major/minor in science or 

math, and the schools’ science credits requirement.  Other school characteristics such as minority 

enrollment percentage, private vs. public school, and urban vs. rural setting were considered but 

not included since they were deemed to have a lesser impact on selection of a college major.   

Many of the findings by Huang, et al. were consistent with prior research in that students 

with greater academic skills particularly in science and mathematics were more likely to pursue a 

college major in a technical field.  Students that had a greater personal interest or motivation to 

study a technical subject were more likely to major in one.  Having a supportive family 

environment and high parental expectations were also significant factors.  Once these factors 

were controlled, the racial/ethnic and gender gaps in pursuit of a technical degree narrowed.  The 

study of persistence and achievement of a postsecondary degree indicated that the racial/ethnic 

gaps tended to reappear as minority students experienced more difficulty in completing the 

technical degree.  This was not found in female students who tended to outperform male students 

in completing their studies.  So although female students did not select technical majors in 

comparable numbers to male students, they performed well once in the program.   

 31 



The Huang, et al. study summarized the history of the gender and racial/ethnic gaps in 

science and engineering fields including progress made in narrowing the gaps.  Is also outlined 

prior research and highlighted numerous factors that have been found significant in the past.  The 

factors fell into three broad classes:  general family environment and support for the student; 

student characteristics including attitudes, personal goals, and academic capability; and 

institution characteristics including financial aid, special programs to promote entry/retention, 

and precollege coursework.  These classes were the starting point of the multivariate models 

used to analyze the NELS and BPS datasets.   

The Huang, et al.  family environment and support class included variables that record 

parents’ aspirations for their children’s education when the children are in 8th and 12th grade.  

The responses included completing high school, attending a vocational/trade/business school, 

attending a 2-4 year college, finishing a 2/4-5 year college program, or earning an advanced 

degree.  Other variables explored how parents supported their children’s interest in science or 

math by taking them to museums, saving money for college expenses, and discussing education 

and post-secondary studies with their children.   

The Huang, et al. student actions class of variables measured the aspirations of students, 

what programs they participated in, the coursework they studied, the strategies they developed to 

advance learning, and how they performed in math and science.  The aspirations were measured 

by asking students how far they expected to advance in their education and whether or not they 

expected to be working in a technical subject area at the age of 30.   

The program participation and coursework were measured by asking students if they had 

ever been in a special program for college preparation, advanced placement, or high ability.  This 

question was asked in the 8th, 10th, and 12th grade surveys.  Transcript data was collected that 
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indicated the number of credits taken in subjects such as math, science, computer science 

programming/data programming, English, foreign language, and social studies.  Remedial 

course-taking was explored to further evaluate the students’ capabilities in the core subject areas.  

Students were also asked in 8th and 10th grade if they had participated in any special 

math/science enrichment programs.   

The attitudinal and learning strategy variables were provided by survey questions that 

asked students why they took math and science classes, whether or not they did their homework 

in math and science, whether or not they adopted certain learning strategies, and how they would 

assess their confidence in their level of science/math education.  Performance in math and 

science was assessed through standardized proficiency tests that the students surveyed took in 

8th, 10th, and 12th grade.   

The Huang, et al. institution characteristics class of variables examined the environment 

in which the students were educated.  It included questions about the availability of computer 

labs, advanced placement or college-level math/science classes, and the graduation requirements 

of math/science coursework.  The credentials of the teachers in the high school were assessed by 

asking the surveyed schools to identify what percentage of their math/science teachers majored 

or minored in the subject they teach.   

The main difference between the methodology developed in this dissertation and the 

analysis by Huang, Taddese, and Walter is the exploration of persistence using NELS:88 data as 

opposed to BPS data.  The multivariable logistic regression employed by Huang, Taddese, and 

Walter to identify significant predictors of a technical major was explored in this dissertation as 

the current standard of practice.  However, the integrated methodology employs survival analysis 

to examine additional data in order to predict the probability of an individual student with a 
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given vector of variable values departing the STEM track and not “surviving” to achieve a 

STEM degree.  This is a more powerful analytical technique that builds upon the results of the 

logistic regression analysis of significant predictors of persistence.  

In summary, the prior education research indicates that certain variables consistently 

predict statistically significant differences between students who pursue a STEM degree and 

those who do not.  Among the most consistent variables are gender, race/ethnicity, average high 

school grades, SAT math scores, personal interest in STEM subjects, and students’ self-

confidence in their mathematics skills.  Other variables which were found to be significant in 

some of the studies include having a desire to make a theoretical contribution to science; having 

a parent employed in a STEM career, attending a school where the student’s average high school 

grades and SAT math scores were comparable to student body averages; and possessing a higher 

self-concept and sense of control.  Additional variables that were significant in a few of the 

studies were socioeconomic status, SAT verbal scores, and interest in social activities. 

2.5 PRIOR RESEARCH UTILIZING SURVIVAL ANALYSIS 

Since education is a process that requires many years to ultimately achieve a goal, researchers 

have sought means to acquire and analyze longitudinal data measuring the same students at 

successive points in time.  Survival analysis techniques have been applied to longitudinal data in 

order to identify factors predictive of students ultimately experiencing a general event of interest. 

Mensch and Kandel53 utilized the National Longitudinal Survey of Youth (NLSY) 

dataset to analyze the impact of drug involvement upon dropping out of high school.  NCES 

began NLSY in 1979 with surveys of 12,684 people aged 14-21 and continued with annual 
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surveys until 1994.  NLSY data from the 1984 follow up survey when the students were aged 19-

27 was utilized in the analysis.  Survival analysis techniques were used to create hazard models 

of the risk of dropping out or achieving a GED as a function of various independent variables.  

These independent variables included demographic, behavioral, experiential, and personal 

attribute characteristics.  The models were discrete-time and assumed the risk of event 

occurrence was constant within a single year time period.  Logistic regression was used to 

estimate the discrete-time hazard models.   

The results indicated that the risk of dropping out increased with drug use.  The earlier in 

life drug use began the greater the risk of dropping out.  The same was found with girls for 

sexual intercourse and pregnancy, and the effect was even stronger than that of early drug use.  

For both genders, use of more disfavored substances was more strongly associated with dropping 

out.  For example, use of illicit drugs had a greater association than use of alcohol or cigarettes.  

Among illicit drugs, use of marijuana had a weaker association with dropping out than use of 

other presumably harder drugs.  Lesser parental education, broken family status, minority group 

membership, lower academic capability, lower self esteem, and having an external locus of 

control indicated a greater risk of dropping out.  Of all the variables, academic capability was the 

strongest predictor of dropping out.  With respect to the “risk” of acquiring a GED, the strongest 

predictors were academic capability and parental education.  The analysis of female students 

found two other variables to be significant in predicting GED acquisition:  race and self-esteem.  

When the models controlled for academic capability and parental education, nonwhite females 

were more likely to get a GED than white females.  Females with low self-esteem were less 

likely to achieve a GED than those with higher self-esteem.    
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Civian54 used survival analysis techniques to explore the time to complete a doctorate at 

the Harvard University Graduate School of Education (HGSE).  Data was collected about 625 

full-time students who matriculated at HGSE between Fall 1982 and Fall 1988.  Proportional 

hazards models were constructed to look for significant differences in groups that varied by 

factors including gender, race/ethnicity, citizenship, year cohort, doctoral program, and estimated 

academic ability.  Significant differences were identified with foreign students in two of the three 

programs completing their doctorates sooner than American students.  Caucasian students 

required more time to complete their degrees than non-Caucasian students less than 30 years of 

age did.  Older non-Caucasian students took longer than Caucasians to graduate.  Students with 

higher achievement test scores completed their degrees a bit faster than the students with lower 

test scores.   

Willett and Singer55 stated that educational researchers should employ survival analysis 

techniques in order to study topics such as student persistence and teacher attrition.  The article 

maintained that one of the best reasons to apply survival analysis is that standard statistical 

techniques require knowledge of when the event occurred (the outcome) for each sample 

member.  This is a standard unlikely to be met in studying event times.  Regardless of the length 

of the study, it is probable that some sample members will not experience the event of interest 

prior to the end of data collection.  For example, a study of student drop out behavior may follow 

students from the 8th grade through the time at which they should have graduated high school.  

Those students who graduated without dropping out did not experience the event of interest so 

their event times are referred to as “censored.”  A student who transferred prior to graduation or 

dropping out also has a censored event time because the competing risk of transferring occurred 

first.  Survival analysis methods can take the censored event times into account when examining 
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the probability of the event of interest occurring by a set time.  This permits an analyst to 

estimate when the probability of the event happening is at its greatest.   

Willett and Singer analyzed teacher attrition data with survival analysis methods.  Their 

findings indicated the greatest risk of leaving the profession is in the first few years, and that 

throughout a sample over 12 years the risk of leaving was higher at every point for female 

teachers.  Statistical models were used to estimate the discrete-time hazard function for teachers.  

A logit transformation approach was used to test various models with several predictor variables 

including gender, age when hired, a cross-product term of gender and age at hire, and salary.  

The first three variables tested were examples of time-invariant measures that remained constant 

throughout the sample period.  Salary is an example of a time-variant variable since salary levels 

changed over the sample period.  Time-varying variables offer a more insightful measurement of 

the sensitivity of the hazard or survival functions to changing conditions.  In the case of the 

teachers, this allowed the analysts to explore the effects of a variable whose impact on the hazard 

function changed with time.  These more complex models offered a way to pinpoint when a 

category of teachers is most apt to consider leaving the profession and potentially to intervene 

positively.  Traditional statistical methods are less effective in modeling the effects of time-

varying predictors. 

Willett and Singer also examined the applicability of survival analysis on student dropout 

tendencies by developing hazard models to identify when students are most likely to leave 

school.  Survival analysis was favored for its ability to model different competing risks including 

graduation, dropping out, changing schools, being expelled, stopping out before returning, etc. 

throughout students’ educational careers.  The findings of a grade specific profile of dropping 

out indicated that the rate of dropping out is below 1% for grades K-7th, rises to a peak in 10th 
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grade, and then drops in 11th and 12th grade.  This suggests that anti-dropout programs are 

needed most as students approach 10th grade.   

Vegas, Murnane, & Willett56 examined the conditional probability of high school 

students continuing their education and entering the teaching profession to determine if 

race/ethnicity, gender, or academic skills were significant predictors.  Longitudinal data was 

obtained from the HS&B survey that followed sophomore students from 1980 through the year 

1992.  A series of four hierarchical samples were drawn from the dataset starting with 10,584 

sophomores in 1980.  Subsequent samples were drawn from all members of the preceding 

sample that matched the criteria for continuing on the path to teaching.  These samples were used 

to determine the conditional probability of a student graduating from high school, entering 

college, graduating from college, and entering the teaching profession.  The percentages of males 

and females of different racial/ethnic categories that achieved each step were compared to see if 

some groups were less likely to proceed than others.  Logistic regression models were 

constructed to determine if academic skills were significant predictors of the different 

racial/ethnic and gender groups completing each step.   

The findings of Vegas, et al. indicated that academic skills in tenth grade explained most 

of the differences in high school graduation probability among the racial/ethnic groups.  Female 

non-majority students were more likely to matriculate than their male counterparts.  Conversely, 

male majority students were more likely to matriculate than their female counterparts.  Minority 

students with good academic skills tended to enroll in college after graduating from high school.  

Unfortunately, many minority students in the study that graduated high school lacked strong 

academic skills.  The results indicated a dramatic variation in the probability of graduating from 

college.  Asian-Americans followed by Caucasians had the highest rate of graduation.  The rates 
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for Hispanics, African-Americans, and Native Americans were far lower and declined in that 

order.  However, the graduation rates were very similar across the racial/ethnic groups when 

considering students of the same academic skill level.  This suggested the graduation rate 

differentials would have been greatly reduced if minority students were better prepared for 

college.  Native Americans, African-Americans, and Hispanics, respectively had the largest 

percentages of college graduates entering the teaching profession.  Asian Americans had the 

lowest percentage.   Across all the racial/ethnic groups, females were far more likely to start their 

career in teaching than their male counterparts.   

The prior education research indicates that the use of survival analysis techniques can be 

quite powerful in modeling educational event occurrences.  The ability to test time-varying 

predictors as well as time invariant predictors is a particularly valuable benefit of applying 

survival analysis techniques.  The research to date has employed single statistical techniques or a 

series of nonintegrated single techniques to explore these complex problems.  This limits the 

degree of insight that can be obtained and the potential for decision-making about intervention 

methods.  Ideally, analysis should be able to pinpoint the most critical time to initiate educational 

interventions as well as the set of predictors that describe which students would benefit most.   

2.6 RECEIVER OPERATING CHARACTERISTICS CURVE ANALYSIS 

Developing a model to predict between a STEM outcome vs. another outcome for a given 

student involves using data to discriminate between the two potential results.  A valuable tool in 

assessing the accuracy of the discrimination is Receiver Operating Characteristics (ROC) curve57 

analysis.  ROC curve analysis was developed as a concept in signal detection theory during 
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World War II where radar operators examined radar signals to detect oncoming Japanese aircraft 

and distinguish such readings from “noise” in the signal.  The goal was to increase the accuracy 

of predictions and decrease the likelihood of false alarms or missed detections.  The prediction 

accuracy is a tradeoff between sensitivity and specificity.  Sensitivity is the probability of 

correctly identifying a signal while specificity is the probability of correctly identifying system 

“noise.”  In terms of STEM prediction the sensitivity is the probability of correctly classifying a 

student as having a STEM outcome.  The specificity is the probability of correctly classifying a 

student as having a “Not-STEM” outcome.   

Classifying a student outcome as STEM vs. Not-STEM is based upon the value of a 

prediction threshold.  Consider a threshold value between [0, 1] where a prediction represents the 

probability of a STEM outcome.  The threshold value or “cutpoint” determines which of two 

outcomes the model predicts.  If the cutpoint is set to 0.5 then records for which the model 

estimates a probability of a STEM outcome ≥ 0.5 will be classified as a STEM prediction.   

Records for which the model estimates a probability of a STEM outcome < 0.5 will be 

classified as a Not-STEM prediction.  If the cutpoint is set to a low value, then the model will 

predict more students to have a STEM outcome.  As a result more true STEM students will be 

correctly predicted to have a STEM outcome but correspondingly, more true Not-STEM students 

will be incorrectly predicted to have a STEM outcome.  If the cutpoint is set to a high value, then 

fewer students will reach that value and be predicted to have a STEM outcome.  Thus fewer true 

STEM students will be correctly predicted to have a STEM outcome and correspondingly fewer 

true Not-STEM students will be incorrectly predicted to have a STEM outcome.  The choice of 

the cutpoint value determines the results in discriminating between the two potential outcomes.   
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While this type of analysis was developed in the refinement of radar signal detection it 

has been adapted in other fields to evaluate how well models discriminate between potential 

outcomes.  It has wide usage in medical research to evaluate the diagnostic value of medical 

tests58, 59, determine the therapeutic value of treatments, and to make decisions in interpreting 

radiology images60, 61.  A medical test may result in concluding that a disease is present (a 

“positive” test result) or that it is not present (a “negative” test result).  Ideally, a diagnostic test 

should accurately detect when a disease is present and accurately indicate when it is not.  False 

positive test results lead to unwarranted concern and potentially unnecessary treatment while 

false negative test results may lead to adverse health results as a condition goes untreated.   

Discriminating between two outcomes leads to four possible results.  The test could 

classify a result as positive or negative.  The classification could be correct or incorrect.  The 

four possible results are correct disease detection (true positive), incorrect disease detection 

(false positive), correct healthy status (true negative), and incorrect healthy status (false 

negative).  The sensitivity of a diagnostic test measures its ability to identify the presence of 

disease and the specificity of the test measures its ability to identify the absence of disease.  In 

this context, sensitivity is the probability of a true positive while specificity is the probability of a 

true negative.  The cutpoint used in the outcome discrimination determines the sensitivity vs. (1 - 

specificity) for the diagnostic test.  The two measures are directly associated for a given cutpoint 

value.  This association means there is a tradeoff between achieving good sensitivity and good 

specificity in outcome discrimination.   

ROC curves visually depict the tradeoff by plotting sensitivity vs. (1 – specificity) for a 

range of cutpoint values.  Plotting (1 – specificity) on the horizontal axis and sensitivity on the 

vertical axis produces a curve line.  Ideally, the ROC curve should resemble a vertical line at a 
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ROC curve analysis allows prediction models to be evaluated by examining the resulting 

ROC curve for a wide range of cutpoints.  Models which result in an ideally shaped ROC curve 

have better ability to discriminate between two potential outcomes than those with a flatter ROC 

curve.  A shallow ROC curve that resembles a 45 degree line between the axes implies that the 

model has negligible discrimination value.  Such a model is as likely to predict a true positive as 

a false positive and has no useful predictive ability.  A visual estimate of the model’s predictive 

ability may be gained by comparing the ROC curve to a 45 degree line and determining how 

much space lies between the two curves.   

The area under the ROC curve (“AUC” or “c”) provides an estimate of the model’s 

predictive ability.  The sensitivity and (1 – specificity) range from 0 to 1 so the ROC curve is 

plotted within the unit square formed by the points (0, 0), (0, 1), (1, 0), and (1, 1).  Therefore, the 

area under the ROC curve is a portion of the unit’s square area of 1, and c is a value between 0 

and 1.  A model with a high value for AUC is judged to better discriminate between the 

outcomes.  Hosmer and Lemeshow62 indicate that a value for AUC of 0.5 indicates that the 

model is of little use since it is as likely to correctly predict a binary outcome as flipping a fair 

coin.  A result of 0.7 ≤ AUC < 0.8 represents “acceptable” ability to discriminate between 

potential outcomes.  A result of 0.8 ≤ AUC < 0.9 represents “excellent” ability to discriminate 

between potential outcomes.  A result of AUC ≥ 0.9 represents “outstanding” ability to 

discriminate between potential outcomes.   

The ROC curve can be used to improve a predictive model by selecting a cutpoint for 

outcome discrimination that provides a good tradeoff between sensitivity and specificity.  The 

selection of a preferred cutpoint to use in discriminating between outcomes is based on the 

objectives of the analyst in developing the model.  If the goal is to optimize sensitivity and 

 43 



specificity then both are plotted against the range of cutpoint values and the cutpoint value at the 

intersection of the curves is selected.  If the goal is to maximize the correct prediction of the 

outcome of interest, then the cutpoint can be chosen without regard to the probability of incorrect 

predictions.  If the goal is to maximize the correct prediction of the outcome of interest subject to 

a constraint, then the cutpoint may be chosen to achieve the highest sensitivity probability 

without violating the constraint.  For example, the constraint may be budgetary.  If a cost is 

associated with false positive predictions, then the cutpoint is limited by the probability of a false 

positive applied to the population of interest.    
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3.0  DATA SOURCE REVIEW 

3.1 INTRODUCTION 

The literature review revealed that there are two major sources of large size educational datasets, 

the longitudinal studies by NCES and the CIRP surveys of college students gathered across the 

nation by HERI.  The NELS 88:00 dataset and the CIRP survey of incoming freshmen are of 

particular interest.  The following sections outline each dataset to explain the data offered, what 

types of variables are provided, the time period covered, and how it has been utilized in this 

research.  The CIRP dataset provides the capability of examining more students at specific 

colleges around the nation, but offers a less rich assortment of variables.  It covers a narrower 

period of time in the development of the students.  Its main application for this research was to 

provide insight into the selection of potential variables to be tested for significance in predicting 

educational outcomes.   

The NELS dataset is so extensive in size and scope that understanding what it offers 

requires serious study.  Section 3.3 describes the design used in the data collection; explains how 

the sample was developed and refined over time; defines the coding scheme used in naming 

variables; and indicates how researchers gain access to the full dataset.  Section 3.4 explores the 

reasoning that led to the selection of NELS as the primary dataset used in this.  Section 3.5 

briefly covers testing of the statistical software selected for this analysis to ensure it could be 
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applied to this dataset.  The testing was done to confirm that the software code generated by the 

interactive user interface provided with the NELS dataset to import and format the data could be 

used with modest edits rather than writing entirely new code. 

3.2 CIRP DATA REVIEW 

The selection of promising variables to explore started by examining CIRP variables that had 

been valuable in prior studies of STEM students.  The results of other researchers as well as prior 

personal experience in analyzing the CIRP data were utilized.  The results of analyzing CIRP 

data63 for two universities’ incoming freshmen found 22 variables were consistent in predicting 

between STEM and Non-STEM majors for at least 5 of 7 gender/ethnic sub-groupings of the 

students.  The sub-groups included Caucasian students at both schools, African-American 

students at both schools, female students at both schools, and Hispanic/Latino students at one of 

the schools.  Among the most consistent CIRP variables that predicted an intention to major in 

STEM were the students’ SAT Math scores, self-rating of math ability, personal goal to 

contribute to Science, self-rating of computer skills, self-rating of academic ability, high school 

grade point average, time spent per week playing video/computer games, and decision to attend 

college to obtain special training for a specific career.  Other variables were found to be 

consistent in predicting an intention to major in a Non-STEM topic.  These variables included 

the students having a goal to influence social values; anticipating potential changes of major 

and/or career; choosing a college based upon its size or social activities; intending to participate 

in student government; intending to study abroad; having a  goal to influence politics, having a 

goal to be  a community leader and/or be in a position of administrative responsibility; wanting 
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to create artistic work; wanting to understand foreign countries and cultures; and spending a 

larger portion of discretionary time attending parties.   

These findings suggested the most promising NELS:88 variables to explore in initial 

modeling were those that measured academic ability, personal interests, personal attitudes, and 

future career goals.  The NELS:88 dataset includes numerous variables that assess mathematics 

abilities, prior performance in science classes, attitudes about math/science, and overall high 

school grade achievement.  The dataset includes SAT scores, indications of future career 

intentions, and measures of interest in various academic/social activities.   

3.3 NELS DATA REVIEW 

The NELS data was collected in five waves starting with the base year (BY) study in 1988 

designed to assess the students’ situation and academic strength in 8th grade before they actually 

entered high school64.  Specialized schools including those for students with disabilities, 

vocational schools, Department of Defense Dependents’ schools, and Bureau of Indian Affairs 

schools were excluded from the study.  Home schooled or privately tutored students were also 

excluded as well as students that had dropped out prior to the 8th grade.  The students in the 

survey were gathered in a stratified national sample of 1,052 schools teaching 8th grade.  Both 

public and private schools were included and clusters of students were studied at the same 

school.  Schools identified students that were considered unable to fully participate in the study 

due to severe disabilities or a lack of English language proficiency.  These students represented 

5.3% of the potential 8th grade sample and were classified as ineligible for the study.  Initially, 

26,432 students were selected for the sample and 24,599 ultimately participated in the base year.  
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Cognitive tests were conducted in the base year to assess the students’ strengths in reading 

comprehension, mathematics, science, and social studies.  Questionnaires were also administered 

to the students, parents, teachers, and school administrators.  These instruments were used to 

gather information about the students’ including their academic performance, socioeconomic 

status, family structure, home environment, future educational/vocational plans, high school 

environment, personal impressions, parental impressions, teacher impressions, post-secondary 

educational experiences, post-school employment, etc. 

Follow up data collection was done in successive waves in 1990, 1992, 1994, and 2000.  

These were classified as the first follow up (F1), second follow up (F2), third follow up (F3), and 

fourth follow up (F4), respectively.  Cognitive tests were administered again in 1990 and 1992.  

Various questionnaires were utilized to measure the students’ continuing development.  Even 

school drop-outs were surveyed to learn if they had obtained a GED or other certification and the 

reasons they left school.  For those who remained in school, NELS collected data from the 

students’ transcripts in high school and college.   

3.3.1 F1 Sample Size 

The first follow up65 started with the BY sample size of 26,432.  A total of 96 BY students were 

excluded from F1 because they had moved out of the U.S. or died.  These students were 

classified as “out of scope.”  The 348 students that had dropped out of school between the BY 

and F1 were automatically retained in the sample to maximize the dropout subgroup for study.   

It was determined that the students had spread out to a vastly increased number of 

schools (3,736) by 1990.  In addition, the schools attended by another 221 students could not be 

determined and 10 students were then being home-schooled.  These cases were handled by 
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creating individual “schools” for the students in question.  This increased the total number of 

potential schools to 3,967.  To reduce administrative and data collection costs the remaining BY 

in school sample size of 25,988 was reduced in F1 (1990) to 21,474 students through 

proportional sub-sampling that decreased the number of schools participating in NELS.  Students 

attending a school with ten or more of the BY sample members attending were automatically 

selected for inclusion.  Students attending a school with less than ten BY sample members were 

included with a lower probability.  The probability of inclusion increased with the number of BY 

sample members in the school.  The sampling design was based on an algorithm that balanced 

the budgetary costs against the desire to retain the maximum number of students.  This resulted 

in a dramatic reduction in the number of schools being surveyed from 3,736 to 1,500.   

Another 1,229 students were added to the sample in a process referred to as “freshening.”  

This was done as required in later years to maintain the sample’s representative quality for the 

U.S. population of sophomores (1990) and seniors (1992).  A second sub-sampling was then 

undertaken for students in two groups:  (1) 1,991 transfer students that were no longer in the 

school identified in the first sub-sampling; and (2) 742 potential dropouts that had not been 

available during the first follow up survey days at their schools.  The transfer students were 

sampled based on a 20% probability and the potential dropouts at a 50% probability.  There were 

386 transfer students and 357 potential dropouts that were retained in the sample.  Of the 357 

potential dropouts, 75 were ultimately found to be true dropouts.  Another 7 BY students were 

excluded from the sample since they were later found to have been selected in error.  This 

brought the F1 potential sample size to 20,706.   

In addition, 340 students originally classified as Base Year Ineligible were reclassified as 

eligible and included in the potential sample for a total potential sample of 21,019.  The sample 
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was further reduced by excluding 27 students due to sampling errors or out of scope status for a 

total potential sample of 21,026.  The final number of students that participated in F1 was 19,264 

including 18,221 students in school and 1,043 dropouts.    

3.3.2 F2 Sample Size 

The second follow up66 in 1992 began with a series of design goals.  These included having a 

representative probability sample of the 1991-1992 school year’s senior enrollment; keeping the 

maximum number of Asian, Hispanic, and American-Indian students from the F1 sample; 

keeping all of the dropped out students in the sample; retaining all F1 nonrespondents in the 

sample to minimize the potential for nonresponse bias; and limiting the sample to students at 

1,500 schools to minimize the costs of gathering teacher reviews, administrator reviews, and 

transcript data.  Some of these goals proved to be contradictory.  Excluding 1,564 “known” 

dropouts the number of schools attended by the eligible sample of students was 3,224.  Attempts 

to whittle down the number of schools would have greatly limited the ability to retain a 

disproportionate number of the racial/ethnic minority students.  The study organizers 

compromised by including the same potential sample of 20,747 students that were sought in the 

first follow up in 1990.  However, the contextual data including administrator surveys, teacher 

surveys, and transcripts were obtained only for students at 1,500 schools67.  The 1,500 schools 

were chosen by selecting all of the schools that had at least four F1 sample members enrolled 

(1,030), a random sample of the schools that had just one F1 sample member (321 of 1,008 

schools), a random sample of the schools with two F1 sample members (104 of 160 schools), and 

a random sample of the schools that had three F1 sample members (45 of 60 schools). 
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The F2 sample was then “freshened” to ensure that it represented a valid probability 

sample of senior students.  Students with severe mental, physical, or linguistic disabilities to 

participation were still excluded.  Students that could not meaningfully complete the cognitive 

tests or survey questionnaires in English but could in Spanish-language versions were considered 

to be eligible for the survey.  There were 366 students initially added in the freshening process.  

Of these 288 were found to be eligible for the cohort and 266 were deemed eligible for F2.  Of 

these students, 22 were later ruled out as ineligible with 1 excluded for language issues, 8 

excluded for mental or physical disabilities, and 13 excluded due to moving out of the country.  

A net total of 244 students were ultimately added to the potential F2 sample through freshening.  

As a result, the final sample size was 20,923 with 18,209 members in school and 2,714 

dropouts68.  The actual number of students that participated in F2 was 19,264.  This figure 

included 16,842 students in school and 2,378 dropouts. 

3.3.3 F3 Sample Size 

The third follow up69 in 1994 was based upon the potential sample from the second follow up in 

1992.  The sample was broken into 18 categories based on the sample members’ race, 

socioeconomic status, test scores, attendance at a private school in prior follow ups, nonresponse 

pattern, dropout status, freshening status, and eligibility to participate.  Table 3.1 summarizes the 

categories, lists the selection probability for each member in a category, and indicates the 

number of members in the group ultimately selected for inclusion in the F3 sample.  

Ultimately, this set of students provided a sample size of 15,964.  A further 89 students 

were excluded, and the final sample of 15,875 students was selected for the third follow up.  Of 

this sample, 14,915 sample members70 responded by completing the surveys.    
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Table 3.1  NELS:88/94 Sampling Groups’ Selection for F3 Sample 

Group Description Selection 
Probability 

Number in 
F3 Sample 

0 Excluded (Ineligible or out of scope in 1992; 
freshened students that dropped out prior to 
survey in the year freshened; or BY dropouts.) 

0.00 0

1 Nonresponders (never completed a prior 
survey) 

0.15 43

2 Poor Responders (didn’t complete either F2 
survey or survey in first eligible round) 

0.25 596

3 Ever Dropped Out 1.00 2351
4 Ineligible prior to1992 (due to mental/physical 

disability or language barrier) 
0.90 191

5 Private School in 1988 0.80 2,387
6 Private School in 1990 or 1992 0.90 98
7 Hispanic 1.00 1,466
8 Asian or Pacific Islander 1.00 874
9 Native American 1.00 132
10 Black – top quartile in cognitive tests 1.00 79
11 Black – other test scores 0.90 1,114
12 White – lowest Socioeconomic Status quartile 1.00 1,295
13 White – highest Socioeconomic Status quartile 0.60 1,522
14 White – middle Socioeconomic Status quartile 0.80 3,810
15 Freshened in F1 (1990) 0.30 1
16 Freshened in F2 (1992) 0.30 2
17 Other 0.40 3

Total 15,964
 

3.3.4 F4 Sample Size 

The last follow up in the study was complicated by the fact that in the six years since the last 

follow up many sample members had left their previous addresses and migrated to other 

geographic areas71.  Finding sample members to conduct the surveys was both critical and 

difficult.  As with the third follow up a subsample was sought to ensure sufficient representation 
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of the different subpopulations while keeping data collection costs within acceptable limits.  The 

potential sample members were grouped into strata based on their response history up to and 

including F3 and a set of domains of interest.  The probability of including a stratum in the 

sample was assigned based on previous response rates and the reaction to inclusion.  Eligible 

members who had refused in a hostile manner to participate were pursued at a much reduced 

subsampling rate of 0.05 to 0.15.  Poor respondents who proved difficult to trace were also 

assigned a lower subsampling rate of 0.30 to 0.35.  Eligible members who were easier to trace 

were included at a higher probability (0.60 to 1.00) even if they had a history of poor response.  

The subsampling rates were chosen by balancing two competing goals:  minimize unequal 

weighting effects and sampling variances associated with different strata while minimizing 

survey costs. 

The subsampling identified 15,236 subjects for the F4 sample of which 14,900 responded 

in F3 and 336 were nonrespondents.  Of the 336 nonrespondents 14 were hostile refusals.  A 

total of 12,144 sample subjects actually participated in F4. 

3.3.5 Validity of F4 Sample vs. BY Sample 

Since the final sample of 12,144 students that participated in the fourth follow up was notably 

reduced from the initial base year sample of 24,599 a question arose regarding the validity of the 

final sample in representing the initial sample.  Since the goal was to determine if educational 

outcomes could be better predicted with an integrated model rather than one using a single 

statistical technique, the representativeness of the sample was not critical.  The data was not 

intended to provide a probabilistic sample of the national student population from 1988 – 2000, 

and the final sample used in this research was not used to draw conclusions about the STEM vs. 
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other outcomes in the national population.  The final sample was large enough to reflect each 

potential educational outcome and permit model development/evaluation. 

3.3.6 Quantity of NELS:88/2000 Data  

A second area of concern was the quantity of data available for the final sample.  Each of the 

12,144 students was included in the final sample because they were selected for and responded to 

the final wave of data collection.  This final wave potentially included students that were not 

eligible for the base year, were added to the sample in freshening during F1 or F2, and/or did not 

respond during one of the previous follow ups.  Given these facts it was important to ascertain 

exactly how many of the 12,144 students participated in all five waves of data collection from 

the base year to the fourth follow up.  This was determined by examining the “universe” 

variables created to show the sample member status at various points in time during the study.  

F4UNIV1 indicates the sample members’ status in each of the five data collection waves from 

the base year to the fourth follow up.  F4UNI2A shows how the sample members entered the 

study including base year eligible, base year ineligible, first follow up freshening, or second 

follow up freshening.  F4UNI2B is the base year status of the sample members including 

eligible, ineligible, or not applicable (freshened later).  F4UNI2C is the status of the sample 

members in the first follow up.  F4UNI2D is the status of the sample members in the second 

follow up.  F4UNI2E is the status of the sample members in the third follow up.   

The first universe variable, F4UNIV1, contains a series of alphanumeric codes that 

describe the status of a sample member at each point during the data collection.  Table 3.2 

contains the codes used and their meaning.   
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Table 3.2  F4UNIV1 Codes and Definitions for Sample Members’ Status in Each Wave 

Data Collection Wave Potential 
Codes 

Code Definition 

Base Year (BY) BYE 
BYI 
BNA 

Base Year Eligible 
Base Year Ineligible 
Base Year Not Applicable 

First Follow Up (F1) F1A 
F1B 
F1D 
F1I 
F1X 
F1? 

F1FA 
F1FI 
F1F? 
1NA 

1st Follow up, In-school, in grade 
1st Follow up, In-school, out-of-grade 
1st Follow up, Dropout 
1st Follow up, Ineligible 
1st Follow up, Out of Scope 
1st Follow up, Status Unknown 
1st Follow up, Freshened, In school, in grade 
1st Follow up, Freshened, Ineligible 
1st Follow up, Freshened, Status Unknown 
1st Follow up Not Applicable 

Second Follow Up (F2) F2A 
F2B 
F2D 
F2? 

F2FA 

2nd Follow up, In-school, in grade 
2nd Follow up, In-school, out-of-grade 
2nd Follow up, Dropout 
2nd Follow up, Status Unknown 
2nd Follow up, Freshened, In school, in grade 

Third Follow Up (F3) F3H 
F3G 
F3P 
F3N 
F3? 

3rd Follow up, Received HS diploma 
3rd Follow up, Received GED/HS equivalent 
3rd Follow up, Pursuing GED/HS diploma 
3rd Follow up, Not pursuing GED/HS diploma 
3rd Follow up, Status Unknown  

Fourth Follow Up (F4) F4Q 4th Follow up Respondent 
 

The sample members that were surveyed in each of the five data collection waves were 

those coded as BYE, F1A/F1B/F1D, F2A/F2B/F2D, and F3H/F3G/F3P/F3N.  Since the 

NELS:88/2000 data only included those sample members that were surveyed in the fourth follow 

up, the final code was only F4Q.  The full set of status codes are shown in Table A.1 in  

Appendix A.  Table A.2 in Appendix A contains the frequency of all observed combinations of 

the codes above in the NELS:88/2000 data and how they were flagged as having participated in 

all five rounds or ever having been in drop out status.  Of the 12,144 sample members from the 

fourth follow up a total of 11,328 participated in all five waves of data collection.  This is more 
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than 93% of the final sample.  Of these sample members 1,488 indicated that they had at one 

time dropped out of high school.   

3.4 SELECTION OF NELS DATA FOR THE DISSERTATION 

The NELS dataset offers a very large volume of data including numerous demographic, 

attitudinal, performance, and outcome variables.  The extensive volume, its longitudinal nature, 

and the wealth of prior educational research utilizing NELS made the dataset very attractive for 

this purpose.   

Among the disadvantages of using the NELS:88 data was that the study was designed and 

data collected by other researchers whose purposes were different from the purpose of this 

research.  Complete records were not available for each of the over 25,000 students that initially 

participated.  The final sample contained just 12,144 students that were available and willing to 

be surveyed in final wave of data collection.  This represented a loss of over half the initial 

sample for reasons that could not be studied.   

Among the advantages of using the NELS:88 data was that the purpose of the study was 

to permit education researchers to examine then-current federal education policies and develop 

new policies.  Analysis was anticipated on three levels:  crosswave, cross-sectional, and cross-

cohort.  Examining the data to explore the relative significance of factors in affecting students’ 

leaving “the STEM track” was a legitimate application for this data.  The extensive nature of the 

data permitted the study of many factors that could not be captured in a narrower study.   

Of the longitudinal high school/college/career studies available from NCES, the 

NELS:88 data was the most recent study that was complete.  As previously discussed, data from 
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the Educational Longitudinal Study of 2002 was more current, but the study was not sufficiently 

advanced in time for this research.  Prior NCES longitudinal studies were complete, but they 

reflected much earlier trends in education.    

Most of the NELS data is publicly available free of charge to researchers.  Transcript 

data, standardized test scores, and other more sensitive information are available only through an 

application to use the restricted dataset rather than the free public use dataset.  An application to 

obtain the full dataset for this research was approved in 2003.  

3.5 TESTING SOFTWARE FOR ANALYSIS OF NELS DATA  

The ability to access the NELS data and perform analysis upon it was tested by using the 

accompanying interface software to export raw data for a set of variables in two ways.  First, 

specific variables were identified and exported to a file readable by SAS™.  The interface 

software produced a SAS program file that extracted the data for these variables from the dataset 

on the NELS:88 CD-ROM, performed standard descriptive statistics such as frequency and 

percentages, and created tables with this information.  Second, the same variables were selected 

and exported to a MS Access-readable file.  The interface software extracted the raw data for the 

selected variables and exported them as a comma separated text file.  The text file was then 

imported manually to a MS Access database. 

The variables chosen for this test were SEX, RACE, F2SEX, F3SEX, F3RACE, F4SEX, 

and F4RACE2.  These are categorical responses to questions about gender and race obtained at 

various time points throughout the NELS study.  The timing of the variables’ collection is shown 

in Table 3.3. 
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Table 3.3  Description of Variables Tested for Analytical Method 

Variable Description Timing 
SEX Composite gender of the student.  This variable is 

obtained from student questionnaire, school roster, 
interpretation of first name, or imputed randomly 
(in that order). 

Base Year (1988) 

RACE Composite race of the student.  Derived from a 
question about race on the student questionnaire. 

Base Year (1988) 

F2SEX Composite gender of the student.  This variable is 
based on the first follow-up (F1SEX) composite 
variable and supplemented by the second follow 
up survey.  If the data is missing in F1SEX and the 
second follow up the variable is obtained by 
imputing it from the students’ first names. 

2nd Follow up (1992) 

F3SEX Composite gender.  This variable is equal to 
F2SEX unless a correction was noted in 1994. 

3rd Follow up (1994) 

F3RACE Composite race.  This variable is equal to 
F2RACE unless a correction was noted in 1994. 

3rd Follow up (1994) 

F4SEX Gender of the student, derived from F2SEX 4th Follow up (2000) 
F4RACE2 New definition of race – primary choice which 

offers greater detail about Hispanic/Latino 
ethnicity. 

4th Follow up (2000) 

 

The SAS program was edited to insert code that calculated the mean and standard 

deviation of each variable selected.  Queries were written in the Access database to obtain the 

same statistics for these variables from the raw data.  The calculated statistics were not 

individually meaningful in this analysis since all the variable values were categorical.  These 

statistics were calculated solely to test whether or not the results obtained by analysis with SAS 

and Access were identical.  The results of this analysis for each variable are provided in Table 

3.4. 
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Table 3.4  Descriptive Statistics for Test Variables from SAS and Access 

Variable Value (Code) Freq. 

SAS Results Access 
Results 

Mean Std. 
Dev. 

Mean Std. 
Dev. 

SEX Male (1) 
Female (2) 
Legitimate skip/not in wave (9) 

5349
6035
760

2.0 1.9 2.0 1.9

RACE Asian/Pacific Islander (1) 
Hispanic (2) 
Black Not Hispanic (3) 
White Not Hispanic (4) 
Amer Ind/AK Native (5) 
Missing (8) 
Legitimate skip/not in wave (9) 

764
1444
1041
7908
117
110
760

3.8 1.7 3.8 1.7

F2SEX Male (1) 
Female (2) 

5782
6362

1.6 0.5 1.6 0.5

F3SEX Male (1) 
Female (2) 
Legitimate skip/F3 nonresp. (9) 

5710
6341

93

1.4 1.05 1.4 1.05

F3RACE Asian/Pacific Islander (1) 
Hispanic (2) 
Black Not Hispanic (3) 
White Not Hispanic (4) 
Native American (5) 
Missing (6) 
Legitimate skip/ F3 nonresp. (9) 

851
1610
1155
8264
161
10
93

3.3 1.5 3.3 1.5

F4SEX Male (1) 
Female (2) 

5782
6362

1.6 0.5 1.6 0.5

F4RACE2 Amer Ind or AK Native (1) 
Asian/Pacific Islander (2) 
Black Not Hispanic (3) 
White Not Hispanic (4) 
Hispanic or Latino (5) 
Missing (9) 

131
712

1120
8203
1687
291

3.6 2.1 3.6 2.1

 

The results of the SAS program applied to the overall dataset and the Access queries 

applied to raw data imported from the overall dataset were identical.  This supported the 

conclusion that editing the interface software-produced SAS code to analyze the data stored on 

the NELS CD-ROM produced the same results as performing the analysis on raw data extracted 
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from the CD-ROM.  Based on this finding, a decision was made to proceed by selecting 

variables of interest from the NELS dataset, using the interface software to generate the initial 

SAS code to access the NELS variables, and editing the code to conduct the statistical modeling.    

3.6 SELECTING AND PREPARING NELS VARIABLES FOR MODELING  

As part of experimenting with the NELS data several multivariate linear regression models were 

tested and confirmed to be inadequate in predicting the students that obtained a STEM degree 

versus some other outcome.  This outcome was expected since nearly all of the NELS data is 

categorical leading to violations in the standard assumptions relied upon in linear regression 

modeling. Logistic regression models were then developed to model the students’ educational 

outcome as a binary (STEM or other) result.   

The first attempts to create logistic regression models predicting a STEM vs. Not-STEM 

educational outcome using all of the potential variables for the students’ three waves of high 

school data (BY, F1, and F2) were unsuccessful in producing strong logistic regression models.  

The volume of data was so great that it overwhelmed the software’s modeling attempts.  A 

strategic decision was made to focus mainly on base year (BY) variables obtained when the 

students were in 8th grade since significant models at this stage would allow prediction at an 

earlier point in the students’ educational career.  In addition to the BY variables, a set of 

standardized test scores (SAT and ACT) obtained in the second follow-up (F2) were added as 

potential variables in the models.  Even with the focus mainly on the BY period the set of 

potential variables was extensive.  There were nearly 1,400 BY variables.   
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Difficulties were also encountered in modeling the outcomes based on so many variables 

with categorical values.  Most of the NELS:88 variables were categorical with numeric values 

representing different potential responses to the survey questions.  For example, the variable 

measuring a student’s overall reading proficiency quartile from the cognitive test in the base 

year, “BY2XRQ,” had seven potential values.  These values are members of the set [1, 2, 3, 4, 6, 

8, 9] and represented “Quartile 1 Low,” “Quartile 2,” “Quartile 3,” “Quartile 4 High,” 

“Legitimate Skip/Not in wave,” “Missing,” and “Test Not Completed,” respectively.  There were 

1,180 records out of the original 12,144 that had a value other than 1 through 4 for the BY2XRQ 

variable.  Since the potential values were not purely ordinal the variable’s utility for model-

fitting was hampered.   

Other categorical variables had dichotomous responses but were not truly binary since the 

potential values were [1, 2] as opposed to [0, 1].  For example, the variable for students’ sex, 

“F4SEX,” was originally coded as 1 for male and 2 for female.  Still other variables possessed a 

purely nominal set of potential values.  The variable “F4Race2” had potential values within the 

set [1, 2, 3, 4, 5, -9] representing American Indian/Alaska Native, Asian/Pacific Islander, Black - 

not Hispanic, White – not Hispanic, Hispanic/Latino, or Missing, respectively. 

The variables measuring standardized test scores for the SAT and ACT were categorical 

but resembled a series of mostly ordinal integer values.  For example, the variable “F2RACTE” 

provided a student’s ACT English score and included integer values of 6 through 36, 98, and 99.  

The first range of values represented an actual point score on the English portion of the ACT test 

while “98” indicated “Missing Data,” and “99” represented “Legitimate Skip/Not in wave.” 

The difficulties caused by the categorical nature of the data were addressed by reviewing 

each variable’s potential values and creating companion recoded variables that conveyed the 
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information in a strictly ordinal or binary fashion.  This required a process of examining the 

potential values and recoding non-ordinal values such as those for “Missing,” “Legitimate Skip,” 

etc. to a value of “0” indicating that no useful information was provided by that variable for that 

individual record.  Other responses were grouped to create stronger delineations between 

answers.  An example of this was a recoded variable for the father’s highest educational level 

that categorized the answer as either “College and above” or “No college degree.”   

Categorical variables with dichotomous potential values were recoded as needed to make 

them truly binary.  Thus, a binary recoded version of the variable F4SEX variable, “F4SEXrb,” 

was created with 0 for male and 1 for female.  In such a case, the reference or base case was set 

to 0.  Similarly, the nominal values for the variable measuring students’ race, “F4Race2” was 

recoded into a set of binary dummy variables in which the base case was Caucasian with a value 

of 0.  For these dummy variables “F4RACE2AI, ” “F4RACE2As,” “F4RACE2Bl,” and 

“F4RACE2Hi” the value was 1 if the student’s race was American Indian/Pacific Islander, 

Asian, African-American, or Hispanic, respectively.  Thus Caucasian students were represented 

by having each of these four dummy variables equal to 0.   

The complexity of reviewing each BY variable to develop a recoded version was deemed 

too time-consuming.  Another strategic decision was made to limit the set of potential variables 

to a more manageable size.  Prior research findings in the literature and experience gained in 

working with the dataset were used to select the smaller set of variables to be tested.  A set of 66 

variables out of the over 7,000 available was chosen.  These variables reflected aspects of 

students for which prior educational research had found significant differences existed between 

outcomes72.  These variables included basic demographic measures of sex, race, socioeconomic 

status, and family structure.  Performance variables indicating standardized test results, NELS 
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cognitive testing measures, subject competency ratings, and average grades were also included.  

Several attitudinal/behavioral variables were also selected.  These included measures of student 

and parental attitudes about education, individual subjects, degree aspirations, and student 

capabilities.  Behavioral variables examined how students spent time on homework, social 

activities, television watching, etc.  Once the recoding process was completed including creation 

of several dummy variables a set of 76 potential predictors was available for model development.  

The set of variables chosen for modeling purposes is listed in Table A.3 of Appendix A. 

 63 



4.0  DEFINING “STEM” 

4.1 INTRODUCTION 

In order to test the integrated model’s ability to predict between educational outcomes for 

different students it was first necessary to classify those outcomes.  In the course of the literature 

review it became clear that there was a lack of a consistent scheme for classifying college majors 

into STEM vs. other outcomes.  Developing a logical process for classifying majors became 

necessary and was an unanticipated benefit of the research.  The process started by considering 

the aspects of different majors that would or would not qualify them to be considered “STEM.”  

From there each major recognized by the NELS:88 dataset was given an initial categorization 

based on their general aspects.  The classifications were compared to those made by prior 

education researchers, and adjusted if a persuasive case had been made.  Then statistical tests 

were conducted to determine if a logistic regression model could significantly predict which 

students would select between two categories of majors.   

4.2 CLASSIFYING COLLEGE MAJORS AS STEM  

A critical aspect of this analysis is the ability to categorize students as having earned a STEM 

degree vs. another outcome based on their response to questions about their college major and 
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degrees earned.  The categorization of a major as STEM or not is based upon the verbal name of 

the major, the body of coursework that is presumed to accompany that major, and the anticipated 

career application of a degree in that field.   

The decision of which majors should be considered part of STEM is not consistently 

agreed upon.  There is no universally accepted list of majors that can be classified as STEM.  

Prior research of persistence in various degree programs often does not make it clear how STEM 

has been defined.  Many of the papers cited in the literature review have referred only to majors 

in “Science,” “Engineering,” “Mathematics,” or some combination of these fields.  In few cases 

was a comprehensive list of what was or was not included in the majors being studied provided.  

The literature is not sufficiently detailed to provide an agreed upon definition of STEM. 

4.3 PRIOR RESEARCH CLASSIFYING COLLEGE MAJORS 

Some prior researchers have assembled a set of majors that were classified as STEM or a subset 

of STEM based on their individual research interests and their interpretation of the relevant 

academic literature.  For example, Adelman73 created a list of majors that were classified as 

Science or Engineering for his 1998 analysis of the paths taken by students in their 

undergraduate careers in Engineering.  One of his key points in separating engineering from 

Science was that the practice of Engineering involved working closely with clients to satisfy 

their expectations.  This involved far more social interaction and required greater awareness of 

customer service issues than the practice of a bench science.  He indicated that it was important 

to understand that Science and Engineering students can be quite different.   
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Seymour and Hewitt74  defined a set of majors as Science/Mathematics/Engineering 

(SME) in their research.  For the purposes of this analysis SME and STEM are synonymous.  

The broadly defined majors considered to be STEM were Mathematics/Statistics, Physical 

Sciences, Biological sciences, Engineering, and Agriculture.  The broadly defined Non-STEM 

majors were Computer Science, Health, Business, Education, All Humanities & Fine Arts, Other 

Non-Technical, and Undecided.  Table B.1 in Appendix B lists the fields of study included in 

these majors by Seymour & Hewitt. 

