Gujrati, Abhijeet and Khanal, Subarna R. and Jacobs, Tevis D. B.
(2017)
A Method for Quantitative Real-Time Evaluation of Measurement Reliability When Using Atomic Force Microscopy-Based Metrology.
IEEE Nano, 2017 IEEE 17th International Conference on Nanotechnology.
pp. 135-138.
ISSN 1944-9380
Abstract
In atomic force microscopy (AFM) and metrology, it is known that the radius of the scanning tip affects the accuracy of the measurement. However, most techniques for ascertaining tip radius require interruption of the measurement technique to insert a reference standard or to otherwise image the tip. Here we propose an inline technique based on analysis of the power spectral density (PSD) of the topography that is being collected during measurement. By identifying and quantifying artifacts that are known to arise in the power spectrum due to tip blunting, the PSD itself can be used to determine progressive shifts in the radius of the tip. Specifically, using AFM images of an ultrananocrystalline diamond, various trends in measured PSD are demonstrated. First, using more than 200 different measurements of the same material, the variability in the measured PSD is demonstrated. Second, using progressive scans under the same conditions, a systematic shifting of the mid-to-high-frequency data is visible. Third, using three different PSDs, the changes in radii between them were quantitatively determined and compared to transmission electron microscopy (TEM) images of the tips taken immediately after use. The fractional changes in tip radii were detected; the absolute values of the tip radii could be matched between the two techniques, but only with careful selection of a fitting constant. Further work is required to determine the generalizability of the value of this constant. Overall, the proposed approach represents a step towards quantitative and inline determination of the radius of the scanning tip and thus of the reliability of AFM-based measurements.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Metrics
Monthly Views for the past 3 years
Plum Analytics
Altmetric.com
Actions (login required)
|
View Item |