Smyth75 classified certain majors as SME for his analysis of ethnic differences in 

graduation from selective colleges with a science degree.  This built upon earlier work in logistic 

regression analysis in graduation trends by race/ethnicity at selective colleges by Smyth and 

McArdle76.  Smyth analyzed data obtained from a set of colleges within the College and Beyond 

(C&B) database77.  This database was developed by the Andrew W. Mellon Foundation 

(AMF)78 and includes data from 34 colleges.  Smyth worked with a subset of the C&B 

colleges79 that were defined in his analysis as selective in their acceptance of students and 

possessing greater academic prestige.  Smyth obtained data from the Cooperative Institutional 

Research Program (CIRP) for 24 of the universities within the C&B database.  The other 

universities within the C&B database did not have corresponding CIRP data available.  Two of 

the CIRP variables concerning the students’ intended majors and how they rated the importance 

of contributing to the body of scientific knowledge were utilized in examining differences in 

SME graduation between Cacuasian and African-American students.  The majors that Smyth 

categorized as SME (STEM) for the purposes of his research are listed in Table B.2 of Appendix 

B. 
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Smyth referred to research by Astin and Astin80 and Hilton, Hsia, Solorzano, and 

Benton81 in his decision to exclude the social sciences and psychology from the STEM category.  

Prior research had found that very few of the students that declared an intention to major in these 

two areas switched to a major generally considered as STEM despite approximately half leaving 

their original majors.  This suggested that the students who selected the social sciences and 

psychology as a major tended to have less academic interests in the standard STEM majors than 

with other potential majors.  The accuracy of regression analyses that included majors in the 

social sciences to predict STEM graduation was much poorer than regression analyses excluding 

these majors.  When the social sciences and psychology were excluded from the STEM category, 

the predictive ability of the regression models was more accurate. 

The National Center for Education Statistics (NCES) collects data about the educational 

progress of students and makes several longitudinal datasets available to researchers.  However, 

NCES has not created an “official” definition of which majors constitute STEM.  Its function82 is 

to collect and disseminate statistics about education rather than to specifically classify portions 

of education for research purposes.   

The National Science Foundation (NSF) has created an official list of which majors it 

considers Science, Engineering, and Health related.  NSF issues annual figures of degrees earned 

at the bachelors, masters, and doctoral levels by major, gender, and citizenship within the United 

States83 through statistical reports available on its website.  NSF classifies majors as falling 

within the Science, Engineering, or Health fields.  An extensive taxonomy of fields of study has 

been developed by NSF to aid in the classification process.  The broad categories included under 

the Science heading are Agricultural sciences, Biological sciences, Computer sciences, 

Earth/atmospheric/ocean sciences, Mathematical sciences, Physical sciences, Psychology, and 
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Social sciences.  The Social sciences include fields such as Economics, Political science, 

Sociology, Linguistics, Anthropology, Archeology, Criminology, and Geography.  The 

Engineering category includes Aerospace engineering, Chemical engineering, Civil engineering, 

Electrical engineering, Industrial engineering, Mechanical engineering, Metallurgical/materials 

engineering, and a general Other set for smaller Engineering disciplines.  The Health fields 

include Medicine, Dentistry, Veterinary medicine, Health systems/service administration, 

Nursing, Pharmacy, and Rehabilitation/therapeutic services.   

4.4 EXPANSIVE VS. NARROW DEFINITION OF STEM 

There were several potential approaches to take in defining STEM within the context of this 

dissertation.  The first approach was to define STEM very narrowly along the lines used by 

Smyth and Seymour and Hewitt.  This approach limited STEM to the “hard” Sciences, the 

Engineering majors, and Mathematics while specifically excluding the Health fields, virtually all 

Technology majors, and the “soft” Sciences such as Psychology and Social Sciences.  Under this 

narrow definition, the “hard” Sciences, the Engineering majors, and Mathematics would be 

classified as STEM majors and every other college major would be classified as “Non-STEM.”   

A second approach was to develop a more expansive definition of STEM to reflect that 

many other majors involve significant quantitative coursework in order to prepare for demanding 

careers applying scientific knowledge, mathematical skills, and independent judgment.  Under an 

expanded definition of STEM many of the Health fields such as Medicine, Dentistry, advanced 

Nursing, etc. were included.  Psychology and Social Sciences were included as well since 

techniques such as statistical analysis are often used to evaluate data in these fields.  Many of the 
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Business majors would also be eligible since Business Administration, Business Finance, and 

Marketing may each involve significant analytical coursework to prepare students for applying 

quantitative techniques in making business decisions.   

One argument for adopting an expansive definition of STEM is that many students in 

majors other than Science, Technology, Engineering, and Mathematics take extensive 

coursework in Science and Mathematics/Statistics so they can apply their knowledge in later 

careers.  For example, an Accounting major requires a good knowledge of math.  Sophisticated 

financial models for predicting the results of investments are developed by people with degrees 

in Business Finance.  Researchers in the fields of Psychology and Sociology use complex 

statistical models to evaluate hypotheses.  Medical doctors, Dentists, and Veterinarians take 

extensive coursework in topics such as biology, chemistry, and math in order to apply this 

knowledge in treating their patients.  Nurses also require a strong background in biological 

science and chemistry. Medical professionals need strong skills to apply their technical, 

quantitative knowledge with independent judgment.  If these majors require extensive 

coursework in and apply the techniques of majors traditionally classified as STEM, there is a 

case to be made for considering them STEM majors.   

A counterargument in favor of not accepting an expanded definition of STEM is that the 

prediction of STEM vs. another outcome is enhanced by having sharp divisions between the 

outcomes.  By “fencing off” a narrow definition of STEM that is easy to enforce in the 

classification of student records, the accuracy of the predictive models may be improved.  

Including records from students with a degree in other fields may blur those divisions and 

weaken the predictive value of the model as was reported by Smyth84.   
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Part of the challenge in determining which of the other potential STEM majors should be 

included as STEM lies in evaluating the degree obtained.  A bachelor’s degree in Business 

Finance at a highly selective, prestigious university may involve significantly more demanding 

quantitative coursework than at a smaller university with more modest goals for its graduates.  

Even among highly selective, prestigious universities the body of quantitative coursework may 

vary making it harder to evaluate the suitability of a major for inclusion as STEM.   

Another argument against the more expanded definition of STEM lies in the way the 

bachelor’s degree is applied.  Engineers, scientists, and mathematicians learn quantitative 

material in order to apply it in a very creative way.  It is not enough for them to merely apply a 

difficult quantitative technique; they must understand the technique intimately so that it can be 

adapted independently as the situation warrants.  In contrast, an accountant uses math more as an 

off-the-shelf tool.  A medical doctor treating patients is applying his or her knowledge of 

biology, chemistry, and mathematical facts to prescribe an accepted standard treatment.  A 

medical data entry clerk would need to understand medical terminology and be able to use data 

entry technology to record medical findings, but the clerk would not be applying technical skills 

in an independent fashion.  It is indisputable that psychologists, medical doctors, and financial 

analysts may do groundbreaking research in their field, but this is not the focus of the vast 

majority of professionals in these fields.  Therefore, including degrees earned in these fields as 

STEM outcomes may cloud the analysis of differences between STEM and Non-STEM students.  

The blurring of differences would correspondingly degrade the ability to predict persistence in 

STEM.   

A third approach to defining STEM was to compromise between the narrow and 

expansive definitions.  Majors in the “hard” Sciences, Engineering, and Mathematics were 
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categorized as STEM.  Majors other than the “hard” Sciences, Engineering, and Mathematics 

that require extensive quantitative coursework were placed in a third category referred to as 

“STEM-Related.”  The remaining majors were categorized as Non-STEM.   

The advantage of this third approach was that it offered a way to reflect the advantages of 

both the narrow and expansive definitions of STEM.  The value of retaining the STEM-Related 

category as a separate outcome could be objectively determined by statistical analysis of 

potential significant differences between the students in each of the three categories.  If a 

predictive model could discriminate between the potential outcomes with acceptable accuracy 

then there would be merit in keeping three categories.  If there was insufficient accuracy in 

discrimination between two of the categories that would suggest the compromise STEM-Related 

category was not useful.  Prior research has clearly indicated that significant statistical 

differences exist between STEM and Non-STEM majors85, so it would be informative to test 

whether the proposed STEM-Related category was significantly different from STEM and/or 

Non-STEM.   

If analysis found the STEM-Related category to be significantly different from one of the 

main two categories and not significantly different from the other this would suggest the majors 

within it could be grouped with the latter category.  Then additional statistical tests would be 

appropriate to identify any significant differences between STEM + STEM-Related vs. Non-

STEM or STEM vs. Non-STEM + STEM-Related.  If analysis found the STEM-Related 

category to be significantly different from both of the main two categories then it would remain a 

separate grouping. 

The third approach was more complicated, but it offered the prospect of creating a 

definition of STEM that could be logically tested and evaluated for future applications.  
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Therefore, this approach to defining STEM was the one chosen for this research.  A proposed 

definition of STEM is as follows. 

“STEM is a path of study that involves significant coursework in 

advanced Science, Technology, Engineering, or Mathematics such that successful 

students acquire a comprehensive understanding of these subjects in order to 

extend and create knowledge.  A STEM career requires extensive quantitative 

skills that can be utilized creatively and with a high degree of independent 

authority.”    

4.5 CATEGORIZING COLLEGE MAJORS 

4.5.1 Selecting Majors for the Three Categories 

As previously discussed, the number of STEM degree-holders produced by American 

universities directly affects the nation’s competitive ability in the international marketplace.  

Producing more graduates with technical expertise to creatively apply their knowledge of 

Science, Engineering, and/or Mathematics is critical to the nation.  Since all the prior research 

into technical education subjects is consistent in classifying the “hard” Sciences, Engineering, 

and Mathematics as “STEM,” this narrow set of majors was automatically placed within the 

STEM category for this analysis.   

The Non-STEM category was applied to majors that clearly did not require extensive 

coursework in quantitative, technical subjects.  This category included the Fine Arts, English, 

and Other Humanities. 
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The STEM-Related category contains those majors that involve extensive quantitative 

coursework and represent a potential “gray” area between STEM and Non-STEM.  This included 

the Health professions (medicine, dentistry, veterinary, pharmacy, nursing, and clinical 

therapies), Agriculture, Forestry, Social Sciences, Psychology, Business (Accounting, Business 

Administration, Finance, Marketing, and Management), and technical fields such as Computer 

Programming.   

Table 4.1 lists the categorization of college majors within the NELS dataset by STEM, 

STEM-Related, and Non-STEM and compares these with the conclusions of Seymour & Hewitt, 

Smyth, and the National Science Foundation (NSF) classification of majors.  It should be noted 

that the categorization as STEM or Non-STEM shown for Seymour & Hewitt and Smyth are 

based on interpretations of their STEM major classifications in prior published works.  The 

categorizations shown for NSF are based on interpretations of their annual classification of 

programs into Science, Engineering, or other fields of study.   

 



Table 4.1  Comparison of STEM vs. Non-STEM Major Classification by Researcher 

NELS 88/00 Dataset  F4EMJ1D var = 
"Major/field of study code - 1" 

Gillian Nicholls 
 Seymour & Hewitt  Fred Smyth  Natl. Sci. Foundation  

STEM 
STEM-
Related 

Non-
STEM STEM 

Non-
STEM STEM 

Non-
STEM STEM 

Non-
STEM 

Agriculture  Y  Y   Y Y  
Agricultural science  Y  Y   Y Y  
Natural resources  Y   Y  Y Y  
Forestry  Y  Y   Y Y  
Architecture   Y  Y  Y  Y 
American civilization   Y  Y  Y Y  
Area studies   Y  Y  Y Y  
African-American studies   Y  Y  Y Y  
Ethnic studies-not Black/area studies   Y  Y  Y Y  
Accounting  Y   Y  Y  Y 
Business-finance  Y   Y  Y  Y 
Business-business/management systems  Y   Y  Y  Y 
Business-management/administration   Y  Y  Y  Y 
Business-secretarial   Y  Y  Y  Y 
Business-business support   Y  Y  Y  Y 
Business-marketing/distribution   Y  Y  Y  Y 
Journalism   Y  Y  Y  Y 
Communications   Y  Y  Y  Y 
Communication technology  Y   Y  Y  Y 
Computer programming  Y   Y Y  Y  
Data processing technology  Y   Y Y  Y  
Computer and information sciences Y    Y Y  Y  
Consumer services-cosmetology   Y  Y  Y  Y 
Consumer services-mortuary   Y  Y  Y  Y 
Education-early childhood   Y  Y  Y  Y 
Education-elementary   Y  Y  Y  Y 
Education-secondary   Y  Y  Y  Y 
Education-special   Y  Y  Y  Y 
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Table 4.1 (continued). 

NELS 88/00 Dataset  F4EMJ1D var = 
"Major/field of study code - 1" 

Gillian Nicholls 
 Seymour & Hewitt  Fred Smyth  Natl. Sci. Foundation  

STEM 
STEM-
Related 

Non-
STEM STEM 

Non-
STEM STEM 

Non-
STEM STEM 

Non-
STEM 

Education-physical education   Y  Y  Y  Y 
Education-other   Y  Y  Y  Y 
Engineering-electrical Y   Y  Y  Y  
Engineering-chemical Y   Y  Y  Y  
Engineering-civil Y   Y  Y  Y  
Engineering-mechanical Y   Y  Y  Y  
Engineering-all other Y   Y  Y  Y  
Engineering technology  Y  Y  Y  Y  
Spanish   Y  Y  Y  Y 
Foreign language-non-European   Y  Y  Y  Y 
Foreign language-European (not Spanish)   Y  Y  Y  Y 
Health/allied-dental/medical technology  Y   Y  Y  Y 
Health/allied-Therapy and mental health   Y  Y  Y  Y 
Health/physical education/recreation   Y  Y  Y  Y 
Nursing-nurse assisting   Y  Y  Y  Y 
Health/allied-general and other   Y  Y  Y  Y 
Nursing-nursing, post-RN  Y   Y  Y  Y 
Health-audiology  Y   Y  Y  Y 
Health-clinical health science  Y   Y  Y  Y 
Health-dentistry  Y   Y Y   Y 
Health-medicine  Y   Y Y   Y 
Health-veterinary medicine  Y   Y Y   Y 
Nursing-registered nurse  Y   Y  Y  Y 
Health-health/hospital Administration   Y  Y  Y  Y 
Health-public health   Y  Y  Y  Y 
Health-preparatory programs   Y  Y  Y  Y 
Health-dietetics  Y   Y  Y  Y 
Textiles   Y  Y  Y Y  
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Table 4.1 (continued). 

NELS 88/00 Dataset  F4EMJ1D var = 
"Major/field of study code - 1" 

Gillian Nicholls 
 Seymour & Hewitt  Fred Smyth  Natl. Sci. Foundation  

STEM 
STEM-
Related 

Non-
STEM STEM 

Non-
STEM STEM 

Non-
STEM STEM 

Non-
STEM 

Home economics-all other   Y  Y  Y  Y 
Health-chiropractic   Y  Y  Y  Y 
Health-pharmacy  Y   Y  Y  Y 
Health-optometry   Y  Y  Y  Y 
Vocational home economics-child care   Y  Y  Y  Y 
Vocational home economics-other   Y  Y  Y  Y 
Law-paralegal (includes pre-law)   Y  Y  Y  Y 
Law   Y  Y  Y  Y 
Letters-American/English literature   Y  Y  Y  Y 
Letters-creative/technical writing   Y  Y  Y  Y 
Letters-all other   Y  Y  Y  Y 
Liberal studies   Y  Y  Y  Y 
Library/archival science   Y  Y  Y  Y 
Biological science-zoology Y   Y  Y  Y  
Biological science-botany Y   Y  Y  Y  
Biological science-biochemistry Y   Y  Y  Y  
Biological science-all other Y   Y  Y  Y  
Mathematics-statistics Y   Y  Y  Y  
Mathematics-not statistics Y   Y  Y  Y  
Military sciences   Y  Y  Y  Y 
Women’s studies   Y  Y  Y Y  
Interdisciplinary-environmental studies  Y   Y  Y  Y 
Interdisciplinary-biopsychology  Y   Y  Y  Y 
Interdisciplinary-integrated science  Y   Y  Y  Y 
Interdisciplinary-all other   Y  Y  Y  Y 
Leisure studies   Y  Y  Y  Y 
Basic/personal skills   Y  Y  Y  Y 
Philosophy   Y  Y  Y  Y 
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Table 4.1 (continued). 

NELS 88/00 Dataset  F4EMJ1D var = 
"Major/field of study code - 1" 

Gillian Nicholls 
 Seymour & Hewitt  Fred Smyth  Natl. Sci. Foundation  

STEM 
STEM-
Related 

Non-
STEM STEM 

Non-
STEM STEM 

Non-
STEM STEM 

Non-
STEM 

Religious studies   Y  Y  Y  Y 
Clinical pastoral care   Y  Y  Y  Y 
Physical sciences-chemistry Y   Y  Y  Y  
Physical sciences-earth science Y   Y  Y  Y  
Physical sciences-physics Y   Y  Y  Y  
Physical sci-not chemistry/physics/earth Y   Y  Y  Y  
Psychology  Y   Y  Y Y  
Protective services   Y  Y  Y  Y 
Social work   Y  Y  Y  Y 
Public administration-not social work   Y  Y  Y Y  
Anthropology/archaeology  Y   Y  Y Y  
Economics   Y  Y  Y  Y 
Geography   Y  Y  Y Y  
History   Y  Y  Y  Y 
Sociology  Y   Y  Y Y  
Political science   Y  Y  Y Y  
International relations   Y  Y  Y Y  
City planning   Y  Y  Y Y  
Industrial arts-construction   Y  Y  Y  Y 
Mechanics-transportation   Y  Y  Y  Y 
Industrial arts-electronics  Y   Y  Y  Y 
Mechanics-all other   Y  Y  Y  Y 
Arts-commercial art   Y  Y  Y  Y 
Precision production   Y  Y  Y  Y 
Transportation-air   Y  Y  Y  Y 
Transportation-not air   Y  Y  Y  Y 
Arts-design   Y  Y  Y  Y 
Arts-speech/drama   Y  Y  Y  Y 
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Table 4.1 (continued). 

NELS 88/00 Dataset  F4EMJ1D var = 
"Major/field of study code - 1" 

Gillian Nicholls 
 Seymour & Hewitt  Fred Smyth  Natl. Sci. Foundation  

STEM 
STEM-
Related 

Non-
STEM STEM 

Non-
STEM STEM 

Non-
STEM STEM 

Non-
STEM 

Arts-film arts   Y  Y  Y  Y 
Arts-music   Y  Y  Y  Y 
Arts-visual/performing/fine   Y  Y  Y  Y 
Arts-crafts, folk art, artisanry   Y  Y  Y  Y 
No major   Y  Y  Y  Y 
{Don’t know}   Y  Y  Y  Y 
{Refused}   Y  Y  Y  Y 
{Legitimate skip}   Y  Y  Y  Y 
{Uncodeable}   Y  Y  Y  Y 
{Not reached-partial/abbrev interview};   Y  Y  Y  Y 

 



4.5.2 Creation of Additional Categories 

The three initial student outcome categories of STEM for those who earned at least a bachelor’s 

degree in a STEM topic, STEM-Related for those who earned at least a bachelor’s degree in a 

STEM-Related topic, and Non-STEM for those who earned at least a bachelor’s degree in a Non-

STEM topic applied to all students who completed a college degree.  These categories excluded 

any student who did not attend college, did not complete a degree, or achieved a less than four 

year degree.  These outcomes were also of interest since they represented a departure from the 

STEM degree track at some point during the students’ educational careers.  The model was 

initially conceptualized to predict between STEM and Non-STEM outcomes where STEM was 

defined narrowly and all other outcomes would be grouped together as Non-STEM.  This 

interpretation of STEM vs. Non-STEM as well as that of modeling STEM vs. Non-STEM solely 

based on students earning a college degree was the modeling approach generally taken in prior 

educational research.   

Thought was given to grouping the students with no degree or a less than 4-yr degree into 

a non-bachelor’s degree category, but the reasoning that led to the creation of the STEM-Related 

category ultimately led to a decision to keep the data more finely divided.  Better predictive 

accuracy is generally obtained when the differences between the two groups being compared are 

distinct.  It became clear that including other outcomes in the Non-STEM category might be 

misleading.  Having a group whose membership included a diverse group of students earning 

other college degrees, less than four year degrees, or no degree at all could lead to a model with 

less predictive accuracy.  Excluding the students who earned two-year degrees or none at all 

would preclude analysis of students who departed the STEM track at earlier points in the 
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educational process.  Instead, it was decided to sort the students into a set of categories that 

would consider the four other potential educational outcomes besides STEM   

Two additional categories were created as “Sub 4-yr Degree” for those who earned a 

college degree no higher than an Associates and “No Degree” for those who did not seek or did 

not complete a college degree.  These five categories result in ten individual models 

discriminating between the pairs of outcomes.  While STEM vs. STEM-Related, STEM vs. Non-

STEM, STEM vs. Sub 4-yr Degree, and STEM vs. No Degree were of greater interest initially, 

the other models provided some interesting insights into the relationships between outcomes.   

In addition, combinations of the five individual educational outcomes were created to 

allow for an even wider set of comparisons.  These included combining the students who earned 

a STEM-Related or Non-STEM degree into the “Other Degree” category for a STEM vs. Other 

Degree model.  Grouping the Sub 4-Yr Degree and No Degree outcomes into a “NonDegree” 

outcome allowed for comparisons with STEM and a Degree category comprising all students 

achieving a four year college degree.  Another model was created by grouping the four outcomes 

other than STEM together into “All Else” to predict STEM vs. All Else.    

4.5.3 Preparation of the Dataset 

A binary dummy variable, “All5,” was created to identify which of the 12,144 student records 

related to a student that had participated in all five waves of data collection.  This was 

determined from the five “universe” variables that as outlined in Section 3.3 communicated the 

status of each student during the BY and four follow-up waves of data collection.  There were 

11,328 students classified as responding in all five waves of data collection.   
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Once the definition of STEM for the purposes of this research had been created and the 

reasoning behind the other categories had been established, the dataset had to be adjusted 

accordingly.  Each record in the dataset needed to be assigned to one or more of the categories.  

This was done by creating new binary dummy variables that acted as yes/no flags in classifying 

the students into the five separate educational outcome categories and the various combination 

outcome categories.  The first and second degrees earned (F4EDGR1 and F4EDGR2) and the 

majors associated with those degrees (F4EMJ1D and F4EMJ2D) were examined.  The 

categorical values stored for the two majors were compared to ranges of values for the five 

separate educational outcome categories.  The two majors were classified as STEM, STEM-

Related, Non-STEM, Sub 4-Yr Degree, or No Degree.  Each degree was classified as having 

achieved less than a bachelor’s degree or having achieved at least a bachelor’s degree.  This 

resulted in a set of 10 binary dummy variables set to 0 or 1 depending on whether majors and 

degrees were “positive” for the circumstances described. 

A total of five additional binary dummy variables were created to classify the students’ 

overall as having a STEM, STEM-Related, Non-STEM, Sub 4-Yr Degree, or No Degree 

outcome.  The values were set by creating programming code that examined the variables for the 

first two majors and associated degrees.  If either major was in a STEM topic and the associated 

college degree was at least a bachelor’s, the student was categorized as STEM.  If at least a 

bachelor’s degree was earned in a major other than STEM, and at least one of them was in a 

STEM-Related topic, the student was categorized as STEM-Related.  If the student earned at 

least a bachelor’s degree in a subject other than STEM or STEM-Related then the outcome was 

categorized as Non-STEM.  If an associate’s degree or other less than 4-year degree was earned 

the outcome was classified as Sub 4-yr Degree.  If the student earned no college degree, the 
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outcome was classified as No Degree.  Through setting this series of five binary dummy 

variables to 1 for affirmative conditions, each student was classified as belonging to one of the 

five separated educational outcome categories.  Additional binary dummy variables were created 

to categorize records by the other groupings including 4 Year Degree, Non-4 Year Degree, Other 

Degree, and All Else.  The final outcome of the classification was as follows in Table 4.2.   

Table 4.2  Numbers of Students Classified by Group 

Category Number of 
Students 

Included in Other Combination Category 

All Else 
4 Yr 

Degree 
Non-4 Yr 
Degree 

Other 
Degree 

STEM 738 No Yes No No 
STEM-Related 1,077 Yes Yes No Yes 
Non-STEM 2,084 Yes Yes No Yes 
Sub 4-Yr Degree 1,732 Yes No Yes No 
No Degree 5,697 Yes No Yes No 
Total 11,328 10,590 3,899 7,429 3,161 

 

Once the records were categorized in this manner it became possible to model these 

outcomes as dependent variables resulting from a set of demographic, academic, attitudinal, and 

experiential covariates.  The various categories were grouped into pairs so that models were 

fitted to predict students as having a STEM vs. STEM-Related, STEM vs. All Else, STEM vs. 

Non-STEM, STEM vs. Other Degree, 4 Yr Degree vs. Non-4 Yr Degree, etc. outcome.   
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5.0  PHILOSOPHY OF THE INTEGRATED MODELING PROCESS 

5.1 INTRODUCTION 

The purpose of the model is to identify the significant quantitative and qualitative factors of the 

students’ secondary education and to utilize them to accurately project the students’ ultimate 

post-secondary educational outcome.  The model uses this set of variables as inputs to an 

integrated series of statistical methodologies.  The model’s output is a predicted probability that 

a student with a given multivariate vector remains on track to complete his/her post-secondary 

educational process with a STEM degree given that he/she has “survived” on the track past a 

specific point in time.  This permits the identification of those students for whom an intervention 

could be beneficial in terms of prompting them to consider a STEM degree.  The model’s value 

is assessed by comparing how accurately the predicted outcomes for a group of students matches 

the actual results and how this compares to the results obtained with standard logistic regression.   

5.2 METHODOLOGY 

The model combines logistic regression, survival analysis, Receiver Operating Characteristics 

(ROC) curve analysis, and sensitivity analysis.  The initial model phase is logistic regression 

analysis where the set of variables is tested to determine which variables are the most 
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consistently significant predictors of educational outcomes.  The results of the logistic regression 

portion serve as inputs to the survival analysis portion along with two additional variables: the 

actual educational outcomes of the students and the time point at which they left the path of 

achieving a STEM degree (if this occurred).  The output of the survival analysis phase is an 

estimated probability of a student with a given set of input variables remaining on the STEM 

path past a specific time point.  The probability estimates serve as inputs to the ROC curve 

methodology which visually depicts the tradeoff between correct predictions of a STEM path 

departure and correct predictions of not departing STEM for various cutoff values of the 

departure probability.  The last portion of the model is a sensitivity analysis module that guides 

the selection of the probability cutoff point to meet the analyst’s policy goals.  Sensitivity in this 

context refers to the model’s responsiveness to a small change in the input rather than to the 

probability of a correct STEM prediction.  The sensitivity analysis indicates the mix of STEM 

and Not STEM students that would be reached by a structured intervention program if the 

prediction cutoff point is altered.  It is envisioned that the potential intervention would be 

designed to increase the students’ interest in STEM and positively affect their likelihood of 

getting a STEM degree.  A diagram of the integrated model is shown in Figure 5.1.  

The model in Figure 5.1 enables identification of students who have the potential to 

achieve a STEM degree but might not seek to pursue one without encouragement or assistance.  

Integrating survival analysis provides the ability to specifically identify the time points in the 

educational process at which the probability of leaving the STEM track changes the most and 

which variables are significant predictors of the probability.  Knowing when students are likely 

to drop out of pursuing a STEM degree and which significant variables predict this enables 

policymakers to test strategies to address the loss of potential STEM degree-holders.  
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Combinations of changes to significant quantitative and qualitative factors in high school 

education can be explored with the model.  This provides a means to determine the sensitivity of 

the probability of STEM track departure to changes in variable values.   

 



Logistic 
Regression 
Analysis

Inputs:
NELS 88/00 Math &
Science scores in 8th

grade, HS grades, 
SAT/ACT Scores, SES,
Demographic var., 
Attitudinal var., etc.

Survival
Analysis w/ 
Regression

Output: Pr(STEM degree)
Identification of significant
Variables predicting STEM
Major & persistence to grad.

Receiver
Operating

Characteristics
Curve Analysis

Other Input:
STEM graduate
(yes/no)

Output:
Prob. of departing
STEM track based upon
Input “vector” profile

Sensitivity
Analysis

Other Input:
Intervention Policy
Goals

Output:
Prediction cutpoint selection
Potential Effect of
an Intervention Program

Other Input:
STEM track departure?
(yes/no) and time of leaving

Other Input:
Prediction cutpoint
choices

 

Figure 5.1  Integrated Sequential Statistical Technique Model 
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5.3 RESEARCH HYPOTHESIS 

The research hypothesis was that the integrated approach would produce more accurate results in 

terms of predicting which students get a STEM degree or not than a single standard statistical 

technique such as logistic regression.  The null hypothesis was that the integrated model would 

not prove to be a statistically significant improvement over the logistic regression approach 

alone.  In the process of testing this hypothesis there were a number of research theories that 

were also explored. 

5.4 RESEARCH QUESTIONS EXAMINED 

The research questions which arose through the development of the integrated model included 

the applicability of survival analysis techniques to predicting post-secondary educational 

achievement; the feasibility of integrating multiple statistical techniques for analyzing this type 

of complex problem; the determination as to whether some students had an inherently high 

probability of departing the STEM track while still in junior high school; the negative or positive 

impact of significant variables; the presence of key time points in the educational process when 

the probability of STEM track departure changed abruptly; and the ability to identify a narrow 

time window in which an intervention  could benefit a large number of students.   
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Question 1:  Can multiple statistical techniques such as logistic regression analysis, ROC curve 

analysis, and survival analysis be successfully integrated and applied to a complex problem such 

as the achievement of a STEM degree? 

This question was examined by fitting the models and determining if the predictive 

results of the models achieved acceptable accuracy.   

 

Question 2:  Can a set of variables that were measured for a group of students as they progress 

through high school and beyond be shown to affect the probability that a given student fails to 

“survive” to achieve a bachelor’s degree in Science, Technology, Engineering, or Mathematics 

(STEM)?   

These variables included: 

• measures of academic skill in math, science, and English   

• measures of academic self-confidence such as self-ratings of ability in different subjects  

• measures of personal attitudes such as the student’s school/career aspirations 

• measures of academic focus such as hours per week on homework by subject, how many 

hours the student works per week, how many more advanced classes the student has 

taken, and what discussions the student has had with others regarding school 

• measures of demography, socioeconomic status (SES), family structure, and language 

 

This question was explored by determining if the variables which were found to be 

significant in prior research were statistically significant predictors in the logistic regression and 

integrated models developed in this dissertation.   
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Question 3:  Will Survival Analysis of the NELS:88 data reveal that the probability of a student 

achieving a STEM degree differ over time for students in different outcome groups?   

This question was studied by plotting the hazard curves over time for the students in 

different departure type classes to examine how the probability of a departing the STEM track at 

a given time varied by type and whether the different probability curve plots overlapped or 

diverged at key time points.   

 

Question 4:  Are there key time points in the educational process where distinct decreases or 

slight increases in the probability of achieving a STEM degree occur as students developed 

academically?  If so, are these key time points at which students were most likely to depart the 

STEM track sufficiently common for different student profiles that they could suggest the timing 

for delivery of pro-STEM intervention?  It is possible the analysis could reveal that many 

students had a relatively low probability of surviving to achieve a STEM degree as they were 

measured in 10th grade due to lack of interest in the material or very poor academic preparation.  

It is also possible that individual students may have had a relatively low probability of surviving 

to achieve a STEM degree prior to 8th grade, but the study could not assess that since data 

collection started with the base year in 8th grade.   

 

This question was evaluated by examining the hazard curves to identify any points in 

time at which the slopes of the curves changed dramatically.   
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5.5 EVALUATION OF THE LOGISTIC AND INTEGRATED MODELS 

The evaluation plan for the models involved applying the models created with the “fit” data to 

the 30% of the records withheld as the “test” data to determine how accurate the predictions of 

the test data were when compared to the known outcomes.  The logistic regression model was 

further tested by repeating the process multiple times in a cross-validation for two of the 

outcome pair models.  The initial data for construction of the logistic regression model was 

randomly selected multiple times with different models built each time.  The evaluation of the 

retained data sets was conducted and the results of the logistic regression models were compared 

to one another repetitively.  For example, when predicting between a STEM degree and all other 

possible educational outcomes (“All Else”) there were 11 separate samples drawn to create and 

test the logistic regression model.  The same was done when predicting between a STEM and 

STEM-related educational outcome.  This was done to determine if the modeling was sensitive 

to either the diversity of the All Else group or the lack of diversity between the STEM and 

STEM-Related groups.   

Once the stability of the STEM vs. All Else logistic regression model was established it 

was compared to the integrated model.  The results obtained for the test data from each model 

were examined to determine if the number of correct predictions was acceptable.  The last step 

was to evaluate how the accuracy of the integrated model compared to that of the logistic 

regression model.  As the standard technique, the logistic regression model predictions were 

treated as the “expected” results and the integrated model predictions were treated as the 

“observed” results.  Classification tables that quantified the number of correct and incorrect 

predictions were prepared for each model and compared with chi-square testing to determine if 

statistically significant differences were found.  The number of true and false STEM predictions 
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by random sample for each model were then compared and analyzed with t-tests.  Again, the null 

hypothesis was that the integrated model offered no significant advantage over the standard 

logistic regression model. 
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6.0  THE MODEL  

6.1 INTRODUCTION 

Two separate models were designed: one to predict outcomes using a single standard statistical 

method (logistic regression) and one to predict outcomes using an integrated model with logistic 

regression results input into a survival analysis model.  The logistic regression model was 

created first to set a standard of predictive accuracy for comparison to the overall integrated 

model.  The survival analysis module inputs were the variables found to be significant by prior 

research, the logistic regression model’s estimated probability of a STEM outcome for each 

student, the manner in which students departed the STEM track, and the time at which the 

students left STEM.  The output of the survival analysis module was the probability of a given 

student remaining on the STEM track past a specific point in time given that they had survived to 

that point.  The survival analysis probability of departure is an input to the receiver operating 

characteristics (ROC) curve analysis to depict the tradeoff between correct and incorrect 

predictions.  The last module is the sensitivity analysis which assesses the effects on the correct 

and incorrect predictions if the prediction probability threshold is altered.  It also explores the 

number of students that would be targeted for an intervention program to either encourage 

students to consider STEM and/or assist them in strengthening their academic capabilities based 

upon the threshold probability cutoff. 
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6.2 LOGISTIC REGRESSION ANALYSIS MODULE 

Once created and tested, the logistic regression model became a module within the integrated 

model.  Separate multivariate logistic regression models were constructed to predict between the 

various pairs of educational outcomes.  The models were fitted using SAS with a large set of 

potential variables and the Stepwise selection method with an alpha (α) error level threshold of 

0.05 to enter or leave.  This variable selection method ensured that SAS constructed the model 

by first identifying the most useful predictor with a chi-square p-value of 0.05 or less.  Once this 

variable had been entered into the model, SAS continued choosing potential variables in the 

same fashion with the provision that if a variable’s entry caused a prior entrant’s individual p-

value to increase above 0.05 it was automatically removed from the model.  SAS stopped after 

considering all the potential variables for inclusion or reaching a user-defined limitation on the 

number of potential cycles.  Using the Stepwise selection method to test potential variables for 

inclusion in the model was far more efficient in considering a large set of variables.  It would 

have been impractical to test such a large group of potential variables by constructing separate 

models with different fixed combinations of variables.  The set of variables considered for 

model-fitting was chosen after considering the results of prior education research.  Factors that 

previous research had found to be significant were compared to the NELS dataset to identify 

comparable variables. 

Stepwise multivariate logistic regression was used to create models predicting a 

particular outcome between two possibilities such as STEM vs. All Else, STEM vs. STEM-

Related, STEM vs. Non-STEM, STEM vs. Other Degree, Degree vs. Non-Degree, etc.  The 

models were fitted with randomly selected sub-samples of students that were constructed to 

proportionally represent their numbers in the entire sample with those outcomes.  Thus, a model 

 93 



to predict between STEM and STEM-Related was fitted using records randomly drawn from the 

sets of STEM and STEM-Related students.  The sub-samples were stratified by the outcome of 

interest with 70% of the total records from each stratum randomly selected for the model fitting.  

For example, in modeling STEM vs. All Else the total number of student records was 11,328 of 

which 738 obtained a STEM degree.  These records were stratified by STEM = 1 for STEM 

students and STEM = 0 for all other outcomes.  Of the 7,931 records approximately 70% of the 

STEM (517 records) and All Else students (7,414 records) were randomly selected for the model 

fitting.   

Subsequently, each of the logistic regression models were validated by taking the model 

developed and applying it to predicting the outcome for the remaining 30% of the records from 

each stratum.  Thus in the STEM vs. All Else case, the records of the remaining 221 STEM 

students and 3,176 of the All Else students were used to validate the model created with the 

original 70% of the total records.  A Receiver Operating Characteristics (ROC) curve was then 

created to measure the impact on correct/incorrect predictions of STEM based on the cutpoint in 

the probability of STEM estimated.  These curves plotted the probability of a correct STEM 

prediction (sensitivity) vs. the probability of an incorrect STEM prediction (1 – specificity).   

The random sub-samples by stratum were created by a procedure within SAS that utilizes 

a random number generator.  The procedure uses a “seed” number in combination with the 

random number generator to select sample members.  The seed number is provided with the SAS 

output so that the user can replicate the sample by deliberately opting to use that seed number 

again.  In this research, SAS was permitted to randomly choose a seed number for each of the 

two-outcome models fitted.  However, once the seed number was created for an individual 

outcome pair model, it was used again in the validation process as well as subsequent model 
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fitting exercises for the same pair of outcomes.  There were several reasons for this.  First, in 

order to properly validate a model, it was essential that the records used to create the model were 

not included in the sub-sample chosen to test it.  So if a seed number was used to create the sub-

sample for model fitting, the same seed number was used to identify the records not previously 

used for the fitting process in order to validate it.  Second, SAS was allowed to randomly create 

the seed numbers for each two-outcome pair to avoid unconsciously prejudicing the results by 

manually selecting seed numbers in advance.  In addition, using the same seed number for later 

modeling of an individual two-outcome pair allowed the user to directly compare the predictive 

accuracy of the different models.  For example, using the same seed number to generate model 

fitting/validating samples of STEM vs. All Else made it possible to directly compare the 

accuracy in predicting STEM when additional variables were included in the potential set of 

predictors.   

In two cases that will be discussed in greater detail later, multiple seed numbers were 

generated to create different random sub-samples to fit models for the same two-outcome pair.  

This was done to determine the sensitivity of particular models to the sub-samples that were 

chosen.  11 different seed numbers were used to determine the consistency of significant 

predictor variables across the models fitted with the 11 random sub-samples.   

The initial models were created using all of the 76 potential predictor variables developed 

through the sifting and recoding process.  This was a much larger set of potential predictors than 

utilized in prior educational research modeling.  While prior research has examined large sets of 

variables for significant differences between outcomes, the prior predictive models have 

generally used a much smaller set of predictors.  In some of these prior attempts at predictive 
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modeling interaction terms have been considered, but these were limited to potential interactions 

of sex and race/ethnicity.   

The potential set of two-way interaction terms for the 76 recoded variables was very 

large.  Even after excluding meaningless interactions between related dummy variables such as 

F2RACE2As and F2RACE2Hi, there were still over 2,800 potential terms.  Including all these 

terms as potential predictor variables would have been impractical.  Instead, a sensible way of 

exploring the potential impact of interactions without overwhelming the models was sought.  The 

compromise was to first create models using the set of 76 variables, identify which were 

significant predictors, and then to test new models including interaction terms for which both 

halves were variables found to be significant in the first round of model fitting.  For example, if 

an initial model found that F4SEXrb and F2RACE2As were significant then the interaction term 

between F4SEXrb and F2RACE2As was tested in the model considering potential two-way 

interaction terms.  Depending on the number of significant variables in the first round, the 

modeling with interactions considered included between 145 – 800 additional predictor 

variables.   

After examining models including the potential recoded BY variables and standardized 

test scores from subsections of the SAT and ACT tests, it was decided to explore models using 

just the BY variables.  The reason for doing so was to determine if acceptable predictive 

accuracy could be obtained using just the BY variables from 8th grade and ignoring the 

standardized test scores obtained in the second follow up (generally 12th grade).  If acceptable 

accuracy could be achieved with these models it would bode well for identifying potential STEM 

students at a much earlier point in their educational careers when the probability of a successful 

intervention to encourage STEM would be higher.  These “BY-only” models also featured 
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selected two-way interaction term variables for which both halves were BY variables previously 

found to be significant for a specific outcome pair.   

For the sake of academic curiosity, additional models were considered for some of the 

other two-pair outcomes.  Once a set of models had been created using the Stepwise selection 

method for BY plus standardized test score variables; BY variables, standardized test score 

variables, and selected interaction terms; and BY variables with selected BY interaction terms 

the models were re-fit using the fixed selection method with just the variables previously found 

to be significant for the relevant models.  For example, if a model using stepwise selection had 

identified F4SEX, F2RACE2As, and overall BY mathematics proficiency as the only significant 

predictors, the model was then refit using each of those variables and only those variables.   

6.3 SURVIVAL ANALYSIS MODULE 

There were two alternative approaches in defining the characteristics of the survival analysis 

module.  One alternative in designing the survival analysis module was to examine the survival 

of students on the STEM track.  In this design alternative, the event of interest was the point at 

which students depart the STEM track.  This departure could have occurred at any point along 

the educational progression that began in 1988 with the 8th grade and continued until the study 

concluded in 2000.  The hazard function in this sense was the conditional failure rate or the 

“approximate” probability that a student with a given profile at a point in time departed the 

STEM track in the next moment.  What was measured was the time to failure with departing the 

STEM track considered failure.   
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There are a number of ways in which students departed the STEM track.  For example, 

students departed the track by dropping out of high school, by not continuing on to college, by 

dropping out of college, by switching out of a STEM major, by graduating college with a degree 

in a subject other than STEM, or by pursuing a college degree without completing it by the 

study’s end.  Other theoretical departures included dying or declining to participate further in the 

study, but these departure types were eliminated by the design of the F4 wave of data collection.  

Students were purged from the study if they died, were not selected for further sample inclusion, 

could not be located for the fourth follow up, or declined to participate in the fourth follow up.  

The 12,144 records in the NELS:88/2000 dataset reflected all students that were chosen for 

inclusion in F4 and responded to the survey.  Students who actually achieved a STEM degree 

never experienced the event of interest because they did not depart the STEM track.   

In Survival Analysis if an event of interest is known to have taken place within certain 

time periods as opposed to an exact point in time, then the data is referred to as “censored.”  

Censoring86 is categorized by the relationship of the time period in which the event occurred and 

the time period of the data collection.  If a subject does not experience the event of interest prior 

to the study’s end date, then the data is said to be “right censored.”  The term means that if the 

event of interest occurred, it had to have happened after the study’s data collection ended.  This 

was the case for students that were still pursuing a STEM degree at the time the study ended.  

Since the NELS study ended in 2000, the records for students who had not yet experienced the 

event of dropping out of STEM were right censored as of December 31, 2000.  Another class of 

right censoring is “competing risks” censoring in which some subjects experience the event of 

interest for different reasons.  For example, students departed the STEM track by never 

graduating from high school or by graduating from college with a major other than STEM.  
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These two departure scenarios were competing risks and each was of interest.  “Random 

censoring” is a special case of competing risks in which a student experiences a competing risk 

that precludes further participation.  A student that graduated with a STEM degree was classified 

as randomly right censored because the competing “risk” of graduating with a STEM degree 

made it impossible for the person to later experience the event of interest: departing the STEM 

track.   

Another censoring category is “interval censoring.”  This is utilized when the event of 

interest is known to have occurred within a fixed time interval, but the exact time cannot be 

precisely determined.  This was the case for students who dropped out of high school or college 

by a certain point but for whom the exact departure date was unknown.  The NELS study was 

designed to try to elicit information to gauge when students dropped out of high school or 

stopped attending college; however, it was not always possible to obtain this information.  For 

some of the records, the student’s educational status changed within a time interval and the exact 

time was not determinable.  

A second alternative was to frame the analysis to examine the survival of students 

without a STEM degree.  Under this design the event of interest was the point at which students 

acquired a STEM degree.  Although this might have been easier in terms of identifying the 

occurrence of the event of interest and when it happened, there were a relatively small number of 

students that experienced this outcome.  A total of 738 students out of the 11,328 classified as 

having responded in all five waves of the data collection were classified as having earned a 

STEM degree.  A model framed this way would have 738 instances of the event of interest 

occurring and 10,590 cases of the data being censored at the study’s conclusion.  This model 

formulation had no way to distinguish between the various groups of students who were 
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censored since technically, even a person who failed to finish high school by the study’s 

conclusion could have gone on later in life to earn an engineering degree.  Losing the ability to 

distinguish between how students departed the track would have weakened the predictive utility 

of the model and sacrificed the chance to study students’ decisions to leave STEM. 

After considering both alternatives, a decision was made to model the data in terms of 

time to STEM track departure.  This appeared to be the best way to take advantage of the 

dataset’s size, broad knowledge about the subjects, and range of potential competing risks.   

6.3.1 Classification of Students 

The status of the students throughout the study was determined by examining several sets of 

variables.  The variables F4UNIV1 and F4UNI2A through F4UNI2E indicate the overall status 

of the student’s participation in the study as it was known during the fourth follow-up (F4).  This 

subset of variables was referred to by the NELS:88 designers as the “universe” variables since 

they described the students’ status through the study.  Other sets of variables were used to 

establish departures from the STEM track, estimate the event occurrence time, and identify the 

types of departure or censoring that occurred.  The description of individual variables used for 

classification purposes is found in Table A.4 of Appendix A.  The methods for analyzing the 

variables to determine how to classify the records are discussed in Appendix C.  Examples of the 

SAS code developed for the classification process are provided in Appendix D. 

The classification of students by STEM track departure type utilized the post secondary 

educational transcript (PETS) dataset as well as the main restricted dataset for the NELS dataset 

that was utilized for the logistic regression analysis.  The PETS data was contained on the N0T 

CD-ROM for the NELS dataset while the main restricted data was contained on the N0R CD-
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ROM.  The PETS data contained additional variables related to the timing and nature of 

educational events from high school through college attendance that were necessary for 

obtaining the STEM departure time event data needed for survival analysis.  The use of this data 

allowed the student outcomes to be more precisely identified so that students earlier classified as 

having No Degree could be further sorted by whether they had graduated high school or ever 

attended college.   

The process of sorting the students by STEM track departure type resulted in shifting 

some students between categories as degrees that were reported were in some cases not 

confirmed by the transcript data.  In several other cases, students that had not reported four year 

degrees were found to have earned them.  Each student’s record was tested by SAS code 

designed to consult both the original dataset and the PETS dataset to ascertain the final 

educational outcome.  If students reported degrees but did not have valid dates of graduation in 

one dataset, but they had valid dates in the second dataset they were categorized as having 

earned a degree.  If the information from the two datasets conflicted in a way that could not be 

resolved, the records were excluded from further analysis.  This was the case for 200 of the 

11,328 records so the data used for the survival analysis module contained 11,128 records.  

Logistic regression models of STEM vs. All Else were fitted with the original classification of 

the dataset and the revised classification using the PETS variables applied to all 11,328 records.  

The results of the models were very similar with no significant effect on the model from 

changing the classification scheme of the records.   

The final numbers of students in each category were very similar between the original 

and revised classification schemes.  Some of the records did switch from one category to another 

with a net change in the numbers that was small.  For example, 3 students that had been 
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classified as STEM for the initial logistic regression analysis were excluded from the revised 

dataset classification because their STEM degree could not be verified from the PETS data.  

Meanwhile, 1 student that was originally classified as No Degree was found to have multiple 

STEM degrees based on the PETS data and was recognized as STEM for the survival analysis.  

The net change in STEM students was a decrease of 2 students from 738 to 736.  Of the 200 

excluded records 177 were previously No Degree students, 17 were previously Sub 4 Yr Degree 

students, 3 were previously classified as Non-STEM students, and the remaining 3 were formerly 

considered STEM students as discussed above.    

6.3.2 STEM Track Departure Types 

6.3.2.1 Drop Out of High School 

A series of variables that record drop out status and history allowed the analyst to get a sense of 

when a student departed the STEM track by dropping out of high school.  These include the 

periodic drop out status variables F1DOSTAT, F2DOSTAT, and F2F1DOST as well as variables 

that measured whether a student reported having ever dropped out of high school in the past 

(F2EVDOST and F3EVDOST).  Note that the first two characters of these variable names refer 

to the wave of data collection in which they were obtained:  F1 for first follow up (1990), F2 for 

second follow up (1992), and F3 for third follow up (1994).  The variables F1D7MNTH and 

F1D7YEAR indicate the last date the student reported having attended school as of the first 

follow up.  The variables F2D6M and F2D6Y indicate the date the student reported having 

attended high school as of the second follow up.  These variables were used to estimate the date 

at which the student dropped out of high school.  If the student was reported to have dropped out 

but no date was given, the date was imputed to be the start of 1991 and what would probably 
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have been 11th grade.  The reasoning for this decision was that it lay within the first and second 

follow ups and prior research87 indicates that the risk of dropping out rises sharply to peak in the 

10th grade and then decline in the 11th grade with a further decline in the 12th grade.  Thus 

imputing a drop out date in the middle of the 11th grade was deemed a sensible way of 

accounting for the missing data.  Of the 567 students classified as high school dropouts there 

were 122 (21.52%) students for whom the departure time was imputed.   

It was decided that students who left the STEM track by dropping out of high school 

permanently would be treated as remaining on the track until their final drop out date.  This 

meant that if a student dropped out more than once only the final date was utilized.  The design 

of this educational model has the potential for repeated events of interest.  Unlike a survival 

analysis model in which the event of interest is the subject’s death, the event of dropping out of 

school could occur more than once.  A student could drop out, return to school, drop out again, 

and either return or not at a later point.   

There are different ways of handling repeated events88.  One approach would be to ignore 

the repeated nature and to use either the first or final occurrence as the sole time the event 

occurred.  Another approach would be to create two records for these students and treat each 

drop out as a separate instance.  In this case the time to event could be measured as the time from 

the study’s start to the time of dropping out in each occurrence or the second instance could be 

assigned a start time corresponding to the student’s estimated return to school date.  However, 

this approach could present problems since creating separate records for student drop outs with 

multiple returns would introduce correlation into the dataset.   

While this phenomenon is undoubtedly interesting, exploring it within this model would 

have greatly complicated the analysis.  Examination of the 11,328 students that participated in all 
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five waves revealed that 84 students dropped out more than once.  Of the students that dropped 

out more than once 47 students returned after the second instance of dropping out.  This 

represents only 0.0041% of the total sample.  Given the small population size experiencing this 

repeated event, the additional model complexity was deemed unwarranted.  It should be noted 

that the repeated drop outs could have resulted from many reasons including illness, family 

emergencies, etc.  An examination of the repeated drop out phenomenon would be better suited 

to a study designed to focus exclusively on high school students and their reasons for dropping 

out vs. staying in school.  In this analysis, repeated events were handled by using the final 

dropout as the time the student departed the STEM track.   

6.3.2.2 Conclude Education at High School 

In this scenario, the student completes high school by earning a diploma, passing a General 

Educational Development (GED) test, or achieving some alternative certificate; and decides not 

to pursue a college education.  The NELS dataset contains variables that indicate high school 

completion, type of completion, date of completion, and whether the student reported ever 

pursuing post-secondary education or not.  If the student did not pursue post-secondary education 

then the STEM track departure was deemed to have occurred at the point of graduation from 

high school.  Two variables were utilized in determining the high school graduation date.  The 

main N0R restricted dataset provided the variable F4HSGRDT to capture this date and the PETS 

N0T dataset provided the PETSHSDT date.  In most cases the dates were identical although 

F4HSGRDT was formatted as YYYYMM and PETSHSDT was formatted as YYYY.mm.  The 

“mm” portion of the format was a decimal version of the month.  For the sake of consistency, the 

PETSHSDT variable was used to determine the students’ high school graduation date.  There 
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were 2,369 students that were identified as having graduated high school and not pursued a 

college degree.   

6.3.2.3 Drop Out of College 

This type of departure was verified through variables indicating college attendance during a 

specific year and when the student left college.  As with the high school drop out scenario, there 

could be repeated instances of this event.  Students might have left one college and transferred to 

another.  They might have dropped out of college for a period and then returned.    

This was addressed by examining the variables for post-secondary attendance and 

breaking these cases into sub-outcome categories.  If a degree was ultimately earned the student 

was not classified as a college dropout.  If a student’s records indicated some post-secondary 

education at one or more institutions without ever earning a degree, then the last date of college 

attendance was considered the point at which the student departed the STEM track.  The PSEND 

variable from the transcript dataset indicated the latest date at which the student was enrolled in a 

post-secondary educational institution.  This final date of college attendance was considered the 

departure time.  There were 2,164 students that were determined to have graduated high school 

and attended a post-secondary institution without achieving any degree.   

6.3.2.4 Incomplete College Degree 

Students in this category were still enrolled in college when the study ended and had not yet 

earned any degree.  These students may have taken longer than normal to start a college degree 

or they may have taken a much longer than normal time once in college.  An example would be a 

student who attended college part time and was not able to complete the degree prior to the 

study’s end.  Another would be a student who sought employment after high school graduation 
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and then began attending college several years later.  This scenario was established through the 

college attendance, degree earned, major declared, and graduation date variables.  In addition, 

the dataset offers a variable that indicates whether a student still in college at the time of the 

study’s conclusion was expected to complete the degree within a year.  The censoring date was 

the end of the study.  The study ended on December 31, 2000 so the departure date was set to 

2001.00.  This was a case of “right censoring.”  There were 433 students still enrolled in a post-

secondary educational institution at the time the study ended who had not previously earned any 

sort of degree.  No distinction was made between the types of degree being sought when the 

study ended.  

6.3.2.5 Graduated College with a Sub 4 Year Degree 

Students in this category departed the STEM track by earning a certificate or Associates Degree 

credential.  As with the four year degree categories, the departure time was determined by the 

date the degree was awarded or the last date the student was enrolled in the post-secondary 

educational institution.  If the date of graduation with the degree was not provided, it was 

imputed from the last date of enrollment.  There were 1,703 students identified as departing the 

STEM track by earning a less than four year degree.    

6.3.2.6 Graduate College with Other 4 Year Degree 

Students that completed their education by earning a degree other than STEM were identified by 

the combination of variables indicating a degree was earned, the major declared for the degree, 

and the date of graduation.  Under this scenario, the students departed the STEM track upon their 

college graduation with a bachelor’s degree other than STEM.  For the purposes of the survival 

analysis module, STEM-Related and Non-STEM degrees were handled identically.  There were 
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3,156 students classified as having departed the STEM track by earning a four year degree in a 

subject other than STEM. 

If a student attempted a STEM degree but switched his or her major prior to graduation, 

then ideally the departure date would have been the time at which the major changed rather than 

the date of graduation with a different degree.  However, this date was difficult to identify and 

subject to interval censoring.  Therefore, students in this category were classified simply as 

earning a different degree and the departure time was set to their graduation date. 

Note, if a student earned a different degree and then later achieved a STEM degree, then 

the earlier degree was no longer considered a departure from the STEM track.  Instead the 

student was classified as having a STEM outcome and not having departed the STEM track.   

6.3.2.7 Obtain a STEM Degree 

If a student completed a college degree in a STEM topic, then there was no departure from the 

STEM track.  This was a random competing risk in which the student could no longer experience 

the event of interest.  This outcome was verified by the variables for degree earned, degree 

major, and the date of graduation.  In this case, the student’s record was randomly censored as of 

the date of graduation with a STEM degree.  There were 736 students classified as having earned 

a STEM degree.   

A summary of the different types of STEM track departures and how they were handled 

in the model is detailed in Table 6.1.   
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Table 6.1  Determining the Time of Departure by Departure Type 

STEM Track Departure Type Number of 
Students 

Time of STEM Track Departure 

Drop Out of High School 567 Final date enrolled in high school or 
1991 if missing data 

Conclude Education at High 
School 

2,369 High School Graduation date 

Drop out of College 2,164 Date of last post-secondary 
educational enrollment 

Incomplete Degree 433 Date of study end: December 31, 
2000  

Graduate College with a Sub 4 
Year Degree 

1,703 Date of college graduation 

Graduate College with Other 4 
Year Degree 

3,156 Date of college graduation 

Obtain a STEM Degree 736 Date of graduation with STEM 
degree 

Total 11,128  
 

Table 6.2 compares the number of students in each category used for the logistic 

regression and survival analysis modules.  The categories include those that represent 

combinations of some of the individual outcomes.  For example, the Other Degree category 

includes the STEM-Related and Non-STEM students; the 4 Year Degree category includes the 

STEM, STEM-Related, and Non-STEM students; the Non 4 Year Degree category includes the 

No Degree and Sub 4 Year Degree students; and All Else reflects all the students that did not 

earn a STEM degree.   
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Table 6.2  Comparison of Records Sorting between Logistic Regression and Survival Analysis 

Category Logistic Regression 
Analysis 

Survival Analysis 

STEM 738 736 
STEM-Rel 1,077 1,113 
Non-STEM 2,084 2,043 
Sub 4 Yr Deg 1,732 1,703 
Other Degree 3,161 3,156 
Degree (4 yr) 3,899 3,892 
Non 4 yr Degree 7,429 7,236 
No Degree 5,697 5,533 
All Else 10,590 10,392 
Excluded records n/a 200 
Total Records 11,328 11,328 

 

6.3.3 Origin Point 

The time to the event of interest was determined from the STEM track departure time and the 

starting or “origin” point in time.  Two logical choices for this origin point were the study start 

time and the students’ date of birth.  The choice of the origin point affects the estimates of any 

coefficients in a model as well as its fit.  Since the NELS study began in 1988 when the students 

were in 8th grade and concluded on December 31, 2000 the maximum time to event could range 

from approximately 12 years using the study start time as the origin to approximately 28 years 

using the students’ individual birth dates.   

The argument in favor of using the study start time is that it focused the analysis on the 

time period during which the data was being collected.  Factors which affected the students prior 

to the study were not determinable and automatically lengthening the time to event by 12-14 

years might obscure subtle variations in the data during the study time.  More importantly, if we 

assume that each student is a potential STEM graduate, the opportunity to depart the STEM track 
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in this analysis does not start until the study’s initiation.  While a student could theoretically have 

a particularly weak academic preparation prior to 8th grade such that the risk of departing STEM 

was elevated prior to the study’s start, there is no data from earlier time periods available to 

quantify this risk.   

The argument in favor of using each student’s individual birth date as his/her origin point 

is that students may reach 8th grade at different ages thereby affecting their levels of mental, 

physical, and emotional maturity.  A student’s birth may be considered the ultimate starting point 

of his or her individual educational process.  Using the birth date as the origin could help capture 

the effect of age on the model without adding another potential covariate.   

In the absence of a strongly compelling reason for using the study start or the date of 

birth as the origin time, a decision was made to create two measures of the time to event.  Both 

measures were used to create the initial models and a decision of which to continue using was 

based upon the strength of the models.   

The first time to event variable was based upon the study start time in the Spring semester 

of 1988.  To ensure that this time to event was at least one twelfth of a year, the start time was set 

to December 1, 1987 by using the decimal date 1987.92 for 1987 and 11/12 months.  Similarly, 

the study conclusion on December 31, 2000 was set to a decimal date value of 2001.00 for 2001 

and 0 months.  The time to STEM track departure was calculated as the time that elapsed 

between the study’s start and the time at which the student could be determined to have left 

STEM or the study’s conclusion, whichever came first.  This time variable was called 

“Track_Time.”   

The second measure of the time to STEM departure was created by using the students’ 

birth dates as their individual starting points.  The decimal birth date was calculated from the 
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birth year and birth month as YYYY.0 + (MM – 1)/12.  The actual day of the month that a 

student was born on was not provided so each birth date was set to the beginning of the birth 

month.  This measure of the time to event was referred to as the educational duration and the 

variable name was “Educ_Dur.”  The elapsed time to event was measured as the time between 

the birth month/year and the time to STEM track departure.   

6.3.4 Model Selection 

There are different options for modeling time to event data using survival analysis.  One 

approach is to use a parametric model89 that assumes the time to event is distributed according to 

a particular probability distribution.  Then covariates are tested in the model to determine how 

well they explain variations in survival time.  The model can be constructed along the lines of 

classic linear regression where the survival time (Y) is modeled as function of the natural 

logarithm of the departure time (X >0).  In this scenario the linear model is Y = μ + γtZ + σΕ 

where γt = (γ1, γ2,…γp) is a vector of estimated coefficients, Z is a vector of covariate values, σ is 

the variance of Y, and Ε is the error distribution.  Different probability distributions may be 

employed in the model for the error distribution including the standard normal distribution, the 

logistic distribution, and the extreme value (2-parameter) distribution.  The choice of the error 

distribution results in modeling Y as ln (X) leading to a lognormal, log-logistic, or Weibull 

regression model respectively.  The regression coefficients for the covariates are then estimated 

using the maximum likelihood method. 

Another parametric approach is to create an “accelerated failure-time model”90 where a 

baseline survival function is estimated for Z = [0] as S0(x) = Prob[Y = survival time > ln(x) | Z = 

[0] ] = exp(μ+σΕ).  From there the effect of nonzero covariates changes the survival time by a 
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factor of exp(-γtZ) by “accelerating” or “decelerating” the time to failure based upon the sign of 

the γtZ term.  In this scenario the survival time on the STEM track of a student with Z = [0] is 

S0(x) = exp(μ+σΕ) and the survival time of student i with Z ≠ [0] as Prob[X > x | Z] = Prob[Y > 

ln(x) | Z] = Si(x | Z) = S0(x exp(-γtZ)) for all x > 0.  The factor that accelerates or decelerates the 

failure term also affects the hazard rate of an individual student.  In this context, the hazard rate 

can be understood as the approximate probability at time x that a student with a given vector of 

covariates departs the STEM track in the next instant.  It is important to note that it is not a true 

probability since the only limit on h(x) is that it is ≥ 0 and thus mathematically it can be greater 

than 1.0.   

The accelerating factor may be modeled to have a multiplicative effect or an additive 

effect.  If the baseline hazard rate is h0(x) then an additive model would model the hazard rate for 

student i with a vector of p covariates z as hi(x | z) = h0(x) +∑ =

p

j jj xxz
1

)()( β .  Similarly, a 

multiplicative model would model the hazard rate as hi(x | z) = h0(x)g(βtz) where g(βtz) is a 

nonnegative function of the covariate vector.   

A common multiplicative hazards model is the one proposed by Cox91 with g(βtz) = 

exp(βtz).  The Cox model is often called the Proportional Hazards model92 since the hazard for 

student j is a fixed proportion of the hazard for student i with hi(x | zi)/hj(x | zj) = h0(x)exp(βt zi) / 

h0(x)exp(βt zj)  = exp[β1(xi1 – xj1) + β2(xi2 – xj2) + ….. + βp(xip – xjp)] since the baseline hazard 

rate cancels out.  This model is considered to be a semi-parametric model because the 

cancellation of the baseline hazard rate means that only the parameters associated with the 

covariate factors are estimated.  One of the advantages of this approach is that there is no need to 

select a probability distribution to model the survival times since the baseline hazard rate cancels 

out. Cox suggested a new approach for estimating the parameters called the maximum partial 
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likelihood method93.  The expression “Cox Regression” is used to describe the utilization of the 

Cox model and the maximum partial likelihood estimation method.  The Cox model can also be 

adapted for nonproportional hazards94.   

The choice of which model to employ depends on a number of aspects95 of the 

application.  SAS has the capacity to fit each of these models using Proc LIFEREG96 for 

parametric models and Proc PHREG97 for Cox models.  One important aspect is whether the set 

of covariates includes any variables that change with time.  Such variables are referred to as 

time-dependent variables.  In medical applications variables that measure a patient’s health at 

successive points in time are common and must be considered in modeling survival time.  An 

example of this would be regular tests of a patient’s platelet count.  Proc PHREG is easily able to 

handle time-dependent covariates although this can be very complex if there are many of these 

variables.  The size of the dataset and the frequency of tied event times is another aspect in the 

choice of model.  Proc PHREG requires a great deal of computer processing time if the dataset is 

large and contains many identical event times.  If the shape of the hazard function is of interest, 

then Proc LIFEREG may be more suitable since Proc PHREG does not directly calculate the 

baseline hazard function.  If the data contains any left-censored values then Proc LIFEREG is the 

better choice since Proc PHREG does not allow for left-censoring.  If predicting survival 

probabilities or event times for the dataset is of interest, Proc LIFEREG is more capable. 

Proc LIFETEST98 was used to estimate the hazard functions for the different departure 

type sub-populations in the overall sample of 11,128 students with the exception of the 433 

students that were still in the college at the time the study ended.  The departure times for the 

students still in school at the time the study ended were all right censored at the same date so the 

hazard function for that group would not have been informative.  The hazard function curves 
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showed that several of the departure type sub-populations had markedly non-proportional 

differences between them.   

Figure 6.1 indicates the estimated hazard functions by the departure type.  Outcome 1 

represents high school dropouts, outcome 2 represents high school graduates, outcome 3 

represents college dropouts, outcome 4 represents students with sub-4 Year degrees, outcome 5 

represents students with 4 year degrees other than STEM, and outcome 6 represents the STEM 

students.  The graph is plotted so that Outcome 1 is the line closest to the vertical axis at its 

minimum value, Outcome 2 is the line next closest to the vertical axis at its minimum value, etc. 
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Figure 6.1  Hazard Functions by STEM Track Departure Type 
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All of the 76 potential covariates were collected in the base year with the exception of the 

standardized test scores that were obtained in the second follow up.  The SAT, ACT, and 

potentially PSAT scores were obtained from tests the students took between the BY and F2 data 

collection waves.  However, these scores were measured just once by collecting the data from 

the students during F2.  It is possible the students took the tests multiple times, but only one set 

of scores for each standardized test was reported in the study.  If the probability of a student 

departing the STEM track is estimated at a point in time after F2, these standardized test scores 

should not be considered time-dependent variables.  The PETS transcript data contained 

enhanced variables for the SAT scores that the NELS:88 study designers created by replacing 

missing SAT scores with values derived from the students’ PSAT scores, if available.  There 

were 378 records across all the departure types that had missing F2RSATM or F2RSATV values 

for which imputed scores were available.  The enhanced SAT scores from the PETS dataset were 

recoded using the same procedure described in Chapter 4 and substituted for the F2RSATM and 

F2RSATV variables in subsequent modeling.   

Since the model’s ability to predict student outcomes was of great importance in 

evaluating its worth, there were no time-dependent covariates, and there was a desire to compare 

the hazard functions between departure types, it was decided to use a parametric model for the 

survival times and to employ Proc LIFEREG to estimate the model parameters.   

6.3.5 Fit and Test Sample Creation 

The samples for the survival analysis module were created in the same manner used for the 

logistic regression module.  The same 11 random number seeds used for the STEM vs. All Else 

logistic regression models were used to create samples for the fit and test process.  The 11,128 
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records selected for analysis were first sorted by the students’ study assigned ID number.  Then a 

variable, “STEM_Outcome,” was created to use in stratifying the population into STEM and All 

Else outcomes.  The STEM_Outcome variable was set to “1” if the STEM track Departure_Type 

variable = 7 for a STEM degree outcome and “0” for all other departure types.  Then the random 

number seeds were used to create fit data samples by randomly selecting 70% of the data from 

the STEM and All Else strata.  Similarly, the test data samples were created from the 30% of the 

records not previously selected for the fit data samples.  The result of this was 11 randomly 

chosen samples containing 7,791 records to fit models with and 11 randomly chosen samples 

containing 3,337 records to test the models developed.   

These fit and test samples were not identical to those used for the original logistic 

regression models since they were created by stratifying the samples using different sorting 

variables.  The original logistic regression models were created using the “STEM” variable and 

the classification solely by the variables for the first two college degrees and majors.  As 

discussed earlier, this classification was adjusted in order to more precisely gather the time to 

event data for the survival analysis module.  In order to permit direct comparison of the logistic 

regression model and integrated model prediction results, the logistic regression models for 

STEM vs. All Else were re-fitted using the new fit and test samples.  This ensured that the exact 

same records were used for the iterations of model fitting and testing under both modeling 

approaches.  The results from each modeling exercise are reviewed in Chapter 7.   

6.3.6 Model Fitting 

The modeling process began by selecting a probability distribution for the survival times.  Proc 

LIFEREG was used to fit log-normal, log-logistic, gamma, exponential, and Weibull models 
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using all of the potential covariates as well as subsets that were found to be significant predictors 

in the logistic regression models.  The models were fitted using both time to event measures, 

Track_Time with the origin at 1987.92 and Educ_Dur with the origin at the students’ birth dates.  

The models were then compared by their likelihood ratio statistics.  The log-logistic models 

consistently provided values with a smaller negative magnitude indicating better models.  The 

standard 2-parameter gamma model provided the next best likelihood ratio statistics.  Based on 

these results the log-logistic probability distribution was chosen for the survival analysis 

modeling portion of the integrated model.  The models using the Track_Time as the time to 

event had consistently better goodness of fit statistics than those using the Educ_Dur times.  

Thus a decision was made to proceed with the modeling process using the study start time of 

1987.92 as the origin point.   

The LIFEREG procedure of SAS was used to build log-logistic models for each of the 11 

fit data samples.  The first model for each sample was fit using all 76 of the potential covariates 

plus the estimated probability of a STEM outcome from the logistic regression model.  The latter 

variable, “LRprob_STEM” was an output from the fitted logistic regression model applied to 

both the fit and test data records for each random sample.  Following the conclusions reached in 

the original logistic regression analysis, interaction terms were not employed in the model fitting.   

Covariates whose estimated coefficients were not significantly different than 0 according 

to a chi-square test at the α = 0.05 level were dropped from the model and the modeling was 

repeated with the subset of previously significant covariates.  Subsequent iterations continued 

until all model covariates were found to be significant and the likelihood ratio statistic confirmed 

that the global test of model significance was met.   

 117 



Once a final model for each fit data sample had been created, it was applied directly to 

the records to estimate the probability of survival on the STEM track past time 7.25 years.  This 

point in time was chosen after examining the estimated hazard functions for the different sub-

populations of students.  Selecting a time earlier in the study would have resulted in a high 

probability of continuing to remain on the STEM track in the next instant for most of the 

students.  Even selecting a time after most students had graduated high school and begun college 

would not have improved the ability to discriminate the STEM vs. All Else student sub-

populations since most would still have had a high probability of surviving then.   

The graph of the hazard functions suggested that most of the students that departed the 

STEM track tended to do so by 6.5 years past the origin time of 1987.92.  By the early months of 

year 8 most of the other four year degree students and STEM students had graduated from 

college.  The graph suggested the points at which the probability of survival on the STEM track 

was the highest for the STEM students and correspondingly lower for the other students was 

within the window of 6.33 to 8.17 years.  The fit data for the original seed was repeatedly 

modeled to estimate the survival probability beyond time points 6.33, 6.41, 6.67, 7.25, 7.33, 

7.41, 7.5, 7.67, 8.0, and 8.17 years.  Based on the probability of survival past a given point, the 

student was predicted to have a STEM outcome for higher vs. lower probability values.  Various 

cutpoints were used.  The sensitivity and specificity of the predictions did not vary much, but 

slight improvements were found using 7.25 years.  Thus this was the point in time used to 

discriminate between the STEM and All Else students based on the probability of remaining on 

the STEM track.   

The final log-logistic model fitted via Proc LIFEREG for the original seed fit data was 

applied to the original seed test data.  The final models for the other ten randomly chosen fit 
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datasets were applied to their associated test datasets in the same manner.  Predicted outcomes 

were made in response to different cutpoints within the interval (0, 1).   

In addition to these predictions, separate predictions were made for each record that 

reflected the results of both the logistic regression module and the survival analysis module.  

This approach examined the calculated LRprob_STEM from the logistic regression module and 

the estimated probability of survival beyond 7.25 years (“Prob”).  If LRprob_STEM ≥ 0.07 and 

Prob > 0.5 then the integrated model predicted a STEM outcome.  Otherwise the model predicted 

an All Else outcome.  This was done to explore an alternative method of integrating the two 

modules.   

6.4 ROC CURVE ANALYSIS MODULE 

The models created for the same two-outcome pair were compared to one another by the area 

lying underneath the ROC curve associated with the fitted models known as “AUC” or “c.”  The 

value of AUC permits some comparison between models created for different two-outcome 

pairs.  However, these sorts of comparisons were generally obtained by comparing the ROC 

curves produced from applying the models fitted with the test data directly to the reserved 

validation data.  

The logistic regression models estimated a probability of a student with a given vector of 

covariates achieving a STEM outcome.  The survival analysis models estimated the probability 

that a student with a given vector of covariates who had survived on the STEM track to time 7.25 

years would remain on the track in the near future.  The cutpoints used ranged from 0.01 to 0.99 

and represented the dividing line between whether the model predicted a STEM vs. All Else 
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outcome given an estimated probability of within the range [0, 1].  Setting the cutpoint at a low 

value of 0.10 meant that most of the records had estimated probabilities above the cutpoint and 

were predicted to have a STEM outcome.  This resulted in high sensitivity - correct identification 

of most of the STEM students, but a correspondingly low value of specificity – correct 

identification of most of the All Else students.  Conversely, setting the cutpoint at a high value of 

0.90 meant that few of the records were predicted as having a STEM outcome and most would 

be predicted as All Else.  Models which had excellent predictive ability resulted in ROC curves 

with a very steep gradient indicating high probability of correct STEM prediction and a 

correspondingly low probability of incorrectly predicting All Else students as STEM.   

6.5 SENSITIVITY ANALYSIS MODULE 

The purpose of this module was to explore the effect of changing the prediction cutpoint on the 

accuracy of the STEM outcome predictions.  The ROC Curve provides a range of cutpoint values 

for the logistic regression and the survival analysis modules.  The visual depiction of the 

probability of correctly identifying potential STEM students that can be achieved with a 

corresponding loss in specificity is helpful in understanding how responsive or sensitive the 

model is to shifting the cutpoint.  It should be noted that in this context the word sensitivity is not 

the same as the probability of a correct STEM prediction plotted on a ROC curve.  Sensitivity 

analysis in this context refers to the effect on the overall application of selecting a specific 

probability cutpoint value for the model to achieve a particular policy goal or set of goals.   

The selection of a preferred cutpoint to use in discriminating between outcomes is based 

on the objectives of the analyst.  If the goal is to optimize sensitivity and specificity then both are 
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plotted against the range of cutpoint values and the cutpoint value at the intersection of the 

curves is selected.  If the goal is to maximize the correct prediction of the outcome of interest, 

then the cutpoint can be chosen without regard to the probability of incorrect predictions.  If the 

goal is to identify the largest population of potential STEM students for a proposed intervention 

program, then the cutpoint may be chosen based on the program budget available. 

The results of the sensitivity analysis allow the modules to be “tuned” so that each 

produces a desired level of sensitivity when they are integrated.   

6.6 THE INTEGRATED MODEL 

The integrated model consisted of employing logistic regression, survival analysis, ROC curve 

analysis, and sensitivity analysis to develop predictions of the students’ final educational 

outcome.  The logistic regression module was used to estimate each student’s probability of a 

STEM outcome when controlling for covariates.  The output of that module, the original set of 

covariates, the time to STEM track departure, and a variable which indicates whether the 

departure time was observed or censored become inputs to the survival analysis module.  The 

survival analysis module used the time to event data and the censored or observed status of the 

event time along with the regression covariates to estimate the probability for each student 

surviving on the STEM track beyond 7.25 years.   

The probability of survival beyond 7.25 years was used to predict the students’ final 

educational outcome with higher values of the probability leading to a STEM prediction and 

lower values leading to an All Else prediction.  A set of predictions was generated based upon 

different values of the threshold cutpoint for the STEM track survival probability.  The set of 
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predictions was analyzed with the ROC Curve module and the sensitivity was examined to 

identify the cutpoint producing the best combination of sensitivity and specificity.  The best 

combination is determined by the goals of the analyst and a range of values is provided for 

selection.  Another prediction was generated for each record based on combining the separate 

predictions of the survival analysis module and the best result from the logistic regression 

module.  The analyst has the final choice of which set of predictions to choose. 

6.6.1.1 Integrating the Modules in Series  

The first model integrated the methods by linking the logistic regression and survival analysis 

modules in series by incorporating the output of the logistic regression module as an input 

covariate to the survival analysis module.  The output of the logistic regression module was an 

estimated probability that a student with a given set of covariates would have a STEM 

educational outcome.  This estimated probability was stored as a variable with the name 

LRprob_STEM and used an input for the survival analysis module.  As with the logistic 

regression module, predictions were made for a large set of possible cutpoint values.   

6.6.1.2 Integrating the Modules in Parallel  

The second model built upon the first by using the output of both the series-linked model and the 

logistic regression module to make a prediction.  There were two determining factors for the 

prediction by the integrated model using logistic regression and survival analysis in parallel.  The 

first factor was having an estimated probability of a STEM outcome greater than or equal to 0.07 

from the logistic regression module.  The second factor was having an estimated probability of 

survival greater than or equal to 0.50 given the student had “survived” on the STEM track to 
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time 7.25 years.  If both of these criteria were met then the integrated “combination” model 

predicted a STEM outcome.   

The model integrated in parallel attempts to leverage the strength of the logistic 

regression module by using it as an input to the survival analysis module as well as obtaining a 

separate prediction from it that is compared to the prediction from the integrated in series model.  

Thus, both are used in making STEM predictions in cases where both models agree.  
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7.0  RESULTS 

7.1 LOGISTIC REGRESSION MODEL PREDICTIONS WITH ORIGINAL 

DATASET CLASSIFICATION 

The logistic regression models were built to predict the probability of a specific outcome vs. 

another one of the possible outcomes.  For each of the two-outcome models, the model estimated 

the probability of the first outcome listed in the model name.  In the case of the STEM vs. All 

Else model, the model estimated the probability of a STEM outcome.  A value of 1.0 is the 

highest possible probability, and if such a value were estimated, the model automatically 

predicted that particular student would graduate with a STEM degree.  A value of 0 is the lowest 

possible probability, and if the model estimated this value it automatically predicted the student 

would graduate with an All Else educational outcome.  For values between 0 and 1 a decision 

had to be made about where to draw the line in predicting STEM vs. the alternative outcome.  

Overall, larger values of the resulting probability were set to predict a STEM outcome and 

smaller values were set to predict the alternative outcome.  For example, if the cutpoint was 

chosen to be 0.10 then an estimated STEM probability of 0.12 would result in a STEM outcome 

prediction while an estimated STEM probability of 0.08 would result in an All Else outcome 

prediction.   
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The exact cutpoint at which to predict a STEM outcome vs. the other outcome was 

explored through ROC curves to illustrate the tradeoff between correct STEM predictions and 

incorrect STEM predictions.  The numbers of correct and incorrect predictions of the two 

outcomes were assessed for different values of the cutpoint in order to choose a value that 

performed well.  The area under the ROC Curve, denoted as AUC, was estimated as a way of 

assessing the predictive accuracy of the model.  As discussed in Section 2.6, the AUC value lies 

between 0 and 1.  Higher values denote better predictive accuracy in discriminating between the 

two outcomes.  AUC values between 0.7 and 0.8 represent acceptable predictive ability.  Values 

between 0.8 and 0.9 indicate excellent predictive ability.  An AUC value over 0.9 suggests the 

model has an outstanding ability to discriminate between the outcomes.   

7.1.1 STEM vs. All Else 

The logistic regression model for STEM vs. All Else, fitted from the 76 recoded BY and F2 

standardized score variables, was significant with an AUC value of 0.848 indicating excellent 

predictive discrimination.  The significant variables were gender; Asian race; African-American 

race; overall math proficiency; how often parents talked to their child regarding post high school 

plans; how far the parents expected their child to advance; whether the student intended to attend 

a private non-religious high school; the highest level of education earned by the student’s father; 

how far the student intended to advance in school; number of hours the student worked per week 

for pay; the student’s ability group for math/science; the student’s grades for math/science from 

6th to 8th grade; ACT math and reading scores; SAT math and verbal scores; family composition; 

minority language status; and the student’s base year science quartile standing.  Figure 7.1 shows 

that high levels of correct STEM predictions can be achieved with relatively low levels of 
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7.1.1.1 Testing Model Stability 

In order to assess the stability of the model a series of 10 additional random seeds were used to 

generate different fit and test data samples for the STEM vs. All Else model.  This was done to 

determine how sensitive the models were to different selections of data used to fit the model.  

The total sample of 11,328 students contained 738 STEM students and 10,590 with another 

educational outcome.  70% of these records in each of the two strata were randomly selected a 

total of 11 times to form 11 separate samples for the model fitting data.  Since the resulting 

STEM category was very small (517) compared to the All Else category (7,414) and the All Else 

outcome represented a very diverse set of outcomes there was concern that different samples 

would result in widely differing models.  Table 7.1 shows the fitted models for the original seed 

and the 10 additional seeds used for the STEM vs. All Else analysis.  Each of the variables that 

were found to be significant for at least one model is represented in the table.  The estimated 

coefficients for each variable are provided in the table by seed.  Please note that there is a fairly 

consistent set of significant variables across the 11 models and that their estimated coefficients 

are similar in value from model to model.  This suggests that the overall STEM vs. All Else 

model is quite stable regardless of the particular set of NELS data used to fit it. 

 



Table 7.1  Coefficients for Logistic Regression Models for STEM vs. All Else 

Variable Description 
Original 

Seed Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8 Seed 9 Seed 10 

Intercept 
N/A, constant in logistic regression model 

equation -7.4577 -8.3713 -8.0108 -4.9557 -4.6993 -8.9988 -4.9808 -4.7767 -7.674 -5.5652 -5.3724 
BY2XMPROro    Overall Math Proficiency 0.1649  0.1345  0.1607 0.1145  0.1367  0.1446 0.1196 

BY2XMQro Mathematics Quartile  0.1831          
BY2XRPROro Overall Reading Proficiency -0.1752           

BY2XSQro Science Quartile 0.1876 0.3205 0.261  0.1765 0.227 0.2976 0.2083 0.2811 0.1788 0.1718 
BYFAMINCro Yearly Family Income    -0.0342      -0.0367  

BYFCOMPr1 
Family Composition: Mother & Male 

Guardian -0.6366 -0.6494 -0.4777 -0.8264 -0.8187 -0.5121 -0.6047 -0.6338 -0.794 -0.691 -0.5789 
BYFCOMPr3 Family Composition: Mother        -0.3537    

BYLMrb    Language Minority Composite    -2.7747 -3.6715  -2.6536 -3.3674  -2.5361 -2.7225 

BYP64Bro 
Family Rule re How Early/Late Child 

Watches TV      0.3437      

BYP65Aro 
Family Rule About Child Maintaining Grade 

Avg. 0.2016          0.2627 

BYP68ro 
How Often Parent Talks To Child re Post 

H.S. Plans  -0.2262 -0.1439 -0.2234    -0.1872  -0.1797  

BYP76ro 
How Far in School Parent Expects Child To 

Go  0.1087 0.0726 0.0971    0.0914  0.1056  
BYPARMARr1 Parents’ Marital Status: Divorced -0.5334  -0.5576   -0.4732 -0.7292    -0.5997 

BYRISKro 
# of BY Risk Factors for Dropping Out of 

School    -0.2334 -0.228     -0.2977  

BYS14rPvNRel 
H.S. Student Plans to Attend: Private 

Nonreligious -0.4956 -0.6623   -0.5965  -0.4893 -0.6229 -0.5523  -0.7805 

BYS14rPvRel 
H.S. Student Plans to Attend: Private 

Religious   0.3693         

BYS34Arb 
Father's Highest Level of Education: College 

or Not    0.3018  0.3226  0.2427 0.3273  0.2633 

BYS34Brb 
Mother's Highest Level of Education: 

College or Not       0.2913     
BYS42Aro # of Hrs Student Watches TV on Weekdays     -0.0657    -0.0675   
BYS43ro # of Cigarettes Student Smokes per Day   0.3316  0.3072       

BYS45ro 
How Far In School Do You Think You Will 

Get 0.3117 0.1623 0.2175 0.2585 0.3335 0.2891 0.2972 0.2031 0.213 0.2484 0.2386 
BYS46ro How Sure That You Will Graduate from H.S. -0.5737      -0.4532     
BYS53ro # of Hrs Student Works for Pay per Week -0.1054 -0.1579 -0.1279 -0.1613 -0.1124  -0.1102  -0.1224 -0.1007  

BYS60Aro Student's Ability Group for Mathematics  0.2222  0.2351 0.2018 0.2374 0.2314 0.1821 0.2035 0.2099 0.2368 0.1952 
BYS60Bro Student's Ability Group for Science -0.1676  -0.1114 -0.1397 -0.1209 -0.1432  -0.1342 -0.1006 -0.1055 -0.0968 
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Table 7.1 (continued). 

Variable Description 
Original 

Seed Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8 Seed 9 Seed 10 
BYS81Bro Math Grades from Grade 6 Until Now 0.3016 0.3911 0.2879 0.3688 0.3494 0.3561 0.3048 0.2718 0.2951 0.3235 0.3712 
BYS81Cro Science Grades from Grade 6 Until Now 0.2652 0.2978 0.2925 0.2738 0.3477 0.3449 0.2989 0.3593 0.3519 0.3566 0.3457 

BYSC13Erc % of White Non-Hispanic 8th Graders           -0.0053 
BYSC16Arc # of Students in Free Lunch Program           -0.0011 
F2RACTCro ACT (Composite Score)       0.0537     
F2RACTEro ACT (English Score)   -0.051   -0.0573 -0.0595 -0.0544 -0.0566 -0.0687  
F2RACTMro ACT (Math) 0.0294 0.071 0.0756 0.0284 0.0683 0.079 0.0785 0.0776 0.078 0.0871 0.0708 
F2RACTRro ACT (Reading)  -0.0449   -0.0439  -0.0489    -0.0446 
F2RSATMro  Scholastic Aptitude Test (Mathematics) 0.0041 0.0038 0.0040 0.0046 0.0033 0.0040 0.0043 0.0042 0.0040 0.0040 0.0044 
F2RSATVro Scholastic Aptitude Test (Verbal) -0.0031 -0.0028 -0.0031 -0.0038 -0.0023 -0.0032 -0.0035 -0.0033 -0.003 -0.0031 -0.0033 
F4RACE2rAs  Race of Student: Asian 0.5025  0.6394 0.3604 0.6508 0.5066 0.5625 0.3929 0.4499 0.3975 0.3901 
F4RACE2rBl  Race of Student: African-American 0.5273    0.7608 0.6466  0.7341 0.4496  0.535 

F4SEXrb  Sex of Student - binary (1 = Female) -0.6649 -0.7138 -0.6595 -0.6689 -0.7299 -0.7352 -0.5911 -0.5811 -0.7234 -0.5811 -0.7487 
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The variables that were consistently significant across five or more models of STEM vs. 

All Else are listed in Table 7.2.  The signs of the estimated coefficients were examined to 

determine if a particular variable had a positive or negative effect on the probability of a student 

earning a STEM degree.  For example, having a higher overall math proficiency rating was a 

positive influence on achieving a STEM outcome by increasing the estimated probability of 

graduating with a STEM degree.  Having a higher SAT verbal score was a negative influence 

since it decreased the estimated probability of graduating with a STEM degree.  The 

categorization of these variable effects as positive or negative relates only to whether their 

contribution to the fitted model increased or decreased the probability of a STEM outcome, 

respectively.   

Table 7.2  Effect of Consistently Significant Predictors of STEM vs. All Else 

Variable Description 

Effect on 
Probability of 

STEM 
Intercept N/A, constant in logistic regression model equation Negative 

BY2XMPROro    Overall Math Proficiency Positive 
BY2XSQro Science Quartile Positive 

BYFCOMPr1 Family Composition: Mother & Male Guardian Negative 
BYLMrb    Language Minority Composite Negative 
BYP68ro How Often Parent Talks To Child re Post H.S. Plans Negative 
BYP76ro How Far in School Parent Expects Child To Go Positive 

BYPARMARr1 Parents’ Marital Status: Divorced Negative 
BYS14rPvNRel H.S. Student Plans to Attend: Private Nonreligious Negative 

BYS34Arb Father's Highest Level of Education: College or Not Positive 
BYS45ro How Far In School Do You Think You Will Get Positive 
BYS53ro # of Hrs Student Works for Pay per Week Negative 

BYS60Aro Student's Ability Group for Mathematics  Positive 
BYS60Bro Student's Ability Group for Science Negative 
BYS81Bro Math Grades from Grade 6 Until Now Positive 
BYS81Cro Science Grades from Grade 6 Until Now Positive 

F2RACTEro ACT (English Score) Negative 
F2RACTMro ACT (Math) Positive 
F2RSATMro  Scholastic Aptitude Test (Mathematics) Positive 
F2RSATVro Scholastic Aptitude Test (Verbal) Negative 

F4RACE2rAs  Race of Student: Asian Positive 
F4RACE2rBl  Race of Student: African-American Positive 

 

In addition, the models were tested with different potential sets of predictor variables.  

The different sets were all drawn from the same group of 76 recoded variables discussed in 
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Section 3.6.  The three sets were Base Year only; Base Year plus F2 standardized scores; and 

Base Year, F2 standardized scores, and interaction terms for variables found to be significant in 

models created with the other two sets.  The variables that were found to be significant when the 

interactions were included as potential predictors for the original seed are shown in Table 7.3.  

Interaction terms are labeled based upon the variables paired in the interaction using the format 

“Variable_1*Variable_2.”  This model had an AUC of 0.852 which was slightly larger than the 

AUC for the model without interaction terms (0.848).  Negative coefficients decrease the 

estimated probability of a STEM outcome while positive coefficients increase it. 

Table 7.3  Significant Variables for STEM vs. All Else with Interaction Testing 

Parameter Description 
Coefficient 
Estimate 

Intercept N/A, constant in logistic regression model equation -8.0700 
BY2XMPROro    Overall Math Proficiency -0.0928 
BY2XSQro Science Quartile 0.1767 
BYFCOMPr1 Family Composition: Mother & Male Guardian -0.6812 
BYPARMARr1 Parents’ Marital Status: Divorced -0.5262 
BYS14rPvNRel H.S. Student Plans to Attend: Private Nonreligious 0.9866 
BYS34Arb Father's Highest Level of Education: College or Not 1.0789 
BYS45ro How Far In School Do You Think You Will Get 0.2798 
BYS46ro How Sure That You Will Graduate from H.S. -0.5291 
BYS60Aro Student's Ability Group for Mathematics  0.7063 
BYS60Bro Student's Ability Group for Science -0.1554 
BYS81Bro Math Grades from Grade 6 Until Now 0.2672 
BYS81Cro Science Grades from Grade 6 Until Now 0.2329 
F2RACTMro ACT (Math) 0.0702 
F2RSATMro  Scholastic Aptitude Test (Mathematics) 0.0042 
F2RSATVro Scholastic Aptitude Test (Verbal) -0.0033 
F4RACE2rAs  Race of Student: Asian 0.5178 
F4RACE2rBl  Race of Student: African-American 0.6482 
F4SEXrb  Sex of Student - binary (1 = Female) -0.6245 
BY2XMPROro*BY2XSQro Overall Math Proficiency * Science Quartile 0.1550 

BY2XMPROro*BYS34Arb 
Overall Math Proficiency * Father's Highest Level of 
Education: College or Not -0.1969 

BY2XMPROro*F2RACTMro Overall Math Proficiency * ACT (Math) -0.0090 

BY2XSQro*BYS14rPvNRel 
Science Quartile * H.S. Student Plans to Attend: Private 
Nonreligious -0.4306 

BY2XSQro*BYS60Aro 
Science Quartile * Student's Ability Group for 
Mathematics  -0.1513 

BYS34Arb*F2RACTMro 
Father's Highest Level of Education: College or Not * 
ACT (Math) -0.0214 
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The effect of interactions was tested in other models, but they were found to offer little 

improvement in predictive accuracy and are not presented for the other models. 

In order to understand the impact of the cutpoint for these models it is helpful to see how 

many correct predictions were made based on the dividing line for the prediction.  Table 7.4 

shows the number of STEM students in the test data sample that were correctly predicted to have 

a STEM outcome by the STEM vs. All Else models for each seed.  There were 221 STEM 

students in the test data samples and each model correctly predicted between 0 and 219 of them 

based on the cutpoint chosen.   

  
Table 7.4  Number of STEM Students Out of 221 Correctly Predicted by Cutpoint and Seed 

Cutpoint 
Original 

Seed 
Seed 

1 
Seed 

2 
Seed 

3 
Seed 

4 
Seed 

5 
Seed 

6 
Seed 

7 
Seed 

8 
Seed 

9 
Seed 

10 
0.010 217 214 215 218 214 215 217 219 215 218 218 
0.015 215 210 211 216 212 212 211 219 212 213 215 
0.020 212 203 208 214 210 210 211 216 210 203 211 
0.030 208 201 201 206 204 205 201 210 198 195 206 
0.040 196 191 192 197 194 197 195 201 190 185 194 
0.050 188 180 185 186 186 194 189 194 184 175 183 
0.100 141 127 145 128 147 145 142 153 138 141 132 
0.150 105 99 107 100 111 106 101 114 96 108 99 
0.200 85 75 86 71 86 78 75 76 74 82 77 
0.250 63 50 72 47 61 59 57 62 56 65 52 
0.300 52 38 53 36 46 43 43 51 47 45 40 
0.350 40 28 45 26 39 30 30 42 37 36 30 
0.400 32 24 35 18 30 23 22 35 29 27 26 
0.450 23 19 22 15 22 19 16 23 23 19 18 
0.500 13 14 15 11 19 14 12 16 18 12 14 
0.550 12 8 11 7 12 9 8 10 12 8 8 
0.600 8 5 7 6 5 6 6 6 10 5 5 
0.650 5 2 5 4 5 4 4 5 6 3 4 
0.700 1 1 3 2 2 4 3 4 4 1 1 
0.750 0 1 2 0 0 1 3 1 2 1 1 
0.800 0 0 0 0 0 0 2 1 0 1 0 
0.850 0 0 0 0 0 0 0 0 0 0 0 
0.900 0 0 0 0 0 0 0 0 0 0 0 
0.950 0 0 0 0 0 0 0 0 0 0 0 
0.990 0 0 0 0 0 0 0 0 0 0 0 
 

As Table 7.4 shows, smaller cutpoint values correctly predicted more of the 221 STEM 

students across all 11 seeds than larger cutpoint values.  However, while smaller cutpoint values 
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led the model to correctly predict most of the STEM students they also resulted in larger 

numbers of All Else students being incorrectly predicted as STEM.  This can be visually depicted 

in plotting sensitivity and specificity.  Figure 7.2 shows the sensitivity vs. specificity by cutpoint 

value.  Note this is different from a ROC curve which plots sensitivity vs. (1 – specificity).  If the 

goal is to optimize both of these values, then the ideal cutpoint is slightly less than 0.10.  This 

assumes that the costs of correct and incorrect predictions should be balanced.  This is a 

debatable concept that will be discussed in Chapter 8.0 .  Another interesting point is how close 

the prediction was to the actual outcome.  For example, if the model incorrectly predicted a 

STEM outcome for a particular student, was the real outcome a STEM-Related degree, a Non-

STEM degree, a Sub-4 Yr Degree, or No Degree?  Using the cutpoint of 0.10 for the original 

seed as an example, there were 531 All Else students that were incorrectly predicted to have a 

STEM outcome.  Of these 24.9% had a STEM-Related outcome, 44.6% had a Non-STEM 

outcome, 6.4% had a Sub-4 Yr Degree outcome, and 24.7% had a No Degree outcome.  So for 

this instance, 68.9% of the incorrect predictions went on to earn another college degree while 

30.1% failed to achieve a four year degree.  This suggests that even when the model incorrectly 

predicted a STEM outcome; it was picking up on characteristics that allowed the students in 

question to achieve a bachelor’s degree.  Undoubtedly, some of these students could have 

achieved a STEM degree had they chosen to pursue such a degree.   



STEM vs ALL Else Sensitivity vs. Specificity by Cutpoint

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cutpoint

P
ro

ba
bi

lit
y

Specific Sensit
 

Figure 7.2  Sensitivity vs. Specificity by Cutpoint for STEM vs. All Else 

 

The detailed analyses for the STEM vs. All Else model indicate that it is stable with a set 

of significant variables that is generally consistent.  The students’ proficiency in math and 

science, grades in these subjects, standardized test scores, and expectations of educational 

attainment are good predictors for this model.  The fathers’ highest level of educational 

achievement, parental expectations of the student, family structure, and family support for 

educational progress are also good predictors.  Significant differences were found in 

race/ethnicity and gender for STEM vs. All Else students.  The model was able to discriminate 

between STEM and All Else students with good predictive ability.  The ROC curve indicated 

that nearly all the potential STEM students can be identified if a 50% error rate on the All Else 

students is acceptable.  This can be adjusted as desired and as budgets allow.   

Since the results of the stability testing for this model were encouraging, this level of 

detail was not pursued with each of the remaining models.  Multiple random seeds were again 

tested with the STEM vs. STEM-Related model, but not with any of the others.  The reasoning 

for this is that if educational outcomes are seen as having an ordered scale with No Degree at one 
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end and a STEM degree at the other end then the models for STEM vs. No Degree and STEM 

vs. STEM-Related represent the furthest and closest relationships, respectively.  The All Else 

outcome is the most diverse compared to STEM, and STEM-Related is the least different 

compared to STEM.  If these models are comparatively stable, then the ones “in between” should 

also be stable.   

7.1.2 STEM vs. STEM-Related 

The logistic regression model for STEM vs. STEM-Related also found numerous variables to be 

statistically significant predictive factors.  The AUC value for the associated ROC curve was 

0.720 indicating the fitted model possessed acceptable ability to discriminate between these two 

outcomes.  The significant variables were gender; Asian race; overall math proficiency; having a 

family rule about how much time the student could spend watching television; how many hours 

the student spent watching television on weekends; the number of cigarettes smoked per day; 

how often parents talked to their child regarding post high school; number of hours the student 

worked per week for pay; the student’s ability group for math/science; the student’s grades for 

math/science from 6th to 8th grade; ACT math; SAT math scores; the student’s base year science 

quartile standing; the percentage of white non-Hispanic 8th graders; and the base salary of a 

beginning teacher with a B.A. degree at the student’s school.  The most consistent variables and 

their associated effect on the model’s probability of a STEM outcome are shown in Table 7.5.   

  



Table 7.5  Effect of Consistently Significant Predictors of STEM vs. STEM-Related 

Variable Description 

Effect on 
Probability 
of STEM 

Intercept N/A, constant in logistic regression model equation Negative 
BY2XMPROro    Overall Math Proficiency Positive 
BY2XRQro Reading Quartile Negative 
BY2XSQro Science Quartile Positive 
BYP64Bro Family Rule re How Early/Late Child Watches TV Positive 
BYP64Cro Family Rule re How Many Hrs Child Watches TV Negative 

BYP64Dro 
Family Rule re How Many Hrs on School Days Child 
Watches TV Negative 

BYS42Bro # of Hrs Student Watches TV on Weekends Negative 
BYS43ro # of Cigarettes Student Smokes per Day Positive 
BYS60Aro Student's Ability Group for Mathematics  Positive 
BYS60Bro Student's Ability Group for Science Negative 
BYS81Bro Math Grades from Grade 6 Until Now Positive 
BYS81Cro Science Grades from Grade 6 Until Now Positive 
BYSC13Erc % of White Non-Hispanic 8th Graders Negative 
BYSC19rc Base Salary for Beginning Teacher w/ B.A. Positive 
F2RACTMro ACT (Math) Positive 
F2RSATMro  Scholastic Aptitude Test (Mathematics) Positive 
F4RACE2rAs  Race of Student: Asian Positive 
F4SEXrb  Sex of Student - binary (1 = Female) Negative 
 

Figure 7.3 shows that good levels of correct STEM predictions can be achieved with fair 

levels of incorrect STEM predictions for the STEM vs. STEM-Related model.   
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Figure 7.3  Sensitivity vs. (1-Specificity) for STEM vs. STEM-Related model 
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7.1.3 STEM vs. Non-STEM 

The logistic regression model for STEM vs. Non-STEM found several variables to be 

statistically significant predictive factors.  The AUC value for the associated ROC curve was 

0.743 indicating the fitted model possessed acceptable ability to discriminate between these two 

outcomes.  Table 7.6 lists the individual significant variables.  The table indicates whether each 

variable’s impact on the probability of a STEM outcome was positive (increasing the 

probability) or negative (decreasing the probability).  The significant variables were gender; 

Asian race; African-American race; how often parents talked to their child regarding post high 

school plans; how far the parents expected their child to advance; how many hours the student 

spent doing homework per week; the student’s grades for math/science from 6th to 8th grade; 

whether the student intended to attend a private non-religious high school; ACT math and 

English scores; SAT math and verbal scores; the student’s base year science quartile standing; 

family composition; the parents’ marital status – separated; and the base salary of a beginning 

teacher with a B.A. degree at the student’s school.   

  



Table 7.6  Effect of Significant Predictors of STEM vs. Non-STEM 

Variable Description 

Effect on 
Probability 
of STEM 

Intercept N/A Negative 
BY2XSQro Science Quartile Positive 
BYFCOMPr5 Family Composition: Other Relative/Nonrelative Positive 
BYHOMEWKro # of Hours Spent on Homework per Week Negative 
BYP68ro How Often Parent Talks To Child re Post H.S. Plans Negative 
BYP76ro How Far in School Parent Expects Child To Go Positive 
BYPARMARr3 Parents’ Marital Status: Separated Positive 
BYS14rPvNRel H.S. Student Plans to Attend: Private Nonreligious Negative 
BYS81Bro Math Grades from Grade 6 Until Now Positive 
BYS81Cro Science Grades from Grade 6 Until Now Positive 
BYSC19rc Base Salary for Beginning Teacher w/ B.A. Positive 
F2RACTEro ACT (English Score) Negative 
F2RACTMro ACT (Math) Positive 
F2RSATMro  Scholastic Aptitude Test (Mathematics) Positive 
F2RSATVro Scholastic Aptitude Test (Verbal) Negative 
F4RACE2rAs  Race of Student: Asian Positive 
F4RACE2rBl  Race of Student: African-American Positive 
F4SEXrb  Sex of Student - binary (1 = Female) Negative 

 

Figure 7.4 shows that good levels of correct STEM predictions can be achieved with fair 

levels of incorrect STEM predictions for the STEM vs. Non-STEM model.   
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Figure 7.4  Sensitivity vs. (1-Specificity) for STEM vs. Non-STEM model 
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7.1.4 STEM vs. Sub 4-Yr Degree 

The logistic regression model for STEM vs. Sub-4Yr Degree found several variables to be 

statistically significant predictive factors.  The AUC value for the associated ROC curve was 

0.924 indicating the fitted model possessed outstanding ability to discriminate between these two 

outcomes.  The significant variables are listed in Table 7.7.  They include gender; 

Asian race; African-American race; limited English proficiency; having a family rule about 

maintaining grade average; how often the parents helped the student with homework; how far the 

parents expected their child to advance; the highest level of education earned by the student’s 

father; how far the student intends to advance in school; how sure the student was of graduating 

high school; how many hours the student spent doing homework per week; how many hours per 

week the student worked for pay; the number of cigarettes smoked per day; the student’s ability 

group for mathematics; the student’s grades for math/science from 6th to 8th grade; whether the 

student intended to attend a private non-religious high school; ACT math scores; SAT math 

scores; the student’s base year mathematics quartile standing; and the number of students in the 

free lunch program at the student’s school.   
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Table 7.7  Effect of Significant Predictors of STEM vs. Sub-4Yr Degree 

Variable Description 

Effect on 
Probability 
of STEM 

Intercept N/A Negative 
BY2XMQro Mathematics Quartile Positive 
BYHOMEWKro # of Hours Spent on Homework per Week Positive 
BYLEPrb Limited English Proficiency Composite Negative 
BYP65Aro Family Rule About Child Maintaining Grade Avg. Positive 
BYP69ro How Often Parent Helps Child with Homework Negative 
BYP76ro How Far in School Parent Expects Child To Go Positive 
BYS14rPvRel H.S. Student Plans to Attend: Private Religious Positive 
BYS34Arb Father's Highest Level of Education: College or Not Positive 
BYS43ro # of Cigarettes Student Smokes per Day Positive 
BYS45ro How Far In School Do You Think You Will Get Positive 
BYS46ro How Sure That You Will Graduate from H.S. Negative 
BYS53ro # of Hrs Student Works for Pay per Week Negative 
BYS60Aro Student's Ability Group for Mathematics  Positive 
BYS81Bro Math Grades from Grade 6 Until Now Positive 
BYS81Cro Science Grades from Grade 6 Until Now Positive 
BYSC16Arc # of Students in Free Lunch Program Negative 
F2RACTMro ACT (Math) Positive 
F2RSATMro  Scholastic Aptitude Test (Mathematics) Positive 
F4RACE2rAs  Race of Student: Asian Positive 
F4RACE2rBl  Race of Student: African-American Positive 
F4SEXrb  Sex of Student - binary (1 = Female) Negative 

 

Figure 7.5 shows that very good levels of correct STEM predictions can be achieved with 

correspondingly low levels of incorrect STEM predictions for the STEM vs. Sub-4Yr Degree 

model.   
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Figure 7.5  Effect of Significant Predictors of STEM vs. Sub-4Yr Degree 

7.1.5 STEM vs. No Degree 

The logistic regression model for STEM vs. No Degree found several variables to be statistically 

significant predictive factors.  The AUC value for the associated ROC curve was 0.919 

indicating the fitted model possessed outstanding ability to discriminate between these two 

outcomes.  Table 7.8 lists the significant predictors.  The significant variables were Asian race; 

language minority status; having a family rule about maintaining grade point average; having 

family rules about the student’s television watching habits; the highest levels of education earned 

by the student’s father and mother; how far the student intends to advance in school; how sure 

the student was of going further than high school; how many hours per week the student worked 

for pay; the student’s grades for math, science and English from 6th to 8th grade; ACT English 

and math scores; SAT math and verbal scores; the student’s base year mathematics and science 

quartile standing; family composition; and the number of students in remedial math at the 

student’s school.   
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Table 7.8  Effect of Significant Predictors of STEM vs. No Degree 

Variable Description 

Effect on 
Probability 
of STEM 

Intercept N/A Negative 
BY2XMQro Mathematics Quartile Positive 
BY2XSQro Science Quartile Positive 
BYFCOMPr1 Family Composition: Mother & Male Guardian Negative 
BYLMrb    Language Minority Composite Negative 
BYP64Bro Family Rule re How Early/Late Child Watches TV Negative 
BYP64Cro Family Rule re How Many Hrs Child Watches TV Positive 

BYP64Dro 
Family Rule re How Many Hrs on School Days Child 
Watches TV Negative 

BYP65Aro Family Rule About Child Maintaining Grade Avg. Positive 
BYS34Aro Father's Highest Level of Education - ordinal Positive 
BYS34Brb Mother's Highest Level of Education: College or Not Positive 
BYS45ro How Far In School Do You Think You Will Get Positive 
BYS47ro How Sure Student Is To Go Further Than H.S.  Negative 
BYS53ro # of Hrs Student Works for Pay per Week Negative 
BYS81Aro English Grades from Grade 6 Until Now Positive 
BYS81Bro Math Grades from Grade 6 Until Now Positive 
BYS81Cro Science Grades from Grade 6 Until Now Positive 
BYSC16Brc # of Students in Remedial Reading Negative 
F2RACTEro ACT (English Score) Negative 
F2RACTMro ACT (Math) Positive 
F2RSATMro  Scholastic Aptitude Test (Mathematics) Positive 
F2RSATVro Scholastic Aptitude Test (Verbal) Negative 
F4RACE2rAs  Race of Student: Asian Positive 

 

Figure 7.6 shows that very good levels of correct STEM predictions can be achieved with 

correspondingly low levels of incorrect STEM predictions for the STEM vs. No Degree model.   
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Figure 7.6  Sensitivity vs. (1-Specificity) for STEM vs. No Degree model 

7.1.6 STEM vs. Other Degree 

The logistic regression model for STEM vs. Other 4 Year Degree was of particular interest in 

this research since previous education research often defines the opposite of achieving a STEM 

degree as earning another four year degree. The STEM vs. Other 4 Year Degree and the STEM 

vs. All Else models are the ones that most closely compare to the modeling done by prior 

researchers.   

The STEM vs. Other 4 Year Degree model found several variables to be statistically 

significant predictive factors.  The AUC value for the associated ROC curve was 0.742 

indicating the fitted model possessed acceptable ability to discriminate between the outcome of 

earning a STEM degree vs. earning another four year degree in a STEM-Related or Non-STEM 

major.  The students earning four year degrees were more similar to one another so it was 

expected that this model would produce results similar to those of the STEM vs STEM-Related 

and STEM vs. Non-STEM models discussed earlier.  Table 7.9 lists the significant predictors.  
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The significant variables were gender, Asian race; overall base year math proficiency; family 

composition;  whether the student planned to attend a private non-religious high school;  the 

student’s ability group for mathematics; the student’s grades for math from 6th to 8th grade; ACT 

English and math scores; and the student’s SAT math and verbal scores.   

Table 7.9  Effect of Significant Predictors of STEM vs. Other Degree 

Variable Description 

Effect on 
Probability 
of STEM 

Intercept N/A Negative 
BY2XMPROro    Overall Math Proficiency Positive 
BY2XSQro Science Quartile Positive 
BYFCOMPr5 Family Composition: Other Relative/Nonrelative Positive 
BYS14rPvNRel H.S. Student Plans to Attend: Private Nonreligious Negative 
BYS60Aro Student's Ability Group for Mathematics  Positive 
BYS81Bro Math Grades from Grade 6 Until Now Positive 
F2RACTEro ACT (English Score) Negative 
F2RACTMro ACT (Math) Positive 
F2RSATMro  Scholastic Aptitude Test (Mathematics) Positive 
F2RSATVro Scholastic Aptitude Test (Verbal) Negative 
F4RACE2rAs  Race of Student: Asian Positive 
F4SEXrb  Sex of Student - binary (1 = Female) Negative 

 

Figure 7.7 shows the resulting ROC curve from plotting sensitivity vs. (1 – specificity) 

for the STEM vs. Other 4 Year Degree model when applied to the test data.  The graph shows 

that acceptable levels of correct STEM predictions can be achieved with fair levels of incorrect 

Other Degree predictions for the STEM vs. Other 4 Year Degree model.  As expected, the ROC 

curve for this model was similar to those for the STEM vs. STEM-Related and STEM vs. Non-

STEM models. 
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Figure 7.7  Sensitivity vs. (1-Specificity) for STEM vs. Other 4 Year Degree model 

7.1.6.1 Analyzing Predictive Accuracy by Cutpoint 

In examining the sensitivity of the model vs. its specificity for different cutpoints in 

discriminating between the outcomes, it appears that the optimization of both is achieved with a 

probability cutpoint between 0.1 and 0.2.  This is illustrated in Figure 7.8.  Note that this assumes 

that the cost of a proposed intervention program would lead to a policy of balancing sensitivity 

vs. specificity.  If the goal were simply to maximize the number of potential STEM students that 

were reached, then the cutpoint could be chosen to identify the largest group of students the 

budget allocation would permit. 
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Figure 7.8  Sensitivity vs. Specificity by Cutpoint for STEM vs. Other 4 Year Degree 

 

Exploring the accuracy of the model for these values we can examine the incorrect 

predictions to determine if the model is more likely to err in the case of one educational outcome 

or another.  A total of 3,899 students out of the 11,328 in the sample earned four year degrees 

with 738 of them in STEM, 1,077 in STEM-Related, and 2,084 in Non-STEM topics.  After 70% 

of the records were used to fit the model the remaining 30% of the data (1,169 records) was used 

to test the model.  The test data contained 221 students with a STEM outcome and 948 students 

with an Other Degree outcome.   

If a cutpoint of 0.20 is used then of the 1,169 students in the test data, 273 were 

incorrectly predicted to have a STEM outcome and 126 were correctly predicted to have a STEM 

outcome.  Of these 273 Other Degree students 184 (67.3%) actually achieved a Non-STEM 

degree while the remaining 89 (32.6%) achieved a STEM-Related degree.  These proportions 

were similar if the cutpoint was set to predict a STEM degree if the estimated probability were 

greater than or equal to 0.15.  In that case, 434 Other Degree students were incorrectly predicted 

to have a STEM degree while 160 STEM students were correctly predicted to have that outcome.  
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Of the 434 incorrect STEM predictions 282 (65.0%) actually earned a Non-STEM degree and 

the remaining 152 (35.0%) achieved a STEM-Related degree. 

The breakdown of the incorrect STEM predictions is not unexpected.  The 1,077 STEM-

Related and 2,084 Non-STEM students in the total sample represent 34.1% and 65.9% of the 

Other Degree category, respectively.  This indicates that the STEM vs. Other Degree model 

incorrectly predicted the STEM-Related and Non-STEM students to have a STEM outcome at a 

roughly even rate.  So if a student was incorrectly predicted to be STEM, this error was as likely 

to be made with a STEM-Related student as it was a Non-STEM student.  The total number of 

incorrect STEM predictions closely matched the proportions of STEM-Related and Non-STEM 

students in the Other Degree sample.   

7.1.7 Degree vs. Non-Degree 

The logistic regression model for 4 year Degree vs. Non- 4 year Degree found several variables 

to be statistically significant predictive factors.  The AUC value for the associated ROC curve 

was 0.882 indicating the fitted model possessed excellent ability to discriminate between these 

two outcomes.  Table 7.10 lists the variables found to be significant predictors for this model.  

The significant variables include history and mathematics quartile; family composition 

composites; number of hours spent on homework per week; language minority composite; 

parental expectations for student achievement; frequency of parental discussions with child about 

future plans; number of risk factors for dropping out; the type of high school the student 

expected to attend; number of siblings; highest educational level of parents; student expectations 

of academic advancement; number of hours worked per week; English, math , & science grades; 

ACT math and science scores; SAT math score; Asian or Hispanic race; gender; and school 

characteristics of socioeconomic status and language minority percentage.  In contrast to most of 
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the STEM models, sex was associated with a positive effect on the probability of a degree.  This 

means female students were predicated to have a higher probability of achieving a four year 

degree.   

Table 7.10  Effect of Significant Predictors of Degree vs. Non-Degree 

Variable Description 

Effect on 
Probability 
of Degree 

Intercept N/A Negative 
BY2XHQro History/Cit/Geog Quartile Positive 
BY2XMQro Mathematics Quartile Positive 
BYFCOMPr1 Family Composition: Mother & Male Guardian Negative 
BYFCOMPr5 Family Composition: Other Relative/Nonrelative Negative 
BYHOMEWKro # of Hours Spent on Homework per Week Positive 
BYLMrb    Language Minority Composite Negative 
BYP68ro How Often Parent Talks To Child re Post H.S. Plans Negative 
BYP76ro How Far in School Parent Expects Child To Go Positive 
BYRISKro # of BY Risk Factors for Dropping Out of School Negative 
BYS14rPvNRel H.S. Student Plans to Attend: Private Nonreligious Positive 
BYS14rPvRel H.S. Student Plans to Attend: Private Religious Positive 
BYS32ro Number of Siblings Student Has Negative 
BYS34Arb Father's Highest Level of Education: College or Not Positive 
BYS34Brb Mother's Highest Level of Education: College or Not Positive 
BYS45ro How Far In School Do You Think You Will Get Positive 
BYS46ro How Sure That You Will Graduate from H.S. Negative 
BYS47ro How Sure Student Is To Go Further Than H.S.  Negative 
BYS48Aro How Far in School the Student's Father Wants Him/Her To Go Positive 
BYS53ro # of Hrs Student Works for Pay per Week Negative 
BYS81Aro English Grades from Grade 6 Until Now Positive 
BYS81Bro Math Grades from Grade 6 Until Now Positive 
BYS81Cro Science Grades from Grade 6 Until Now Positive 
BYSC16Arc # of Students in Free Lunch Program Negative 
BYSC16Drc # of Students in Bilingual Education Positive 
BYSC16Erc # of Students in English as 2nd Language Positive 
F2RACTMro ACT (Math) Positive 
F2RACTSro  ACT (Science Reasoning) Negative 
F2RSATMro  Scholastic Aptitude Test (Mathematics) Positive 
F4RACE2rAs  Race of Student: Asian Positive 
F4RACE2rHi  Race of Student: Hispanic Negative 
F4SEXrb  Sex of Student - binary (1 = Female) Positive 

 

Figure 7.9 shows that good levels of correct four year Degree predictions can be achieved 

with correspondingly modest levels of incorrect Degree predictions for the Degree vs. Non-

Degree model. 
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Figure 7.9  Sensitivity vs. (1-Specificity) for Degree vs. Non-Degree model 

7.1.8 STEM-Related vs. Non-STEM 

The logistic regression model for STEM-Related vs. Non-STEM found few variables to be 

statistically significant predictive factors.  The AUC value for the associated ROC curve was 

0.550 indicating the fitted model possessed negligible ability to discriminate between these two 

outcomes.  The significant variables were language minority composite; whether the student 

intended to attend a private non-religious high school; and the student’s grades for math from 6th 

to 8th grade.  The significant variables and their associated effect on the model’s probability of a 

STEM-Related outcome are shown in Table 7.11. 

Table 7.11  Effect of Significant Predictors of STEM-Related vs. Non-STEM 

Variable Description 

Effect on 
Probability 
of STEM-
Related 

Intercept N/A Positive 
BYLMrb    Language Minority Composite Negative 
BYS14rPvNRel H.S. Student Plans to Attend: Private Nonreligious Negative 
BYS81Bro Math Grades from Grade 6 Until Now Positive 
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Figure 7.10 shows that the model is about as likely to predict a STEM-Related outcome 

as a Non-STEM outcome.  The model possesses very little ability to correctly discriminate 

between the two educational outcomes.  This is a very interesting result.   

Consider that the STEM vs. STEM-Related, STEM vs. Non-STEM, and STEM vs. Other 

4 Year Degree models possessed acceptable predictive accuracy.  The finding that the STEM-

Related vs. Non-STEM model had almost no predictive ability suggests that the STEM and 

STEM-Related students are more dissimilar than the STEM-Related and Non-STEM students.  

Therefore, if the STEM-Related category were to be discontinued it would make more sense to 

reclassify those students as Non-STEM rather than STEM. 
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Figure 7.10  Sensitivity vs. (1-Specificity) for STEM-Related vs. Non-STEM model 

7.1.9 STEM-Related vs. Sub-4 Yr Degree 

The model fitted from the 76 recoded BY and F2 standardized score variables was significant 

with an AUC value of 0.885 indicating excellent predictive discrimination between the STEM-
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Related and Sub-4 Year Degree outcomes.  The significant variables were history and 

mathematics quartile; family composition; number of hours spent on homework per week; 

language minority composite; how far the parents expected their child to advance; the number of 

risk factors for dropping out; the type of high school the student expected to attend; the student’s 

number of siblings; highest educational level of the parents; the number of hours per week the 

student watches television on weekdays; how far the student intends to advance in school; how 

far the student’s father expects the student to advance; number of hours the student works per 

week for pay; the student’s English and math grades from 6th to 8th grade; ACT reading score; 

SAT math scores; gender; and Hispanic race.  The significant variables and their associated 

effect on the model’s probability of a STEM-Related outcome are shown in Table 7.12.   

Table 7.12  Effect of Significant Predictors of STEM-Related vs. Sub-4Yr Deg 

Variable Description 

Effect on 
Probability 
of STEM-
Related 

Intercept N/A Negative 
BY2XHQro History/Cit/Geog Quartile Positive 
BY2XMQro Mathematics Quartile Positive 
BYFCOMPr1 Family Composition: Mother & Male Guardian Negative 
BYHOMEWKro # of Hours Spent on Homework per Week Positive 
BYLMrb    Language Minority Composite Negative 
BYP76ro How Far in School Parent Expects Child To Go Positive 
BYRISKro # of BY Risk Factors for Dropping Out of School Negative 
BYS14rPvNRel H.S. Student Plans to Attend: Private Nonreligious Negative 
BYS14rPvRel H.S. Student Plans to Attend: Private Religious Positive 
BYS17rb Student Speaks Any Lang. Other Than English Before School Positive 
BYS32ro Number of Siblings Student Has Negative 
BYS34Arb Father's Highest Level of Education: College or Not Positive 
BYS34Brb Mother's Highest Level of Education: College or Not Positive 
BYS42Aro # of Hrs Student Watches TV on Weekdays Negative 
BYS47ro How Sure Student Is To Go Further Than H.S.  Negative 
BYS48Aro How Far in School the Student's Father Wants Him/Her To Go Positive 
BYS53ro # of Hrs Student Works for Pay per Week Negative 
BYS81Aro English Grades from Grade 6 Until Now Positive 
BYS81Bro Math Grades from Grade 6 Until Now Positive 
F2RACTRro ACT (Reading) Negative 
F2RSATMro  Scholastic Aptitude Test (Mathematics) Positive 
F4RACE2rHi  Race of Student: Hispanic Negative 

 



Figure 7.11 shows that high levels of correct STEM-Related predictions can be achieved 

with relatively low levels of incorrect STEM-Related predictions for the STEM-Related vs. Sub-

4 Year Degree model.   
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Figure 7.11  Sensitivity vs. (1-Specificity) for STEM-Related vs. Sub-4Yr Deg model 

7.1.10 STEM-Related vs. No Degree 

The model fitted from the 76 recoded BY and F2 standardized score variables was significant 

with an AUC value of 0.887 indicating excellent predictive discrimination between the STEM-

Related and Sub-4 Year Degree outcomes.  The significant variables were history and 

mathematics quartile; family composition composite variables; language minority composite; 

how often the parents assist the student with homework; the number of risk factors for dropping 

out; the type of high school the student expected to attend; the student’s number of siblings; the 

father’s highest educational attainment; the number of cigarettes the student smokes per; how far 

the student intends to advance in school; how far the student expects to advance in school; how 

sure the student is to go further than high school; number of hours the student works per week 

for pay; the student’s English and math grades from 6th to 8th grade; % of white non-Hispanic 8th 
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graders in the student’s school; % of 8th graders at the student’s school in single parent families; 

ACT reading score; SAT math scores; Hispanic race; and gender.  The significant variables and 

their associated effect on the model’s probability of a STEM-Related outcome are shown in 

Table 7.13.   

Table 7.13  Effect of Significant Predictors of STEM-Related vs. No Degree 

Variable Description 

Effect on 
Probability of 

STEM-Related 
Intercept N/A Negative 
BY2XHQro History/Cit/Geog Quartile Positive 
BY2XMQro Mathematics Quartile Positive 
BYFCOMPr1 Family Composition: Mother & Male Guardian Negative 
BYFCOMPr2 Family Composition: Father & Female Guardian Negative 
BYLMrb    Language Minority Composite Negative 
BYP69ro How Often Parent Helps Child with Homework Positive 
BYRISKro # of BY Risk Factors for Dropping Out of School Negative 
BYS14rPvNRel H.S. Student Plans to Attend: Private Nonreligious Positive 
BYS14rPvRel H.S. Student Plans to Attend: Private Religious Positive 
BYS32ro Number of Siblings Student Has Negative 
BYS34Arb Father's Highest Level of Education: College or Not Positive 
BYS43ro # of Cigarettes Student Smokes per Day Negative 
BYS45ro How Far In School Do You Think You Will Get Positive 
BYS47ro How Sure Student Is To Go Further Than H.S.  Negative 
BYS53ro # of Hrs Student Works for Pay per Week Negative 
BYS81Aro English Grades from Grade 6 Until Now Positive 
BYS81Bro Math Grades from Grade 6 Until Now Positive 
BYSC13Erc % of White Non-Hispanic 8th Graders Positive 
BYSC14ro % of 8th Graders In Single Parent Family Negative 
F2RACTRro ACT (Reading) Negative 
F2RSATMro  Scholastic Aptitude Test (Mathematics) Positive 
F4RACE2rAs  Race of Student: Asian Positive 
F4SEXrb  Sex of Student - binary (1 = Female) Positive 

 

Figure 7.12 shows that high levels of correct STEM-Related predictions can be achieved 

with relatively low levels of incorrect STEM-Related predictions for the STEM-Related vs. No 

Degree model.   



STEMrel vs No Degree ROC Curve

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.20 0.40 0.60 0.80 1.00

(1 - Specificity)

Se
ns

iti
vi

ty

 

Figure 7.12  Sensitivity vs. (1-Specificity) for STEM-Related vs. No Degree model 

 

Other models including Non-STEM vs. Sub 4 Yr Degree, Non-STEM vs. No Degree, and 

Sub 4 Yr Deg vs. No Degree were explored.  However, the focus of the research was on STEM 

and STEM-Related students, and the discussion of the other models was not of sufficient interest 

to warrant its inclusion.   

7.2 LOGISTIC REGRESSION PREDICTIONS FOR REVISED DATASET 

CLASSIFICATIONS 

After the sample data was classified by STEM track departure type for survival analysis, several 

logistic regression models were re-fitted.  The same random number seeds were used, but the 

resulting samples were slightly different since 200 records had been excluded from the analysis 

and the stratification of STEM vs. another outcome was based on the variable “STEM” initially 

and “STEM_Outcome” in the revised dataset.  This was explained in greater detail in Section 
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6.3.  The re-fitted models were for STEM vs. STEM-Related and STEM vs. All Else.  Since 

these represented the least and most disparate comparisons, the results of re-fitting these models 

were judged to be sufficient to determine the effects of employing a new data classification 

approach.  The results indicated that the models remained quite stable and did not change 

appreciably from the models created by with the initial dataset classification.   

The STEM vs. All Else model had an AUC value of 0.852 for the Original Seed 

indicating excellent predictive ability between the STEM and All Else outcomes.  The AUC for 

the other seeds ranged from 0.845 to 0.864 so the results were quite consistent across the 

multiple random samples.  The ROC curve for the test sample using the original seed is shown in 

Figure 7.13.  This model was able to correctly predict 50% of the STEM outcomes in 

conjunction with a 10% incorrect STEM prediction.  The model was also able to correctly 

predict 85% of the STEM outcomes in conjunction with a 32% incorrect STEM prediction.  

These results are comparable to those obtained with the initial dataset classification.  Equivalent 

values of Sensitivity and Specificity for this model were achieved at 76.6% when the probability 

cutpoint for prediction was set to 0.06.  This can be seen in Figure 7.14.  Table 7.14 summarizes 

the significant variables for this model across the eleven different random number seeds used to 

create the fit and test sample datasets.   
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Figure 7.13  Sensitivity vs. (1-Specificity) for STEM vs. All Else model utilizing the Survival 
Analysis Classification Dataset 

 

STEM vs ALL Else Sensitivity vs. Specificity by Cutpoint SA data w/ Original Seed
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Figure 7.14  Sensitivity vs. Specificity by Cutpoint for STEM vs. All Else model utilizing the 
Survival Analysis Classification Dataset 
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Table 7.14  Coefficients of Logistic Regression Models for STEM vs. All Else for the Revised Dataset Classification 

Variable Description 
Original 

Seed Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8 Seed 9 Seed 10 
Intercept n/a -4.8602 -5.2736 -5.0606 -8.8106 -4.9600 -5.3720 -4.7395 -4.8744 -4.7164 -4.8951 -4.7939 
BY2XMPROro    Overall Math Proficiency 0.1132 0.1419 0.1401 0.1226 0.1541 0.1637  0.1253    
BY2XMQro Mathematics Quartile          0.2194 0.1808 
BY2XRPROro Overall Reading Proficiency  -0.1679          
BY2XRQro Reading Quartile   -0.1561         
BY2XSQro Science Quartile 0.2339 0.2613 0.3407 0.2353 0.3189 0.2158 0.2904 0.2750 0.2980 0.2258 0.2081 
BYFAMINCro Yearly Family Income      -0.0419      

BYFCOMPr1 
Family Composition: Mother & male 
guardian -0.4446 -0.5057 -0.5327  -0.5905 -0.6750 -0.5318 -0.5678 -0.7844 -0.5449  

BYFCOMPr3 Family Composition: Mother      -0.5303   -0.4060   
BYLMrb    Language Minority Composite -2.7061 -2.7296 -3.3144  -2.7625 -2.8460 -2.1188 -2.7424 -4.3646 -2.4932 -3.8435 

BYP64Bro 
Family rule re how early/late child 
watches TV   0.3296         

BYP65Aro Family rule about maintaining grade avg. 0.2246        0.1943   

BYP68ro 
How often parent talks to child re post 
H.S. plans  -0.2012 -0.1955    -0.2096  -0.2439  -0.1661 

BYP76ro 
How far in school parent expects child to 
go  0.0808 0.0579   0.0734 0.0869  0.0503  0.0744 

BYPARMARr1 Parents’ Marital Status: Divorced  -0.7168      -0.4318  -0.4443 -0.6093 

BYRISKro 
# of BY Risk Factors for Dropping Out of 
School -0.2066  -0.2888  -0.1874  -0.2679     

BYS14rPvNRel 
HS Student Plans to Attend: Private 
Nonreligious  -0.7298 -0.6060  -0.6227  -0.4638 -0.5574 -0.5819 -0.4595 -0.5968 

BYS14rPvRel 
HS Student Plans to Attend: Private 
Religious 0.3428           

BYS34Arb 
Father's Highest Level of Education: 
College or not 0.2186 0.2916  0.2443 0.3064 0.2213   0.3038 0.2304 0.2592 

BYS42Aro # of hrs Student watches TV on weekdays  -0.0783     -0.0651     
BYS43ro # of Cigarettes Student Smokes per Day       0.3260  0.3359   

BYS45ro 
How far in school do you think you will 
get 0.2305 0.2666 0.3558 0.3026 0.3070 0.2887 0.2370 0.3006 0.3795 0.2156 0.2354 

BYS46ro How sure that you will graduate from H.S. -0.5709  -0.4770  -0.5043  -0.4769 -0.5156  -0.4777  
BYS53ro # of Hrs student works for pay per week -0.1551 -0.1383  -0.1088 -0.1078   -0.1143  -0.1221 -0.1232 
BYS60Aro Student's ability group for Mathematics  0.2087 0.1958 0.1636 0.2087  0.1868 0.2172 0.2341 0.2280 0.1896 0.2330 
BYS60Bro Student's ability group for Science -0.0989 -0.1320 -0.1019 -0.1193  -0.1322 -0.1674 -0.1389 -0.1337 -0.1194 -0.1168 
BYS81Bro Math  grades from Grade 6 until now 0.3401 0.3720 0.3361 0.3570 0.3790 0.2545 0.2493 0.2921 0.4043 0.2558 0.4109 
BYS81Cro Science grades from Grade 6 until now 0.2921 0.3237 0.3331 0.3648 0.2394 0.2569 0.2748 0.2922 0.3100 0.3339 0.2897 
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Table 7.14 (continued). 

Variable Description 
Original 

Seed Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8 Seed 9 Seed 10 
F2RACTEro ACT (English Score) -0.0778 -0.0842 -0.0647 -0.0703 -0.0663 -0.0693 -0.0640 -0.0690 -0.0647 -0.0772 -0.0541 
F2RACTMro ACT (Math) 0.0967 0.1091 0.0868 0.0947 0.0874 0.0927 0.0899 0.0944 0.0860 0.0960 0.0741 

SATQUANro 
Scholastic Aptitude Test (Mathematics) 
expanded 0.0035 0.0014 0.0031 0.0038 0.0034 0.0047 0.0043 0.0031 0.0037 0.0033 0.0032 

SATVERro 
Scholastic Aptitude Test (Verbal) 
expanded -0.0026  -0.0018 -0.0029 -0.0027 -0.0037 -0.0032 -0.0021 -0.0027 -0.0021 -0.0021 

F4RACE2rAs  Race of student: Asian 0.6968 0.5047 0.6867 0.4720 0.4228 0.5754 0.6377 0.6238 0.3974 0.5867 0.4868 
F4RACE2rBl  Race of student: African-American 0.6558 0.6621 0.6032 0.4644  0.4388 0.5628 0.4592 0.5752 0.5471 0.6136 
F4SEXrb  Sex of student - binary (1 = Female) -0.6007 -0.7214 -0.6506 -0.6521 -0.5958 -0.5780 -0.5655 -0.6268 -0.6082 -0.8168 -0.7142 
AUC or "C" Area under the ROC Curve 0.852 0.859 0.864 0.855 0.847 0.855 0.854 0.845 0.859 0.852 0.854 
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A visual comparison of Table 7.1 and Table 7.14 reveals that the sets of variables which 

were significant predictors for at least one fit data sample are virtually identical.  The variables 

that had a positive effect on the probability of a STEM outcome in the initial classification 

scheme also have a positive effect under the revised classification scheme.  Variables that 

previously exhibited a negative effect do the same under the revised classification scheme.  The 

effect by variable is shown in Table 7.15.  The estimated coefficients for the covariates are also 

similar between the two classification methods.  The data classification method based on the 

survival analysis sample of 11,128 students grouped by departure type produced logistic 

regression models that are more consistent across the random samples in terms of the sets of 

significant predictors.  These findings combined with the ROC curves produced by the models 

for the revised dataset suggest that the classification of student outcomes for the survival analysis 

module is acceptable.  The excellent results obtained initially were not degraded by using the 

revised classification method.  
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Table 7.15  Effect of Consistently Significant Predictors of STEM vs. All Else for Revised 
Dataset Classification 

 

Variable Description 

Effect on 
Probability of 

STEM 
Intercept N/A, constant in logistic regression model equation Negative 
BY2XMPROro    Overall Math Proficiency Positive 
BY2XSQro Science Quartile Positive 
BYFCOMPr1 Family Composition: Mother & Male Guardian Negative 
BYLMrb    Language Minority Composite Negative 
BYP68ro How Often Parent Talks To Child re Post H.S. Plans Negative 
BYP76ro How Far in School Parent Expects Child To Go Positive 
BYPARMARr1 Parents’ Marital Status: Divorced Negative 
BYS14rPvNRel H.S. Student Plans to Attend: Private Nonreligious Negative 
BYS34Arb Father's Highest Level of Education: College or Not Positive 
BYS45ro How Far In School Do You Think You Will Get Positive 
BYS53ro # of Hrs Student Works for Pay per Week Negative 
BYS60Aro Student's Ability Group for Mathematics  Positive 
BYS60Bro Student's Ability Group for Science Negative 
BYS81Bro Math Grades from Grade 6 Until Now Positive 
BYS81Cro Science Grades from Grade 6 Until Now Positive 
F2RACTEro ACT (English Score) Negative 
F2RACTMro ACT (Math) Positive 
SATQUANro  Scholastic Aptitude Test (Mathematics) Positive 
SATVERro Scholastic Aptitude Test (Verbal) Negative 
F4RACE2rAs  Race of Student: Asian Positive 
F4RACE2rBl  Race of Student: African-American Positive 
F4SEXrb Sex of student – binary (1 = Female) Negative 

 

Another question that arose was how this model would perform if the standardized test 

scores were not included in the model fitting.  The STEM vs. All Else model fitted with solely 

BY variables and the revised dataset classification was examined for the original seed.  The 

resulting AUC value for the fitted model was 0.833 as opposed to 0.852 for model including the 

standardized test scores from F2.  Table 7.16 compares the models fitted with and without the 

standardized test scores for the original seed.  The set of significant variables and estimated 

coefficients of the fitted model are very similar other than the absence of the SAT and ACT test 

score variables.   
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Table 7.16  Coefficients of Logistic Regression Models for STEM vs. All Else for the Revised 
Dataset Classification Original Seed with and without F2 Standardized Test Scores 
 

Recoded Var Variable Description 
Original Seed 
w/ std. tests 

Original Seed 
w/o std. tests 

Intercept n/a -4.8602 -4.6849 
BY2XMPROro   Overall Math Proficiency 0.1132 0.1838 
BY2XSQro Science Quartile 0.2339 0.2333 
BYFCOMPr1 Family Composition: Mother & male guardian -0.4446 -0.4662 
BYLMrb    Language Minority Composite -2.7061 -3.2829 
BYP65Aro Family rule about maintaining grade avg. 0.2246 0.2398 
BYPARMARr3 Parents’ Marital Status: Separated  0.7215 
BYRISKro # of BY Risk Factors for Dropping Out of School -0.2066 -0.2674 
BYS14rPvRel HS Student Plans to Attend: Private Religious 0.3428 0.4342 

BYS34Arb 
Father's Highest Level of Education: College or 
not 0.2186 0.3006 

BYS45ro How far in school do you think you will get 0.2305 0.2743 
BYS46ro How sure that you will graduate from H.S. -0.5709 -0.6566 
BYS53ro # of Hrs student works for pay per week -0.1551 -0.1544 
BYS60Aro Student's ability group for Mathematics  0.2087 0.2373 
BYS60Bro Student's ability group for Science -0.0989 -0.1003 
BYS81Bro Math  grades from Grade 6 until now 0.3401 0.4263 
BYS81Cro Science grades from Grade 6 until now 0.2921 0.3127 
F2RACTEro ACT (English Score) -0.0778 N/A 
F2RACTMro ACT (Math) 0.0967 N/A 
F4RACE2rAs  Race of student: Asian 0.6968 0.8879 
F4RACE2rBl  Race of student: African-American 0.6558 0.5592 
F4SEXrb  Sex of student - binary (1 = Female) -0.6007 -0.6937 
SATQUANro Scholastic Aptitude Test (Mathematics) expanded 0.0035 N/A 
SATVERro Scholastic Aptitude Test (Verbal) expanded -0.0026 N/A 
AUC or “C” Area under the ROC Curve 0.852 0.833 

 

Figure 7.15 shows the comparison of the ROC Curves obtained when the fitted models 

were applied to the test data for the original seed.  The ROC Curve for the model utilizing the 

standardized test scores has a slightly steeper gradient and encompasses more area under the 

curve than that of the model without the standardized test scores.  However, the curves are very 

similar.  This suggests that using variables obtained in the 8th grade produces a model that has 

slightly less predictive accuracy than a model which also includes the SAT and ACT test scores 

as potential predictor variables.   
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Figure 7.15  Sensitivity vs. (1-Specificity) for STEM vs. All Else model comparing the models 
utilizing the Survival Analysis Classification Dataset with and without Standardized Test Scores 

 

The STEM vs. STEM-Related model had an AUC value of 0.722 for the original seed 

indicating good predictive ability between the STEM and STEM-Related outcomes.  The AUC 

for the other seeds ranged from 0.699 to 0.732 so the results were consistent across the multiple 

random samples.  The ROC curve for the test sample using the original seed is shown in Figure 

7.16.  Equivalent values of Sensitivity and Specificity for this model were achieved at 62.3% 

when the probability cutpoint for prediction was set to 0.40.  This can be seen in Figure 7.17.  

The equivalent values for the other seeds ranged from approximately 60.4% to 65.4%.   

Table 7.17 summarizes the significant variables for this model across the eleven different 

random number seeds used to create the fit and test sample datasets.   
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Figure 7.16  Sensitivity vs. (1-Specificity) for STEM vs. STEM-Related model utilizing the 
Survival Analysis Classification Dataset 
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Figure 7.17  Sensitivity vs. Specificity by Cutpoint for STEM vs. STEM-Related model utilizing 
the Survival Analysis Classification Dataset 
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Table 7.17  Coefficients for the Logistic Regression Models for STEM vs. STEM-Related for the Revised Dataset Classification 

Variable Description 
Original 

Seed Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8 Seed 9 Seed 10 
Intercept n/a -2.1054 -2.2206 -1.9501 -2.5305 -2.6152 -2.5799 -3.4455 -2.5924 -2.4288 -2.8537 -2.0914 
BY2XMPROro  Overall Math Proficiency   0.1716    0.1977 0.1480 0.1413 0.1647 0.1267 
BY2XRQro Reading Quartile -0.2171    -0.2406   -0.2767    
BY2XSQro Science Quartile 0.3311 0.2242  0.1546 0.3107 0.2168  0.3453 0.1762   

BYFCOMPr5 
Family Composition: Other 
Relative/Nonrelative 1.3040 1.5796      1.8331 1.5149 1.5637  

BYHMLANGro Home Language Background -0.1895           

BYP64Bro 
Family rule re how early/late child watches 
TV  0.6199          

BYP64Dro 
Family rule how many hrs on school days 
child watches TV  -0.4053          

BYP69ro 
How often parent helps child with 
homework   -0.1403 -0.1228        

BYPARMARr3 Parents’ Marital Status: Separated        1.1318   1.2539 

BYS14rPvNRel 
HS Student Plans to Attend: Private 
Nonreligious  -0.6051  -0.4951   -0.5699     

BYS43ro # of Cigarettes Student Smokes per Day 0.6046 0.6474 0.3679      0.6401 0.6713 0.4292 
BYS45ro How far in school do you think you will get       0.1644     
BYS53ro # of Hrs student works for pay per week     -0.1344       
BYS60Aro Student's ability group for Mathematics  0.1885 0.2161 0.1368  0.1312  0.2080  0.1363  0.2090 
BYS60Bro Student's ability group for Science  -0.1332     -0.1293     
BYS81Bro Math  grades from Grade 6 until now 0.2040   0.2515 0.2347 0.3652   0.2629 0.2309  
BYS81Cro Science grades from Grade 6 until now 0.2483 0.2678 0.2565 0.1961 0.2431  0.1670 0.3200  0.1891 0.3550 
BYSC13Erc % of White Non-Hispanic 8th Graders -0.0066 -0.0065 -0.0070 -0.0090 -0.0085 -0.0089  -0.0091 -0.0059 -0.0053 -0.0059 
BYSC15ro % of 8th Graders Limited English Proficient     -0.2769     -0.3228  
BYSC16Erc # of students in English as 2nd Language    -0.0057    -0.0041    
BYSC19rc Base Salary for Beginning Teacher w/ B.A.   0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  0.0001  
F2RACTMro ACT (Math)  0.0178 0.0177 0.0157 0.0166 0.0148 0.0154 0.0214 0.0120 0.0119 0.0139 
F2RACTSro  ACT (Science Reasoning) 0.0149           
F4RACE2rAs  Race of student: Asian    0.4295   0.5510 0.6624   0.6114 
F4RACE2rBl  Race of student: African-American       0.5774     
F4SEXrb  Sex of student - binary (1 = Female) -0.9327 -0.9302 -0.9800 -0.9936 -1.0265 -0.9639 -0.8932 -0.9571 -0.9528 -0.8861 -0.9818 

SATQUANro 
Scholastic Aptitude Test (Mathematics) 
expanded 0.0012 0.0009 0.0006 0.0009 0.0012 0.0008 0.0006 0.0009 0.0010 0.0025  

SATVERro Scholastic Aptitude Test (Verbal) expanded          -0.0022  
AUC or "C" Area under the ROC Curve 0.722 0.717 0.700 0.713 0.728 0.699 0.704 0.732 0.715 0.705 0.722 
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The positive or negative impact of the most frequently significant predictors across the 

samples was consistent with what was found in previous models.  The probability of a STEM 

outcome is enhanced by strong mathematical capability; good academic performance in math 

and science; and higher standardized test scores in mathematics.  The models created with the 

data reclassified for the survival analysis had comparable predictive ability to those created with 

the original classification scheme.  Overall, the predictive strength of the models was clearly 

stronger for the models where the two-outcome pairs were more divergent.    

7.3 INTEGRATED MODEL PREDICTIONS  

Integrated models were fitted to predict STEM. vs. All Else for the same eleven random number 

seeds so that the accuracy of the predictions with the integrated model could be directly 

compared to that of the logistic regression model.  ROC Curves were created to examine the 

sensitivity of the integrated model using the logistic regression and survival analysis linked in 

series.  The integrated model using these techniques in parallel was applied to the same random 

samples with cutpoints of 0.07 for the logistic regression portion and 0.50 for the survival 

analysis portion.  The cutpoint of 0.07 was based on a decision to balance the sensitivity and 

specificity of the logistic regression module when making a prediction that would be compared 

to the survival analysis module prediction.  The cutpoint of 0.50 for the survival analysis module 

was chosen to offer an optimistic prediction that students still on the STEM track would remain 

on it.  The combination of these cutpoints directed each module to predict a STEM outcome 

while balancing the probability of an incorrect prediction since a final STEM prediction would 

require both modules to agree.  This lowered the chance of a true STEM student being 



incorrectly predicted to have an All Else outcome because one of the two modules did not predict 

the student to have a STEM outcome.   

7.3.1 Integrated Model in Series Results 

Figure 7.18 shows the resulting ROC Curve for the integrated model fitted from the original seed 

applied to the test data sample in comparison to the ROC Curve for the logistic regression model.  

The ROC curves in this graph are plotted in a smoothed format just to show the comparison 

between them.  The curve for the integrated model is less steep than that of the revised logistic 

regression model indicating that its accuracy is weaker.  A sensitivity of 69.1% is achievable 

with a corresponding (1 - Specificity) value of approximately 26.9%.  This is acceptable 

discrimination ability, but it is not as precise as the 70.0% sensitivity with a corresponding (1 - 

Specificity) value of approximately 16.8% provided by the logistic regression model.  The 

logistic regression model created from the original seed fit data sample performed better when 

applied to the associated test data sample. 
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Figure 7.18  Sensitivity vs. (1-Specificity) for Integrated Model vs. the Logistic Regression 
Model for the Original Seed 
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Figure 7.19 shows the tradeoffs between sensitivity and specificity for the integrated 

model.  The point at which the values are equivalent is approximately 72% vs. the 77% in Figure 

7.14.  The findings for the other randomly chosen test datasets are very similar.   
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Figure 7.19  Sensitivity vs. Specificity by Cutpoint for the Integrated Model 

 

To determine if the survival analysis module alone would perform differently than the 

integrated model, a log-logistic model was fitted from the original seed fit dataset without using 

the logistic regression module’s estimated probability of a STEM outcome (LRprob_STEM) as a 

covariate.  Essentially this model relied upon the 76 covariates from the NELS dataset, the 

survival times, and the censored vs. observed status of the survival times to create the model.  

The survival analysis model alone did not perform better.  Figure 7.20 shows the resulting ROC 

Curve for the survival analysis model compared to that obtained for the logistic regression model 

when both were applied to the original seed test sample.  The ROC curves in this graph are also 

plotted in a smoothed format just to show the comparison between them.  The ROC curve for the 
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survival analysis model is flatter still than that depicted in Figure 7.18 for the integrated model 

indicating its accuracy was even weaker.  A sensitivity of 70.9% is achievable with a 

corresponding (1 - Specificity) value of approximately 30.4%.  This is less precise discrimination 

between the two outcomes than that offered by the integrated model or the logistic regression 

model. 

STEM vs. All Else ROC Curves for Survival 
Analysis Model vs. LR Model - Original Seed
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Figure 7.20  Sensitivity vs. (1-Specificity) for the Logistic Regression Model vs. the Survival 
Analysis Model without LR Module Input 

 

Figure 7.21 shows the tradeoffs between sensitivity and specificity for the survival 

analysis model.  The point at which the values are equivalent is approximately 69.5%.  This 

finding suggests that the logistic regression module integrated with the survival analysis module 

produces better results than the survival analysis module alone for this test sample.   
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STEM vs ALL Else Sensitivity vs. Specificity by Cutpoint for 
Survival Analysis Model w/o LR input - Original Seed
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Figure 7.21  Sensitivity vs. Specificity by Cutpoint for the Survival Analysis Module 

 

Table 7.18 lists the variables found to be significant predictors in the integrated model 

across the eleven different random number seeds used to create the fit and test sample datasets.  

Note that many of the same variables were also significant predictors in the logistic regression 

model.  However, several variables which described aspects of the students’ high schools were 

found to be significant predictors of survival on the STEM track beyond 7.25 years.  The 

LRprob_STEM variable was found to be a significant predictor for each of the 11 samples in 

which it was a potential covariate.  Since the integrated survival analysis module was fitting log-

logistic probability models a scale parameter was also estimated and shown in the table.  The 

table also shows the parameter estimates for the model fitted to the original seed sample without 

including the logistic regression model’s estimated probability of a STEM degree 

(LRprob_STEM) as a covariate.  This model was notably weaker because when applied to the 

same test data it provided lower values for sensitivity and specificity at the equivalence point 

 169 



 170 

than either the logistic regression model or the integrated model with LRprob_STEM as a 

covariate. 

 



Table 7.18  Integrated Model Parameters for STEM vs. All Else by Random Sample 

Variable or 
Parameter Description 

Original 
Seed w/o 
Log. Reg. 

Original 
Seed Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8 Seed 9 

Seed 
10 

Scale 
Scale parameter of log-
logistic model 0.2216 0.2185 0.2207 0.2206 0.2202 0.2203 0.2220 0.2197 0.2206 0.2211 0.2199 0.2188 

Intercept 
Intercept parameter of log-
logistic model 1.7878 1.8381 1.8072 1.7880 1.7702 1.6977 1.8005 1.8235 1.8689 1.7028 1.7985 1.7172 

BY2XHQro History/Cit/Geog Quartile 0.0201 0.0229 0.0232 0.0200  0.0143  0.0187 0.0203  0.0193 0.0224 
BY2XMQro Mathematics Quartile 0.0278 0.0256 0.0237 0.0266 0.0372 0.0276 0.0296 0.0182 0.0293 0.0367 0.0316 0.0281 
BY2XSQro Science Quartile      0.0119 0.0202 0.0138     

BYFCOMPr1 
Family Composition: Mother 
& male guardian  -0.0381  -0.0347  -0.0418 -0.0405 -0.0404  -0.0510 -0.0405  

BYFCOMPr3 Family Composition: Mother 0.0804 0.0674 0.0531 0.0519 0.0618 0.0763  0.0514   0.0520 0.0495 
BYHMLANGro Home Language Background -0.0269 -0.0244 -0.0246 -0.0331 -0.0302 -0.0286 -0.0209 -0.0310 -0.0273 -0.0281  -0.0395 

BYHOMEWKro 
# of Hours Spent on 
Homework per Week     0.0053        

BYLMrb    
Language Minority 
Composite  -0.1875 -0.1671 -0.1932 -0.2297  -0.2299 -0.1617 -0.1757  -0.3408  

BYP64Bro 
Family rule re how early/late 
child watches TV   -0.0219  -0.0352 -0.0357  -0.0264 -0.0354    

BYP64Dro 
Family rule how many hrs on 
school days child watches TV       -0.0161      

BYP68ro 
How often parent talks to 
child re post H.S. plans -0.0221 -0.0173 -0.0150     -0.0171 -0.0142 -0.0171  -0.0208 

BYP76ro 
How far in school parent 
expects child to go 0.0158 0.0143 0.0149 0.0110 0.0124 0.0122 0.0131 0.0159 0.0148 0.0125 0.0109 0.0149 

BYPARMARr5 
Parents’ Marital Status: 
Marriage-like relationship            -0.1033 

BYRISKro 
# of BY Risk Factors for 
Dropping Out of School -0.0620 -0.0564 -0.0487 -0.0599 -0.0494 -0.0686 -0.0403 -0.0598 -0.0377 -0.0391 -0.0476 -0.0547 

BYS14rPvNRel 
HS Student Plans to Attend: 
Private Nonreligious      -0.0850   -0.0643 -0.0613 -0.0470 -0.0667 

BYS14rPvRel 
HS Student Plans to Attend: 
Private Religious 0.0469 0.0538 0.0507 0.0437   0.0481 0.0443  0.0400 0.0422  

BYS20rb 
Language Student usually 
speaks now         -0.0611    

BYS32ro 
Number of siblings student 
has -0.0118 -0.0097  -0.0071   -0.0087 -0.0063    -0.0091 

BYS34Arb 
Father's Highest Level of 
Education: College or not 0.0433 0.0496 0.0445 0.0360 0.0579 0.0662 0.0419 0.0328 0.0341 0.0661 0.0481 0.0520 

BYS41ro 
Time spent after school with 
no adult present 0.0126 0.0134 0.0112 0.0166 0.0163 0.0120 0.0128 0.0193 0.0133 0.0107 0.0154 0.0118 

BYS43ro 
# of Cigarettes Student 
Smokes per Day       -0.0355     -0.0280 
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Table 7.18 (continued). 

Variable or 
Parameter Description 

Original 
Seed w/o 
Log. Reg. 

Original 
Seed Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8 Seed 9 

Seed 
10 

BYS45ro 
How far in school do you 
think you will get 0.0510 0.0552 0.0493 0.0544 0.0549 0.0493 0.0554 0.0523 0.0549 0.0544 0.0561 0.0483 

BYS46ro 
How sure that you will 
graduate from H.S. -0.0491 -0.0391 -0.0265 -0.0429 -0.0447 -0.0533 -0.0332 -0.0497 -0.0568 -0.0576 -0.0397 -0.0401 

BYS47ro 
How sure student is to go 
further than H.S.  -0.0478 -0.0360 -0.0358 -0.0298 -0.0345 -0.0371 -0.0263 -0.0260 -0.0341 -0.0357 -0.0318 -0.0380 

BYS53ro 
# of Hrs student works for pay 
per week  -0.0120 -0.0146 -0.0148 -0.0136 -0.0207 -0.0140 -0.0124 -0.0139  -0.0181 -0.0161 

BYS60Aro 
Student's ability group for 
Mathematics   0.0179 0.0212 0.0151 0.0169  0.0169 0.0231 0.0151 0.0142  0.0211 

BYS60Bro 
Student's ability group for 
Science  -0.0151 -0.0172 -0.0128 -0.0201 -0.0099 -0.0195 -0.0222 -0.0173 -0.0127 -0.0103 -0.0154 

BYS81Aro 
English grades from Grade 6 
until now 0.0200 0.0186 0.0199 0.0283 0.0259 0.0192 0.0237 0.0171 0.0254 0.0189 0.0241 0.0191 

BYS81Bro 
Math  grades from Grade 6 
until now      0.0102       

BYS81Cro 
Science grades from Grade 6 
until now  0.0167 0.0167 0.0141 0.0297 0.0133 0.0208 0.0237 0.0140 0.0149 0.0214 0.0147 

BYSC13Erc 
% of White Non-Hispanic 8th 
Graders -0.0006 -0.0005 -0.0005   -0.0006 -0.0007 -0.0005 -0.0006 -0.0007   

BYSC16Arc 
# of students in Free Lunch 
Program -0.0001 -0.0001 -0.0001 -0.0001 -0.0001  -0.0001 -0.0001 -0.0001 -0.0001  -0.0001 

BYSC16Brc 
# of students in Remedial 
Reading      -0.0001       

BYSC16Drc 
# of students in Bilingual 
Education     0.0002        

BYSC16Erc 
# of students in English as 2nd 
Language 0.0004 0.0004 0.0005 0.0005 0.0006 0.0005 0.0004 0.0006 0.0005 0.0006 0.0005 0.0006 

BYSC16Grc 
# of students in Gifted, 
Talented Ed 0.0001 0.0001     0.0001      

BYSC29rb 
Min. GPA Required to 
Participate in Activities           -0.0200  

F2RACTEro ACT (English Score)  -0.0077 -0.0063 -0.0050 -0.0105 -0.0126 -0.0073 -0.0108 -0.0084 -0.0072 -0.0106 -0.0087 
F2RACTMro ACT (Math)  0.0134 0.0125 0.0108 0.0109 0.0116 0.0138 0.0106 0.0152 0.0064 0.0086 0.0088 
F2RACTSro  ACT (Science Reasoning)     0.0063 0.0072  0.0070  0.0065 0.0071 0.0060 
F4RACE2rAI  Race of student: Amer Ind      -0.0263       
F4RACE2rAs  Race of student: Asian  0.0425 0.0602 0.0596 0.0430 0.0420 0.0562 0.0699 0.0685  0.0837 0.0415 

F4RACE2rBl  
Race of student: African-
American  0.0444 0.0441 0.0661 0.0534   0.0473 0.0430 0.0441 0.0397 0.0726 

F4SEXrb  
Sex of student - binary (1 = 
Female)  -0.0258 -0.0277 -0.0363 -0.0389  -0.0294 -0.0227 -0.0353  -0.0433 -0.0387 
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Table 7.18 (continued). 

Variable or 
Parameter Description 

Original 
Seed w/o 
Log. Reg. 

Original 
Seed Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8 Seed 9 

Seed 
10 

SATQUANro 
Scholastic Aptitude Test 
(Mathematics) expanded 0.0001 0.0004 0.0002 0.0005 0.0005 0.0003 0.0006 0.0006 0.0003 0.0002 0.0005 0.0004 

SATVERro 
Scholastic Aptitude Test 
(Verbal) expanded  -0.0002  -0.0003 -0.0002  -0.0003 -0.0003   -0.0003 -0.0002 

LRprob_STEM 
Logistic Regression model 
estimated Prob(STEM) N/A -0.5747 -0.4192 -0.4877 -0.6549 -0.5904 -0.6168 -0.7163 -0.5805 -0.3961 -0.5516 -0.5798 

 



7.3.2 Integrated Model in Parallel Results 

Across the eleven random samples, the model achieved results ranging from 73.2 to 80.4% in 

sensitivity and 75.5 to 77.6% specificity.  The sensitivity and specificity for each of the samples 

were optimized at a level that represented good predictive discrimination between the STEM and 

All Else students.  The ROC curves for the integrated model in series indicate that the choice of 

cutpoint(s) strongly affects the models’ predictive strength and ability to focus on the sub-

population of interest.   

7.4 VALIDITY OF THE STEM-RELATED CATEGORY 

The logistic regression models developed for STEM vs. STEM-Related, STEM vs. Non-STEM, 

STEM vs. Other 4 Year Degree, and STEM-Related vs. Non-STEM indicated the hierarchical 

nature of the models.  Models with more divergent two-outcome pairs were stronger than those 

with in which the two outcomes were more similar.  Table 7.19 contains the ROC Curve AUC 

results of the fitted models for various two-outcome pairs.  The models’ strength tended to 

increase as the disparity between the outcomes increased.   

Table 7.19  Hierarchy of Logistic Regression Model Accuracy by Outcome Pair 

Outcome STEM STEM-Rel Non-STEM Sub 4Yr Deg No Degree 
STEM N/A 0.720 0.743 0.924 0.919 

STEM-Rel - N/A 0.550 0.885 0.887 
Non-STEM - - N/A 0.876 0.878 

Sub 4Yr Deg - - - N/A 0.604 
No Degree - - - - N/A 
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These results are also found when the outcomes include combinations of categories.  For 

example, the STEM vs. Other Degree model had an AUC of 0.742 which is comparable to a 

blending of the individual STEM vs. STEM-Related and STEM vs. Non-STEM AUC figures.  

The STEM vs. All Else model had an AUC of 0.848 which lies between the STEM vs. STEM-

Related or Non-STEM figures and those of STEM vs. Sub-4 Year Degree or No Degree.  The 

Degree vs. Non-Degree model predicted student outcomes to be either a 4 Year Degree or a Sub-

4 Year Degree/No Degree, and its associated AUC value was 0.882.  This reflects the clear 

divergence between students that did and did not earn a bachelor’s degree.  Thus having an AUC 

value larger than that of the STEM vs. All Else model is not surprising.  The All Else category 

includes a diverse population of students including those who earned other 4 year college 

degrees and have more in common with the STEM students than the No Degree students.   

One important issue was to determine the validity of creating the STEM-Related 

category.  If this category represented a valid subdivision of the students with bachelor’s degrees, 

significant differences were expected between this category and those of the STEM and Non-

STEM categories.  Evaluation of the STEM & STEM-Related vs. Non-STEM model indicates 

that it has slightly better predictive accuracy than the STEM-Related vs. Non-STEM model and 

less accuracy than the STEM vs. Other Degree model.  This suggests that while there may be 

benefit to keeping STEM-Related as a separate category, the students within this category have 

more in common with the Non-STEM students than the STEM students.  Another logistic 

regression model was fitted to predict between a combination of STEM and STEM-Related 

students and their Non-STEM counterparts.  This STEM & STEM-Related vs. Non-STEM 

model had an AUC value of 0.613 which suggests that the STEM-Related students were more 

similar to the Non-STEM students than the STEM students.   
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Figure 7.22 illustrates the ROC curves for the STEM vs. STEM-Related, STEM vs. Other 

Degree, STEM-Related vs. Non-STEM, and STEM & STEM-Related vs. Non-STEM models 

when applied to the test data sets.  The STEM vs. STEM-Related and STEM vs. Other Degree 

models were very similar with acceptable predictive accuracy.  The STEM-Related vs. Non-

STEM model was similar to a 45º line demonstrating the model had no real ability to 

discriminate between these outcomes.  The ROC curve for the STEM & STEM-Related vs. Non-

STEM model lies in the middle of the other curves showing it had poor discrimination 

performance.  These results indicate that greater predictive accuracy is achieve by keeping 

STEM as a narrowly defined category rather than expanding it to include the majors comprising 

the STEM-Related category. 
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Figure 7.22  Comparison of ROC Curves for Modeling Different College Degree Outcomes 
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The dataset was then examined to determine how many of the 736 STEM students also 

earned a STEM-Related degree.  A total of 20 STEM students also earned a college degree in a 

STEM-Related topic with 17 completing the STEM degree first or simultaneously.  The 

remaining 3 STEM students earned a STEM-Related degree prior to the STEM degree.  Of these 

20 students, 12 of the STEM-Related degrees were of a professional nature with 1 in Health, 2 in 

Dentistry, 5 in Medicine, and 4 in Psychology.  Since the number of STEM students that also had 

a STEM-Related degree was comparatively quite small, this was not judged to be a significant 

factor in explaining the models’ predictive accuracy.   

7.5 SUMMARY  

The classification of the records by educational outcome permitted many two-outcome pairs 

including combinations of outcomes to be modeled.  The stability of the models fitted by the 

multiple random samples was very good.  Logistic regression models generally have greater 

predictive ability when the two outcomes are sharply different from one another.  The predictive 

accuracy of the logistic regression models created in this research varied from negligible for the 

STEM-Related vs. Non-STEM model to outstanding for the STEM vs. Sub-4 Year Degree and 

STEM vs. No Degree models.  The results for this application indicated a hierarchical 

relationship between the outcomes with STEM students exhibiting significant differences from 

the other students.  The patterns of predictive accuracy for the models suggested that the five 

basic educational outcomes outlined in this research may be considered an ordered set as 

follows: 

{STEM Degree, STEM-Related Degree, Non-STEM Degree, Sub-4 Year Degree, No Degree } 
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Considering this set to have an ordinal scale, the modeling accuracy improved as the two 

potential outcomes differed.  For example, the models which predicted the probability of a 

STEM outcome improved as the alternative outcome modeled changed from a closely related 

category like STEM-Related to a more divergent category like Sub-4 Year Degree.  The STEM-

Related vs. No-Degree model had excellent predictive accuracy while the STEM-Related vs. 

Non-STEM model had little more predictive accuracy than tossing a fair coin.  The STEM & 

STEM-Related vs. Non-STEM model was better than tossing a coin, but there was poor 

discrimination between these two outcomes.  Table 7.20 lists the logistic regression models and 

the level of predictive accuracy associated with each fitted model. 

Table 7.20  Comparison of Logistic Regression Model Accuracy 

Model Predictive Accuracy Accuracy Scale 
STEM vs. STEM-Related Acceptable 0.70 ≤ AUC < 0.80 
STEM vs. Non-STEM Acceptable 0.70 ≤ AUC < 0.80 
STEM vs. Sub-4 Year Degree Outstanding AUC ≥ 0.90 
STEM vs. No-Degree Outstanding AUC ≥ 0.90 
STEM vs. All Else Excellent 0.80 ≤ AUC < 0.90 
STEM vs. Other 4 Year Degree Acceptable 0.70 ≤ AUC < 0.80 
STEM & STEM-Related vs. Non-STEM Poor 0.50 < AUC < 0.60 
STEM-Related vs. Non-STEM Negligible AUC ≈ 0.50 
STEM-Related vs. Sub-4 Year Degree Excellent 0.80 ≤ AUC < 0.90 
STEM-Related vs. No-Degree Excellent 0.80 ≤ AUC < 0.90 
4 Year Degree vs. Non-4 Year Degree Excellent 0.80 ≤ AUC < 0.90 

 

The ROC Curves permitted the models to be “tuned” by changing the prediction 

cutpoints to ensure a desired level of sensitivity in exchange for a corresponding level of 

specificity.  The sensitivity analysis indicated that very high levels of correct STEM predictions 

could be achieved if the policy goal was to identify the maximum number of STEM students and 

students who could earn STEM degree if they chose to remain on the STEM track.  If an 

intervention program were being considered that had a fixed cost per student, the prediction 
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cutpoint could be chosen to maximize the sensitivity while not exceeding the budgetary limits.  

One of the most powerful benefits of using the sensitivity analysis module is that decision 

makers are free to adjust the integrated model to optimize their policy goals.   
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8.0  EFFECTIVENESS OF THE VARIOUS MODELS 

8.1 INTRODUCTION 

The key aspect in validating the integrated model was using the same samples to fit and test the 

separate logistic regression model, the integrated model linked in series, and the integrated 

model linked in parallel.  This allowed direct comparison of the actual outcomes with the 

predicted outcomes of the different models to determine the accuracy of each model.  It also 

allowed direct comparison of accuracy between the different models.  

If the results for a particular sample are put in the form of a 2 x 2 classification table they 

can be quickly summarized in terms of the true and false predictions of STEM vs. All Else as 

shown in Table 8.1.  The number of True STEM, False STEM, True All Else, and False All Else 

predictions by sample will be compared for the different models tested.   

 

Table 8.1  Example of a Results Classification Table 

  Actual Outcome 
  STEM All Else 

Predicted 
Outcome 

STEM True 
STEM 

False  
STEM 

All Else False  
All Else 

True 
All Else 
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8.2 COMPARISON OF LOGISTIC REGRESSION MODEL PREDICTIONS TO 

ACTUAL RESULTS 

The results of the logistic regression analysis were very good.  The STEM vs. All Else model 

applied to the test data for the various seeds correctly identified the majority of the 220 STEM 

students.  Of the 3,117 All Else students, the number incorrectly predicted to be STEM varied 

widely.  The levels of sensitivity and specificity at the cutpoint value producing equivalence 

ranged from 73.6 to 78.6% and 75.1 to 78.0%, respectively.  These levels of accuracy were much 

better than initially anticipated.  Table 8.2 shows the comparison across the samples of the 

accuracy achieved at the equivalence cutpoints.  Between 162 and 173 of the STEM students 

were correctly predicted while 686 to 780 All Else students were incorrectly predicted to be 

STEM.  One interpretation of this finding is that based on their attributes these All Else students 

could have been successful in a STEM major had they chosen to pursue one.  There could 

certainly be additional factors and influences that were not included in the model.  For example, 

a student may be influenced by a trusted mentor or role model that encourages study in a 

different domain.  This is an interesting question for future research since not all of the students’ 

attributes are known, and it would require collecting data about why the students chose a major 

other than STEM. 
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Table 8.2  STEM vs. All Else Logistic Regression Model Accuracy by Random Sample for the 
Cutpoint Producing Equivalent Sensitivity and Specificity Values 

Item 
Seed 
Orig. 

Seed 
1 

Seed 
2 

Seed 
3 

Seed 
4 

Seed 
5 

Seed 
6 

Seed 
7 

Seed 
8 

Seed 
9 

Seed 
10 

Cutpoint 0.075 0.065 0.07 0.07 0.075 0.07 0.07 0.075 0.065 0.07 0.07 
True 

STEM 170 168 162 164 167 169 173 170 164 169 169 
True All 

Else 2415 2337 2343 2357 2403 2391 2386 2431 2341 2387 2376 
False 

STEM 702 780 774 760 714 726 731 686 776 730 741 
False All 

Else 50 52 58 56 53 51 47 50 56 51 51 
Specificity 77.5% 75.0% 75.2% 75.6% 77.1% 76.7% 76.5% 78.0% 75.1% 76.6% 76.2% 

(1 - 
Specificity) 22.5% 25.0% 24.8% 24.4% 22.9% 23.3% 23.5% 22.0% 24.9% 23.4% 23.8% 
Sensitivity 77.3% 76.4% 73.6% 74.5% 75.9% 76.8% 78.6% 77.3% 74.5% 76.8% 76.8% 

 

Table 8.3 shows the same comparison across the samples of the accuracy achieved at the 

cutpoint producing a sensitivity level of approximately 80.0%.  This cutpoint produced similar 

results with between 174 and 180 correctly predicted STEM students and 733 to 1,028 All Else 

student incorrectly predicted to be STEM.   

 

Table 8.3  STEM vs. All Else Logistic Regression Model Accuracy by Random Sample for the 
Cutpoint Producing Approximately 80% Sensitivity 

Item 
Seed 
Orig. 

Seed 
1 

Seed 
2 

Seed 
3 

Seed 
4 

Seed 
5 

Seed 
6 

Seed 
7 Seed 8 Seed 9 

Seed 
10 

Cutpoint 0.07 0.055 0.05 0.055 0.065 0.06 0.06 0.07 0.055 0.06 0.065 
True 

STEM 174 178 180 178 178 177 176 178 176 175 175 
True All 

Else 2383 2215 2089 2179 2294 2304 2282 2384 2233 2281 2321 
False 

STEM 734 902 1028 938 823 813 835 733 884 836 796 
False All 

Else 46 42 40 42 42 43 44 42 44 45 45 
Specificity 76.5% 71.1% 67.0% 69.9% 73.6% 73.9% 73.2% 76.5% 71.6% 73.2% 74.5% 

(1 - 
Specificity) 23.5% 28.9% 33.0% 30.1% 26.4% 26.1% 26.8% 23.5% 28.4% 26.8% 25.5% 
Sensitivity 79.1% 80.9% 81.8% 80.9% 80.9% 80.5% 80.0% 80.9% 80.0% 79.5% 79.5% 
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One aspect of evaluating the model’s accuracy was examining the instances where the 

model incorrectly predicted an All Else student to have a STEM outcome (a False Positive).  

Table 8.4 illustrates the breakdown of the 734 false positives for the STEM vs. All Else model 

using the original seed at a 0.07 cutpoint threshold as shown in Table 8.3.  Table 8.4 categorizes 

the false positives by the actual outcome in terms of STEM track departure type.  The results for 

the other seeds were very consistent across the other ten random samples. 

 

Table 8.4  False Positive Breakdown by STEM Track Departure Type for the Original Seed and 
Cutpoint = 0.07 

 

STEM Track 
Departure Type 

# of False 
Positives 

# of Dep. 
Type in 
Sample 

% of Other 
Than STEM 

% Type of 
False Pos 

H.S. Dropout 1 167 5.36% 0.14% 
H.S. Graduate 37 720 23.10% 5.04% 

College Dropout 108 629 20.18% 14.71% 
Incomplete Deg. 36 141 4.52% 4.90% 
Sub-4 Yr Degree 69 525 16.84% 9.40% 

Other 4 Yr Degree 483 935 30.00% 65.80% 
Total 734 3,117 100.00% 100.00% 

 

Most of the incorrect STEM predictions were for students that ultimately went on to get a 

different four year degree.  The logistic regression model did an excellent job of predicting an 

All Else outcome for the students that did not finish a college degree or achieved a Sub 4 Yr 

degree.  The model was a little less adept at identifying the college dropouts as All Else.  As 

previously discussed, this suggests that the model may have detected aspects of these students 

that could have allowed them to complete a STEM degree had they chosen to attempt and persist 

in that field of study. 
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8.3 COMPARISON OF INTEGRATED IN SERIES MODEL PREDICTIONS TO 

ACTUAL RESULTS 

The integrated model with logistic regression and survival analysis linked in series also produced 

good results.  When applied to the test data this model correctly identified between 151 and 179 

of the 220 STEM students depending on which cutpoint was used for the logistic regression 

module.  The levels of sensitivity and specificity at the cutpoint value producing equivalence 

ranged from 68.6 to 77.3% and 70.0 to 74.2%, respectively.  Table 8.5 shows the comparison 

across the samples of the accuracy achieved at the equivalence cutpoints.  Between 162 and 173 

of the STEM students were correctly predicted while 686 to 780 All Else students were 

incorrectly predicted to be STEM. 

Table 8.5  STEM vs. All Else Integrated Model Accuracy by Random Sample for the Cutpoint 
Producing Equivalent Sensitivity and Specificity Values 

Item 
Seed 
Orig. 

Seed 
1 

Seed 
2 

Seed 
3 

Seed 
4 

Seed 
5 

Seed 
6 

Seed 
7 

Seed 
8 

Seed 
9 

Seed 
10 

Cutpoint 0.7 0.66 0.7 0.7 0.7 0.7 0.7 0.7 0.67 0.67 0.7 
True 

STEM 152 156 158 157 157 156 160 167 156 170 151 
True All 

Else 2310 2181 2313 2288 2272 2275 2246 2271 2221 2251 2364 
False 

STEM 807 936 804 829 845 842 871 846 896 866 753 
False All 

Else 68 64 62 63 63 64 60 53 64 50 69 
Specificity 74.1% 70.0% 74.2% 73.4% 72.9% 73.0% 72.1% 72.9% 71.3% 72.2% 75.8% 

(1 - 
Specificity) 25.9% 30.0% 25.8% 26.6% 27.1% 27.0% 27.9% 27.1% 28.7% 27.8% 24.2% 
Sensitivity 69.1% 70.9% 71.8% 71.4% 71.4% 70.9% 72.7% 75.9% 70.9% 77.3% 68.6% 

 

Table 8.6 shows the same comparison across the samples of the accuracy achieved at the 

cutpoint producing a sensitivity level of approximately 80.0% for the logistic regression module.  

This cutpoint produced similar results with between 174 and 179 correctly predicted STEM 

students and 921 to 1,113 All Else students incorrectly predicted to be STEM.    
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Table 8.6  STEM vs. All Else Integrated Model Accuracy by Random Sample for the 
Cutpoint Producing Approximately 80% Sensitivity 

Item 
Seed 
Orig. 

Seed 
1 

Seed 
2 

Seed 
3 

Seed 
4 

Seed 
5 

Seed 
6 

Seed 
7 

Seed 
8 

Seed 
9 

Seed 
10 

Cutpoint 0.655 0.63 0.655 0.65 0.645 0.645 0.655 0.67 0.64 0.66 0.66 
True 

STEM 176 176 175 177 175 174 176 179 175 176 177 
True All 

Else 2063 2039 2055 2029 2004 2030 2014 2116 2075 2196 2147 
False 

STEM 1054 1078 1062 1088 1113 1087 1103 1001 1042 921 970 
False All 

Else 44 44 45 43 45 46 44 41 45 44 43 
Specificity 66.2% 65.4% 65.9% 65.1% 64.3% 65.1% 64.6% 67.9% 66.6% 70.5% 68.9% 

(1 - 
Specificity) 33.8% 34.6% 34.1% 34.9% 35.7% 34.9% 35.4% 32.1% 33.4% 29.5% 31.1% 
Sensitivity 80.0% 80.0% 79.5% 80.5% 79.5% 79.1% 80.0% 81.4% 79.5% 80.0% 80.5% 

 

If each prediction category (True STEM, True All Else, False STEM, False All Else) for 

each sample for the logistic regression model is compared to its counterpart integrated model 

they can be tested for statistically significant differences.  Treating the logistic regression 

predictions as the “Expected” figures and the integrated model predictions as the “Observed” 

figures, a chi-square statistic can be calculated as ∑
=

−
=

1

2 ][
i i

ii

Exp
ExpObsχ

4 2

 and compared to a 

critical value of χ2 at the alpha (α) = 0.05 level with 1 degree of freedom = 3.843.  Performing 

this analysis for each of the sample/model combinations, there are significant differences 

between the logistic regression and integrated model for each sample except the two samples for 

random seed 2.   

Table 8.7 compares the true and false STEM predictions across the 11 random samples 

for the models producing 80% sensitivity.  Testing the variances between the two models finds 

that the p-value for an F test of equal variances is 0.3875 for the True STEM predictions and 

0.2553 for the False STEM predictions.  This suggests that we cannot reject the hypothesis of 

equal variances for the True STEM predictions or the False STEM predictions.  Assuming a 
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normal distribution for these figures, a Student’s t-test of the True STEM predictions has an 

associated p-value of 0.2374 suggesting there is no significant difference between the means of 

these predictions.  Using Welch’s99 t-test for small samples with unequal variances for the False 

STEM predictions results in an associated p-value of < 0.0001 suggesting there is evidence to 

conclude the models’ mean predictions are significantly different.  Overall, a visual inspection of 

the sample/model combinations reveals that the logistic regression model performs better at 

providing fewer False STEM predictions.  So the model integrating logistic regression and 

survival analysis in series does not provide improved accuracy.   

 

Table 8.7  True vs. False STEM Predictions for the Logistic Regression and Integrated Models 
by Random Sample at 80% Sensitivity 

 

Seed 
True STEM Predictions False STEM Predictions 
Logistic 

Regression 
Integrated 

(Series) 
Logistic 

Regression 
Integrated 

(Series) 
Original 174 176 734 1054 

1 178 176 902 1078 
2 180 175 1028 1062 
3 178 177 938 1088 
4 178 175 823 1113 
5 177 174 813 1087 
6 176 176 835 1103 
7 178 179 733 1001 
8 176 175 884 1042 
9 175 176 836 921 

10 175 177 796 970 
average 176.82 176.00 847.45 1047.18 
variance 3.16 1.80 7579.67 3595.36 

 

 186 



8.4 COMPARISON OF INTEGRATED IN PARALLEL MODEL PREDICTIONS TO 

ACTUAL RESULTS 

The integrated model with logistic regression and survival analysis linked in series and then 

combined in parallel also produced good results.  This layered model predicted a STEM outcome 

if the logistic regression probability of STEM was ≥ 0.07 and the integrated model probability of 

survival beyond 7.25 years on the STEM track was ≥ 0.50.  When applied to the test data this 

model correctly identified between 158 and 177 of the 220 STEM students.  The number of All 

Else students incorrectly predicted to be STEM ranged from 698 to 765 out of a total of 3,117 

All Else students.  The levels of sensitivity and specificity ranged from 71.8 to 80.4% and 75.5 to 

77.6%, respectively.  Table 8.8 shows the accuracy results by sample.   

 

Table 8.8  STEM vs. All Else Integrated in Parallel Model Accuracy by Random Sample 

Item 
Seed 
Orig. 

Seed 
1 

Seed 
2 

Seed 
3 

Seed 
4 

Seed 
5 

Seed 
6 

Seed 
7 

Seed 
8 

Seed 
9 

Seed 
10 

True 
STEM 173 163 161 164 173 168 172 177 158 167 168 

True All 
Else 2400 2411 2352 2373 2355 2392 2391 2398 2404 2398 2390 
False 

STEM 717 706 765 744 762 725 726 719 713 719 727 
False All 

Else 47 57 59 56 47 52 48 43 62 53 52 
Specificity 77.0% 77.4% 75.5% 76.1% 75.6% 76.7% 76.7% 76.9% 77.1% 76.9% 76.7% 

(1 - 
Specificity) 23.0% 22.6% 24.5% 23.9% 24.4% 23.3% 23.3% 23.1% 22.9% 23.1% 23.3% 
Sensitivity 78.6% 74.1% 73.2% 74.5% 78.6% 76.4% 78.2% 80.5% 71.8% 75.9% 76.4% 

 

Setting the critical logistic regression probability cutpoint to 0.07 meant that module of 

the integrated model was set to the point that optimized both sensitivity and specificity.  As a 
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result this model is most directly comparable to the logistic regression model at the cutpoint that 

produces equivalent sensitivity and specificity values.   

Table 8.9 illustrates the breakdown of the 717 false positives for the STEM vs. All Else 

model using the original seed as shown in Table 8.8 and categorizes the false positives by the 

actual outcome in terms of STEM track departure type.  The results for the other seeds were very 

consistent across the other ten random samples. 

 

Table 8.9  Integrated Model False Positive Breakdown by STEM Track Departure Type for the 
Original Seed 

STEM Track 
Departure Type 

# of False 
Positives 

# of Dep. 
Type in 
Sample 

% of Other 
Than STEM 

% Type of 
False Pos 

H.S. Dropout 0 167 5.36% 0.00% 
H.S. Graduate 35 720 23.10% 4.88% 

College Dropout 103 629 20.18% 14.37% 
Incomplete Deg. 35 141 4.52% 4.88% 
Sub-4 Yr Degree 64 525 16.84% 8.93% 

Other 4 Yr Degree 480 935 30.00% 66.95% 
Total 717 3117 100.00% 100.00% 

 

As with the logistic regression model, most of the incorrect STEM predictions were for 

students that ultimately went on to get a different four year degree.  The integrated model did an 

excellent job of predicting an All Else outcome for the students that did not finish a college 

degree or achieved a Sub 4 Yr degree.  The model was a little less able to identify the college 

dropouts as All Else as with the model integrated in series.  This suggests that the model may 

have detected aspects of these students that could have allowed them to complete a STEM 

degree had they chosen to attempt and persist in that field of study. 

The chi-square test comparing the observed numbers of True STEM, False STEM, True 

All Else, and False All Else predictions to those produced by the logistic regression model found 
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that only 3 of the seeds exhibited a significant difference.  The results were then examined by 

comparing the numbers of true and false STEM numbers across all the seeds as shown in Table 

8.10.   

 

Table 8.10  True vs. False STEM Predictions for the Logistic Regression and Integrated in 
Parallel Models by Random Sample 

Seed 
True STEM Predictions False STEM Predictions 
Logistic 

Regression 
Integrated 
(Parallel) 

Logistic 
Regression 

Integrated 
(Parallel) 

Original 170 173 702 717 
1 168 163 780 706 
2 162 161 774 765 
3 164 164 760 744 
4 167 173 714 762 
5 169 168 726 725 
6 173 172 731 726 
7 170 177 686 719 
8 164 158 776 713 
9 169 167 730 719 

10 169 168 741 727 
average 167.73 167.64 738.18 729.36 
variance 10.42 33.65 982.96 376.65 

 

Testing the variances between the two models finds that the p-value for an F test of equal 

variances is 0.0782 for the True STEM predictions and 0.065 for the False STEM predictions.  

This suggests that we cannot reject the hypothesis of equal variances for the True STEM 

predictions at an alpha (α) level of 0.05 but it could be rejected at an alpha level of 0.10.  

Assuming a normal distribution for these figures, a Student’s t-test of the True STEM predictions 

has an associated p-value of 0.9643 suggesting there is no significant difference between the 

means of these predictions.  The Student’s t-test of the False STEM predictions has an associated 

p-value of 0.4370 suggesting there is also no significant difference between the means of these 
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predictions.  Therefore the two models appear to be performing at the same level of accuracy, 

and the integrated in parallel model does not offer significantly more accurate predictions.   

The results for the variance tests suggest that the two models may not be performing with 

identical variances.  For this set of 11 samples the integrated in parallel model predicts True 

STEM numbers that vary more than those of the logistic regression model by a factor of 3.23.  

The integrated in parallel model predicts False STEM numbers with lower variation than that of 

the logistic regression model by a factor of 2.61.  So the model integrating logistic regression and 

survival analysis in parallel provides very comparable accuracy in terms of average predictions 

of True and False STEM numbers, but the variation of the integrated model for the False STEM 

predictions is better.  However, since an alpha level of 0.05 has been consistently applied 

throughout this analysis, the sample results are not sufficient to conclude that the two models 

perform with significantly different variances.   

Another way of examining the results is to compare the models’ performance for each 

seed on the basis of percent correct/incorrectly.  Table 8.11 lists the performance of the logistic 

regression models in terms of the percent of the STEM [All Else] students correctly predicted to 

have a STEM [All Else] outcome or incorrectly predicted to have an All Else [STEM] outcome.  

The results show that on average the logistic regression models had correct predictions for 76.2% 

of all the students.   
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Table 8.11  Percentage of True vs. False STEM/All Else Predictions for the Logistic Regression 
Models by Random Sample 

Seed 
% True 
STEM 

%False All 
Else 

%True All 
Else 

%False 
STEM 

Original 0.773 0.227 0.775 0.225 
1 0.764 0.236 0.750 0.250 
2 0.736 0.264 0.752 0.248 
3 0.745 0.255 0.756 0.244 
4 0.759 0.241 0.771 0.229 
5 0.768 0.232 0.767 0.233 
6 0.786 0.214 0.765 0.235 
7 0.773 0.227 0.780 0.220 
8 0.745 0.255 0.751 0.249 
9 0.768 0.232 0.766 0.234 

10 0.768 0.232 0.762 0.238 
Average 0.762 0.238 0.763 0.237 

  

Table 8.12 lists the performance of the Integrated in Parallel models in terms of the 

percent of the STEM [All Else] students correctly predicted to have a STEM [All Else] outcome 

or incorrectly predicted to have an All Else [STEM] outcome.  The results show that on average 

these integrated models also had correct predictions for 76.2% the STEM students.  However, 

this set of models had a slightly better average percentage of correct predictions for the All Else 

students at 76.6% vs. 76.3% for the logistic regression models.   

  

 191 



Table 8.12  Percentage of True vs. False STEM/All Else Predictions for the Integrated in 
Parallel Models by Random Sample 

Seed 
% True 
STEM 

%False All 
Else 

%True All 
Else 

%False 
STEM 

Original 0.786 0.214 0.770 0.230 
1 0.741 0.259 0.774 0.226 
2 0.732 0.268 0.755 0.245 
3 0.745 0.255 0.761 0.239 
4 0.786 0.214 0.756 0.244 
5 0.764 0.236 0.767 0.233 
6 0.782 0.218 0.767 0.233 
7 0.805 0.195 0.769 0.231 
8 0.718 0.282 0.771 0.229 
9 0.759 0.241 0.769 0.231 

10 0.764 0.236 0.767 0.233 
Average 0.762 0.238 0.766 0.234 

 

These tables further illustrate that for 7 of the 11 random seeds, the Integrated in Parallel 

models performed slightly better in correctly predicting All Else outcomes.   

8.5 FINDINGS 

The logistic regression models were developed to provide a basis for comparing the accuracy of 

the integrated methodology models.  As the standard statistical technique for modeling a binary 

result, logistic regression was the logical method to choose for the initial analysis.  It was 

anticipated that the logistic regression models would be of acceptable predictive accuracy in 

most cases, but not necessarily very strong.  The logistic regression models turned out to be 

much more accurate than expected and extremely beneficial in analyzing the dataset.  This in 

part was due to the effort in preparing the dataset in advance to ensure the variables were 

recoded to have binary, ordinal, or continuous scales.   
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Since the results for some of the logistic regression models for the STEM vs. All Else 

samples were so strong, there was less opportunity for the integrated methodology to provide a 

significant improvement.  Across each of the random samples tested, the model integrated in 

series failed to show an improvement.  The integrated models linked in series or parallel to the 

logistic regression model did an excellent job of distinguishing between the STEM students and 

the students that did not earn a bachelor’s degree.  Most of the errors in prediction concerned 

falsely predicting other four year degree students to have a STEM outcome.  However, the model 

that was fitted to test the predictive strength of the survival analysis module applied to this data 

found that it performed poorly as a single technique in this instance.  Thus the integration was 

able to improve upon the results of survival analysis alone, but it was not able to improve upon 

the results of logistic regression alone.  

The integrated in parallel model did not consistently produce an improvement in the 

identification of True STEM students.  While this model provided an improvement in that the 

numbers of False STEM students was reduced for 8 of the 11 random samples and the variability 

of these predictions was lower these results were not statistically significant.  Overall, the 

integrated model did not perform in a significantly different manner from the logistic regression 

model in this application.   
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9.0  CONCLUSIONS AND RECOMMENDATIONS  

9.1 CONCLUSIONS 

9.1.1 Use of Integrated Models 

The findings illustrated that models integrating multiple statistical techniques can be developed 

and applied to complex problems.  This conclusion relates to the first research question outlined 

in Section 5.4:  “Can multiple statistical techniques such as logistic regression analysis, ROC 

curve analysis, and survival analysis be successfully integrated and applied to a complex 

problem such as the achievement of a STEM degree?” 

The integrated model approach is feasible and can achieve accuracy comparable to and, 

perhaps better than a standard single technique such as logistic regression.  In this particular 

application, the improved results that were hypothesized did not occur because the logistic 

regression models were so strong.  The model that integrated the survival analysis and logistic 

regression techniques in a combination of series and parallel exhibited some signs of refining the 

predictions to offer lower variability in the False STEM predictions but not enough to offer a 

statistically significant improvement.  Therefore the original research hypothesis that the 

integrated model would produce more accurate answers than a single standard technique such as 

logistic regression was not proven in this case.  However, the results suggest that the integrated 
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model methodology is feasible and could offer improvement in other applications for which a 

single standard technique might not be as accurate. 

In retrospect, survival analysis, in itself, is a very powerful tool and has the potential to 

build upon the logistic regression’s findings to improve accuracy.  One aspect that may explain 

the particular result in this application is that the survival times of the 736 STEM students and 

the 3,156 students who earned bachelors degrees in other subjects were very similar.  The 

similarity of the survival times hampered the survival analysis module portion of the integrated 

model by making it harder to discriminate between them.  The cumulative hazard functions 

depicted for the four year degree students in Figure 6.1 were closely related with an intersection 

at approximately year 7.  Defining the departure times for college graduates as the graduation 

date meant that most of the students that completed bachelor’s degrees in any subject earned 

them in the year 1997.  The mean departure time for the STEM students was 1997.42 compared 

to 1997.00 for the Other Degree students and 1997.04 for all four year degree students.  The 

standard deviation of the departure times was 4.36 years for the STEM students, 1.04 years for 

the Other Degree students, and 4.89 for all four year degree students.  The greater standard 

deviation for the STEM students may be explained by the cases where students earned a different 

degree before continuing on to complete a STEM degree as well as students taking longer than 4 

years to complete a more demanding technical degree.  The similar mean values for the departure 

times of the bachelor degree holders made it more difficult for the integrated model to 

distinguish between the groups despite treating the departure times for the STEM students as 

censored rather than observed events.   

One approach that might improve the power of the survival analysis module would be 

changing the STEM track departure time for students that earned other college degrees.  If the 

 195 



time at which the students declared a major other than STEM were defined as the departure time, 

there would be a greater disparity in the departure times between STEM and Other Degree 

students.  In addition, this approach would better reflect the phenomena of students starting a 

STEM major and later switching to a different major.  In future research, it would be worthwhile 

to explore the feasibility of collecting this data.  In the absence of information showing when a 

student declared a Not-STEM major or switched from a STEM major, the date the Other Degree 

students began attending college could be tested as a revised interpretation of the departure time. 

The integrated model might offer an improved level of accuracy if the outcomes being 

predicted had more dissimilar hazard functions.  For example, the cumulative hazard functions 

shown in Figure 6.1 reveal a period between years 6 and 7 when most of the students who 

ultimately earned a bachelor’s degree had not yet begun to graduate, but those who never 

completed a bachelor’s degree had departed the STEM track in large numbers.  This suggests 

that an integrated model predicting a Degree vs. No Degree outcome might benefit from the 

inclusion of the survival analysis module.   

9.1.1.1 The Need for Data Refinement with Large Datasets 

The findings demonstrated that logistic regression is an excellent technique to apply in situations 

where predicting between two very diverse outcomes is desired.  This technique is especially 

applicable to educational research instances when data that are categorical in nature are recoded 

to create new covariates that are binary or ordinal in scale.  Developing models with a large set 

of potential covariates requires an extensive effort in advance to prepare the data for model 

fitting with logistic regression.  There is no substitute for carefully examining each variable 

being considered for the model to understand what information it conveys and what the possible 

values mean.  Variables with nominal values need to be recoded to create sets of binary 
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“dummy” variables if an ordinal scale cannot be designed.  Records with variable values that are 

missing must be examined to determine if values may be imputed or if the records must be 

excluded.  Some variables may legitimately not have responses for every record.  For example, a 

variable indicating the date that a student first dropped out of high school may have many 

records coded as “legitimate skip” because many students never dropped out.  In cases such as 

this the value of the variable should be coded for those records in a way that does not 

inadvertently affect the model.  One option is to code the variable value as 0.  If the data is not 

originally binary, ordinal, or continuous in scale the data must be adjusted in advance.  Failure to 

perform this data refinement in advance will lead to models that do not properly utilize the data 

and may be less accurate.   

9.1.2 Identification of Significant Predictors 

This research found a set of significant predictors for STEM outcomes in response to the issue:  

“Can a set of variables that were measured for a group of students as they progress through high 

school and beyond be shown to affect the probability that a given student fails to “survive” to 

achieve a bachelor’s degree in Science, Technology, Engineering, or Mathematics (STEM)?”   

This analysis has determined that there is a set of predictor variables for modeling the 

different educational outcomes that is reasonably consistent across 11 random samples of the 

students.  These variables include measures of academic skills in math, science, and reading; 

measures of personal confidence in academic capabilities; measures of the students’ academic 

focus on schoolwork and career; and measures of demography including sex, race/ethnicity, and 

native fluency in English.  The variables found to be significant predictors in the logistic 

regression and integrated models confirmed the findings of prior research.  In addition, through 
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testing a much larger set of potential variables this research found additional significant 

predictors of earning a STEM degree including family composition; parental marital status; type 

of high school [private religious or private nonreligious] the student expected to attend; father’s 

highest level of education; student television consumption habits; hours student worked for pay 

per week; and base salary of beginning teachers at student’s school.  Thus, additional predictors 

have been identified as affecting the probability that a given student failed to survive on the 

STEM track.  The majority of the significant variables were those available by 8th grade.  The 

STEM vs. All Else model tested with solely 8th grade variables performed almost as well as the 

one that also included the SAT and ACT scores as potential predictors.  

9.1.2.1 Controllable and Not Controllable Predictors 

The significant predictors fall into two categories: Not Controllable and Controllable.  The Not 

Controllable predictors are beyond the influence of education policy makers.  These include 

variables that reflect the student’s fluency in English, the student’s family composition, the 

parents’ highest levels of education, and the parents’ marital status.  While these variables cannot 

be influenced directly, they can be useful in determining the students that may be “at risk” of 

departing the STEM track.  In addition, the student’s racial/ethnic group and gender may also be 

helpful in identifying these “at risk” students for the models in which they are significant 

predictors.  Some of the school characteristics which were found to be significant for a few 

models are not directly controllable.  These school characteristics include the percent of white 

non-Hispanic 8th grade students and the percent of 8th grade students that are in single parent 

families.  

The Controllable predictors potentially can be influenced by education policy.  These 

include the student’s mathematics proficiency, Science proficiency, English proficiency, 

 198 



academic performance, standardized test scores, and school characteristics.  Improvement of 

academic instruction and encouragement towards positive attitudes for STEM careers are within 

the direct control of educators.  Some school characteristics such as the starting salary for a new 

teacher with a B.A. degree are also within the control of education policy makers.   

Other significant predictors are capable of being influenced, but they lie outside the direct 

control of educators.  These include parental expectations of student’s educational achievement; 

family rules regarding the student’s time spent working for pay, doing homework, maintaining 

grade point average, or watching television; parental involvement in encouraging students to 

pursue a college degree; and parental choices in the type of high school for the student.  These 

predictors could be changed by the student’s parents so it is possible that they could be indirectly 

influenced by educators encouraging parents to consider beneficial changes.  For example, a 

school could invite parents to attend an educational seminar that discusses the factors which 

influence students’ interest in STEM and capability of pursuing a STEM degree.  Other 

significant predictors are under the control of students and these factors can be potentially 

influenced by educators.  These include attitudes towards school, attitudes towards educational 

attainment, and the investment of personal time towards school/work/social activities.   

Table 9.1 lists the variables that were found to be significant for at least one of the 11 

samples used to fit STEM vs. All Else models.  The table classifies the variables by the extent to 

which they can be influenced by educators.   
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Table 9.1  Summary of Educator’s Ability to Affect Significant Predictors of STEM 

Variable Directly 
Controllable 

Indirectly 
Controllable 

Non-
Controllable 

Overall Math Proficiency or Math Quartile X   
Overall Reading Proficiency or Reading 
Quartile 

X   

Science Quartile X   
Student’s ability group for Mathematics  X  
Student’s ability group for Science  X  
Mathematics grades from Grade 6 to 8 X   
Science grades from Grade 6 to 8 X   
ACT (English Score) X   
ACT (Mathematics) X   
SAT (Verbal) X   
SAT (Mathematics) X   
Min. GPA Required to Participate in Activities X   
# of students in Remedial Reading  X  
# of students in Bilingual Education  X  
# of students in English as 2nd Language  X  
# of students in Gifted, Talented Ed  X  
% of White Non-Hispanic 8th Graders   X 
# of students in Free Lunch Program   X 
Family rule re: how early/late child watches TV  X  
# of hrs Student watches TV on weekdays  X  
Family rule re: maintaining grade average  X  
How often parent talks to child re post H.S. 
plans 

 X  

How far in school parent expects child to go  X  
How far in school student thinks he/she will get  X  
How sure that you will graduate from H.S.  X  
# of Hrs student works for pay per week  X  
# of BY Risk Factors for Dropping Out of 
School 

 X  

# of Cigarettes Student Smokes per Day  X  
Language Minority Composite   X 
H.S. Student Plans to Attend: Private 
Nonreligious 

  X 

H.S. Student Plans to Attend: Private Religious   X 
Family Composition: Mother & male guardian   X 
Family Composition:  Mother   X 
Parents’ Marital Status: Divorced   X 
Yearly Family Income   X 
Father’s Highest Level of Education   X 
Sex   X 
Race/Ethnicity   X 
 

It should be noted that these significant predictors measure aspects of students that were 

in 8th grade in 1988 and 12th grade in 1992.  American culture has not remained static during the 
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past 20 years.  The activities, experiences, and attitudes of current day students cannot be 

assumed to have remained constant.  For example, computer literacy has become a vital skill in 

today’s educational and employment spheres.  Time spent socializing with friends via the 

Internet or in self-entertainment with computer games have become much more prevalent in 

2008.  The exact set of predictors found to be significant in this analysis may not be the ideal set 

to use in attempts to replicate this research in the future.  This set of predictors is a logical place 

to start in replicating the research, but it would also be wise to consider what new measures may 

be useful.   

Given that various measures of mathematical ability at different points (BY and F2 

standardized test scores) were significant in most models, assessment of mathematical 

competence is likely to remain important in future modeling.  Science, English, and reading 

proficiency are also likely to remain valid in future models.  Variables that assess the behaviors 

and attitudes of the students and their families towards educational attainment and career 

development are worth evaluation.   

9.1.3 Application of Survival Analysis to STEM Research 

This research found that survival analysis could be applied to the STEM degree acquisition 

process and it provided valuable insights into variations between different groups of students 

over time in the probability of earning a STEM degree.  These insights were obtained in the 

process of addressing the following questions:  “Will Survival Analysis of the NELS:88 data 

reveal that the probability of a student achieving a STEM degree differ over time for students in 

different outcome groups?” and “Are there key time points in the educational process where 

distinct decreases or slight increases in the probability of achieving a STEM degree occur as 
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students developed academically?  If so, are these key time points at which students were most 

likely to depart the STEM track sufficiently common for different student profiles that they could 

suggest the timing for delivery of pro-STEM intervention?”   

Differences in the STEM probabilities by outcome group were found.  This can be seen 

by examining the cumulative hazard functions in Figure 6.1 as developed from the logic 

described in Section 6.3 for establishing the track departure times.  The high school dropouts had 

a markedly different hazard function with all the students in this group departing by year 5 of the 

study.  The high school graduates departed the STEM track at an increasing pace with a sharp 

jump during year 4 when most earned their high school diplomas.  The college dropouts and 

students who earned a sub-4 year degree had very similar curves that were dissimilar to the other 

hazard functions until after year 8.  As mentioned earlier, the hazard functions for the STEM and 

Other Degree students were similar at some time points and divergent at others.  These two 

groups had hazard functions that were clearly different from the other departure types.    

It was envisioned that key time points in the educational process could be found to 

exhibit distinct changes in the probability of earning a STEM degree over time across different 

groups of students that could indicate the best timing for a pro-STEM intervention.  Again, 

examination of the cumulative hazard functions for each group as shown in Figure 6.1 provides 

evidence to answer this research question affirmatively.  The probability of earning a STEM 

degree drops as the hazard function increases.  The students that graduate high school and go on 

to attend college did not experience increasing hazard function values until 3 years past the study 

start in approximately 1991.  This suggests that a pro-STEM intervention conducted in high 

school would be able to target these students prior to their leaving the STEM track.  Year 3-5 
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represents the period at which the probability of departing the STEM track rises the most sharply 

for the students that drop out of college or complete less than 4 year degrees.   

The hazard functions for the high school dropout and students completing their education 

by graduating high school exhibit different track departure patterns.  The high school dropouts 

experienced the sharpest increase in the probability of STEM departure at the study’s start with a 

more gradual increase until midway through their junior year.  The students that graduated high 

school experienced a less steep but steady increase in the probability of departure until year 4.   

The conclusion reached from examining the hazard functions is that to target potential 

STEM degree students successfully, the pro-STEM intervention must occur before 8th grade.  To 

reach all of these students, the intervention may have to occur in the 7th grade or earlier.  The 

curves for the students whose educations did not go beyond high school were sufficiently 

dissimilar to those of the other students that it may be worthwhile to consider developing more 

than one intervention program.  The first would occur prior to 8th grade and would focus on 

assisting students that would not otherwise be predicted to go on to college.  The second 

intervention program would occur prior to 11th grade and focus on encouraging students that are 

predicted to attend college to consider pursuing a STEM degree.  A potential third intervention 

program would take place after the first year of college for students as STEM students consider 

switching to a major outside STEM. 

9.1.4 Potential Intervention Programs 

The findings of this research suggest that there are three types of intervention programs 

that could be developed to increase the number of STEM students.  The first would focus on 

improving students’ capabilities to pursue STEM and be delivered prior to 8th grade.  The second 
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would be oriented towards increasing students’ interest in a STEM career and would be delivered 

in the last two years of high school when students are making college plans.  The third would 

concentrate on encouraging STEM students considering switching majors to remain within 

STEM. 

Students with greater capability and prior academic performance in mathematics are 

more likely to succeed in a STEM subject.  Some measures of capability and performance in 

Science are also predictive of STEM success.  Proficiency in speaking English is undoubtedly 

also a positive factor in completing a STEM degree in the United States.  Each of these subject 

areas can be addressed through concentrated educational efforts to improve students’ skills in 

these topics.  The first type of intervention program could be directed towards assisting students 

in acquiring greater skills in the critical subject matter topics.   

The second type of intervention program would address the issue of students that could 

perform well enough to earn a STEM degree but might not choose to pursue this line of study.  

These are students who either have little awareness of the benefits of a STEM career or have 

more interest in another subject.  This intervention program would be designed to educate 

students about the interesting careers available to STEM graduates and wide-ranging 

applications of a STEM degree.  This would serve to encourage the many capable students that 

might otherwise pursue a STEM-Related or Non-STEM degree to at least consider STEM.  It 

would also encourage the students that might already be drawn to STEM to develop a stronger 

interest.   

The third type of intervention program would attempt to reduce the number of capable 

STEM students that choose to change to a non-STEM major.  These are students that are 

performing well in STEM but for some reason are less interested in STEM or have a greater 
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interest in a Non-STEM subject.  The intervention would attempt to determine if the students 

have acquired a negative misimpression of STEM that could be countered with positive 

encouragement or suggestions to consider a different major within STEM that might be a better 

fit.  Students that have genuinely lost interest in STEM should be encouraged to pursue a more 

personally appealing major.   

Using ROC Curves to adjust the models’ sensitivity would help education policymakers 

select the optimum target audience for an intervention program.  The optimum target audience 

depends on the policy goals.  Such goals may include balancing the models’ sensitivity and 

specificity if the costs of correct and incorrect predictions are the same; reaching the largest 

number of potential STEM students that the budget will permit; or selecting the students that fall 

within a middle strata of STEM interest to focus on students that could pursue a STEM degree 

with extra encouragement but wouldn’t necessarily pursue it on their own.  

9.1.5 Defining Educational Outcomes 

Dividing the potential educational outcomes into the five basic categories of No Degree, Sub-4 

Year Degree, Non-STEM, STEM-Related, and STEM clarified the definition of STEM.  The 

finer divisions in this categorization made it easier to compare these results to those of previous 

analyses since it was clear which educational outcomes were included in each model.  This 

division allowed great flexibility in modeling potential outcomes since two-outcome pairs of the 

basic categories can be modeled as well as combinations of the categories.  Prior educational 

research focused on modeling a few of these potential outcomes such as STEM vs. All Else or 

STEM vs. Other 4 year Degree.  Comparing new results to the prior research depends on the 

ability to determine which potential outcomes are included in the new and prior models.   
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Further subdividing the No Degree category into high school dropouts, high school 

graduates, college dropouts, and students with degrees in progress at the study’s end was also 

useful.  It allowed more detailed examination of these students’ similarities and dissimilarities 

with students in the other categories.  The results of the integrated model and analysis of the 

instances of false STEM predictions suggested that many of the college dropouts shared qualities 

of the STEM students and had the potential to complete a college degree.   

The formal definition of STEM as a narrowly defined vs. expansive collection of majors 

was supported by this analysis.  It appears that the students who go on to obtain a four year 

degree have more in common as a group than they do with those students that do not achieve a 

four year degree.  This suggests that if a student is interested and capable of obtaining a four year 

college degree then he or she is at least a fair candidate for considering a STEM degree.  These 

students represent the most obvious pool of students to target as potential STEM candidates.  If 

such students are identified at an early point in the secondary school process and encouraged to 

consider STEM, there will be several years to improve their academic capabilities as needed to 

earn a STEM degree.  Overall, this means that future educational research should focus narrowly 

on defining STEM when attempting to model earning a STEM degree as an outcome. 

9.1.5.1 The Advantages of Defining a STEM-Related Category 

The STEM-Related category has utility as a way to examine the limits of the STEM and Non-

STEM categories.  Selectively reclassifying majors between STEM, STEM-Related, and Non-

STEM enables exploration of the sensitivity of the models to a reclassification of a single major 

provided that enough students in the sample earned a degree in that major.  The STEM category 

should be narrowly defined in order to maintain a higher degree of predictive accuracy in future 

modeling exercises.  While the STEM and STEM-Related students take many of the same 
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quantitative coursework in college their focus is different.  Intuitively, it would seem natural that 

the STEM and STEM-Related students would be more alike than the STEM-Related and Non-

STEM students.  Yet this was not found to be the case.  The STEM-Related students are 

acquiring skills that they can apply directly in their professional careers.  The STEM students are 

learning the reasons why the analytical tools work and how they can be adapted to work in new 

ways and for new applications.   

9.2 RECOMMENDATIONS 

9.2.1 When to Use Integrated Models 

Developing an integrated model is more involved than applying a single analytical technique.  

An analyst might very well wonder why the extra effort should be made.  For a less complex 

problem, a single technique might be sufficient.  When the problem is so complex that a 

simplified subproblem is not realistic enough to capture enough of the factors to offer 

informative results, multiple techniques should be considered.  Adding another analytical 

technique should make it possible to examine more of the factors that affect the problem 

provided that the techniques are additive.  For example, if the standard analytical technique 

produces a 60% accuracy level with predictions and integrating a second technique increases the 

accuracy level to 75% then the techniques are additive.  The type of data that can be collected 

will guide the selection of potential analytical tools.  The nature of the problem and the focus of 

the improvement sought will also affect the choice of analytical tools.  When techniques can be 

combined to offer the desired additive improvement, they are candidates for integration.  The 
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next question to consider is whether the improvement would be significant or explain the results 

in a better way.  If the first technique explains so much of the variation that it provides a superb 

level of predictive accuracy then the potential benefit from integrating another technique may not 

be worth the additional effort required.   

In the application considered in this research, the standard technique did a very good job 

of predicting the educational outcomes and left little room for improvement by the integration of 

survival analysis.  The reason that the logistic regression models were able to achieve such good 

levels of accuracy was the extensive effort made in preparing the data for modeling outcomes via 

logistic regression.  This effort began with the selection of potentially promising variables after 

reviewing prior research to identify factors previously found to exhibit significant differences 

between STEM and Not-STEM students.  The findings of prior research led to the selection of 

variables in NELS that provided the same or comparable information.  Then the net was cast 

more widely to select variables that would provide additional insights into the family structure, 

academic capabilities, experiences, and attitudes of the students towards school.   

The variables had to be carefully considered since the dataset had an enormous number of 

potential variables with nearly 7,000 variables from the students’ high school years.  Of these 

variables, the vast majority were redundant, not practical, or irrelevant to this research.  For 

example, the students’ race and gender were recorded in each of the five waves of data 

collection.  This was done to ensure the most accurate accounting of the students, but only one 

set of these variables was ultimately used for the analysis.  Other variables measured details 

about the students’ teachers and schools.  While these variables offered interesting insights into 

the students’ educational experiences, their use in modeling was not supported by prior research.  

Including these extraneous variables would have required extra analytical time, and they were 
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not good candidates to recommend for future data collection to analyze the prediction of 

quantitative degree outcomes.  Still other variables would have been useful for analyzing 

different research hypotheses but offered little insight into educational outcomes.  A separate 

variable selection effort was required to identify variables that could be used to determine the 

students’ final educational outcomes.   

The use of the high school graduation status and the first two majors and degrees reported 

by the students proved to be insufficient to determine the final outcomes when attempting to 

derive the students’ time to departing the STEM track.  Additional variables from the post-

secondary education transcript file were required to resolve gaps and inconsistencies in the data.  

Future attempts to analyze students’ educational outcomes and persistence should involve 

gathering similar data that not only reflects significant predictors, but also identifies the 

outcomes in question.   

Once the NELS variables were selected the set of potential values had to be reviewed so 

that they could be converted into recoded variables with binary (i.e. 0 or 1 values), ordinal, or 

continuous values such that the logistic regression model could employ them.  Without the 

careful recoding of the original variables selected for the modeling the regression models would 

have been less accurate and using such a large set of potential variables in the modeling would 

have been infeasible.  Examining the data with survival analysis provided additional insights into 

the research by clearly highlighting the differences and similarities in the cumulative hazard 

functions for the different groups.  This provided insights into the timing for different potential 

intervention programs. 
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9.2.2 Data for Educational Outcome Research 

The NELS dataset created by NCES contained a wealth of variables that made it extremely 

useful for examining the educational progression of students from high school through college.  

These included demographic, experiential, and attitudinal variables for the students as well as 

objective measures of their academic capacity and performance.  Other variables indicating the 

students’ course of study at college and work experiences were provided.  Information about the 

students’ schools, communities, and parents were made available.  The dataset was gathered for 

the purpose of enabling a vast array of potential educational research rather than a single focused 

line of analysis.  As such, it is very applicable for different purposes, but such application may 

require intensive examination of the data to develop a way of using it for a single purpose.  There 

are several things that could be done in future data collection designs by NCES to better support 

research that continues the analysis performed in this dissertation as well as other qualitative 

analyses of educational and societal outcomes.   

Since the findings of this research indicate that mathematical skills are so important to the 

prediction of educational outcomes, it would make sense to focus heavily on this subject in 

future data collection designs.  Surveys of students should contain separate questions to gather 

the students’ experiences in taking different mathematic subjects such as trigonometry, 

geometry, algebra, calculus, probability, and statistics to learn if and when the students took 

these classes and the grades they earned.  The NELS:88 design included variables to measure the 

number of years of coursework and total number of “Carnegie units” that were taken in various 

math subjects.  Explicit measures of how well each student performed in each math class taken 

would be particularly valuable.  Any standardized tests taken by the students to measure their 

mathematical competency including the PSAT, SAT, and ACT should continue to be obtained.  
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These variables have consistently been found to be valuable predictors of educational outcomes 

but they may not be enough to completely explain results.  The examination of these variables 

may offer additional insights into the differences between STEM and STEM-Related or Non-

STEM students.   

The strong logistic regression models developed in this research were the product of 

extensive manipulation of variables to create recoded versions with a binary or ordinal scale.  

Future longitudinal datasets from NCES would benefit from the creation of binary/ordinal 

versions of key variables such as the parents college degree status, standardized test scores, and 

language minority status.  The variable “sex” had a dichotomous scale, but the responses had 

been set to 1 and 2 rather than making it binary originally.  There were several variables within 

the NELS:88 dataset reporting race/ethnicity, but a complementary set of binary dummy 

variables would have better enabled the modeling process.   

As previously mentioned, American culture has changed dramatically since the late 

1980’s, and the pace of these changes has been very rapid.  The range of activities available to 

students has expanded accordingly.  Several variables that measured television watching habits 

of students were significant in the modeling process.  These variables also may be valuable in the 

future, but it would be logical to increase the set of variables collected by examining currently 

popular activities such as playing video games via the internet or handheld devices, participating 

in social networking websites, communicating via instant messaging software, communicating 

via text messages, communicating via cellular telephones, shopping for products via the internet, 

etc.  Many of these activities may stimulate mental skills in mathematics, science, or strategic 

planning such as those which encourage students to take on the role of planning a city’s 

development.  Other games that have a physical interaction such as the Nintendo Wii™ units 
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have implications for physical development.  Still other videogames serve solely entertainment 

purposes.   

The manner in which educational material is disseminated and assimilated has also 

expanded.  More schools have integrated multi-media in the educational process most notably by 

including personal computers as a teaching and learning tool.  Thus a student’s level of computer 

literacy can affect how well the student is able to use computer based learning tools, online 

reference materials, and analytical software.  A very basic skill that directly affects the speed at 

which students can use a computer is their ability and proficiency to type.  This presents other 

potential variables that should be collected in future attempts to replicate this research.   

9.2.3 Implications for Intervention Programs 

The findings from the cumulative hazard functions and the sets of significant variables for 

different models suggest that multiple intervention programs may be required to increase the 

numbers of students graduating with STEM degrees.  Some of the students in the NELS:88 

dataset clearly were at great risk of departing the STEM track early in the study by dropping out 

of high school.  This suggests they were inadequately prepared academically and motivationally 

to continue in school.  Any intervention program to advance these students towards a STEM 

outcome would have to have been delivered earlier then the 8th grade to improve their skills, 

encourage them towards a technical subject, and increase their desire to at least complete high 

school.  Additional consideration of the dropout phenomena is required to assess when this 

intervention would be optimally delivered. 

A second potential time point for intervention concerns the later high school years when 

students are considering their post-high school plans and possible college major choices.  This 
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intervention would concentrate on educating students about the interesting careers available in 

STEM, encouraging them to consider applying to a STEM program that suits their academic 

preparation, and motivating them to follow through.  Most high school students have some idea 

what doctors and lawyers do, but they may not appreciate how a chemist, physicist, or engineer 

is employed.  Without more awareness of the exciting array of careers available to STEM 

graduates, the choice to focus on a challenging STEM degree may be less appealing.  A STEM 

career may be more appealing once students understand how these careers fit into the modern 

American culture.  For example, a student that enjoys playing interactive videogames may be 

more drawn to STEM when understanding that videogame designers and special effects creators 

for the entertainment industry study a lot of computer programming, mathematics, and physics.  

The prospect of working on space exploration and development should also engage the interest 

of many students.   

The findings that approximately 15% of the students that entered college but dropped out 

before graduating were incorrectly predicted to have a STEM outcome suggests many of these 

students could have succeeded had they stayed in school.  Even more dramatically, many of the 

students that earned other four year degrees appeared to have the capacity to earn a STEM 

degree.  Some of these students may well have started in a STEM major and then switched out.  

A third potential intervention program could be timed to the first year of college to encourage 

capable students to stay within or switch into STEM majors.  The goal would be to retain as 

many capable students as possible and recruit students from other majors with an interest and 

aptitude for STEM coursework.  One way to accomplish the retention goal might be to 

encourage students intending to switch out of STEM to consider a different major within STEM 
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that more closely matches their interests.  A possible source of potential recruits is students that 

are taking quantitative coursework as an elective.   

9.2.4 Educational Policy Implications 

Preliminary findings of this research have been shared through presentations to professional 

associations.  One common theme of the responses received has been concern that this research 

could be used as a tool to “cherry-pick” the best students to increase the supply of STEM 

students without regard to the students not selected.  This is a valid concern.  With the proper 

data, similar models could be constructed to predict the probability of a given student achieving a 

STEM degree so that only strong candidates would be accepted to a particular STEM program.  

The capable students in a particular high school could be encouraged to apply to STEM 

programs while the less capable students are ignored.  A specific concern that has been expressed 

is that the variables for race/ethnicity and gender could be used to select the students that have a 

greater estimated probability of achieving a STEM degree with the result that desired goals for a 

diverse student population are not met.  Each of these scenarios is possible.   

An observation that may allay some of these concerns is that the need for increasing 

numbers of STEM degree-holders means that each student should be considered a potential 

candidate in junior high school.  Students that are not necessarily the strongest in math may 

possess sufficient drive and initiative to succeed in STEM if motivated by personal interest 

despite their academic disadvantage.  It should be the goal of educational policy makers to use 

this sort of research to improve their delivery of education for the benefit of all the students.  If 

more students are better prepared academically to pursue a STEM degree the concerns about the 

implications of this research may be unwarranted. 
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9.2.5 Recommended Approach in Using Integrated Models 

The results of this research led to the development of a recommended process for using an 

integrated model for a specific problem application.  The process is depicted in Figure 9.1.  As 

with any model, the first step is to formulate the problem to determine its parameters and decide 

the scope that will be explored.  From there the problem’s complexity must be assessed and a set 

of goals for the proposed solution developed.  If the problem isn’t particularly complex, then an 

integrated model may not be required.  The goals for the solution will help to decide which parts 

of the problem are critical in data collection and how to determine if a proposed solution can 

produce an acceptable level of improvement.  Then it is important to assess what sort of data can 

be obtained to describe the problem.  Where in the process can data be found?  What is the 

format of the data in terms of qualitative or quantitative?  If some or all of the data is quantitative 

does it possess a continuous, integer, ordinal, binary, or nominal scale?  The type of data that is 

required to measure the problem and the desired improvement will lead to a set of potential 

analytical methods to study the data.  From this a standard single technique may be selected to 

serve as the benchmark or starting point for an integrated approach.   

As an example, if the problem concerns missing production deadlines then it is 

reasonable to explore the sorts of data that go into planning and manufacturing the product.  This 

would include how production orders are generated; how the information is conveyed to 

manufacturing; how raw materials and subcomponents are obtained; how the production is 

scheduled; how well the manufacturing process is operating; and how the work in process is 

transported for subsequent production processes.  If preliminary analysis suggests that the 

process is failing to adequately plan production schedules, then production level forecasting may 

be the standard single technique that is employed.  Other potential analytical methods that may 
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be useful include statistical process control for evaluating the process quality; simulation for 

testing alternative manufacturing process scenarios; and operations research optimization to 

explore the effects of product mix decisions and make vs. buy choices for subcomponents upon 

the production process.  

Once the types of data needed and the primary analytical method are selected, it is 

important to consider what data is currently available and how it can be obtained.  Ideally, the 

data is already collected and in a means that can be readily accessed.  If this is the case, then the 

data is obtained and prepared as required for the methodology chosen.  If the data is not already 

available, then it is necessary to design a data collection plan and implement it before beginning 

the analysis.  The process of data acquisition may have to be repeated in several cycles if 

preliminary analysis indicates that additional data is required.  Then the problem is modeled with 

the standard single technique. 

The solution obtained from the initial model is evaluated to determine if the solution 

quality is acceptable and whether sufficient improvement has been gained.  If the solution meets 

the criteria, then it is provided to the decision maker, implemented if approved, and the actual 

results are evaluated.  Additional improvements are made to the process as needed.   

If the solution provided by the standard single technique isn’t sufficient, it may be 

worthwhile to consider developing an integrated model.  This would start by considering other 

analytical methods that are appropriate to the problem data which could provide an additive 

benefit to the standard technique.  This part of the process relies on the creativity and skill of the 

analyst as well as the accessibility of any additional data that might be needed for a particular 

technique.  If additional data is required, a new data collection plan is developed and 

implemented.  The various analytical techniques are combined in an integrated fashion and the 
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model solution is evaluated.  Successive iterations may be required to experiment with different 

approaches in integrating the different techniques until a suitable method is found.  The 

integration process is repeated as needed until an acceptable solution is developed.   
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Figure 9.1  Recommended Process for Considering and Developing Integrated Models for Analysis 
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10.0  CONTRIBUTIONS AND FUTURE WORK 

10.1 SUMMARY 

This research has demonstrated that integrated models are feasible and hold promise for 

examining complex problems.  It has produced a set of models which predict educational 

outcomes with accuracy that ranged from acceptable to outstanding.  The logistic regression and 

integrated models were fitted using a large set of variables and a very large number of records.  

The models were created and tested with separate fit and test datasets for greater rigor in 

examining the predictive accuracy.  ROC Curves were used to evaluate the accuracy of the 

models’ predictions based on different threshold probability values.  A formal definition was 

proposed for the college majors that should be considered part of STEM, and this definition was 

tested.  The grouping of college majors into three categories (STEM, STEM-Related, and Non-

STEM), showed interesting similarities and dissimilarities between the students in the different 

groups.  A large set of variables that have been found to be predictive of educational outcomes in 

prior research was tested and several were found to be consistently significant predictors of post-

secondary educational outcomes in this analysis.  The findings led to conclusions about the 

logical next steps in continuing this research. 
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10.2 CONTRIBUTIONS OF THE DISSERTATION 

10.2.1 Creation and Testing of an Integrated Model  

The main contribution of this dissertation is the development and evaluation of an integrated 

model that could be applied to more general problems.  The feasibility of employing multiple 

statistical techniques to data collected at different points in time across a complicated problem 

with interconnected factors and linking the techniques together has been demonstrated.  The 

result in this case is a tool that can be used to predict post-secondary educational outcomes with 

good accuracy and identify during high school those students with a higher potential for 

completing a bachelor’s degree in STEM.   

While the integrated models developed in this research did not provide a statistically 

significant improvement in predictive accuracy, they did provide good accuracy and a starting 

point for further exploration of the integrated modeling approach.  As discussed in section 9.2, 

there were two aspects of this analysis that may have hampered the integrated models’ 

functioning.  The first aspect that made it harder for the integrated models to show a significant 

improvement was simply that the logistic regression models were more accurate than anticipated.  

The second aspect was defining the STEM track departure times in a manner that did not provide 

much contrast between the STEM and Other Degree students.  The results in this application 

suggest if the integrated approach were employed with a different design interpretation or to a 

different problem application, significant improvements might be gained over a single technique 

solution. 
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10.2.2 Developing a Process to Create and Evaluate Large Logistic Regression Models 

Multivariate logistic regression models have been developed in prior education research, but the 

scope of the models created in this research was much larger.  The models created in this 

analysis examine student records over a longer time period and are able to achieve very good 

accuracy in predicting post-secondary educational outcomes from an early point in high school.  

These logistic regression models were fitted with the use of a much larger number of records and 

potential covariates than has been the case in prior research.  The process outlined for selecting 

potential covariates, recoding the covariates for maximum utility, selecting random samples to fit 

and test the models, generating prediction results, and evaluating the results is a sound approach 

for future research.  Logistic regression models are often evaluated solely on the basis of how 

well a particular model explains the results observed in the data used to fit it.  Extending the 

evaluation to show how well the fitted model works when applied to a new set of records and 

exploring how responsive the predictive accuracy is to a change in the prediction probability 

cutpoint for the test data has not been done in prior education research.  The unusual 

combination of a very large dataset, a large set of potential variables, a longitudinal breadth of 12 

years, a rigorous evaluation method, and a means of easily adjusting the sensitivity/specificity 

made these logistic regression models different from those of prior research. 

The models achieve a great deal of accuracy in discriminating between diverse potential 

outcomes using a large assortment of demographic, attitudinal, and experiential data gathered 

during the 8th grade from the students and their parents.  The analysis confirms the utility of 

many variables previously found to be significant predictors of STEM interest as well as 

identifying new predictors.  The models cover a wider scope of potential educational outcomes 
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including high school dropout, high school graduate, college dropout, and an array of different 

college degrees than has been examined simultaneously in prior research.   

The value that was gained by using the NELS:88 dataset was a direct result of extensive 

preparation of the data.  The NELS:88 data that was gathered for general research purposes and 

not with this particular type of analysis in mind.  Adapting it for this research required extensive 

manipulation of the data to select the most appropriate set of variables; interpreting a large set of 

variables to develop record classifications; recoding potential covariates to a purely binary, 

ordinal, or continuous scale; reconciling conflicting information from different variables; and 

developing logical rules for handling cases of missing data.  During the course of this analysis a 

number of methods were designed for the efficient manipulation of huge quantities of data and 

particularly when much of the data is categorical in nature.  These methods are applicable to 

more general problems than just educational research. 

10.2.3 Extending the Application of ROC Curve Analysis to Education Modeling 

ROC Curves are commonly used in other fields such as medical research to evaluate the 

predictive ability of diagnostic tests and statistical models.  The manner in which they have been 

applied in this research is new to educational research modeling.  Previous analyses have relied 

on the ROC Curve by using the area under the ROC Curve (AUC) value to assess how well a 

particular model explained the observed results in the fit dataset.  The AUC values have also 

been used in the past to compare the strengths of different models.  The sensitivity and 

specificity at different cutpoints has been mentioned as an option for the analyst to select a 

preferred value, but this has not been previously utilized.   
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The extension offered by this research is incorporating the ROC Curves to visually depict 

the different combinations of sensitivity and specificity achievable with a particular model that 

not only permits adjustments to the model but provides a simple way to directly compare the 

strengths of different models when applied to test data rather than merely fit data.  It also 

provides a powerful means for an analyst or policy maker to adjust a particular model to suit 

individual policy goals.  This greatly increases the potential utility of the models by minimizing 

the need to do additional sophisticated analysis or further modeling in order to apply a given 

model for differing goals.  One of the greatest strengths of the ROC Curves is their ability to 

communicate the models’ strength and tradeoffs in predictive accuracy to a wide audience in a 

manner that can be easily understood.  Policy makers can use the curves to explain the impact of 

particular policy goals and how best to use the models once decisions have been made.  Without 

seeing the illustration of balance between sensitivity and specificity it can be hard to grasp why a 

particular target audience of students should be selected for a proposed intervention program.   

10.2.4 Creating a Formal Definition of “STEM” 

This dissertation led to a proposed definition of STEM beyond the conventional practice of 

grouping majors that are labeled as part of Science, Technology, Engineering, and Math.  Other 

research efforts have employed varying combinations of majors based on assorted criteria, but 

the concept of formally testing groups of majors to determine if a narrow or expansive definition 

of STEM was warranted is new.  Formally proposing and testing whether a distinct third 

category of majors between STEM and Non-STEM should exist is also new.  The concept of the 

STEM-Related category is to reflect the degree programs that involve extensive quantitative and 

technical coursework, but whose graduates will apply differently in their careers than the STEM 
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graduates.  The STEM and STEM-Related students may have a great deal of common 

coursework, but the STEM-Related graduates will not be applying their skills in the research and 

development capacity that STEM graduates are expected to.  STEM graduates are trained to use 

the acquired knowledge and skills to adapt them in new ways that extend the body of knowledge.  

In contrast, the STEM-Related graduates are envisioned to apply the knowledge and tools they 

have acquired to specific problems rather than creating new ways to use the tools or new 

methods.  It should be noted that some STEM-Related students may also be oriented towards 

STEM and the converse is true.  In this research, students that earned degrees in both STEM and 

STEM-Related topics were classified as having a STEM outcome.  

Use of the STEM-Related category allows a more precise categorization of STEM and 

Non-STEM.  The classification of majors meant that the “Not-STEM” outcome could be broken 

down much more finely than before to suit the analyst’s goals whether looking at all possible 

educational outcomes, just those that involved completing a bachelor’s college degree at 

minimum, or college degree outcomes that involved more vs. less quantitative coursework.   

The effort to create and test a definition of STEM was instrumental in deciding to create a 

series of finely divided post-secondary educational outcomes.  Breaking the potential outcomes 

up into a series of clear and precisely determined results made a much wider array of models 

possible.  This series of outcomes combined with the extensive number of records in the dataset 

allowed many more two-outcome models to be fitted and evaluated.  It provided a means for 

future research to directly compare results for a wide set of potential outcomes with those of 

prior research.  As long as it can be determined which group of outcomes a previous research 

effort considered, results can be compared to those obtained by using these models.   
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10.2.5 Applying Survival Analysis in a Unique Manner 

As discussed earlier, survival analysis has been used in previous educational research to explore 

trends in dropping out of high school, remaining employed as a secondary educational teacher, 

and completing a college degree.  In those cases analysts were attempting to spot critical points 

in time when the risk of an event occurring changed dramatically and to determine if the 

probability of “surviving” past a given time was significantly different for various groups of 

people.  This research is unique in applying survival analysis to predict which of two educational 

outcomes individual students will have as well as exploring the sensitivity of the predictions via 

ROC Curves.  Numerous issues in applying survival analysis to an educational application that 

covers such a large, disparate group of students were encountered and resolved.  This provides a 

very useful support for additional research to build upon in applying the powerful abilities of 

survival analysis.  

10.3 FUTURE RESEARCH 

The potential lines of inquiry suggested by this dissertation include examining the integrated 

model approach in applications other than educational research; evaluating other statistical 

analysis tools for incorporation into an integrated model; and exploring additional integrated 

models for educational research that could achieve greater predictive accuracy.  Additional 

educational analyses that are logical extensions of this research are testing the limits of the 

STEM definition by selectively including or excluding individual majors; examining the 

sensitivity of the models to alterations in key significant variables to obtain a road map for pro-
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STEM intervention programs, developing intervention programs and forecasting their potential 

impact on the probability of a student earning a STEM degree; developing models to predict 

academic strength at high school graduation from an earlier point in the educational process; and 

examining the high school dropout phenomena in greater detail.   

One of the most important tests of the integrated model approach is applying it to 

applications beyond educational research.  The transportation network described in section 1.2 

would be a good test of the integrated methodology.  Another scenario would be examining the 

effectiveness of a manufacturing process by predicting the lifespan of a product based on 

reliability data and potential covariates of the manufacturing process.  Medical research 

applications would be another area in which integrated models could be beneficial.  The human 

body is an extremely complex system in its own right.  The effects of genetics, environment, 

treatment decisions, and age provide a rich opportunity for data collection and analysis using 

multiple techniques focused on the different sorts of data available.   

Models that predict commodity pricing would be a potentially valuable use of the 

integrated model in the current economic environment.  Commodity prices are affected by a 

complex system of supply, demand, transportation requirements, pre-consumption processing, 

supplier channels, competing products/uses, tax policy, import/export policy, political influences, 

and unexpected events that can shock the systems.  For example, the price of gasoline sold in the 

U.S. is a function of foreign/domestic petroleum supplies; international and domestic demands 

for petroleum products; seasonal variations in demand; costs to access and deliver petroleum 

products; refining costs; refinery capacity and mix of product requirements; distribution network 

efficiency; prices of biofuels, nuclear, and other energy sources; demand for petroleum used as a 

raw material in other production processes; state, federal, and national taxation levels; the 
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currency exchange rate; the import/export policies of producing and consuming nations; the 

effects of political decisions in numerous countries; and factors that are difficult to predict such 

as adverse weather events, failures in drilling/refining equipment, transportation accidents, 

terrorist acts, and political instability.  The price consumers in the U.S. ultimately pay depends 

on how all of these factors play out over a long period of time.  The petroleum industry and 

petroleum consumption are of great concern due to the critical effect of this resource on 

international economies and the lives of ordinary people, and there are certainly other 

commodities for which integrated pricing models could be beneficial.   

It is logical to consider alternative analytical techniques in assembling the modules of a 

potential integrated model.  For example, a particular application may feature data that would be 

suited to time series analysis, factor analysis, principle components analysis, or other types of 

nonlinear regression analysis.  It would be critical to consider which techniques are best suited to 

the particular type of data available to measure the problem across its scope.  In the pricing 

commodity example, time-series forecasting could be tested to project seasonal demands at a 

future time; a nonlinear regression module could be used to examine the effects of disparate 

influences on the demand and supply; and a game theory approach could be explored as a way of 

capturing the effects of nations and groups in opposition to one another.   

Among the potential extensions of this research in the educational field, there are options 

that could be explored to determine if greater predictive accuracy can be achieved with the 

integrated models when applied to the NELS:88 data.  These range from modeling more starkly 

disparate pairs of outcomes to adjusting the survival times to illustrate the differences between 

the STEM and All Else students more clearly.   
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The STEM vs. Non-STEM classification of majors can be tested further by selectively 

changing the assignment of majors classified as STEM-Related to the other four year degree 

categories.  This would provide a rigorous test of the limits of the classification proposed in this 

dissertation by considering each candidate for the STEM category to see if it warrants inclusion.  

In addition, it would be beneficial to test the classification against student outcomes observed in 

different studies.  Additional educational datasets can be examined with this technique to ensure 

that the classification scheme is valid regardless of the dataset employed.  It is also worth noting 

that since the students in the NELS:88 dataset completed their college education the array of 

subjects that a student may earn a bachelors degree in has expanded.  Expansion of previous 

subjects such as biotechnology and entire new fields such as nanotechnology has dramatically 

expanded the array of academic degree subjects.  Considering the expansion of academic 

inquiry, it would be valuable to see how the definition of STEM might change.   

The classical vision of sensitivity analysis in optimization involves determining how the 

results change if the value of a key input variable is altered.  In this setting, that would involve 

measuring the impact on the probability of a STEM outcome or survival on the STEM track past 

a particular point from changing a significant predictive variable by one unit.  For example, if a 

student with a given vector of covariates had a 100 point increase in the SAT mathematics score 

would this change the predicted educational outcome for this student and if so, by how much?  

This version of sensitivity analysis would be complicated by the likely correlation between 

variables.  Since multiple measures of mathematical skills were found to be significant, a change 

in one could affect the values for other measures.  Another consideration is the classification of 

variables as controllable or not controllable.  If the goal is to effect change in a positive direction, 

the sensitivity of non controllable variables may provide insights, but the sensitivity of 
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controllable variables may prove more valuable.  Such analysis could provide the basis for 

designing an intervention program by indicating which of the factors education policy makers 

control have the greatest impact on the probability of a STEM outcome.  The design of potential 

intervention programs is a logical extension from there.  Given that a specific set of vital 

covariates that can be influenced exists, what form should a pro-STEM intervention take?  How 

would a given program affect the likely numbers of STEM students resulting?  What is the 

impact of including different students in the target audience?   

It would be easier to strengthen students’ academic skills if deficiencies that could lessen 

their STEM potential were identified at an earlier time in the educational process and dealt with 

then.  By 8th or 10th grade the students’ prior academic preparation has become critical in their 

potential for going on to college.  While this may be an opportune moment to target the college-

bound students for a pro-STEM intervention, it may not be in time to appreciably alter the 

trajectory of other students.  It would be interesting to explore data from earlier in students’ 

academic career to determine if it could accurately predict what their academic performance, 

attitudes towards STEM, and intention to pursue a college degree would be as they near the high 

school graduation.  If significant predictors could be found at an earlier point in the educational 

process it would open up the possibility of designing effective intervention methods to assist 

students in being better prepared for high school as well as college.   

The importance of strong skills in mathematics has been apparent through out the 

different models.  Although multiple variables assessing mathematical skills were used in this 

analysis, none dealt with the question of which mathematical skills were the most critical to the 

probability of achieving a STEM degree.  Among the mathematics courses that are potentially 

available to students in high school are algebra, geometry, trigonometry, statistics, probability, 
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and calculus.  Future research into the STEM degree acquisition process should examine the 

effects of competence in these different mathematical topics to determine which have the most 

effect on the probability of earning a STEM degree.   

As discussed in section 2.5, there has been prior educational research done into the 

subject of high school dropouts.  This is an area of concern to society since failing to complete 

high school can limit employment and future educational prospects.  Unless students are 

motivated to earn a high school diploma with strong academic skills they will also be less likely 

to complete a STEM degree.  Modeling the dropout phenomena to identify factors that predict 

whether and when students will leave high school is a potentially useful application of the 

integrated methodology.   

All of these options for future research offer the opportunity to expand knowledge of how 

an integrated methodology can be employed to solve complex problems.  With all of the 

analytical tools available to industrial engineers the possible combinations of techniques that can 

be integrated for application to complex problems are numerous.   
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APPENDIX A 

BACKGROUND FOR NELS:88 VARIABLES 

A.1 NELS:88 “UNIVERSE” VARIABLES 

The F4UNIV1 variable indicates the status of the students in the NELS:88 dataset during each of 

the five waves of data collection.  It consists of a four digit code that corresponds to a 

combination of five alphanumeric codes that are the status indicators.  The alphanumeric codes 

for the waves begin with two digits that indicate the status related to either the base year (BY) in 

1988 or one of the four follow up waves of data collection ( F1, F2, F3, or F4).  The only 

exceptions to this are for the codes BNA for Base Year Not Applicable and 1NA for First 

Follow-up Not Applicable.  After the digits indicating the wave of data collection is a one to two 

digit code for the status of the student in that wave.  Table A.1 lists the set of potential status 

codes for the data collection waves. 
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Table A.1  Summary of Student Status Codes for the Data Collection Waves 

Status Code Status Description 
BNA Base Year Not Applicable 
1NA First Follow-up Not Applicable 

A In-school, in grade 
B In-School out-of-grade 
D Dropout 
E Eligible 
F Freshened 
G Received GED/HS Equivalent 
H Received HS diploma 
I Ineligible 
N Not Pursuing GED/HS Diploma 
O Subsampled Out or Equivalent 
P Pursuing GED/HS Diploma 
X Out of Scope (e.g., deceased) 

1ER F1 Sampling Error 
2ER F2 Sampling Error 

? Status Unknown 
Q Respondents 

 

For example, cases where F4UNIV1 = 1038 indicate that the students had status codes of 

“BYE  F1B  F2D  F3G  F4Q.”  These codes translated into an overall status summary of Base 

Year Eligible (participated in the 1988 wave), in school during F1 but not in the grade 10th grade 

that would have been expected, dropped out status in F2, received a GED or high school diploma 

equivalent by F3, and responded during the F4 wave.   

Table A.2 lists the set of F4UNIV1 numeric codes with their associated alphanumeric 

status meanings and the number of students in each category.  The table also indicates if the 

students participated in all five waves of data collection, were ever in drop out status, or ever 

failed to respond during one of the waves of data collection.   
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Table A.2  Summary of “Universe” Variables indicating Student status during the waves 
of NELS data collection 

 

F4UNIV1 BY F1 F2 F3 F4 Freq. 

Dropout 
at some 

point 

Non-
response 
at some 

point 

Partic. in 
all 5 

waves 

Freq. of 
All 5 

partic. 
1001 BYI F1A F2A F3H F4Q 84   No  
1002 BYI F1A F2A F3G F4Q 1   No  
1003 BYI F1A F2A F3P F4Q 1   No  
1004 BYI F1A F2A F3N F4Q 4   No  
1007 BYI F1A F2B F3H F4Q 2   No  
1008 BYI F1A F2B F3G F4Q 1   No  
1009 BYI F1A F2B F3P F4Q 1   No  
1010 BYI F1A F2B F3N F4Q 1   No  
1011 BYI F1A F2D F3H F4Q 7 Yes  No  
1012 BYI F1A F2D F3G F4Q 6 Yes  No  
1013 BYI F1A F2D F3P F4Q 1 Yes  No  
1014 BYI F1A F2D F3N F4Q 4 Yes  No  
1015 BYI F1A F2D F3? F4Q 1 Yes Yes No  
1020 BYI F1A F2? F3G F4Q 1  Yes No  
1021 BYI F1A F2? F3N F4Q 2  Yes No  
1025 BYE F1B F2A F3H F4Q 115   Yes 115 
1026 BYE F1B F2A F3G F4Q 7   Yes 7 
1027 BYE F1B F2A F3P F4Q 6   Yes 6 
1028 BYE F1B F2A F3N F4Q 5   Yes 5 
1031 BYE F1B F2B F3H F4Q 48   Yes 48 
1032 BYE F1B F2B F3G F4Q 8   Yes 8 
1033 BYE F1B F2B F3P F4Q 17   Yes 17 
1034 BYE F1B F2B F3N F4Q 12   Yes 12 
1037 BYE F1B F2D F3H F4Q 11 Yes  Yes 11 
1038 BYE F1B F2D F3G F4Q 49 Yes  Yes 49 
1039 BYE F1B F2D F3P F4Q 37 Yes  Yes 37 
1040 BYE F1B F2D F3N F4Q 54 Yes  Yes 54 
1041 BYE F1B F2D F3? F4Q 1 Yes Yes No  
1045 BYE F1B F2? F3H F4Q 2  Yes No  
1046 BYE F1B F2? F3N F4Q 3  Yes No  
1049 BYE F1D F2A F3H F4Q 22 Yes  Yes 22 
1050 BYE F1D F2A F3G F4Q 5 Yes  Yes 5 
1051 BYE F1D F2A F3P F4Q 4 Yes  Yes 4 
1052 BYE F1D F2A F3N F4Q 1 Yes  Yes 1 
1055 BYE F1D F2B F3H F4Q 5 Yes  Yes 5 
1056 BYE F1D F2B F3G F4Q 3 Yes  Yes 3 
1057 BYE F1D F2B F3P F4Q 2 Yes  Yes 2 
1058 BYE F1D F2B F3N F4Q 1 Yes  Yes 1 
1061 BYE F1D F2D F3H F4Q 20 Yes  Yes 20 
1062 BYE F1D F2D F3G F4Q 107 Yes  Yes 107 
1063 BYE F1D F2D F3P F4Q 74 Yes  Yes 74 
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Table A.2 (continued). 

F4UNIV1 BY F1 F2 F3 F4 Freq. 

Dropout 
at some 

point 

Non-
response 
at some 

point 

Partic. in 
all 5 

waves 

Freq. of 
All 5 

partic. 
1064 BYE F1D F2D F3N F4Q 185 Yes  Yes 185 
1070 BYE F1D F2? F3G F4Q 1 Yes Yes No  
1071 BYE F1D F2? F3P F4Q 2 Yes Yes No  
1072 BYE F1D F2? F3N F4Q 5 Yes Yes No  
1076 BYE F1I F2A F3H F4Q 4   Yes 4 
1077 BYE F1I F2A F3G F4Q 2   Yes 2 
1080 BYE F1I F2B F3H F4Q 1   Yes 1 
1082 BYE F1I F2D F3H F4Q 1 Yes  Yes 1 
1083 BYE F1I F2D F3G F4Q 3 Yes  Yes 3 
1084 BYE F1I F2D F3P F4Q 1 Yes  Yes 1 
1087 BYE F1X F2A F3H F4Q 7  Yes No  
1089 BYE F1X F2B F3N F4Q 1  Yes No  
1090 BYE F1X F2D F3H F4Q 1 Yes Yes No  
1091 BYE F1X F2D F3G F4Q 4 Yes Yes No  
1092 BYE F1X F2D F3N F4Q 4 Yes Yes No  
1100 BYE F1? F2A F3H F4Q 139  Yes No  
1102 BYE F1? F2A F3P F4Q 3  Yes No  
1103 BYE F1? F2A F3N F4Q 1  Yes No  
1106 BYE F1? F2B F3H F4Q 4  Yes No  
1107 BYE F1? F2B F3G F4Q 1  Yes No  
1108 BYE F1? F2B F3P F4Q 1  Yes No  
1109 BYE F1? F2B F3N F4Q 1  Yes No  
1112 BYE F1? F2D F3H F4Q 5 Yes Yes No  
1113 BYE F1? F2D F3G F4Q 6 Yes Yes No  
1114 BYE F1? F2D F3P F4Q 6 Yes Yes No  
1115 BYE F1? F2D F3N F4Q 9 Yes Yes No  
1120 BYE F1? F2? F3H F4Q 3  Yes No  
1121 BYE F1? F2? F3G F4Q 1  Yes No  
1122 BYE F1? F2? F3N F4Q 1  Yes No  
1126 BYE F1A F2A F3H F4Q 9486   Yes 9486 
1127 BYE F1A F2A F3G F4Q 71   Yes 71 
1128 BYE F1A F2A F3P F4Q 77   Yes 77 
1129 BYE F1A F2A F3N F4Q 47   Yes 47 
1131 BYE F1A F2A F3? F4Q 2  Yes No  
1133 BYE F1A F2B F3H F4Q 74   Yes 74 
1134 BYE F1A F2B F3G F4Q 13   Yes 13 
1135 BYE F1A F2B F3P F4Q 22   Yes 22 
1136 BYE F1A F2B F3N F4Q 13   Yes 13 
1140 BYE F1A F2D F3H F4Q 130 Yes  Yes 130 
1141 BYE F1A F2D F3G F4Q 221 Yes  Yes 221 
1142 BYE F1A F2D F3P F4Q 158 Yes  Yes 158 
1143 BYE F1A F2D F3N F4Q 206 Yes  Yes 206 
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Table A.2 (continued). 

F4UNIV1 BY F1 F2 F3 F4 Freq. 

Dropout 
at some 

point 

Non-
response 
at some 

point 

Partic. in 
all 5 

waves 

Freq. of 
All 5 

partic. 
1149 BYE F1A F2? F3H F4Q 10  Yes No  
1150 BYE F1A F2? F3G F4Q 2  Yes No  
1151 BYE F1A F2? F3P F4Q 2  Yes No  
1152 BYE F1A F2? F3N F4Q 3  Yes No  
1156 BNA F1F

A 
F2A F3H F4Q 205   No  

1157 BNA F1F
A 

F2A F3G F4Q 2   No  

1158 BNA F1F
A 

F2A F3P F4Q 4   No  

1159 BNA F1F
A 

F2A F3N F4Q 3   No  

1162 BNA F1F
A 

F2B F3H F4Q 7   No  

1163 BNA F1F
A 

F2B F3G F4Q 3   No  

1165 BNA F1F
A 

F2B F3N F4Q 3   No  

1168 BNA F1F
A 

F2D F3H F4Q 10 Yes  No  

1169 BNA F1F
A 

F2D F3G F4Q 37 Yes  No  

1170 BNA F1F
A 

F2D F3P F4Q 21 Yes  No  

1171 BNA F1F
A 

F2D F3N F4Q 29 Yes  No  

1176 BNA F1F
A 

F2? F3H F4Q 3  Yes No  

1179 BNA F1F
A 

F2? F3N F4Q 1  Yes No  

1183 BNA F1FI F2A F3H F4Q 1   No  
1185 BNA F1FI F2D F3G F4Q 1 Yes  No  
1186 BNA F1FI F2D F3N F4Q 1 Yes  No  
1199 BNA F1F? F2A F3H F4Q 2  Yes No  
1204 BNA F1F? F2D F3G F4Q 1 Yes Yes No  
1205 BNA F1F? F2D F3P F4Q 1 Yes Yes No  
1206 BNA F1F? F2D F3N F4Q 3 Yes Yes No  
1213 BNA 1NA F2F

A 
F3H F4Q 56   No  

1214 BNA 1NA F2F
A 

F3G F4Q 1   No  

1215 BNA 1NA F2F
A 

F3P F4Q 2   No  

1216 BNA 1NA F2F
A 

F3N F4Q 4   No  

1225 BYI F1B F2A F3H F4Q 9   No  
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Table A.2 (continued). 

F4UNIV1 BY F1 F2 F3 F4 Freq. 

Dropout 
at some 

point 

Non-
response 
at some 

point 

Partic. in 
all 5 

waves 

Freq. of 
All 5 

partic. 
1226 BYI F1B F2A F3G F4Q 1   No  
1229 BYI F1B F2B F3H F4Q 1   No  
1231 BYI F1B F2B F3P F4Q 2   No  
1232 BYI F1B F2B F3N F4Q 2   No  
1235 BYI F1B F2D F3P F4Q 2 Yes  No  
1236 BYI F1B F2D F3N F4Q 3 Yes  No  
1240 BYI F1B F2? F3N F4Q 1  Yes No  
1243 BYI F1D F2B F3N F4Q 1 Yes  No  
1245 BYI F1D F2D F3G F4Q 2 Yes  No  
1246 BYI F1D F2D F3P F4Q 6 Yes  No  
1247 BYI F1D F2D F3N F4Q 6 Yes  No  
1250 BYI F1D F2? F3H F4Q 1 Yes Yes No  
1253 BYI F1I F2A F3H F4Q 14   No  
1254 BYI F1I F2A F3G F4Q 1   No  
1255 BYI F1I F2A F3P F4Q 1   No  
1259 BYI F1I F2B F3H F4Q 1   No  
1261 BYI F1I F2B F3N F4Q 2   No  
1266 BYI F1I F2D F3P F4Q 3   No  
1267 BYI F1I F2D F3N F4Q 4   No  
1275 BYI F1X F2A F3H F4Q 1   No  
1276 BYI F1X F2D F3G F4Q 1   No  
1277 BYI F1X F2D F3N F4Q 1   No  
1280 BYI F1? F2D F3H F4Q 1  Yes No  

Total F4 Respondents 12144 Total Respondents in All 5 waves 11328 
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Table A.3  Glossary of NELS Variables Used in Model Building 

Variable 
Name Variable Label Potenial Values Recoded Values 

BY2XHQ 

HISTORY/CIT/ 
GEOG 
QUARTILE 

Code  Freq Percent    Label 
        1   2212  18.2 QUARTILE 1 LOW 
        2   2682  22.1 QUARTILE 2 
        3   2848  23.5 QUARTILE 3 
        4   3178  26.2 QUARTILE 4 HIGH 
        6    760   6.3 {Legitimate skip/not in wave} 
        8     63   0.5 {MISSING} 
        9    401   3.3 {TEST NOT COMP} 

Use ordinal scale 
and set >4 = 0 

BY2XMPRO 

OVERALL 
MATH 
PROFICIENCY 

Code  Freq Percent    Label 
        0   1563  12.9 BELOW LEVEL 1 
        1   3844  31.7 LEVEL 1 
        2   2414  19.9 LEVEL 1 AND 2 
        3   2372  19.5 ALL 3 LEVELS 
        6    760   6.3 {Legitimate skip/not in wave} 
        8    790   6.5 {MISSING} 
        9    401   3.3 {TEST NOT COMP} 

> 2 = 9,  3 = 4, 2 
= 3, 1 = 2, 0 = 1,    
and 9 = 0 

BY2XMQ 

MATHEMATICS 
QUARTILE 
(1=LOW) 

Code  Freq Percent    Label 
        1   2146  17.7 QUARTILE 1 LOW 
        2   2589  21.3 QUARTILE 2 
        3   2891  23.8 QUARTILE 3 
        4   3339  27.5 QUARTILE 4 HIGH 
        6    760   6.3 {Legitimate skip/not in wave} 
        8     18   0.1 {MISSING} 
        9    401   3.3 {TEST NOT COMP} 

Use ordinal scale 
and set >4 = 0 

BY2XRPRO 

OVERALL 
READING 
PROFICIENCY 

Code  Freq Percent    Label 
        0   1229  10.1 BELOW LEVEL 1 
        1   5315  43.8 LEVEL 1 
        2   4019  33.1 LEVEL 2 
        6    760   6.3 {Legitimate skip/not in wave} 
        8    420   3.5 {MISSING} 
        9    401   3.3 {TEST NOT COMP} 

> 2 = 9, 2 = 3, 1 = 
2, 0 = 1, and 9 = 0 

BY2XRQ 

READING 
QUARTILE 
(1=LOW) 

Code  Freq Percent    Label 
        1   2259  18.6 QUARTILE 1 LOW 
        2   2572  21.2 QUARTILE 2 
        3   2869  23.6 QUARTILE 3 
        4   3264  26.9 QUARTILE 4 HIGH 
        6    760   6.3 {Legitimate skip/not in wave} 
        8     19   0.2 {MISSING} 
        9    401   3.3 {TEST NOT COMP} 

Use ordinal scale 
and set >4 = 0 

BY2XSPRO 

OVERALL 
SCIENCE 
PROFICIENCY 

Code  Freq Percent    Label 
        0   2608  21.5 BELOW LEVEL 1 
        1   4783  39.4 LEVEL 1 
        2   2768  22.8 LEVEL 2 
        6    760   6.3 {Legitimate skip/not in wave} 
        8    824   6.8 {MISSING} 
        9    401   3.3 {TEST NOT COMP}  

> 2 = 9, 2 = 3, 1 = 
2, 0 = 1, and 9 = 0 

BY2XSQ 

SCIENCE 
QUARTILE 
(1=LOW) 

Code  Freq Percent    Label 
        1   2196  18.1 QUARTILE 1 LOW 
        2   2699  22.2 QUARTILE 2 
        3   2896  23.8 QUARTILE 3 
        4   3162  26.0 QUARTILE 4 HIGH 
        6    760   6.3 {Legitimate skip/not in wave} 
        8     30   0.2 {MISSING} 
        9    401   3.3 {TEST NOT COMP} 

Use ordinal scale 
and set >4 = 0 
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Table A.3 (continued). 

Variable 
Name Variable Label Potenial Values Recoded Values 

BYFAMINC 

YEARLY 
FAMILY 
INCOME 

Code  Freq Percent    Label 
        1     40   0.3 NONE 
        2     86   0.7 LESS THAN $1,000 
        3    147   1.2 $1,000 - $2,999 
        4    183   1.5 $3,000 - $4,999 
        5    305   2.5 $5,000 - $7,499 
        6    352   2.9 $7,500 - $9,999 
        7    823   6.8 $10,000-$14,999 
        8    788   6.5 $15,000-$19,999 
        9   1078   8.9 $20,000-$24,999 
       10   1967  16.2 $25,000-$34,999 
       11   2182  18.0 $35,000-$49,999 
       12   1450  11.9 $50,000-$74,999 
       13    397   3.3 $75,000-$99,999 
       14    395   3.3 $100,000-199,999 
       15    155   1.3 $200,000 OR MORE 
       98   1036   8.5 {MISSING} 
       99    760   6.3 {Legitimate skip/not in wave} >15 = 0 

BYFCOMP 

FAMILY 
COMPOSITION 
COMPOSITE 

Code  Freq Percent    Label 
        1   7882  64.9 MOTHER & FATHER 
        2   1051   8.7 MOTHER & MALE GUARDN 
        3    228   1.9 FATHER & FEM GUARD. 
        4   1584  13.0 MOTHER ONLY 
        5    248   2.0 FATHER ONLY 
        6    259   2.1 OTH REL/NON-RELATIVE 
       98    132   1.1 {MISSING} 
       99    760   6.3 {Legitimate skip/not in wave} 

Use set of dummy 
var. 
BYFCOMPr1, 
BYFCOMPr2, 
BYFCOMPr3, 
BYFCOMPr4, 
BYFCOMPr5 
with 1 or > 6 
having all = 0.  
Ref. case is 
Mother & Father 

BYHMLANG 

HOME 
LANGUAGE 
BACKGROUND 

Code  Freq Percent    Label 
        1    417   3.4 NON-ENGLISH ONLY 
        2   1020   8.4 NON-ENGLISH DOMINANT 
        3   1078   8.9 ENGLISH DOMINANT 
        4   8846  72.8 ENGLISH ONLY 
        8     23   0.2 {MISSING} 
        9    760   6.3 {Legitimate skip/not in wave} 

Use ordinal scale 
and set >4 = 0 

BYHOMEWK 

NUMBER OF 
HRS SPENT ON 
HOMEWORK 
PER WEEK 

Code  Freq Percent    Label 
        1    274   2.3 NONE 
        2    767   6.3 .50 TO 1.99 HOURS 
        3   2422  19.9 2.00 TO 2.99 HOURS 
        4   3613  29.8 3.00 TO 5.49 HOURS 
        5   2061  17.0 5.50 TO 10.49 HOURS 
        6    501   4.1 10.50 TO 12.99 HOURS 
        7    777   6.4 13.00 TO 20.99 HOURS 
        8    332   2.7 21.00 AND UP HOURS 
       98    637   5.2 {MISSING} 
       99    760   6.3 {Legitimate skip/not in wave} >8 = 0 

BYLEP 

LIMITED 
ENGLISH 
PROFICIENCY 
COMPOSITE 

Code  Freq Percent    Label 
        0  11024  90.8 STUDENT NOT LEP 
        1    271   2.2 STUDENT IS LEP 
        8     89   0.7 {MISSING} 
        9    760   6.3 {Legitimate skip/not in wave} 

Use binary recode 
with > 1 = 0 

BYLM 

LANGUAGE 
MINORITY 
COMPOSITE 

Code  Freq Percent    Label 
        0   9684  79.7 NOT LANG MINORITY 
        1   1698  14.0 LANGUAGE MINORITY 
        8      2   0.0 {MISSING} 
        9    760   6.3 {Legitimate skip/not in wave} 

Use binary recode 
with > 1 = 0 
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Table A.3 (continued). 

Variable 
Name Variable Label Potenial Values Recoded Values 

BYP64B 

FAMILY RULE 
HOW 
EARLY/LATE 
CHLD WATCH 
TV 

like:  Code  Freq Percent    Label 
        1   7159  59.0 YES 
        2   3290  27.1 NO 
        6      2   0.0 {MULTIPLE RESPNSE} 
        8    321   2.6 {MISSING} 
        9   1372  11.3 {Legitimate skip/not in wave} > 6 = 0 

BYP64C 

FAMILY RULE 
HOW MANY 
HRS CHILD 
WATCH TV Same format as BYP64B > 6 = 0 

BYP64D 

FMLY RULE 
HOW MNY HRS 
WTCH TV ON 
SCH DYS Same format as BYP64B > 6 = 0 

BYP65A 

FAMILY RULE 
ABOUT 
MAINTAINING 
GRADE AVG 

Code  Freq Percent    Label 
        1   7486  61.6 YES 
        2   2976  24.5 NO 
        8    310   2.6 {MISSING} 
        9   1372  11.3 {Legitimate skip/not in wave} > 2 = 0 

BYP68 

HOW OFT 
TALKS TO 
CHLD RE POST 
H.S. PLANS 

Code  Freq Percent    Label 
        1    382   3.1 NOT AT ALL 
        2   1107   9.1 RARELY 
        3   5262  43.3 OCCASIONALLY 
        4   3999  32.9 REGULARLY 
        7      2   0.0 {REFUSAL} 
        8     20   0.2 {MISSING} 
        9   1372  11.3 {Legitimate skip/not in wave} > 4 = 0 

BYP69 

HOW OFTEN 
HELP CHILD 
WITH 
HOMEWORK 

Code  Freq Percent    Label 
        1   3213  26.5 SELDOM OR NEVER 
        2   2931  24.1 ONCE/TWICE A MONTH 
        3   3340  27.5 ONCE/TWICE A WEEK 
        4   1025   8.4 ALMOST EVERY DAY 
        8    263   2.2 {MISSING} 
        9   1372  11.3 {Legitimate skip/not in wave} > 4 = 0 

BYP76 

HOW FAR IN 
SCHOOL R 
EXPECT CHILD 
TO GO 

Code  Freq Percent    Label 
        1     39   0.3 LESS THN H.S DIPLOMA 
        2     21   0.2 GED 
        3   1205   9.9 HIGH SCHL GRADUATION 
        4    123   1.0 VOC,TRD,BUS < 1YR 
        5    416   3.4 VOC,TRD,BUS 1-2 YRS 
        6    330   2.7 VOC,TRD,2YRS OR MORE 
        7    536   4.4 < 2YRS OF COLLEGE 
        8   1020   8.4 2 / MORE YRS COLLEGE 
        9    500   4.1 FINISH A 2YR PROGRAM 
       10   4109  33.8 FINISH 4/5 YR PROG 
       11   1266  10.4 MASTER^S DEGREE 
       12   1151   9.5 PH.D., M.D., 
       96     13   0.1 {MULTIPLE RESPNSE} 
       97     13   0.1 {REFUSAL} 
       98     30   0.2 {MISSING} 
       99   1372  11.3 {Legitimate skip/not in wave} > 12 = 0 

BYPARMAR 

PARENTS^ 
MARITAL 
STATUS 

Code  Freq Percent    Label 
        1   1085   8.9 DIVORCED 
        2    255   2.1 WIDOWED 
        3    332   2.7 SEPARATED 
        4    212   1.7 NEVER MARRIED 
        5    141   1.2 MARRIAGE-LIKE RELAT 
        6   8493  69.9 MARRIED 
       98    866   7.1 {MISSING} 
       99    760   6.3 {Legitimate skip/not in wave} 

Use a set of 
dummy variables 
with all = 0 if 
Married (ref. case) 
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Table A.3 (continued). 

Variable 
Name Variable Label Potenial Values Recoded Values 

BYRISK 

BY RISK OF 
DROPPING OUT 
OF SCHOOL 

Code  Freq Percent    Label 
        0   6583  54.2 NO RISK FACTORS 
        1   2833  23.3 ONE RISK FACTOR 
        2   1348  11.1 TWO RISK FACTORS 
        3    482   4.0 THREE RISK FACTORS 
        4    121   1.0 FOUR RISK FACTORS 
        5     17   0.1 FIVE RISK FACTORS 
       99    760   6.3 {Legitimate skip/not in wave} > 6 = 0 

BYS14 

SECTOR OF 
HIGH SCHOOL 
R PLANS TO 
ATTEND 
(pub/priv rel/priv 
non-rel) 

Code  Freq Percent    Label 
        1   9550  78.6 PUBLIC 
        2   1031   8.5 PRIVATE RELIGIOUS 
        3    466   3.8 PRVT NON-RELIGIOUS 
        4    185   1.5 DON^T KNOW 
        8    152   1.3 {MISSING} 
        9    760   6.3 {Legitimate skip/not in wave} 

Create 2 dummy 
variables for 
Private Religious 
(yes/no), Private 
Nonreligous 
(yes/no) 

BYS17 

R SPEAK ANY 
LANG OTH THN 
ENGLISH BFR 
SCH 

Code  Freq Percent    Label 
        1   1764  14.5 YES 
        2   9562  78.7 NO 
        8     58   0.5 {MISSING} 
        9    760   6.3 {Legitimate skip/not in wave} 

Make binary with 
> 1 = 0 

BYS20 

LANGUAGE R 
USUALLY 
SPEAKS NOW 

Code  Freq Percent    Label 
        1  10867  89.5 ENGLISH 
        2    146   1.2 SPANISH 
        3     16   0.1 CHINESE 
        4      1   0.0 JAPANESE 
        5      5   0.0 KOREAN 
        6     10   0.1 FILIPINO LANGUAGE 
        7      3   0.0 ITALIAN 
        8     14   0.1 FRENCH 
        9      4   0.0 GERMAN 
       10      2   0.0 GREEK 
       11      1   0.0 POLISH 
       12      1   0.0 PORTUGUESE 
       13     32   0.3 OTHER (SPECIFY) 
       96    103   0.8 {MULTIPLE RESPNSE} 
       98    179   1.5 {MISSING} 
       99    760   6.3 {Legitimate skip/not in wave}  

Make binary with 
1 or > 96 = 0 
(English) and all 
else = 1 

BYS32 

NUMBER OF 
SIBLINGS R 
HAS 

Code  Freq Percent    Label 
        0    705   5.8 NONE 
        1   3673  30.2 ONE 
        2   3057  25.2 TWO 
        3   1703  14.0 THREE 
        4    905   7.5 FOUR 
        5    491   4.0 FIVE 
        6    788   6.5 SIX OR MORE 
       96     10   0.1 {MULTIPLE RESPNSE} 
       98     52   0.4 {MISSING} 
       99    760   6.3 {Legitimate skip/not in wave} 

Use ordinal scale 
and make > 6 = 0 

BYS34A 

FATHER^S 
HIGHEST 
LEVEL OF 
EDUCATION 

Code  Freq Percent    Label 
        1   1680  13.8 NOT FINISH H.S. 
        2   3078  25.3 GRADUATED H.S. 
        3   1106   9.1 JUNIOR COLLEGE 
        4    799   6.6 COLLEGE LT 4 YRS 
        5   1533  12.6 GRADUATED COLLEGE 
        6    872   7.2 MASTER^S DEGREE 
        7    619   5.1 PH.D., M.D., ETC. 
        8   1528  12.6 DON^T KNOW 
       97     41   0.3 {REFUSAL} 
       98    128   1.1 {MISSING} 
       99    760   6.3 {Legitimate skip/not in wave} 

Make binary with 
<4 or >7 = 0 and 
4-7 = 1. 
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Table A.3 (continued). 

Variable 
Name Variable Label Potenial Values Recoded Values 

BYS34B 

MOTHER^S 
HIGHEST 
LEVEL OF 
EDUCATION 

Code  Freq Percent    Label 
        1   1686  13.9 NOT FINISH H.S. 
        2   3698  30.5 GRADUATED H.S. 
        3   1228  10.1 JUNIOR COLLEGE 
        4    908   7.5 COLLEGE LT 4 YRS 
        5   1520  12.5 GRADUATED COLLEGE 
        6    788   6.5 MASTER^S DEGREE 
        7    239   2.0 PH.D., M.D., ETC. 
        8   1236  10.2 DON^T KNOW 
       97     16   0.1 {REFUSAL} 
       98     65   0.5 {MISSING} 
       99    760   6.3 {Legitimate skip/not in wave} 

Make binary with 
<4 or >7 = 0 and 
4-7 = 1. 

BYS41 

TIME SPENT 
AFTER SCHL 
WTH NO 
ADULT PRSNT 

Code  Freq Percent    Label 
        0   1553  12.8 NONE 
        1   3744  30.8 LESS THAN 1 HOUR 
        2   3104  25.6 1-2 HOURS 
        3   1406  11.6 2-3 HOURS 
        4   1392  11.5 MORE THAN 3 HRS 
        6      5   0.0 {MULTIPLE RESPNSE} 
        8    180   1.5 {MISSING} 
        9    760   6.3 {Legitimate skip/not in wave} 

Use ordinal scale 
and make > 6 = 0 

BYS42A 

NO. OF HOURS 
R WATCHES TV 
ON WEEKDAYS 

Code  Freq Percent    Label 
        0    322   2.7 DON^T WATCH TV 
        1    885   7.3 LT 1 HOUR A DAY 
        2   2370  19.5 1-2 HOURS 
        3   2456  20.2 2-3 HOURS 
        4   1815  14.9 3-4 HOURS 
        5   1215  10.0 4-5 HOURS 
        6   1259  10.4 OVER 5 HRS A DAY 
       96    774   6.4 {MULTIPLE RESPNSE} 
       98    288   2.4 {MISSING} 
       99    760   6.3 {Legitimate skip/not in wave} 

Use ordinal scale 
and make > 6 = 0 

BYS42B 

NO. OF HOURS 
R WATCHES TV 
ON WEEKENDS Same format as BYS42A 

Use ordinal scale 
and make > 6 = 0 

BYS43 

NO. OF 
CIGARETTES R 
SMOKES PER 
DAY 

Code  Freq Percent    Label 
        0  10587  87.2 I DON^T SMOKE 
        1    385   3.2 1-5 CIGARETTES 
        2    124   1.0 ABOUT 1/2 PACK 
        3     65   0.5 MT 1/2,LT 2 PACKS 
        4     24   0.2 2 PACKS OR MORE 
        8    199   1.6 {MISSING} 
        9    760   6.3 {Legitimate skip/not in wave} 

Use ordinal scale 
and make > 4 = 0 

BYS45 

HOW FAR IN 
SCH DO YOU 
THINK YOU 
WILL GET 

Code  Freq Percent    Label 
        1    136   1.1 WON^T FINISH H.S 
        2   1024   8.4 WILL FINISH H.S 
        3    972   8.0 VOC,TRD,BUS AFTR H.S 
        4   1467  12.1 WILL ATTEND COLLEGE 
        5   4848  39.9 WILL FINISH COLLEGE 
        6   2850  23.5 HIGHER SCH AFTR COLL 
       98     87   0.7 {MISSING} 
       99    760   6.3 {Legitimate skip/not in wave} > 6 = 0 

BYS46 

HOW SURE 
THAT YOU 
WILL 
GRADUATE 
FROM H.S 

Code  Freq Percent    Label 
        1   9504  78.3 VERY SURE WILL 
        2   1619  13.3 PROBABLY WILL 
        3    100   0.8 PROBABLY WON^T 
        4     56   0.5 VERY SURE WON^T 
        6      3   0.0 {MULTIPLE RESPNSE} 
        8    102   0.8 {MISSING} 
        9    760   6.3 {Legitimate skip/not in wave} > 4 = 0 
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Table A.3 (continued). 

Variable 
Name Variable Label Potenial Values Recoded Values 

BYS47 

HOW SURE R IS 
TO GO 
FURTHER 
THAN H.S. 

Code  Freq Percent    Label 
        1   7004  57.7 VERY SURE WILL 
        2   3247  26.7 PROBABLY WILL 
        3    664   5.5 PROBABLY WON^T 
        4    253   2.1 VERY SURE WON^T 
        8    160   1.3 {MISSING} 
        9    816   6.7 {Legitimate skip/not in wave} > 4 = 0 

BYS48A 

HOW FAR IN 
SCHL R^S 
FATHER 
WANTS R TO 
GO 

Code  Freq Percent    Label 
        1     78   0.6 LESS THAN HIGH SCHL 
        2    519   4.3 GRADUATE HIGH SCHOOL 
        3    583   4.8 VOC,TRD,BUS AFTR H.S 
        4    986   8.1 ATTEND COLLEGE 
        5   4711  38.8 GRADUATE FRM COLLEGE 
        6   2750  22.6 HIGHER SCH AFTR COLL 
        7    908   7.5 DON^T KNOW 
       98    849   7.0 {MISSING} 
       99    760   6.3 {Legitimate skip/not in wave}  > 6 = 0 

BYS48B 

HOW FAR IN 
SCHL R^S 
MOTHER 
WANTS R TO 
GO Same format as BYS48A > 6 = 0 

BYS53 

NO. OF HOURS 
R WORKS FOR 
PAY PER WEEK 

Code  Freq Percent    Label 
        0   3538  29.1 NONE 
        1   3987  32.8 UP TO 4 HOURS 
        2   2262  18.6 5-10 HOURS 
        3    841   6.9 11-20 HOURS 
        4    595   4.9 21 OR MORE HOURS 
        6      3   0.0 {MULTIPLE RESPNSE} 
        8    158   1.3 {MISSING} 
        9    760   6.3 {Legitimate skip/not in wave} 

Use ordinal scale 
and make > 4 = 0 

BYS60A 

R^S ABILITY 
GROUP FOR 
MATHEMATICS 

Code  Freq Percent    Label 
        1   3629  29.9 HIGH 
        2   4523  37.2 MIDDLE 
        3    750   6.2 LOW 
        4   1676  13.8 AREN^T GROUPED 
        5    545   4.5 I DON^T KNOW 
        6      9   0.1 {MULTIPLE RESPNSE} 
        8    252   2.1 {MISSING} 
        9    760   6.3 {Legitimate skip/not in wave} 

> 4 = 0, 1 goes to 
3, 3 goes to 1. 

BYS60B 

R^S ABILITY 
GROUP FOR 
SCIENCE Same format as BYS60A 

> 4 = 0, 1 goes to 
3, 3 goes to 1. 

BYS60C 

R^S ABILITY 
GROUP FOR 
ENGLISH Same format as BYS60A 

> 4 = 0, 1 goes to 
3, 3 goes to 1. 

BYS81A 

ENGLISH 
GRADES FROM 
GRADE 6 UNTIL 
NOW 

Code  Freq Percent    Label 
        1   3879  31.9 MOSTLY AS 
        2   4352  35.8 MOSTLY BS 
        3   2244  18.5 MOSTLY CS 
        4    473   3.9 MOSTLY DS 
        5    166   1.4 MOSTLY BELOW D 
        6     45   0.4 NOT GRADED 
       96    139   1.1 {MULTIPLE RESPNSE} 
       97      7   0.1 {REFUSAL} 
       98     79   0.7 {MISSING} 
       99    760   6.3 {Legitimate skip/not in wave} 

>6 = 0, 1 goes to 
5, 2 goes to 4, 4 
goes to 2, 5 goes 
to 1. 
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Table A.3 (continued). 

Variable 
Name Variable Label Potenial Values Recoded Values 

BYS81B 

MATH GRADES 
FROM GRADE 6 
UNTIL NOW Same format as BYS81A 

>6 = 0, 1 goes to 
5, 2 goes to 4, 4 
goes to 2, 5 goes 
to 1. 

BYS81C 

SCI GRADES 
FROM GRADE 6 
UNTIL NOW Same format as BYS81A 

>6 = 0, 1 goes to 
5, 2 goes to 4, 4 
goes to 2, 5 goes 
to 1. 

BYSC13E 

% OF WHITE 
NON-HISPANIC 
8TH GRADERS 

Code  Freq Percent    Label 
        0   3525  29.0 {zero} 
   {cont}   7656  63.0 {1-100;15.59/22.30} 
      996     12   0.1 {DON^T KNOW} 
      997      7   0.1 {REFUSAL} 
      998     37   0.3 {MISSING} 
      999    907   7.5 {Legitimate skip/not in wave} 

Use as cont. var 
and set >100 = 0 

BYSC14 

% OF 8TH 
GRADERS IN 
SINGLE 
PARENT 
FAMILY 

Code  Freq Percent    Label 
        1     94   0.8 NONE 
        2   5977  49.2 1% - 25 
        3   3718  30.6 26% - 50 
        4    838   6.9 51% - 75 
        5    172   1.4 76% - 99 
        7    401   3.3 CANNOT ESTIMATE 
       98     37   0.3 {MISSING} 
       99    907   7.5 {Legitimate skip/not in wave} 

Use ordinal scale 
and set > 5 = 0 

BYSC15 

% OF 8TH 
GRADERS 
LIMITED ENGL 
PROFICIENT 

Code  Freq Percent    Label 
        1  10197  84.0 10% OR LESS 
        2    563   4.6 11 - 20 
        3    227   1.9 21 - 30 
        4    109   0.9 31 - 40 
        5     25   0.2 41 - 50 
        6     14   0.1 51 - 60 
        7     10   0.1 61 - 70 
        8     14   0.1 71 - 80 
        9     49   0.4 81% OR MORE 
       98     29   0.2 {MISSING} 
       99    907   7.5 {Legitimate skip/not in wave} 

Use ordinal scale 
and set >9 = 0 

BYSC16A 

NUMBER OF 
STUDENTS IN 
FREE LUNCH 
PROGRAM 

Code  Freq Percent    Label 
        0   1585  13.1 {zero} 
   {cont}   9599  79.0 {1-3230;182.33/253.24} 
     9996     18   0.1 {DON^T KNOW} 
     9998     35   0.3 {MISSING} 
     9999    907   7.5 {Legitimate skip/not in wave} 

Use as cont. var 
and set >4000 = 0 

BYSC16B 

NUMBER OF 
STUDENTS IN 
REMEDIAL 
READING 

Code  Freq Percent    Label 
        0   2236  18.4 {zero} 
   {cont}   8985  74.0 {1-2700;87.30/158.89} 
     9998     16   0.1 {MISSING} 
     9999    907   7.5 {Legitimate skip/not in wave} 

Use as cont. var 
and set >4000 = 0 

BYSC16C 

NUMBER OF 
STUDENTS IN 
REMEDIAL 
MATH 

Code  Freq Percent    Label 
        0   3460  28.5 {zero} 
   {cont}   7761  63.9 {1-2700;76.32/141.16} 
     9998     16   0.1 {MISSING} 
     9999    907   7.5 {Legitimate skip/not in wave} 

Use as cont. var 
and set >4000 = 0 

BYSC16D 

NUMBER OF 
STUDENTS IN 
BILINGUAL 
EDUCATN 

Code  Freq Percent    Label 
        0   9716  80.0 {zero} 
   {cont}   1482  12.2 {1-1100;85.08/157.66} 
     9998     39   0.3 {MISSING} 
     9999    907   7.5 {Legitimate skip/not in wave} 

Use as cont. var 
and set >4000 = 0 

BYSC16E 

NUMBER OF 
STUDNTS IN 
ENGLISH AS 
2ND LANG 

Code  Freq Percent    Label 
        0   7804  64.3 {zero} 
   {cont}   3393  27.9 {1-0730;40.11/82.18} 
     9998     40   0.3 {MISSING} 
     9999    907   7.5 {Legitimate skip/not in wave} 

Use as cont. var 
and set >4000 = 0 
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Table A.3 (continued). 

Variable 
Name Variable Label Potenial Values Recoded Values 

BYSC16F 

NUMBER OF 
STUDENTS IN 
SPECIAL ED 

Code  Freq Percent    Label 
        0   1910  15.7 {zero} 
   {cont}   9298  76.6 {1-0265;50.78/39.65} 
     9998     29   0.2 {MISSING} 
     9999    907   7.5 {Legitimate skip/not in wave} 

Use as cont. var 
and set >4000 = 0 

BYSC16G 

NUMBER OF 
STUDENTS IN 
GIFTED,TALEN
TED ED 

Code  Freq Percent    Label 
        0   3103  25.6 {zero} 
   {cont}   7801  64.2 {1-0900;63.55/81.49} 
     9998    333   2.7 {MISSING} 
     9999    907   7.5 {Legitimate skip/not in wave} 

Use as cont. var 
and set >1000 = 0 

BYSC19 

BASE SALARY 
FOR 
BEGINNING 
TEACHER W/ 
BA 

Code  Freq Percent    Label 
   {cont}  11083  91.3 {5500-25428;17526.37/2926.15} 
    99996      7   0.1 {DON^T KNOW} 
    99997     20   0.2 {REFUSAL} 
    99998    127   1.0 {MISSING} 
    99999    907   7.5 {Legitimate skip/not in wave 

Use as cont. var 
and set >50000 = 
0 

BYSC29 

MIN. GPA 
REQUIRD TO 
PARTIC IN 
ACTIVITIES 

Code  Freq Percent    Label 
        1   8328  68.6 YES 
        2   2880  23.7 NO 
        8     29   0.2 {MISSING} 
        9    907   7.5 {Legitimate skip/not in wave} 

Use binary recode 
with > 1 = 0 

F2RACTC 
ACT 
(COMPOSITE) 

Code  Freq Percent    Label 
        4      1   0.0 {04} 
       10      3   0.0 {10} 
       11      4   0.0 {11} 
       12     18   0.1 {12} 
       13     47   0.4 {13} 
       14     82   0.7 {14} 
       15    122   1.0 {15} 
       16    167   1.4 {16} 
       17    211   1.7 {17} 
       18    246   2.0 {18} 
       19    263   2.2 {19} 
       20    288   2.4 {20} 
       21    233   1.9 {21} 
       22    218   1.8 {22} 
       23    226   1.9 {23} 
       24    173   1.4 {24} 
       25    166   1.4 {25} 
       26    141   1.2 {26} 
       27    102   0.8 {27} 
       28    120   1.0 {28} 
       29     74   0.6 {29} 
       30     58   0.5 {30} 
       31     40   0.3 {31} 
       32     22   0.2 {32} 
       33     20   0.2 {33} 
       34      4   0.0 {34} 
       35      2   0.0 {35} 
       98   7259  59.8 {MISSING DATA} 
       99   1834  15.1 {Legitimate skip/not in wave} > 36 = 0 

F2RACTE 
ACT (ENGLISH 
SCORE) Same format as F2RACTC > 36 = 0 

F2RACTM ACT (MATH) Same format as F2RACTC > 36 = 0 
F2RACTR ACT (READING) Same format as F2RACTC > 36 = 0 

F2RACTS 
ACT (SCIENCE 
REASONING) Same format as F2RACTC > 36 = 0 
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Table A.3 (continued). 

Variable 
Name Variable Label Potenial Values Recoded Values 

F2RSATM 

SCHOLASTIC 
APTITUDE 
TEST 
(MATHEMATIC
S) 

Code  Freq Percent    Label 
   {cont}   3499  28.8 {200-800;502.09/121.80} 
      998   6811  56.1 {MISSING DATA} 
      999   1834  15.1 {Legitimate skip/not in wave} >800 = 0 

F2RSATV 

SCHOLASTIC 
APTITUDE 
TEST (VERBAL) 

Code  Freq Percent    Label 
   {cont}   3500  28.8 {200-780;446.48/111.26} 
      998   6810  56.1 {MISSING DATA} 
      999   1834  15.1 {Legitimate skip/not in wave} >800 = 0 

SATM 

SAT MATH 
SCORE 
W/CORRECTIO
NS 

Code  Freq Percent    Label 
   {cont}  3,547 29.21 { 200 - 800; 502.1 / 121.66 } 
       -1  6,592 54.28 No claim, no score 
       -9  2,005 16.51 Claim, no score < 0 = 0 

SATV 

SAT VERBAL 
SCORE 
W/CORRECTIO
NS 

Code  Freq Percent    Label 
   {cont}  3,548 29.22 { 200 - 780; 447.3 / 111.14 } 
       -1  6,591 54.27 No claim, no scores 
       -9  2,005 16.51 Claim, no scores < 0 = 0 

F4RACE2 

New definition of  
race-primary 
choice 

Code  Freq Percent    Label 
        1    131   1.1 American Indian or Alaska Native 
        2    712   5.9 Asian or Pacific Islander 
        3   1120   9.2 Black, not Hispanic 
        4   8203  67.5 White, not Hispanic 
        5   1687  13.9 Hispanic or Latino 
       -9    291   2.4 {Missing} 

Set of dummy var.  
F4RACE2rAI = 1 
for Amer. Ind., 
F4RACE2rAs = 1 
for Asian/Pac. 
Isl., F4RACE2rBl 
= 1 for Black, 
F4RACE2rHi = 1 
for 
Hispanic/Latino, 
all = 0 for White.  

F4SEX Gender 

Code  Freq Percent    Label 
        1   5782  47.6 Male 
        2   6362  52.4 Female 

Recode Male = 0 
as reference, 
Female = 1 

 

  

 245 



Table A.4  Summary of NELS Variables Used in Record Classification 

Variable Name Variable Description 
AAMJR ASSOCIATE^S DEGREE AGGREGATE MAJOR 
ACTTEST ACT COMPOSITE SCORE: CORRECTED/EXPANDED 
AGREEDEG STUDENT V. TRANSCRIPT ON HIGHEST DEGREE 
ALLHDEG FINAL EDUCATIONAL STATUS - DERIVED 
ASSOTIME TRUE ELAPSED TIME TO ASSOCIATE^S DEGREE 
BACHTME TRUE TOTAL ELAPSED TIME TO BACHELOR^S 
BACHTTD STANDARD ACCOUNT OF TIME TO BACHELOR^S 
BALIKELY BACH DEGREE LIKELY BY DECEMBER, 2001 
BAMJR BACHELOR^S DEGREE AGGREGATE MAJOR 
CONSDEG CONSOLIDATED HIGHEST DEGREE 
CREDRET CREDIT-RETENTION ACCOUNT OF ATTAINMENT 
DEG1 NO DEGREE ON AT LEAST 1 TRANSCRIPT 
DEG2 CERTIFICATE ON AT LEAST 1 TRANSCRIPT 
DEG3 ASSOCIATE^S DEG ON AT LEAST 1 TRANSCRIPT 
DEG4 BACHELOR^S DEG ON AT LEAST 1 TRANSCRIPT 
DEG5 POST-BACC COURSE WORK ON TRANSCRIPT 
DEG6 INCOMPLETE GRAD DEG ON AT LEAST 1 TRANS 
DEG7 MASTERS DEGREE ON AT LEAST 1 TRANSCRIPT 
DEG8 1ST PROFESS DEG ON AT LEAST 1 TRANSCRIPT 
DEG9 PHD DEGREE ON TRANSCRIPT 
DEGDAT2 DATE OF 1ST CERTIFICATE EARNED 
DEGDAT3 DATE OF 1ST ASSOCIATE^S DEGREE EARNED 
DEGDAT4 DATE OF 1ST BACHELOR^S DEGREE EARNED 
DEGDAT5 DATE OF 1ST POST-BACC CERTIFICATE EARNED 
DEGDAT7 DATE OF 1ST MASTER^S DEGREE EARNED 
DEGDAT8 DATE OF 1ST PROFESSIONAL DEGREE 
DELAY TIME BETWEEN HS GRAD DATE AND REFDATE 
DOUBBACH DOUBLE OR 2 BACHELORS DEGREES EARNED 
ENDDAT LAST DATE ENROLLED AS AN UNDERGRADUATE 
GPA UNDERGRADUATE GRADE POINT AVERAGE 
HDEG HIGHEST DEGREE EARNED: TRANSCRPT ACCOUNT 
HSGPAV HIGH SCHOOL GRADE POINT AVERAGE 
IN2000SC STUDENT CLAIM TO ENROLLMENT IN 2000 
INSCHOOL STUDENT PSE STATUS IN 2000 
MAJCOD1 DETAILED FIELD FOR NO DEGREE 
MAJCOD2 DETAILED FIELD FOR CERTIFICATE 
MAJCOD3 DETAILED FIELD FOR ASSOCIATE^S DEGREE 
MAJCOD4 DETAILED FIELD FOR BACHELOR^S DEGREE 
MAJCOD5 DETAILED FIELD FOR POST-BACC COURSE WORK 
MAJCOD6 DETAILED FIELD FOR INCOMPLETE GRAD DEG 
MAJCOD7 DETAILED FIELD FOR MASTER^S DEGREE 
MAJCOD8 DETAILED FIELD FOR 1ST PROFESS DEGREE 
MAJCOD9 DETAILED FIELD FOR PHD 
MATHINT DEGREE OF INTEREST IN MATH, 1992 
PETSGTYP TYPE OF HIGH SCHOOL CREDENTIAL: REVISED 
PETSHSDT DATE OF HIGH SCHOOL GRADUATION: REVISED 
PETSID ID FOR STUDENTS IN THE PETS FILES 
PSBEG OSTENSIBLE DATE OF PSE ENTRY 
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Table A.4 (continued). 

Variable Name Variable Description 
PSEND LAST MONTH OF ENROLLMENT IN PSE 
QUALDAT4 LAST DATE ENROLLED FOR BACHELORS DEGREE 
REFDATE TRUE FIRST DATE OF PSE ATTENDANCE 
STUHDEG STUDENT ACCOUNT OF HIGHEST DEGREE EARNED 
F1D7MNTH MONTH R LAST ATTENDED SCHOOL 
F1D7YEAR YEAR R LAST ATTENDED SCHOOL 
F2D6M MONTH R LAST ATTENDED SCHOOL 
F2D6Y YEAR R LAST ATTENDED SCHOOL 
F4EDGR1 Degree/certificate earned-1 
F4EDGR2 Degree/certificate earned-2 
F4EDMJ1 Double major indicator-degree 1 
F4EDMJ2 Double major indicator-degree 2 
F4EMJ1D Major/field of study code-1 
F4EMJ2D Major/field of study code-2 
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APPENDIX B 

CLASSIFICATION OF COLLEGE MAJORS 

Table B.1  Classification of College Majors by Seymour & Hewitt100 

Field College Major Discipline 
Sci./Math/Engr. Biological Sciences Biology (general); 

Biochemistry/Biophysics; Botany; 
Marine (life) Science; 

Microbiology/Bacteriology; Zoology 
Sci./Math/Engr. Physical Sciences Astronomy; Atmospheric Science; 

Chemistry; Earth Science; Marine 
Science; Physics; Other physical 

science 
Sci./Math/Engr. Engineering Aeronautical or Astronautical; Civil; 

Chemical; Electrical or Electronic; 
Industrial; Mechanical, Other 

Sci./Math/Engr. Mathematics/Statistics Mathematics; Statistics 
Sci./Math/Engr. Math (only) Mathematics 
Sci./Math/Engr. Agriculture Agriculture; Forestry 

Humanities/Soc. Sci. History/Political Sci. History; Political Science 
Humanities/Soc. Sci. Social Sciences Anthropology; Economics; Ethnic 

Studies; Geography; Psychology; Social 
Work; Sociology; Women’s Studies; 

Other social sciences 
Humanities/Soc. Sci. Fine Arts Art, Fine and Applied; Music; Speech; 

Architecture/Urban Planning 
Humanities/Soc. Sci. English English (language or literature) 
Humanities/Soc. Sci. Other Humanities Languages (except English); 

Philosophy; Theater or drama; 
Theology or Religion; Other 

Other Health Professions Nursing; Pharmacy; Pre-medicine; Pre-
dentistry; Pre-veterinary; Clinical 

Therapies (Physical, Occupational, 
Speech) 
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Table B.1 (continued). 

Field College Major Discipline 
Other Computer 

Science/Technical 
Computer Science; Data Processing or 

Computer Programming; 
Communications; Drafting or Design; 

Mechanics; Electronics, Other technical 
Other Business Accounting; Business Administration; 

Finance; Marketing; Management; 
Secretarial Studies; Other business 

Other Education Business; Elementary; Music or Art; 
Physical Education or Recreation; 

Secondary; Special 
Other Other Non-technical Journalism; Home Economics; 

Library/Archival Science; Law 
Enforcement; Military Science; Other 
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Table B.2  Majors Classified as “SME” by Frederick Smythe by Dataset 101 

Dataset Majors 
"College & Beyond" Biological Sciences 

Pre-Med 
Dentistry 
Computers 
Material Sciences 
Mechanical Engineering 
Engineering 
Computer and Information Sciences 
Mathematics 
Astronomy, Atmospheric Sciences 
Chemistry 
Geology 
Geological Sciences 
Physics 
Other Physical Sciences 

CIRP Biology (general) 
Biochemistry or Biophysics 
Botany 
Marine (Life) Sciences 
Microbiology or Bacteriology 
Zoology 
Other Biological Science 
Astronomy 
Atmospheric (incl. Meteorology) 
Chemistry 
Earth Science 
Marine (incl. Oceanography) 
Mathematics 
Physics 
Statistics 
Other Physical Science 
Aeronautical or Astronautical Engineering 
Civil Engineering 
Chemical Engineering 
Electrical or Electronic Engineering 
Industrial Engineering 
Mechanical Engineering 
Other Engineering 
Professional:  Pre-Med, Pre-Vet., Pre-Dental 
Computer Science 
Data Processing 
Computer Programming 
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Table B.3  Classification of College Majors by NSF 102 

Field College Major Discipline 
Science Agricultural sciences Animal breeding/genetics 
Science Agricultural sciences Animal husbandry 
Science Agricultural sciences Animal nutrition 
Science Agricultural sciences Dairy science 
Science Agricultural sciences Poultry science 
Science Agricultural sciences Animal sciences, other 
Science Agricultural sciences Agronomy/crop science 
Science Agricultural sciences Agricultural/horticultural plant breeding/genetics 
Science Agricultural sciences Plant pathology/phytopathology 
Science Agricultural sciences Plant protection/pest management 
Science Agricultural sciences Plant sciences, other 
Science Agricultural sciences Food sciences 
Science Agricultural sciences Food distribution 
Science Agricultural sciences Food science 
Science Agricultural sciences Food sciences/technology, other 
Science Agricultural sciences Soil sciences 
Science Agricultural sciences Soil chemistry/microbiology 
Science Agricultural sciences Soil sciences, other 
Science Agricultural sciences Horticulture science 
Science Agricultural sciences Fish and wildlife 
Science Agricultural sciences Fishing and fisheries sciences/management 
Science Agricultural sciences Wildlife management 
Science Agricultural sciences Forestry science 
Science Agricultural sciences Forest sciences/biology 
Science Agricultural sciences Forest engineering 
Science Agricultural sciences Forest management/resources 
Science Agricultural sciences Wood science and pulp/paper technology 
Science Agricultural sciences Natural resources conservation, other  
Science Agricultural sciences Forestry and related sciences, other 
Science Agricultural sciences Wildlife/range management 
Science Agricultural sciences Environmental science 
Science Agricultural sciences Agricultural science, general 
Science Agricultural sciences Agricultural science, other 
Science Agricultural sciences Environmental science 
Science Biological Sciences Biochemistry 
Science Biological Sciences Biomedical sciences 
Science Biological Sciences Biophysics 
Science Biological Sciences Biotechnology research 
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Table B.3 (continued). 

Field College Major Discipline 
Science Biological Sciences Bacteriology 
Science Biological Sciences Plant genetics 
Science Biological Sciences Plant pathology/phytopathology 
Science Biological Sciences Plant physiology  
Science Biological Sciences Botany/plant biology 
Science Biological Sciences Anatomy  
Science Biological Sciences Biometrics/biostatistics 
Science Biological Sciences Cell/cellular biology and histology 
Science Biological Sciences Ecology 
Science Biological Sciences Hydrobiology 
Science Biological Sciences Developmental biology/embryology 
Science Biological Sciences Endocrinology 
Science Biological Sciences Entomology 
Science Biological Sciences Biological immunology 
Science Biological Sciences Molecular biology 
Science Biological Sciences Microbiology/bacteriology 
Science Biological Sciences Microbiology 
Science Biological Sciences Neuroscience 
Science Biological Sciences Nutritional sciences 
Science Biological Sciences Parasitology 
Science Biological Sciences Toxicology 
Science Biological Sciences Genetics, human/animal 
Science Biological Sciences Genetics 
Science Biological Sciences Pathology, human/animal 
Science Biological Sciences Pharmacology, human/animal 
Science Biological Sciences Physiology, human/animal 
Science Biological Sciences Animal/plant physiology 
Science Biological Sciences Zoology, other 
Science Biological Sciences Biology/biological sciences, general 
Science Biological Sciences Biology/biomedical sciences, other 
Science Computer sciences Computer/information sciences, general 
Science Computer sciences Computer programming 
Science Computer sciences Data processing technology/technician  
Science Computer sciences Information sciences/systems 
Science Computer sciences Computer systems analysis 
Science Computer sciences Computer science 
Science Computer sciences Web page design, computer graphics, database 

management 
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Table B.3 (continued). 

Field College Major Discipline 
Science Computer sciences Computer systems networking and 

telecommunications 
Science Computer sciences System administration, networking, management 
Science Computer sciences Computer/information sciences, other 
Science Atmospheric sciences Atmospheric chemistry/climatology 
Science Atmospheric sciences Atmospheric physics/dynamics 
Science Atmospheric sciences Meteorology 
Science Atmospheric sciences Atmospheric science/meteorology, general 
Science Atmospheric sciences Atmospheric science/meteorology, other 
Science Earth sciences Geology 
Science Earth sciences Geochemistry 
Science Earth sciences Geophysics/seismology 
Science Earth sciences Geophysics (solid earth) 
Science Earth sciences Paleontology 
Science Earth sciences Mineralogy/petrology 
Science Earth sciences Mineralogy, petrology, geochemistry 
Science Earth sciences Stratigraphy/sedimentation 
Science Earth sciences Geomorphology/glacial geology 
Science Earth sciences Applied geology 
Science Earth sciences Applied geology/geological engineering 
Science Earth sciences Geological/earth sciences, general 
Science Earth sciences Geological/earth sciences, other 
Science Earth sciences Hydrology/water resources 
Science Ocean Sciences Oceanography 
Science Ocean Sciences Marine sciences 
Science Ocean Sciences Ocean/marine sciences, other 
Science Mathematics Applied mathematics 
Science Mathematics Algebra 
Science Mathematics Analysis/functional analysis 
Science Mathematics Geometry/geometric analysis 
Science Mathematics Logic 
Science Mathematics Number theory 
Science Mathematics Mathematical statistics 
Science Mathematics Topology 
Science Mathematics Computing theory/practice 
Science Mathematics Operations research 
Science Mathematics Mathematics/statistics, general 
Science Mathematics Mathematics/statistics, other 
Science Physical sciences: Astronomy Astronomy 

 253 



Table B.3 (continued). 

Field College Major Discipline 
Science Physical sciences: Astronomy Astrophysics 
Science Physical sciences: Astronomy Astronomy/astrophysics 
Science Physical sciences: Chemistry Analytical chemistry 
Science Physical sciences: Chemistry Agricultural/food chemistry 
Science Physical sciences: Chemistry Inorganic chemistry 
Science Physical sciences: Chemistry Nuclear chemistry 
Science Physical sciences: Chemistry Organic chemistry 
Science Physical sciences: Chemistry Medicinal/pharmaceutical chemistry 
Science Physical sciences: Chemistry Physical chemistry 
Science Physical sciences: Chemistry Polymer chemistry 
Science Physical sciences: Chemistry Theoretical chemistry 
Science Physical sciences: Chemistry Chemistry, general 
Science Physical sciences: Chemistry Chemistry, other 
Science Physical sciences: Physics Acoustics 
Science Physical sciences: Physics Chemical and atomic/molecular physics 
Science Physical sciences: Physics Electron physics 
Science Physical sciences: Physics Electromagnetism 
Science Physical sciences: Physics Elementary particle physics 
Science Physical sciences: Physics Biophysics 
Science Physical sciences: Physics Fluids 
Science Physical sciences: Physics Mechanics 
Science Physical sciences: Physics Nuclear physics 
Science Physical sciences: Physics Optics/photonics 
Science Physical sciences: Physics Plasma/high-temperature physics 
Science Physical sciences: Physics Polymer physics 
Science Physical sciences: Physics Thermal physics 
Science Physical sciences: Physics Solid state/low-temperature physics 
Science Physical sciences: Physics Theoretical physics 
Science Physical sciences: Physics Applied physics 
Science Physical sciences: Physics Physics, general 
Science Physical sciences: Physics Physics, other 
Science Physical sciences: Other Physical sciences, other 
Science Psychology Clinical psychology 
Science Psychology Cognitive psychology/psycholinguistics 
Science Psychology Comparative psychology 
Science Psychology Counseling psychology 
Science Psychology Developmental/child psychology 
Science Psychology Human development/family studies 
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Table B.3 (continued). 

Field College Major Discipline 
Science Psychology Experimental psychology 
Science Psychology Experimental, comparative, physiological 

psychology 
Science Psychology Educational psychology 
Science Psychology Human engineering 
Science Psychology Family psychology 
Science Psychology Industrial/organizational psychology 
Science Psychology Personality psychology 
Science Psychology Physiological psychology/psychobiology 
Science Psychology Psychometrics 
Science Psychology Quantitative psychology 
Science Psychology School psychology 
Science Psychology Social psychology 
Science Psychology Psychology, general 
Science Psychology Psychology, other 
Science Soc. Sciences: Economics Agricultural economics 
Science Soc. Sciences: Economics Economics 
Science Soc. Sciences: Economics Econometrics 
Science Soc. Sciences: Political Science International relations/affairs 
Science Soc. Sciences: Political Science Political science/government 
Science Soc. Sciences: Political Science Political science/public administration 
Science Soc. Sciences: Political Science Public policy analysis 
Science Soc. Sciences: Political Science Public administration 
Science Soc. Sciences: Sociology Demography/population studies 
Science Soc. Sciences: Sociology Sociology 
Science Soc. Sciences: Other Anthropology 
Science Soc. Sciences: Other Area studies 
Science Soc. Sciences: Other Criminology 
Science Soc. Sciences: Other Geography 
Science Soc. Sciences: Other Statistics 
Science Soc. Sciences: Other Urban affairs/studies 
Science Soc. Sciences: Other Social sciences, general 
Science Soc. Sciences: Other Social sciences, other 
Science Soc. Sciences: Other History/philosophy of science and technology 
Science Soc. Sciences: Other Linguistics 
Science Soc. Sciences: Other American studies 
Science Soc. Sciences: Other Archeology 
Engineering Aeronautical/astronautical 

engineering 
Aerospace, aeronautical, astronautical 
engineering 
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Table B.3 (continued). 

Field College Major Discipline 
Engineering Chemical engineering Chemical engineering 
Engineering Chemical engineering Petroleum engineering 
Engineering Chemical engineering Polymer/plastics engineering 
Engineering Chemical engineering Fuel technology/petroleum engineering 
Engineering Civil engineering Civil engineering 
Engineering Civil engineering Environmental health engineering 
Engineering Electrical engineering Communications engineering 
Engineering Electrical engineering Computer engineering 
Engineering Electrical engineering Electrical engineering 
Engineering Electrical engineering Electronics engineering 
Engineering Electrical engineering Electrical, electronics, communications 

engineering 
Engineering Mechanical engineering Engineering mechanics 
Engineering Mechanical engineering Mechanical engineering 
Engineering Materials/metallurgical 

engineering 
Ceramic sciences 

Engineering Materials/metallurgical 
engineering 

Materials science 

Engineering Materials/metallurgical 
engineering 

Metallurgical engineering 

Engineering Other engineering Agricultural engineering 
Engineering Other engineering Bioengineering/biomedical engineering 
Engineering Other engineering Engineering physics 
Engineering Other engineering Engineering science 
Engineering Other engineering Mining/mineral engineering 
Engineering Other engineering Naval architecture/marine engineering 
Engineering Other engineering Nuclear engineering 
Engineering Other engineering Ocean engineering 
Engineering Other engineering Operations research 
Engineering Other engineering Systems engineering 
Engineering Other engineering Textile engineering 
Engineering Other engineering Engineering, general 
Engineering Other engineering Engineering, other 
Education Education Curriculum/instructions 
Education Education Education administration/supervision 
Education Education Education leadership 
Education Education Education/instructional media design 
Education Education Education statistics/research methods 
Education Education Education assessment/testing/measures 
Education Education Educational psychology 
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Table B.3 (continued). 

Field College Major Discipline 
Education Education School psychology 
Education Education Social/philosophical foundations of education 
Education Education Special education 
Education Education Counseling education/counseling and guidance 

services 
Education Education Education evaluation/research 
Education Education Pre-elementary/early childhood teacher education 
Education Education Elementary teacher education 
Education Education Junior high teacher education 
Education Education Secondary teacher education 
Education Education Adult/continuing teacher education 
Education Education Art education 
Education Education Business education 
Education Education English education 
Education Education Foreign languages education 
Education Education Physical education, health, recreation 
Education Education Home economics education 
Education Education Music education 
Education Education Physical education/coaching 
Education Education Reading education 
Education Education Speech education 
Education Education Trade/industrial education 
Education Education Teacher education, specific academic/vocational  
Education Education   programs, other 
Education Education Education, general 
Education Education Education, other 
Health Medical sciences Dentistry 
Health Medical sciences Environmental health 
Health Medical sciences Public health 
Health Medical sciences Public health/epidemiology 
Health Medical sciences Epidemiology 
Health Medical sciences Medicine/surgery 
Health Medical sciences Optometry/ophthalmology 
Health Medical sciences Pharmacy 
Health Medical sciences Veterinary science 
Health Other health sciences Speech/language pathology and audiology 
Health Other health sciences Health systems/services administration 
Health Other health sciences Hospital administration 
Health Other health sciences Nursing 
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Table B.3 (continued). 

Field College Major Discipline 
Health Other health sciences Rehabilitation/therapeutic services 
Health Other health sciences Health sciences, general 
Health Other health sciences Health sciences, other 
Humanities English/literature Classics 
Humanities English/literature Comparative literature 
Humanities English/literature English/American literature 
Humanities English/literature Literature, American 
Humanities English/literature Literature, English 
Humanities English/literature English language 
Humanities English/literature Speech/rhetorical studies 
Humanities English/literature Letters, general 
Humanities English/literature Letters, other 
Humanities Foreign languages/literatures French 
Humanities Foreign languages/literatures German 
Humanities Foreign languages/literatures Italian 
Humanities Foreign languages/literatures Spanish 
Humanities Foreign languages/literatures Russian 
Humanities Foreign languages/literatures Slavic (other than Russian) 
Humanities Foreign languages/literatures Chinese 
Humanities Foreign languages/literatures Japanese 
Humanities Foreign languages/literatures Hebrew 
Humanities Foreign languages/literatures Arabic 
Humanities Foreign languages/literatures Other languages/literature 
Humanities History History, American 
Humanities History History, European 
Humanities History History, general 
Humanities History History, other 
Humanities Religion/theology Religious studies 
Humanities Religion/theology Theology/ministries 
Humanities Other Humanities Liberal arts/other humanities 
Humanities Other Humanities Philosophy 
Humanities Other Humanities Visual/performing arts 
Professional Fields Business/management Agricultural business/management 
Professional Fields Business/management Accounting 
Professional Fields Business/management Banking/financial support services 
Professional Fields Business/management Business administration/management 
Professional Fields Business/management Business/managerial economics 
Professional Fields Business/management Management information systems/business data 

processing 
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Table B.3 (continued). 

Field College Major Discipline 
Professional Fields Business/management Marketing management/research 
Professional Fields Business/management Business statistics 
Professional Fields Business/management Operations research 
Professional Fields Business/management Organizational behavior  
Professional Fields Business/management Business management/administrative services, 

general 
Professional Fields Business/management Business management/administrative services, 

other 
Professional Fields Information fields Communications research 
Professional Fields Information fields Journalism 
Professional Fields Information fields Mass communications 
Professional Fields Information fields Radio/television 
Professional Fields Information fields Communication theory 
Professional Fields Information fields Communications, general 
Professional Fields Information fields Communications, other 
Professional Fields Information fields Library science 
Professional Fields Other Professional Fields Architecture/related programs 
Professional Fields Other Professional Fields Personal/culinary services 
Professional Fields Other Professional Fields Engineering-related technologies 
Professional Fields Other Professional Fields Home economics/family studies 
Professional Fields Other Professional Fields Law and legal studies  
Professional Fields Other Professional Fields Reserve officer training corps (ROTC) 
Professional Fields Other Professional Fields Military technologies 
Professional Fields Other Professional Fields Multi-/interdisciplinary studies 
Professional Fields Other Professional Fields Parks/recreation/leisure/fitness 
Professional Fields Other Professional Fields Basic skills 
Professional Fields Other Professional Fields Citizenship activities 
Professional Fields Other Professional Fields Health related knowledge/skills 
Professional Fields Other Professional Fields Interpersonal/social skills 
Professional Fields Other Professional Fields Personal awareness/self-improvement 
Professional Fields Other Professional Fields Science technologies 
Professional Fields Other Professional Fields Protective services 
Professional Fields Other Professional Fields Public administration/social services professions 
Professional Fields Other Professional Fields Construction trades 
Professional Fields Other Professional Fields Mechanic/repair technologies 
Professional Fields Other Professional Fields Precision production trades 
Professional Fields Other Professional Fields Transportation/materials moving workers 
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APPENDIX C 

METHODS FOR ANALYSIS OF NELS:88 DATA 

C.1 DATA HANDLING 

Working with the extensive volume of records and variables contained within the NELS:88 

dataset required commensurately more time than a smaller dataset.  Although SAS has features 

that permit the analyst to examine data at the individual record level, these were found to be less 

efficient than using Microsoft Access.  Access was used in two main ways.  First, it was a tool to 

quickly sort combinations of variables to determine the settings that would classify the data as 

desired.  This supported the task of creating SAS code that examined combinations of variables, 

flagged the records that met specific criteria, created new variables to record the status, and 

sorted the records into different classes.  Second, the query design capabilities of Access allowed 

key variables to be selected and presented in a table format.  This in turn was used to quickly 

obtain the names of covariates and interaction terms in a format that could be directly copied into 

SAS programs more easily than manually typing the names.   

Variables that were of potential interest in the classification and modeling process were 

selected within the NELS Electronic Codebook for Windows tool to create a variable “tag file.”  

Then the Codebook was used to export the data for those variables to an Access database.  The 
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Codebook also created the initial SAS programming code to import the data for these variables 

and their associated formatting into SAS.  The ability of Access to sort records and select those 

that meet specific criteria made it much easier to examine the records, become familiar with the 

variable values, and draft the SAS code to manipulate the variables.  While this could have been 

accomplished within SAS alone, the use of Access simplified and accelerated the task.  In 

conducting complicated analysis there is no substitute for becoming deeply familiar with the raw 

data.  The query building capability of Access was extremely beneficial in this analysis.  Many 

different queries were constructed to examine subsets of records and variables sorted in a manner 

that highlighted any discrepancies in the classification process.  The subsets of data provided in 

the different queries allowed the data to be examined in manageable portions as opposed to 

inspecting over 11,000 records at once. The SAS code was iteratively developed by creating 

draft code to classify the records, running the programs, creating temporary SAS datasets that 

contained the original and new classification variables, exporting the dataset to an Access 

database, examining the results in Access to see if each record was properly handled, and then 

repeating the process until no exceptions remained.    

Many different models were created during this research and several were constructed 

multiple times with different random samples of fit and test data.  Altering the SAS code to 

construct these models was simplified by using Access to generate lists of potential covariates 

for specific models.  In particular, the code for models that explored different interaction terms 

was partially created by flagging variables found to be significant and writing queries that 

created the SAS code for the Interaction terms.  This would not have saved much time over 

manually typing the interaction terms into SAS for smaller models, but for the extensive sets of 

covariates in this analysis the time savings was notable.   
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Microsoft Excel was also used to aid in creating graphs of the ROC Curves when the 

fitted models were applied to the test data.  The predictions for each of the records at many 

different cutpoints were exported into spreadsheets that calculated the sensitivity, specificity, etc. 

and produced the graphs.   

 262 



APPENDIX D 

CODE FOR SAS PROGRAMS TO CLASSIFY RECORDS 

D.1 SAS CODE FOR ORIGINAL CLASSIFYING SCHEME SORTING DATA BY 

DEGREE OUTCOME 

This code first determined which records related to students that participated in all five waves of 

data collection.  Then a series of flag variables were constructed to sort the records into the 

STEM, STEM-Related, Non-STEM, Sub-4 Yr Degree, and No Degree categories based upon the 

combination of majors and degrees earned.  The text of the SAS code is presented here in a 

color-coded format that matches that used by SAS. 

 

if (F4UNIV1 > 1024 & F4UNIV1 < 1041) then All5 = 1; 
else if (F4UNIV1 > 1048 & F4UNIV1 < 1065) then All5 = 1; 
else if (F4UNIV1 > 1075 & F4UNIV1 < 1085) then All5 = 1; 
else if (F4UNIV1 > 1125 & F4UNIV1 < 1130) then All5 = 1; 
else if (F4UNIV1 > 1132 & F4UNIV1 < 1144) then All5 = 1; 
else All5 = 0; 
 
* Create flag variables for STEM, STEM-Related, NonSTEM & No Degree ; 
if(F4EMJ1D =112) then STEMD1 = 1; 
else if (F4EMJ1D > 139 & F4EMJ1D < 145) then STEMD1 = 1; 
else if (F4EMJ1D > 259 & F4EMJ1D < 272) then STEMD1 = 1; 
else if (F4EMJ1D > 399 & F4EMJ1D < 404) then STEMD1 = 1; 
else STEMD1 = 0; 
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if(F4EMJ2D =112) then STEMD2 = 1; 
else if (F4EMJ2D > 139 & F4EMJ2D < 145) then STEMD2 = 1; 
else if (F4EMJ2D > 259 & F4EMJ2D < 272) then STEMD2 = 1; 
else if (F4EMJ2D > 399 & F4EMJ2D < 404) then STEMD2 = 1; 
else STEMD2 = 0; 
 
if (F4EMJ1D > 9 & F4EMJ1D < 32) then STEMrelD1 = 1; 
else if (F4EMJ1D > 59 & F4EMJ1D < 63) then STEMrelD1 = 1; 
else if (F4EMJ1D > 99 & F4EMJ1D < 112) then STEMrelD1 = 1; 
else if (F4EMJ1D in(150, 170, 190, 194, 420, 450, 454, 471)) then STEMrelD1 = 1; 
else if (F4EMJ1D > 174 & F4EMJ1D < 186) then STEMrelD1 = 1; 
else if (F4EMJ1D > 300 & F4EMJ1D < 304) then STEMrelD1 = 1; 
else STEMrelD1 = 0; 
 
if (F4EMJ2D > 9 & F4EMJ2D < 32) then STEMrelD2 = 1; 
else if (F4EMJ2D > 59 & F4EMJ2D < 63) then STEMrelD2 = 1; 
else if (F4EMJ2D > 99 & F4EMJ2D < 112) then STEMrelD2 = 1; 
else if (F4EMJ2D in(150, 170, 190, 194, 420, 450, 454, 471)) then STEMrelD2 = 1; 
else if (F4EMJ2D > 174 & F4EMJ2D < 186) then STEMrelD2 = 1; 
else if (F4EMJ2D > 300 & F4EMJ2D < 304) then STEMrelD2 = 1; 
else STEMrelD2 = 0; 
 
If (STEMD1 = 1 & F4EDGR1 > 2 OR STEMD2 = 1 & F4EDGR2 > 2) then STEM = 1 ; 
* If either the 1st or 2nd degree was STEM & got a 4 yr degree the person is classified as STEM 
; 
else STEM = 0 ; 
 
if (STEMrelD1 = 1 & F4EDGR1 > 2 & STEM = 0) then STEMrel = 1; 
else if (STEMrelD2 = 1 & F4EDGR2 > 2 & STEM = 0) then STEMrel = 1 ; 
* If either the 1st or 2nd degree was STEM-Rel and neither was STEM the person is classified as 
STEM-rel ; 
else STEMrel = 0 ; 
 
if (STEM + STEMrel > 0) then NonSTEM = 0 ; 
else if (F4EDGR1 > 2 & F4EMJ1D > 0 OR F4EDGR2 > 2 & F4EMJ2D >0) then NonSTEM = 1 
; 
* if the student isn't STEM or STEM-Rel, has a 4yr degree, and the "deg" is valid then 
NonSTEM ; 
else NonSTEM = 0 ; 
 
if (STEM + STEMrel + NonSTEM > 0) then Sub4YrDeg = 0;  
else If (F4EDGR1 > 0 & F4EDGR1 < 3 OR F4EDGR2 > 0& F4EDGR2 < 3) then Sub4YrDeg = 
1; 
* if the 1st or 2nd degree is at least a certificate or assoc. but no higher the person has a sub 4 yr 
degree ; 
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else Sub4YrDeg = 0 ; 
 
if(STEM + STEMrel + NonSTEM + Sub4YrDeg = 0 & F4EDGR1 > 0 & F4EMJ1D < 0 & 
F4EDGR2 > 0 & F4EMJ2D < 0) then NoDegree = 1;  
* if student is not STEM/STEMrel/NonSTEM/assoc. and a 1st or 2nd degree is listed but not  
  verifiable then person is "no Degree" ; 
else if (STEM + STEMrel + NonSTEM + Sub4YrDeg = 0 & F4EDGR1 > 0 & F4EMJ1D < 0 & 
F4EDGR2 < 0 & F4EMJ2D < 0) then NoDegree = 1;  
* if student is not STEM/STEMrel/NonSTEM/assoc. and a 1st degree is listed but not  
  verifiable then person is "no Degree" ; 
else if(STEM + STEMrel + NonSTEM + Sub4YrDeg = 0 & F4EDGR1 < 0 & F4EDGR2 < 0 ) 
then NoDegree = 1;  
* if student is not STEM/STEMrel/NonSTEM/assoc. and no degree is listed then person is "no 
Degree" ; 
else NoDegree = 0 ; 
* otherwise the person is assumed to have some kind of degree ; 
 
if (STEM = 1) then Category = 4 ; 
else if (STEMrel = 1) then Category = 3 ; 
else if (NonSTEM = 1) then Category = 2 ; 
else if (Sub4yrDeg = 1) then Category = 1 ; 
else if (NoDegree = 1) then Category = 0 ; 
else Category = 5 ; 

 

D.2 SAS CODE FOR RECODING COVARIATES 

The code to accomplish this task was very lengthy but repetitive for many of the variables.  

Therefore, only a few examples of the covariates are shown here.   

 

IF (BY2XMPRO =  3) then  BY2XMPROro = 4 ; 
else if (BY2XMPRO =  2) then  BY2XMPROro = 3 ; 
else if (BY2XMPRO =  1) then  BY2XMPROro = 2 ; 
else if (BY2XMPRO =  0) then  BY2XMPROro = 1 ; 
else   BY2XMPROro = 0 ; 
 
IF (BYFAMINC <  16) then  BYFAMINCro = BYFAMINC ; 
else   BYFAMINCro = 0 ; 
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* Dummy variables for Sector of High School student plans to attend. 
BYS14rPvREL = 1 if private religious, BYS14PvNRel = 1 if private non-religious 
and both = 0 if public or not sure.  ; 
IF (BYS14 =  2) then  BYS14rPvRel = 1 ; 
else   BYS14rPvRel = 0 ; 
IF (BYS14 =  3) then  BYS14rPvNRel = 1 ; 
else   BYS14rPvNRel = 0 ; 
 
IF (BYS34A >  0)& (BYS34A <  3) then  BYS34Arb = 0 ; 
Else IF (BYS34A >  3)& (BYS34A <  8) then  BYS34Arb = 1 ; 
else   BYS34Arb = 0 ; 
 
IF (F4RACE2 = 1) then  F4RACE2rAI = 1 ; 
else   F4RACE2rAI = 0 ; 
if(F4RACE2 = 2 ) then  F4RACE2rAs = 1 ; 
else   F4RACE2rAs = 0 ; 
if(F4RACE2 = 3 ) then  F4RACE2rBl = 1 ; 
else   F4RACE2rBl = 0 ; 
if(F4RACE2 = 5 ) then  F4RACE2rHi = 1 ; 
else   F4RACE2rHi = 0 ; 
*  if F4RACE2 = 5 for White (not Hispanic) or 9 for missing then  
all of the recoded F4RACE2r dummy variables = 0, the reference case ; 

D.3 SAS CODE FOR CLASSIFYING DATA BY STEM TRACK DEPARTURE TYPE 

This code created the revised classification scheme by first determining the timing of events such 

as high school graduation, college graduation, and dropping out of high school.  Then a lengthy 

section of logic examined multiple records to determine the students’ final educational outcome 

and the timing of the STEM track departure if this occurred.  In several cases the records had to 

be inspected individually to judge the proper classification.  Once a decision was made the 

records were individually coded into the classification by using the unique ID variable assigned 

to the students.  The ID codes for individual students have been replaced in the code provided 
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here by “******” for privacy reasons.  After the departure type was identified, additional 

programming logic was used to code the time of STEM track departure and whether the time was 

observed or censored. 

 

* Create the decimal time versions of the F4HSGRDT, F4ED1, and F4ED2 dates.  ; 
If(F4HSGRDT > 0 and F4HSGRmon = 01) then F4HSGRDTrn = F4HSGRyr + (0/12) ; 
else if(F4HSGRDT > 0 and F4HSGRmon = 0) then F4HSGRDTrn = F4HSGRyr + (0/12) ; 
else if(F4HSGRDT > 0 and F4HSGRmon = 02) then F4HSGRDTrn = F4HSGRyr + (1/12) ; 
else if(F4HSGRDT > 0 and F4HSGRmon = 03) then F4HSGRDTrn = F4HSGRyr + (2/12) ; 
else if(F4HSGRDT > 0 and F4HSGRmon = 04) then F4HSGRDTrn = F4HSGRyr + (3/12) ; 
else if(F4HSGRDT > 0 and F4HSGRmon = 05) then F4HSGRDTrn = F4HSGRyr + (4/12) ; 
else if(F4HSGRDT > 0 and F4HSGRmon = 06) then F4HSGRDTrn = F4HSGRyr + (5/12) ; 
else if(F4HSGRDT > 0 and F4HSGRmon = 07) then F4HSGRDTrn = F4HSGRyr + (6/12) ; 
else if(F4HSGRDT > 0 and F4HSGRmon = 08) then F4HSGRDTrn = F4HSGRyr + (7/12) ; 
else if(F4HSGRDT > 0 and F4HSGRmon = 09) then F4HSGRDTrn = F4HSGRyr + (8/12) ; 
else if(F4HSGRDT > 0 and F4HSGRmon = 10) then F4HSGRDTrn = F4HSGRyr + (9/12) ; 
else if(F4HSGRDT > 0 and F4HSGRmon = 11) then F4HSGRDTrn = F4HSGRyr + (10/12) ; 
else if(F4HSGRDT > 0 and F4HSGRmon = 12) then F4HSGRDTrn = F4HSGRyr + (11/12) ; 
else F4HSGRDTrn = F4HSGRDT ; 
 
if(F4HSGRDTrn > 0) then F4HSGRDTrn = ROUND(F4HSGRDTrn,.01) ; 
 
If(F4ED1 > 0 and F4ED1mon = 01) then F4ED1rn = F4ED1yr + (0/12) ; 
else if(F4ED1 > 0 and F4ED1mon = 0) then F4ED1rn = F4ED1yr + (0/12) ; 
else if(F4ED1 > 0 and F4ED1mon = 02) then F4ED1rn = F4ED1yr + (1/12) ; 
else if(F4ED1 > 0 and F4ED1mon = 03) then F4ED1rn = F4ED1yr + (2/12) ; 
else if(F4ED1 > 0 and F4ED1mon = 04) then F4ED1rn = F4ED1yr + (3/12) ; 
else if(F4ED1 > 0 and F4ED1mon = 05) then F4ED1rn = F4ED1yr + (4/12) ; 
else if(F4ED1 > 0 and F4ED1mon = 06) then F4ED1rn = F4ED1yr + (5/12) ; 
else if(F4ED1 > 0 and F4ED1mon = 07) then F4ED1rn = F4ED1yr + (6/12) ; 
else if(F4ED1 > 0 and F4ED1mon = 08) then F4ED1rn = F4ED1yr + (7/12) ; 
else if(F4ED1 > 0 and F4ED1mon = 09) then F4ED1rn = F4ED1yr + (8/12) ; 
else if(F4ED1 > 0 and F4ED1mon = 10) then F4ED1rn = F4ED1yr + (9/12) ; 
else if(F4ED1 > 0 and F4ED1mon = 11) then F4ED1rn = F4ED1yr + (10/12) ; 
else if(F4ED1 > 0 and F4ED1mon = 12) then F4ED1rn = F4ED1yr + (11/12) ; 
else F4ED1rn = F4ED1 ; 
 
if(F4ED1rn > 0) then F4ED1rn = ROUND(F4ED1rn,.01) ; 
 
 
If(F4ED2 > 0 and F4ED2mon = 01) then F4ED2rn = F4ED2yr + (0/12) ; 
else if(F4ED2 > 0 and F4ED2mon = 0) then F4ED2rn = F4ED2yr + (0/12) ; 
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else if(F4ED2 > 0 and F4ED2mon = 02) then F4ED2rn = F4ED2yr + (1/12) ; 
else if(F4ED2 > 0 and F4ED2mon = 03) then F4ED2rn = F4ED2yr + (2/12) ; 
else if(F4ED2 > 0 and F4ED2mon = 04) then F4ED2rn = F4ED2yr + (3/12) ; 
else if(F4ED2 > 0 and F4ED2mon = 05) then F4ED2rn = F4ED2yr + (4/12) ; 
else if(F4ED2 > 0 and F4ED2mon = 06) then F4ED2rn = F4ED2yr + (5/12) ; 
else if(F4ED2 > 0 and F4ED2mon = 07) then F4ED2rn = F4ED2yr + (6/12) ; 
else if(F4ED2 > 0 and F4ED2mon = 08) then F4ED2rn = F4ED2yr + (7/12) ; 
else if(F4ED2 > 0 and F4ED2mon = 09) then F4ED2rn = F4ED2yr + (8/12) ; 
else if(F4ED2 > 0 and F4ED2mon = 10) then F4ED2rn = F4ED2yr + (9/12) ; 
else if(F4ED2 > 0 and F4ED2mon = 11) then F4ED2rn = F4ED2yr + (10/12) ; 
else if(F4ED2 > 0 and F4ED2mon = 12) then F4ED2rn = F4ED2yr + (11/12) ; 
else F4ED2rn = F4ED2 ; 
 
if(F4ED2rn > 0) then F4ED2rn = ROUND(F4ED2rn,.01) ; 
 
if(F2D6Y = 2) then F2D6yr = 1988 ; 
else if(F2D6Y = 3) then F2D6yr = 1989 ; 
else if(F2D6Y = 4) then F2D6yr = 1990 ; 
else if(F2D6Y = 5) then F2D6yr = 1991 ; 
else if(F2D6Y = 6) then F2D6yr = 1992 ; 
else if(F2D6Y > 6) then F2D6yr = F2D6Y ; 
else F2D6yr = 0 ; 
 
If(F2D6Y > 1 and F2D6Y < 98 and F2D6M < 13) then F2D6Yrn = F2D6yr + ((F2D6M - 1)/12) 
; 
else if(F2D6Y > 1 and F2D6Y < 98 and F2D6M > 13 and F2D6M < 99)then F2D6Yrn = F2D6yr 
+ (5/12) ; 
else F2D6Yrn = 0 ; 
 
if(F2D6Yrn > 0) then F2D6Yrn = ROUND(F2D6Yrn,.01) ; 
 
if(F1D7YEAR = 1) then F1D7YEARyr = 1987 ; 
else if(F1D7YEAR = 2) then F1D7YEARyr = 1988 ; 
else if(F1D7YEAR = 3) then F1D7YEARyr = 1989 ; 
else if(F1D7YEAR = 4) then F1D7YEARyr = 1990 ; 
else if(F1D7YEAR > 4) then F1D7YEARyr = F1D7YEAR ; 
else F1D7YEARyr = 0 ; 
 
If(F1D7YEAR > 0 and F1D7YEAR < 8 and F1D7MNTH < 13) then F1D7Yrn = F1D7YEARyr 
+ ((F1D7MNTH - 1)/12) ; 
else if(F1D7YEAR > 0 and F1D7YEAR < 98 and F1D7MNTH > 13 and F1D7MNTH < 99)then 
F1D7Yrn = F1D7YEARyr + (5/12) ; 
else F1D7Yrn = 0 ; 
 
if(F1D7Yrn > 0) then F1D7Yrn = ROUND(F1D7Yrn,.01) ; 
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* Identify which reported degree date happened sooner ; 
if(F4ED1rn < = F4ED2rn and F4ED1rn > 0 and F4ED2rn > 0 )then D1bD2 = 1 ; 
* D1 <= D2 and both valid ( > 0) so D1 happened before or =  D2 ; 
else if (F4ED1rn > F4ED2rn and F4ED1rn > 0 and F4ED2rn < 0 ) then D1bD2 = 1 ; 
* D1 > D2 but only D1 is valid so D1 is the one to use ; 
else if (F4ED1rn > F4ED2rn and F4ED1rn > 0 and F4ED2rn > 0 ) then D1bD2 = 2 ; 
* D1 > D2 and both are valid so D2 preceded D2 ; 
else if (F4ED1rn < F4ED2rn and F4ED1rn < 0 and F4ED2rn > 0 ) then D1bD2 = 2 ; 
* D1 < D2 but only D2 is valid so D2 is the one to use ; 
else D1bD2 = 0 ; 
* D1 and D2 both invalid (< 0) so neither is usable ; 
 
* Departure Type code   ; 
 
if(Category = 0 and ALLHDEG = 0) then Depart_Type = 1 ; 
*  dropped out of high school and never got a diploma ; 
else if(Category = 0 and ALLHDEG = 10) then Depart_Type = 7 ; 
*  Move the Chem PhD student to STEM  ; 
 
else if(Category = 0 and ALLHDEG = 1 and CREDRET = -8) then Depart_Type = 2 ; 
*  graduated high school, never earned a college degree, and never claimed PSE attend. 
(need to figure out who tried to get one.); 
else if(Category = 0 and ALLHDEG = 1 and CREDRET > 3 and IN2000SC =0)then 
Depart_Type = 3 ; 
* graduated high school, attempted college, and dropped out with no degree ; 
else if(Category = 0 and ALLHDEG = 1 and CREDRET > 3 and INSCHOOL >4 and 
F4HSGRDT > 0)then Depart_Type = 2 ; 
* graduated high school, may have taken college but not for a degree ; 
else if(Category = 0 and ALLHDEG = 1 and CREDRET > 3 and INSCHOOL >4 and 
F4HSGRDT < 0)then Depart_Type = 8 ; 
* Allegedly graduated high school, may have taken college but not for a degree and cannot 
confirm HS grad.  
   Excluded from further analysis.  Applies to 8 records; 
else if(Category = 0 and ALLHDEG > 0 and CREDRET > 3 and INSCHOOL >6) then 
Depart_Type = 3 ; 
* graduated high school, attempted college, and dropped out with no degree 
  Note:  not in school in 2000 ; 
else if(Category = 0 and ALLHDEG > 0 and CREDRET > 3 and INSCHOOL <5 ) then 
Depart_Type = 4 ; 
* graduated high school, attempted college, in school in 2000 
  but study ended before degree earned.  ; 
else if(Category = 0 and ALLHDEG = 1 and CREDRET < 0) then Depart_Type =  2 ; 
* graduated high school and never attempted college ; 
 
else if(Category = 0 and ALLHDEG = 2) then Depart_Type = 2 ; 
*  graduated high school and pursued an unknown college degree   

 269 



    Without a better way to figure out the major, depart time = HS grad.   
    Check these students out to see if some had discernable majors; 
else if(Category = 0 and ALLHDEG > 2 and ALLHDEG < 5) then Depart_Type = 3 ; 
*  graduated high school and entered college, but no degree 
    Without a better way to figure out what happened, depart time = HS grad.   
    Check these students out to see if some had discernable majors and degrees; 
else if(Category = 0 and ALLHDEG > 4 and ALLHDEG < 10) then Depart_Type = 8 ; 
*  graduated high school and entered college, degree status conflicts between 
   NOT and NOR.  Exclude from further analysis.  Applies to 155 records; 
 
else if(Category = 4 and F4ED1 > 0 ) then Depart_Type = 7 ; 
* no departure - earned a STEM degree ; 
 else if(Category = 4 and F4ED1 < 0 ) then Depart_Type = 8 ; 
*  Reported a STEM degree but have no valid graduation date.    
    Applies to 3 cases that earned Non-STEM and STEM-Related degrees 
    according to the PETS NOT file.; 
 
else if(Category = 1 and ALLHDEG < 5 ) then Depart_Type = 5 ; 
*  Sub 4 year deg (or no degree according to ALLHDEG).  ; 
else if(Category = 1 and ALLHDEG = 5 ) then Depart_Type = 5 ; 
*  Got a different degree ; 
else if(Category = 1 and ALLHDEG > 4 and F4ED1 > 0) then Depart_Type = 5 ; 
*  Graduated with a Sub 4 Year Degree ; 
else if(Category = 1 and ALLHDEG > 4 and F4ED1 < 0) then Depart_Type = 3 ; 
*  graduated high school and entered college, but no degree 
    Without a better way to figure out what happened, depart time = HS grad.   
    Check these students out to see if some had discernable majors and degrees; 
 
else if(Category = 2 and ALLHDEG > 4) then Depart_Type = 6 ; 
*  Got a NonSTEM degree ; 
else if(Category = 2 and ALLHDEG = 4 and INSCHOOL = 9) then Depart_Type = 6 ; 
*  Earned a different degree ; 
else if(Category = 2 and ALLHDEG = 4 and INSCHOOL < 5) then Depart_Type = 6 ; 
*  Earned a different degree ; 
else if(Category = 2 and ALLHDEG = 4 and INSCHOOL = 8) then Depart_Type = 6 ; 
*  Earned a different degree ; 
else if(Category = 2 and ALLHDEG = 3) then Depart_Type = 6 ; 
*  Earned a different degree ; 
else if(Category = 2 and ALLHDEG = 2) then Depart_Type = 6 ; 
*  Earned a different degree ; 
else if(Category = 2 and ALLHDEG = 2) then Depart_Type = 6 ; 
*  Earned a different degree ; 
else if(Category = 2 and ALLHDEG = 1 and CREDRET = -1 and F4HSGRDT >0) then 
Depart_Type = 6 ; 
*  Earned a different degree (relates to 2 students with no transcripts but reported degrees); 

 270 



else if(Category = 2 and ALLHDEG = 1 and CREDRET > 0 and F4EDGR1 >0 or F4EDGR2 
>0) then Depart_Type = 6 ; 
*  Earned a different degree ; 
else if(Category = 2 and ALLHDEG = 1 and CREDRET > 0 and F4EDGR1 <0 and F4EDGR2 
<0 and F4HSGRDT >0 ) then Depart_Type = 2 ; 
*  Graduated HS but no college (relates to 1 student who reported a degree & major,  
   but had no transcript or valid reported college graduation date); 
else if(Category = 2 and ALLHDEG = 0 and CREDRET = -1 and F4HSGRDT >0) then 
Depart_Type = 6 ; 
*  Earned a different degree (relates to 1 student with no transcripts but reported degree; 
else if(Category = 2 and ALLHDEG = 0 and CREDRET = -1 and F4HSGRDT < 1) then 
Depart_Type = 8 ; 
*  Not discernable (relates to 1 student with no transcripts, a reported degree, but not verifible 
HS grad date; 
 
*else if(Category = 2 and ALLHDEG < 4) then Depart_Type = 3 ; 
*  Graduated HS, entered college, but dropped out without a degree ; 
 
else if(Category = 3 and ALLHDEG > 4) then Depart_Type = 6 ; 
*  Got a STEMrel degree ; 
else if(Category = 3 and ALLHDEG < 5 and F4ED1 > 0) then Depart_Type = 6 ; 
*  Got a STEMrel degree ; 
else if(Category = 3 and ALLHDEG < 5 and F4ED1 < 0 and F4EDGR1 < 3) then Depart_Type 
= 6 ; 
*  graduated high school and entered college, but no degree 
    Without a better way to figure out what happened, depart time = HS grad.   
    Check these students out to see if some had discernable majors and degrees; 
*else if(Category = 3 and ALLHDEG < 5 and F4ED1 < 0 and F4EDGR1 = 3) then Depart_Type 
= 6 ; 
*  graduated high school, entered college, reported a degree,  
   had valid PSBEG & PSEND dates, but had no valid grad date. 
    Applies to 2 STEMrel classified students that had valid PSBEG & PSEND dates 
     but not a valid graduation date. ; 
 
else Depart_Type = 9 ; 
*  Category mismatch - research ; 
 
if(ID =****** or ID = ******) then Depart_Type = 8 ; 
*  Reported earning a different degree (Non-STEM), but info. not reconcileable with PSE data.   
    (Applies to 2 records  ID #'s ****** and ****** [withheld for privacy] ) Make Departure 
Type 9 not 4; 
if(ID = ******) then Depart_Type = 2 ; 
*  Reported attempting college but no substantiation, just HS Graduation shown ; 
if(ID in((******, 
******, 
******,))then Depart_Type = 3 ; 
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*  Reported earning a Sub 4yr degree, but no valid graduate date given  
   or available from the PSE data.   
   Changes the classification from Departure Type 4 to 3 ; 
 
if(ID in(******,******))then Depart_Type = 2 ; 
* Applies to 2 students classified as STEMrel based on reported majors 
& degrees, but no valid graduation dates given either in NOR or PETS files ; 
 
if(ID in((******, 
******, 
******, 
) )then Depart_Type = 8 ; 
*  Reported earning a Sub 4yr degree, but no valid graduate date given  
   or available from the PSE data and not reconcilable with PSE info.   
   Changes the classification from Departure Type 4 to 9 to exclude 
   these records from further analysis; 
 
If(ID in (******, 
******, 
******, 
)) then Depart_Type = 8 ; 
*  Applies to 14 records originally classified as HS dropouts but for which inconsistent 
   data is present.  The F3EVDOST flag variable suggests they did not permanently drop out. ; 
 
Observed = 0 ; 
 
* Departure Time identification code  ; 
if(Depart_Type = 1 and F2D6Yrn > 99) then Depart_Time = F2D6Yrn ; 
else if (Depart_Type = 1 and F2D6Yrn <= 99 and F1D7Yrn > 99) then Depart_Time = F1D7Yrn 
; 
else if (Depart_Type = 1) then Depart_Time = 1991 ; 
* Departure time for students classified as HS dropouts is based on 2 variables.   
  If the last date reported to be in high school as of F2 is valid, that date is used. 
  If the F2 date is not valid, but the last date reported to be in HS as of F1 is, that  
    date is used.  If neither is valid, then the departure date is imputed to be 1991, the 
    year between F1 and F2.  ; 
 
else if(Depart_Type = 2 and PETSHSDT > 0) then Depart_Time = PETSHSDT ; 
else if(Depart_Type = 2 and PETSHSDT <= 0 and F4HSGRDTrn > 0) then Depart_Time = 
F4HSGRDTrn ; 
* HS grads: set departure time based on the PETS NOT H.S. graduation date.   
  All but 6 of the 2,367 records with Departure Type 2 have a valid PETSHSDT grad date. 
  time is decimal with YYYY.mm  where mm = MM/12 with Jan. = 0, Dec = 11/12 ; 
 
else if(Depart_Type = 3) then Depart_Time = PSEND ; 
* College dropouts: set departure time based on the last date at which  
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  the student was reported   to be attending a post-secondary institution. 
  Each of the 2,163 records had a   valid PSEND date.   
  time is decimal with YYYY.mm  where mm = MM/12 ; 
 
else if(Depart_Type = 4) then Depart_Time = 2001.00  ; 
* Study ended before degree earned: set the depart time based on  
  study end/censoring date of Dec. 31, 2000.   Time = 2001.00 ; 
 
* Got a Sub 4 yr deg:   
  1,704 records ; 
 
else If(Depart_Type = 5  and Sub4YrDegD1 = 1 and Sub4YrDegD2 = 1 and D1bD2 = 1) 
  then Depart_Time = F4ED1rn ; 
* both degrees are Sub4YrDeg and D1 is the earliest ( & D1 has a valid date)  ; 
else if(Depart_Type = 5 and Sub4YrDegD1 = 1 and Sub4YrDegD2 = 1 and D1bD2 = 2) 
  then Depart_Time = F4ED2rn ; 
* both degrees are Sub4YrDeg and D2 is the earliest ( & D2 has a valid date) ; 
else if(Depart_Type = 5  and Sub4YrDegD1 = 1 and Sub4YrDegD2 = 0 and D1bD2 > 0) 
  then Depart_Time = F4ED1rn; 
* D1 is Sub4YrDeg with a valid date and D2 isn't Sub4, use D1  ; 
else if(Depart_Type = 5 and Sub4YrDegD1 = 0 and Sub4YrDegD2 = 1 and D1bD2 > 0) 
  then Depart_Time = F4ED2rn; 
* D2 is Sub4YrDeg with a valid date and D1 isn't Sub4, use D2  ; 
else If(Depart_Type = 5  and Sub4YrDegD1 = 0 and Sub4YrDegD2 = 0 and D1bD2 = 1) 
  then Depart_Time = F4ED1rn ; 
* at least one degree in a 4 year subject but only got Certif or Assoc. and 
   D1 had a valid date - about 73 records  ; 
else if(Depart_Type = 5  and Sub4YrDegD1 = 0 and Sub4YrDegD2 = 0 and D1bD2 = 1  
         and DEGDAT2 > 0 and DEGDAT3 < 0) then Depart_Time = DEGDAT2; 
* Should apply only to ???? that reported no valid degrees, but 
  was classified as Sub4YrDeg based on the transcript data; 
else if(Depart_Type = 5  and Sub4YrDegD1 = 0 and Sub4YrDegD2 = 0 and D1bD2 = 1  
         and DEGDAT2 < 0 and DEGDAT3 > 0) then Depart_Time = DEGDAT3; 
* Should apply only to ???? that reported no valid degrees, but 
  was classified as Sub4YrDeg based on the transcript data; 
else if(Depart_Type = 5 and Sub4YrDegD1 = 0 and Sub4YrDegD2 = 0  
   and D1bD2 = 0 and DEGDAT2 > 0 and DEGDAT3 <= 0) then Depart_Time = DEGDAT2; 
* Should apply only to records that reported valid Sub4YrDeg degrees w/ no valid degree dates, 
but 
  was also classified as Sub4YrDeg based on the transcript data   ; 
else if(Depart_Type = 5 and Sub4YrDegD1 = 0 and Sub4YrDegD2 = 0  
   and D1bD2 = 0 and DEGDAT2 <= 0 and DEGDAT3 > 0) then Depart_Time = DEGDAT3; 
* Should apply only to records that reported valid Sub4YrDeg degrees w/ no valid degree dates, 
but 
  was also classified as Sub4YrDeg based on the transcript data   ; 
else if(Depart_Type = 5 and Sub4YrDeg = 1 and Sub4YrDegD1 = 1 and Sub4YrDegD2 = 0 
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 and D1bD2 = 0 and DEGDAT2 > 0 and DEGDAT3 <= 0) then Depart_Time = DEGDAT2; 
* Should apply only to records that reported valid Sub4YrDeg degrees w/ no valid degree dates, 
but 
  was also classified as Sub4YrDeg based on the transcript data   ; 
else if(Depart_Type = 5 and Sub4YrDeg = 1 and Sub4YrDegD1 = 1 and Sub4YrDegD2 = 0 
 and D1bD2 = 0 and DEGDAT2 <= 0 and DEGDAT3 > 0) then Depart_Time = DEGDAT3; 
* Should apply only to records that reported valid Sub4YrDeg degrees w/ no valid degree dates, 
but 
  was also classified as Sub4YrDeg based on the transcript data   ; 
* Got a STEMrel or NonSTEM deg:  set the depart time based on F4ED1, F4ED2, or DEGDAT4 
or DEGDAT5. 
    3,158 records ; 
else if(Depart_Type = 5 and Sub4YrDeg = 1 and Sub4YrDegD1 = 1 and Sub4YrDegD2 = 0 
 and D1bD2 = 0 and DEGDAT2 > 0 and DEGDAT3 > 0) then Depart_Time = DEGDAT2; 
 *  should apply to just one record ID = 781418 that reported Sub 4 deg with no valid dates, but 
had 
     valid dates on transcript side for DEGDAT2 and DEGDAT3  ; 
 
else If(Depart_Type = 6 and STEMrel = 1 and STEMrelD1 = 1 and STEMrelD2 = 1 and D1bD2 
= 1) then Depart_Time = F4ED1rn ; 
* both degrees are STEMrel and D1 is the earliest  ; 
else if(Depart_Type = 6 and STEMrel = 1 and STEMrelD1 = 1 and STEMrelD2 = 1 and D1bD2 
= 2) then Depart_Time = F4ED2rn ; 
* both degrees are STEMrel and D2 is the earliest  ; 
else if(Depart_Type = 6 and STEMrel = 1 and STEMrelD1 = 1 and STEMrelD2 = 0) then 
Depart_Time = F4ED1rn; 
* D1 is STEMrel and D2 isn't use D1  ; 
else if(Depart_Type = 6 and STEMrel = 1 and STEMrelD1 = 0 and STEMrelD2 = 1) then 
Depart_Time = F4ED2rn; 
* D2 is STEMrel and D1 isn't use D2  ; 
else if(Depart_Type = 6 and STEMrel = 1 and STEMrelD1 = 0 and STEMrelD2 = 0) then 
Depart_Time = DEGDAT4; 
* Should apply only to ???? that reported no valid degrees, but 
  was classified as STEMrel based on the transcript data; 
 
*Got a NonSTEM degree ; 
 
else If(Depart_Type = 6 and NonSTEM = 1 and NonSTEMD1 = 1 and NonSTEMD2 = 1 and 
D1bD2 = 1) then Depart_Time = F4ED1rn ; 
* both degrees are NonSTEM and D1 is the earliest  ; 
else if(Depart_Type = 6 and NonSTEM = 1 and NonSTEMD1 = 1 and NonSTEMD2 = 1 and 
D1bD2 = 2) then Depart_Time = F4ED2rn ; 
* both degrees are NonSTEM and D2 is the earliest  ; 
else if(Depart_Type = 6 and NonSTEM = 1 and NonSTEMD1 = 1 and NonSTEMD2 = 0 and 
D1bD2 > 0) then Depart_Time = F4ED1rn; 
* D1 is NonSTEM and D2 isn't use D1  ; 
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else if(Depart_Type = 6 and NonSTEM = 1 and NonSTEMD1 = 0 and NonSTEMD2 = 1 and 
D1bD2 > 0) then Depart_Time = F4ED2rn; 
* D2 is NonSTEM and D1 isn't use D2  ; 
else if(Depart_Type = 6 and NonSTEM = 1 and NonSTEMD1 = 0 and NonSTEMD2 = 0 and 
D1bD2 > 0) then Depart_Time = DEGDAT4; 
* Should apply only to ???? that reported no valid degrees, but 
  was classified as NonSTEM based on the transcript data; 
else if(Depart_Type = 6 and NonSTEM = 1 and D1bD2 = 0) then Depart_Time = DEGDAT4; 
* Should apply only to 4 records that reported valid NonSTEM degrees w/ no valid degree dates, 
but 
  was also classified as NonSTEM based on the transcript data  and B_NonSTEM = 1 ; 
 
* Got a STEM deg:  set the depart time based on F4ED1, F4ED2, or DEGDAT4 or DEGDAT5. 
  Then write the code based on   whether D1 or D2 was the degree in question 
  and which came first or the associated DEGDAT4 date if there's not a valid  
  F4ED1 or F4ED2 date. Departure time randomly right censored because STEM  
  track departure never happened and event not observed 
  736 records ; 
 
else If(Depart_Type = 7 and STEMD1 = 1 and STEMD2 = 1 and D1bD2 = 1) then Depart_Time 
= F4ED1rn ; 
* both degrees are STEM and D1 is the earliest  ; 
else if(Depart_Type = 7 and STEMD1 = 1 and STEMD2 = 1 and D1bD2 = 2) then Depart_Time 
= F4ED2rn ; 
* both degrees are STEM and D2 is the earliest  ; 
else if(Depart_Type = 7 and STEMD1 = 1 and STEMD2 = 0) then Depart_Time = F4ED1rn; 
* D1 is STEM and D2 isn't use D1  ; 
else if(Depart_Type = 7 and STEMD1 = 0 and STEMD2 = 1) then Depart_Time = F4ED2rn; 
* D2 is STEM and D1 isn't use D2  ; 
else if(Depart_Type = 7 and STEMD1 = 0 and STEMD2 = 0) then Depart_Time = DEGDAT4; 
* Should apply only to the Chemistry PhD that reported no valid degrees, but 
  was classified as STEM based on the transcript data; 
 
else if(Depart_Type = 8) then Depart_Time = 0 ; 
* Excluded record:  set the depart time to 0   186 records. ; 
 
else Depart_Time = 10 ; 
 
if(Depart_Type = 7) then STEM_Outcome = 1 ; 
else STEM_Outcome = 0 ; 
* label the student outcomes as STEM or not ; 
 
 if(ID = ******) then Depart_Time = DEGDAT4 ; 
* hard code the Chemistry PHD's departure time to the date 
  of the bachelor's degree.  Should be redundant line. ; 
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if(Depart_Type = 2) then  Observed = 1; 
else if(Depart_Type = 3) then Observed = 1; 
else if(Depart_Type = 4) then Observed = 0; 
* Observed = 0 because the event of departing STEM track wasn't observed.  
  There were 433 students in this status.  ; 
else if(Depart_Type = 5) then Observed = 1; 
else if(Depart_Type = 6) then Observed = 1; 
else if(Depart_Type = 7) then Observed = 0; 
* Observed = 0 because the event of departing STEM track wasn't observed.  
  There were 736 students in this status.  ; 
else if(Depart_Type = 8) then Observed = 0; 
else if(Depart_Type = 1) then Observed = 1; 
else Observed = 2 ; 
 
Track_Time = Depart_Time - 1987.92; 
 
if(BDAYrn > 0) then Educ_Dur = Depart_Time - BDAYrn ; 
else Educ_Dur = 0 ; 
* ; 
if(Educ_Dur > 0) then Educ_Dur = ROUND(Educ_Dur,.01) ; 
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